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Introduction  
The values of equivalent single axle loads (ESAL) 
have been used to represent the vehicle loads in 
pavement design.  To improve the pavement design 
procedures, a new method, called the Mechanistic-
Empirical Pavement Design Guide (MEPDG), has 
been developed to use the axle load spectra to 
represent the vehicle loads in pavement design.  
These spectra represent the percentage of the total 
axle applications within each load interval for 
single, tandem, tridem, and quad axles.  Using axle 
load spectra as the traffic input, the MEPDG 
method is able to analyze the impacts of varying 
traffic loads on pavement and provide an optimal 
pavement structure design. In addition, the new 
method can be used to analyze the effects of 
materials and the impacts of seasons, to compare 
rehabilitation strategies, and to perform forensic 
analyses of pavement conditions.  The MEPDG 
utilizes mechanistic-empirical approaches to 
realistically characterize in-service pavements and 

allows the full integration of vehicular traffic 
loadings, climatic features, soil characteristics, and 
paving materials properties into the detailed 
analysis of pavement structural behaviors and the 
resulting pavement performance. 
 
In order to provide the traffic data input required by 
the MEPDG, the Indiana Department of 
Transportation (INDOT) made an effort to obtain 
truck traffic information from the traffic data 
collected through weigh-in-motion (WIM) stations. 
This study was conducted to create the truck traffic 
spectra and other traffic inputs for INDOT to 
implement the new pavement design method.  
Furthermore, the INDOT AADT data were used in 
this study to analyze the spatial distributions of the 
traffic volumes in Indiana and to obtain the spatial 
distributions of traffic volumes. 
 

Findings  
A Visual Basic computer program was 
developed and was successfully utilized to 
obtain the necessary traffic information for the 
new pavement design method from the WIM 
data.  The truck traffic data include average 
annual daily truck traffic, average monthly and 
hourly truck traffic, adjustment factors, axle load 
spectra, and axle weight and spacing values.  
The truck traffic can be expressed in individual 
vehicle types as well as in combined truck traffic 
values.  It was found that the WIM data 
contained a noticeable amount of unclassified 
vehicles, which would affect pavement designs 

if their patterns and components could not be 
reasonably identified. 
 
Furthermore, the INDOT AADT data were used 
in this study to analyze the spatial distributions 
of the traffic volumes in Indiana.  The spatial 
distributions of traffic volumes were obtained to 
provide INDOT with (1) a 3-dementional 
perspective of traffic volumes over entire 
Indiana; and (2) a basis for determining 
appropriate WIM locations.  ArcGIS 9.2 was 
used in the analysis of the spatial distributions of 
traffic volumes.  ArcGIS 9.2 applies the 
interpolation techniques in its Geostatistical 
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Analyst.  Geostatistical Analyst uses sample 
points taken at different locations in a landscape 
and creates a continuous surface. The sample 
points in this study are the traffic volumes from 
the INDOT traffic monitoring stations.  It was 
found that the AADT data were not normally 
distributed.  The data were transformed by log or 
Box-Cox techniques to make the data more 
normally distributed in order to satisfy the 
normal distribution requirement of the 
geostatistics.  Through various types of 
mathematical modeling techniques, it was 
concluded that the Inverse Distance Weighing 
(IDW) method generated the best AADT 
predictions among the ten modeling methods.  
The IDW method can be used to predict the 
AADT at given locations within Indiana. 
 

This study has produced the traffic input for 
INDOT to implement the new pavement design 
method.  The traffic input is an essential 
component for using the MEPDG to design 
pavement structures.  In addition to the axle load 
spectra and truck traffic input, this study also 
analyzed the AADT distributions in Indiana 
through geostatistical analysis utilizing ArcGIS 
tools.  The geostatistical analysis resulted in a 
series of results for spatial AADT predictions 
and future WIM station location determinations.  
It is believed that the results of this study will 
certainly facilitate INDOT’s transition process 
from the current pavement design method to the 
MEPDG. 
 

Implementation  
The axle load spectra and traffic inputs 
generated from this study will be used for 
INDOT to implement the new AASHTO 
Pavement Design Method.  The suggested future 

WIM station locations can be used for INDOT to 
consider when additional WIM stations are to be 
established. 
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CHAPTER 1: INTRODUCTION 

 The values of equivalent single axle loads (ESAL) have been used to represent the 

vehicle loads in pavement design (AASHTO 1993).  To improve the pavement design 

procedures, a new method, called the Mechanistic-Empirical Pavement Design Guide 

(MEPDG) (NCHRP 2004), has been developed to use the axle load spectra to represent 

the vehicle loads in pavement design.  These spectra represent the percentage of the total 

axle applications within each load interval for single, tandem, tridem, and quad axles.  

This new pavement design method is a mechanistic-empirical approach to designing 

pavement structures.  It is a radical change from the ESAL based method.  The axle load 

spectra approach quantifies the characteristics of traffic loads by directly using all 

individual axle loads, instead of converting them into ESAL values. Using axle load 

spectra as the traffic input, the MEPDG method is able to analyze the impacts of varying 

traffic loads on pavement and provide an optimal pavement structure design. In addition, 

the new method can be used to analyze the effects of materials and the impacts of seasons, 

to compare rehabilitation strategies, and to perform forensic analyses of pavement 

conditions.  The MEPDG utilizes mechanistic-empirical approaches to realistically 

characterize in-service pavements and allows the full integration of vehicular traffic 

loadings, climatic features, soil characteristics, and paving materials properties into the 

detailed analysis of pavement structural behaviors and the resulting pavement 

performance. Although both approaches are based on the same data sources, the axle load 

spectra approach is more consistent with the state-of-the-practice method for traffic 

monitoring outlined in the Traffic Monitoring Guide (FHWA 2001).  A crucial 
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distinction between the MEPDG and the previous 1972, 1986, or 1993 AASHTO 

Pavement Design Guides is the requirement of data. 

 Vehicular traffic loading is one of the key factors that may cause pavement 

fatigue cracking, rutting, and other pavement structural failures and functional distresses. 

In the previous AASHTO Pavement Design Guides, all vehicular loading are required to 

be converted into ESAL. However, the MEPDG departs completely from the concept of 

ESAL because of the strict requirement of detailed loadings for evaluating pavement 

structural behavior and its effect on pavement performance in different time. The 

MEPDG uses the full axle load spectra. An advantage of using the axle load spectra over 

the use of ESAL is that the traffic data requirement is consistent with the state-of-the-

practice outlined in the FHWA Traffic Monitoring Guide (TMG). This implies that the 

historical traffic data collected by state highway agencies, such as weigh-in-motion 

(WIM) data and automatic vehicle classification (AVC) data, can be utilized to create 

axle load spectra. Therefore, it becomes possible for a state highway agency to develop a 

harmonious and integrated traffic databank that may be used not only for the MEPDG, 

but also for congestion management, planning, regulation, pavement management, and 

asset management.  

 The MEPDG provides a hierarchical approach for data inputs. This feature allows 

state highway agencies to maximize the reliability of pavement design based on the 

accuracy and variability of data available and the needs and capabilities of highway 

agencies. The MEPDG defines three levels of traffic data input with respect to the 

number of days of WIM, AVC, and traffic counts as follows: 
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1. Level 1: Project/Segment Specific AVC and WIM Measurements. Level 1 uses 

volume, classification and axle load spectra directly related to the project, and is 

the most accurate level. In order to import traffic data at the level, highway 

agencies need to collect and traffic volume, classification, and axle weight data 

along or near the project to be designed through their AVC and WIM stations. 

Detailed analysis is required so as to provide the distribution of axle loadings by 

direction and lane with time for the first year after construction. 

2. Level 2: Regional AVC and WIM Measurements. Level 2 uses regional AVC and 

WIM axle load spectra data and traffic volume and classification data related to 

the project and provides intermediate accuracy of traffic loading data. In order to 

provide level 2 input, highway agencies need to gather enough truck traffic 

information on a related site, such as weekly and seasonal truck traffic and truck 

load variations. However, the truck weights are determined from regional truck 

weight summaries by highway agencies. 

3. Level 3: Site Specific Vehicle Count Data/Default Regional or Statewide Value. 

Level 3 uses regional or statewide default vehicle classification and axle load 

spectra data and provides poor accuracy. At this level, the agencies have only 

average annual daily traffic (AADT) through site vehicle counters. However, the 

information pertaining to truck traffic, such as truck percentage, truck distribution, 

and axle load distribution, is in question. 

 To prepare the transition from equivalent single-axle loads to load spectra, many 

studies have been conducted by different states to analyze the effects of the new design 

method. Buchanan (2004) utilized the long term pavement performance (LTPP) data 
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from Mississippi sites to determine vehicle class distribution, monthly and hourly 

distribution factors, and axle load spectra. The truck traffic data in Mississippi showed 

that the single trailer trucks comprised 70% of the truck traffic on interstates and four-

lane highways. However, single-unit trucks were the primary type of trucks on the low 

volume routes in Mississippi. 

 Al-Yagout et al. (2005) developed truck axle load spectra using the axle load data 

collected at WIM stations throughout Washington State. The project concluded that the 

developed load spectra are reasonable for pavement design. For single axles they are 

comparable to the MEPDG defaults. For tandem and tridem axles they are slightly more 

conservative than the defaults.  

 An Alabama study (Timm, Bower and Turochy 2006) evaluated different load 

spectra in terms of practical effects on resulting flexible pavement thickness design. The 

study concluded that statewide load spectra are warranted for use and will not adversely 

affect most pavement designs. 

 Haider and Harichandran (2007) presented a methodology for using truck weights 

and proportions on a highway to estimate individual axle load spectra for various axle 

configurations. Their study results showed that truck weights and proportions on a 

highway can be used to estimate individual axle load spectra for various axle 

configurations. They claimed that it was possible to develop reasonable relationships 

between truck weights and axle loads. 

 In a Canadian study (Swan et al. 2008), the truck traffic data, collected as part of 

periodic commercial traffic surveys, were used to obtain best possible default values for 

traffic input parameters required for the MEPDG. The researchers compared the default 



 

5 

traffic data inputs included in the MEPDG software and the regional traffic data inputs 

developed in the study in terms of axle load spectra. They found that the axle load spectra 

from their study have smaller number of heavily overloaded axles and the peaks between 

loaded and unloaded axles are more pronounced. They also found that the number and 

type of trucks, followed by the axle load spectra, have the predominant influence on the 

predicted pavement performance. The MEPDG contains several input parameters which 

do not have any significant influence on the predicted pavement performance, such as 

hourly traffic volume adjustment factors, and axle spacing. 

 In order to provide the traffic data input required by the MEPDG, the Indiana 

Department of Transportation (INDOT) made an effort to obtain truck traffic information 

from the traffic data collected through WIM stations. This study was conducted to create 

the truck traffic spectra and other traffic inputs for INDOT to implement the new 

pavement design method. This report presents the results of generated truck traffic 

information with respect to the requirements of the MEPDG.  The characteristics of the 

truck traffic on Indiana highways include the traffic volumes of various types of trucks, 

the axle load spectra, axle spacing, and adjustment factors of truck traffic.  The 

adjustment factors include hourly and monthly truck traffic adjustment factors, which are 

used to reflect the changes of truck traffic at different time periods.  Furthermore, the 

INDOT AADT data were used in this study to analyze the spatial distributions of the 

traffic volumes in Indiana.  The spatial distributions of traffic volumes were obtained to 

provide INDOT with a 3-dementional perspective of traffic volumes over entire Indiana; 

and a basis for determining appropriate locations for future WIM stations. 
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CHAPTER 2: WIM DATA PROCESSING 
 

 The INDOT WIM system consists of 47 WIM sites installed on interstate and 

other state owned primary highways.  The following three types of WIM devices are used 

in Indiana.   

• Bending Plate: WIM systems utilize plates with strain gauges bonded to the 

underside. As a vehicle passes over the bending plate, the system records the 

strain measured by the strain gauge and calculates the dynamic load. The static 

load is estimated using the measured dynamic load and calibration parameters. 

• Piezoelectric Sensor: WIM systems utilize piezo sensors to detect a change in 

voltage caused by pressure exerted on the sensor by an axle and measure the 

axle’s weight. As a vehicle passes over the piezo sensor, the system records the 

electrical charge created by the sensor and calculates the dynamic load. The static 

load is estimated using the measured dynamic load and calibration parameters.  

• Load Cell: WIM systems utilize a single load cell with two scales to detect an 

axle and weigh both the right and left side of the axle simultaneously. As a 

vehicle passes over the two load cell, the system records the weights measured by 

each scale and sums them to obtain the axle weight. 

 Among the 47 WIM sites, 23 of them are Piezoelectric Sensor WIM systems, 13 

are Bending Plate WIM systems, and the rest are Load Cell WIM systems.  All WIM raw 

data have to be screened for errors before they are put in a database in the form of a 

monthly traffic data file.  A monthly WIM data file generally consists of all traffic 
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information that is necessary to generate traffic summary reports.  The traffic database 

from the WIM measurements is used for many purposes, including the Long-Term 

Pavement Performance (LTPP) monitoring, pavement design, truck weight enforcement 

by Indiana State Police (ISP), and WIM system improvements by the contractors.  As 

part of this study, the database is utilized to develop traffic design inputs for the MEPDG.  

 The WIM raw data files are binary data files containing all traffic information. In 

general, the binary data files must be converted into American Standard Code for 

Information Interchange (ASCII) data files that are usually very large in size.  In reality, 

the potential damages to pavement structures caused by passenger vehicles are negligible.  

Both the AASHTO method and the MEPDG do not consider the effects of passenger 

vehicles on pavement structure and only take into account the trucks of Class 4 to Class 

13 as defined by FHWA (2001).  Therefore, in order to process traffic data for pavement 

design, pavement engineers only focus on truck traffic information, rather than all of the 

traffic information in the binary WIM data files. 

 In order to extract the truck traffic information from the binary WIM data files, 

the authors utilized the vendor’s software to generate the ASCII raw vehicle report (IRD 

1999). An ASCII raw vehicle report consists solely of the truck traffic information, 

including time, lane number, vehicle class, speed, axle weight, and axle spacing. Since an 

ASCII raw vehicle report file is also large in size, a Visual Basic® computer program 

was developed to generate traffic inputs required by the MEPDG from the ASCII file. 
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CHAPTER 3: TRUCK TRAFFIC AND AXLE LOAD 
SPECTRA 

 

 The FHWA vehicle classification defines 13 types of vehicles as shown in Figure 

1.  Since the first three types of vehicles are not considered in pavement design, only 

vehicles in Classes 4 through 13 are included in the axle load spectra.  The five-year 

WIM data between 2000 and 2004 were used for the data processing and analysis.  All of 

the required traffic inputs for the MEPDG were obtained from the 47 WIM stations.  To 

illustrate of the axle load spectra, the WIM station on I-74 (at reference marker 169.77) is 

selected in this report to present the processed traffic data.  There are four lanes (two 

lanes in each direction) at the I-74 site. In the eastbound direction, Lane 1 and Lane 2 

represent the driving lane and the passing lane, respectively. In the westbound direction, 

Lane 3 and 4 represent the driving lane and the passing lane, respectively. The traffic 

inputs for the MEPDG include the following: 

• Average annual daily truck traffic; 

• Truck volume monthly adjustment factors; 

• Truck volume lane distribution factors; 

• Truck volume directional distribution factors; 

• Truck volume class distributions; 

• Traffic volume hourly distribution factors; 

• Single-axle load distributions; 

• Tandem-axle load distributions; 
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• Tridem-axle load distributions; 

• Quad-axle load distributions; 

• All-axle load distributions; 

• Average axle weight (kips) and average axle spacing (inches); (Note: 1.0 kip = 

1,000 pounds) 

• Average number of axle types. 
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Figure 1: FHWA Vehicle Classifications 

 

 An important traffic input for the MEPDG is the average annual daily truck traffic 

(AADTT).  The obtained values of the truck traffic are in the forms of average monthly 

daily truck traffic (AMDTT) and average hourly truck traffic (AHTT) of a year.  Table 1 

presents the monthly AMDTT values at the I-74 WIM station.  It should be noted that the 

average values shown in the last row of Table 1 are the values of AADTT of the 
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corresponding lanes.  With the AMDTT values, the monthly adjustment factors (MAF) 

can be calculated by the following equation (NCHRP 2004): 

12
AMDTT

AMDTTMAF 12

1j
j

i
i ×=

∑
=

 (1) 

where: 

MAFi:  monthly adjustment factor for month i. 

AMDTTi: average monthly daily truck traffic for month i. 

 
Table 1: Monthly Truck Traffic at I-74 WIM Site 

Monthly ADTT 
 Lane 1 Lane 2 Lane 3 Lane 4 

January 2557 344 2462 489 
February 2840 385 2616 492 
March 3136 418 2915 555 
April 3398 452 3317 1616 
May 3715 458 3919 1494 
June 4353 515 4660 1599 
July 3920 529 4518 1614 

August 3739 524 4153 1627 
September 3562 488 3886 1551 

October 3073 440 3116 1500 
November 2802 428 2814 1454 
December 2632 464 2689 1538 
Average 3311 454 3422 1294 

 
 Figure 2 shows the monthly adjustment factors calculated with the data in Table 1.  

The MEPDG uses MAF values as an input to reflect the monthly and seasonal effects of 

truck traffic on pavement performance.  Therefore, MAF values will certainly affect the 

results of pavement designs. 
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Figure 2: Monthly Adjustment Factors 

 

 Similarly, the values of AHTT were also obtained.  The values of hourly truck 

volumes at the I-74 WIM station are graphically shown in Figure 3.  The variations of the 

hourly truck volumes at the site can be clearly seen in the graph.  Based on the average 

hourly truck traffic, the hourly distributions factors were calculated as shown in Figure 4.  

The hourly distribution factors are the percentages of truck traffic at each hour out of the 

total truck volume during a 24-hour period. 
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Figure 3: Hourly Truck Volumes 
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Figure 4: Hourly Distribution Factors of Truck Traffic 
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 In addition to the AADTT, the MEPDG requires information on the components 

of truck traffic based on the FHWA vehicle classifications.  The truck components are 

represented by the percent of each truck type.  The truck classifications at the I-74 WIM 

station are illustrated in Figure 5, where Ci means the ith vehicle class of the FHWA 

vehicle classifications and C0 represents unclassified vehicles.  The unclassified vehicles 

are those that the WIM device failed to identify their vehicle types based on the 

integrated criteria.  They include only the number of unclassified vehicles without any 

other measurements such as axle loads and axle spaces.  The quantities of unclassified 

vehicles have great effect on pavement design.  There are many possible reasons for a 

vehicle not to be classified, such as vehicle tailgating, lane changing, and irregular 

vehicle size.  An unreasonably large value of unclassified vehicles (C0) usually indicates 

that the WIM device is not working properly.  Currently, there are no specified threshold 

values for normal range of unclassified vehicles.  The truck classifications in Figure 5 

indicate that most of the trucks belong to Class 9, followed by Class 5 vehicles.  In fact, 

this is also true for all of the 47 WIM sites in Indiana.  Li et al. (2005) found that the 

volume of Class 9 vehicles and the total ESAL value on Indiana highways have a highly 

correlated linear relationship.  The truck volumes of the vehicle types in each month are 

presented in Table 2. 
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Figure 5: Truck Classification Distribution 

 
 

Table 2: Average Monthly Daily Truck Volumes 

Month 
Vehicle Class 

C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C0 
Jan 32 1006 233 21 240 2420 10 124 19 5 1743 
Feb 39 1159 208 18 227 2418 9 119 18 2 2118 
Mar 51 1581 340 13 372 2782 10 149 22 0 1704 
Apr 103 2886 128 21 389 4195 17 201 41 0 803 
May 113 3793 131 48 434 3971 12 191 40 0 853 
Jun 108 4820 142 53 490 4282 17 207 44 0 963 
Jul 97 4656 130 57 480 3957 13 193 39 0 959 

Aug 102 3841 141 50 469 4228 17 202 40 0 953 
Sep 107 3353 122 54 445 4261 16 197 41 0 891 
Oct 102 2297 119 43 361 4150 14 199 41 0 803 
Nov 94 1851 123 31 287 4141 15 185 39 0 732 
Dec 76 1772 123 27 267 3836 12 174 33 0 1004 

Total 1023 33016 1941 435 4461 44640 162 2141 416 8 13524
 
 Distributions of truck traffic on roadway lanes and in travel directions are also 

required by the MEPDG.  The total truck volume and truck volumes on the four lanes at 

the I-74 WIM station are depicted in Figure 6.  Based on the data in Figure 6, the lane 

distribution factors of truck traffic can be computed as shown in Figure 7.  A lane 
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distribution factor in Figure 7 is the proportion of the vehicles on the travel lane.  For 

example, the lane distribution factor of 0.94 for Class 9 vehicles in the east bound 

direction means that 94% of the Class 9 vehicles were on the driving lane and 6% of the 

vehicles were on the passing lane.  Similarly, the directional distribution factors can be 

obtained as shown in Figure 8.  A directional distribution factor represents the higher 

percent of a given vehicle type among the two travel directions of the roadway.  For 

example, in Figure 8 the directional distribution factor of 0.92 for C7 means that 92% of 

the Class 7 vehicles traveled in one direction of the roadway and 8% of the Class 7 

vehicles traveled in the opposite direction of the roadway. 
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Figure 6: Truck Traffic Distributions on Highway Lanes 
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Figure 7: Lane Distribution Factors 
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Figure 8: Truck Traffic Directional Distribution Factors 

 



 

18 

 Through processing the WIM data files, the values of average axle weights, 

average axle spacing, and average numbers of axle types were obtained as part of the 

requirements for the MEPDG.  Table 3 presents these values for the I-74 WIM station.  In 

the table, Wi denotes the average weight of the ith axle of the vehicle class, Sij is the 

average spacing between the ith and jth axles, and the low part of the table shows the 

average numbers of a particular type of axles (single, tandem, etc.) per vehicle.  For 

example, from Table 3 the following values can be seen for the vehicles in Class 4: 

• They have three axles with average weights of 14.70 kips (W1), 13.88 kips (W2), 

and 9.26 kips (W3).   

• The average axle spacing is 23.18 inches between the first and second axles (S12) 

and 3.70 inches between the second and third axles (S23).   

• The average number of single axles is 1.78 per vehicle, and the average number of 

tandem axles is 0.22 per vehicle. 

 

 The number of average axle weights in the table implies the maximum number of 

axles in each class of trucks.  As indicated in Table 3, the maximum number of axles of 

Class 5 vehicles is two because there are only two weights (W1 and W2), while the 

maximum number of axles of Class 13 vehicles is nine because there are nine weights 

(W1 through W9). 
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Table 3: Average Axle Weight (kips), Axle Spacing (inches), and Number of Axle Types 
by Vehicle Classes 

 Vehicle Classes 
Weight C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

W1 14.70 5.33 7.78 9.44 8.51 8.44 8.08 8.60 9.62 6.66 
W2 13.88 5.12 6.20 7.55 10.98 6.14 5.81 12.21 7.23 5.59 
W3 9.26  6.20 7.51 10.03 6.00 5.71 12.88 7.66 5.77 
W4    7.73 6.64 5.76 4.97 11.25 9.71 5.19 
W5    4.39  5.73 4.90 11.31 11.35 5.57 
W6       5.24  8.74 7.08 
W7       2.47   6.31 
W8          7.79 
W9          4.20 

Spacing  
S12 23.18 13.06 18.97 5.68 12.35 13.88 13.85 10.42 12.58 9.45 
S23 3.70  3.24 20.55 18.41 3.93 3.64 17.62 4.05 5.28 
S34    3.35 14.91 27.22 19.77 7.94 17.31 7.50 
S45    1.85  4.21 5.67 17.98 8.78 10.96
S56       3.50  18.88 6.27 
S67       1.88   5.62 
S78          5.09 
S89          3.58 

Axle Type  
Single 1.78 2.00 1.00 1.75 2.36 1.27 1.05 4.74 3.72 2.10 

Tandem 0.22  1.00 0.75 0.63 1.86 1.03 0.08 1.09 1.08 
Tridem    0.12   0.92 0.03 0.02 0.45 
Quad    0.12   0.02  0.01 0.15 

Quinate          0.05 
Hex       0.01   0.14 

 

 The magnitudes of axle loads are a major parameter for pavement design.  To 

quantify axle loads, the MEPDG requires the axle load distributions for all classes of 

trucks.  The axle load distributions are the percentages of axle loads in specified weight 

intervals, such as zero to three kips, three to four kips, and four to five kips.  The axle 

load distributions include the axle weights for all-axle loads, single-axle loads, tandem-

axle loads, tridem-axle load, quad-axle loads, quinate-axle loads, and hex-axle loads.  It 

should be pointed out that the MEPDG does not require the information on axle load 
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distributions for quinate-axle and hex-axle loads.  However, because the Indiana WIM 

data contain the values of quinate-axle and hex-axle loads, it would not require any extra 

effort to include these two types of axle loads in the computer program used in this study 

to extract and calculate axle load distributions.  Thus, it was decided to generate the 

distributions for these axle loads as well for possible future use.  The values of the all-

axle load and single-load axle load distributions are shown in Tables 4 and 5, respectively.  

The values in the two tables are the percentages of the vehicle classes with axle loads 

within the given load ranges.  For example, in Table 4, the value corresponding to vehicle 

class C4 and axle load range 0-3 is 3.82; meaning that 3.82% of Class 4 vehicles have 

axle loads less than 3 kips.  Similarly, in Table 4 the value 5.37 (corresponding to C4 and 

axle load 3-4) indicates that 5.37% of Class 4 vehicles have axle load between 3 kips and 

4 kips. 

 Traffic input information was obtained from the WIM recorded traffic data for all 

of the 47 WIM stations.  The complete traffic input for the MEPDG at the I-74 WIM site 

is included in the appendix of this report in order to show the format and information on 

the truck traffic.  Because of the large size of the files, the traffic input information from 

other WIM stations is not included in the appendix. 
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Table 4: All-Axle Load Distribution (Percentages) for Each Truck Class 

Axle Load Range 
(kips) 

Vehicle Classes 
C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

0-3 3.82 26.47 42.37 20.17 18.02 28.43 25.52 9.90 5.83 7.05 
3-4 5.37 12.00 15.60 17.67 9.92 21.70 13.50 13.65 14.10 18.47
4-5 7.62 7.12 12.37 14.33 8.98 14.45 11.82 14.30 16.78 14.75
5-6 9.40 5.87 9.37 10.83 7.40 10.30 10.58 13.42 13.37 14.67
6-7 14.87 5.45 6.33 7.20 6.67 6.92 7.68 10.45 9.83 8.52 
7-8 14.33 7.15 3.93 6.27 6.27 4.50 5.83 7.87 6.60 5.97 
8-9 11.18 2.88 2.77 5.07 5.22 2.90 4.83 6.28 5.32 7.83 

9-10 7.53 2.43 2.07 4.10 4.37 2.02 3.85 4.90 4.12 4.55 
10-11 6.12 1.18 1.53 2.67 3.42 1.52 3.28 3.55 3.03 3.30 
11-12 4.12 4.63 1.00 1.80 3.10 1.15 2.72 3.05 2.43 3.48 
12-13 2.18 2.17 0.57 1.37 2.40 0.88 1.85 2.47 1.98 2.12 
13-14 2.13 2.17 0.33 1.37 1.98 0.65 1.42 1.68 1.50 1.67 
14-15 1.22 4.88 0.27 1.37 1.80 0.50 1.22 0.90 1.22 1.47 
15-16 1.58 1.53 0.13 0.97 1.63 0.38 0.95 1.17 1.13 1.00 
16-17 1.32 0.65 0.20 0.90 1.43 0.30 0.65 0.63 0.90 1.18 
17-18 1.32 1.28 0.07 1.10 1.05 0.22 0.50 0.98 0.80 0.82 
18-19 0.50 3.12 0.03 0.33 1.12 0.20 0.45 0.77 0.68 0.42 
19-20 0.05 1.85 0.03 0.43 0.97 0.17 0.35 0.72 0.67 0.25 
20-21 0.92 0.00 0.00 0.40 0.88 0.13 0.33 0.17 0.60 0.27 
21-22 0.80 0.00 0.00 0.17 0.90 0.10 0.27 0.30 0.55 0.37 
22-23 0.03 0.00 0.00 0.27 0.80 0.10 0.18 0.27 0.48 0.28 
23-24 0.85 0.63 0.00 0.03 0.72 0.10 0.17 0.27 0.48 0.13 
24-25 0.25 0.00 0.00 0.07 0.72 0.08 0.12 0.27 0.47 0.22 
25-26 0.05 0.00 0.00 0.03 0.55 0.08 0.12 0.17 0.42 0.03 
26-27 0.25 0.00 0.00 0.13 0.53 0.08 0.08 0.05 0.37 0.03 
27-28 0.00 0.00 0.00 0.00 0.48 0.08 0.03 0.03 0.38 0.02 
28-29 0.00 0.00 0.00 0.03 0.43 0.05 0.03 0.05 0.35 0.02 
29-30 0.00 1.27 0.00 0.00 0.50 0.05 0.03 0.03 0.35 0.07 
30-31 0.00 0.00 0.00 0.07 0.45 0.05 0.03 0.08 0.33 0.00 
31-32 0.00 0.00 0.00 0.00 0.45 0.05 0.00 0.10 0.32 0.00 
32-33 0.00 0.00 0.00 0.00 0.38 0.05 0.02 0.00 0.30 0.00 
33-34 0.00 0.00 0.00 0.00 0.38 0.03 0.02 0.00 0.27 0.00 
34-35 0.00 1.85 0.00 0.00 0.40 0.03 0.00 0.00 0.25 0.00 
35-36 0.00 0.00 0.00 0.00 0.30 0.03 0.03 0.00 0.25 0.00 
36-37 0.00 0.00 0.00 0.00 0.35 0.03 0.02 0.03 0.22 0.00 
37-38 0.00 1.27 0.00 0.00 0.35 0.03 0.00 0.02 0.22 0.00 
38-39 0.00 0.00 0.00 0.00 0.35 0.02 0.00 0.00 0.22 0.00 
39-40 0.00 0.00 0.00 0.00 0.33 0.03 0.00 0.02 0.18 0.00 
40-41 1.23 1.27 0.00 0.10 2.52 0.28 0.12 0.22 1.48 0.02 
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Table 5: Single-Axle Load Distribution (Percentages) for Each Truck Class 

Axle Load Range 
(kips) 

Vehicle Classes 
C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

0-3 0.59 51.34 14.72 2.07 5.61 3.52 2.31 0.14 0.23 0.20 
3-4 0.38 20.56 3.28 4.30 12.30 3.34 2.17 4.30 4.08 7.08 
4-5 0.47 10.23 4.11 3.48 10.63 3.79 3.15 6.14 6.09 9.96 
5-6 0.89 5.09 4.65 3.44 9.59 4.60 4.61 7.67 8.62 9.76 
6-7 8.06 3.22 5.25 3.42 9.13 5.92 7.22 8.84 9.55 9.18 
7-8 14.35 2.27 6.81 4.00 9.24 8.29 10.22 10.38 11.30 9.07 
8-9 14.31 1.69 9.18 4.83 8.52 11.77 14.19 11.28 12.01 9.43 

9-10 12.70 1.25 11.13 5.96 7.00 15.83 17.16 10.33 11.71 9.59 
10-11 10.64 0.90 10.00 6.34 5.27 15.00 15.03 8.87 9.89 9.43 
11-12 8.58 0.64 7.18 7.19 3.88 10.13 10.29 6.93 7.74 6.24 
12-13 6.45 0.46 4.95 7.59 2.93 5.77 5.41 5.45 5.50 4.64 
13-14 4.74 0.34 3.42 7.78 2.32 3.00 2.42 4.60 4.00 3.24 
14-15 3.54 0.27 2.56 7.16 1.93 2.04 1.55 3.69 2.72 2.05 
15-16 2.64 0.22 2.03 6.75 1.63 1.68 1.09 2.95 1.90 1.81 
16-17 2.07 0.18 1.75 5.92 1.33 1.40 0.79 2.27 1.31 2.13 
17-18 1.59 0.15 1.52 5.48 1.12 1.09 0.58 1.64 0.99 2.18 
18-19 1.25 0.13 1.29 4.35 0.92 0.79 0.43 1.18 0.65 1.35 
19-20 0.97 0.11 1.04 3.00 0.75 0.54 0.30 0.84 0.49 0.54 
20-21 0.87 0.10 0.90 1.74 0.64 0.37 0.23 0.59 0.27 0.43 
21-22 0.65 0.09 0.73 1.11 0.52 0.25 0.17 0.38 0.25 0.32 
22-23 0.50 0.08 0.61 0.72 0.45 0.18 0.12 0.26 0.13 0.29 
23-24 0.43 0.07 0.51 0.61 0.39 0.13 0.11 0.17 0.10 0.21 
24-25 0.38 0.07 0.41 0.42 0.35 0.10 0.08 0.13 0.08 0.17 
25-26 0.31 0.06 0.34 0.35 0.31 0.08 0.07 0.11 0.05 0.14 
26-27 0.25 0.06 0.29 0.27 0.28 0.07 0.05 0.08 0.04 0.07 
27-28 0.25 0.05 0.24 0.21 0.26 0.05 0.05 0.09 0.04 0.08 
28-29 0.20 0.05 0.21 0.28 0.24 0.04 0.04 0.08 0.04 0.09 
29-30 0.22 0.05 0.17 0.17 0.22 0.04 0.03 0.07 0.03 0.05 
30-31 0.14 0.04 0.14 0.14 0.21 0.03 0.03 0.04 0.03 0.05 
31-32 0.16 0.04 0.11 0.16 0.19 0.02 0.02 0.05 0.02 0.05 
32-33 0.18 0.03 0.08 0.13 0.18 0.02 0.02 0.04 0.02 0.03 
33-34 0.11 0.03 0.06 0.13 0.17 0.02 0.01 0.05 0.02 0.03 
34-35 0.12 0.03 0.05 0.08 0.16 0.02 0.01 0.03 0.02 0.02 
35-36 0.11 0.02 0.04 0.07 0.15 0.01 0.01 0.04 0.02 0.01 
36-37 0.10 0.01 0.04 0.06 0.13 0.01 0.01 0.03 0.02 0.02 
37-38 0.10 0.01 0.03 0.09 0.12 0.01 0.01 0.03 0.01 0.01 
38-39 0.12 0.01 0.03 0.05 0.12 0.01 0.00 0.03 0.01 0.01 
39-40 0.10 0.01 0.03 0.04 0.11 0.01 0.01 0.02 0.01 0.01 
40-41 0.54 0.06 0.15 0.15 0.72 0.05 0.03 0.17 0.03 0.03 
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CHAPTER 4: EFFECTS OF UNCLASSIFIED VEHICLES 
 

 As previously mentioned, the WIM data contained vehicles that could not be 

classified by the WIM device.  The possible reasons for this include vehicle tailgating, 

lane changing, irregular vehicle size, and WIM equipment problems.  These unclassified 

vehicles could be any types of vehicles, including passenger cars, buses, and trucks.  How 

to deal with these vehicles will undoubtedly affect pavement designs because it will 

result in different truck traffic inputs.  For instance, if all of the unclassified vehicles are 

treated as trucks, the total axle loads will be overestimated.  On the other hand, if they are 

not included in the truck traffic, the total axle loads will be underestimated.  One 

reasonable way to deal with this is to assign them to different vehicle groups, but to do 

this one needs to know the proportions of the vehicle types in the unclassified vehicles.  

However, the proportions are currently not available. 

 In order to analyze the effects of unclassified vehicles, various amounts of 

unclassified vehicle volumes were added to the total truck volumes of the five-year WIM 

data to examine the patterns of the truck traffic.  If all of the unclassified vehicles are 

disregarded, then the total truck volumes and the truck volumes of individual types of 

trucks are as shown in Figure 9.  The regression equation of the total AADTT values is 

also shown in the figure.  If 100% of the unclassified vehicles are vehicles, the total 

AADTT will be increased by the amount of unclassified vehicles (C0).  Similarly, 

analysis can be done by adding 50% and 25% of the unclassified vehicles to the truck 

volumes.  The truck traffic patterns and regression equations with 100%, 50%, and 25% 

of included unclassified vehicles are plotted in Figures 10, 11, and 12, respectively. 
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 It is apparent that the truck volumes, patterns, and regression equations are all 

significantly different when different amounts of unclassified vehicles are included in the 

truck traffic.  Consequently, pavement designs with these different truck volumes will 

certainly be very different.  Therefore, it is essential to obtain more accurate estimation of 

proportions of different types of vehicles in the unclassified vehicle category.  To 

determine the components of unclassified vehicles, research is being undertaken using 

image processing techniques to study the patterns of unclassified vehicles recorded by 

WIM devices.  It is hoped that the study will yield useful results to improve the truck 

traffic inputs for the MEPDG. 
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Figure 9: Average Daily Truck Traffic (no unclassified vehicles) 
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Figure 10: Average Daily Truck Traffic (including all unclassified vehicles) 
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Figure 11: Average Daily Truck Traffic (including 50% unclassified vehicles) 
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Figure 12: Average Daily Truck Traffic (including 25% unclassified vehicles) 
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CHAPTER 5: GEOSTATISTICAL ANALYSIS OF INDIANA 
TRAFFIC DISTRIBUTIONS 

 

 In addition to the WIM data analysis that resulted in the required truck traffic 

input for the MEPDG, the traffic volumes recorded by INDOT were analyzed using 

ArcGIS, a powerful GIS software, to examine the spatial distribution of traffic volumes 

over Indiana.  The spatial distributions of traffic volumes were obtained to provide 

INDOT with (1) a 3-dementional perspective of traffic volumes over entire Indiana; and 

(2) a basis for determining appropriate WIM locations.  The Indiana highway GIS map 

was provided by the INDOT Traffic Monitoring Section.  The INDOT GIS map contains 

Indiana’s highway systems with traffic volumes at the traffic monitoring stations.  

ArcGIS 9.2 (ESRI 2007) was used in the analysis of the spatial distributions of traffic 

volumes.  ArcGIS 9.2 applies the interpolation techniques in its Geostatistical Analyst.  

Geostatistical Analyst uses sample points taken at different locations in a landscape and 

creates (interpolates) a continuous surface. The sample points in this study are the traffic 

volumes at the INDOT traffic monitoring stations.  Geostatistical Analyst derives a 

surface using the traffic volume values from the traffic monitoring stations to predict 

values for each location in the landscape.  Geostatistical techniques rely on both 

statistical and mathematical methods that can be used to create surfaces and assess the 

uncertainty of the predictions.  Geostatistical Analyst, in addition to providing various 

interpolation techniques, also provides many supporting tools. For example, prior to 

mapping, Exploratory Spatial Data Analysis (ESDA) Tools can be used to assess the 

statistical properties of the data. After exploring the data, one can create a variety of 
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output map types (prediction, error of prediction, probability and quantile) using various 

geostatistical algorithms and associated tools. 

 

5.1: Exploring AADT Data 
 
 The traffic volume data contained in the INDOT GIS map are the average annual 

daily traffic (AADT) in 2004.  In order to conduct geostatistical analysis, the traffic data 

should be examined to determine their characteristics.  The geostatistical methods that are 

used to generate a 3-D surface give the best results if the data is normally distributed (a 

bell-shaped curve). If the data is skewed (lopsided), one may choose to transform the data 

to make it normal.  Thus, it is important to understand the distribution of the AADT data 

before conducting geostatistical analysis.  The Histogram tool in ArcGIS plots frequency 

histograms for the attributes in the dataset.  Therefore, the histograms of INDOT traffic 

volume data were plotted to examine if the AADT data satisfy the normal distribution 

requirement.  The Indiana AADT dataset contains a great deal of data points.  It was 

found that the large amount of AADT data often overloaded the ArcGIS software and 

caused operational problems for the software.  To reduce the amount of data for ArcGIS 

to run properly, only the AADT at the middle point of a segment of highway was selected 

to represent the AADT of the highway.  This is reasonable because the AADT values are 

generally similar along a section of highway.   

 

5.1.1: Histogram 
 
 The Histogram tool in ESDA provides a univariate (one-variable) description of 

the data. The tool displays the frequency distribution for the dataset of interest and 
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calculates summary statistics that describe the distribution’s location, spread, and shape.  

The frequency distribution is a bar graph that displays how often observed values fall 

within certain intervals or classes. The number of classes of equal width must be 

specified first for the histogram.  The relative proportion of data that falls in each class is 

represented by the height of each bar.  The important features of a distribution can be 

summarized by the following summary statistics that describe its location, spread, and 

shape (ESRI 2007).  

• Measures of location: Measures of location provide you with an idea of where 

the center and other parts of the distribution lie.  The mean is the arithmetic 

average of the data. The mean provides a measure of the center of the distribution.  

The median value corresponds to a cumulative proportion of 0.5. If the data was 

arranged in increasing order, 50 percent of the values would lie below the median, 

and 50 percent of the values would lie above the median. The median provides 

another measure of the center of the distribution.  The 1st and 3rd quartiles 

correspond to the cumulative proportion of 0.25 and 0.75, respectively. If the data 

was arranged in increasing order, 25 percent of the values would lie below the 

first quartile, and 25 percent of the values would lie above the third quartile. The 

1st and 3rd quartiles are special cases of quantiles. 

• Measures of spread: The spread of points around the mean value is another 

characteristic of the displayed frequency distribution.  The variance of the data is 

the average squared deviation of all values from the mean. The units are the 

square of the units of the original measurements and, because it involves squared 

differences, the calculated variance is sensitive to unusually high or low values.  
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The standard deviation is the square root of the variance. It describes the spread of 

the data about the mean in the same units as the original measurements. The 

smaller the variance and standard deviation, the tighter the cluster of 

measurements about the mean value. 

• Measures of shape: The frequency distribution is also characterized by its shape.  

The coefficient of skewness is a measure of the symmetry of a distribution. For 

symmetric distributions, the coefficient of skewness is zero. If a distribution has a 

long right tail of large values, it is positively skewed, and if it has a long left tail 

of small values, it is negatively skewed. The mean is larger than the median for 

positively skewed distributions and vice versa for negatively skewed distributions. 

The kurtosis is based on the size of the tails of a distribution and provides a 

measure of how likely the distribution will produce outliers. The kurtosis of a 

normal distribution is three. Distributions with relatively thick tails are 

“leptokurtic” and have kurtosis greater than three. Distributions with relatively 

thin tails are “platykurtic” and have a kurtosis less than three.  

 
The histogram of INDOT AADT data generated by ArcGIS is shown in Figure 13.  The 

AADT distribution has a skewness of 4.7651 and a kurtosis of 35.47.  Moreover, the 

distribution is obviously not a symmetric bell shaped distribution.  Therefore, the AADT 

data are not normally distributed. 
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Figure 13: Histogram of INDOT AADT 

 

5.1.2: Normal QQ Plot 
 

 To further examine the pattern of the AADT distribution, the Normal QQ Plot to 

analyze the AADT data.  The QQ Plot is used to compare the distribution of the data to a 

standard normal distribution. The closer the points are to creating a straight line, the 

closer the distribution is to being normally distributed.  Figure 14 shows the QQ Plot of 

the AADT data.  As can be seen, the right hand side of the AADT line is far from the 

normal distribution straight line.  This indicates again that the AADT data is not normally 

distributed. 

 



 

32 

 
Figure 14: QQ Plot of INDOT AADT 

 

5.1.3: Data Transformation 
 

 Some geostatistical methods are critically dependent on the data coming from a 

normal distribution.  In statistics, the power transform is a family of transformations that 

map data from one space to another using power functions. This data processing 

technique is used to reduce data variation, make the data more normal distribution-like, 

and improve the correlation between variables and for other data stabilization procedures. 

Through data transformations, an original dataset that is not normally distributed can be 

transformed into a dataset that is normally distributed.  Two types of data transformations 

were performed in this study in order to make the INDOT AADT data more normally 

distributed.  They are log transformation and Box-Cox transformation (ESRI 2007).  In 

ArcGIS, the log transformation is expressed as: 
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Y(s)=ln(Z(s)), for Z(s)>0 (2) 

where Z(s) is the original dataset and Y(s) is the transformed dataset. 

 

The Box-Cox transformation (Box & Cox, 1964, and Myers and Montgomery, 2002) is a 

commonly used power transformation method.  In ArcGIS, the Box–Cox transformation 

is expressed as: 

 

Y(s)=(Z(s)λ-1)/λ, for λ ≠0. (3) 

 

The log transformation is actually a special case of the Box–Cox transformation when λ = 

0.  The AADT was transformed through log transformation.  For each AADT value, the 

transformed data is ln(AADT).  That is, the transformed data is the natural logarithm of 

the original data.  The histogram of the log transformed data is shown in Figure 15.  As 

can be seen, the shape of the new histogram shown in Figure 15 is more normally 

distributed than the one shown in Figure 13.  The new kurtosis is 5.844 and the skewness 

is -0.5568, which are much improved compared to the values in Figure 13 (kurtosis of 

35.47 and skewness of 4.7651).  The improved normal distribution is also illustrated in 

the Normal QQ Plot in Figure 16.  As shown in the Figure 16, the transformed data is 

almost on the normal distribution line with some exceptions at the two ends.  This 

indicates that the distribution of the log transformed data is very close to the normal 

distribution. 
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 The Box-Cox transformation, Y(s)=(Z(s)λ-1)/λ, for λ ≠0, is a distribution with a 

power parameter λ.  For a given dataset, the value of the power parameter, λ, must be 

determined so that the transformed dataset will have a highest degree of normal 

distribution.  Using the Box-Cox data transformation functions in ArcGIS, the AADT 

data were transformed with different λ values.  For the selected λ values, the 

corresponding values of kurtosis and skewness can be compared to determine the 

distributions of the transformed datasets.  Figures 17 through 20 are the histograms of the 

transformed AADT data with different λ values. 

 

 
Figure 15: Histogram of Log Transformed AADT 
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Figure 16: QQ Plot of the Log Transformed AADT 

 

 
Figure 17: Histogram of the Box-Cox Transformed AADT (λ=0.08) 
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Figure 18: Histogram of the Box-Cox Transformed AADT (λ=0.10) 

 

 
Figure 19: Histogram of the Box-Cox Transformed AADT (λ=0.12) 
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Figure 20: Histogram of the Box-Cox Transformed AADT (λ=0.14) 

 

 The histograms show that values of skewness and kurtosis vary with λ values.  

The values of skewness and kurtosis are listed in Table 6 for λ values ranging from 0.080 

to 0.145.  As previously discussed, the coefficient of skewness is a measure of the 

symmetry of a distribution. For a normal distribution, the histogram should be symmetric 

and the coefficient of skewness should be 0. If a distribution has a long right tail of large 

values, it is positively skewed, and if it has a long left tail of small values, it is negatively 

skewed.  The kurtosis is based on the size of the tails of a distribution and provides a 

measure of how likely the distribution will produce outliers. The kurtosis of a normal 

distribution should be 3. 

Table 6: Skewness and Kurtosis of Transformed AADT for Different λ values 

λ 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 
Kurtosis 3.8494 3.8009 3.7572 3.7186 3.6850 3.6560 3.6313 3.6107 3.5939 3.5808 3.5711 3.5647 3.5613 3.5610 

Skewness -0.0421 -0.0159 0.0098 0.0350 0.0599 0.0844 0.1085 0.1323 0.1558 0.1790 0.2019 0.2246 0.2471 0.2694 
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 The log transformed AADT has a skewness of -0.5568 and a kurtosis of 5.8444 as 

shown in Figure 15.  The values of kurtosis and skewness for the Box-Cox transformed 

AADT shown in Table 6 are improved compared to the log transformed AADT in terms 

of normal distribution, because the kurtosis values are closer to 3 and the skewness 

values are closer to 0.  Among the many λ values, it was desirable to choose a λ value 

that would generate the transformation data with highest degree of normal distribution.  

The relationship between skewness and λ and the relationship between kurtosis and λ 

were obtained through regressions as shown in Figure 21 and Figure 22, respectively.  

The regression equations of the relationships are expressed as the following: 

 

Skewness = 4.7816 λ - 0.4201 (4) 

Kurtosis = 80.239 λ2 - 22.396 λ + 5.1244 (5) 

 

Skewness = 4.7816 λ - 0.4201
R2 = 0.9994
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Figure 21: Relationship between Skewness and λ 
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Kurtosis = 80.239λ2 - 22.396λ + 5.1244
R2 = 0.9996
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Figure 22: Relationship between Kurtosis and λ 

 

 From Equation 4, it can be obtained that when λ is 0.0878576 the skewness is 0.  

The histogram of the transformed AADT with a λ value of 0.0878576 is presented in 

Figure 23.  From Equation 5, the minimum kurtosis can be computed as 3.561629 when λ 

is 0.139558.  The histogram corresponding to λ of 0.139558 is shown in Figure 24.  It 

should be pointed out that the values of skewness and kurtosis are slightly different from 

the expected values from the regression equations.  This is because regression values are 

usually not a perfect fit of the data used in regression. 

 Since a true normal distribution has a skewness of 0 and a kurtosis of 3, a proper 

value of λ should be chosen so that the transformed data would be as normally distributed 

as possible.  Such a λ should yield a Box-Cox transformed dataset with reasonably 

balanced skewness and kurtosis.  In order to identify a good λ value, the QQ Plots 
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(Figures 25 through 30) were used to examine the degrees of normal distributions of the 

transformed datasets.  Based on these QQ Plots, it can be seen that the Box-Cox 

transformation with a λ of 0.0878576 generated the data points that are closest to the 

straight line of the normal distribution.  Therefore, in addition to the log transformation, 

the Box-Cox transformation of the AADT with a λ of 0.0878576 was also selected for 

geostatistical analysis in this study. 

 
Figure 23: Histogram of Transformed AADT (λ = 0.0878576) 
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Figure 24: Histogram of Transformed AADT (λ = 0.139558) 
 

 
Figure 25: QQ Plot of Transformed AADT (λ = 0.878576) 

 
 
 

 
Figure 26: QQ Plot of Transformed AADT (λ = 0.10) 

 
 



 

42 

 
Figure 27: QQ Plot of Transformed AADT (λ = 0.11) 

 
 
 

 
Figure 28: QQ Plot of Transformed AADT (λ = 0.12) 
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Figure 29: QQ Plot of Transformed AADT (λ = 0.13) 

 
 

 
Figure 30: QQ Plot of Transformed AADT (λ = 0.1396) 

 
 



 

44 

 

5.2: Variograms 
 

 One of the most important concepts in geostatistics is called variogram.  If the 

measurement of a sample at location x is Z(x) and the measurement of another sample at 

location x+h, then the variogram (Clark, 1979), 2γ(h), is defined as: 

2)]hx(Z)x(Z[
n
1)h(2 ∑ +−=γ  (4) 

The term γ(h) is called semi-variogram: 

2)]hx(Z)x(Z[
n2

1)h( ∑ +−=γ  (5) 

The distance between the two samples, h, is called lag.  As h changes, γ changes.  The 

relationship between the semi-variogram γ and h are shown in Figure 31.  The figure 

shows that the value of γ at which the graph levels off is called the sill of the semi-

variogram; the h value corresponding to the start of sill is called range; and the value of γ 

at h=0 is called nugget.  The partial sill is the sill minus the nugget.  Sample locations 

separated by distances closer than the range are spatially autocorrelated, whereas 

locations farther apart than the range are not.  Theoretically, at zero separation distance (h 

= 0), the semi-variogram value is zero. However, at an infinitesimally small separation 

distance, the semi-variogram often exhibits a nugget effect, which is some value greater 

than zero.  The nugget effect can be attributed to measurement errors or spatial sources of 

variation at distances smaller than the sampling interval (or both) (ESRI 2007).  An ideal 

shape for a semi-variogram should have a nugget value of 0.  The ideal shape for the 

semi-variogram is to geostatistics as the normal distribution is to statistics.  There are 
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many mathematical models for semi-variograms.  The commonly used models are listed 

in Table 7.   

 

 
Figure 31: Semi-Variogram graph 
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Table 7: Commonly Used Semi-Variogram Models 

Model γ(h) h value 

Circular Model a
harcsin2)

a
h(1

a
h2[c 2

π
+−

π
ah0 ≤≤  

c  ah >  

Spherical Model 
])

a
h(

2
1

a2
h3[c 3−  ah0 <≤  

c  ah ≥  

Penta-spherical Model 
])

a
h(

8
3)

a
h(

4
5

a8
h15[c 53 +−  ah0 <≤  

c  ah ≥  

Exponential Model )]
a
hexp(1[c −−  0h ≥  

Gaussian Model )]exp(1[ 2

2

a
hc −−  0h ≥  

K-Bessel Model )](1[ 1 a
hK

a
hc −  0h ≥  

Linear Model with No Still ch  0h ≥  

Power Model ach  0h ≥ ， 2a0 ≤<  

Nugget Model 
0 0h =  

c  0h >  

Linear Model with Still 
)

a
h(c  ah0 <≤  

c ah ≥  

Logarithmic Model 
0 0h =  

)]ah[log(c +  0h >  

Periodic Model )]2cos(1[
a
hc π

−  0h ≥  

 

 When modeling the semi-variogram, the autocorrelation can be examined and 

quantified. In geostatistics this is called spatial modeling, also known as structural 
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analysis or variography. In spatial modeling of the semi-variogram, the empirical semi-

variograms are computed using the following formula: 

2)]hx(Z)x(Z[
2
1)h( ∑ +−=γ  (6) 

A graph based on the calculated values from Equation 6 is called the semi-variogram 

cloud.  It shows the empirical semi-variogram for all pairs of locations within a dataset 

and plots them as a function of the distance between the two locations. The semi-

variogram cloud can be used to examine the local characteristics of spatial 

autocorrelation within a dataset and look for local outliers.  If all pairs are plotted on a 

graph, the number of pairs will become unmanageable. Instead of plotting each pair, the 

pairs are grouped into lag bins.  Lag pins are the specified ranges of lag (h) values.  For 

example, the average semi-variograms can be computed for all pairs of points that are 

within 3 miles apart.  The values in the semi-variogram cloud are put into bins based on 

the direction and distance between a pair of locations. These bin values are then averaged 

and smoothed to produce a surface of the semi-variogram.  The extent of the semi-

variogram surface is controlled by selected lag size and number of lags. 

 The INDOT AADT data is depicted in the three dimensional graph in Figure 32.  

It is desirable to utilize geostatistics to express the AADT distribution mathematically.  

Figure 33 shows the semi-variogram cloud of the original INDOT AADT.  Similarly, 

Figure 34 shows the semi-variogram cloud of the transformed INDOT AADT with the 

Box-Cox method.  Both cloud graphs in Figures 33 and 34 do not show clear patterns of 

relationships between the semi-variograms and the lag distances.  Therefore, it is needed 

to select a semi-variogram model that will best fit the INDOT AADT data. 
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Figure 32: Three Dimensional Graph of INDOT AADT  

 

 
Figure 33: Semi-Variogram Cloud of INDOT AADT 
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Figure 34: Semi-Variogram Cloud of Box-Cox Transformed INDOT AADT 

 

 

5.3: Geostatistical Modeling 
 

5.3.1: Kriging Methods: 
 
 In this study, it is desired to fit the best model of semi-variogram functions to the 

INDOT AADT measurements.  The model will then be used to predict the AADT values 

at the locations without AADT measurements in Indiana.  Semi-variogram modeling is a 

key step between spatial description and spatial prediction.  A powerful method of 

geostatistical modeling is called kriging.  Kriging is an advanced geostatistical procedure 

that generates an estimated surface from a scattered set of points with z values.  For the 

AADT data, the x and y values represent locations of the data points and z values are the 

observed AADT at these locations.  Kriging involves an interactive investigation of the 
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spatial behavior of the phenomenon represented by the z values before the user selects the 

best estimation method for generating the output surface.   

 Kriging offers two types of surface estimators: Ordinary Kriging and Universal 

Kriging.  Ordinary Kriging assumes the constant mean is unknown.  Universal Kriging 

assumes that there is an overriding trend in the data. Universal Kriging should only be 

used when there is a trend in the data (ESRI 2007).  As previously discussed, the INDOT 

AADT data do not show any trend, thus Universal Kriging method is not suitable.  

Ordinary Kriging method was used in this study to analyze INDOT AADT data.  Also as 

previously discussed, the original AADT data are not normally distributed, but can be 

transformed into near normal distribution data through log transformation and Box-Cox 

transformation.  Therefore, the log and Box-Cox transformed AADT data were used in 

Ordinary Kriging modeling. 

 Kriging assumes that the distance or direction between sample points reflects a 

spatial correlation that can be used to explain variations in the surface. Kriging fits a 

mathematical function to a specified number of points, or all points within a specified 

radius, to determine the output value for each location.  Kriging is a multi-step process; it 

includes exploratory statistical analysis of the data, variogram modeling, creating the 

surface, and (optionally) exploring a variance surface (ESRI 2007).  The general formula 

for Kriging interpolator is formed as a weighted sum of the data:  

∑
=

λ=
N

1i
iij )s(Z)s(Z

)
 (7) 

where: 
)s(Z j

)
= the predicted value at location j. 

Z(si) = the measured value at location i. 
λi = an unknown weight for the measured value at location i. 
N = the number of measured values. 
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 The Geostatistical Analyst in ArcGIS (ESRI 2007) provides the following 11 

Ordinary Kriging functions to model the empirical semi-variogram: 

• Circular  
• Spherical  
• Tetraspherical  
• Pentaspherical  
• Exponential  
• Gaussian  
• Rational Quadratic  
• Hole Effect  
• K-Bessel  
• J-Bessel  
• Stable 

The selected model influences the prediction of the unknown values, particularly when 

the shape of the curve near the origin differs significantly. The steeper the curve near the 

origin, the more influence the closest neighbors will have on the prediction.  As a result, 

the output surface will be less smooth. Each model is designed to fit different types of 

phenomena more accurately. 

 In this study, ArcGIS was used for the geostatistical modeling.  The Ordinary 

Kriging was used to process the log and Box-Cox transformed AADT data.  All of the 11 

functions in the ArcGIS Geostatistical Analyst (ESRI 2007) were used to develop the 

prediction models.  Then the Prediction Errors from the generated models were compared 

to choose a best model.  A good model should have a Mean Standardized value close to 0, 

a small Root-Mean-Square value, an Average Mean-Error value close to the Root-Mean-

Square value, and a Root-Mean-Square Standardized value close to 1. 

 Using log transformed AADT, the prediction errors of the 11 models are shown in 

Figures 35 through 45.  These figures are from the ArcGIS’s Geostatistical Analyst 
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functions.  The prediction errors in the figures are listed in Table 8 to compare the models.  

As indicated in the table, the Exponential model has a Mean Standardized value closest to 

0, a smallest Root-Mean-Square value, and a Root-Mean-Square Standardized value 

closest to 1.  In addition, the difference between the Average Standard Error and the 

Root-Mean-Square of the Exponential model are the smallest among the 11 models.  

Therefore, with log transformed AADT, the Exponential model is the best one among the 

11 models.   

 

 
Figure 35: Prediction Errors of Circular Model with Log Transformed AADT 
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Figure 36: Prediction Errors of Spherical Model with Log Transformed AADT 

 

 
Figure 37: Prediction Errors of Tetraspherical Model with Log Transformed AADT 
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Figure 38: Prediction Errors of Pentaspherical Model with Log Transformed AADT 

 

 
Figure 39: Prediction Errors of Exponential Model with Log Transformed AADT 
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Figure 40: Prediction Errors of Gaussian Model with Log Transformed AADT 

 

 
Figure 41: Prediction Errors of Rational Quadratic Model with Log Transformed AADT 
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Figure 42: Prediction Errors of Hole Effect Model with Log Transformed AADT 

 

 
Figure 43: Prediction Errors of K-Bessel Model with Log Transformed AADT 
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Figure 44: Prediction Errors of J-Bessel Model with Log Transformed AADT 

 

 
Figure 45: Prediction Errors of Stable Model with Log Transformed AADT 
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Table 8: Prediction Errors of Different Models with Log Transformed AADT 

Model Mean 
Root-
Mean-
Square 

Average 
Standard Error 

Mean 
Standardized 

Root-Mean-Square 
Standardized 

Circular 1592 12980 27110 0.06078 0.5424 
Spherical 1570 12970 27060 0.05992 0.5428 

Tetraspherical 1545 12960 27000 0.05896 0.5434 
Pentaspherical 1531 12960 26970 0.05844 0.5437 
Exponential 1256 12880 26250 0.04923 0.5495 

Gaussian 1636 13000 27300 0.06215 0.5427 
Rational 

Quadratic 1501 12960 26980 0.05668 0.5436 

Hole Effect 1650 13010 27280 0.06269 0.5459 
K-Bessel 1849 13060 27710 0.07069 0.5361 
J-Bessel 1747 13030 27190 0.06734 0.5485 
Stable 1849 13060 27700 0.07082 0.5366 

 

 

 Similarly, the prediction errors of the 11 models with Box-Cox transformed 

AADT were generated using the ArcGIS’s Geostatistical Analyst functions.  The results 

are shown in Figures 46 through 56.  The prediction errors in the figures are listed in 

Table 9 to compare the models.  As can be seen in the table, the Rational Quadratic 

model has a Mean Standardized value closest to 0; the Exponential model has a smallest 

Root-Mean-Square value; and the Stable model has a Root-Mean-Square Standardized 

value closest to 1 and a smallest difference between the Average Standard Error and the 

Root-Mean-Square.  Therefore, with the Box-Cox (λ=0.08786) transformed AADT, the 

Rational Quadratic model, the Exponential model and the Stable model can be used for 

AADT predictions. 
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Figure 46: Prediction Errors of Circular Model with Box-Cox Transformed AADT 

 

 
Figure 47: Prediction Errors of Spherical Model with Box-Cox Transformed AADT 



 

60 

 

 
Figure 48: Prediction Errors of Tetraspherical Model with Box-Cox Transformed AADT 

 

 
Figure 49: Prediction Errors of Pentaspherical Model with Box-Cox Transformed AADT 
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Figure 50: Prediction Errors of Exponential Model with Box-Cox Transformed AADT 
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Figure 51: Prediction Errors of Gaussian Model with Box-Cox Transformed AADT 

 

 
Figure 52: Prediction Errors of Rational Quadratic Model with Box-Cox Transformed 

AADT 
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Figure 53: Prediction Errors of Hole Effect Model with Box-Cox Transformed AADT 

 

 
Figure 54: Prediction Errors of K-Bessel Model with Box-Cox Transformed AADT 
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Figure 55: Prediction Errors of J-Bessel Model with Box-Cox Transformed AADT 

 

 
Figure 56: Prediction Errors of Stable Model with Box-Cox Transformed AADT 
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Table 9: Prediction Errors of Different Models with Box-Cox Transformed AADT 

(λ=0.08786) 

Model Mean 
Root-
Mean-
Square 

Average 
Standard Error 

Mean 
Standardized 

Root-Mean-Square 
Standardized 

Circular 208.70 12730 8637 0.03362 1.538 
Spherical 193.40 12730 8606 0.03128 1.543 

Tetraspherical 177.90 12730 8575 0.02894 1.547 
Pentaspherical 168.30 12730 8555 0.02747 1.549 
Exponential 60.76 12710 8283 0.01090 1.581 

Gaussian 204.90 12730 8655 0.03336 1.537 
Rational 

Quadratic 42.34 12720 8227 0.006769 1.596 

Hole Effect 182.80 12740 8644 0.02934 1.546 
K-Bessel 292.70 12740 8795 0.04598 1.517 
J-Bessel 193.60 12740 8665 0.03097 1.543 
Stable 299.30 12740 8806 0.04695 1.515 

 

 

5.3.2: Other Modeling Methods: 
 

 In addition to Kriging methods, there exist some other spatial interpolation 

methods for prediction of attribute values at unsampled locations.  Under ArcGIS’s 

Geostatistical Analyst, the interpolation methods include Inverse Distance Weighing 

(IDW), Global Polynomial Interpolation (GPI), Local Polynomial Interpolation (LPI), 

Radial Basis Functions (RBF), and Inverse Multiquadric Spline (IMS). 

 Inverse Distance Weighing interpolation explicitly implements the assumption 

that things that are close to one another are more alike than those that are farther apart. To 

predict a value for any unmeasured location, Inverse Distance Weighing will use the 

measured values surrounding the prediction location. Those measured values closest to 

the prediction location will have more influence on the predicted value than those farther 
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away. Thus, Inverse Distance Weighing assumes that each measured point has a local 

influence that diminishes with distance. It weights the points closer to the prediction 

location greater than those farther away.  Weights are proportional to the inverse distance 

raised to the power value p. As a result, as the distance increases, the weights decrease 

rapidly. How fast the weights decrease is dependent on the value for p. If p = 0, there is 

no decrease with distance, and because each weight λi will be the same, the prediction 

will be the mean of all the measured values. As p increases, the weights for distant points 

decrease rapidly. If the p value is very high, only the immediate few surrounding points 

will influence the prediction.  Geostatistical Analyst in ArcGIS uses power functions 

greater than 1 (ESRI 2007). 

 An example of Inverse Distance Weighing using ArcGIS’s Geostatistical Analyst 

is depicted in Figures 57 through 60.  The example shows the steps and results for 

predicting an AADT at a given location. 

 



 

67 

 
Figure 57: AADT Prediction Using Inverse Distance Weighing Method – Data Input 

 
Figure 58: AADT Prediction Using Inverse Distance Weighing Method – Set Parameters 
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Figure 59: Inverse Distance Weighing AADT Prediction Results 

 
Figure 60: Inverse Distance Weighing AADT Prediction Errors 
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 Global Polynomial interpolation fits a smooth surface that is defined by a 

mathematical function (a polynomial) to the input sample points. Global interpolation is 

used for fitting a surface to the sample points when the surface varies slowly from region 

to region over the area of interest.  Since the INDOT AADT varies greatly from region to 

region as indicated in Figure 32, it was determined that this method was not suitable for 

the AADT analysis.  Therefore, this method was not used in this study. 

 While Global Polynomial interpolation fits a polynomial to the entire surface, 

Local Polynomial interpolation fits many polynomials, each within specified overlapping 

neighborhoods.  This method was tested with the INDOT AADT data, but it did not 

produce good results.  Therefore, this method was excluded in this study. 

 Radial Basis Functions method includes a series of exact interpolation techniques; 

that is, the surface must go through each measured sample value. There are five different 

basis functions:  

• Thin-Plate Spline (TPS) 
• Spline with Tension (SWT) 
• Completely Regularized Spline (CRS) 
• Multiquadric Function (MF) 
• Inverse Multiquadric Function (IMF) 

 

The five basis functions are called kernel functions in ArcGIS. Each kernel function has a 

different shape and results in a slightly different interpolation surface.  In ArcGIS, the 

steps to run the Radial Basis Functions are similar to those to run the Inverse Distance 

Weighing.  Figures 61 through 64 show an example of AADT predictions with the kernel 

function of Completely Regularized Spline.  Any of other kernel functions can be 

selected in the drop-down menu shown in Figure 62. 
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Figure 61: AADT Prediction Using Radial Basis Functions – Data Input 

 

 
Figure 62: AADT Prediction Using Radial Basis Functions – Specify Functions 
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Figure 63: Radial Basis Functions Prediction Results 

 

 
Figure 64: Radial Basis Functions Prediction Errors 
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5.3.3: Comparison of the Modeling Methods: 
 

 To compare the prediction accuracies of the above modeling methods, the 

recorded AADT values at 22 randomly selected locations were used.  The locations in 

terms of x and y coordinate values were used as input of each of the 10 modeling 

methods to produce the predicted AADT values.  The recorded and predicted AADT 

values are listed in Table 10.  Also included in the last row of Table 10 are the prediction 

errors of the ten modeling methods.  The prediction errors were calculated with the 

following formula: 

∑
=

−′=Δ
n

1i

2
ii )AADTTAAD(

n
1  (8) 

where: 
′

iAADT  = Predicted AADT at location i; 

iAADT  = Recorded AADT at location i; 
n = 22, number of locations. 
 

As shown in Table 10 and Figure 65, the Inverse Distance Weighing (IDW) method 

generated the best AADT predictions among the ten modeling methods. 
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Table 10: AADT Predictions from Ten Modes 

x y Recorded 
AADT IDW 

RBF 
Ordinary Kriging 

Log Transformed Box-Cox (λ=0.08786) Transformed 

CRS SWT MF IMS TPS Exponential Exponential Stable Rational 
Quadratic 

474459 4605206 30703 30566 23437 22609 30422 10066 30928 12756 12507 12982 12504 

471920 4606008 987 1270 4928 5220 1083 9473 814 14301 13684 13948 14467 

471932 4605956 880 1048 4835 5256 1153 12111 892 14948 14303 14621 15179 

688524 4301131 480 481 846 912 517 1632 506 1750 1858 1865 1920 

551555 4417667 7953 7960 11982 12211 8001 14856 8030 10777 9744 9534 9946 

478391 4485380 1888 1888 1886 1885 1880 1759 1881 2928 2212 2253 2195 

480241 4485385 2932 2816 2035 2009 2759 1568 2803 2859 2449 2428 2487 

672787 4493963 6460 6460 5775 5757 6432 6447 6445 5807 4902 4871 4774 

682185 4515096 1160 1160 1329 1390 1160 2287 1160 3374 3876 3888 4123 

664671 4502941 1820 1834 2132 2144 1825 2376 1830 3560 3499 3512 3612 

457402 4610604 3394 3416 8917 9411 3988 14750 3746 16799 11327 11335 11717 

457878 4610080 3038 3050 6387 6831 3140 13973 3036 17936 10428 10502 10879 

457808 4609656 2594 2624 7089 7602 2696 13499 2252 16768 11381 11426 11832 

457983 4610052 3647 3651 6471 6898 3595 13973 3647 17919 11128 11224 11625 

456485 4482520 783 784 978 1002 785 1869 810 1006 883 874 900 

460276 4485643 723 735 1334 1362 732 1948 724 1260 1054 1058 1088 

465704 4485577 904 1019 2240 2262 1305 2493 1190 2435 3230 3259 3367 

592572 4326130 33617 33579 21118 20374 33286 8102 33354 6874 5971 5582 5610 

591108 4353216 31416 31339 22769 22128 31301 10506 31143 8641 7536 7278 7376 

589280 4351187 3039 2927 5559 5852 2566 11405 2256 7443 7401 7524 7924 

589291 4351111 4592 4524 5701 5930 4433 11405 4788 8336 8223 8364 8689 

589314 4351230 745 766 3760 4234 880 11405 674 7365 7261 7385 7721 

Prediction Error 91 4377 4741 226 10605 728 11355 10349 10434 10609 
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Figure 65: Prediction Errors of the Ten Models 
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CHAPTER 6: TRAFFIC VOLUME LEVELS AND WIM STATION 
DISTRIBUTIONS 

 

6.1: Traffic Volume Levels and AADT Prediction 
 

 As discussed in the previous chapter, the Inverse Distance Weighing (IDW) method 

provided better AADT predictions than the other modeling methods.  Consequently, the IDW 

method was used to analyze traffic volume levels.  The traffic volume values were grouped into 

ten levels based on predicted AADT.  Then the AADT distributions were depicted on the Indiana 

map using different colors.  Using ArcGIS, traffic volume distribution can be obtained as follows: 

1. Convert the AADT dataset from the format (x, y, AADT) to the ArcGIS shape file 

AADT_shp.ly; 

2. Load the shape file in ArcMap. 

3. Click Geostatistical Analyst and select Geostatistical Wizard, the window shown in 

Figure 66 will appear. 

4. Select Inverse Distance Weighing under Method, select AADT under Attribute, and click 

Next, the window shown in Figure 66 will appear.  If an AADT value is to be predicted at 

a location (x, y), input the coordinates, the predicted AADT will be generated as shown 

in Figure 67. 

5. Click Next, the Cross Validation window shown in Figure 68 will appear. 

6. Click Next, the prediction map as shown in Figure 69 will appear. 
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Figure 66: Method and Data Window in Geostatistical Wizard 

 

 

Figure 67: Set Parameters Window in Geostatistical Wizard 
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Figure 68: Cross Validation Window in Geostatistical Wizard 

 

 
Figure 69: Prediction Map Generated by Inverse Distance Weighing Method 
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 As can be seen in the prediction map shown in Figure 69, the AADT values in Indiana 

are grouped into ten levels as specified.  The AADT levels are illustrated by the colors in the 

map, with the light colors for low AADT levels and the dark colors for high AADT levels.   

 

 

6.2: Possible Locations of Future WIM Stations 
 

 There were 47 WIM stations in Indiana.  It is likely that in the future more WIM stations 

will be needed to improve the coverage and quality of traffic data collections.  Thus, an attempt 

was made in this study to reasonably determine the locations for the future WIM stations.  If new 

WIM devices are ever to be installed, it is desired to install them at the locations so that the WIM 

stations would best reflect the patterns and characteristics of the traffic conditions in the state.  In 

this study, the locations of the future WIM devices were determined on the basis of the spatial 

AADT map generated using various ArcGIS functions. 

To show AADT distributions and the WIM stations on the same map, the triangulated 

irregular network (TIN) method in ArcGIS was selected.  TINs are made up of triangular facets 

and the nodes and edges that make up the triangles.  They may also contain breaklines—lines 

that follow sets of edges that play important roles in defining the shape of the surface. Examples 

of breaklines are ridgelines, roads, or streams (ESRI 2007).  A 2D TIN map can be created with 

ArcGIS through the following steps. 

1. Start ArcGIS and load AADT.shp. 

2. In the 3D Analyst drop-down menu, select Create/Modify TIN. 

3. In the window shown in Figure 70, select AADT in Layers and select AADT_COUNT in 

Height Source.  The 2D TIN map is created as shown in Figure 71. 
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Figure 70: 2D TIN Map Input Window 
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Figure 71: A 2D TIN Map of Indiana AADT 

 
 

 Although the map in Figure 71 shows the AADT values in different colors, the AADT 

distributions are not clear.  To improve the map, the 2D TIN map can be changed to a 3D map by 

using ArcScene in ArcGIS.  The following steps can be used to create a 3D AADT distribution 

map with WIM stations shown on the map. 

1. Start ArcGIS and click ArcScene; 

2. Load wim_sites, AADT, and TIN map; 

3. Right click Properties, select Display, select 30% Transparent; 

4. Click Navigate and select appropriate angle. 

The 3D map with WIM stations is shown in Figure 72.  In the 3D map, the heights of the z 

values represent AADT and the red dots are the WIM stations.  The 3D map clearly shows the 

areas with high and low AADT values.  However, when analyzing the AADT distributions, there 
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is a problem with the 3D map, i.e., the z values in high AADT areas block the views to the 

details behind these areas.   

 

Figure 72: 3D AADT Map with WIM Stations 

 

 To covert the 3D map in Figure 72 to a 2D map, start ArcMap and load AADT to TIN 

map and the map in Figure 73 can be created.  The AADT values were divided into 15 levels in 

the map.  Because most of the AADT values are in the lowest level (1 to 11502), the color for 

this AADT level dominates in the 2D map and other AADT levels can not be clearly seen.  To 

solve this problem, the AADT values were log transformed to make the divided levels more 

evenly spread.  Figure 74 is the 2D map created with the log transformed AADT data.  
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Figure 73: 2D Map of Original AADT with WIM Stations 

 

 
Figure 74: 2D Map of Log Transformed AADT 

 

 Figure 74 illustrates the AADT distributions on the highway system with 10 levels.  As 

can be seen, on the interstate highways most of the AADT values are shown in red, which 
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corresponds to the level between 4.189 and 4.793 of the log transformed AADT or between 

15452.14 and 62086.90 of the original AADT values.  To examine the relationship between the 

AADT values and the WIM station locations, the WIM stations were added to the 2D map of the 

log transformed AADT by including WIM_sites file in ArcMap.  Figure 75 shows the WIM 

stations as the black triangles on the AADT map.   

 
Figure 75: 2D Map of Log Transformed AADT with WIM Stations 

 

 The map in Figure 75 shows that most of the WIM stations are located on the interstate 

highways.  That is, the high AADT areas are well covered by the WIM stations.  However, there 

are only a few WIM stations on the relatively low AADT roads, such as on the state roads and 
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the US routes.  Although it is appropriate to install more WIM stations on high volume roads, it 

should also be necessary to install some WIM stations in low volume roads in order to capture 

the main characteristics of AADT distributions in the state.  With the map, it is possible to 

identify the locations that may need additional WIM stations.   

 If additional funds are available for new WIM stations, it is necessary to determine the 

reasonable locations of the new WIM stations.  To reflect the traffic volume changes, the WIM 

stations should be distributed in such a way that they can cover as many levels of traffic volumes 

as possible.  It is recommended that the following principles be considered to determine the 

locations for the new WIM stations: 

1. A new WIM station should be placed at a location with a traffic level that is not covered 

by the existing WIM stations. 

2. A new WIM station should be placed at a location where traffic volume changes from 

one level to another level. 

3. Higher traffic areas should have higher priority for a new WIM stations. 

 

 The proposed location of a new WIM station can be determined by considering the above 

principles.  To mark the coordinates of a proposed new WIM station location, first click 

Interpolate Point on the ArcMap menu as shown in Figure 76.  The next step is to click the 

proposed location of the new WIM station and then right click at the location and select 

Properties.  The coordinates of the new WIM station location is shown in the new window on the 

map as illustrated in Figure 77. 
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Figure 76: Interpolate Point in ArcMap 

 

 
Figure 77: Coordinates of the Proposed New WIM Station 

 

 Based on these principles and procedures, the future WIM locations can be identified.  

Table 11 lists the proposed coordinates of the future WIM locations.  The coordinates in Table 

New WIM Station 

Interpolate Point
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11 are provided for INDOT to consider first if new WIM stations are to be installed in the future.  

In case all of the coordinates in Table 11 are used up, additional coordinates shown in Table 12 

should be considered for new WIM station locations.  The coordinates in Table 12 are provided 

as the secondary locations after the ones in Table 11. 

Table 11: Proposed Locations of Future WIM Stations 
Site x y Site x y 

1 570444.618005 4477969.676659 7 506292.336930 4430363.459028 

2 512097.973226 4373468.223323 8 596860.263154 4308445.096803 

3 557672.218153 4417300.777361 9 578572.508820 4394658.795805 

4 626469.008266 4353729.0599916 10 602665.899450 4372597.377879 

5 555930.527264 4576665.493698 11 623856.471932 4554894.357587 

6 562897.290082 4541831.675920 12 492068.528003 4585954.511773 

 
Table 12: Secondary List of Proposed Locations of Future WIM Stations 

Site x y Site x y 

1 546931.791005 4506707.576326 15 516307.059541 4199589.416245 
2 621243.935599 4526156.457919 16 570299.477098 4228327.315913 
3 615148.017488 4587115.639032 17 539529.604727 4281158.606210 
4 538513.618375 4298865.796914 18 479731.550873 4319766.087581 
5 614277.172043 4315411.860359 19 666673.039618 4362147.232545 
6 627920.417340 4381305.832324 20 666092.475989 4474776.576696 
7 543303.268319 4264031.979136 21 514275.086837 4542412.239549 
8 452735.342095 4277965.506247 22 627775.276432 4608886.775144 
9 632710.067284 4288125.369766 23 569138.349838 4583341.975439 

10 575524.549764 4270127.897247 24 486698.314429 4343278.914582 
11 501502.686985 4246615.070246 25 614712.594765 4316282.705804 
12 471893.941873 4256194.370136 26 629516.967321 4382466.959583 
13 546931.791005 4506707.576326 27 516307.059541 4199589.416245 
14 621243.935599 4526156.457919 28 570299.477098 4228327.315913 
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 The locations listed in Table 11 and 12 can be shown in the 2D map.  As shown in Figure 

78, the coordinates in Table 11 were included in ArcMap as the file New_WIM(first_Class) 

Events.  Similarly, the coordinates in Table 12 were included as the file 

New_WIM(Second_Class) Events.  The two files were added as new layers in ArcMap.  Figure 

79 shows the existing WIM stations (black triangles), the first set of proposed future WIM 

stations (red circles), and the second set of proposed future WIM stations (black circles). 

 

 
Figure 78: Adding Coordinates of the Proposed New WIM Station in the Map 
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Figure 79: Locations of Existing and the Proposed WIM Stations 
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CHAPTER 7: CONCLUSIONS 
 

 In order to satisfy the requirements of the MEPDG, it is essential to prepare the truck 

traffic inputs because truck traffic is the most important requirement for the new design method.  

INDOT has made great effort to retrieve the required traffic information from the stored WIM 

data.  As presented in this report, a Visual Basic computer program was developed and was 

successfully utilized to obtain the necessary traffic information for the new pavement design 

method from the WIM data.  The truck traffic data include average annual daily truck traffic, 

average monthly and hourly truck traffic, adjustment factors, axle load spectra, and axle weight 

and spacing values.  The truck traffic can be expressed in individual vehicle types as well as in 

combined truck traffic values.  It was found that the WIM data contained a noticeable amount of 

unclassified vehicles, which would affect pavement designs if their patterns and components 

could not be reasonably identified. 

 Furthermore, the INDOT AADT data were used in this study to analyze the spatial 

distributions of the traffic volumes in Indiana.  The spatial distributions of traffic volumes were 

obtained to provide INDOT with (1) a 3-dementional perspective of traffic volumes over entire 

Indiana; and (2) a basis for determining appropriate WIM locations.  ArcGIS 9.2 (ESRI 2007) 

was used in the analysis of the spatial distributions of traffic volumes.  ArcGIS 9.2 applies the 

interpolation techniques in its Geostatistical Analyst.  Geostatistical Analyst uses sample points 

taken at different locations in a landscape and creates a continuous surface. The sample points in 

this study are the traffic volumes at the INDOT traffic monitoring stations.  It was found that the 

AADT data were not normally distributed.  The data were transformed by log or Box-Cox 

techniques to make the data more normally distributed in order to satisfy the normal distribution 
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requirement of the geostatistics.  Through various types of mathematical modeling techniques, it 

was concluded that the Inverse Distance Weighing (IDW) method generated the best AADT 

predictions among the ten modeling methods.  The IDW method can be used to predict the 

AADT at any given location within Indiana. 

 Based on the IDW predictions of AADT, a prediction map can be generated which shows 

the AADT distributions with different colors for the divided traffic volume levels.  In order to 

analyze the placement of the existing WIM stations in Indiana, ArcMap functions were utilized 

to visualize the relationship between AADT distributions and WIM stations locations.  It was 

found that with log transformed AADT data the TIN map could clearly illustrate and distinguish 

different traffic volume levels on the 2D map.  Adding the WIM stations as a layer on the 2D 

map, the WIM stations can be shown on the AADT distribution map.  Therefore, the placement 

of the WIM stations in relation to the AADT distributions can be examined to determine the 

appropriate locations for the future new WIM stations.  The coordinates of the proposed future 

WIM locations were determined.  These coordinates were provided for INDOT to consider when 

new WIM devices are to be installed in the future. 

 In summary, this study has produced the traffic input for INDOT to implement the new 

pavement design method.  The traffic input is an essential component for using the MEPDG to 

design pavement structures.  In addition to the axle load spectra and truck traffic input, this study 

also analyzed the AADT distributions in Indiana through geostatistical analysis utilizing ArcGIS 

tools.  The geostatistical analysis resulted in a series of results for spatial AADT predictions and 

future WIM station location determinations.  It is believed that the results of this study will 

certainly facilitate INDOT’s transition process from the current pavement design method to the 

MEPDG.   
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APPENDIX: TRAFFIC INPUT AT A WIM STATION 
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WIM Site 5300 (6170), I-74, RP 169.77, W Harrison 
Two Lanes in Each Direction 

Two Lane WIM Data in Each Direction 
AADTT: Two-way annual average daily truck traffic 
MAF: Truck traffic monthly adjustment factors (note: twelve-month MAF total = 12.0) 
DDF: Directional distribution factors, or percent trucks in the design direction 
LDF: Truck lane distribution factors, or the percent trucks in the design lane 
TCD: Truck class distribution (percent) 
HDF: Hourly distribution factors (percent) 
C4, C5, … C13: Class 4, Class 5, …, Class 13 of vehicle classifications 
 

 AADTT Ln 1 AADTT Ln 2 AADTT Ln 3 AADTT Ln 4 Total MAF 
AADTT Jan 2410.40 280.10 1155.90 262.80 4109.20 0.56 
AADTT Feb 2691.30 316.10 928.60 279.50 4215.50 0.57 
AADTT Mar 2971.40 343.60 1687.80 316.50 5319.30 0.72 
AADTT Apr 3203.20 358.90 3193.60 1224.20 7979.90 1.09 
AADTT May 3491.60 336.60 3778.20 1127.00 8733.40 1.19 
AADTT Jun 4077.60 367.60 4504.90 1213.50 10163.60 1.38 
AADTT Jul 3653.40 371.20 4355.60 1242.20 9622.40 1.31 
AADTT Aug 3480.20 370.60 3997.70 1241.60 9090.10 1.24 
AADTT Sep 3314.80 354.30 3744.10 1182.90 8596.10 1.17 
AADTT Oct 2852.50 322.80 3001.50 1149.00 7325.80 1.00 
AADTT Nov 2618.80 331.10 2716.10 1100.40 6766.40 0.92 
AADTT Dec 2395.90 326.80 2514.10 1082.40 6319.20 0.86 

Avg 3096.76 339.98 2964.84 951.83 7353.41  
Sum 37161.10 4079.70 35578.10 11422.00 88240.90 12.00 

 
 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 All Truck 
DDF 0.51 0.64 0.59 0.92 0.53 0.55 0.55 0.52 0.52 0.80 0.53 
LDF-dir1 0.91 0.83 0.87 0.85 0.95 0.94 0.94 0.94 0.94 0.80 0.90 
LDF-dir2 0.84 0.56 0.93 0.92 0.86 0.93 0.98 0.94 0.97 1.00 0.76 

 
All Lanes Combined AADTT 

 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Total 
Jan 31.90 1006.10 233.10 21.10 240.00 2419.60 10.10 124.20 18.50 4.60 4109.20 
Feb 38.50 1158.80 208.30 17.70 226.50 2417.80 9.20 118.80 18.30 1.60 4215.50 
Mar 50.70 1581.40 339.70 12.70 371.80 2781.70 9.90 149.20 22.10 0.10 5319.30 
Apr 102.50 2886.20 127.50 21.20 389.00 4195.00 16.80 201.00 40.50 0.20 7979.90 
May 112.70 3793.20 130.90 48.10 434.10 3971.30 12.40 190.60 40.10 0.00 8733.40 
Jun 108.00 4819.70 142.30 52.90 490.10 4282.30 16.90 207.00 44.00 0.40 10163.60
Jul 97.30 4656.30 130.20 56.60 479.70 3957.40 13.30 192.80 38.70 0.10 9622.40 
Aug 101.60 3841.40 141.30 49.80 469.40 4228.30 16.60 201.70 39.70 0.30 9090.10 
Sep 107.40 3352.80 122.30 54.10 445.40 4260.70 15.50 197.10 40.70 0.10 8596.10 
Oct 102.40 2296.80 118.80 42.60 361.30 4149.70 14.30 199.30 40.60 0.00 7325.80 
Nov 93.90 1851.00 123.40 31.20 287.20 4140.90 14.60 184.90 39.20 0.10 6766.40 
Dec 76.40 1772.10 123.10 26.50 266.60 3835.50 11.90 173.90 33.10 0.10 6319.20 
Total 1023.30 33015.80 1940.90 434.50 4461.10 44640.20 161.50 2140.50 415.50 7.60 88240.90

Average AADTT Yearly Increase = 7.9% 
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Monthly Adjustment Factor (MAF) 

 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Total 
Jan 0.37 0.37 1.44 0.58 0.65 0.65 0.75 0.70 0.53 7.26 0.56 
Feb 0.45 0.42 1.29 0.49 0.61 0.65 0.68 0.67 0.53 2.53 0.57 
Mar 0.59 0.57 2.10 0.35 1.00 0.75 0.74 0.84 0.64 0.16 0.72 
Apr 1.20 1.05 0.79 0.59 1.05 1.13 1.25 1.13 1.17 0.32 1.09 
May 1.32 1.38 0.81 1.33 1.17 1.07 0.92 1.07 1.16 0.00 1.19 
Jun 1.27 1.75 0.88 1.46 1.32 1.15 1.26 1.16 1.27 0.63 1.38 
Jul 1.14 1.69 0.80 1.56 1.29 1.06 0.99 1.08 1.12 0.16 1.31 
Aug 1.19 1.40 0.87 1.38 1.26 1.14 1.23 1.13 1.15 0.47 1.24 
Sep 1.26 1.22 0.76 1.49 1.20 1.15 1.15 1.10 1.18 0.16 1.17 
Oct 1.20 0.83 0.73 1.18 0.97 1.12 1.06 1.12 1.17 0.00 1.00 
Nov 1.10 0.67 0.76 0.86 0.77 1.11 1.08 1.04 1.13 0.16 0.92 
Dec 0.90 0.64 0.76 0.73 0.72 1.03 0.88 0.97 0.96 0.16 0.86 
Sum 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 

 
 Hourly Volume 
 StartTime C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 All Truck

Combined 

0 2.38 15.27 3.67 0.55 6.54 99.43 0.18 5.77 1.19 0.03 135.00 
1 2.08 10.68 3.43 0.73 6.71 95.11 0.17 5.68 0.85 0.01 125.45 
2 1.66 10.46 3.64 0.93 6.13 95.84 0.15 6.72 1.04 0.00 126.57 
3 2.07 14.52 4.18 1.02 9.49 106.12 0.32 8.82 1.28 0.00 147.81 
4 3.04 33.75 5.68 1.63 11.73 123.33 0.41 10.18 1.71 0.05 191.52 
5 3.13 62.35 9.24 2.26 11.48 141.16 0.68 12.18 1.88 0.04 244.41 
6 2.93 76.76 9.04 2.06 11.30 151.99 0.77 8.99 1.64 0.11 265.59 
7 4.48 88.67 7.56 2.23 13.03 171.14 0.94 6.86 1.31 0.13 296.35 
8 5.05 109.06 8.08 2.23 16.82 191.46 0.93 7.63 1.34 0.03 342.62 
9 4.94 141.42 8.99 2.57 20.61 204.49 0.96 6.84 1.46 0.02 392.29 

10 4.71 164.66 9.53 2.33 23.06 213.11 1.13 7.03 1.68 0.05 427.28 
11 4.73 176.36 9.48 2.38 24.18 207.93 1.20 5.80 1.04 0.02 433.12 
12 4.62 191.24 9.58 1.76 25.53 203.07 0.84 4.69 0.96 0.03 442.32 
13 4.52 215.97 9.18 1.98 25.62 201.70 0.90 5.65 0.90 0.05 466.46 
14 4.67 265.48 9.39 1.60 25.82 191.26 0.91 6.33 1.03 0.03 506.50 
15 4.53 293.28 9.18 1.42 23.74 182.00 0.72 5.98 1.28 0.00 522.13 
16 4.08 264.75 7.82 1.38 20.89 169.33 0.59 5.83 1.58 0.01 476.24 
17 3.97 196.78 6.71 1.28 17.70 159.52 0.42 5.44 1.28 0.00 393.08 
18 3.32 134.32 5.65 1.15 15.13 152.31 0.33 4.77 1.23 0.00 318.19 
19 3.09 97.93 5.36 1.13 12.99 146.32 0.27 6.63 1.21 0.01 274.92 
20 3.08 75.63 4.58 1.05 11.73 144.81 0.21 9.78 2.15 0.00 252.99 
21 2.83 53.63 4.17 0.92 12.38 133.83 0.13 12.51 2.98 0.03 223.40 
22 2.96 36.04 4.15 0.83 11.75 123.98 0.19 10.69 2.16 0.00 192.75 
23 2.38 22.29 3.49 0.81 7.41 110.75 0.13 7.63 1.46 0.00 156.35 

AADTT Sum 85.23 2751.27 161.75 36.21 371.77 3719.96 13.46 178.43 34.62 0.63 7353.32 
TCD Percent 1.16 37.42 2.20 0.49 5.06 50.59 0.18 2.43 0.47 0.01 100.00 
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Hourly Distribution Factor (HDF) (%) 

Two Directions Combined 
StartTime C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 All Truck

0 2.80 0.55 2.27 1.52 1.76 2.67 1.36 3.23 3.44 3.95 1.84 
1 2.43 0.39 2.12 2.03 1.80 2.56 1.24 3.19 2.46 1.32 1.71 
2 1.95 0.38 2.25 2.55 1.65 2.58 1.11 3.76 3.01 0.00 1.72 
3 2.42 0.53 2.59 2.81 2.55 2.85 2.35 4.94 3.71 0.00 2.01 
4 3.57 1.23 3.51 4.51 3.16 3.32 3.03 5.71 4.94 7.89 2.60 
5 3.68 2.27 5.71 6.24 3.09 3.79 5.08 6.82 5.44 6.58 3.32 
6 3.44 2.79 5.59 5.68 3.04 4.09 5.70 5.04 4.74 17.11 3.61 
7 5.26 3.22 4.67 6.14 3.51 4.60 7.00 3.84 3.78 21.05 4.03 
8 5.92 3.96 4.99 6.14 4.52 5.15 6.87 4.28 3.88 5.26 4.66 
9 5.80 5.14 5.56 7.09 5.54 5.50 7.12 3.83 4.21 2.63 5.33 

10 5.52 5.98 5.89 6.44 6.20 5.73 8.36 3.94 4.84 7.89 5.81 
11 5.55 6.41 5.86 6.58 6.50 5.59 8.92 3.25 3.01 2.63 5.89 
12 5.42 6.95 5.92 4.86 6.87 5.46 6.25 2.63 2.77 5.26 6.02 
13 5.30 7.85 5.67 5.48 6.89 5.42 6.69 3.17 2.60 7.89 6.34 
14 5.48 9.65 5.81 4.42 6.94 5.14 6.75 3.55 2.96 3.95 6.89 
15 5.32 10.66 5.67 3.91 6.39 4.89 5.33 3.35 3.68 0.00 7.10 
16 4.78 9.62 4.83 3.80 5.62 4.55 4.40 3.27 4.55 1.32 6.48 
17 4.65 7.15 4.15 3.54 4.76 4.29 3.10 3.05 3.68 0.00 5.35 
18 3.89 4.88 3.49 3.18 4.07 4.09 2.41 2.67 3.54 0.00 4.33 
19 3.63 3.56 3.31 3.11 3.49 3.93 1.98 3.71 3.49 1.32 3.74 
20 3.61 2.75 2.83 2.90 3.15 3.89 1.55 5.48 6.21 0.00 3.44 
21 3.31 1.95 2.58 2.53 3.33 3.60 0.99 7.01 8.62 3.95 3.04 
22 3.47 1.31 2.57 2.30 3.16 3.33 1.42 5.99 6.23 0.00 2.62 
23 2.80 0.81 2.16 2.23 1.99 2.98 0.99 4.27 4.21 0.00 2.13 

Sum 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Single-Axle Load Distribution (Percentages) for Each Truck Class 
Class 4 5 6 7 8 9 10 11 12 13 

3kips 0.59 51.34 14.72 2.07 5.61 3.52 2.31 0.14 0.23 0.20
4kips 0.38 20.56 3.28 4.30 12.30 3.34 2.17 4.30 4.08 7.08
5kips 0.47 10.23 4.11 3.48 10.63 3.79 3.15 6.14 6.09 9.96
6kips 0.89 5.09 4.65 3.44 9.59 4.60 4.61 7.67 8.62 9.76
7kips 8.06 3.22 5.25 3.42 9.13 5.92 7.22 8.84 9.55 9.18
8kips 14.35 2.27 6.81 4.00 9.24 8.29 10.22 10.38 11.30 9.07
9kips 14.31 1.69 9.18 4.83 8.52 11.77 14.19 11.28 12.01 9.43
10kips 12.70 1.25 11.13 5.96 7.00 15.83 17.16 10.33 11.71 9.59
11kips 10.64 0.90 10.00 6.34 5.27 15.00 15.03 8.87 9.89 9.43
12kips 8.58 0.64 7.18 7.19 3.88 10.13 10.29 6.93 7.74 6.24
13kips 6.45 0.46 4.95 7.59 2.93 5.77 5.41 5.45 5.50 4.64
14kips 4.74 0.34 3.42 7.78 2.32 3.00 2.42 4.60 4.00 3.24
15kips 3.54 0.27 2.56 7.16 1.93 2.04 1.55 3.69 2.72 2.05
16kips 2.64 0.22 2.03 6.75 1.63 1.68 1.09 2.95 1.90 1.81
17kips 2.07 0.18 1.75 5.92 1.33 1.40 0.79 2.27 1.31 2.13
18kips 1.59 0.15 1.52 5.48 1.12 1.09 0.58 1.64 0.99 2.18
19kips 1.25 0.13 1.29 4.35 0.92 0.79 0.43 1.18 0.65 1.35
20kips 0.97 0.11 1.04 3.00 0.75 0.54 0.30 0.84 0.49 0.54
21kips 0.87 0.10 0.90 1.74 0.64 0.37 0.23 0.59 0.27 0.43
22kips 0.65 0.09 0.73 1.11 0.52 0.25 0.17 0.38 0.25 0.32
23kips 0.50 0.08 0.61 0.72 0.45 0.18 0.12 0.26 0.13 0.29
24kips 0.43 0.07 0.51 0.61 0.39 0.13 0.11 0.17 0.10 0.21
25kips 0.38 0.07 0.41 0.42 0.35 0.10 0.08 0.13 0.08 0.17
26kips 0.31 0.06 0.34 0.35 0.31 0.08 0.07 0.11 0.05 0.14
27kips 0.25 0.06 0.29 0.27 0.28 0.07 0.05 0.08 0.04 0.07
28kips 0.25 0.05 0.24 0.21 0.26 0.05 0.05 0.09 0.04 0.08
29kips 0.20 0.05 0.21 0.28 0.24 0.04 0.04 0.08 0.04 0.09
30kips 0.22 0.05 0.17 0.17 0.22 0.04 0.03 0.07 0.03 0.05
31kips 0.14 0.04 0.14 0.14 0.21 0.03 0.03 0.04 0.03 0.05
32kips 0.16 0.04 0.11 0.16 0.19 0.02 0.02 0.05 0.02 0.05
33kips 0.18 0.03 0.08 0.13 0.18 0.02 0.02 0.04 0.02 0.03
34kips 0.11 0.03 0.06 0.13 0.17 0.02 0.01 0.05 0.02 0.03
35kips 0.12 0.03 0.05 0.08 0.16 0.02 0.01 0.03 0.02 0.02
36kips 0.11 0.02 0.04 0.07 0.15 0.01 0.01 0.04 0.02 0.01
37kips 0.10 0.01 0.04 0.06 0.13 0.01 0.01 0.03 0.02 0.02
38kips 0.10 0.01 0.03 0.09 0.12 0.01 0.01 0.03 0.01 0.01
39kips 0.12 0.01 0.03 0.05 0.12 0.01 0.00 0.03 0.01 0.01
40kips 0.10 0.01 0.03 0.04 0.11 0.01 0.01 0.02 0.01 0.01
41kips 0.54 0.06 0.15 0.15 0.72 0.05 0.03 0.17 0.03 0.03
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Tandem-Axle Load Distribution (Percentages) for Each Truck Class 
Class 4 5 6 7 8 9 10 11 12 13 

6kips 5.69 0.00 30.22 17.66 34.71 7.92 5.11 0.00 0.00 0.00
8kips 6.06 0.00 10.38 6.75 13.23 7.12 5.45 0.00 5.25 3.78
10kips 5.96 0.00 8.57 5.44 11.71 8.15 7.42 0.00 9.13 7.72
12kips 6.77 0.00 7.49 5.51 9.77 8.04 7.82 0.00 11.89 9.57
14kips 7.38 0.00 6.00 5.95 7.45 7.49 7.57 0.00 14.32 8.81
16kips 7.28 0.00 4.76 5.59 5.53 7.26 7.35 0.00 14.42 8.58
18kips 7.88 0.00 3.89 4.87 4.27 7.02 6.98 0.00 13.23 7.46
20kips 8.83 0.00 3.43 4.16 3.37 6.59 6.48 0.00 10.49 7.89
22kips 8.72 0.00 3.08 4.04 2.59 6.20 6.26 0.00 6.96 6.32
24kips 7.05 0.00 2.93 4.24 1.84 5.71 6.45 0.00 4.98 6.05
26kips 6.46 0.00 2.77 4.57 1.32 5.29 6.03 0.00 3.10 6.63
28kips 5.66 0.00 2.60 4.69 0.98 4.98 5.94 0.00 1.73 5.56
30kips 4.29 0.00 2.43 5.07 0.72 4.75 5.41 0.00 1.12 3.91
32kips 3.10 0.00 2.11 5.16 0.54 4.21 4.37 0.00 0.83 3.91
34kips 2.22 0.00 1.70 4.12 0.43 3.04 3.65 0.00 0.68 2.39
36kips 1.61 0.00 1.42 3.19 0.35 2.21 2.67 0.00 0.47 2.33
38kips 1.14 0.00 1.21 1.68 0.27 1.61 1.81 0.00 0.28 2.63
40kips 0.85 0.00 0.89 1.05 0.19 0.95 0.92 0.00 0.24 1.74
42kips 0.55 0.00 0.63 0.91 0.14 0.46 0.62 0.00 0.20 1.48
44kips 0.41 0.00 0.49 0.66 0.11 0.23 0.41 0.00 0.13 0.74
46kips 0.33 0.00 0.41 0.58 0.10 0.14 0.32 0.00 0.12 0.98
48kips 0.31 0.00 0.35 0.69 0.07 0.10 0.21 0.00 0.08 0.38
50kips 0.22 0.00 0.32 0.67 0.07 0.08 0.16 0.00 0.08 0.27
52kips 0.17 0.00 0.27 0.40 0.05 0.06 0.11 0.00 0.07 0.20
54kips 0.15 0.00 0.25 0.39 0.04 0.05 0.12 0.00 0.05 0.15
56kips 0.12 0.00 0.22 0.38 0.03 0.04 0.08 0.00 0.04 0.10
58kips 0.11 0.00 0.19 0.28 0.03 0.03 0.05 0.00 0.04 0.08
60kips 0.10 0.00 0.16 0.22 0.02 0.03 0.04 0.00 0.02 0.10
62kips 0.09 0.00 0.15 0.16 0.02 0.02 0.03 0.00 0.02 0.07
64kips 0.08 0.00 0.13 0.16 0.01 0.02 0.03 0.00 0.01 0.04
66kips 0.07 0.00 0.11 0.18 0.01 0.02 0.02 0.00 0.01 0.03
68kips 0.06 0.00 0.09 0.12 0.01 0.02 0.02 0.00 0.01 0.02
70kips 0.05 0.00 0.07 0.15 0.00 0.02 0.02 0.00 0.01 0.01
72kips 0.05 0.00 0.06 0.08 0.00 0.02 0.01 0.00 0.01 0.02
74kips 0.03 0.00 0.05 0.06 0.00 0.01 0.01 0.00 0.00 0.01
76kips 0.03 0.00 0.04 0.05 0.00 0.01 0.01 0.00 0.00 0.01
78kips 0.03 0.00 0.03 0.04 0.00 0.01 0.01 0.00 0.00 0.01
80kips 0.02 0.00 0.02 0.01 0.00 0.01 0.01 0.00 0.00 0.01
82kips 0.06 0.00 0.09 0.09 0.01 0.05 0.03 0.00 0.00 0.02
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Tridem-Axle Load Distribution (Percentages) for Each Truck Class 
Class 4 5 6 7 8 9 10 11 12 13 

12kips 0.00 0.00 0.00 3.11 0.00 0.00 26.31 0.00 0.00 0.00
15kips 0.00 0.00 0.00 2.08 0.00 0.00 8.61 0.00 0.00 0.00
18kips 0.00 0.00 0.00 2.30 0.00 0.00 7.49 0.00 0.00 0.00
21kips 0.00 0.00 0.00 3.10 0.00 0.00 6.75 0.00 0.00 0.00
24kips 0.00 0.00 0.00 3.60 0.00 0.00 6.40 0.00 0.00 0.00
27kips 0.00 0.00 0.00 3.88 0.00 0.00 6.43 0.00 0.00 0.00
30kips 0.00 0.00 0.00 4.36 0.00 0.00 7.08 0.00 0.00 0.00
33kips 0.00 0.00 0.00 5.37 0.00 0.00 7.13 0.00 0.00 0.00
36kips 0.00 0.00 0.00 6.61 0.00 0.00 6.70 0.00 0.00 0.00
39kips 0.00 0.00 0.00 7.92 0.00 0.00 5.27 0.00 0.00 0.00
42kips 0.00 0.00 0.00 9.15 0.00 0.00 3.69 0.00 0.00 0.00
45kips 0.00 0.00 0.00 9.59 0.00 0.00 2.81 0.00 0.00 0.00
48kips 0.00 0.00 0.00 9.18 0.00 0.00 1.93 0.00 0.00 0.00
51kips 0.00 0.00 0.00 8.18 0.00 0.00 1.23 0.00 0.00 0.00
54kips 0.00 0.00 0.00 6.58 0.00 0.00 0.62 0.00 0.00 0.00
57kips 0.00 0.00 0.00 4.73 0.00 0.00 0.36 0.00 0.00 0.00
60kips 0.00 0.00 0.00 3.30 0.00 0.00 0.30 0.00 0.00 0.00
63kips 0.00 0.00 0.00 2.33 0.00 0.00 0.24 0.00 0.00 0.00
66kips 0.00 0.00 0.00 1.46 0.00 0.00 0.21 0.00 0.00 0.00
69kips 0.00 0.00 0.00 0.76 0.00 0.00 0.11 0.00 0.00 0.00
72kips 0.00 0.00 0.00 0.71 0.00 0.00 0.06 0.00 0.00 0.00
75kips 0.00 0.00 0.00 0.36 0.00 0.00 0.06 0.00 0.00 0.00
78kips 0.00 0.00 0.00 0.25 0.00 0.00 0.05 0.00 0.00 0.00
81kips 0.00 0.00 0.00 0.22 0.00 0.00 0.04 0.00 0.00 0.00
84kips 0.00 0.00 0.00 0.13 0.00 0.00 0.04 0.00 0.00 0.00
87kips 0.00 0.00 0.00 0.18 0.00 0.00 0.03 0.00 0.00 0.00
90kips 0.00 0.00 0.00 0.10 0.00 0.00 0.02 0.00 0.00 0.00
93kips 0.00 0.00 0.00 0.08 0.00 0.00 0.02 0.00 0.00 0.00
96kips 0.00 0.00 0.00 0.07 0.00 0.00 0.02 0.00 0.00 0.00
99kips 0.00 0.00 0.00 0.05 0.00 0.00 0.02 0.00 0.00 0.00
102kips 0.00 0.00 0.00 0.06 0.00 0.00 0.01 0.00 0.00 0.00
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Quad-Axle Load Distribution (Percentages) for Each Truck Class 
Class 4 5 6 7 8 9 10 11 12 13 

12kips 0.00 0.00 0.00 3.04 0.00 0.00 9.31 0.00 0.00 0.00
15kips 0.00 0.00 0.00 1.23 0.00 0.00 0.37 0.00 0.00 0.00
18kips 0.00 0.00 0.00 1.42 0.00 0.00 0.73 0.00 0.00 0.00
21kips 0.00 0.00 0.00 2.28 0.00 0.00 0.84 0.00 0.00 0.00
24kips 0.00 0.00 0.00 2.38 0.00 0.00 3.96 0.00 0.00 0.00
27kips 0.00 0.00 0.00 2.13 0.00 0.00 3.89 0.00 0.00 0.00
30kips 0.00 0.00 0.00 2.65 0.00 0.00 13.24 0.00 0.00 0.00
33kips 0.00 0.00 0.00 3.33 0.00 0.00 17.85 0.00 0.00 0.00
36kips 0.00 0.00 0.00 4.27 0.00 0.00 12.34 0.00 0.00 0.00
39kips 0.00 0.00 0.00 6.39 0.00 0.00 14.77 0.00 0.00 0.00
42kips 0.00 0.00 0.00 7.97 0.00 0.00 7.00 0.00 0.00 0.00
45kips 0.00 0.00 0.00 9.11 0.00 0.00 5.66 0.00 0.00 0.00
48kips 0.00 0.00 0.00 10.07 0.00 0.00 6.20 0.00 0.00 0.00
51kips 0.00 0.00 0.00 10.54 0.00 0.00 0.64 0.00 0.00 0.00
54kips 0.00 0.00 0.00 8.74 0.00 0.00 0.61 0.00 0.00 0.00
57kips 0.00 0.00 0.00 6.66 0.00 0.00 0.74 0.00 0.00 0.00
60kips 0.00 0.00 0.00 5.38 0.00 0.00 0.09 0.00 0.00 0.00
63kips 0.00 0.00 0.00 4.25 0.00 0.00 1.21 0.00 0.00 0.00
66kips 0.00 0.00 0.00 2.52 0.00 0.00 0.17 0.00 0.00 0.00
69kips 0.00 0.00 0.00 1.73 0.00 0.00 0.38 0.00 0.00 0.00
72kips 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00
75kips 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.00 0.00
78kips 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 0.00
81kips 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00
84kips 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00
87kips 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00
90kips 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00
93kips 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00
96kips 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00
99kips 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00
102kips 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
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All-Axle Load Distribution (Percentages) for Each Truck Class 

Class 4 5 6 7 8 9 10 11 12 13 
3kips 3.82 26.47 42.37 20.17 18.02 28.43 25.52 9.90 5.83 7.05
4kips 5.37 12.00 15.60 17.67 9.92 21.70 13.50 13.65 14.10 18.47
5kips 7.62 7.12 12.37 14.33 8.98 14.45 11.82 14.30 16.78 14.75
6kips 9.40 5.87 9.37 10.83 7.40 10.30 10.58 13.42 13.37 14.67
7kips 14.87 5.45 6.33 7.20 6.67 6.92 7.68 10.45 9.83 8.52
8kips 14.33 7.15 3.93 6.27 6.27 4.50 5.83 7.87 6.60 5.97
9kips 11.18 2.88 2.77 5.07 5.22 2.90 4.83 6.28 5.32 7.83
10kips 7.53 2.43 2.07 4.10 4.37 2.02 3.85 4.90 4.12 4.55
11kips 6.12 1.18 1.53 2.67 3.42 1.52 3.28 3.55 3.03 3.30
12kips 4.12 4.63 1.00 1.80 3.10 1.15 2.72 3.05 2.43 3.48
13kips 2.18 2.17 0.57 1.37 2.40 0.88 1.85 2.47 1.98 2.12
14kips 2.13 2.17 0.33 1.37 1.98 0.65 1.42 1.68 1.50 1.67
15kips 1.22 4.88 0.27 1.37 1.80 0.50 1.22 0.90 1.22 1.47
16kips 1.58 1.53 0.13 0.97 1.63 0.38 0.95 1.17 1.13 1.00
17kips 1.32 0.65 0.20 0.90 1.43 0.30 0.65 0.63 0.90 1.18
18kips 1.32 1.28 0.07 1.10 1.05 0.22 0.50 0.98 0.80 0.82
19kips 0.50 3.12 0.03 0.33 1.12 0.20 0.45 0.77 0.68 0.42
20kips 0.05 1.85 0.03 0.43 0.97 0.17 0.35 0.72 0.67 0.25
21kips 0.92 0.00 0.00 0.40 0.88 0.13 0.33 0.17 0.60 0.27
22kips 0.80 0.00 0.00 0.17 0.90 0.10 0.27 0.30 0.55 0.37
23kips 0.03 0.00 0.00 0.27 0.80 0.10 0.18 0.27 0.48 0.28
24kips 0.85 0.63 0.00 0.03 0.72 0.10 0.17 0.27 0.48 0.13
25kips 0.25 0.00 0.00 0.07 0.72 0.08 0.12 0.27 0.47 0.22
26kips 0.05 0.00 0.00 0.03 0.55 0.08 0.12 0.17 0.42 0.03
27kips 0.25 0.00 0.00 0.13 0.53 0.08 0.08 0.05 0.37 0.03
28kips 0.00 0.00 0.00 0.00 0.48 0.08 0.03 0.03 0.38 0.02
29kips 0.00 0.00 0.00 0.03 0.43 0.05 0.03 0.05 0.35 0.02
30kips 0.00 1.27 0.00 0.00 0.50 0.05 0.03 0.03 0.35 0.07
31kips 0.00 0.00 0.00 0.07 0.45 0.05 0.03 0.08 0.33 0.00
32kips 0.00 0.00 0.00 0.00 0.45 0.05 0.00 0.10 0.32 0.00
33kips 0.00 0.00 0.00 0.00 0.38 0.05 0.02 0.00 0.30 0.00
34kips 0.00 0.00 0.00 0.00 0.38 0.03 0.02 0.00 0.27 0.00
35kips 0.00 1.85 0.00 0.00 0.40 0.03 0.00 0.00 0.25 0.00
36kips 0.00 0.00 0.00 0.00 0.30 0.03 0.03 0.00 0.25 0.00
37kips 0.00 0.00 0.00 0.00 0.35 0.03 0.02 0.03 0.22 0.00
38kips 0.00 1.27 0.00 0.00 0.35 0.03 0.00 0.02 0.22 0.00
39kips 0.00 0.00 0.00 0.00 0.35 0.02 0.00 0.00 0.22 0.00
40kips 0.00 0.00 0.00 0.00 0.33 0.03 0.00 0.02 0.18 0.00
41kips 1.23 1.27 0.00 0.10 2.52 0.28 0.12 0.22 1.48 0.02
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Average Axle Weight (kip) and Average Axle Spacing (inches) 
Class 4 5 6 7 8 9 10 11 12 13 

W1 14.70 5.33 7.78 9.44 8.51 8.44 8.08 8.60 9.62 6.66
W2 13.88 5.12 6.20 7.55 10.98 6.14 5.81 12.21 7.23 5.59
W3 9.26 0.00 6.20 7.51 10.03 6.00 5.71 12.88 7.66 5.77
W4 0.00 0.00 0.00 7.73 6.64 5.76 4.97 11.25 9.71 5.19
W5 0.00 0.00 0.00 4.39 0.00 5.73 4.90 11.31 11.35 5.57
W6 0.00 0.00 0.00 0.00 0.00 0.00 5.24 0.00 8.74 7.08
W7 0.00 0.00 0.00 0.00 0.00 0.00 2.47 0.00 0.00 6.31
W8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.79
W9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20
S12 23.18 13.06 18.97 5.68 12.35 13.88 13.85 10.42 12.58 9.45
S23 3.70 0.00 3.24 20.55 18.41 3.93 3.64 17.62 4.05 5.28
S34 0.00 0.00 0.00 3.35 14.91 27.22 19.77 7.94 17.31 7.50
S45 0.00 0.00 0.00 1.85 0.00 4.21 5.67 17.98 8.78 10.96
S56 0.00 0.00 0.00 0.00 0.00 0.00 3.50 0.00 18.88 6.27
S67 0.00 0.00 0.00 0.00 0.00 0.00 1.88 0.00 0.00 5.62
S78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.09
S89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.58

 
 

Average Axle Spacing (inches) and Average Number of Axle Types 
Class 4 5 6 7 8 9 10 11 12 13 

S12 23.18 13.05 18.98 5.68 12.36 13.88 13.85 10.43 12.62 9.45
S23 3.70 0.00 3.24 20.59 18.41 3.93 3.64 17.61 4.05 5.28
S34 0.00 0.00 0.00 3.35 14.92 27.22 19.82 7.93 17.33 7.50
S45 0.00 0.00 0.00 1.85 0.00 4.21 5.66 8.97 8.78 10.96
S56 0.00 0.00 0.00 0.00 0.00 0.00 3.50 0.00 18.90 6.27
S67 0.00 0.00 0.00 0.00 0.00 0.00 1.88 0.00 0.00 5.62
S78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.09
S89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.58
Single 1.78 2.00 1.00 1.75 2.36 1.27 1.05 4.74 3.72 2.10
Tandem 0.22 0.00 1.00 0.75 0.63 1.86 1.03 0.08 1.09 1.08
Tridem 0.00 0.00 0.00 0.12 0.00 0.00 0.92 0.03 0.02 0.45
Quad 0.00 0.00 0.00 0.12 0.00 0.00 0.02 0.00 0.01 0.15
Quinate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
Hexad 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.14
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