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Abstract. We investigate the problem of Gaussian Markov random field
selection under a non-analytic constraint: the estimated models must be
compatible with a fast inference algorithm, namely the Gaussian be-
lief propagation algorithm. To address this question, we introduce the
⋆-IPS framework, based on iterative proportional scaling, which incre-
mentally selects candidate links in a greedy manner. Besides its intrinsic
sparsity-inducing ability, this algorithm is flexible enough to incorporate
various spectral constraints, like e.g. walk summability, and topologi-
cal constraints, like short loops avoidance. Experimental tests on var-
ious datasets, including traffic data from San Francisco Bay Area, in-
dicate that this approach can deliver, with reasonable computational
cost, a broad range of efficient inference models, which are not accessible
through penalization with traditional sparsity-inducing norms.

Keywords: Iterative proportional scaling, Gaussian belief propagation,
walk-summability, Gaussian Markov Random Field.

1 Introduction

The Gaussian belief propagation algorithm [2] (GaBP) is an efficient distributed
inference algorithm, well adapted to online inference on large scale Gaussian
Markov random fields (GMRF). However, since it may encounter convergence
problems, especially with non-sparse structures, it can be of practical interest to
construct off-line a GMRF which is compatible with GaBP. When selecting such
a model from observations, we potentially face a difficult constrained problem.
In the present work, we propose to solve it in an approximate but satisfactory
manner, with good accuracy and limited computational cost. To achieve this,
we combine various methods, which have been discussed in the context of sparse
inverse covariance matrix estimation [1, 7, 15].

The GMRF distribution is naturally characterized by a mean vector µ ∈ R

and a positive definite precision (or concentration) matrix A, which is simply
the inverse of the covariance matrix C. Zero entries in the precision matrix
A indicate conditionally independent pairs of variables. This gives a graphical
representation of dependencies: two random variables are conditionally indepen-
dent if, and only if, there is no direct edge between them. Observations are
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summarized in an empirical covariance matrix Ĉ ∈ R
N×N of a random vector

X = (Xi)i∈{1,...,N}, and we look for a GMRF model with sparse precision matrix
A. The model estimation problem can be expressed as the maximization of the
log-likelihood:

A = argmax
M∈Sbp

++

L(M), L(M)
def
= log det(M)− Tr(MĈ),

where Sbp

++ formally represents the set of positive definite matrices corresponding
to some GaBP-compatible GMRF.

Without any constraint on M, the maximum likelihood estimate is trivially
A = Ĉ−1. However, enforcing sparsity with simple thresholding of small magni-
tude entries may easily ruin the positive definiteness of the estimated precision
matrix. In the context of structure learning, where meaningful interactions have
to be determined, for instance among genes in genetic networks, the maximiza-
tion is classically performed on the set of positive definite matrices, after adding
to the log-likelihood a continuous penalty function P that imitates the L0 norm.
The Lasso penalty, a convex relaxation of the problem, uses the L1 norm, mea-
suring the amplitudes of off-diagonal entries in A [7, 9]. Various optimization
schemes have been proposed to solve it efficiently [1, 7]. However, the L1 norm
penalty suffers from a modeling bias, due to excessive penalization of truly large
magnitudes entries of A. To overcome this issue, concave functions, that per-
form constant penalization to the large magnitudes, have been proposed. Exper-
imental results indicate promising improvements compared to Lasso penalty by
reducing bias, while conserving the sparsity-introducing capability [6, 11].

In our context, where compatibility with GaBP has to be imposed, sparsity
is a desirable feature, albeit without much guarantee: specific topological proper-
ties, like the presence of short loops, are likely to damage the GaBP compatibil-
ity, even on a sparse graph. Some spectral properties, e.g. walk-summability [12],
which guarantee the compatibility with GaBP based inference, might be rele-
vant too. In order to incorporate these explicitly, we propose an efficient con-
strained model selection framework called ⋆-IPS, where ⋆ stands for the imposed
constraints. Approaches based on the iterative proportional scaling (IPS) pro-
cedure [17] have already been discussed for tackling the original sparse inverse
covariance matrix problem [10, 15]. A first contribution of this paper is to im-
prove its performance by combining it with block update techniques used in [1, 7],
along with providing some precision guarantee based on duality. Our second and
main contribution is to exploit the incremental nature of the method to impose,
for a reasonable cost, both topological and/or spectral constraints, to generate
GMRF models compatible with GaBP, achieving a very good trade-off between
computational cost and precision in inference tasks, as shown experimentally.

The paper is organized as follows. The principles of IPS are described in
Section 2. Our method includes a likelihood maximization step at fixed graph
structure, for which we give a stopping criterion based on duality. In Section 3,
we propose several constraints improving GaBP compatibility of the estimated
models, and show how to introduce them in our framework. In Section 4, we
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describe ⋆-IPS as a whole, discuss its complexity and provide some implemen-
tation details. Finally Section 5 is devoted to numerical experiments, both on
synthetic data and on real traffic data coming from ≈ 103 fixed sensors in the San
Francisco Bay Area, to illustrate the use of the method for traffic applications.

2 IPS-Based GMRF Selection

Iterative proportional scaling has been proposed for contingency table estima-
tion [4] and extended further to MRF maximum likelihood estimation [17]. As-
suming the structure of the graph is known, it appears to be less efficient than
other gradient based methods [13]. Conversely, local changes based on single
row-column updates have been shown to be very efficient, even in the first order
setting [7]. In our work, we combine the benefits of the incremental character-
istics of IPS to identify links (Section 2.1), with the efficiency of row-column
update to optimize their parameters at fixed structure (Section 2.2).

2.1 Optimal 1-Link Perturbation

Suppose that we are given a set of single and pairwise empirical marginals p̂i
and p̂ij from a real-valued random vector X = (Xi)i∈{1...N}, and a candidate
distribution P (n), based on the dependency graph G(n). Let us first describe op-
timal link addition in terms of likelihood. Let P (n) be the reference distribution,
to which we want to add one factor ψij to produce the distribution

P(n+1)(x) = P (n)(x)× ψij(xi, xj).

This is a special case of IPS and the optimal perturbation is

ψij(xi, xj) =
p̂ij(xi, xj)

p(n)

ij (xi, xj)
, (1)

where p(n)

ij is the (i, j) pairwise marginal of P (n). The correction to the log-
likelihood can then be written as a Kullback-Leibler divergence:

∆L = DKL(p̂ij‖p(n)

ij ) =

∫∫

p̂ij(u, v) log
p̂ij(u, v)

p(n)

ij (u, v)
dudv.

Sorting all the links w.r.t. this quantity yields the optimal 1-link correction to
be made. Hence, the best candidate is the one for which the current model yields
the joint marginal p(n)

ij that is most divergent from p̂ij . Note that the update
mechanism can in fact also be applied if the link is already present.

In the general case, computing the pairwise marginals {pij , (ij) /∈ G(n)} is
expensive. However, in the GMRF family, these marginals depend only on the
covariance matrix associated to P (n). The correction factor (1) reads in that case

ψij(xi, xj) = exp
[

−1

2
(xi, xj)

T
(

Ĉ−1
{ij} −C−1

{ij}

)

(xi, xj)
]

,
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where C{ij} (resp. Ĉ{ij}) represents the restricted 2 × 2 covariance matrix cor-
responding to the pair (Xi, Xj) of the current model P (n) (resp. of the empirical

distribution P̂) specified by precision matrix A = C−1 (resp. Â = Ĉ−1). Let
[C{ij}] denote the N × N matrix formed by completing C{ij} with zeros. The
new model obtained after adding or changing link (i, j) reads

A′ = A+ [Ĉ−1
{ij}]− [C−1

{ij}]
def
= A+ [V], (2)

with a log-likelihood variation given by:

∆L =
CiiĈjj + CjjĈii − 2CijĈij

det(C{ij})
− 2− log

det(Ĉ{ij})

det(C{ij})
. (3)

For a 2 × 2 perturbation matrix V = V{ij}, the Sherman–Morrison–Woodbury
(SMW) formula allows us to efficiently compute the new covariance matrix as

C′ = A′−1 = A−1 −A−1[C−1
{ij}]

(

I− [Ĉ{ij}][C
−1
{ij}]

)

A−1. (4)

The number of operations needed to maintain the covariance matrix – and to
keep track of all pairwise marginals – after each addition is therefore O(N2). This
technical point is determinant to the usefulness of our approach. The identity
det(A′) = det(A)×det(Ĉ{ij})/ det(C{ij}) ensures that the new precision matrix

remains definite positive when both C{ij} and Ĉ{ij} are non-degenerate.
It is also possible to remove links, so that, with help of a penalty coefficient

per link, the model can be optimized with a desired connectivity level. For a
GMRF with precision matrix A, removing the link (i, j) amounts to setting
the entry Aij to zero, and thus ψij(xi, xj) = exp

(

Aijxixj
)

. The corresponding
change of log-likelihood is then

∆L = log
(

1− 2AijCij −A2
ij det(C{ij})

)

+ 2AijĈij ,

and, using again the SMW formula, we get the new covariance matrix

C′ = C− Aij

1− 2AijCij −A2
ij det(C{ij})

C[B{ij}]C,

with

B{ij}
def
=

ñ
AijCjj 1−AijCij

1−AijCij AijCii

ô
.

In this case, the positive-definiteness of A′ needs to be checked and we have

det(A′) = det(A)
[

1− α
(

Cij −
√

CiiCjj

)

][

1− α
(

Cij +
√

CiiCjj

)

]

,

so that A′ is definite positive if the following condition is verified:

1

Cij −
√

CiiCjj

< Aij <
1

√

CiiCjj + Cij

.
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2.2 Block Updates

When a new link is added, existing links become detuned by a slight amount.
As pointed out, the optimal update given in Section 2.1 is actually indifferent
to whether the considered link exists or not. This means that, after a while,
detuned links may be automatically updated if the likelihood gain exceeds the
one obtained by adding a new link. We observe in practice that, when many links
have been added, all the existing links are slightly detuned, which eventually
causes suboptimal or bad decisions for the next links, resulting in a significant
departure of the learning curve from the optimal one (see Fig. 2-left in Section 5).
However, correcting existing links can become very time consuming, the update
of one single link having the same computational cost O(N2) as the addition
of one link. There are various options to address this problem. To keep the
algorithm fast, robust and simple, we choose to stay with the logic of coordinate
descent, by remarking that local updates are still possible via a single row-
column update of the precision matrix, as originally proposed in [1] and refined
in [7]. In our context, the method is based on the following expression of the log
determinant of the precision matrix A:

log det(A) = log det(A\i\i) + log(Aii −AT
i A

−1
\i\iAi),

where A\i\i is the block matrix obtained after taking aside the ith row and

column andAi is the i
th column vector ofA without Aii. The direct optimization

of the log-likelihood w.r.t. Ai and Aii yields the following updated values:

A′
ii =

1

Ĉii

+AT
i A

−1
\i\iAi and A′

i =
[

IV (i)A
−1
\i\iIV (i)

]−1
IV (i)

Ĉi

Ĉii

, (5)

where Ĉi represents the ith column vector of Ĉ, V (i) the set of neighbors of i
in the current graph, and IV (i) the identity restricted to entries j ∈ {i} ∪ V (i).

Note that this solution involve the inverse A−1
\i\i of a matrix of size N − 1. It is

related to C = A−1 as follows:

A−1
\i\i = C\i\i −

CiC
T
i

Cii

.

The overall cost for updating column (and row) i is thus O(|V (i)|3) for the
inversion of

[

IV (i)A\i\iIV (i)

]

and O(N2) to update the covariance matrix C

after this change. The log-likelihood gain ∆L reads

− log
î
Ĉii(Aii −AT

i A
−1
\i\iAi)

ó
−2(A′

i−Ai)
T Ĉi−

ï
1

Ĉii

+A′
i
TA−1

\i\iA
′
i −Aii

ò
Ĉii.

2.3 Stopping Criterion

If the set of links to be optimized is given by some graph G, the likelihood
optimization is a convex problem. Let us investigate its dual properties. Let A
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denote the precision matrix, and Π a Lagrange matrix multiplier, that imposes
the structure given by G. The support of Π is the complementary graph of G:
∀(i, j) ∈ G, Πij = 0, ∀i,Πii = 0 and Π is symmetric. Then, given Π, we want to
optimize

AΠ = argmin
M

Tr(MΠ) + f(M),

with f(M)
def
= Tr(MĈ) − log det(M) being convex for given support G. The

explicit solution is

AΠ = (Ĉ+Π)−1. (6)

We assume thatΠ is such that Ĉ+Π is positive definite, so the dual optimization

problem reads Y = argmaxΠ g(Π), with g(Π)
def
= N + log det(Ĉ + Π). The

problem is now concave and, because of the barrier resulting from the log term,
we are certain to have a positive definite solution. Thus, for any matrix Π, such
that Ĉ+Π is definite positive, g(Π) is a lower bound of the log-likelihood. The
support of Π represents the set of links to be removed from the precision matrix.
Once optimality is reached forΠ, all non-zero entriesΠij correspond to vanishing
coefficients Aij in (6). We may proceed as before, by computing the potential
log-likelihood gain ∆L for such local transformations of the covariance matrix.
Local moves in the dual formulation deal with the covariance matrix instead of
the precision matrix in the primal one. Let C and C′ be two covariance matrices
differing by a single modification on Π with A = C−1 and A′ = C′−1. We have

det(C′) = det(C)
(

1 + 2ΠijAij −Π2
ij det(A{ij})

)

,

with det(A{ij}) > 0, since A is definite positive. Maximizing the log-likelihood
variation yields the optimal values

Πij =
Aij

det(A{ij})
and ∆L = log

Ç
1 +

A2
ij

det(A{ij})

å
.

In practice, we will not use this backward scheme: its computational cost is
prohibitive, since the complementary graph, composed of links to be removed, is
dense. However, this dual formulation will help us to build a confidence interval.
During the greedy procedure, we always have to maintain C = A−1 but C

cannot be used directly to get a dual cost because, except at convergence, it
does not fulfill the dual constraints Cij = Ĉij , ∀(i, j) ∈ G.

Let Π‖ be the correction matrix with coefficients Π
‖
ij

def
= (Ĉij−Cij)11{(i,j)∈G}.

Provided that C̃
def
= A−1 + Π‖ is definite positive, which happens when A is

close enough to the optimum A⋆, it satisfies the dual constraints yielding the
confidence bound

log det(C̃) +N ≤ −L(A⋆) ≤ Tr(AĈ)− log det(A).

We have

log det(C̃) = − log det(A) + log det
Ä
I+AΠ‖

ä
,
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with both A and Π‖ sparse matrices, so the determinant can be estimated in
O(N2K) operations by expanding the logarithm at order 2 in AΠ‖. It leads to
the following bound

∆L ≤ 1

2
Tr

(

AΠ‖AΠ‖
)

,

which will be used in practice as a stopping criterion for the link updates.

3 Introducing Constraints for GaBP Compatibility

Usually, GMRF estimation intends to describe a dependency structure. We pur-
sue here another aim: finding a model suitable for fast inference. While inference
in GMRF models can always be performed exactly in O(N3) through matrix
inversion, this may not be fast enough for some “real-time” applications on
large networks. The GaBP algorithm [2] is a fast alternative to matrix inversion
for sparse GMRF, which uses message passing along links in the graph G, and
thus, assuming it converges, will perform the inference in O(mKN), where K
is the mean connectivity of G and m the maximum number of iterations before
convergence. An important property of the GaBP algorithm is that, whenever
it converges, it provides the exact mean values for all variables [18]. Variances
are however generally incorrect [12]. Having a sparse GMRF gives no guarantee
about its compatibility with GaBP, so we need to impose more precise con-
straints on the precision matrix and to the graph structure. In this section, we
make such constraints explicit and show how to impose them in the framework
of Section 2.

3.1 Spectral Constraints

The most precise condition known for convergence of GaBP is walk-summability

(WS) [12]. Let R(A)
def
= A − diag(A) contain the off-diagonal terms of A, and

let ρ(·) denote the spectral radius of a matrix, that is, the maximal modulus of
its eigenvalues. The two equivalent necessary and sufficient conditions for WS
that we will use are:

(i) The matrix W(A)
def
= diag(A)− |R(A)| is definite positive;

(ii) ρ(|R′(A)|) < 1, with R′(A)ij
def
=

R(A)ij√
AiiAjj

.

Let us consider a GMRF with WS precision matrix A and investigate under
which conditions the model remains WS after a perturbation of a link (i, j). The
following proposition gives a sufficient condition:

Proposition 1. Let A be a WS precision matrix and denote W
def
= W(A). The

matrix A′ = A+ [V{ij}] is WS if

Θ(α) > 0, ∀α ∈ [0, 1], (7)
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where Θ is the following function

Θ(α)
def
= det(W−1

{ij})
(

α2ViiVjj − (|Aij | − |αVij +Aij |)2
)

+ α
Ä
W−1

ii Vii +W−1
jj Vjj

ä
+ 2 (|Aij | − |αVij +Aij |)Wij . (8)

In order to check condition (7), it is necessary to solve two quadratic equations.
Note however that knowledge of the matrix W(A)−1 is also mandatory. We will
discuss this point at the end of this section.

Proof. The sufficient condition is obtained as follows: for α ∈ [0, 1] we have

W(A+ αV) = W(A) + [φ(αV,A)],

with

φ(V,A)
def
=

ï
Vii |Aij | − |Vij +Aij |

|Aij | − |Vji +Aji| Vjj

ò
.

W(A) being invertible, the determinant of W(A+ αV) is expressed as

det(W(A+ αV)) = det (W(A)) det
(

I+W(A)−1[φ(αV,A)]
)

,

and we can check that Θ(α) = det(I + W(A)−1[φ(αV,A)]), with Θ defined
in (8). The spectrum of W(A + αV) being a continuous function of α, as the
roots of a polynomial, the condition (7) follows.

Note that the special case of removing one link of the graph always pre-
serves the WS property. Indeed, it will change the matrix A in A′ such as
|R′(A′)| ≤ |R′(A)| where ≤ denotes element-wise comparison. Then, using el-
ementary results on positive matrices [16, p. 22], ρ(|R′(A′)|) ≤ ρ(|R′(A)|) and
thus A′ is WS whenever A is WS.

As we shall see in the numerical experiments, imposing WS is generally too
restrictive. It is easy to find non WS models which are still GaBP compatible.
The above principle allows us however to impose a weaker spectral constraint:
imposing that the matrix diag(A) − R(A) remains definite positive. This is
equivalent to constrain the spectral radius ρ(R′(A)) to be strictly lower than 1
and it is a necessary condition for GaBP convergence [12]. We call that condi-
tion “weak walk-summability” (WWS) as a relaxation of the WS condition. We
obtain the following condition

Proposition 2. Let A be a WWS precision matrix, i.e. such as ρ(R′(A)) < 1,

and S(A)
def
= diag(A)−R(A). The matrix A′ = A+ [Vij ] is WWS if

Γ (α) > 0, ∀α ∈ [0, 1], (9)

with Γ the following degree 2 polynomial and S
def
= S(A)

Γ (α)
def
= α2 det(VS−1

{i,j}) + α(ViiS
−1
ii + VjjS

−1
jj − 2VijS

−1
ij ) + 1.
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In order to check condition (9), we have to solve a quadratic equation. As in
Proposition 1, we need to keep track of an inverse matrix, in this case S(A)−1.

Proof. Mimicking the proof of Proposition 2, we define, for α ∈ [0, 1],

M(α)
def
= diag(A+ α[V])−R(A+ α[V]) = S(A) + α diag([V])−R([V]),

and we have

det(M(α)) = det(S(A)) det
(

I+ αS−1 [diag(V)−R(V)]
)

= det(S(A))Γ (α).

The spectrum of M(α) being a continuous function of α, condition (9) follows.

Both (7) and (9) are only sufficient conditions for spectral constraint conser-
vation after a pairwise perturbation. However, there are only a few cases where
they lead to rejection of a valid perturbation. Indeed, it means that at least one
eigenvalue goes to zero for some α ∈]0, 1[ and is positive again for α = 1.

We have pointed out that checking sufficient condition (7) (resp. (9)) imposes
to keep track of the inverse matrixW(A)−1 (resp. S(A)−1). This will not impact
the overall complexity of the algorithm since, using the SMW formula, it can be
done in O(N2) operations, like for keeping track of the covariance matrix.

Note that, if we want to maintain these spectral constraints, we will not be
able in practice to use the column updates described in Section 2.2. Indeed,
computing the optimal perturbation is in this case costly, and we have no easy
way to check whether it leads to a new admissible model, since our method
would involve higher order characteristic polynomials.

3.2 Topological Constraints

We present in this section another approach, based mainly on empirical knowl-
edge about the belief propagation algorithm. Belief propagation has been de-
signed as an exact procedure on trees [14] and short loops are usually believed
to cause convergence troubles. In the extreme case, where we forbid the addition
of any loop, the best precision matrix estimate based on likelihood is known to
be the max-spanning tree w.r.t. mutual information [3]. Since this is usually not
enough, we propose here that the estimated precision matrix contains no loops
of size smaller than ℓ. This is quite easy to impose: when adding a link (i, j), we
have to search if i is in the neighborhood of j of depth ℓ− 1. The computational
cost is O(Kℓ), with K the connectivity of G.

We can impose a more precise condition using the fact that, in the absence of
frustrated loops, the GaBP algorithm is always convergent [12]. A frustrated loop
is a loop along which the product of partial correlations is negative. Preventing
the formation of frustrated loops is very similar to the previous loop constraint;
the search cost is the same, the only difference is that we will avoid only this
kind of loops. This last constraint cannot be imposed with guarantees during
the block updates since the sign of partial correlations along edges may change.
Prohibiting frustrated loops would require to store all the loops in the graph,
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which is by far too costly. However, experimental results show that a change of
sign usually corresponds to small partial correlations, which are less likely to
cause convergence issues.

4 Algorithm Description and Complexity

In this section, we give an overview of ⋆-IPS, leaving aside the backtracking
option. A formal implementation4 is given in Algorithm 1. Note that we suppose
that the initial point of the algorithm corresponds to an empty graph. We may
as well start from any precision matrix A, provided that we have computed
C = A−1 and W(A)−1 or S(A)−1 if we want to impose spectral constraints.

Algorithm 1 ⋆-constrained Iterative Proportional Scaling (⋆-IPS). The func-
tion Check constraint returns true if the perturbation of Ûı leads to a model
compatible with the given constraint ⋆.

Inputs: ⋆: constraint type (∅, WS, WWS, ℓ-LOOP, ℓ-FLOOP);
Ĉ: empirical covariance matrix.

Parameters: ǫ and ǫu: stopping criteria on the log-likelihood and for the update step;
δK: connectivity increment after which an update step is performed.

1: A = C = W−1 = S−1 = diag(1).
2: while ∆Lmax > ǫ and niter < nmax do

3: ∆Lmax ← 0, niter ← niter + 1
4: for all pairs of nodes Ûı do
5: compute ∆Lij using (3)
6: if ∆Lij > ∆Lmax then

7: if Check constraint(⋆, Ûı,A) then
8: ∆Lmax ← ∆Lij and V← [V{i,j}] defined in (2)
9: A← A+V, update C using (4).
10: if ⋆ = WS or WWS then

11: update W−1 or S−1 using the SMW formula.
12: if connectivity has increased by δK then

13: while Tr
(

AΠ‖AΠ‖
)

> ǫu do

14: for Ûı | Aij 6= 0 do

15: ∆Lmax ← 0, compute ∆Lij using (3)
16: if ∆Lij > ∆Lmax then

17: if Check constraint(⋆, Ûı,A) then
18: ∆Lmax ← ∆Lij and V← [V{i,j}] defined in (2)
19: if ⋆ = WS or WWS then

20: A← A+V, update C and W−1 or S−1 using the SMW formula.
21: else

22: Block updates (5) of i and j corresponding to ∆Lmax. Update C using
the SMW formula.

4 The source code is available at http://www.rocq.inria.fr/~lasgoutt/star-ips/.
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Let us clarify the complexity of this algorithm. Each link addition or update
has a cost O(N2) to update the covariance matrix. If spectral constraints are
imposed, it is necessary to keep track of another inverse matrix, which requires as
well O(N2) operations and does not change the complexity. AddingM links will
therefore require at least O(MN2) operations. This means that our algorithm
complexity is in O(N3) in the sparse regions, whereas it becomes O(N4) in
the dense ones. Note that this complexity does not take into account the time
spent in link updates. As pointed out in Section 2.2, this update step is useful
to avoid departing from the optimal learning curve. For a given bound ǫu, we
observe numerically that the number of updates is O(N), regardless of the mean
connectivity in the sparse regime, so this adds up another O(N3) computational
cost. Note that the critical parts of the algorithm, which are the update of the
covariance matrix and the search for the perturbation that maximizes likelihood
increase, can easily be parallelized.

Let us anticipate on the application to emphasize the usefulness of our algo-
rithm, which complexity is comparable to a direct covariance matrix inversion.
Suppose that the workflow is:

1. select off-line a GMRF model based on an empirical covariance matrix;
2. use the above model to perform inference for a “real-time” application (which

here means at most a few minutes).

We may allow the first task to take a few hours, and thus matrix inversion
is acceptable for quite large networks. However, the resultant model will not be
suited to GaBP in the inference task and we will have to resort to exact inference,
through a matrix inversion of complexity O((N −no)

3), where no is the number
of observed variables. Using our sparse GaBP-compatible model instead, with
a mean connectivity K, the approximate inference complexity O(mK(N − no))
will then typically scale down from a few hours to a few seconds or a few minutes
depending on the needed precision.

5 Experimental Results

To have some elements of comparison, let us first quickly describe traditional
ways to tackle the maximum likelihood estimation problem with penalty-induced
sparsity constraints. It involves a maximization of the form

A = argmax
M∈S++

log det(M)− Tr(MĈ) + λP (M),

where S++ is the set of positive definite matrices. A classical penalization func-
tion P is a continuous approximation to the discrete L0 norm like the “seamless
L0 penalty” (SELO) proposed in [11]

P (x) = log

Å
2|x|+ τ

|x|+ τ

ã
.
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In the following, we set τ = 5.10−3, which is empirically good enough. We pro-
pose to use the Doubly Augmented Lagrange method [5] to solve this penalized
log-determinant programming.

The second method used for comparison is QUIC [9], which uses the L1 norm
as penalty. This is a second order optimization method, leading to superlinear
convergence rates. We perform it directly on the empirical covariance matrix with
different values for the regularization coefficient λ. Once the structure has been
found, it is necessary to maximize the likelihood. According to our experiments,
L1 norm penalty leads to poor precision matrices in terms of likelihood, even if
it may be very efficient to find an existing sparse graph structure.

We can now compare the performance of ⋆-IPS and sparsity penalized like-
lihood optimization. For generating one single GMRF with a given designed
sparsity level, both methods are comparable in terms of computational cost,
while ⋆-IPS is faster in very sparse regime. Due to its incremental nature, it also
has the advantage of generating a full Pareto set of approximate solutions. To
assess the quality of the ⋆-IPS model selection, we first look into data fitting ac-
curacy through log-likelihood, and then investigate its compatibility with GaBP
inference.
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Fig. 1. Left: Log-likelihood L as a function of mean connectivity K for ⋆-IPS with
different constraints, SELO and QUIC, all computed from the exact covariance matrix
C. Right: Kullback-Leibler divergence to the actual distribution as a function of mean
connectivity (estimations based on an empirical covariance matrix Ĉ, generated with
1000 samples). The end of GaBP compatibility for each algorithm is indicated by ×’s.

Likelihood and GaBP Compatibility Trade-off. The first test is performed on a
randomly generated GMRF of 100 variables. The structure of its precision matrix
is an Erdős-Rényi random graph, where each link is assigned a value with random
sign and magnitude (between 0.1 and 0.8). A diagonal term is added to make
it definite positive. The results of the different algorithms are shown in Fig. 1.
Both SELO and IPS algorithm are able to find the true graph with the exact
covariance matrix. As expected, WS is a very strict constraint and yields low
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connectivity models. Using WWS instead yields better GaBP compatibility, but
provides no guarantee about it. However, this constraint can be enough to get
a GaBP-compatible model with (almost) maximal likelihood (Fig. 1-right). For
both models, QUIC is clearly sub-optimal regarding sparsity/likelihood trade-off.
Fig. 1-right illustrates ⋆-IPS performance in terms of overfitting. This overfitting
starts after the Kullback-Leibler divergence reaches a minimum. This can happen
as well as before as after the end of GaBP compatibility. Detecting this point is a
classical but difficult statistical problem and further investigations are needed to
find the best criterion adapted to our case. The second test (Fig. 2) is performed
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Fig. 2. Left: log-likelihood L as a function of mean connectivityK. Right: mean relative
L1 reconstruction error as a function of the fraction of observed stations on the San
Francisco Bay Area network for various methods; results are averaged over 100 sample
test experiments and normalized by the score obtained with daytime moving average
predictor.

on traffic data from the San Francisco Bay Area5. Each sample data is a N -
dimensional vector of observed speeds {V̂i, i = 1 . . . N}, giving a snapshot of
the network at a given time of the day, as measured by a set of fixed sensors.
After filtering out inactive sensors, we finally kept 1020 variables, for which we
had data from January to June 2013. The travel time distribution at each link,
being bounded with heavy tail, is far from being Gaussian. In order to work with
normal variables, we make the following transformation

Yi = Φ−1
(1 + F̂i(Vi)

2

)

, ∀i = 1 . . . N, (10)

which maps the speed Vi to the positive domain of a standard Gaussian variable
Yi, where F̂i and Φ are respectively the cumulative distribution functions of
the speeds and of a normal distribution. The input of the algorithms we are
comparing is the covariance matrix of the vector Y. This mapping is important
to use the selected GMRF for the inference tasks in the next section.

5 Available at the Caltrans PeMS website: http://pems.dot.ca.gov/.
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Fig. 2-left compares the performance of some ⋆-IPS variants with methods
based on penalized norms. IPS with update but no constraint is comparable to
SELO optimization, albeit much faster to generate the Pareto set, while QUIC
is by far the weakest contender. In fact, QUIC is not performing well because,
in this case, there is no true underlying sparse dependency graph. Both IPS
and SELO loose the compatibility with GaBP at low likelihood and mean con-
nectivity (respectively at K < 6.5 and K < 4). By contrast, imposing the “no
frustrated loops of size 3” constraint (3-FLOOP-IPS) yields a nearly optimal
L(K) path, up to some flat regime, which endpoint is still GaBP compatible.
This is the best trade-off which can be found among all constraints that we have
tested. While the WS constraint is again too restrictive, we notice that WWS
yields models which are all the way compatible, but with a suboptimal L(K)
path. This is partly due to the absence of block updates, replaced by less efficient
local updates. Actually, we see that the WWS L(K) roughly follows the one ob-
tained with ∅-IPS (no update at all), which also delivers only GaBP-compatible
models. Our interpretation is that updating the links has the effect of reducing
some uncorrelated noise otherwise present in the approximate model. At some
point, it may spoil the GaBP compatibility because of stronger correlations being
taken into account.

Inverse Models for GaBP Inference. Our original motivation for this work is to
provide models for travel time inference for large scale traffic network in real
time [8]. In this application, from an historical data set, we have to build a
GMRF reflecting the mutual information between traffic levels among different
segments of the traffic network. Then, in real time, GaBP runs on this GMRF
to propagate the information given by observed segments to the other ones.

In our experiment with PeMS data, both the historical and test data sets con-
tain samples of a N -dimensional vector of 5-minutes averaged speeds, obtained
from fixed sensors. Given a sample, for which a proportion ρ of the variables is
observed, we want to infer the states of the (1 − ρ)N unobserved variables. In
practice, we proceed gradually on each test sample, by revealing the variables in
a random order, and plot the relative L1 error |v̂ − v|/v made by the inference
model on the unobserved variables as a function of ρ, aggregated over 100 dif-
ferent test samples. The error is measured on the speed, after inference has been
done in the space defined by (10).

In principle, ⋆-IPS does not require complete samples and even knowledge
of the whole covariance matrix is actually not mandatory. But, for this highway
dataset, the samples have no missing values, which allows us to use a brute
force k-NN predictor for the sake of comparison. The setting for k-NN is as
follows: k samples out of the whole training set are selected according to their
mean L1 distance on the observed variables. Then, for each unobserved variable,
the median value is extracted from the k selected samples as a predictor. In
the experiments, the value k = 70 has been determined to yield the best k-NN
predictions.

Fig. 2-right compares the prediction made by ⋆-IPS with the respective re-
sults of SELO, full inverse covariance matrix model and k-NN. GMRF models
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Fig. 3. Mean relative L1 reconstruction error as a function of log-likelihood (left) and
of computational time cumulated over 100 experiments (right). The different results
for k-NN are obtained with historical datasets of sizes 103, 2.103, 5.103, 104 and 3.104.

and k-NN behave very differently. k-NN seems to capture rapidly (ρ ≤ 0.1) the
global network behavior, but remains flat after that, despite the additional in-
formation. By contrast, GMRF models performance always improves with new
information, because of their local nature. Moreover, while constraints applied
to IPS offer us more precise models, the role of L as proxy is not completely
respected. This is due to overfitting problems: as we can see, the full inverse
covariance matrix model behaves worse than the K = 6.5 model obtained by
simple IPS. This appears clearly in Fig. 3-left, where the prediction error reaches
a minimum before increasing again with L. Finally, Fig. 3-right shows various
trade-offs between precision and efficiency of the models. We clearly see that
⋆-IPS extracts more precise and less time-consuming models for traffic states
reconstruction. For instance, the highest precision is obtained with WWS-IPS
for K ≈ 50, leading to a 10-fold time reduction of the computational time w.r.t.
the full inverse covariance model, with a gain of 5% in precision.

6 Conclusion

In this paper, we revisit IPS and show that it provides an efficient framework to
find GMRF models with constraints more specific than sparsity. Comparisons
show the merits of the proposed ⋆-IPS in terms of flexibility, likelihood values
reached and diversity of solutions, since a Pareto set can be delivered for the
computational cost of one estimation.

In terms of trade-off between sparsity and likelihood, ⋆-IPS is comparable to
the SELO approach, with less computational cost. In contrast, L1 based methods
do not provide satisfying results in our problem setting.

In addition, the flexibility of ⋆-IPS allows one to embed additional and rather
exotic but useful constraints for GaBP compatibility, which is not simple to do
with traditional penalized likelihood approaches. Experiments show that both
topological and spectral constraints are useful. While the walk-summability
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constraint seems too strict to be useful in practice, relaxing it to weak walk-
summability leads to very good models. At the same time, avoiding only frus-
trated triangles give very satisfactory results in our experiments.

Still in this context, the overfitting problem seems completely open to us.
Classical information-theoretic criteria failed in our tests to locate properly
where to stop in the incremental link addition process. In fact, we observe that
both the link-addition and the link-update procedure can lead to overfitting, and
the design of a specific criterion able to avoid this deserves further investigation.
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