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Abstract

The Federal Highway Administration has a nationwide allocation of five frequency pairs in the

220-222 MHz Narrowband Radio Services band which are intended for application in Intelligent

Transportation Systems. These frequencies are available for use by state DOTs (subject to

FHWA approval) and provide an attractive solution for certain low to medium bit rate data

communications applications. However, given the limited bandwidth available in these

channels, very efficient modems will be required to make maximum beneficial use of this

resource.

The goal of this project is to design, field test, and deploy a digital radio which uses the

220-222 MHz spectral allocation and is suitable for stationary point-to-point data

communications applications. The target application for this project is the control (pan, tilt, and

zoom) of a video camera located at the interchange of 1-65 and the Borman Expressway. The

wireless link extends from the camera location to the traffic operations center (approximately 1.5

miles). There were three main tasks needed to produce a deployable modem: 1) the design of

interface circuitry between the 220 MHz modem and the camera control keypad and the camera

pan/tilt/zoom receiver, 2) the fabrication of a compact and rugged receiver. The receiver size

constraints were more exacting than those of the transmitter as the receiver is deployed in a

roadside cabinet while the transmitter is deployed in the traffic management center. The work

plan was divided into a set of twelve tasks. The final task was the deployment of the unit on the

Borman Expressway.

The 220 MHz modem can serve INDOT as a general-purpose link for low to medium rate

data communications in a wide variety of applications. The most significant issue outstanding

with regard to widespread implementation of the technology is the mass production cost and the

availability of a reliable source of production versions of the device.



1 Introduction

Data communications systems linking field equipment (traffic sensors, changeable message

signs, incident response vehicles, etc.) with traffic operations centers are a fundamental

requirement of the Indiana Department of Transportation's (ENDOT) plans for deployment of

Intelligent Transportation System (ITS) traffic management and traveler information services. In

1992, five narrowband (4 kHz) frequency pairs in the 220-222 MHz Land Mobile radio band

were allocated to the Federal Highway Administration (FHWA) for ITS applications. These

frequencies are available for ENDOT use (subject to FHWA approval) and provide an attractive

solution for certain low to medium bit rate data communications applications. However, given

the limited bandwidth available in these channels, very efficient modems are required to make

maximum beneficial use of this resource.

The goal of this project was to design, field test, and deploy a digital radio which uses the

220-222 MHz spectral allocation and is suitable for stationary point-to-point data

communications applications. The target application for this project is the control (pan, tilt, and

zoom) of a video camera located at the interchange of 1-65 and the Borman Expressway. The

wireless link extends from the camera location to the traffic operations center (approximately 1.5

miles).

Some additional potential applications of this technology include: (1) data

communications between highway infrastructure and mobile incident response vehicles, (2)

transmission of surveillance sensor telemetry to remote concentrators, and (3) multiple access

communications in semi-rural adaptive traffic signal coordination. Some aspects of these

applications are the subject of further study.

2 Problem Statement

Given the limited bandwidth (4 KHz) available in the 220 MHz channels, very efficient modems
will be required if profitable use is to be made of this resource. Standard twisted-pair telephone

circuits also have an available bandwidth of about 4 KHz and modem technology has now
evolved to the point where transmission rates are at 28.8 Kbps (or more) for the best twisted-pair

lines. This amounts to a spectral efficiency of almost 9 bps/Hz.

The design of high efficiency wireless modems is more difficult than the design of

wireline modems of similar efficiency because of challenging impairments present in a radio

channel (fading, multipath, etc.). The Communication Research Laboratory at Purdue University

has an ongoing research effort to optimize spectral efficiencies of wireless data transmission

which has been used to leverage the work of the Borman Point-to-Point Modem Project. A
wireless modem has been developed for fixed point-to-point one way data communication

between the Borman expressway traffic management center (TMC) and a remote camera site

located near the intersection of 1-65 and the Borman Expressway. See Figure 1. The modem
uses the ITS dedicated radio bands and provides 4800 bits per second of information throughput



and a range of more than 2 miles when properly installed. The modem will serve as the

communication system for camera control functions.

Figure 1: The vicinity of 1-65 and the Borman Expressway interchange. White stars

indicate the locations of the TMC and the camera. The point-to-point link of this

project is line of sight between the two stars.

3 Objectives or Purpose

The majority of the effort on this project involved the development of a rugged compact

implementation of the wireless modem. Significant research was also undertaken relating to this

project under the auspices of an ITS-IDEA project funded by the Transportation Research board.

The major design tasks undertaken in the INDOT funded work were:

• Design of Interfact Circuitry : The design of the electronic interface between the TMC
communications controller and the wireless modem and between the modem and the

video camera. This consisted of providing a transparent RS-422 standard interface as

seen by the camera and camera controller.

• Transmitter Implementation: Fabrication of a compact transmitter which includes the

interface circuitry, digital signal processor (DSP) modulator, the digital up converter, the

radio frequency (RF) up converter and amplifiers, and the antenna systems.

• Receiver Implementation: Fabrication of a compact receiver unit which includes antenna

system, the RF receiver, the sampler, the digital down converter, DSP demodulator, and

interface circuits.

4 Work Plan

The work plan for this project was divided into a set of twelve tasks which are given in Table 1.

The project experienced several long delays. The first delay involved Task 5 (RF System

Design) and caused a project delay of approximately 8 months with respect to the original



schedule. The problem arose during acceptance testing of the RF subsystem which was designed

and built by an outside contractor. The local oscillator in the RF unit (used in both transmitter

and receiver) contained sufficient phase noise that the unit could not properly decode a multi-

level constellation nor could it meet the regulatory transmission mask. The RF subsystem was

redesigned and built by the Electro-Sciences Laboratory at the Ohio State University who were

also responsible for the integration of the digital and RF circuits into a field deployable box.

Table 1: Status of Project Tasks.

PROJECT TASK COMPLETION
DATE REMARKS

1. Borman Expressway

Requirements
Feb. 1997

Produce specifications of interfaces between TMC and modem and between

modem and camera controller.

2. Interface Design June 1997 Design interfaces TMC/modem and modem/camera.

3. Interface Acceptance

Test
August 1997 Test of interface designed in Task 2.

4. Signal Design July 1997
Design signaling waveforms, coding, and frame structure for one-way

point-to-point operation.

5. RF System Design April 1998
Produce specifications for radio frequency (RF) subsystems, procure from

subcontractor, and perform the acceptance test. This task required a second

iteration as the first RF units did not pass the acceptance test

6. Demodulator Design August 1997 Design demodulator algorithms, DSP software, and printed circuit boards.

7. Modulator Design August 1997 Develop DSP software to implement modulator algorithms.

8. DSP Software

Acceptance Test
March 1998

Perform acceptance test of baseband modulator and demodulator software

designed in tasks 6 and 7.

9. Digital Hardware
Acceptance Test

June 1998 Perform acceptance test of all digital hardware systems.

10. Integration and Test Dec. 1999 Perform acceptance tests on the entire system in the laboratory.

11. Deployment April 2000
Deploy system on the Borman Expressway and perform acceptance tests on

the deployed system.

12. Final Report June 2000

The second major delay occurred with the first attempt to perform Task 10 (Integration

and Test) when the receiver unit failed its temperature test. Since the receiver must operate in a

roadside cabinet which is not climate controlled, passing the temperature test was deemed

essential. Various minor modifications were attempted by Electro-Sciences Lab personnel

(enlargement of heat sinks, installation of a fan) though they did not solve the heating problem.

Efforts to find a simple fix were exhausted in August 1999 when it was decided to procure a

redesigned receiver (RF and digital circuitry) from Welkin Systems of San Diego, CA. The

receiver unit was delivered to Ohio State in November 1999 and tested in December (Task 10).

The complete Borman Point-to-Point Modem (including camera controller and pan/tilt/zoom

receiver) was received at Purdue University in January 2000. Integration and test (Task 10) was

repeated in the Communications Research Laboratory where all tests were passed. Deployment

took place in April.



5 Analysis of Data

5.1 Design of the Interface Circuitry

The camera controller interface was designed for compatibility with the product by Kalatel

which is in use on the Borman Expressway. The interface equipment consists of 1) a KTD-310
keypad which will reside in the TMC (this is the operator control keypad), and 2) a KTD-125
P/T/Z (pan/tilt/zoom) receiver which will reside in a roadside cabinet located next to the camera

pole.

The design of the point-to-point modem is transparent to the data protocols used in the

Kalatel system to control the camera functions. The only important point is that the interface

between the two ends should satisfy the RS 422 standard (a balanced twisted pair physical

connection). Thus the modem must provide a transmission function transparent to the Kalatel

system. The interfaces are illustrated in Figure 2.

V
RS422 wKTD-301

Keypad
220 MHz Modem

Transmitter
>

Air Interface

V
zoom lens &

^ camera power
^ RS422Video

Camera
220 MHz Modem

Receiver

KTD-125P/T/Z
ReceiverJ ^

pan & tilt

Figure 2: Illustration of modem and camera control interface.

5.2 Design of the Point-to-Point Modem

This portion of the project concerns the design of a high performance point-to-point data

communication architecture. The point-to-point modem shares many architectural features with

the mobile modem. The major difference is that the point-to-point modem does not require pilot

symbol assisted modulation (PSAM) or diversity transmission. The work on this task has

concentrated on the design of modulation and demodulation schemes optimized for point-to-

point transmissions. A block diagram of the point-to-point transmitter and receiver is given in

Figure 3.
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Figure 3: 220 MHz Modem Block Diagrams, (a) Transmitter, (b) Receiver.

The features of the point-to-point mode architecture include:

1

.

coherent demodulation via digital phase lock loop (DPLL) carrier recovery.

2. trellis coded modulation.

3. spectrally efficient pulse shaping and large QAM constellations (up to 128-QAM).

4. design to V.32 and V.33 wireline modem standards.

5. soft decision decoding.

6. linear high power amplifiers.

Further details of the point-to-point modem design may be found in [1] and in Appendix A.
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5.3 Field Testing of the Point-to-Point Modem

The current implementation of the experimental system (the experimental system is not the same

as the deployed system) uses a combination of hardware and software. The baseband modulator

is implemented on a Motorola 56002 DSP. Samples are generated at a rate of 100 kHz. Using

28 samples per symbol period gives a symbol rate of 3571.4 Hz, the maximum that will fit in the

FCC spectral mask. The baseband signal is sent to the Digital Up-Conversion (DUC) board

which modulates the signal to an intermediate frequency (IF) of 21.4 MHz. Commercial off-the-

shelf components are used the bring the signal up to a transmission frequency of 220.5825 MHz
and to amplify it to 1/2 Watt. At the receiver the signal is amplified and down-converted to an EF

of 10.7 MHz by an Analog Devices AD607 evaluation board. The IF signal is sampled at 40

MHz by the Harris HT5702 ADC and brought down to baseband by a Harris HSP50016 Digital

Down-Converter (DDC). The DDC also decimates the sampling rate to 50 kHz. This sampled

baseband signal is stored in the memory of a PC and then saved to a data file.

The remaining portion of the receiver and demodulator are implemented on the block-

oriented software package, Signal Processing Worksystem (SPW). Although the final

implementation uses a Analog Devices DSP for the demodulation, SPW was used for its

versatility during the design phase.

Using the 4kHz channel bandwidth, the 3571.4 Hz symbol rate, and the synchronization

sequence overhead, the bandwidth efficiencies can be calculated as 3.29 and 4.93 bps/Hz for the

V.32 and V.33 modulation schemes, respectively. Field tests were conducted to observe the

performance of this modem. Data was transmitted from the top of a parking garage in West

Lafayette, IN near the Purdue University campus. The receiver was then used to collect the

signal at a variety of locations throughout West Lafayette and Lafayette. Results generally fell

into one of two categories. When the receiver did not have a direct line of sight with the

transmitter, the resulting signal was not strong enough to demodulate (failure can be attributed to

the DPLL). Although the DPLL performs in a reasonable fashion once lock has been achieved,

its performance during acquisition is rather poor without high SNR.

When the receiver had a direct line of sight to the transmitter, performance was

substantially better. Received signal constellations for the V.33 modem are shown in Figure 4

for transmission distances of 1.75 and 2.5 miles. In all V.33 cases, the BER was roughly 10"4 to

10"5
while V.32 transmissions gave no errors.
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Figure 4: Received signal constellations from field testing, (a) Receiver located approximately

1.75 miles from transmitter, (b) Receiver located approximately 2.5 miles from

transmitter.

5.4 Integrated Circuit Development

Communication system designs with large potential markets/production volumes can most

effectively be implemented by using integrated circuit (IC) technology. IC technology is widely

used in high performance consumer electronic devices like televisions, cellular telephones, and

compact disk players. In a commercial endeavor, IC development is relatively expensive and

labor intensive in terms of engineering time but the savings in production costs greatly outweigh

this nonrecurring cost.

Figure 5 shows the block diagram for the receiver front-end. It is seen that the first three

stages of the receiver are implemented with commercially available ICs. The fourth block

(filtering and timing recovery) is currently implemented in software (SPW in the experimental

modem and DSP code in the real-time modem). The same architecture for the timing recovery

block can be used for both point-to-point and mobile applications and, moreover, this

architecture will not change as more bandwidth efficient modulations and coding schemes are

implemented. Also, by making several of the architecture's features programmable (e.g., filter

tap coefficients) the IC will be useful in a wide variety of applications and would be an important

component for a 220 MHz modem development.
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Figure 5: A block diagram of the ITS modem receiver and the proposed blocks to be

incorporated in the IC development.

Motivated by the potential large scale production efficiency, an IC was designed for the

symbol timing recovery functions of Figure 5. The implementation used standard CMOS library

12



cells in 1.2 jum technology, an 8-bit twos-complement architecture and a design emphasis based

upon minimization of chip area. The transistor count of the final design was 148,000. The

estimated chip area was 70 square millimeters and the estimated power consumption was 150

mW. The chip was not actually fabricated because the MOSIS fabrication costs ($36,000, 100

quantity, academic discount) were not included in the budget.

The majority of symbol timing recovery complexity (or chip area) is involved in the

various finite impulse response filtering operations. The IC was designed so that the matched

filter and prefilter shared the same architecture. The basic filter architecture is shown in Figure 6

including the multiply/accumulate unit and 3 state finite state machine controller.

Dbu RAM (41 .81 CoelT. ROM (41 1 8)

I Oil)
Idehd

V

InhloHTarinti

CONTHOl

LOGIC

(a) (b)

Figure 6: Basic finite impulse response filter architecture used in symbol timing recovery

integrated circuit design. The input sample rate is 15 kHz and the filter operates

on a 645 kHz clock to compute one output in 43 cycles, (a) Multiply accumulate

block, (b) Three state finite state machine controller.

5.5 Deployment and Test of the Borman Point-to-Point Modem

Hardware and software for a version of the modem design presented here were developed

in cooperation with the Electro-Sciences Laboratory of the Ohio State University and Welkin

Systems in San Diego, CA. The hardware was deployed in April 2000 in a camera control

application in the vicinity of Interstate Highway 65 and the Borman Expressway (1-80/94). The

link is line of sight of approximately 1.5 miles in distance. See the map of Figure 1. A closeup

of the hardware in the laboratory is shown in Figure 7.

13



Figure 7: Laboratory view of the Borman Point-to-Point Modem Hardware, (a) Transmitter

built by the Electro-Sciences Laboratory of the Ohio State University. Shown on

top of the transmitter box is the camera control operator's touch pad and joystick,

(b) Receiver built by Welkin Systems. Shown on top of the receiver box is the

camera control pan/tilt/zoom receiver.

Prior to deployment the hardware was tested in the Communications Research

Laboratory and found to work according to the specifications for an extended period of time

(approximately one week). Note that the real-time version of the hardware is not suitable for

communications system tests of bit error rate or link availability as the required information is

not logged. Such is outside the scope of the designed hardware.

The Borman Point-to-Point hardware was deployed in April 2000 at the FNDOT Miller

Unit (transmitter) and at the intersection of 1-65 and the Borman Expressway (receiver). The

radio link has functioned perfectly for approximately one month. Figure 8 shows the transmitter

hardware and Figure 9 the receiver hardware.

14



(a) (b)

Figure 8: The Borman Point-to-Point Modem hardware deployed at the Miller Unit, (a)

Transmitter antenna, (b) 220 MHz transmitter (at left) and video (at right) from

the controlled camera.

Figure 9: The Borman Point-to-Point Modem hardware deployed at the intersection of 1-65

and the Borman Expressway (seen in the background).

6 Conclusions

This report has provided a detailed overview of the design of a point-to-point communications

architecture based upon the 220 MHz ITS spectral allocations. The results presented herein are a

15



part of a larger project (funded in part by ITS-IDEA, Texas Instruments, and the National

Science Foundation) that seeks to explore the limits of bandwidth efficiency in cellular

stationary, mobile, and multiple access communications. The technical goals of spectral

efficiencies of 3 bps/Hz for mobile operation and 5 bps/Hz for point-to-point operation have

been met in field tests of the experimental SPW based modem. Effort continues to improve these

spectral efficiencies further. In cooperation with the Electro-Sciences Laboratory at Ohio State

University, transmitter and receiver hardware have been fabricated and deployed in a camera

control function on the Borman Expressway.

7 Recommendations

The 220 MHz modem can serve INDOT as a general purpose link for low to medium rate data

communications in a wide variety of applications. The most significant issue outstanding with

regard to widespread implementation of the technology is the mass production cost and the

availability of a reliable source of production versions of the device. Efforts are continuing at

both Purdue and Ohio State toward further simplifications aimed at complexity reduction in the

receiver. Regarding costs relative to other INDOT data communications alternatives and

compatibility with existing equipment, the following tasks should be undertaken.

1. A cost/benefit analysis should be made comparing the 220 MHz technology to the following

alternative communications technologies: (1) wireline connections through the public

switched telephone network, (2) wireless connections using a cellular service provider, and

(3) spread spectrum radios in the industrial-scientific-medical (ISM) bands. Where applicable

the cost comparison should consider transportation related applications for medium bit rate

data communications.

2. A preliminary design study of interoperability issues should be performed for the 220 MHz
technology in transportation applications. In particular, the design requirements for 170/270

traffic signal controller backplane compatibility must be worked out.

8 Implementation Suggestions

This project has leveraged work funded by ITS-IDEA, Texas Instruments, and the National

Science Foundation to produce a wireless communications resource for data communications on

the Borman and other INDOT projects. The research has lead to a modem design optimized for

multimode operation (stationary, mobile, and multiple access) with high bandwidth efficiency.

The communications architecture could be implemented to provide for multiple access

communications in a local area network configuration as would be found in a sensor

concentration application on the Borman Expressway. See Figure 10 for an illustration showing

the sensor concentration scenario where traffic sensors are geographically distributed in a local

area. Sensors in a cluster must be able to send their data to a local processor for preprocessing

and concentration. Different types of sensors have different data communication requirements

and sensors communicate asynchronously.
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Figure 10: The sensor concentration scenario as might be implemented in a future Cline

Avenue on the Borman Expressway.
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10 Appendices

Appendix A: The Design of the Point-to-Point Modem

A.l Trellis Coded Modulation

Forward error control (FEC) coding is used to reduce the overall system bit error rate (BER) by

adding a controlled redundancy to the transmitted signal. The point-to-point modem uses a

combination of modulation and coding known as Trellis Coded Modulation (TCM). The

technique, first introduced by Ungerboeck in 1976 [2], allows for significant coding gains while

still maintaining bandwidth efficiency.

A.l.l Encoding

In its most basic form, TCM may be viewed as performing two operations simultaneously. A
block of K"bits is input to a convolutional encoder which outputs k + 1 bits dependent upon both

the input bits and the previous state of the encoder. At the same time, the output bits are mapped

to a signal constellation with an alphabet of 2
K+X

elements. The increase in alphabet size (by

2' and the accompanying dependence on previous symbols are instrumental in making TCM an

effective coding technique. The result is a "free distance" between coded symbol sequences that

is significantly larger than the minimum Euclidean distance between uncoded symbols [3]. In

point-to-point operation, the wireless modem can make use of the same TCM schemes used in

wireline modems intended for use over the public switched telephone network. Two common
trellis codes are defined in the CCITT V.32 and V.33 recommendations [4] which correspond to

wireline data modems operating at 9.6 kbps and 14.4 kbps, respectively.

The convolutional encoder which corresponds to the V.32 recommendation is presented

in Figure 11 and the trellis diagram is given in Figure 12. The mapping from the output of the

convolutional encoder to the V.32 symbol constellation is shown in Figure 13. Similar diagrams

for the V.33 recommendation may be found in [4].
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Figure 11: V.32 Convolution Encoder.
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Figure 12: Trellis Diagram. The four groups of three bits next to each state in the trellis

correspond to the four branches leaving the state.
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A.1.2 Decoding

A very efficient method of decoding the received noisy sequence employs the Viterbi algorithm.

This decoder determines the most likely coded symbol sequence from the unquantized received

sequence [5, 6]. For the decoder to be truly optimal it would need to have an infinite delay since

any received symbol is dependent on all the symbols that come before it. However, it has been

shown that near-optimum decoding is achieved by a decoder with a delay of four or five times

the constraint length [6] which is equal to one plus the number of memory elements in the

convolutional encoder. For example, the V.32 TCM has three memory elements so a near-

optimum decoder would have a latency of (3 + l)x5 = 20 symbol time periods. This number is

also referred to as the truncation length, as paths through the trellis are truncated at this point and

a decision is made.

The 220 MHz point-to-point modem architecture uses both the V.32 and V.33

recommendations for TCM. These architectures use convolutional encoders with a constraint

length of four and thus a Viterbi decoding length of twenty is used for implementation. When
used with a near-optimum decoder, these TCM schemes provide a coding gain of approximately

4 dB at high SNR [7]. Computer simulations were run using Signal Processing Worksystem

(SPW), a block-oriented software package, to compare the uncoded and trellis-coded BER
curves. Results are shown in Figure 14.
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Figure 14: Uncoded and Trellis-Coded BER Curves.
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A.1.3 Closing the Trellis

When using the TCM scheme the receiver must determine where the trellis coding begins in

order to demodulate as effectively as possible. For this reason the data is not continuously coded

and transmitted, but is instead separated into blocks and coded one block at a time. Each block

of trellis-coded symbols is preceded by a unique sequence of symbols which can be used at the

receiver to determine where each trellis-coded block begins and ends. Figure 15 shows a

sequence of transmitted symbols. The symbols are lumped into frames of length N and each

frame starts with a synchronization sequence of length L . Thus each TV -length frame contains

N- L trellis-coded symbols which are to be demodulated by the Viterbi decoder in the receiver.

N-L

Sync
Block

Trellis-coded Sync
Data Block I Block

Trellis-coded

Data Block

N

Figure 15: Transmitter Framing Scheme.

Details on the selection of the framing symbols and the method of synchronizing to them

are found in [1]. The focus here is on the closing of each block of trellis-coded data. Recall that

the decision on a received constellation point involves a sequence of points that immediately

follow it. At the end of the trellis-coded block, future points cannot be used in the decision

making process as coding has stopped for the insertion of a frame synchronization sequence. To
assist in making good decisions at the end of the trellis-coded block, the encoder closes the trellis

after all information bits have been coded. For example, once the last four data bits have been

input to the TCM of Figure 11, the transmitter will send additional non-data related bits which

will bring the encoder back to state zero. Note from Figure 12 that state zero can be reached

from any other state in two transitions by taking the top branch from the previous state. Since

each branch actually represents four parallel paths, the path corresponding to input bits Y3 =

and Y4 = is used. This information is used in the Viterbi decoder of the receiver to aid in

making a decision on the final points of the received trellis-coded block.

A.2 Carrier Recovery

After a signal is up-converted, transmitted, and down-converted, it is often recovered with a

slight frequency offset due to the inaccuracies of various hardware oscillators. The received

signal may be represented as

r{t) = m{t)eK^^+n{t)

where m(t) is the complex baseband signal, n(t)is complex white Gaussian noise, Aco is the

total frequency difference between the transmitter and receiver oscillators, and 6 is the initial

phase offset. The frequency and phase offsets must be estimated and compensated for before
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demodulation of the baseband signal can be done. This section provides the details of the digital

phase-locked loop (DPLL) implemented in the point-to-point modem.

A.2.1 The DPLL of the Modem

The modem uses a decision-directed DPLL which operates on samples of the input signal taken

at the symbol rate (see Figure 16). Although there are a number of different phase detectors that

might be used, the one used here [8] has been shown to have better operating characteristics than

several other common types of phase detectors used with QAM signals [9].

to decoder

Figure 16: The Second-Order DPLL Used in the Modem.

The input signal is matched filtered, sampled at the symbol rate, T, and de-rotated by the current

phase estimate. The de-rotated symbol, a
n , is input to the sheer whose output, /?„, is the data or

synchronization symbol closest to a
n

. The phase detector then calculates the angle between a
n

and/?,,, i.e.,

0„ = arg(a„)-argO5j

-Im{flfjflC}

where the last equation is the implemented version. The phase error is sent through the loop

filter, F(z) , and a discrete-time integrator with unit delay. This provides an estimate of the

phase of the next symbol. The discrete-time integrator mimics the VCO of an analog PLL.

One way to characterize the performance of a phase detector is to plot its S-curve which

is a plot of the true phase error versus the average detector output in the absence of noise. S-

curves of the phase detector in Figure 16 are shown in Figures 17 and 18 for the V.32 and V.33

data constellations. Due to the nil symmetry of the constellations, the plots repeat themselves

every nil radians.
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Figure 18: The S-curve for the Phase Detector of Figure 16 with a V.32 128-QAM
Constellation.

In an ideal S-curve, the output of the phase detector would be equal to the true phase

error. Unfortunately the phase detector under discussion will often give erroneous values due to

false decisions by the sheer. However, it can be seen that when the true phase error is positive,

the average phase detector output is nearly always positive as well, and likewise for a negative

phase error. Thus even though the phase error provided by the detector is often incorrect, it will

still guide the DPLL towards the true lock point. The only exceptions are a couple of false lock

points in each of the plots. For example, in Figure 18 the detector output for a true phase error of

22° is zero. Recall however that this is the average of all possible phase detector outputs, and

except for loops with a very narrow bandwidth, the DPLL phase estimate will move away from

these points.
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A.2.2 The Loop Filter

In order to lock onto a signal with both a phase offset and a frequency offset, a second-order

DPLL must be used. Equivalently, a first-order filter of the form

l—z

must be used in the DPLL. The loop integrator, G(z) , combines with F{z) to form a second-

order filter. By making an analogy with the design for analog loops, we define

ft, = l-e2wJ

k
2

= \-2ew cos(coJ^C) + e
2^T

where £ is the damping factor and co is the natural frequency [10]. In terms of these parameters

the equivalent noise bandwidth of the loop is defined to be

2(a
2 +2ab-3)

eq
~
(a*-l) + 2(a2

-l)ab

where

a = e~^
b = cos[co n T^]\- C

2

)

In general, a larger B
eq

allows the PLL to lock onto signals over a larger frequency range and to

acquire a lock more quickly. A smaller B
eq

provides better noise rejection and reduced transients

during acquisition. The best design compromises between the two.

This information was used along with empirical observations to determine suitable gain

parameters for the DPLL. In practice, it is common to design second-order loops with a damping

factor of £= 1V2 [10]. This practice was adopted to simplify the design of the filter since co
n

is

then the only variable which needs to be specified. In fact, there are actually two values of co
n

that must be determined. The first is for use during the acquisition mode of the DPLL. It must

be larger in order to accommodate a wide range of initial frequency offsets. The second is for

use during the tracking mode of the DPLL. It must be smaller in order to reject noise and

maintain a lower RMS phase error.

The design of the acquisition parameters relied heavily on empirical methods. It was

found that using 0)
n
= 1000 radian/sec (B

eg
= 0.3388) allowed for reasonable acquisition times

for frequency offsets up to 5 percent of the symbol rate at a symbol SNR of 22 dB. Figure 19

shows curves of the average acquisition time over a range of frequency offsets. These curves

were generated using computer simulations of the PLL/Frame Synchronizer system described in

[1].
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Figure 19: Average Acquisition Times of the DPLL.

In order to determine a reasonable value of co
n
for use during tracking mode, a few curves of the

RMS frequency error were generated through computer simulations. Results are given in [1]. It

was found that the RMS frequency error for the V.33 constellation increases rapidly as the

normalized bandwidth exceeds 0.025. This effect occurs because the DPLL is not able to

maintain a solid lock with a bandwidth this wide. The lower bound on the allowable bandwidth

is dictated by the higher order characteristics of the signal phase. It was therefore decided to

select a bandwidth well below the point where a lock could not be solidly maintained but large

enough for the DPLL to compensate for time-varying frequency changes of the hardware

implementation. The natural frequency was chosen to be co
n
= 25 radians/sec which corresponds

to a bandwidth of B
eq
= 0.0075.

As previously mentioned, it is common for a DPLL to have a bandwidth which adjusts to

the state of loop. A wider bandwidth is desired during the acquisition mode so that a wide range

of frequency offsets can be estimated and a narrower bandwidth is desired during the tracking

mode to reject noise and maintain a solid lock. In order to implement a DPLL such as this it is

necessary to determine when lock has occurred and how to adjust the bandwidth. A obvious

solution for this problem which requires little increase in complexity is to use feedback from the

frame synchronizer. The frame synchronization feedback is described in more detail in [1].

In order to compare performance of the full system to the curves of Figure 14, computer

simulations were run. Figure 20 shows the results. This data was taken once the system had

reached a steady-state, i.e., bit errors which occurred during the DPLL and frame synchronizer

acquisition stages are not included. Notice that no data was taken at very low SNR. Once the

SNR drops below a certain threshold, the DPLL can no longer maintain a solid lock on the signal

constellation. This is not of great concern however, since these SNRs also correspond to bit

error rates which are too low to be used in practice.
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Appendix B: Real Time Implementation of a Symbol Timing Recovery

B.l Introduction

The goal of high bandwidth efficiency in wireless data transmission is often met by using large

signal constellations, trellis coded modulations, and transmitted references for coherent detection

[11]. However, the use of more sophisticated modulation places increasingly stringent

requirements on the synchronization systems in the receiver including the symbol timing

recovery which is performed at the first stage of the baseband receiver. For satisfactory

performance in modulations with large constellations (e.g., 64- and 128-QAM), timing

uncertainty must be held to a very small fraction of the signaling interval in order to attain

satisfactory performance.

If the received signal has a discrete spectral component at a harmonic of the symbol

frequency, the symbol timing algorithm may be as simple as a filter tuned to this harmonic.

However, most situations require that the transmission of such spectral components be avoided.

In a practical transmission scheme, a discrete spectral component can be produced by inserting a

non-linear element before the tuned filter in the timing recovery circuit. This ad-hoc timing

recovery method is known as the filter and square algorithm in the literature [12, 13, 14].

Timing jitter is caused by the combined action of thermal noise and the random nature of the

transmitted data. At reasonably high signal-to-noise ratio (SNR), performance is therefore

limited by the data dependent jitter which is strongly influenced by the shape of the data pulse at

the input to the nonlinear element.

Digital realizations of receivers for synchronous data transmission are of growing

importance as the capabilities of digital signal processors increase. To take advantage of this

trend as much of the receiver function as possible should be should be digital. In other words,
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the input signal should be sampled by a free running oscillator and all subsequent receiver

processing should be done in discrete time on the samples.

B.2 The Symbol Timing Architecture

The symbol timing estimator and matched filter architecture is shown in Figure 21. The input to

the matched filter consists of samples of the noncoherent in-phase and quadrature channels of the

received baseband signal r(t). The sampling rate 1/ T
s
is chosen as a multiple N

s
of the symbol

rate 1/7. The objective of the timing estimator is to determine the optimal point to sample the

output of the matched filter as shown in the figure. Not only is there an unknown time delay

between transmitter and receiver but also the transmit and receive clocks are not synchronous.

Thus the optimum matched filter sample time will drift. The timing estimation algorithm must be

able to track this. The delay block in Figure 21 is used to compensate for additional delay

introduced by the timing estimation algorithm itself.

matched filter output

*w h Matched
Filter

**%)

Delay

at syrot

Sampler

TTiming
'— Recoverv

Figure 21: Matched filter and recovery algorithm.

The architecture of the timing estimator is shown in Figure 22. The timing estimator is

based upon the filter and square algorithm [12, 13]. The algorithm extracts a timing waveform

z(nT
s )

whose zero crossings correspond to the optimal sampling instants for the matched filter

output. More detail on the subblocks in the algorithm are presented below.
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Figure 22: Architecture of timing estimation block.
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B.2.1 ThePrefilter

Franks and Bubrouski [12] have shown that by using the appropriate prefilter with the magnitude

squared nonlinearity the data dependent noise is entirely eliminated. The requirements are:

1. prefiltered pulses have conjugate symmetry about the frequency 21 T and are bandlimited to

1/41 <|/|<3/47\ and

2. the transfer function of the postfilter has conjugate symmetry about the symbol rate \IT and

a bandwidth less than 1/ T.

Denoting the square-root Nyquist pulse shape p(t), a simple discrete time prefilter that

will meet these conditions is

h(nT
s ) = cos(2miT

s
/T)p(nT

s
)* p(-nT

s )

This is simply the Nyquist pulse modulated in frequency to the symbol rate. Other researchers

have derived similar constraints for other nonlinearities [13].

B.2.2 The Nonlinearity

Various authors have noted that other nonlinearities such as magnitude, magnitude to the fourth

power, etc., provide better performance in some cases. Lee and Messerschmitt [15] have

suggested that the magnitude nonlinearity gives better performance for high order quadrature

amplitude modulation (QAM) constellations.

B.2.3 The Postfilter

Three possibilities for the postfilter are: an infinite impulse response (HR) filter, a finite impulse

response (FIR) filter, or a phase locked loop (PLL). While the EDR. filter is attractive for its low

complexity, it is not acceptable for timing recovery because it does not have linear phase. The

drawback of an FIR implementation of the postfilter is that a prohibitively large number of taps

would be required to provide an adequately narrow bandwidth.

yinT)
Normalization

>N ««. »

Loop Filter

v(nT )
5

9
L

VCO ^

Figure 23: Digital phase locked loop as postfilter.

A PLL can meet both performance and complexity requirements in the postfilter

application (see Figure 23). An input normalization is required to insure that the PLL receives a

signal with constant power. One possibility for normalization is to subtract the sample mean and
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divide by the sample standard deviation. A less computationally complex normalization would

consist of a mean normalization followed by a hard limiter.

The loop filter is the following first order IIR filter:

v(nT
s
) = v((n-l)T

s ) + e(nT
s
)-ae((n-l)T

s )

where

a = (l-e-*WJ-)/k

k = 2(l- e
-^"r

< cosiltfJ^l-C
2

))

The PLL damping factor £ and the undamped natural frequency fn have been chosen to be

£ = 0.9 and /„ = 5 Hz. The modem operates at a symbol rate of 3570 Hz using a square-root

raised cosine pulse shape with roll-off /?=0.15. The timing waveform z(nT
s
) is the output of the

voltage controlled oscillator (VCO) in Figure 23.

B.2.4 The Sampler

It is unlikely that the timing estimate will coincide with one of the digital samples, so the sampler

needs to interpolate between the nearest two samples. Ideal interpolation requires many clock

cycles; if the number of samples per symbol (N
s
) is sufficiently large a linear or quadratic

interpolator will be adequate.

B.3 Complexity Considerations in DSP Implementation

B.3.1 Hardware Design

The system is implemented on a TI TMS320C541 16 bit fixed point DSP which has 5k of on-

chip RAM and an 80 Mhz clock rate. A combination of C and assembly code is used in the

implementation. The C54x allows treatment of non-integer numbers as fractions simply by

setting a register flag. We use a combination of C and assembly code in the implementation.

The experimental system uses a personal computer (PC) as the interface between an intermediate

frequency to baseband digital down conversion (DDC) board and the DSP evaluation board. An
application has been written which reads data from the DDC board, passes it to the DSP board,

waits until DSP processing for that data set is finished, and then reads it back to save it into a

file. The data passed between the DDC and the DSP consists of 8-bit in-phase and 8-bit

quadrature samples.
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B.3.2 Complexity Estimation

The estimation of the number of operations needed to process data is presented in Tables 2 and 3.

Estimated memory requirements are given in Table 4. The TI C54x DSP can do multiplication,

addition, and calculation of circular array index in 1 cycle, which significantly improves

processing speed.

Table 2: Estimated Computational Complexity.

Subsystem Cost Operation

I/O 2 Read/wnte I/O

Matched Filter 2(N
S
NW +1) Read/write/I/O

Prefilter 2(NsNwp +l)
MAC

NonJinearity 2 absolute value

1 add

PLL Normalization

(Hard limiter)

N. add

l divide

l branch test

PLL 4 multiply

3 add/subtract

1 sine lookup

Zero Crossing 2N
S

branch tests

l branch tests

l divide

2 add/subtract

Interpolator 1 multiply

2 add/subtract

Table 3: Estimated Total Complexity on C54x.

Operation Total Cost Cycles per

instruction

sine lookup 1 2

divide 4 22

MAC 2N(N -N +2)
s w wp

1
I

square 1 1

multiply 5 1

add/subtract 12

absolute value 1 1

branch tests 2N, 5

|
read/write I/O 2 20
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Table 4: Estimated Memory Requirements.

Subsystem Memory

Matched Filter N
s
Nw + l

Prefilter N
5
Nwp +l

Delay N
s
Nwp

PLL Normalization 2

PLL 4

B.3.3 Complexity Reduction

Implementation of the variance normalization in the PLL subsystem would take 3 divide

operations and a square root. A simpler normalization consisting of a mean correction followed

by thresholding was chosen. There was no significant performance penalty paid for the

simplification.

An attractive alternative to the magnitude squared nonlinearity is to add the absolute

values of the in-phase and quadrature components. Not only does this require less clock cycles,

but it also requires less dynamic range which is an important issue for fixed point DSPs.

QAM requires the system to have linear phase, so an FIR square-root raised cosine filter

was chosen for the Nyquist pulse shape. The pulse was truncated at Nw symbol periods left and

right of the origin giving a total of N
S
NW filter coefficients. If N

s
is too small the interpolation

operation of the sampler will induce too much intersymbol interference (ISI), and if NK is too

small the pulse shape will no longer meet the Nyquist criterion.
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B.4 Illustration of Complexity/Performance Tradeoffs

The timing recovery subsystem was implemented in the Signal Processing Worksystem (SPW)

to quantify tradeoffs between complexity and performance. Simulations demonstrated that for

all scenarios tested there was negligible loss in bit error probability (BEP) performance when
using the absolute value nonlinearity in place of the magnitude squared nonlinearity, and

negligible loss when using 4 samples per symbol. Furthermore, using the hard limiter to

normalize the input to the DPLL did not degrade performance noticeably.
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Figure 24: BEP for DFS timing recovery, 64 and 256 QAM in AWGN, N
s
=4 absolute

value nonlinearity, and hard limiter PLL normalization.
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Figure 25: BEP for DFS timing recovery, 64 and 256 QAM in Rayleigh fading, N
s
=4,

absolute value nonlinearity, and hard limiter PLL normalization.
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BEP curves for uncoded QAM are shown in Figures 24 and 25 along with the analytical BEP.

The gray bit mapping from [16] was used to facilitate calculation of the exact analytic BEP. The
result in Figure 25 is for slow varying, frequency non-selective Rayleigh fading with ideal

channel state information (CSI).

Several observations may be made from these BEP plots. Truncating the matched filter

to NW = 12 symbol periods (6 on either side of the origin) causes tolerable degradation in BEP
and results in a FIR filter length of 49 samples. Using Nw = 14 is closer to ideal performance

and only costs 8 more coefficients. Note that in fading the BEP when Nw
— 8 levels off at high

SNR - if the ISI induced by filter truncation is too severe, bit errors will result even when SNR is

extremely high. Figure 26 shows the effect of truncation length on the signal constellation.
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Figure 26: QAM scatter plots in the presence of no AWGN. Left Nw = 10, right Nw = 14.

Appendix C: Borman Wireless MODEM Operator's Manual

Ver 1.0 (updated), Author: Zhilin Liu, IPS Wireless Communications

Laboratory, Department of Electrical Engineering, The Ohio State University,

Nov. 1999

C.l Introduction

Borman wireless MODEM is for ITS (Intelligent Transportation System) applications. The

Borman Modem is made up of a transmitter unit and a receiver unit. The radio uses narrow-band

(<4KHz) data communication with center carrier frequency of 220.5625MHz. Both the symbol

rate and bit rate for the delivered radio are 3.2kHz as the modem uses one bit/symbol trellis

coded QPSK modulation.

This manual describes how to operate Borman MODEM, especially how to hookup the system

and troubleshoot it quickly. The basic system consists of a transmitter, a receiver, an input

keypad and a camera controller.
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C.2 Overview of the Modem System

C.2.1 Interface and Protocol

This Modem system has a maximum throughput of 3.2K bits/second. The radio transmitter uses

an RS-422 2-wire serial interface for data reception only. The protocol uses a format of 2400bps,

8 data bits, 1 stop bit, and no parity. The radio receiver uses both RS-232 interface and protocol

for data transmission. The format of the RS-232 transmission protocol is also 2400bps, 8 data

bits, 1 stop bit, and no parity. Note that an RS-422 receiver is capable of receiving an RS-232

transmission, since RS-232 uses negative logic and signals are carried as single voltages referred

to a common earth, wherein -3—15v is l(high level), +3~+15v is (low level), and RS-422 uses

balanced transmission, where Posi. - Nega.> +0.2v is 1, Posi. - Nega. < -0.2v is 0. The detailed

interface information is given below.

C.2.2 Transmitter Unit

The transmitter unit accepts information bits through RS-422 serial interface from the outer

terminal (such as input keypad) and transmits this information over a radio frequency carrier of

220.5625MHz. The transmitter unit has a front view shown in Figure 27. The left rectangle is a

window through which you can see two LED lights. When they are lit, power is on and the

transmitter is working.

Message Panel

220MHz radio Modem

Figure 27: Transmitter front panel.

The main connections of the transmitter are situated at the back panel. They are as shown in

Figure 2. The important connection details in Figure 28 are given as

1

.

Power switch,

2. Power input,

3. Fan,

4. Reset button,

5. RF output (antenna) (N Connector),

6. Wiring terminals.
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Figure 28: Transmitter back panel.

The wiring terminals (6) are for an RS-422 2-wire serial interface. Only the two left most

terminals are used (A: + and B: --) The terminal A is connected to the positive end of RS-422,

and terminal B is connected to the negative end of RS-422.

C.2.3 Receiver Unit

The receiver has a front panel as shown in Figure 29

GNI1 +12V

o n 8 8 () 8

1 2 3 4
5 6

' o
Figure 29: Receiver front panel.

The important connection details in Figure 29 are given as

l.GND,
2.+12V(@1.5A),
3. Power switch,

4. Power indicator (LJED),

5. Sync indicator (LED),

6. Reset button,

7. DB-9 Female serial socket,

8. RF input (antenna) (TNC connector).

C.2.4 Accessories

The accessories consist of the input keypad, camera controller, 2-wire-to-DB-9 converter,

DB-9-to-2-wire converter and a single 12V DC power supplies with rated output current of

1.5A (not included). The keypad is used to input user's command and control remote camera. It

has a control panel as shown in Figure 30(a), a connection box as shown in Figure 30(b), and an

AC/DC adapter as shown in Figure 30(c).
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Figure 30: Input keypad.

The RS-422 2-wire serial lines in Figure 30(b) are to be connected to the rear panel of the

transmitter as described in Section C.3.

The camera controller is basically a black box, which controls the camera. The guide for its

internal setting is posted under the top lid. It has a power cord which is to be plugged into 110V

AC socket, and a RS-422 2-wire DB-9 male plug, which is connected to DB-9 female serial

socket on the front panel of the transmitter.

The 2-wire-to-DB-9 converter is used to convert the 2-wire DB-9 plug of the camera controller

to real 2-wire so that it can be directly connected to the input keypad (with 2-wire output) and

work in the wired mode (for test purpose, see Section 4). The wiring inside the plug is: Black

(positive end of RS-422)—Pin 5(GND), Red (negative end of RS-422)— Pin 2(TX, from the

point of view of the receiver).

The DB-9-to-2-wire converter is used for the interface of DB-9 RS-232 (which is widely used

on PC) with RS-422 (which is the input configuration of the transmitter). The wiring inside the

plug is: Pin 3 (TX, from the point of view of PC) — Red (negative end of RS-422), Pin 2 (RX)
— NC (not connected), Pin 5 (GND) — Black (positive end of RS-422), Pin 7 (RTS) — 8

(CTS), Pin 6 (DTS) — Pin 4 (DSR) — Pin 1 (DCD). So this converter just supports

unidirectional data flow from RS-232 -> RS-422.

The single 12V DC power supplies should be able to provide 1.5A output current. It is

connected to the power input terminals (1 and 2 in Figure 29) of the transmitter.

C.3 Equipment Setup

C.3.1 Radio Transmitter

Before beginning ensure that the transmitter power switch is in the off position.
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C.3.1.1 Connect an information source which supports RS-422 to terminal A and B of the

transmitter wiring terminals. See Section C.2.2 for connection details. Make sure RS-422

interface is operating.

C.3.1.2 Connect the antenna to the RF output port.

C.3.1.3 Plug the AC power to the back panel of TX.

C.3.1.4 Turn on the power switch on the back panel of the TX.

Now you can see the two LED lights on (one is red, one is green) through the window on the

front panel of the TX. It indicates the transmitter is working.

C.3.2 Radio Receiver

Before starting ensure the receiver is in the power-off state.

C.3.2.1 Connect the outer terminal (information sink) to DB-9 female serial socket on the front

panel of the RX. Since the RX uses RS-232 as its output interface, you can connect the terminal

with RX directly if the terminal also uses RS-232 interface (PC is an example). If the terminal

uses RS^22 interface, just connect DB-9's Pin 2(TX) to the negative (Red) end of RS-422 and

Pin 5 to the positive (Black) end of RS-422. For the camera controller, this connection is already

done, so just connect the DB-9 male plug of camera controller to the DB-9 female socket

directly.

C.3.2.2 Connect the antenna to the RF input port.

C.3.2.3 Connect the output plugs of the DC power supplies (12V/GND@1.5A) to the power

socket on the front panel of the RX (see (1), (2) in Figure 29)

C.3.2.4 Turn on the power switches both on the DC power supplies and on the RX.

C.4 Troubleshooting

C.4.1 Normal Mode of Operation

If you follow the procedures described in Section C.3, your Modem system should be easily

setup and work normally. When the LED light is seen on through the message window on the

front panel of the transmitter, the transmitter is working. When the Sync light (LED) is lit on the

front panel of the receiver, it shows the receiver has acquired correct synchronization and works

well. So, the information source and the information sink can communicate data normally.

The transmitter should be outputting at least lOdBm of RF power. The whole modem system

should support a maximum path loss of 120dB. When SNR =12dB, less than 10"7 bit error rate

should be achieved.
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C.4.2 Troubleshooting Tips

In case your system doesn't seem to be working normally, try the following tips.

C.4.2.1 The LED light is off as seen through the message window on the front panel of the

transmitter?

Check the power cord connection of the transmitter and that the power switch is in the on

position.

C.4.2.2 The power indicator (LED) on the front panel of the receiver is off?

Check the connection between the DC power supplies and receiver. Additionally, check the

switches on the power supplies and receiver.

C.4.2.3 Sync light on the front panel of the receiver is off?

First make sure the power indicators both on the transmitter and receiver are on according to

C.4.2.1 and C.4.2.2. Then check the antenna connections of both the transmitter and receiver are

tight.

If the Sync light is off then the receiver cannot acquire correct synchronization from the received

signal. The problem may involve the transmitter, receiver and the radio channel as a whole. In

some situations, the signal to noise ratio (SNR) is low, the Sync light intermittently turns off.

This behavior is normal. If the Sync light stays off for a long time and the SNR is reasonably

high, pushing the RESET button(s) on the receiver or/and the transmitter once to let the receiver

or/and the transmitter restart may fix the problem. Reset the receiver first, and if that doesn't

help, then try resetting the transmitter.

C.4.2.4 The received data is garbled?

First make sure the Sync light on the front panel of the receiver is on. The garbled data is

generally due to a large interference in the radio environment. The interference from other

equipment working in the same frequency band is very pernicious and it can even disrupt the

operation of the Modem system totally. Try to avoid using two same frequency transmitters

simultaneously in the same small area.

If all the indicators (including the power indicators and Sync indicator) are lit, all the connections

are tight enough, and there is also no evident interference existing, but the system still produces

garbled data, try pushing the RESET button(s) on the receiver or/and the transmitter.
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C.5 Addenda

C.5.1 Wired Test Mode for the Keypad and Camera Controller

To get the camera controller working in the wired mode, connect directly the red and black wires

of the keypad and the camera controller (via 2-wire-to-DB-9 converter). From the keypad, set

the camera number from 01 to 01. Then push the joystick around in different directions to hear

different relays clicking. Most of the other keys on the keypad don't seem to produce any relay-

clicking response.

* Note: There are some switches in the controller box that can be set to or 1 and this

determines the camera controller's number. The current setting is 01.
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