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Introduction

The values of equivalent single axle loads (ESAL)
have been used to represent the vehicle loads in
pavement design. To improve the pavement design
procedures, a new method, called the Mechanistic-
Empirical Pavement Design Guide (MEPDG), has
been developed to use the axle load spectra to
represent the vehicle loads in pavement design.
These spectra represent the percentage of the total
axle applications within each load interval for
single, tandem, tridem, and quad axles. Using axle
load spectra as the traffic input, the MEPDG
method is able to analyze the impacts of varying
traffic loads on pavement and provide an optimal
pavement structure design. In addition, the new
method can be used to analyze the effects of
materials and the impacts of seasons, to compare
rehabilitation strategies, and to perform forensic
analyses of pavement conditions. The MEPDG
utilizes  mechanistic-empirical approaches to
realistically characterize in-service pavements and

Findings

A Visual Basic computer program was
developed and was successfully utilized to
obtain the necessary traffic information for the
new pavement design method from the WIM
data. The truck traffic data include average
annual daily truck traffic, average monthly and
hourly truck traffic, adjustment factors, axle load
spectra, and axle weight and spacing values.
The truck traffic can be expressed in individual
vehicle types as well as in combined truck traffic
values. It was found that the WIM data
contained a noticeable amount of unclassified
vehicles, which would affect pavement designs

allows the full integration of wvehicular traffic
loadings, climatic features, soil characteristics, and
paving materials properties into the detailed
analysis of pavement structural behaviors and the
resulting pavement performance.

In order to provide the traffic data input required by
the MEPDG, the Indiana Department of
Transportation (INDOT) made an effort to obtain
truck traffic information from the traffic data
collected through weigh-in-motion (WIM) stations.
This study was conducted to create the truck traffic
spectra and other traffic inputs for INDOT to
implement the new pavement design method.
Furthermore, the INDOT AADT data were used in
this study to analyze the spatial distributions of the
traffic volumes in Indiana and to obtain the spatial
distributions of traffic volumes.

if their patterns and components could not be
reasonably identified.

Furthermore, the INDOT AADT data were used
in this study to analyze the spatial distributions
of the traffic volumes in Indiana. The spatial
distributions of traffic volumes were obtained to
provide INDOT with (1) a 3-dementional
perspective of traffic volumes over entire
Indiana; and (2) a basis for determining
appropriate WIM locations. ArcGIS 9.2 was
used in the analysis of the spatial distributions of
traffic volumes.  ArcGIS 9.2 applies the
interpolation techniques in its Geostatistical
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Analyst.  Geostatistical Analyst uses sample
points taken at different locations in a landscape
and creates a continuous surface. The sample
points in this study are the traffic volumes from
the INDOT traffic monitoring stations. It was
found that the AADT data were not normally
distributed. The data were transformed by log or
Box-Cox techniques to make the data more
normally distributed in order to satisfy the
normal  distribution  requirement of the
geostatistics. Through various types of
mathematical modeling techniques, it was
concluded that the Inverse Distance Weighing
(IDW) method generated the best AADT
predictions among the ten modeling methods.
The IDW method can be used to predict the
AADT at given locations within Indiana.

Implementation

The axle load spectra and traffic inputs
generated from this study will be used for
INDOT to implement the new AASHTO
Pavement Design Method. The suggested future
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CHAPTER 1: INTRODUCTION

The values of equivalent single axle loads (ESAL) have been used to represent the
vehicle loads in pavement design (AASHTO 1993). To improve the pavement design
procedures, a new method, called the Mechanistic-Empirical Pavement Design Guide
(MEPDG) (NCHRP 2004), has been developed to use the axle load spectra to represent
the vehicle loads in pavement design. These spectra represent the percentage of the total
axle applications within each load interval for single, tandem, tridem, and quad axles.
This new pavement design method is a mechanistic-empirical approach to designing
pavement structures. It is a radical change from the ESAL based method. The axle load
spectra approach quantifies the characteristics of traffic loads by directly using all
individual axle loads, instead of converting them into ESAL values. Using axle load
spectra as the traffic input, the MEPDG method is able to analyze the impacts of varying
traffic loads on pavement and provide an optimal pavement structure design. In addition,
the new method can be used to analyze the effects of materials and the impacts of seasons,
to compare rehabilitation strategies, and to perform forensic analyses of pavement
conditions. The MEPDG utilizes mechanistic-empirical approaches to realistically
characterize in-service pavements and allows the full integration of vehicular traffic
loadings, climatic features, soil characteristics, and paving materials properties into the
detailed analysis of pavement structural behaviors and the resulting pavement
performance. Although both approaches are based on the same data sources, the axle load
spectra approach is more consistent with the state-of-the-practice method for traffic

monitoring outlined in the Traffic Monitoring Guide (FHWA 2001). A crucial



distinction between the MEPDG and the previous 1972, 1986, or 1993 AASHTO
Pavement Design Guides is the requirement of data.

Vehicular traffic loading is one of the key factors that may cause pavement
fatigue cracking, rutting, and other pavement structural failures and functional distresses.
In the previous AASHTO Pavement Design Guides, all vehicular loading are required to
be converted into ESAL. However, the MEPDG departs completely from the concept of
ESAL because of the strict requirement of detailed loadings for evaluating pavement
structural behavior and its effect on pavement performance in different time. The
MEPDG uses the full axle load spectra. An advantage of using the axle load spectra over
the use of ESAL is that the traffic data requirement is consistent with the state-of-the-
practice outlined in the FHWA Traffic Monitoring Guide (TMG). This implies that the
historical traffic data collected by state highway agencies, such as weigh-in-motion
(WIM) data and automatic vehicle classification (AVC) data, can be utilized to create
axle load spectra. Therefore, it becomes possible for a state highway agency to develop a
harmonious and integrated traffic databank that may be used not only for the MEPDG,
but also for congestion management, planning, regulation, pavement management, and
asset management.

The MEPDG provides a hierarchical approach for data inputs. This feature allows
state highway agencies to maximize the reliability of pavement design based on the
accuracy and variability of data available and the needs and capabilities of highway
agencies. The MEPDG defines three levels of traffic data input with respect to the

number of days of WIM, AVC, and traffic counts as follows:



1. Level 1: Project/Segment Specific AVC and WIM Measurements. Level 1 uses
volume, classification and axle load spectra directly related to the project, and is
the most accurate level. In order to import traffic data at the level, highway
agencies need to collect and traffic volume, classification, and axle weight data
along or near the project to be designed through their AVC and WIM stations.
Detailed analysis is required so as to provide the distribution of axle loadings by
direction and lane with time for the first year after construction.

2. Level 2: Regional AVC and WIM Measurements. Level 2 uses regional AVC and
WIM axle load spectra data and traffic volume and classification data related to
the project and provides intermediate accuracy of traffic loading data. In order to
provide level 2 input, highway agencies need to gather enough truck traffic
information on a related site, such as weekly and seasonal truck traffic and truck
load variations. However, the truck weights are determined from regional truck
weight summaries by highway agencies.

3. Level 3: Site Specific Vehicle Count Data/Default Regional or Statewide Value.
Level 3 uses regional or statewide default vehicle classification and axle load
spectra data and provides poor accuracy. At this level, the agencies have only
average annual daily traffic (AADT) through site vehicle counters. However, the
information pertaining to truck traffic, such as truck percentage, truck distribution,
and axle load distribution, is in question.

To prepare the transition from equivalent single-axle loads to load spectra, many
studies have been conducted by different states to analyze the effects of the new design

method. Buchanan (2004) utilized the long term pavement performance (LTPP) data



from Mississippi sites to determine vehicle class distribution, monthly and hourly
distribution factors, and axle load spectra. The truck traffic data in Mississippi showed
that the single trailer trucks comprised 70% of the truck traffic on interstates and four-
lane highways. However, single-unit trucks were the primary type of trucks on the low
volume routes in Mississippi.

Al-Yagout et al. (2005) developed truck axle load spectra using the axle load data
collected at WIM stations throughout Washington State. The project concluded that the
developed load spectra are reasonable for pavement design. For single axles they are
comparable to the MEPDG defaults. For tandem and tridem axles they are slightly more
conservative than the defaults.

An Alabama study (Timm, Bower and Turochy 2006) evaluated different load
spectra in terms of practical effects on resulting flexible pavement thickness design. The
study concluded that statewide load spectra are warranted for use and will not adversely
affect most pavement designs.

Haider and Harichandran (2007) presented a methodology for using truck weights
and proportions on a highway to estimate individual axle load spectra for various axle
configurations. Their study results showed that truck weights and proportions on a
highway can be used to estimate individual axle load spectra for various axle
configurations. They claimed that it was possible to develop reasonable relationships
between truck weights and axle loads.

In a Canadian study (Swan et al. 2008), the truck traffic data, collected as part of
periodic commercial traffic surveys, were used to obtain best possible default values for

traffic input parameters required for the MEPDG. The researchers compared the default



traffic data inputs included in the MEPDG software and the regional traffic data inputs
developed in the study in terms of axle load spectra. They found that the axle load spectra
from their study have smaller number of heavily overloaded axles and the peaks between
loaded and unloaded axles are more pronounced. They also found that the number and
type of trucks, followed by the axle load spectra, have the predominant influence on the
predicted pavement performance. The MEPDG contains several input parameters which
do not have any significant influence on the predicted pavement performance, such as
hourly traffic volume adjustment factors, and axle spacing.

In order to provide the traffic data input required by the MEPDG, the Indiana
Department of Transportation (INDOT) made an effort to obtain truck traffic information
from the traffic data collected through WIM stations. This study was conducted to create
the truck traffic spectra and other traffic inputs for INDOT to implement the new
pavement design method. This report presents the results of generated truck traffic
information with respect to the requirements of the MEPDG. The characteristics of the
truck traffic on Indiana highways include the traffic volumes of various types of trucks,
the axle load spectra, axle spacing, and adjustment factors of truck traffic. The
adjustment factors include hourly and monthly truck traffic adjustment factors, which are
used to reflect the changes of truck traffic at different time periods. Furthermore, the
INDOT AADT data were used in this study to analyze the spatial distributions of the
traffic volumes in Indiana. The spatial distributions of traffic volumes were obtained to
provide INDOT with a 3-dementional perspective of traffic volumes over entire Indiana;

and a basis for determining appropriate locations for future WIM stations.



CHAPTER 2: WIM DATA PROCESSING

The INDOT WIM system consists of 47 WIM sites installed on interstate and
other state owned primary highways. The following three types of WIM devices are used
in Indiana.

e Bending Plate: WIM systems utilize plates with strain gauges bonded to the
underside. As a vehicle passes over the bending plate, the system records the
strain measured by the strain gauge and calculates the dynamic load. The static
load is estimated using the measured dynamic load and calibration parameters.

e Piezoelectric Sensor: WIM systems utilize piezo sensors to detect a change in
voltage caused by pressure exerted on the sensor by an axle and measure the
axle’s weight. As a vehicle passes over the piezo sensor, the system records the
electrical charge created by the sensor and calculates the dynamic load. The static
load is estimated using the measured dynamic load and calibration parameters.

e Load Cell: WIM systems utilize a single load cell with two scales to detect an
axle and weigh both the right and left side of the axle simultaneously. As a
vehicle passes over the two load cell, the system records the weights measured by
each scale and sums them to obtain the axle weight.

Among the 47 WIM sites, 23 of them are Piezoelectric Sensor WIM systems, 13
are Bending Plate WIM systems, and the rest are Load Cell WIM systems. All WIM raw
data have to be screened for errors before they are put in a database in the form of a

monthly traffic data file. A monthly WIM data file generally consists of all traffic



information that is necessary to generate traffic summary reports. The traffic database
from the WIM measurements is used for many purposes, including the Long-Term
Pavement Performance (LTPP) monitoring, pavement design, truck weight enforcement
by Indiana State Police (ISP), and WIM system improvements by the contractors. As
part of this study, the database is utilized to develop traffic design inputs for the MEPDG.

The WIM raw data files are binary data files containing all traffic information. In
general, the binary data files must be converted into American Standard Code for
Information Interchange (ASCII) data files that are usually very large in size. In reality,
the potential damages to pavement structures caused by passenger vehicles are negligible.
Both the AASHTO method and the MEPDG do not consider the effects of passenger
vehicles on pavement structure and only take into account the trucks of Class 4 to Class
13 as defined by FHWA (2001). Therefore, in order to process traffic data for pavement
design, pavement engineers only focus on truck traffic information, rather than all of the
traffic information in the binary WIM data files.

In order to extract the truck traffic information from the binary WIM data files,
the authors utilized the vendor’s software to generate the ASCII raw vehicle report (IRD
1999). An ASCII raw vehicle report consists solely of the truck traffic information,
including time, lane number, vehicle class, speed, axle weight, and axle spacing. Since an
ASCII raw vehicle report file is also large in size, a Visual Basic® computer program

was developed to generate traffic inputs required by the MEPDG from the ASCII file.



CHAPTER 3: TRUCK TRAFFIC AND AXLE LOAD
SPECTRA

The FHWA vehicle classification defines 13 types of vehicles as shown in Figure

1. Since the first three types of vehicles are not considered in pavement design, only
vehicles in Classes 4 through 13 are included in the axle load spectra. The five-year
WIM data between 2000 and 2004 were used for the data processing and analysis. All of
the required traffic inputs for the MEPDG were obtained from the 47 WIM stations. To
illustrate of the axle load spectra, the WIM station on I-74 (at reference marker 169.77) is
selected in this report to present the processed traffic data. There are four lanes (two
lanes in each direction) at the 1-74 site. In the eastbound direction, Lane 1 and Lane 2
represent the driving lane and the passing lane, respectively. In the westbound direction,
Lane 3 and 4 represent the driving lane and the passing lane, respectively. The traffic
inputs for the MEPDG include the following:

e Average annual daily truck traffic;

¢ Truck volume monthly adjustment factors;

e Truck volume lane distribution factors;

e Truck volume directional distribution factors;

e Truck volume class distributions;

e Traffic volume hourly distribution factors;

e Single-axle load distributions;

e Tandem-axle load distributions;



Tridem-axle load distributions;

Quad-axle load distributions;

All-axle load distributions;

Average axle weight (kips) and average axle spacing (inches); (Note: 1.0 kip =
1,000 pounds)

Average number of axle types.
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Figure 1: FHWA Vehicle Classifications

An important traffic input for the MEPDG is the average annual daily truck traffic
(AADTT). The obtained values of the truck traffic are in the forms of average monthly
daily truck traffic (AMDTT) and average hourly truck traffic (AHTT) of a year. Table 1
presents the monthly AMDTT values at the I-74 WIM station. It should be noted that the

average values shown in the last row of Table 1 are the values of AADTT of the
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corresponding lanes. With the AMDTT values, the monthly adjustment factors (MAF)

can be calculated by the following equation (NCHRP 2004):

MAF, = IZAM& x12 (1)
> AMDTT,
j=1

where:

MAF;: monthly adjustment factor for month i.

AMDTT;: average monthly daily truck traffic for month i.

Table 1: Monthly Truck Traffic at I-74 WIM Site

Monthly ADTT
Lane 1 Lane 2 Lane 3 Lane 4

January 2557 344 2462 489
February 2840 385 2616 492
March 3136 418 2915 555
April 3398 452 3317 1616
May 3715 458 3919 1494
June 4353 515 4660 1599
July 3920 529 4518 1614
August 3739 524 4153 1627
September 3562 488 3886 1551
October 3073 440 3116 1500
November 2802 428 2814 1454
December 2632 464 2689 1538
Average 3311 454 3422 1294

Figure 2 shows the monthly adjustment factors calculated with the data in Table 1.
The MEPDG uses MAF values as an input to reflect the monthly and seasonal effects of
truck traffic on pavement performance. Therefore, MAF values will certainly affect the

results of pavement designs.
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Similarly, the values of AHTT were also obtained. The values of hourly truck
volumes at the I-74 WIM station are graphically shown in Figure 3. The variations of the
hourly truck volumes at the site can be clearly seen in the graph. Based on the average
hourly truck traffic, the hourly distributions factors were calculated as shown in Figure 4.
The hourly distribution factors are the percentages of truck traffic at each hour out of the

total truck volume during a 24-hour period.
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In addition to the AADTT, the MEPDG requires information on the components
of truck traffic based on the FHWA vehicle classifications. The truck components are
represented by the percent of each truck type. The truck classifications at the 1-74 WIM
station are illustrated in Figure 5, where Ci means the ith vehicle class of the FHWA
vehicle classifications and CO represents unclassified vehicles. The unclassified vehicles
are those that the WIM device failed to identify their vehicle types based on the
integrated criteria. They include only the number of unclassified vehicles without any
other measurements such as axle loads and axle spaces. The quantities of unclassified
vehicles have great effect on pavement design. There are many possible reasons for a
vehicle not to be classified, such as vehicle tailgating, lane changing, and irregular
vehicle size. An unreasonably large value of unclassified vehicles (C0) usually indicates
that the WIM device is not working properly. Currently, there are no specified threshold
values for normal range of unclassified vehicles. The truck classifications in Figure 5
indicate that most of the trucks belong to Class 9, followed by Class 5 vehicles. In fact,
this is also true for all of the 47 WIM sites in Indiana. Li et al. (2005) found that the
volume of Class 9 vehicles and the total ESAL value on Indiana highways have a highly
correlated linear relationship. The truck volumes of the vehicle types in each month are

presented in Table 2.
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Table 2: Average Monthly Daily Truck Volumes
Vehicle Class

Month | C4 C5 Co6 C7 C8 C9 C10 Cll [CI2| C1 CO0
Jan 32 1006 | 233 21 240 | 2420 10 124 19 5 1743
Feb 39 1159 | 208 18 227 | 2418 9 119 18 2 2118
Mar 51 1581 340 13 372 | 2782 10 149 22 0 1704

Apr 103 | 2886 128 21 389 | 4195 17 201 41 0 803

May 113 | 3793 131 48 434 | 3971 12 191 40 0 853

Jun 108 | 4820 142 53 490 | 4282 17 207 | 44 0 963

Jul 97 4656 130 57 480 | 3957 13 193 39 0 959

Aug 102 | 3841 141 50 469 | 4228 17 202 40 0 953

Sep 107 | 3353 122 54 445 | 4261 16 197 41 0 891

Oct 102 | 2297 119 43 361 4150 14 199 41 0 803

Nov 94 1851 123 31 287 | 4141 15 185 39 0 732
Dec 76 1772 123 27 267 | 3836 12 174 | 33 0 1004
Total | 1023 | 33016 | 1941 | 435 | 4461 | 44640 | 162 | 2141 | 416 8 13524

Distributions of truck traffic on roadway lanes and in travel directions are also

required by the MEPDG. The total truck volume and truck volumes on the four lanes at

the 1-74 WIM station are depicted in Figure 6. Based on the data in Figure 6, the lane

distribution factors of truck traffic can be computed as shown in Figure 7. A lane
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distribution factor in Figure 7 is the proportion of the vehicles on the travel lane. For
example, the lane distribution factor of 0.94 for Class 9 vehicles in the east bound
direction means that 94% of the Class 9 vehicles were on the driving lane and 6% of the
vehicles were on the passing lane. Similarly, the directional distribution factors can be
obtained as shown in Figure 8. A directional distribution factor represents the higher
percent of a given vehicle type among the two travel directions of the roadway. For
example, in Figure 8 the directional distribution factor of 0.92 for C7 means that 92% of
the Class 7 vehicles traveled in one direction of the roadway and 8% of the Class 7

vehicles traveled in the opposite direction of the roadway.
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Figure 6: Truck Traffic Distributions on Highway Lanes
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Through processing the WIM data files, the values of average axle weights,
average axle spacing, and average numbers of axle types were obtained as part of the
requirements for the MEPDG. Table 3 presents these values for the I-74 WIM station. In
the table, Wi denotes the average weight of the ith axle of the vehicle class, Sij is the
average spacing between the ith and jth axles, and the low part of the table shows the
average numbers of a particular type of axles (single, tandem, etc.) per vehicle. For
example, from Table 3 the following values can be seen for the vehicles in Class 4:

e They have three axles with average weights of 14.70 kips (W1), 13.88 kips (W2),
and 9.26 kips (W3).

e The average axle spacing is 23.18 inches between the first and second axles (S12)
and 3.70 inches between the second and third axles (S23).

e The average number of single axles is 1.78 per vehicle, and the average number of

tandem axles is 0.22 per vehicle.

The number of average axle weights in the table implies the maximum number of
axles in each class of trucks. As indicated in Table 3, the maximum number of axles of
Class 5 vehicles is two because there are only two weights (W1 and W2), while the

maximum number of axles of Class 13 vehicles is nine because there are nine weights

(W1 through W9).
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Table 3: Average Axle Weight (kips), Axle Spacing (inches), and Number of Axle Types

by Vehicle Classes
Vehicle Classes
Weight C4 C5 C6 Cc7 C8 C9 Cl0 | C11 | C12 | C13
W1 1470 | 533 | 7.78 | 9.44 | 851 | 8.44 | 8.08 | 8.60 | 9.62 | 6.66
W2 13.88 | 5.12 | 6.20 | 7.55 [10.98 | 6.14 | 5.81 | 12.21 | 7.23 | 5.59
W3 9.26 6.20 | 7.51 | 10.03| 6.00 | 5.71 | 12.88 | 7.66 | 5.77
W4 773 | 6.64 | 5.76 | 497 |11.25| 9.71 | 5.19
W5 4.39 5.73 | 490 | 11.31|11.35]| 5.57
W6 5.24 8.74 | 7.08
W7 2.47 6.31
W8 7.79
W9 4.20
Spacing
S12 23.18 | 13.06 | 18.97 | 5.68 | 12.35|13.88 | 13.85 | 10.42 | 12.58 | 9.45
S23 3.70 3.24 | 20.55]|18.41 | 3.93 | 3.64 |17.62| 4.05 | 5.28
S34 3.35 | 14.91 | 27.22 | 19.77 | 7.94 | 17.31 | 7.50
S45 1.85 421 | 5.67 | 17.98 | 8.78 | 10.96
S56 3.50 18.88 | 6.27
S67 1.88 5.62
S78 5.09
S89 3.58
Axle Type
Single 178 | 200 | 1.00 | 1.75 | 236 | 1.27 | 1.05 | 4.74 | 3.72 | 2.10
Tandem | 0.22 1.00 | 0.75 | 0.63 | 1.86 | 1.03 | 0.08 | 1.09 | 1.08
Tridem 0.12 0.92 | 0.03 | 0.02 | 0.45
Quad 0.12 0.02 0.01 | 0.15
Quinate 0.05
Hex 0.01 0.14

The magnitudes of axle loads are a major parameter for pavement design. To

quantify axle loads, the MEPDG requires the axle load distributions for all classes of

trucks. The axle load distributions are the percentages of axle loads in specified weight

intervals, such as zero to three kips, three to four kips, and four to five kips. The axle

load distributions include the axle weights for all-axle loads, single-axle loads, tandem-

axle loads, tridem-axle load, quad-axle loads, quinate-axle loads, and hex-axle loads. It

should be pointed out that the MEPDG does not require the information on axle load
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distributions for quinate-axle and hex-axle loads. However, because the Indiana WIM
data contain the values of quinate-axle and hex-axle loads, it would not require any extra
effort to include these two types of axle loads in the computer program used in this study
to extract and calculate axle load distributions. Thus, it was decided to generate the
distributions for these axle loads as well for possible future use. The values of the all-
axle load and single-load axle load distributions are shown in Tables 4 and 5, respectively.
The values in the two tables are the percentages of the vehicle classes with axle loads
within the given load ranges. For example, in Table 4, the value corresponding to vehicle
class C4 and axle load range 0-3 is 3.82; meaning that 3.82% of Class 4 vehicles have
axle loads less than 3 kips. Similarly, in Table 4 the value 5.37 (corresponding to C4 and
axle load 3-4) indicates that 5.37% of Class 4 vehicles have axle load between 3 kips and
4 kips.

Traffic input information was obtained from the WIM recorded traffic data for all
of the 47 WIM stations. The complete traffic input for the MEPDG at the 1-74 WIM site
is included in the appendix of this report in order to show the format and information on
the truck traffic. Because of the large size of the files, the traffic input information from

other WIM stations is not included in the appendix.
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Table 4: All-Axle Load Distribution (Percentages) for Each Truck Class

Axle Load Range Vehicle Classes

(Kkips) C4 | C5S | C6 | CT | C8 | CO|cC10jC11|C12]C13

0-3 3.82 | 2647 | 42.37 | 20.17 | 18.02 | 28.43 [ 25.52 | 990 | 5.83 | 7.05

3-4 537 | 12.00 | 15.60 | 17.67 | 992 | 21.70 [ 13.50 | 13.65 | 14.10 | 18.47

4-5 7.62 | 72 | 1237 | 1433 | 898 | 1445 [ 11.82 | 1430 | 16.78 | 14.75

5-6 940 | 5.87 | 937 | 10.83 | 7.40 [ 10.30 | 10.58 | 13.42 | 13.37 | 14.67

6-7 1487 | 545 | 633 | 720 | 6.67 [ 692 | 7.68 | 10.45 | 9.83 | 8.52

7-8 1433 | 7.15 | 393 | 627 | 627 | 450 | 583 | 7.87 | 6.60 | 597

8-9 11.18 | 2.88 | 2.77 | 507 | 522 | 290 | 483 | 628 | 532 | 7.83
9-10 7.53 | 243 | 207 | 410 | 437 | 2.02 | 385 | 490 | 4.12 | 455
10-11 6.12 | 1.18 | 1.53 | 2.67 | 342 | 152 | 328 [ 3.55 | 3.03 | 3.30
11-12 412 | 463 | 1.00 [ 1.80 | 3.10 [ 1.15 | 2.72 | 3.05 | 2.43 | 3.48
12-13 218 | 217 | 057 [ 137 | 240 | 0.88 | 1.85 | 2.47 | 198 | 2.12
13-14 2.13 | 2.17 | 0.33 1.37 1.98 | 0.65 1.42 1.68 1.50 | 1.67
14-15 122 | 488 | 027 [ 137 | 1.80 [ 050 | 1.22 | 090 | 1.22 | 147
15-16 1.58 | 1.53 | 013 | 097 | 1.63 | 038 | 095 | 1.17 | 1.13 | 1.00
16-17 132 | 065 | 020 [ 090 | 143 | 030 | 065 | 0.63 | 090 | 1.18
17-18 1.32 1.28 | 0.07 1.10 1.05 | 022 | 0.50 [ 098 | 0.80 [ 0.82
18-19 0.50 | 3.12 | 0.03 | 0.33 1.12 | 020 [ 045 [ 0.77 | 0.68 | 0.42
19-20 005 | 1.85 | 0.03 [ 043 | 097 | 0.17 | 035 | 072 [ 0.67 | 0.25
20-21 092 | 0.00 | 000 [ 040 | 0.88 | 0.13 | 033 | 0.17 | 0.60 | 0.27
21-22 0.80 [ 0.00 | 0.00 [ 0.17 | 0.90 [ 0.10 | 0.27 | 0.30 | 0.55 | 0.37
22-23 0.03 | 0.00 | 0.00 [ 027 | 0.80 | 0.10 | 0.18 | 0.27 | 048 | 0.28
23-24 0.85 | 063 | 0.00 [ 003 | 072 | 0.10 | 0.17 | 027 [ 048 | 0.13
24-25 0.25 | 0.00 | 0.00 [ 0.07 | 072 | 008 | 0.12 | 027 | 047 | 0.22
25-26 0.05 [ 0.00 | 0.00 | 0.03 | 0.55 | 0.08 | 0.12 | 0.17 [ 042 | 0.03
26-27 025 | 0.00 | 0.00 [ 0.13 | 0.53 | 0.08 | 0.08 | 0.05 [ 0.37 | 0.03
27-28 0.00 | 0.00 | 0.00 [ 0.00 | 048 | 0.08 | 0.03 | 0.03 | 038 | 0.02
28-29 0.00 | 0.00 | 0.00 [ 0.03 | 043 | 0.05 | 0.03 | 0.05 | 035 | 0.02
29-30 0.00 1.27 | 0.00 | 0.00 | 0.50 | 0.05 [ 0.03 | 0.03 | 035 | 0.07
30-31 0.00 | 0.00 | 0.00 [ 0.07 | 045 | 0.05 | 0.03 | 0.08 | 0.33 | 0.00
31-32 0.00 | 0.00 | 0.00 [ 0.00 | 045 | 0.05 | 0.00 | 0.10 | 0.32 | 0.00
32-33 0.00 | 0.00 | 0.00 | 0.00 | 038 | 0.05 | 0.02 | 0.00 | 0.30 | 0.00
33-34 0.00 [ 0.00 | 0.00 [ 0.00 | 038 | 0.03 | 0.02 | 0.00 | 0.27 | 0.00
34-35 0.00 | 1.85 | 0.00 [ 0.00 | 040 | 0.03 | 0.00 | 0.00 | 0.25 | 0.00
35-36 0.00 | 0.00 | 0.00 [ 0.00 | 030 | 0.03 | 0.03 | 0.00 | 0.25 | 0.00
36-37 0.00 | 0.00 | 0.00 | 0.00 | 035 ] 003 | 0.02 | 0.03 | 0.22 | 0.00
37-38 0.00 1.27 | 0.00 | 0.00 | 035 | 0.03 [ 0.00 | 0.02 | 0.22 | 0.00
38-39 0.00 | 0.00 | 0.00 [ 0.00 | 035 ] 0.02 | 0.00 | 0.00 | 022 | 0.00
39-40 0.00 | 0.00 | 0.00 [ 0.00 | 033 | 0.03 | 0.00 | 0.02 | 0.18 | 0.00
40-41 123 | 1.27 | 0.00 [ 0.10 | 252 | 028 | 0.12 | 022 | 148 | 0.02
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Table 5: Single-Axle Load Distribution (Percentages) for Each Truck Class
Axle Load Range Vehicle Classes

(kips) C4 | C5 | C6 | C7 | C8 | C9 Cl10|C11|C12]|C13
0-3 0.59 | 51.34 | 14.72 | 2.07 5.61 3.52 2.31 0.14 0.23 0.20
3-4 0.38 | 20.56 | 3.28 430 [ 12.30 [ 3.34 2.17 4.30 4.08 7.08
4-5 047 | 1023 | 4.11 348 | 10.63 | 3.79 3.15 6.14 6.09 9.96
5-6 0.89 5.09 4.65 3.44 9.59 4.60 4.61 7.67 8.62 9.76
6-7 8.06 3.22 5.25 3.42 9.13 5.92 7.22 8.84 9.55 9.18
7-8 1435 | 2.27 6.81 4.00 9.24 8.29 | 10.22 | 10.38 | 11.30 | 9.07
8-9 1431 | 1.69 9.18 4.83 8.52 | 11.77 | 14.19 | 11.28 | 12.01 | 9.43
9-10 12.70 | 1.25 | 11.13 | 5.96 7.00 | 1583 | 17.16 | 1033 | 11.71 | 9.59
10-11 10.64 | 0.90 | 10.00 | 6.34 5.27 |1 15.00 | 15.03 | 8.87 9.89 9.43
11-12 8.58 0.64 7.18 7.19 388 | 10.13 ] 10.29 | 6.93 7.74 6.24
12-13 6.45 0.46 4.95 7.59 2.93 5.77 5.41 5.45 5.50 4.64
13-14 4.74 0.34 3.42 7.78 2.32 3.00 2.42 4.60 4.00 3.24
14-15 3.54 0.27 2.56 7.16 1.93 2.04 1.55 3.69 2.72 2.05
15-16 2.64 0.22 2.03 6.75 1.63 1.68 1.09 2.95 1.90 1.81
16-17 2.07 0.18 1.75 5.92 1.33 1.40 0.79 2.27 1.31 2.13
17-18 1.59 0.15 1.52 5.48 1.12 1.09 0.58 1.64 0.99 2.18
18-19 1.25 0.13 1.29 4.35 0.92 0.79 0.43 1.18 0.65 1.35
19-20 0.97 0.11 1.04 3.00 0.75 0.54 0.30 0.84 0.49 0.54
20-21 0.87 0.10 0.90 1.74 0.64 0.37 0.23 0.59 0.27 0.43
21-22 0.65 0.09 0.73 1.11 0.52 0.25 0.17 0.38 0.25 0.32
22-23 0.50 0.08 0.61 0.72 0.45 0.18 0.12 0.26 0.13 0.29
23-24 043 0.07 0.51 0.61 0.39 0.13 0.11 0.17 0.10 0.21
24-25 0.38 0.07 0.41 0.42 0.35 0.10 0.08 0.13 0.08 0.17
25-26 0.31 0.06 0.34 0.35 0.31 0.08 0.07 0.11 0.05 0.14
26-27 0.25 0.06 0.29 0.27 0.28 0.07 0.05 0.08 0.04 0.07
27-28 0.25 0.05 0.24 0.21 0.26 0.05 0.05 0.09 0.04 0.08
28-29 0.20 0.05 0.21 0.28 0.24 0.04 0.04 0.08 0.04 0.09
29-30 0.22 0.05 0.17 0.17 0.22 0.04 0.03 0.07 0.03 0.05
30-31 0.14 0.04 0.14 0.14 0.21 0.03 0.03 0.04 0.03 0.05
31-32 0.16 0.04 0.11 0.16 0.19 0.02 0.02 0.05 0.02 0.05
32-33 0.18 0.03 0.08 0.13 0.18 0.02 0.02 0.04 0.02 0.03
33-34 0.11 0.03 0.06 0.13 0.17 0.02 0.01 0.05 0.02 0.03
34-35 0.12 0.03 0.05 0.08 0.16 0.02 0.01 0.03 0.02 0.02
35-36 0.11 0.02 0.04 0.07 0.15 0.01 0.01 0.04 0.02 0.01
36-37 0.10 0.01 0.04 0.06 0.13 0.01 0.01 0.03 0.02 0.02
37-38 0.10 0.01 0.03 0.09 0.12 0.01 0.01 0.03 0.01 0.01
38-39 0.12 0.01 0.03 0.05 0.12 0.01 0.00 0.03 0.01 0.01
39-40 0.10 0.01 0.03 0.04 0.11 0.01 0.01 0.02 0.01 0.01
40-41 0.54 0.06 0.15 0.15 0.72 0.05 0.03 0.17 0.03 0.03
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CHAPTER 4: EFFECTS OF UNCLASSIFIED VEHICLES

As previously mentioned, the WIM data contained vehicles that could not be
classified by the WIM device. The possible reasons for this include vehicle tailgating,
lane changing, irregular vehicle size, and WIM equipment problems. These unclassified
vehicles could be any types of vehicles, including passenger cars, buses, and trucks. How
to deal with these vehicles will undoubtedly affect pavement designs because it will
result in different truck traffic inputs. For instance, if all of the unclassified vehicles are
treated as trucks, the total axle loads will be overestimated. On the other hand, if they are
not included in the truck traffic, the total axle loads will be underestimated. One
reasonable way to deal with this is to assign them to different vehicle groups, but to do
this one needs to know the proportions of the vehicle types in the unclassified vehicles.
However, the proportions are currently not available.

In order to analyze the effects of unclassified vehicles, various amounts of
unclassified vehicle volumes were added to the total truck volumes of the five-year WIM
data to examine the patterns of the truck traffic. If all of the unclassified vehicles are
disregarded, then the total truck volumes and the truck volumes of individual types of
trucks are as shown in Figure 9. The regression equation of the total AADTT values is
also shown in the figure. If 100% of the unclassified vehicles are vehicles, the total
AADTT will be increased by the amount of unclassified vehicles (C0). Similarly,
analysis can be done by adding 50% and 25% of the unclassified vehicles to the truck
volumes. The truck traffic patterns and regression equations with 100%, 50%, and 25%

of included unclassified vehicles are plotted in Figures 10, 11, and 12, respectively.
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It is apparent that the truck volumes, patterns, and regression equations are all
significantly different when different amounts of unclassified vehicles are included in the
truck traffic. Consequently, pavement designs with these different truck volumes will
certainly be very different. Therefore, it is essential to obtain more accurate estimation of
proportions of different types of vehicles in the unclassified vehicle category. To
determine the components of unclassified vehicles, research is being undertaken using
image processing techniques to study the patterns of unclassified vehicles recorded by
WIM devices. It is hoped that the study will yield useful results to improve the truck

traffic inputs for the MEPDG.
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Figure 9: Average Daily Truck Traffic (no unclassified vehicles)
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Figure 11: Average Daily Truck Traffic (including 50% unclassified vehicles)
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Figure 12: Average Daily Truck Traffic (including 25% unclassified vehicles)
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CHAPTER 5: GEOSTATISTICAL ANALYSIS OF INDIANA
TRAFFIC DISTRIBUTIONS

In addition to the WIM data analysis that resulted in the required truck traffic
input for the MEPDG, the traffic volumes recorded by INDOT were analyzed using
ArcGIS, a powerful GIS software, to examine the spatial distribution of traffic volumes
over Indiana. The spatial distributions of traffic volumes were obtained to provide
INDOT with (1) a 3-dementional perspective of traffic volumes over entire Indiana; and
(2) a basis for determining appropriate WIM locations. The Indiana highway GIS map
was provided by the INDOT Traffic Monitoring Section. The INDOT GIS map contains
Indiana’s highway systems with traffic volumes at the traffic monitoring stations.
ArcGIS 9.2 (ESRI 2007) was used in the analysis of the spatial distributions of traffic
volumes. ArcGIS 9.2 applies the interpolation techniques in its Geostatistical Analyst.
Geostatistical Analyst uses sample points taken at different locations in a landscape and
creates (interpolates) a continuous surface. The sample points in this study are the traffic
volumes at the INDOT traffic monitoring stations. Geostatistical Analyst derives a
surface using the traffic volume values from the traffic monitoring stations to predict
values for each location in the landscape. Geostatistical techniques rely on both
statistical and mathematical methods that can be used to create surfaces and assess the
uncertainty of the predictions. Geostatistical Analyst, in addition to providing various
interpolation techniques, also provides many supporting tools. For example, prior to
mapping, Exploratory Spatial Data Analysis (ESDA) Tools can be used to assess the

statistical properties of the data. After exploring the data, one can create a variety of
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output map types (prediction, error of prediction, probability and quantile) using various

geostatistical algorithms and associated tools.

5.1: Exploring AADT Data

The traffic volume data contained in the INDOT GIS map are the average annual
daily traffic (AADT) in 2004. In order to conduct geostatistical analysis, the traffic data
should be examined to determine their characteristics. The geostatistical methods that are
used to generate a 3-D surface give the best results if the data is normally distributed (a
bell-shaped curve). If the data is skewed (lopsided), one may choose to transform the data
to make it normal. Thus, it is important to understand the distribution of the AADT data
before conducting geostatistical analysis. The Histogram tool in ArcGIS plots frequency
histograms for the attributes in the dataset. Therefore, the histograms of INDOT traffic
volume data were plotted to examine if the AADT data satisfy the normal distribution
requirement. The Indiana AADT dataset contains a great deal of data points. It was
found that the large amount of AADT data often overloaded the ArcGIS software and
caused operational problems for the software. To reduce the amount of data for ArcGIS
to run properly, only the AADT at the middle point of a segment of highway was selected
to represent the AADT of the highway. This is reasonable because the AADT values are

generally similar along a section of highway.

5.1.1: Histogram

The Histogram tool in ESDA provides a univariate (one-variable) description of

the data. The tool displays the frequency distribution for the dataset of interest and
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calculates summary statistics that describe the distribution’s location, spread, and shape.

The frequency distribution is a bar graph that displays how often observed values fall

within certain intervals or classes. The number of classes of equal width must be

specified first for the histogram. The relative proportion of data that falls in each class is

represented by the height of each bar. The important features of a distribution can be

summarized by the following summary statistics that describe its location, spread, and

shape (ESRI 2007).

Measures of location: Measures of location provide you with an idea of where
the center and other parts of the distribution lie. The mean is the arithmetic
average of the data. The mean provides a measure of the center of the distribution.
The median value corresponds to a cumulative proportion of 0.5. If the data was
arranged in increasing order, 50 percent of the values would lie below the median,
and 50 percent of the values would lie above the median. The median provides
another measure of the center of the distribution. The 1st and 3rd quartiles
correspond to the cumulative proportion of 0.25 and 0.75, respectively. If the data
was arranged in increasing order, 25 percent of the values would lie below the
first quartile, and 25 percent of the values would lie above the third quartile. The
Ist and 3rd quartiles are special cases of quantiles.

Measures of spread: The spread of points around the mean value is another
characteristic of the displayed frequency distribution. The variance of the data is
the average squared deviation of all values from the mean. The units are the
square of the units of the original measurements and, because it involves squared

differences, the calculated variance is sensitive to unusually high or low values.
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The standard deviation is the square root of the variance. It describes the spread of
the data about the mean in the same units as the original measurements. The
smaller the variance and standard deviation, the tighter the cluster of
measurements about the mean value.

e Measures of shape: The frequency distribution is also characterized by its shape.
The coefficient of skewness is a measure of the symmetry of a distribution. For
symmetric distributions, the coefficient of skewness is zero. If a distribution has a
long right tail of large values, it is positively skewed, and if it has a long left tail
of small values, it is negatively skewed. The mean is larger than the median for
positively skewed distributions and vice versa for negatively skewed distributions.
The kurtosis is based on the size of the tails of a distribution and provides a
measure of how likely the distribution will produce outliers. The kurtosis of a
normal distribution is three. Distributions with relatively thick tails are
“leptokurtic” and have kurtosis greater than three. Distributions with relatively

thin tails are “platykurtic” and have a kurtosis less than three.

The histogram of INDOT AADT data generated by ArcGIS is shown in Figure 13. The
AADT distribution has a skewness of 4.7651 and a kurtosis of 35.47. Moreover, the
distribution is obviously not a symmetric bell shaped distribution. Therefore, the AADT

data are not normally distributed.
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Figure 13: Histogram of INDOT AADT

5.1.2: Normal QQ Plot

To further examine the pattern of the AADT distribution, the Normal QQ Plot to
analyze the AADT data. The QQ Plot is used to compare the distribution of the data to a
standard normal distribution. The closer the points are to creating a straight line, the
closer the distribution is to being normally distributed. Figure 14 shows the QQ Plot of
the AADT data. As can be seen, the right hand side of the AADT line is far from the
normal distribution straight line. This indicates again that the AADT data is not normally

distributed.
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Figure 14: QQ Plot of INDOT AADT

5.1.3: Data Transformation

Some geostatistical methods are critically dependent on the data coming from a
normal distribution. In statistics, the power transform is a family of transformations that
map data from one space to another using power functions. This data processing
technique is used to reduce data variation, make the data more normal distribution-like,
and improve the correlation between variables and for other data stabilization procedures.
Through data transformations, an original dataset that is not normally distributed can be
transformed into a dataset that is normally distributed. Two types of data transformations
were performed in this study in order to make the INDOT AADT data more normally
distributed. They are log transformation and Box-Cox transformation (ESRI 2007). In

ArcGIS, the log transformation is expressed as:
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Y (s)=In(Z(s)), for Z(s)>0 (2)

where Z(s) is the original dataset and Y(s) is the transformed dataset.

The Box-Cox transformation (Box & Cox, 1964, and Myers and Montgomery, 2002) is a
commonly used power transformation method. In ArcGIS, the Box—Cox transformation

is expressed as:

Y (3)=(Z(s)*-1)/7, for A #0. (3)

The log transformation is actually a special case of the Box—Cox transformation when A =
0. The AADT was transformed through log transformation. For each AADT value, the
transformed data is In(AADT). That is, the transformed data is the natural logarithm of
the original data. The histogram of the log transformed data is shown in Figure 15. As
can be seen, the shape of the new histogram shown in Figure 15 is more normally
distributed than the one shown in Figure 13. The new kurtosis is 5.844 and the skewness
is -0.5568, which are much improved compared to the values in Figure 13 (kurtosis of
35.47 and skewness of 4.7651). The improved normal distribution is also illustrated in
the Normal QQ Plot in Figure 16. As shown in the Figure 16, the transformed data is
almost on the normal distribution line with some exceptions at the two ends. This
indicates that the distribution of the log transformed data is very close to the normal

distribution.
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The Box-Cox transformation, Y(s)Z(Z(s)x-l)/k, for A #0, is a distribution with a

power parameter A. For a given dataset, the value of the power parameter, A, must be
determined so that the transformed dataset will have a highest degree of normal
distribution. Using the Box-Cox data transformation functions in ArcGIS, the AADT
data were transformed with different A values. For the selected A values, the
corresponding values of kurtosis and skewness can be compared to determine the
distributions of the transformed datasets. Figures 17 through 20 are the histograms of the

transformed AADT data with different A values.
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Figure 15: Histogram of Log Transformed AADT
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Figure 17: Histogram of the Box-Cox Transformed AADT (A=0.08)
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Figure 18: Histogram of the Box-Cox Transformed AADT (A=0.10)
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Figure 19: Histogram of the Box-Cox Transformed AADT (A=0.12)
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Figure 20: Histogram of the Box-Cox Transformed AADT (A=0.14)

The histograms show that values of skewness and kurtosis vary with A values.

The values of skewness and kurtosis are listed in Table 6 for A values ranging from 0.080

to 0.145.

symmetry of a distribution. For a normal distribution, the histogram should be symmetric

and the coefficient of skewness should be 0. If a distribution has a long right tail of large

As previously discussed, the coefficient of skewness is a measure of the

values, it is positively skewed, and if it has a long left tail of small values, it is negatively

skewed. The kurtosis is based on the size of the tails of a distribution and provides a

measure of how likely the distribution will produce outliers. The kurtosis of a normal

distribution should be 3.

Table 6: Skewness and Kurtosis of Transformed AADT for Different A values

A 0.080 | 0.085 | 0.090 | 0.095 | 0.100 | 0.105 | 0.110 | 0.115 | 0.120 | 0.125 | 0.130 | 0.135 | 0.140 | 0.145
Kurtosis | 3.8494 | 3.8009 [ 3.7572 | 3.7186 | 3.6850 | 3.6560 | 3.6313 | 3.6107 | 3.5939 [ 3.5808 | 3.5711 | 3.5647 [ 3.5613 | 3.5610
Skewness | -0.0421 | -0.0159 | 0.0098 | 0.0350 | 0.0599 | 0.0844 | 0.1085 | 0.1323 [ 0.1558 | 0.1790 | 0.2019 | 0.2246 | 0.2471 | 0.2694
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The log transformed AADT has a skewness of -0.5568 and a kurtosis of 5.8444 as
shown in Figure 15. The values of kurtosis and skewness for the Box-Cox transformed
AADT shown in Table 6 are improved compared to the log transformed AADT in terms
of normal distribution, because the kurtosis values are closer to 3 and the skewness
values are closer to 0. Among the many A values, it was desirable to choose a A value
that would generate the transformation data with highest degree of normal distribution.
The relationship between skewness and A and the relationship between kurtosis and A
were obtained through regressions as shown in Figure 21 and Figure 22, respectively.

The regression equations of the relationships are expressed as the following:

Skewness = 4.7816 A - 0.4201 4)
Kurtosis = 80.239 A% - 22.396 A + 5.1244 (5)
0.30

0.25 A
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0.20 R’ =0.9994
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Figure 21: Relationship between Skewness and A
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Figure 22: Relationship between Kurtosis and A

From Equation 4, it can be obtained that when A is 0.0878576 the skewness is 0.
The histogram of the transformed AADT with a A value of 0.0878576 is presented in
Figure 23. From Equation 5, the minimum kurtosis can be computed as 3.561629 when A
is 0.139558. The histogram corresponding to A of 0.139558 is shown in Figure 24. It
should be pointed out that the values of skewness and kurtosis are slightly different from
the expected values from the regression equations. This is because regression values are
usually not a perfect fit of the data used in regression.

Since a true normal distribution has a skewness of 0 and a kurtosis of 3, a proper
value of A should be chosen so that the transformed data would be as normally distributed
as possible. Such a A should yield a Box-Cox transformed dataset with reasonably

balanced skewness and kurtosis. In order to identify a good A value, the QQ Plots
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(Figures 25 through 30) were used to examine the degrees of normal distributions of the
transformed datasets. Based on these QQ Plots, it can be seen that the Box-Cox
transformation with a A of 0.0878576 generated the data points that are closest to the
straight line of the normal distribution. Therefore, in addition to the log transformation,
the Box-Cox transformation of the AADT with a A of 0.0878576 was also selected for

geostatistical analysis in this study.
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Figure 23: Histogram of Transformed AADT (A = 0.0878576)
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Figure 24: Histogram of Transformed AADT (A = 0.139558)
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Figure 25: QQ Plot of Transformed AADT (A = 0.878576)
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Figure 26: QQ Plot of Transformed AADT (A =0.10)
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Figure 27: QQ Plot of Transformed AADT (A =0.11)
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Figure 28: QQ Plot of Transformed AADT (A =0.12)
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Figure 29: QQ Plot of Transformed AADT (A =0.13)
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Figure 30: QQ Plot of Transformed AADT (A = 0.1396)
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5.2: Variograms

One of the most important concepts in geostatistics is called variogram. If the
measurement of a sample at location x is Z(x) and the measurement of another sample at

location x+h, then the variogram (Clark, 1979), 2y(h), is defined as:

2¢(h) =+ T (200~ Z(x + )] @)
The term y(h) is called semi-variogram:

1) = T (200~ Z(x + )] )

The distance between the two samples, h, is called lag. As h changes, y changes. The
relationship between the semi-variogram y and h are shown in Figure 31. The figure
shows that the value of y at which the graph levels off is called the sill of the semi-
variogram; the h value corresponding to the start of sill is called range; and the value of y
at h=0 is called nugget. The partial sill is the sill minus the nugget. Sample locations
separated by distances closer than the range are spatially autocorrelated, whereas
locations farther apart than the range are not. Theoretically, at zero separation distance (h
= 0), the semi-variogram value is zero. However, at an infinitesimally small separation
distance, the semi-variogram often exhibits a nugget effect, which is some value greater
than zero. The nugget effect can be attributed to measurement errors or spatial sources of
variation at distances smaller than the sampling interval (or both) (ESRI 2007). An ideal
shape for a semi-variogram should have a nugget value of 0. The ideal shape for the

semi-variogram is to geostatistics as the normal distribution is to statistics. There are
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many mathematical models for semi-variograms. The commonly used models are listed

in Table 7

Semivariogram, Y (h)

A
‘ Nugget
4

Range

Lag distance, h

Figure 31: Semi-Variogram graph
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Table 7: Commonly Used Semi-Variogram Models

Model v(h) h value
c[& 1—(E)z+£arcsinE 0<h<a
Circular Model ma a T a
c h>a
C[&—l(kf] 0<h<a
Spherical Model 2a_2 a
c h>a
C[@_é(hf +§(E)5] 0<h<a
Penta-spherical Model 8a 4 a 8 a
c h>a
. h
Exponential Model c[l—exp(——)] h>0
a
h2
Gaussian Model c[l—exp(——)] h>0
a
h h
K-Bessel Model c[l- 3 K, (g)] h>0
Linear Model with No Still ch h>0
Power Model ch® h>0, 0<a<2
0 h=0
Nugget Model
c h>0
C(E) 0<h<a
Linear Model with Still a
c h>a
0 h=0
Logarithmic Model
c[log(h +a)] h>0
2
Periodic Model cll- cos(Tﬂh)] h>0

When modeling the semi-variogram, the autocorrelation can be examined and

quantified. In geostatistics this is called spatial modeling, also known as structural
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analysis or variography. In spatial modeling of the semi-variogram, the empirical semi-

variograms are computed using the following formula:
1 2
v(h) = EZ[Z(X) —Z(x+h)] (6)

A graph based on the calculated values from Equation 6 is called the semi-variogram
cloud. It shows the empirical semi-variogram for all pairs of locations within a dataset
and plots them as a function of the distance between the two locations. The semi-
variogram cloud can be used to examine the local characteristics of spatial
autocorrelation within a dataset and look for local outliers. If all pairs are plotted on a
graph, the number of pairs will become unmanageable. Instead of plotting each pair, the
pairs are grouped into lag bins. Lag pins are the specified ranges of lag (h) values. For
example, the average semi-variograms can be computed for all pairs of points that are
within 3 miles apart. The values in the semi-variogram cloud are put into bins based on
the direction and distance between a pair of locations. These bin values are then averaged
and smoothed to produce a surface of the semi-variogram. The extent of the semi-
variogram surface is controlled by selected lag size and number of lags.

The INDOT AADT data is depicted in the three dimensional graph in Figure 32.
It is desirable to utilize geostatistics to express the AADT distribution mathematically.
Figure 33 shows the semi-variogram cloud of the original INDOT AADT. Similarly,
Figure 34 shows the semi-variogram cloud of the transformed INDOT AADT with the
Box-Cox method. Both cloud graphs in Figures 33 and 34 do not show clear patterns of
relationships between the semi-variograms and the lag distances. Therefore, it is needed

to select a semi-variogram model that will best fit the INDOT AADT data.
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Figure 32: Three Dimensional Graph of INDOT AADT
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Figure 34: Semi-Variogram Cloud of Box-Cox Transformed INDOT AADT

5.3: Geostatistical Modeling

5.3.1: Kriging Methods:

In this study, it is desired to fit the best model of semi-variogram functions to the
INDOT AADT measurements. The model will then be used to predict the AADT values
at the locations without AADT measurements in Indiana. Semi-variogram modeling is a
key step between spatial description and spatial prediction. A powerful method of
geostatistical modeling is called kriging. Kriging is an advanced geostatistical procedure
that generates an estimated surface from a scattered set of points with z values. For the
AADT data, the x and y values represent locations of the data points and z values are the

observed AADT at these locations. Kriging involves an interactive investigation of the
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spatial behavior of the phenomenon represented by the z values before the user selects the
best estimation method for generating the output surface.

Kriging offers two types of surface estimators: Ordinary Kriging and Universal
Kriging. Ordinary Kriging assumes the constant mean is unknown. Universal Kriging
assumes that there is an overriding trend in the data. Universal Kriging should only be
used when there is a trend in the data (ESRI 2007). As previously discussed, the INDOT
AADT data do not show any trend, thus Universal Kriging method is not suitable.
Ordinary Kriging method was used in this study to analyze INDOT AADT data. Also as
previously discussed, the original AADT data are not normally distributed, but can be
transformed into near normal distribution data through log transformation and Box-Cox
transformation. Therefore, the log and Box-Cox transformed AADT data were used in
Ordinary Kriging modeling.

Kriging assumes that the distance or direction between sample points reflects a
spatial correlation that can be used to explain variations in the surface. Kriging fits a
mathematical function to a specified number of points, or all points within a specified
radius, to determine the output value for each location. Kriging is a multi-step process; it
includes exploratory statistical analysis of the data, variogram modeling, creating the
surface, and (optionally) exploring a variance surface (ESRI 2007). The general formula

for Kriging interpolator is formed as a weighted sum of the data:

_ N

Z(Sj) = zxiz(si) (7)
i=1

where:
Z(s ;) = the predicted value at location j.

7(s;) = the measured value at location 1.
Ai = an unknown weight for the measured value at location 1.
N = the number of measured values.
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The Geostatistical Analyst in ArcGIS (ESRI 2007) provides the following 11

Ordinary Kriging functions to model the empirical semi-variogram:

e Circular

e Spherical

o Tetraspherical

 Pentaspherical

» Exponential

o Gaussian

» Rational Quadratic

o Hole Effect

o K-Bessel

« J-Bessel

« Stable
The selected model influences the prediction of the unknown values, particularly when
the shape of the curve near the origin differs significantly. The steeper the curve near the
origin, the more influence the closest neighbors will have on the prediction. As a result,
the output surface will be less smooth. Each model is designed to fit different types of
phenomena more accurately.

In this study, ArcGIS was used for the geostatistical modeling. The Ordinary
Kriging was used to process the log and Box-Cox transformed AADT data. All of the 11
functions in the ArcGIS Geostatistical Analyst (ESRI 2007) were used to develop the
prediction models. Then the Prediction Errors from the generated models were compared
to choose a best model. A good model should have a Mean Standardized value close to 0,
a small Root-Mean-Square value, an Average Mean-Error value close to the Root-Mean-
Square value, and a Root-Mean-Square Standardized value close to 1.

Using log transformed AADT, the prediction errors of the 11 models are shown in

Figures 35 through 45. These figures are from the ArcGIS’s Geostatistical Analyst
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functions. The prediction errors in the figures are listed in Table 8 to compare the models.
As indicated in the table, the Exponential model has a Mean Standardized value closest to
0, a smallest Root-Mean-Square value, and a Root-Mean-Square Standardized value
closest to 1. In addition, the difference between the Average Standard Error and the
Root-Mean-Square of the Exponential model are the smallest among the 11 models.

Therefore, with log transformed AADT, the Exponential model is the best one among the

11 models.
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L Figure 35: Prediction Errors of Circular Model with Log Transformed AADT )
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Figure 36: Prediction Errors of Spherical Model with Log Transformed AADT
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Figure 37: Prediction Errors of Tetraspherical Model with Log Transformed AADT
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Figure 38: Prediction Errors of Pentaspherical Model with Log Transformed AADT
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Figure 39: Prediction Errors of Exponential Model with Log Transformed AADT
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Figure 40: Prediction Errors of Gaussian Model with Log Transformed AADT
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Figure 41: Prediction Errors of Rational Quadratic Model with Log Transformed AADT
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Figure 42: Prediction Errors of Hole Effect Model with Log Transformed AADT
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. Figure 43: Prediction Errors of K-Bessel Model with Log Transformed AADT ‘
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Figure 44: Prediction Errors of J-Bessel Model with Log Transformed AADT
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-Figure 45: Prediction Errors of Stable Model with Log Transformed AADT
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Table 8: Prediction Errors of Different Models with Log Transformed AADT

Root-
Model Mean Mean- Starl?(;,;rrc?%iror Stali\c/{;:(?ized Rogtti\lfgjrrllisz(elgare
Square
Circular 1592 12980 27110 0.06078 0.5424
Spherical 1570 12970 27060 0.05992 0.5428
Tetraspherical | 1545 12960 27000 0.05896 0.5434
Pentaspherical | 1531 12960 26970 0.05844 0.5437
Exponential 1256 12880 26250 0.04923 0.5495
Gaussian 1636 13000 27300 0.06215 0.5427
Rational 1501 | 12960 26980 0.05668 0.5436
Quadratic
Hole Effect 1650 13010 27280 0.06269 0.5459
K-Bessel 1849 13060 27710 0.07069 0.5361
J-Bessel 1747 13030 27190 0.06734 0.5485
Stable 1849 13060 27700 0.07082 0.5366

Similarly, the prediction errors of the 11 models with Box-Cox transformed

AADT were generated using the ArcGIS’s Geostatistical Analyst functions. The results

are shown in Figures 46 through 56. The prediction errors in the figures are listed in

Table 9 to compare the models. As can be seen in the table, the Rational Quadratic

model has a Mean Standardized value closest to 0; the Exponential model has a smallest

Root-Mean-Square value; and the Stable model has a Root-Mean-Square Standardized

value closest to 1 and a smallest difference between the Average Standard Error and the

Root-Mean-Square. Therefore, with the Box-Cox (A=0.08786) transformed AADT, the

Rational Quadratic model, the Exponential model and the Stable model can be used for

AADT predictions.

58




Geostatistical Wizard: Step 5 of 5 - Cross Walidation @

Predicted | Error | Standardized Error | QOPlak |

i
=)
-
-
L]
-
[1]
]
o
o
M
By
Regression Function: 0,244 * x + 6762637
Prediction errars e . v " d Ted
Mean: 08,7 nclude e asUr e Predicte -
Ege e S 12740 Yes 410830 4199700 3609 29554
fwverage Standard Errar: 8637 Yes 416420 4193400 4147 E047.6
Mean Standardized: 0.03362 Yes 416830 4193200 451 7521.5
Rook-Mean-Square standardized: 1,538 Yes 4165860 4195100 1063 8333.5
Yes 416940 4196500 3781 7044.6
Samples: 7933 of 7933 Yes 417510 4193400 7452 5710.3
Yes 417560 4190400 291 E054.6 Al
e 41770 d21A1nn i) dE17 2
4 1 3

Save cross walidation... | ¢ Back ‘ | Finizh | Cancel |

Figure 46: Prediction Errors of Circular Model with Box-Cox Transformed AADT
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Figure 47: Prediction Errors of Spherical Model with Box-Cox Transformed AADT
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Figure 48: Prediction Errors of Tetraspherical Model with Box-Cox Transformed AADT
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Figure 49: Prediction Errors of Pentaspherical Model with Box-Cox Transformed AADT
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Figure 50: Prediction Errors of Exponential Model with Box-Cox Transformed AADT
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Figure 51: Prediction Errors of Gaussian Model with Box-Cox Transformed AADT
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Figure 52: Prediction Errors of Rational Quadratic Model with Box-Cox Transformed
AADT
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Figure 53: Prediction Errors of Hole Effect Model with Box-Cox Transformed AADT
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Figure 54: Prediction Errors of K-Bessel Model with Box-Cox Transformed AADT
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Figure 55: Prediction Errors of J-Bessel Model with Box-Cox Transformed AADT
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Figure 56: Prediction Errors of Stable Model with Box-Cox Transformed AADT
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Table 9: Prediction Errors of Different Models with Box-Cox Transformed AADT

(A=0.08786)
Root- Aver Mean Root-Mean- I
Model Mean Mean- S‘[an(;/aercil z(Igie;ror Stand:?dized ogttangzrdisz(elga )
Square
Circular 208.70 12730 8637 0.03362 1.538
Spherical 193.40 12730 8606 0.03128 1.543
Tetraspherical | 177.90 12730 8575 0.02894 1.547
Pentaspherical | 168.30 12730 8555 0.02747 1.549
Exponential 60.76 12710 8283 0.01090 1.581
Gaussian 204.90 12730 8655 0.03336 1.537
Rational 42.34 12720 8227 0.006769 1.596
Quadratic
Hole Effect | 182.80 12740 8644 0.02934 1.546
K-Bessel 292.70 12740 8795 0.04598 1.517
J-Bessel 193.60 12740 8665 0.03097 1.543
Stable 299.30 12740 8806 0.04695 1.515

5.3.2: Other Modeling Methods:

In addition to Kriging methods, there exist some other spatial interpolation
methods for prediction of attribute values at unsampled locations. Under ArcGIS’s
Geostatistical Analyst, the interpolation methods include Inverse Distance Weighing
(IDW), Global Polynomial Interpolation (GPI), Local Polynomial Interpolation (LPI),
Radial Basis Functions (RBF), and Inverse Multiquadric Spline (IMS).

Inverse Distance Weighing interpolation explicitly implements the assumption
that things that are close to one another are more alike than those that are farther apart. To
predict a value for any unmeasured location, Inverse Distance Weighing will use the
measured values surrounding the prediction location. Those measured values closest to

the prediction location will have more influence on the predicted value than those farther
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away. Thus, Inverse Distance Weighing assumes that each measured point has a local
influence that diminishes with distance. It weights the points closer to the prediction
location greater than those farther away. Weights are proportional to the inverse distance
raised to the power value p. As a result, as the distance increases, the weights decrease
rapidly. How fast the weights decrease is dependent on the value for p. If p = 0, there is
no decrease with distance, and because each weight A; will be the same, the prediction
will be the mean of all the measured values. As p increases, the weights for distant points
decrease rapidly. If the p value is very high, only the immediate few surrounding points
will influence the prediction. Geostatistical Analyst in ArcGIS uses power functions

greater than 1 (ESRI 2007).

An example of Inverse Distance Weighing using ArcGIS’s Geostatistical Analyst
is depicted in Figures 57 through 60. The example shows the steps and results for

predicting an AADT at a given location.
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" Geostatistical Wizard: Choose Input Data and Method

Methods: Dataset 1 | ‘Walidation I

MC Ll
Global Polynomial Interpolation Input data: I@ AADT_shp Events LI Dql
Local Polynomial Interpolation
Radial Basis Functions bka: AADT -
Kriging Attribuke: I _I
Cokriging  Field: IShape LI

¥ Fiedd: |shape

[ Use NODATA value:

About Inverse Distance Weighting

Inverse Distance \Weighting (IDW) is a quick deterministic inkerpolator that is exact, There are very Few decisions to
make regarding model parameters. It can be a good way to take a first look at aninterpolated surface. Howewer,
there is no assessment of predickion errors, and IDW can produce "bulls eves" around data locations. There are no
assumptions required of the data.

| < Back I Meut > I Finizh | Cancel |

Figure 57: AADT Prediction Using Inverse Distance Weighing Method — Data Input

" Geostatistical Wizard - IDW Interpolation: Step 1 of 2 - Set Parameters

Optimize power value | Power: |2
|F| @ a @ o ‘ Symbal size: IE Standard |Smnoth|
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2 Sector type: I@ @I@I@I
Ellipse

angle: 0.0 =

Major semiaxis: IISDSS?
Minar semiaxis: |13053?

Anisotropy Factor: 1
Identify
E 553531.347368421
b 4353947.80701754
Meighbars 15
Eskimated valus g519,04
Preview type: INeighbors ;I Show weights == I

| < Back I MHext > I Finizh | Cancel |

Figure 58: AADT Prediction Using Inverse Distance Weighing Method — Set Parameters
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Figure 59: Inverse Distance Weighing AADT Prediction Results
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Figure 60: Inverse Distance Weighing AADT Prediction Errors
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Global Polynomial interpolation fits a smooth surface that is defined by a
mathematical function (a polynomial) to the input sample points. Global interpolation is
used for fitting a surface to the sample points when the surface varies slowly from region
to region over the area of interest. Since the INDOT AADT varies greatly from region to
region as indicated in Figure 32, it was determined that this method was not suitable for
the AADT analysis. Therefore, this method was not used in this study.

While Global Polynomial interpolation fits a polynomial to the entire surface,
Local Polynomial interpolation fits many polynomials, each within specified overlapping
neighborhoods. This method was tested with the INDOT AADT data, but it did not
produce good results. Therefore, this method was excluded in this study.

Radial Basis Functions method includes a series of exact interpolation techniques;
that is, the surface must go through each measured sample value. There are five different

basis functions:

Thin-Plate Spline (TPS)

Spline with Tension (SWT)
Completely Regularized Spline (CRS)
Multiquadric Function (MF)

Inverse Multiquadric Function (IMF)

The five basis functions are called kernel functions in ArcGIS. Each kernel function has a
different shape and results in a slightly different interpolation surface. In ArcGIS, the
steps to run the Radial Basis Functions are similar to those to run the Inverse Distance
Weighing. Figures 61 through 64 show an example of AADT predictions with the kernel
function of Completely Regularized Spline. Any of other kernel functions can be

selected in the drop-down menu shown in Figure 62.
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l Geostatistical Wizard: Choose Input Data and Methaod '

Methods: Dataset 1 I Walidation I
Inverse Distance Weighting
Global Palynomial Interpolation Input data: K} AADT_shp Events ;I Dq'l

Local Polynomial Interpolation

Ja| Attribute:

Kriging

Cokriging ¥ Field: [Shape 2
i Figld: IShape LI

[ Use NODATA value:

About Radial Basis Functions

Radial Basis Functions (REF) are moderately quick deterministic interpolators that are exact, They are much mare
flexible than I0WY, but there are more parameter decisions, There is no assessment of prediction errors, The method
provides prediction surfaces thak are comparable to the exact Form of kriging. Radial Basis Functions do not allow wou
to investigate the autocorrelation of the data, making it less Flexible and more automatic than kriging. Radial Basis
Functions make no assumptions about the data,

| < Back I Mest » I Finizh | Cancel |

Figure 61: AADT Prediction Using Radial Basis Functions — Data Input

Geostatistical Wizard - RBF Interpolation: Step 1 of 2 - Set Parameters

Kernel functions: ICDmpletely Reqgularized Spline j Parameter: |4.5128 Cpkimize parameter |

’?| ORGIWE: ] Symbol size: |3 -3 Standard |Smonth|

1% Meighbors to include: 15 =
W g
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n 1
Seckor bype: I@ @I @l %l
Ellipse
Angle: 0.0 =
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Minor sermiaxis: |13IZIS3?

Anisotropy Fackor; 1
Identify
" 553531,347368421
¥ 4353947, 80701754
Meighbors 15
Estimated value §152,92
Preview type: INeighbors ;l Show weights == |

| < Back I Mest > I Firish | Cancel |

Figure 62: AADT Prediction Using Radial Basis Functions — Specify Functions

70



Geostatistical Wizard - RBF Interpolation: Step 2 of 2 - Cross Validation

Predicted | Errar |
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Figure 63: Radial Basis Functions Prediction Results
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Figure 64: Radial Basis Functions Prediction Errors
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5.3.3: Comparison of the Modeling Methods:

To compare the prediction accuracies of the above modeling methods, the
recorded AADT values at 22 randomly selected locations were used. The locations in
terms of x and y coordinate values were used as input of each of the 10 modeling
methods to produce the predicted AADT values. The recorded and predicted AADT
values are listed in Table 10. Also included in the last row of Table 10 are the prediction
errors of the ten modeling methods. The prediction errors were calculated with the

following formula:

A= \/lZH:(AADT; — AADT,)? (8)

i=1

where:

AADTi, = Predicted AADT at location i;
AADT, = Recorded AADT at location i;
n =22, number of locations.

As shown in Table 10 and Figure 65, the Inverse Distance Weighing (IDW) method

generated the best AADT predictions among the ten modeling methods.
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Table 10: AADT Predictions from Ten Modes

RBF Ordinary Kriging
X y R;i);)(!red IDW Log Transformed Box-Cox (A=0.08786) Translt;oz:'trir::;(zl l
CRS SWT MF IMS TPS Exponential Exponential Stable Quadratic

474459 | 4605206 30703 30566 23437 22609 30422 10066 30928 12756 12507 12982 12504
471920 | 4606008 987 1270 4928 5220 1083 9473 814 14301 13684 13948 14467
471932 | 4605956 880 1048 4835 5256 1153 12111 892 14948 14303 14621 15179
688524 | 4301131 480 481 846 912 517 1632 506 1750 1858 1865 1920
551555 | 4417667 7953 7960 11982 12211 8001 14856 8030 10777 9744 9534 9946
478391 | 4485380 1888 1888 1886 1885 1880 1759 1881 2928 2212 2253 2195
480241 | 4485385 2932 2816 2035 2009 2759 1568 2803 2859 2449 2428 2487
672787 | 4493963 6460 6460 5775 5757 6432 6447 6445 5807 4902 4871 4774
682185 | 4515096 1160 1160 1329 1390 1160 2287 1160 3374 3876 3888 4123
664671 | 4502941 1820 1834 2132 2144 1825 2376 1830 3560 3499 3512 3612
457402 | 4610604 3394 3416 8917 9411 3988 14750 3746 16799 11327 11335 11717
457878 | 4610080 3038 3050 6387 6831 3140 13973 3036 17936 10428 10502 10879
457808 | 4609656 2594 2624 7089 7602 2696 13499 2252 16768 11381 11426 11832
457983 | 4610052 3647 3651 6471 6898 3595 13973 3647 17919 11128 11224 11625
456485 | 4482520 783 784 978 1002 785 1869 810 1006 883 874 900
460276 | 4485643 723 735 1334 1362 732 1948 724 1260 1054 1058 1088
465704 | 4485577 904 1019 2240 2262 1305 2493 1190 2435 3230 3259 3367
592572 | 4326130 33617 33579 21118 20374 33286 8102 33354 6874 5971 5582 5610
591108 | 4353216 31416 31339 22769 22128 31301 10506 31143 8641 7536 7278 7376
589280 | 4351187 3039 2927 5559 5852 2566 11405 2256 7443 7401 7524 7924
589291 | 4351111 4592 4524 5701 5930 4433 11405 4788 8336 8223 8364 8689
589314 | 4351230 745 766 3760 4234 880 11405 674 7365 7261 7385 7721

Prediction Error 91 4377 4741 226 10605 728 11355 10349 10434 10609
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Figure 65: Prediction Errors of the Ten Models
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CHAPTER 6: TRAFFIC VOLUME LEVELS AND WIM STATION

DISTRIBUTIONS

6.1: Traffic Volume Levels and AADT Prediction

As discussed in the previous chapter, the Inverse Distance Weighing (IDW) method

provided better AADT predictions than the other modeling methods. Consequently, the IDW

method was used to analyze traffic volume levels. The traffic volume values were grouped into

ten levels based on predicted AADT. Then the AADT distributions were depicted on the Indiana

map using different colors. Using ArcGIS, traffic volume distribution can be obtained as follows:

1.

Convert the AADT dataset from the format (x, y, AADT) to the ArcGIS shape file
AADT shp.ly;

Load the shape file in ArcMap.

Click Geostatistical Analyst and select Geostatistical Wizard, the window shown in
Figure 66 will appear.

Select Inverse Distance Weighing under Method, select AADT under Attribute, and click
Next, the window shown in Figure 66 will appear. If an AADT value is to be predicted at
a location (X, y), input the coordinates, the predicted AADT will be generated as shown
in Figure 67.

Click Next, the Cross Validation window shown in Figure 68 will appear.

Click Next, the prediction map as shown in Figure 69 will appear.
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Figure 66: Method and Data Window in Geostatistical Wizard
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Figure 67: Set Parameters Window in Geostatistical Wizard

76



Predicted | Ertar |

Geostatistical Wizard - IDWW Interpolation: Step 2 of 2 - Cross Walidation

1.73
i o
= 1.44 B S
= s
L L5 o
L]
& 0.6
L1}
o 0.58
: _.__—‘—‘—__—__—_—
& 0.29 4 [ S—
D - 'h.. : .. = &
u] 1.44 1.73
Heasured, 1079
Reqgression funckion: 0,273 % x + 5227360
—Prediction errors
Included | b i | Measured | Predicted =
Mean: -1094 —
Root-Mean-Square: 153350 Yes 410880 4199700 3609 gs47.2 | |
Yes 416420 4198400 4147 7253.9
Samples: 7934 of 7934| Yes 416530 4193200 451 4153.5
Yes 416360 4195100 1063 4869.9
Yes 416940 4196500 3781 5193.6
Yes 417510 4195400 7452 6696.6
Yes 417560 4190400 291 4697.4 i
Vo 417710 A1 E1NN i prl = =]
4| T | 3
Save cross validation. .. | < Back | Mest » | Finish I Cancel

Figure 68: Cross Validation Window in Geostatistical Wizard
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Figure 69: Prediction Map Generated by Inverse Distance Weighing Method
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As can be seen in the prediction map shown in Figure 69, the AADT values in Indiana
are grouped into ten levels as specified. The AADT levels are illustrated by the colors in the

map, with the light colors for low AADT levels and the dark colors for high AADT levels.

6.2: Possible Locations of Future WIM Stations

There were 47 WIM stations in Indiana. It is likely that in the future more WIM stations
will be needed to improve the coverage and quality of traffic data collections. Thus, an attempt
was made in this study to reasonably determine the locations for the future WIM stations. If new
WIM devices are ever to be installed, it is desired to install them at the locations so that the WIM
stations would best reflect the patterns and characteristics of the traffic conditions in the state. In
this study, the locations of the future WIM devices were determined on the basis of the spatial
AADT map generated using various ArcGIS functions.

To show AADT distributions and the WIM stations on the same map, the triangulated
irregular network (TIN) method in ArcGIS was selected. TINs are made up of triangular facets
and the nodes and edges that make up the triangles. They may also contain breaklines—Iines
that follow sets of edges that play important roles in defining the shape of the surface. Examples
of breaklines are ridgelines, roads, or streams (ESRI 2007). A 2D TIN map can be created with
ArcGIS through the following steps.

1. Start ArcGIS and load AADT.shp.
2. Inthe 3D Analyst drop-down menu, select Create/Modify TIN.
3. In the window shown in Figure 70, select AADT in Layers and select AADT _COUNT in

Height Source. The 2D TIN map is created as shown in Figure 71.

78



F

Create TIN From Features ! l M&

- Inputs

Chieck the laperz] that wil be used bo create the TIN. Click a laver's name to spacify
its seffings.

Layers

7 g - Settings for selected laper—————————
v| 8407 J
Featwetype 20 Ines

Height source: — |AADT COUNT =

Trianqulate s |hard fne M

Tagvalue field [ <}ones ¥

)4

Output TH: — {D:ANDOT 40T Analysis\aaD T\t

Figure 70: 2D TIN Map Input Window
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Figure 71: A 2D TIN Map of Indiana AADT

Although the map in Figure 71 shows the AADT values in different colors, the AADT

distributions are not clear. To improve the map, the 2D TIN map can be changed to a 3D map by

using ArcScene in ArcGIS. The following steps can be used to create a 3D AADT distribution

map with WIM stations shown on the map.

1.

2.

4.

Start ArcGIS and click ArcScene;
Load wim_sites, AADT, and TIN map;
Right click Properties, select Display, select 30% Transparent;

Click Navigate and select appropriate angle.

The 3D map with WIM stations is shown in Figure 72. In the 3D map, the heights of the z

values represent AADT and the red dots are the WIM stations. The 3D map clearly shows the

areas with high and low AADT values. However, when analyzing the AADT distributions, there
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is a problem with the 3D map, i.e., the z values in high AADT areas block the views to the

details behind these areas.

Figure 72: 3D AADT Map with WIM Stations

To covert the 3D map in Figure 72 to a 2D map, start ArcMap and load AADT to TIN
map and the map in Figure 73 can be created. The AADT values were divided into 15 levels in
the map. Because most of the AADT values are in the lowest level (1 to 11502), the color for
this AADT level dominates in the 2D map and other AADT levels can not be clearly seen. To
solve this problem, the AADT values were log transformed to make the divided levels more

evenly spread. Figure 74 is the 2D map created with the log transformed AADT data.
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Figure 74: 2D Map of Log Transformed AADT

Figure 74 illustrates the AADT distributions on the highway system with 10 levels. As

can be seen, on the interstate highways most of the AADT values are shown in red, which

82



corresponds to the level between 4.189 and 4.793 of the log transformed AADT or between
15452.14 and 62086.90 of the original AADT values. To examine the relationship between the
AADT values and the WIM station locations, the WIM stations were added to the 2D map of the
log transformed AADT by including WIM _sites file in ArcMap. Figure 75 shows the WIM

stations as the black triangles on the AADT map.

Figure 75: 2D Map of Log Transformed AADT with WIM Stations

The map in Figure 75 shows that most of the WIM stations are located on the interstate
highways. That is, the high AADT areas are well covered by the WIM stations. However, there

are only a few WIM stations on the relatively low AADT roads, such as on the state roads and
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the US routes. Although it is appropriate to install more WIM stations on high volume roads, it
should also be necessary to install some WIM stations in low volume roads in order to capture
the main characteristics of AADT distributions in the state. With the map, it is possible to
identify the locations that may need additional WIM stations.

If additional funds are available for new WIM stations, it is necessary to determine the
reasonable locations of the new WIM stations. To reflect the traffic volume changes, the WIM
stations should be distributed in such a way that they can cover as many levels of traffic volumes
as possible. It is recommended that the following principles be considered to determine the
locations for the new WIM stations:

1. A new WIM station should be placed at a location with a traffic level that is not covered
by the existing WIM stations.

2. A new WIM station should be placed at a location where traffic volume changes from
one level to another level.

3. Higher traffic areas should have higher priority for a new WIM stations.

The proposed location of a new WIM station can be determined by considering the above
principles. To mark the coordinates of a proposed new WIM station location, first click
Interpolate Point on the ArcMap menu as shown in Figure 76. The next step is to click the
proposed location of the new WIM station and then right click at the location and select
Properties. The coordinates of the new WIM station location is shown in the new window on the

map as illustrated in Figure 77.
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Figure 77: Coordinates of the Proposed New WIM Station

Based on these principles and procedures, the future WIM locations can be identified.

Table 11 lists the proposed coordinates of the future WIM locations. The coordinates in Table
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11 are provided for INDOT to consider first if new WIM stations are to be installed in the future.

In case all of the coordinates in Table 11 are used up, additional coordinates shown in Table 12

should be considered for new WIM station locations. The coordinates in Table 12 are provided

as the secondary locations after the ones in Table 11.

Table 11: Proposed Locations of Future WIM Stations

Site

Site X y X y
1 570444.618005 | 4477969.676659 7 506292.336930 | 4430363.459028
2 512097.973226 | 4373468.223323 8 596860.263154 | 4308445.096303
3 557672.218153 | 4417300.777361 9 578572.508820 | 4394658.795805
4 626469.008266 | 4353729.0599916 10 602665.899450 | 4372597.377879
5 555930.527264 | 4576665.493698 11 623856.471932 | 4554894.357587
6 562897.290082 | 4541831.675920 12 492068.528003 | 4585954.511773
Table 12: Secondary List of Proposed Locations of Future WIM Stations
Site X y Site X y
1 546931.791005 | 4506707.576326 15 516307.059541 | 4199589.416245
2 621243.935599 | 4526156.457919 16 570299.477098 | 4228327.315913
3 615148.017488 | 4587115.639032 17 539529.604727 | 4281158.606210
4 538513.618375 | 4298865.796914 18 479731550873 | 4319766.087581
5 614277.172043 | 4315411.860359 19 666673.039618 | 4362147.232545
6 627920417340 | 4381305.832324 20 666092.475989 | 4474776.576696
7 543303.268319 | 4264031.979136 21 514275.086837 | 4542412.239549
8 452735.342095 | 4277965.506247 22 627775.276432 | 4608886.775144
9 632710.067284 | 4288125.369766 23 569138.349838 | 4583341.975439
10 575524.549764 | 4270127.897247 24 486698.314429 | 4343278.914582
1 501502.686985 | 4246615.070246 25 614712.594765 | 4316282.705804
12 471893.941873 | 4256194.370136 26 629516.967321 | 4382466.959583
13 546931.791005 | 4506707.576326 27 516307.059541 | 4199589.416245
14 621243.935599 | 4526156.457919 28 570299.477098 | 4228327.315913
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The locations listed in Table 11 and 12 can be shown in the 2D map. As shown in Figure
78, the coordinates in Table 11 were included in ArcMap as the file New WIM(first_Class)

Events. Similarly, the coordinates in Table 12 were included as the file

New_ WIM(Second Class) Events. The two files were added as new layers in ArcMap. Figure
79 shows the existing WIM stations (black triangles), the first set of proposed future WIM
stations (red circles), and the second set of proposed future WIM stations (black circles).
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Figure 78: Adding Coordinates of the Proposed New WIM Station in the Map
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Figure 79: Locations of Existing and the Proposed WIM Stations
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CHAPTER 7: CONCLUSIONS

In order to satisfy the requirements of the MEPDG, it is essential to prepare the truck
traffic inputs because truck traffic is the most important requirement for the new design method.
INDOT has made great effort to retrieve the required traffic information from the stored WIM
data. As presented in this report, a Visual Basic computer program was developed and was
successfully utilized to obtain the necessary traffic information for the new pavement design
method from the WIM data. The truck traffic data include average annual daily truck traffic,
average monthly and hourly truck traffic, adjustment factors, axle load spectra, and axle weight
and spacing values. The truck traffic can be expressed in individual vehicle types as well as in
combined truck traffic values. It was found that the WIM data contained a noticeable amount of
unclassified vehicles, which would affect pavement designs if their patterns and components
could not be reasonably identified.

Furthermore, the INDOT AADT data were used in this study to analyze the spatial
distributions of the traffic volumes in Indiana. The spatial distributions of traffic volumes were
obtained to provide INDOT with (1) a 3-dementional perspective of traffic volumes over entire
Indiana; and (2) a basis for determining appropriate WIM locations. ArcGIS 9.2 (ESRI 2007)
was used in the analysis of the spatial distributions of traffic volumes. ArcGIS 9.2 applies the
interpolation techniques in its Geostatistical Analyst. Geostatistical Analyst uses sample points
taken at different locations in a landscape and creates a continuous surface. The sample points in
this study are the traffic volumes at the INDOT traffic monitoring stations. It was found that the
AADT data were not normally distributed. The data were transformed by log or Box-Cox

techniques to make the data more normally distributed in order to satisfy the normal distribution
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requirement of the geostatistics. Through various types of mathematical modeling techniques, it
was concluded that the Inverse Distance Weighing (IDW) method generated the best AADT
predictions among the ten modeling methods. The IDW method can be used to predict the
AADT at any given location within Indiana.

Based on the IDW predictions of AADT, a prediction map can be generated which shows
the AADT distributions with different colors for the divided traffic volume levels. In order to
analyze the placement of the existing WIM stations in Indiana, ArcMap functions were utilized
to visualize the relationship between AADT distributions and WIM stations locations. It was
found that with log transformed AADT data the TIN map could clearly illustrate and distinguish
different traffic volume levels on the 2D map. Adding the WIM stations as a layer on the 2D
map, the WIM stations can be shown on the AADT distribution map. Therefore, the placement
of the WIM stations in relation to the AADT distributions can be examined to determine the
appropriate locations for the future new WIM stations. The coordinates of the proposed future
WIM locations were determined. These coordinates were provided for INDOT to consider when
new WIM devices are to be installed in the future.

In summary, this study has produced the traffic input for INDOT to implement the new
pavement design method. The traffic input is an essential component for using the MEPDG to
design pavement structures. In addition to the axle load spectra and truck traffic input, this study
also analyzed the AADT distributions in Indiana through geostatistical analysis utilizing ArcGIS
tools. The geostatistical analysis resulted in a series of results for spatial AADT predictions and
future WIM station location determinations. It is believed that the results of this study will
certainly facilitate INDOT’s transition process from the current pavement design method to the

MEPDG.
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APPENDIX: TRAFFIC INPUT AT A WIM STATION
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WIM Site 5300 (6170), I-74, RP 169.77, W Harrison
Two Lanes in Each Direction
Two Lane WIM Data in Each Direction

AADTT: Two-way annual average daily truck traffic
MAF: Truck traffic monthly adjustment factors (note: twelve-month MAF total = 12.0)
DDF: Directional distribution factors, or percent trucks in the design direction
LDF: Truck lane distribution factors, or the percent trucks in the design lane
TCD: Truck class distribution (percent)
HDF: Hourly distribution factors (percent)
C4, C5, ... C13: Class 4, Class 5, ..., Class 13 of vehicle classifications
AADTT Ln1 [ AADTTLn2 | AADTTLn3 | AADTT Ln 4 Total MAF
AADTT Jan 2410.40 280.10 1155.90 262.80 4109.20 0.56
AADTT Feb 2691.30 316.10 928.60 279.50 4215.50 0.57
AADTT Mar 2971.40 343.60 1687.80 316.50 5319.30 0.72
AADTT Apr 3203.20 358.90 3193.60 1224.20 7979.90 1.09
AADTT May 3491.60 336.60 3778.20 1127.00 8733.40 1.19
AADTT Jun 4077.60 367.60 4504.90 1213.50 10163.60 1.38
AADTT Jul 3653.40 371.20 4355.60 1242.20 9622.40 1.31
AADTT Aug 3480.20 370.60 3997.70 1241.60 9090.10 1.24
AADTT Sep 3314.80 354.30 3744.10 1182.90 8596.10 1.17
AADTT Oct 2852.50 322.80 3001.50 1149.00 7325.80 1.00
AADTT Nov 2618.80 331.10 2716.10 1100.40 6766.40 0.92
AADTT Dec 2395.90 326.80 2514.10 1082.40 6319.20 0.86
Avg 3096.76 339.98 2964.84 951.83 7353.41
Sum 37161.10 4079.70 35578.10 11422.00 88240.90 12.00
C4 C5 C6 Cc7 Cc8 C9 Cl0 | Cl1l1 [C12 | C13 | All Truck
DDF 051 | 064 | 059 | 0.92 | 0.53 | 0.55 | 0.55 | 0.52 | 0.52 | 0.80 0.53
LDF-dirl | 0.91 | 0.83 [ 0.87 | 0.85 | 0.95 | 0.94 | 0.94 | 0.94 | 0.94 [ 0.80 0.90
LDF-dir2 | 0.84 | 0.56 [ 0.93 | 0.92 | 0.86 | 0.93 | 0.98 | 0.94 | 0.97 [ 1.00 0.76
All Lanes Combined AADTT
C4 C5 C6 C7 C8 C9 C10 Cl1 C12 C13 Total
Jan 31.90 1006.10 233.10 21.10 240.00 2419.60 10.10 124.20 18.50 | 4.60 | 4109.20
Feb | 38.50 1158.80 | 208.30 | 17.70 | 226.50 | 2417.80 9.20 118.80 | 18.30 | 1.60 | 4215.50
Mar 50.70 1581.40 339.70 12.70 371.80 2781.70 9.90 149.20 22.10 | 0.10 | 5319.30
Apr 102.50 2886.20 127.50 21.20 389.00 4195.00 16.80 201.00 | 40.50 [ 0.20 [ 7979.90
May | 112.70 | 3793.20 [ 130.90 | 48.10 | 434.10 | 3971.30 | 12.40 | 190.60 | 40.10 | 0.00 | 8733.40
Jun | 108.00 | 4819.70 | 142.30 | 52.90 [ 490.10 | 4282.30 | 16.90 | 207.00 | 44.00 | 0.40 | 10163.60
Jul 97.30 4656.30 130.20 56.60 | 479.70 3957.40 13.30 192.80 38.70 | 0.10 | 9622.40
Aug 101.60 3841.40 141.30 [ 49.80 | 469.40 | 4228.30 16.60 201.70 39.70 | 0.30 | 9090.10
Sep | 107.40 | 3352.80 | 122.30 | 54.10 | 445.40 | 4260.70 | 15.50 | 197.10 [ 40.70 | 0.10 [ 8596.10
Oct | 102.40 | 2296.80 | 118.80 | 42.60 | 361.30 | 4149.70 | 14.30 | 199.30 | 40.60 | 0.00 | 7325.80
Nov 93.90 1851.00 123.40 31.20 287.20 | 4140.90 14.60 184.90 39.20 | 0.10 | 6766.40
Dec 76.40 1772.10 123.10 26.50 266.60 3835.50 11.90 173.90 33.10 | 0.10 | 6319.20
Total | 1023.30 | 33015.80 | 1940.90 | 434.50 | 4461.10 | 44640.20 | 161.50 | 2140.50 | 415.50 | 7.60 | 88240.90

Average AADTT Yearly Increase = 7.9%
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Monthly Adjustment Factor (MAF)
C4 C5 C6 C7 C8 C9 C10 Cl1 Cl12 C13 Total
Jan 0.37 0.37 1.44 0.58 0.65 0.65 0.75 0.70 0.53 7.26 0.56
Feb 0.45 0.42 1.29 0.49 0.61 0.65 0.68 0.67 0.53 2.53 0.57
Mar 0.59 0.57 2.10 0.35 1.00 0.75 0.74 0.84 0.64 0.16 0.72
Apr 1.20 1.05 0.79 0.59 1.05 1.13 1.25 1.13 1.17 0.32 1.09
May | 1.32 1.38 0.81 1.33 1.17 1.07 0.92 1.07 1.16 0.00 1.19
Jun 1.27 1.75 0.88 1.46 1.32 1.15 1.26 1.16 1.27 0.63 1.38
Jul 1.14 1.69 0.80 1.56 1.29 1.06 0.99 1.08 1.12 0.16 1.31
Aug 1.19 1.40 0.87 1.38 1.26 1.14 1.23 1.13 1.15 0.47 1.24
Sep 1.26 1.22 0.76 1.49 1.20 1.15 1.15 1.10 1.18 0.16 1.17
Oct 1.20 0.83 0.73 1.18 0.97 1.12 1.06 1.12 1.17 0.00 1.00
Nov 1.10 0.67 0.76 0.86 0.77 1.11 1.08 1.04 1.13 0.16 0.92
Dec 0.90 0.64 0.76 0.73 0.72 1.03 0.88 0.97 0.96 0.16 0.86
Sum | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00
Hourly Volume

StartTime | C4 C5 C6 C7 C8 C9 C10 Cli Cl12 | C13 | All Truck

0 2.38 15.27 3.67 0.55 6.54 99.43 0.18 5.77 1.19 | 0.03 | 135.00

1 2.08 10.68 3.43 0.73 6.71 95.11 0.17 5.68 0.85 | 0.01 | 125.45

2 1.66 10.46 3.64 0.93 6.13 95.84 0.15 6.72 1.04 | 0.00 | 126.57

3 2.07 14.52 4.18 1.02 9.49 106.12 0.32 8.82 1.28 | 0.00 | 147.81

4 3.04 33.75 5.68 1.63 11.73 123.33 0.41 10.18 1.71 [ 0.05 | 191.52

5 3.13 62.35 9.24 2.26 11.48 141.16 0.68 12.18 1.88 | 0.04 | 244.41

6 2.93 76.76 9.04 2.06 11.30 151.99 0.77 8.99 1.64 | 0.11 | 265.59

7 4.48 88.67 7.56 2.23 13.03 171.14 | 0.94 6.86 1.31 | 0.13 | 296.35

8 5.05 | 109.06 8.08 223 | 16.82 | 191.46 | 0.93 7.63 1.34 | 0.03 | 342.62

9 4.94 141.42 8.99 2.57 20.61 204.49 0.96 6.84 1.46 | 0.02 | 392.29

10 4.71 164.66 9.53 2.33 23.06 213.11 1.13 7.03 1.68 | 0.05 | 427.28

Combined 11 4.73 176.36 9.48 2.38 24.18 207.93 1.20 5.80 1.04 | 0.02 | 433.12

12 4.62 | 191.24 9.58 1.76 | 25.53 | 203.07 | 0.84 4.69 0.96 | 0.03 | 442.32

13 4.52 215.97 9.18 1.98 25.62 201.70 0.90 5.65 0.90 | 0.05 | 466.46

14 4.67 265.48 9.39 1.60 25.82 191.26 0.91 6.33 1.03 | 0.03 | 506.50

15 4.53 293.28 9.18 1.42 23.74 182.00 0.72 5.98 1.28 | 0.00 | 522.13

16 4.08 | 264.75 7.82 1.38 | 20.89 | 169.33 | 0.59 5.83 158 | 0.01 | 476.24

17 3.97 196.78 6.71 1.28 17.70 159.52 0.42 5.44 1.28 | 0.00 | 393.08

18 3.32 134.32 5.65 1.15 15.13 152.31 0.33 4.77 1.23 | 0.00 | 318.19

19 3.09 97.93 5.36 1.13 12.99 146.32 0.27 6.63 1.21 | 0.01 | 274.92

20 3.08 75.63 4.58 1.05 | 11.73 | 14481 | 0.21 9.78 2.15 | 0.00 | 252.99

21 2.83 53.63 4.17 0.92 12.38 133.83 0.13 12.51 2.98 | 0.03 | 223.40

22 2.96 36.04 4.15 0.83 11.75 123.98 0.19 10.69 2.16 | 0.00 | 192.75

23 2.38 22.29 3.49 0.81 7.41 110.75 0.13 7.63 1.46 | 0.00 | 156.35

AADTT Sum 85.23 | 2751.27 | 161.75 | 36.21 | 371.77 | 3719.96 | 13.46 | 178.43 | 34.62 | 0.63 | 7353.32

TCD Percent 1.16 37.42 2.20 0.49 5.06 50.59 0.18 2.43 0.47 | 0.01 | 100.00
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Hourly Distribution Factor (HDF) (%)
Two Directions Combined

StartTime C4 C5 C6 Cc7 C8 C9 C10 Cl1 C12 C13 | All Truck
0 2.80 0.55 2.27 1.52 1.76 2.67 1.36 3.23 3.44 3.95 1.84
1 2.43 0.39 2.12 2.03 1.80 2.56 1.24 3.19 2.46 1.32 1.71
2 1.95 0.38 2.25 2.55 1.65 2.58 1.11 3.76 3.01 0.00 1.72
3 2.42 0.53 2.59 2.81 2.55 2.85 2.35 4.94 3.71 0.00 2.01
4 3.57 1.23 3.51 4.51 3.16 3.32 3.03 571 4.94 7.89 2.60
5 3.68 2.27 571 6.24 3.09 3.79 5.08 6.82 5.44 6.58 3.32
6 3.44 2.79 5.59 5.68 3.04 4.09 5.70 5.04 4.74 17.11 3.61
7 5.26 3.22 4.67 6.14 3.51 4.60 7.00 3.84 3.78 21.05 4.03
8 5.92 3.96 4.99 6.14 4.52 5.15 6.87 4.28 3.88 5.26 4.66
9 5.80 5.14 5.56 7.09 5.54 5.50 7.12 3.83 4.21 2.63 5.33
10 5.52 5.98 5.89 6.44 6.20 5.73 8.36 3.94 4.84 7.89 5.81
11 5.55 6.41 5.86 6.58 6.50 5.59 8.92 3.25 3.01 2.63 5.89
12 5.42 6.95 5.92 4.86 6.87 5.46 6.25 2.63 2.77 5.26 6.02
13 5.30 7.85 5.67 5.48 6.89 5.42 6.69 3.17 2.60 7.89 6.34
14 5.48 9.65 5.81 4.42 6.94 5.14 6.75 3.55 2.96 3.95 6.89
15 5.32 10.66 5.67 3.91 6.39 4.89 5.33 3.35 3.68 0.00 7.10
16 4.78 9.62 4.83 3.80 5.62 4.55 4.40 3.27 4.55 1.32 6.48
17 4.65 7.15 4.15 3.54 4.76 4.29 3.10 3.05 3.68 0.00 5.35
18 3.89 4.88 3.49 3.18 4.07 4.09 241 2.67 3.54 0.00 4.33
19 3.63 3.56 3.31 3.11 3.49 3.93 1.98 3.71 3.49 1.32 3.74
20 3.61 2.75 2.83 2.90 3.15 3.89 1.55 5.48 6.21 0.00 3.44
21 3.31 1.95 2.58 2.53 3.33 3.60 0.99 7.01 8.62 3.95 3.04
22 3.47 1.31 2.57 2.30 3.16 3.33 1.42 5.99 6.23 0.00 2.62
23 2.80 0.81 2.16 2.23 1.99 2.98 0.99 4.27 4.21 0.00 2.13

Sum 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
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Single-Axle Load Distribution (Percentages) for Each Truck Class

Class 4 5 6 7 8 9 10 11 12 13
3kips 059 51.34 14.72 2.07 5.61 3.52 231 0.14 0.23 0.20
4kips 0.38 20.56 3.28 4.30 12.30 3.34 2.17 4.30 4.08 7.08
5kips 0.47 10.23 4.11 3.48 10.63 3.79 3.15 6.14 6.09 9.96
6kips 0.89 5.09 4.65 3.44 9.59 4.60 4.61 7.67 8.62 9.76
7kips 8.06 3.22 5.25 3.42 9.13 5.92 7.22 8.84 9.55 9.18
8kips 14.35 2.27 6.81 4.00 9.24 8.29 10.22 10.38 11.30 9.07
9kips 14.31 1.69 9.18 4.83 8.52 11.77 14.19 11.28 12.01 9.43
10kips 12.70 1.25 11.13 5.96 7.00 15.83 17.16 10.33 11.71 9.59
11kips 10.64 0.90 10.00 6.34 5.27 15.00 15.03 8.87 9.89 9.43
12kips 8.58 0.64 7.18 7.19 3.88 10.13 10.29 6.93 7.74 6.24
13kips 6.45 0.46 4.95 7.59 2.93 5.77 541 5.45 5.50 4.64
14kips 4.74 0.34 3.42 7.78 2.32 3.00 2.42 4.60 4.00 3.24
15kips 3.54 0.27 2.56 7.16 1.93 2.04 155 3.69 2.72 2.05
16kips 2.64 0.22 2.03 6.75 1.63 1.68 1.09 2.95 1.90 1.81
17kips 2.07 0.18 1.75 5.92 1.33 1.40 0.79 2.27 1.31 2.13
18Kips 1.59 0.15 1.52 5.48 1.12 1.09 0.58 1.64 0.99 2.18
19kips 1.25 0.13 1.29 4.35 0.92 0.79 0.43 1.18 0.65 1.35
20Kips 0.97 0.11 1.04 3.00 0.75 0.54 0.30 0.84 0.49 0.54
21Kkips 0.87 0.10 0.90 1.74 0.64 0.37 0.23 0.59 0.27 0.43
22kips 0.65 0.09 0.73 1.11 0.52 0.25 0.17 0.38 0.25 0.32
23Kips 0.50 0.08 0.61 0.72 0.45 0.18 0.12 0.26 0.13 0.29
24Kkips 0.43 0.07 0.51 0.61 0.39 0.13 0.11 0.17 0.10 0.21
25Kips 0.38 0.07 0.41 0.42 0.35 0.10 0.08 0.13 0.08 0.17
26kips 0.31 0.06 0.34 0.35 0.31 0.08 0.07 0.11 0.05 0.14
27Kips 0.25 0.06 0.29 0.27 0.28 0.07 0.05 0.08 0.04 0.07
28Kips 0.25 0.05 0.24 0.21 0.26 0.05 0.05 0.09 0.04 0.08
29Kips 0.20 0.05 0.21 0.28 0.24 0.04 0.04 0.08 0.04 0.09
30Kips 0.22 0.05 0.17 0.17 0.22 0.04 0.03 0.07 0.03 0.05
31kips 0.14 0.04 0.14 0.14 0.21 0.03 0.03 0.04 0.03 0.05
32kips 0.16 0.04 0.11 0.16 0.19 0.02 0.02 0.05 0.02 0.05
33kips 0.18 0.03 0.08 0.13 0.18 0.02 0.02 0.04 0.02 0.03
34kips 0.11 0.03 0.06 0.13 0.17 0.02 0.01 0.05 0.02 0.03
35kips 0.12 0.03 0.05 0.08 0.16 0.02 0.01 0.03 0.02 0.02
36kips 0.11 0.02 0.04 0.07 0.15 0.01 0.01 0.04 0.02 0.01
37kips 0.10 0.01 0.04 0.06 0.13 0.01 0.01 0.03 0.02 0.02
38kips 0.10 0.01 0.03 0.09 0.12 0.01 0.01 0.03 0.01 0.01
39kips 0.12 0.01 0.03 0.05 0.12 0.01 0.00 0.03 0.01 0.01
40Kips 0.10 0.01 0.03 0.04 0.11 0.01 0.01 0.02 0.01 0.01
41kips 0.54 0.06 0.15 0.15 0.72 0.05 0.03 0.17 0.03 0.03
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Tandem-Axle Load Distribution (Percentages) for Each Truck Class

Class 4 5 6 7 8 9 10 11 12 13
6kips 5.69 0.00 30.22 1766 | 34.71 7.92 5.11 0.00 0.00 0.00
8kips 6.06 0.00 10.38 6.75 13.23 7.12 5.45 0.00 5.25 3.78
10kips 5.96 0.00 8.57 5.44 11.71 8.15 7.42 0.00 9.13 7.72
12Kips 6.77 0.00 7.49 5.51 9.77 8.04 7.82 0.00 11.89 9.57
14kips 7.38 0.00 6.00 5.95 7.45 7.49 7.57 0.00 14.32 8.81
16kips 7.28 0.00 4.76 5.59 5.53 7.26 7.35 0.00 14.42 8.58
18kips 7.88 0.00 3.89 4.87 4.27 7.02 6.98 0.00 13.23 7.46
20Kips 8.83 0.00 3.43 4.16 3.37 6.59 6.48 0.00 10.49 7.89
22kips 8.72 0.00 3.08 4.04 2.59 6.20 6.26 0.00 6.96 6.32
24Kkips 7.05 0.00 2.93 4.24 1.84 5.71 6.45 0.00 4.98 6.05
26kips 6.46 0.00 2.77 4.57 1.32 5.29 6.03 0.00 3.10 6.63
28Kips 5.66 0.00 2.60 4.69 0.98 4.98 5.94 0.00 1.73 5.56
30kips 4.29 0.00 2.43 5.07 0.72 4.75 541 0.00 112 3.91
32kips 3.10 0.00 2.11 5.16 0.54 4.21 4.37 0.00 0.83 3.91
34kips 2.22 0.00 1.70 4.12 0.43 3.04 3.65 0.00 0.68 2.39
36kips 1.61 0.00 1.42 3.19 0.35 2.21 2.67 0.00 0.47 2.33
38kips 1.14 0.00 1.21 1.68 0.27 1.61 1.81 0.00 0.28 2.63
40Kips 0.85 0.00 0.89 1.05 0.19 0.95 0.92 0.00 0.24 1.74
42kips 0.55 0.00 0.63 0.91 0.14 0.46 0.62 0.00 0.20 1.48
44Kips 0.41 0.00 0.49 0.66 0.11 0.23 0.41 0.00 0.13 0.74
46kips 0.33 0.00 041 0.58 0.10 0.14 0.32 0.00 0.12 0.98
48kips 0.31 0.00 0.35 0.69 0.07 0.10 0.21 0.00 0.08 0.38
50kips 0.22 0.00 0.32 0.67 0.07 0.08 0.16 0.00 0.08 0.27
52kips 0.17 0.00 0.27 0.40 0.05 0.06 0.11 0.00 0.07 0.20
54kips 0.15 0.00 0.25 0.39 0.04 0.05 0.12 0.00 0.05 0.15
56kips 0.12 0.00 0.22 0.38 0.03 0.04 0.08 0.00 0.04 0.10
58kips 0.11 0.00 0.19 0.28 0.03 0.03 0.05 0.00 0.04 0.08
60Kips 0.10 0.00 0.16 0.22 0.02 0.03 0.04 0.00 0.02 0.10
62Kips 0.09 0.00 0.15 0.16 0.02 0.02 0.03 0.00 0.02 0.07
64kips 0.08 0.00 0.13 0.16 0.01 0.02 0.03 0.00 0.01 0.04
66kips 0.07 0.00 0.11 0.18 0.01 0.02 0.02 0.00 0.01 0.03
68Kkips 0.06 0.00 0.09 0.12 0.01 0.02 0.02 0.00 0.01 0.02
70kips 0.05 0.00 0.07 0.15 0.00 0.02 0.02 0.00 0.01 0.01
72Kips 0.05 0.00 0.06 0.08 0.00 0.02 0.01 0.00 0.01 0.02
74Kkips 0.03 0.00 0.05 0.06 0.00 0.01 0.01 0.00 0.00 0.01
76kips 0.03 0.00 0.04 0.05 0.00 0.01 0.01 0.00 0.00 0.01
78Kips 0.03 0.00 0.03 0.04 0.00 0.01 0.01 0.00 0.00 0.01
80kKips 0.02 0.00 0.02 0.01 0.00 0.01 0.01 0.00 0.00 0.01
82kips 0.06 0.00 0.09 0.09 0.01 0.05 0.03 0.00 0.00 0.02
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Tridem-Axle Load Distribution (Percentages) for Each Truck Class

Class 4 5 6 7 8 9 10 11 12 13
12kips 0.00 0.00 0.00 3.11 0.00 0.00 | 26.31 0.00 0.00 0.00
15kips 0.00 0.00 0.00 2.08 0.00 0.00 8.61 0.00 0.00 0.00
18kips 0.00 0.00 0.00 2.30 0.00 0.00 7.49 0.00 0.00 0.00
21kips 0.00 0.00 0.00 3.10 0.00 0.00 6.75 0.00 0.00 0.00
24kips 0.00 0.00 0.00 3.60 0.00 0.00 6.40 0.00 0.00 0.00
27Kips 0.00 0.00 0.00 3.88 0.00 0.00 6.43 0.00 0.00 0.00
30kips 0.00 0.00 0.00 4.36 0.00 0.00 7.08 0.00 0.00 0.00
33kips 0.00 0.00 0.00 5.37 0.00 0.00 7.13 0.00 0.00 0.00
36kips 0.00 0.00 0.00 6.61 0.00 0.00 6.70 0.00 0.00 0.00
39kips 0.00 0.00 0.00 7.92 0.00 0.00 5.27 0.00 0.00 0.00
42kips 0.00 0.00 0.00 9.15 0.00 0.00 3.69 0.00 0.00 0.00
45Kips 0.00 0.00 0.00 9.59 0.00 0.00 2.81 0.00 0.00 0.00
48kips 0.00 0.00 0.00 9.18 0.00 0.00 1.93 0.00 0.00 0.00
51kips 0.00 0.00 0.00 8.18 0.00 0.00 1.23 0.00 0.00 0.00
54kips 0.00 0.00 0.00 6.58 0.00 0.00 0.62 0.00 0.00 0.00
57kips 0.00 0.00 0.00 4.73 0.00 0.00 0.36 0.00 0.00 0.00
60kKips 0.00 0.00 0.00 3.30 0.00 0.00 0.30 0.00 0.00 0.00
63Kips 0.00 0.00 0.00 2.33 0.00 0.00 0.24 0.00 0.00 0.00
66kips 0.00 0.00 0.00 1.46 0.00 0.00 0.21 0.00 0.00 0.00
69Kips 0.00 0.00 0.00 0.76 0.00 0.00 0.11 0.00 0.00 0.00
72Kips 0.00 0.00 0.00 0.71 0.00 0.00 0.06 0.00 0.00 0.00
75Kips 0.00 0.00 0.00 0.36 0.00 0.00 0.06 0.00 0.00 0.00
78Kips 0.00 0.00 0.00 0.25 0.00 0.00 0.05 0.00 0.00 0.00
81kips 0.00 0.00 0.00 0.22 0.00 0.00 0.04 0.00 0.00 0.00
84kips 0.00 0.00 0.00 0.13 0.00 0.00 0.04 0.00 0.00 0.00
87kips 0.00 0.00 0.00 0.18 0.00 0.00 0.03 0.00 0.00 0.00
90kKips 0.00 0.00 0.00 0.10 0.00 0.00 0.02 0.00 0.00 0.00
93kips 0.00 0.00 0.00 0.08 0.00 0.00 0.02 0.00 0.00 0.00
96kips 0.00 0.00 0.00 0.07 0.00 0.00 0.02 0.00 0.00 0.00
99Kips 0.00 0.00 0.00 0.05 0.00 0.00 0.02 0.00 0.00 0.00
102kips 0.00 0.00 0.00 0.06 0.00 0.00 0.01 0.00 0.00 0.00
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Quad-Axle Load Distribution (Percentages) for Each Truck Class

Class 4 5 6 7 8 9 10 11 12 13
12kips 0.00 0.00 0.00 3.04 0.00 0.00 9.31 0.00 0.00 0.00
15kips 0.00 0.00 0.00 1.23 0.00 0.00 0.37 0.00 0.00 0.00
18kips 0.00 0.00 0.00 1.42 0.00 0.00 0.73 0.00 0.00 0.00
21kips 0.00 0.00 0.00 2.28 0.00 0.00 0.84 0.00 0.00 0.00
24kips 0.00 0.00 0.00 2.38 0.00 0.00 3.96 0.00 0.00 0.00
27Kips 0.00 0.00 0.00 2.13 0.00 0.00 3.89 0.00 0.00 0.00
30kips 0.00 0.00 0.00 2.65 0.00 0.00 13.24 0.00 0.00 0.00
33kips 0.00 0.00 0.00 3.33 0.00 0.00 17.85 0.00 0.00 0.00
36kips 0.00 0.00 0.00 4.27 0.00 0.00 12.34 0.00 0.00 0.00
39kips 0.00 0.00 0.00 6.39 0.00 0.00 14.77 0.00 0.00 0.00
42kips 0.00 0.00 0.00 7.97 0.00 0.00 7.00 0.00 0.00 0.00
45Kips 0.00 0.00 0.00 9.11 0.00 0.00 5.66 0.00 0.00 0.00
48kips 0.00 0.00 0.00 [ 10.07 0.00 0.00 6.20 0.00 0.00 0.00
51kips 0.00 0.00 0.00 [ 10.54 0.00 0.00 0.64 0.00 0.00 0.00
54kips 0.00 0.00 0.00 8.74 0.00 0.00 0.61 0.00 0.00 0.00
57kips 0.00 0.00 0.00 6.66 0.00 0.00 0.74 0.00 0.00 0.00
60kKips 0.00 0.00 0.00 5.38 0.00 0.00 0.09 0.00 0.00 0.00
63Kips 0.00 0.00 0.00 4.25 0.00 0.00 121 0.00 0.00 0.00
66kips 0.00 0.00 0.00 2.52 0.00 0.00 0.17 0.00 0.00 0.00
69Kips 0.00 0.00 0.00 1.73 0.00 0.00 0.38 0.00 0.00 0.00
72Kips 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00
75Kips 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.00 0.00
78Kips 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 0.00
81kips 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00
84kips 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00
87kips 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00
90kKips 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00
93kips 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00
96kips 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00
99Kips 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00
102kips 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
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All-Axle Load Distribution (Percentages) for Each Truck Class

Class 4 5 6 7 8 9 10 11 12 13
3kips 3.82 26.47 | 42.37 20.17 18.02 28.43 25.52 9.90 5.83 7.05
4kips 5.37 12.00 15.60 17.67 9.92 21.70 13.50 13.65 1410 | 18.47
5kips 7.62 7.12 12.37 14.33 8.98 14.45 11.82 14.30 16.78 | 14.75
6kips 9.40 5.87 9.37 10.83 7.40 10.30 10.58 13.42 13.37 | 14.67
7kips 14.87 5.45 6.33 7.20 6.67 6.92 7.68 10.45 9.83 8.52
8kips 14.33 7.15 3.93 6.27 6.27 4.50 5.83 7.87 6.60 5.97
9kips 11.18 2.88 2.77 5.07 5.22 2.90 4.83 6.28 5.32 7.83
10kips 7.53 2.43 2.07 4.10 4.37 2.02 3.85 4.90 4.12 4.55
11kips 6.12 1.18 1.53 2.67 3.42 1.52 3.28 3.55 3.03 3.30
12kips 4.12 4.63 1.00 1.80 3.10 1.15 2.72 3.05 2.43 3.48
13kips 2.18 2.17 0.57 1.37 2.40 0.88 1.85 2.47 1.98 2.12
14kips 2.13 2.17 0.33 1.37 1.98 0.65 1.42 1.68 1.50 1.67
15Kips 1.22 4.88 0.27 1.37 1.80 0.50 1.22 0.90 1.22 1.47
16kips 1.58 1.53 0.13 0.97 1.63 0.38 0.95 1.17 1.13 1.00
17kips 1.32 0.65 0.20 0.90 1.43 0.30 0.65 0.63 0.90 1.18
18kips 1.32 1.28 0.07 1.10 1.05 0.22 0.50 0.98 0.80 0.82
19Kips 0.50 3.12 0.03 0.33 1.12 0.20 0.45 0.77 0.68 0.42
20kips 0.05 1.85 0.03 0.43 0.97 0.17 0.35 0.72 0.67 0.25
21Kips 0.92 0.00 0.00 0.40 0.88 0.13 0.33 0.17 0.60 0.27
22Kips 0.80 0.00 0.00 0.17 0.90 0.10 0.27 0.30 0.55 0.37
23kips 0.03 0.00 0.00 0.27 0.80 0.10 0.18 0.27 0.48 0.28
24Kkips 0.85 0.63 0.00 0.03 0.72 0.10 0.17 0.27 0.48 0.13
25Kips 0.25 0.00 0.00 0.07 0.72 0.08 0.12 0.27 0.47 0.22
26kips 0.05 0.00 0.00 0.03 0.55 0.08 0.12 0.17 0.42 0.03
27kips 0.25 0.00 0.00 0.13 0.53 0.08 0.08 0.05 0.37 0.03
28kips 0.00 0.00 0.00 0.00 0.48 0.08 0.03 0.03 0.38 0.02
29Kips 0.00 0.00 0.00 0.03 0.43 0.05 0.03 0.05 0.35 0.02
30kips 0.00 1.27 0.00 0.00 0.50 0.05 0.03 0.03 0.35 0.07
31kips 0.00 0.00 0.00 0.07 0.45 0.05 0.03 0.08 0.33 0.00
32kips 0.00 0.00 0.00 0.00 0.45 0.05 0.00 0.10 0.32 0.00
33kips 0.00 0.00 0.00 0.00 0.38 0.05 0.02 0.00 0.30 0.00
34kips 0.00 0.00 0.00 0.00 0.38 0.03 0.02 0.00 0.27 0.00
35kips 0.00 1.85 0.00 0.00 0.40 0.03 0.00 0.00 0.25 0.00
36kips 0.00 0.00 0.00 0.00 0.30 0.03 0.03 0.00 0.25 0.00
37Kips 0.00 0.00 0.00 0.00 0.35 0.03 0.02 0.03 0.22 0.00
38kips 0.00 1.27 0.00 0.00 0.35 0.03 0.00 0.02 0.22 0.00
39kips 0.00 0.00 0.00 0.00 0.35 0.02 0.00 0.00 0.22 0.00
40kips 0.00 0.00 0.00 0.00 0.33 0.03 0.00 0.02 0.18 0.00
41kips 1.23 1.27 0.00 0.10 2.52 0.28 0.12 0.22 1.48 0.02
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Average Axle Weight (kip) and Average Axle Spacing (inches)

Class 4 5 6 7 8 9 10 11 12 13
W1 14.70 5.33 7.78 9.44 8.51 8.44 8.08 8.60 9.62 6.66
W2 13.88 5.12 6.20 7.55 10.98 6.14 581 | 12.21 7.23 5.59
W3 9.26 0.00 6.20 7.51 10.03 6.00 5.71 | 12.88 7.66 5.77
W4 0.00 0.00 0.00 7.73 6.64 5.76 497 | 11.25 9.71 5.19
W5 0.00 0.00 0.00 4.39 0.00 5.73 490 | 11.31] 11.35 5.57
W6 0.00 0.00 0.00 0.00 0.00 0.00 5.24 0.00 8.74 7.08
W7 0.00 0.00 0.00 0.00 0.00 0.00 2.47 0.00 0.00 6.31
W8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.79
W9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20
S12 23.18 13.06 18.97 5.68 12.35 13.88 | 13.85| 10.42 | 12.58 9.45
S23 3.70 0.00 3.24 | 20.55 18.41 3.93 3.64 | 17.62 4.05 5.28
S34 0.00 0.00 0.00 3.35 14.91 27.22 | 19.77 794 17.31 7.50
S45 0.00 0.00 0.00 1.85 0.00 4.21 5.67 | 17.98 8.78 | 10.96
S56 0.00 0.00 0.00 0.00 0.00 0.00 3.50 0.00 | 18.88 6.27
S67 0.00 0.00 0.00 0.00 0.00 0.00 1.88 0.00 0.00 5.62
S78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.09
S89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.58

Average Axle Spacing (inches) and Average Number of Axle Types

Class 4 5 6 7 8 9 10 11 12 13
S12 23.18 13.05 18.98 5.68 12.36 13.88 13.85 10.43 12.62 9.45
S23 3.70 0.00 3.24 | 20.59 18.41 3.93 3.64 17.61 4.05 5.28
S34 0.00 0.00 0.00 3.35 14.92 27.22 19.82 7.93 17.33 7.50
S45 0.00 0.00 0.00 1.85 0.00 4.21 5.66 8.97 8.78 | 10.96
S56 0.00 0.00 0.00 0.00 0.00 0.00 3.50 0.00 18.90 6.27
S67 0.00 0.00 0.00 0.00 0.00 0.00 1.88 0.00 0.00 5.62
S78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.09
S89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.58
Single 1.78 2.00 1.00 1.75 2.36 1.27 1.05 4.74 3.72 2.10
Tandem 0.22 0.00 1.00 0.75 0.63 1.86 1.03 0.08 1.09 1.08
Tridem 0.00 0.00 0.00 0.12 0.00 0.00 0.92 0.03 0.02 0.45
Quad 0.00 0.00 0.00 0.12 0.00 0.00 0.02 0.00 0.01 0.15
Quinate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
Hexad 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.14
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