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Abstract

With the imminent slowing down of DRAM scaling,
Phase Change Memory (PCM) is emerging as a lead alterna-
tive for main memory technology. While PCM achieves low
energy due to various technology-specific advantages, PCM
is significantly slower than DRAM (especially for writes) and
can endure far fewer writes before wearing out. Previous
work has proposed to use a large, DRAM-based hardware
cache to absorb writes and provide faster access. However,
due to ineffectual caching where blocks are evicted before
sufficient number of accesses, hardware caches incur signifi-
cant overheads in energy and bandwidth, two key but scarce
resources in modern multicores. Because using hardware for
detecting and removing such ineffectual caching would incur
additional hardware cost and complexity, we leverage the OS
virtual memory support for this purpose. We propose a
DRAM-PCM hybrid memory architecture where the OS
migrates pages on demand from the PCM to DRAM. We call
the DRAM part of our memory asMigrantStore which
includes two ideas. First, to reduce the energy, bandwidth,
and wear overhead of ineffectual migrations, we propose
migration hysteresis. Second, to reduce the software over-
head of good replacement policies, we proposerecently-
accessed-page-id (RAPid) buffer, a hardware buffer to track
the addresses of recently-accessed MigrantStore pages.

1  Introduction

Since the advent of VLSI, DRAM technology has contin-
ued to scale in density and cost even faster than Moore’a Law
to provide larger and cheaper main memory in modern com-
puter systems. However, experts agree that DRAM’s charge-
based approach to providing storage is not likely to scale
beyond a few more technology generations (e.g., 20nm) [14].
The end of DRAM scaling has prompted researchers to
investigate a number of alternative storage technologies such
as spin torque transfer RAM (STTRAM), Flash, and phase-
change memory (PCM). To store a binary value, STTRAM,
Flash, and PCM, respectively, use spin, electrically-isolated
charge, and phase (crystalline versus amorphous). Because
these properties do not depend on electric power to be
retained, these storage technologies are non-volatile. Among
the alternatives, PCM is emerging as the lead contender due
to its superior combination of energy, speed, density, and reli-
ability (wear) characteristics. PCM is about two orders-of-
magnitude faster and can endure about four orders-of-magni-
tude more writes than Flash, and dissipates two orders-of-
magnitude less energy and is two-orders-of-magnitude
denser than STTRAM.

While PCM is projected to scale in density well beyond

the technology nodes where DRAM scaling stops, PCM is
not without challenges. Compared to DRAM, PCM is about
four times slower for reads and about twelve times slower for
writes; and can endure only about 109 - 1012 writes before
wearing out [14]. These longer latencies also imply longer
bank busy times and hence lower bandwidth. Though PCM is
likely to improve significantly before DRAM completely
stops scaling, PCM’s reliability and performance (latency
and bandwidth) will likely continue to require improvements
via architectural and system support. PCM dissipates about
forty-times more energy per cell for writes and about twice as
much energy per cell for reads. Fortunately, PCM’s technol-
ogy offers other advantages over DRAM, such as signifi-
cantly less leakage, non-destructive reads, and writes that can
selectively update a part of a row in a memory array without
requiring additional selection circuitry within the array which
would degrade density. These advantages more than offset
the per-cell energy disadvantage enabling PCM to achieve
energy comparable to DRAM. Recent architecture papers
[7][12][19] have proposed several hardware schemes to
exploit PCM’s advantages (scalability and energy) and allevi-
ate its disadvantages (performance and reliability). While
these papers propose interesting ideas for PCM-based mem-
ory systems, we take a different approach in this paper.

Qureshi et al. [12] propose to improve performance and
wear by employing a large, DRAM cache in hardware (e.g.,
128 MB). However, the bandwidth demand on and the energy
dissipation of the PCM are worsened if the DRAM-cached
blocks are not accessed enough. We make the key observa-
tion that because of good caching at the L1 and L2, many
blocks are evicted from the DRAM cache before being
accessed enough to amortize the bandwidth and energy cost
of caching the block in the DRAM cache. Further, most of
the data is written only once before eviction from the DRAM
cache so that the PCM is written only once with or without
DRAM caching and hence suchineffectualcache fills do not
reduce PCM wear. In fact, by evicting useful, dirty pages
from the DRAM cache, the ineffectual cache fills increase
writebacks to the PCM, worsening PCM wear. Bandwidth
and energy are two key but scarce resources in modern multi-
cores. To make matters worse, PCM’s long latencies imply
long bank occupancies which degrade bandwidth despite
aggressive banking; Unfortunately, multicores can absorb
latencies via thread overlap but cannot compensate for lack
of bandwidth.

For performance, energy, and wear, large buffering using
DRAM appears to be a reasonable approach. However, we
employ intelligent OS policies to avoid the hardware cache’s
ineffectual cache fills. We propose a DRAM-PCM hybrid
memory architecture that leverages virtual memory so that
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the OS migrates pages on demand from the PCM to
DRAM. We call the DRAM part of our memory as
MigrantStore.Being a part of physical memory, Migrant-
Store’s access is handled by virtual address translation. The
DRAM in [12] is a hardware cache and not part of OS-man-
aged physical memory.

Conventional OS placement and replacement policies
for managing physical memory cause MigrantStore to incur
significant performance and energy degradations. We pro-
pose two ideas to address these issues. First, like the hard-
ware cache, MigrantStore also incurs the bandwidth and
energy cost of ineffectual migrations. The software over-
head of the migrations further degrade system performance
and energy. To address this issue, we propose to isolate the
heavily-accessed pages via ourmigration hysteresiswhere
a page is placed (i.e., migrated) only after some number of
accesses have occurred to the page in PCM. One may think
that the hysteresis can be implemented in the hardware
cache as well. However, doing so would require tracking
pages that are not in the DRAM cache but in the PCM main
memory. Because potentially a large fraction of the main
memory may need to be tracked, implementing the hystere-
sis in the harware cache would be impractical whereas the
OS is a natural choice for such tracking.

Second, current OS’s periodically scan the reference bits
in the page tables to identify recently-accessed pages for
implementing replacement policies for main memory. How-
ever, being a small fraction of physical memory, Migrant-
Store incurs much more frequent replacements than typical
main memory. (Because of DRAM’s worse scaling than
PCM, MigrantStore would always be a small fraction of
physical memory.) To keep the OS scan overhead low, the
scans are done at coarse time granularities (e.g., every 30
seconds), whereas the migrations occur more frequently
(e.g., every 10-20 microseconds at 2 GHz). While the rela-
tively-infrequent scanning would render the replacement
information stale, using random replacement would incur
significant performance loss. To address this issue, we pro-
pose a small hardware buffer, calledrecently-accessed-
page-id (RAPid) buffer, to hold (a truncated set of) the
addresses of the MigrantStore pages accessed between two
migrations so that the replacement software can scan the
buffer instead of the page tables. We exploit the fact that
because migrations are frequent,RAPid buffercan be small
(e.g., 20 entries).

The key contributions of this paper are:
• MigrantStore, a DRAM-PCM hybrid memory architecture

that leverages virtual memory to reduce cost and energy over-
head compared to hardware caching;

• migration hysteresis, a placement policy, to reduce the band-
width, and energy overhead of ineffectual migrations;

• recently-accessed-page-id (RAPid) bufferto reduce the soft-
ware overhead of good replacement policies; and

• Using simulations of commercial workloads, we show that
MigrantStore performs better than all the compared alternative
schemes and consumes less energy than the DRAM-based
schemes. For instance, a 128-MB MigrantStore improves
energy and performance by 25% and 7%, respectively, over a
128-MB hardware cache. while achieving similar wear.

The rest of the paper is organized as follows. We provide
background on PCM and discuss related work in Section 2.
We describe MigrantStore in Section 3. We explain our
methodology in Section 4. We show our results in Section 5
and conclude in Section 6.

2 Phase Change Memory (PCM): Background
and Related Work

While DRAM is a charge-based storage technology,
PCM uses phase — crystalline or amorphous — to store
state. The two phases exhibit different resistivities that can
be detected to determine the phase. PCM retains its phase
even in the absence of electric power, making PCM a non-
volatile storage medium. There are diode- [6] and transis-
tor-based [2] PCM implementations. Because the supply
voltage scales better in transistor-based implementations
[6], we assume transistor-based implementation in the rest
of the paper.

Each PCM cell is made of a BJT transistor and a storage
element (a resistor) between the BJT’s emitter and the bit-
line [3] (see Figure 1). The BJT’s base is connected to the
wordline and the collector is connected to ground. Reads
cause current flow through the storage element due to a
voltage applied at the bitline. This current, which varies
depending on the storage element’s state, is sensed at the
end of the bitline to determine the cell’s state. For writes,
instead of sensing the current flow through the storage ele-
ment, a current is sent through the bitline to heat the storage
element, causing the element to change its phase. The mag-
nitude and duration of the current flow determines the ele-
ment’s resultant phase. We now discuss PCM’s
performance, energy, and wear.

2.1 Performance

A DRAM or PCM access includes not only the cells but
also address decoders, row buffers, and selection out of the
row buffer. These components are common between
DRAM and PCM so that the differences in thetotal access
latency and energy between DRAM and PCM are less than
the differences in theper-cell latency and energy. While
PCM per-cell read and write latencies are, respectively,
about four and twelve times longer than DRAM per-cell
latencies [2][6][3][17][4], the total PCM read and write
latencies are, respectively, only about two and six times as
slow as DRAM.

Writes to PCM occur in the background upon write-
backs from the on-chip caches, off the program critical path
(except in the uncommon case of filling up of writeback
buffers). Consequently, PCM’s long write latencies may not
impact performance by much. While reads are critical, the
2x read latency does not translate to doubling of read miss
penalty which includes latencies and queuing delays at the
memory controller and the memory bus in addition to the
raw read latency. Typically, the raw latency contributes only
33-50% of the miss penalty, and hence the miss penalty
may go up by 1.16-1.5x.

The longer read and write latencies fundamentally imply
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that PCM banks remain busy for longer times. This longer
occupancy reduces bandwidth even in heavily-banked PCM
memories where bank conflicts are inevitable. While
PCM’s longer latencies can be hidden by multi-threading,
such hiding exacerbates bandwidth pressure which is a sig-
nificant concern.

2.2 Energy

Like latencies, thetotal energy cost of a PCM access rel-
ative to a DRAM access is less than theper-cellenergy cost
of a PCM access relative to that of a DRAM access.
Because PCM reads are non-destructive, unlike DRAM
reads, the read row need not be written back. Therefore,
though PCM per-cell read energy is about twice as much as
DRAM per-cell energy [2][6][3][17][4], the total PCM read
energy is about as much as that of DRAM. PCM writes,
however, need to heat the storage element to change its
phase, in contrast to DRAM writes which change the
charge on a storage capacitor. The current flow for writes is
much higher than that for reads — PCM per-cell write
energy is about forty times as much as that of DRAM [3]
(diode-based implementations may incur less write energy
but they do not scale well, as mentioned above). However,
the total PCM write energy is about twenty times as much
as that of DRAM. Further, PCM’s ability to update selec-
tively parts of a row more than offsets this factor of twenty.

Fundamentally, PCM’s selective updates stems from the
fact that PCM is phase-based whereas DRAM is charge-
based. In a PCM write, though the wordline is fired causing
all the BJTs in the entire row to be turned on, bitlines in
parts of the row need not carry any current and can simply
float without affecting the phase of the storage elements in
those parts (see Figure 1). Consequently, selective update in
PCM can occur simply in the write driver circuitry at the
periphery of the array without changing the wordline cir-
cuitry. In contrast, DRAM is charge-based, and hence the
DRAM cells in those parts of the row would simply dis-
charge through the floating bitlines and would corrupt the
stored state. Hence, selective update in DRAM (or SRAM)
would require selective activation of the wordlines so that
the parts of the wordline connected to the cells that are not
written would not be fired. Such selective activation would
require extra control wires and circuitrywithin the array,
severely degrading density. Therefore, DRAM designers do
not employ selective update and instead rely on sizing the
arrays such that the array is small enough that reading and
writing to the whole row does not require high energy and

at the same time the array is large enough that the wiring
overhead does not increase the area significantly. Due to
selective updates, PCM nearly eliminates this area-energy
trade-off by allowing the PCM designer to size the array
based almostsolelyon area constraints while using selec-
tive update to tackle energyindependently(reads can also
be done selectively but read energy is much less than write
energy).

As such, because most writes to main memory (DRAM
or PCM) are much narrower than a row, selective update
achieves a large reduction in the write energy (e.g., 64-byte
L2 block versus 8-KB PCM row spanning the DIMM mod-
ules amounts to an 128x reduction).

Because PCM is not charge-based, PCM’s leakage is
significantly lower than that of DRAM (e.g., 10x lower)
[13][2][6]. This advantage is substantial given that DRAMs
incur significant leakage (e.g., more than 15% of the total
energy comes from leakage in non-standby mode) [16].
Together with selective update, the lack of leakage enables
PCM to be nearly equal to DRAM in total access energy
despite being worse in the per-cell energies.

2.3 Wear

Because writes involve heating the storage element to
change its phase, writes cause PCM cells to wear out. In
general, PCM cells can endure about 109 - 1012 writes
whereas DRAM cells wear out after about 1016 writes [14].
If left unaddressed, PCM used in main memory could wear
out in a few months depending on the applications’ L2
writeback behavior. Selective updates help reduce the wear
by avoiding unnecessary writes. In addition, large buffer-
ing, as provided by MigrantStore or the hardware cache in
[12] can absorb a significant fraction of the writebacks.

2.4 Related Work

Starting with the pioneering work on PCM [17], there
has been significant work on technology, devices, and mate-
rials for PCM [2][6][3][13][4]. There have been some
architecture proposals to alleviate PCM’s reliability and
performance problems.

Zhou et al. [19] propose (1) fine-grain wear leveling by
rotating the PCM row upon every write; (2) coarse-grain
wear leveling by swapping segments after some number of
writes; and (3) reducing write energy (and bit-level wear)
by using bit-level comparisons to avoid writing the same bit
values via selective update. However, the scheme requires a
large barrel shifter per PCM chip for the row rotation (e.g.,
4K bytes), in addition to hardware tables for maintaining
(1) the rotation amounts per PCM row and (2) the mapping
between segments’ physical address to segments’ physical
location. For large memories, the hardware tables, which
are as large as page tables, add significant overhead and
complexity. In contrast, MigrantStore exploits existing
address translation mechanisms without needing any extra
hardware tables.

Lee et al. [7] propose to reduce PCM write energy and
wear by optimizing PCM’s row buffers so that multiple
writes to the same location are absorbed in the buffers

FIGURE 1: PCM cell and selective update
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resulting in only a single writeback to the PCM array. The
authors propose more and narrower buffers than DRAMs to
balance temporal and spatial locality. However, PCM wears
out so much sooner than DRAM (e.g., six orders of magni-
tude fewer writes) that a large fraction of PCM writes need
to be absorbed requiring large buffers. Unfortunately, the
row buffers take up area and cannot be increased beyond a
few megabytes, and are inflexible in that a given row buffer
can hold data only from its own subarray and not from other
subarrays. We show that the row buffersaloneare insuffi-
cient for commercial applications using multi-gigabyte
PCM memory. In contrast, MigrantStore and the hardware
cache [12] are more plentiful in capacity and flexible in
mapping, and hence are more effective.

In addition to proposing the hardware cache, Qureshi et
al. [12] observe that in their database workload, writes to
the cache block at the top of a page (i.e., block #0 in each
page) are more frequent than writes to the rest of the blocks.
Accordingly, they propose leveling this uneven wear of
cache blocks by rotating the blocks within a physical page
by a random amount, at the time the page is swapped into
memory from disk. The rotation amount is held in a hard-
ware table in the memory controller. Unfortunately, the
table is as large as virtual memory page table and imposes
significant overhead. Despite many attempts, however, we
did not observe any systematic bias in our commercial
workloads. Consequently, we do not rotate the blocks
within a page, and avoid this overhead.

While another work [18] proposes copying of fre-
quently-written pages from PCM to DRAM at the end of
OS quanta, the scheme does not leverage on-demand migra-
tion, a fundamental feature and cornerstone of modern vir-
tual memory. As such, the scheme ends up copying pages
accessed in a quantum at the end of the quantum by which
time the pages are no longer frequently accessed while
incurring PCM latencies when the pages are being accessed
— i.e., OS quanta are too long during which locality
changes significantly. Further, copying frequently-written
pages ignore frequently-read pages which incur PCM laten-
cies. We show that the scheme is not effective in improving
performance or wear.

A few other papers address PCM’s wear problem
[11,15,5]. Another work targets PCM’s slow writes by
pausing writes to allow intervening reads [10]. While these
four schemes do not reduce but either spread out wear or re-
schedule writes, the hardware cache and MigrantStore use
DRAM to reduce the write traffic to the PCM improving
not only wear but also performance and energy.

3  MigrantStore

To avoid the hardware cache’s ineffectual cache fills, we
employ intelligent OS policies for a DRAM-PCM hybrid
memory architecture that leverages virtual memory. As
described in the Section 1, the OS migrates pages on
demand from the PCM to DRAM which is called the
MigrantStore (see Figure 2). Due to locality, a small
MigrantStore, when compared to PCM, would be effective
(e.g., for an 8GB PCM, a 128-MB MigrantStore — less

than 2% in size — may suffice). Because of MigrantStore’s
small size, the physical memory or the page tables do not
grow much.

Conventional OS policies for managing physical mem-
ory cause MigrantStore to incur significant performance
and energy degradations. Recall from Section 1 that to
address these issues, we propose two ideas: (1)migration
hysteresisto reduce bandwidth and energy overhead of
ineffectual migrations where the migrated pages are evicted
before being accessed enough number of times in Migrant-
Store; (2) recently-accessed-page-id (RAPid) bufferto
reduce the replacement policy software overhead of scan-
ning page tables to identify recently-accessed MigrantStore
pages. By triggering fewer migrations, the hysteresis also
reduces the OS software overhead.

3.1 MigrantStore Operation

An access to a page in PCM triggers a fault causing the
page to be migrated to MigrantStore (page faults directly
map the page into MigrantStore). Because physical mem-
ory includes both PCM and MigrantStore, we need to iden-
tify whether a page is in PCM or MigrantStore. To this end,
the OS sets a bit in the page table entry when a page is
migrated or swapped into MigrantStore, and clears the bit
when the page is evicted out of MigrantStore.

Unlike a page fault which must retrieve data from the
slow disk, PCM faults transfer data between storage media
that are much faster than the disk — from the PCM to
MigrantStore. Accordingly, we assume a fast trap for PCM
faults. The trap handler invokes a DMA to copy the page
from PCM to MigrantStore, and to write back the evicted
MigrantStore page (if dirty) to the PCM. Two points similar
to today’s systems are: (1) Because a page contains contig-
uous addresses, the DMA achieves high bandwidth via
open-page mode and cache-block-size bursts to exploit row
locality in both the PCM and MigrantStore’s DRAM. (2)
Stale cache blocks belonging to the copied pages are
flushed from the caches. The DMA frees the CPU to track
the replacement priority of MigrantStore pages using the
RAPid buffer. Because both PCM and MigrantStore are
reasonably fast, switching to another thread during a migra-
tion in addition to or instead of replacement-policy book-
keeping may incur higher overhead. Accordingly, our
experiments assume that the processor does not switch
threads and instead runs the replacement-policy software
during migrations (Section 3.2). While the migrations inev-

FIGURE 2: MigrantStore
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itably incur some performance and energy overhead, our
migration hysteresis reduces this overhead for ineffectual
migrations (Section 3.3).

MigrantStore can be located on the system memory bus
along side PCM, or behind the L2 on a dedicated link simi-
lar to an L3 cache. Irrespective of its placement, Migrant-
Store does not raise any new coherence issues for I/O
because MigrantStore is part of physical memory and pages
in MigrantStore may be involved in I/O similar to PCM
pages. Further, MigrantStore does not need any extra pro-
cessor pins because it shares the processor pins with the
PCM. For high bandwidth, MigrantStore is banked, just as
the PCM is banked.

The key hardware cost of MigrantStore is the DRAM.
As discussed before, because MigrantStore is much smaller
than the PCM, the page table overhead is small. While the
usual address translation locates the desired page in
MigrantStore, the hardware cache in [12] relies on tags and
incurs higher cost overhead.

3.2 Replacements

Recall from Section 1 that migrations occur too fre-
quently to allow the MigrantStore replacement software to
scan the reference bits in the page tables at every migration
for avoiding replacement of recently-accessed Migrant-
Store pages. Unfortunately, random replacement instead of
any of the stack-based policies evicts useful pages and
incurs considerable performance and energy loss. To
address this issue, we propose a hardware buffer, called the
RAPid buffer, to hold the addresses of MigrantStore pages
accessed between two consecutive migrations. The buffer is
placed in the memory controller which inserts the page
addresses in hardware. During the DMAs of each migra-
tion, the replacement module in the OS scans the RAPid
buffer instead of the full page tables to update its data struc-
tures (e.g., LRU stack for LRU replacement), allowing the
OS to avoid replacement of recently-accessed MigrantStore
pages. Due to locality and reasonable migration frequency,
the number of unique pages touched between two migra-
tions is small enough that both a small buffer captures most
of the benefits (e.g., 20 entries) and the runtime overhead of
the software is hidden well under the migration DMAs. In
case the buffer capacity is exceeded, then the oldest entry is
overwritten to provide a truncated list of recently-accessed
pages and the software uses this truncated list to update its
data structures.

3.3 Migration Hysteresis

Recall from Section 1 that to reduce the bandwidth and
energy overhead of ineffectual migrations, we propose
migration hysteresis where a page is migrated only after
some number of accesses have occurred to the page in
PCM. By reducing the number of ineffectual migrations,
our hysteresis also reduces the software overhead on system
performance and energy. One may think that replacement
policies like LRU have built-in hysteresis obviating our
explicit hysteresis. However, our hysteresis controls place-
ment instead of replacement. While LRU prevents poor

replacements but does not prevent unnecessary placement
where performance and energy penalty are paid well before
replacements occur (our results show that hysteresis
achieves lower energy even in the presence of LRU).

To count the accesses to a page, we reuse the sub-block
dirty bits (Section 3.4) which are not used by the sub-block-
ing scheme when the page is in PCM which is when our
hysteresis needs to count. Blindly counting all accesses
including cache hits may confuse our hysteresis because
cache hits do not access the PCM and inject noise into the
counts. Consequently, we count off-chip misses to a page in
the hysteresis counter. Because current systems do not
report off-chip misses to the TLB, we modify cache miss
replay in the processor pipeline to enable our count. With
the return of data to the pipeline for an off-chip cache miss,
the off-chip miss is identified so that when the pipeline
replays the access, the count is incremented in the TLB
(piggy-backed with the update of the per-page reference bit
as done in conventional TLBs upon every access, so there
are no extra TLB accesses). The count is propagated to the
page table upon a TLB eviction as done in current systems,
incurring little overhead. A page is migrated when the
count reaches thehysteresis threshold.

To ensure that migrations do not prevent non-migration,
demand accesses (that are under the threshold) by swamp-
ing the PCM banks and memory bus, we give priority to
non-migration accesses over migrations. We allow non-
migration accesses to proceed in between consecutive
cache-block-size bursts of a migration (Section 3.1). This
prioritization balances the migrations’ bandwidth and the
non-migration accesses’ delay.

One may think that migration hysteresis can also be
done in the hardware cache, but there is a subtle issue.
Migration hysteresis in the hardware cache would require
tracking the access counts for all the blocks in physical
memory, most of which arenot in the cache. This tracking
would add significant state overhead and complexity to the
hardware cache. By piggybacking on the page tables,
MigrantStore incurs much less overhead.

3.4 Page Sub-blocking

To save write energy and wear, we expose PCM’s selec-
tive updates (Section 2.2) to the OS viapage sub-blocking
so that only the dirty sub-blocks within a page (e.g., 512-
byte sub-blocks) are written back to PCM upon page evic-
tion from MigrantStore. While the hardware cache per-
forms this sub-blocking entirely in hardware, we expose
this key aspect of PCM to the OS.

To implement sub-blocking, the page tables expand their
per-page dirty to per-sub-block dirty bits, which are held in
the TLBs as well. The sub-block dirty bits are significant
only when the page is in MigrantStore and the bits are
cleared when page is migrated into MigrantStore. Upon a
write to a page in MigrantStore, the sub-block dirty bits are
updated in the TLB (piggybacked with the update of the
per-page dirty bit as done in conventional TLBs, so there is
no extra TLB accsses). Upon replacing a page from
MigrantStore, the OS looks up the TLB and/or page table to
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determine which of the page’s sub-blocks need to be writ-
ten back to the PCM.

Smaller sub-block size reduces the write energy and
wear but also increase the space overhead of the extra dirty
bits in the page tables. Because multiple adjacent cache
blocks are often clean or dirty together due to spatial local-
ity, the sub-blocks comprise many cache blocks which
reduces the space overhead (e.g., 512-byte sub-blocks need
16 extra bits in the page table entry). As discussed in
Section 3.3, because sub-block dirty bits are needed only
for MigrantStore pages and hysteresis count only for PCM
pages, we can reuse the same field in the page tables and
TLB for the dirty bits and the counts. However, the sub-
block dirty bits (e.g., 16) being more than the count (e.g., 4-
6) may impose some space overhead on the PCM page
tables which are significantly larger than the MigrantStore
page tables. One option would be to employ separate page
tables for the PCM and MigrantStore so that the PCM page
tables hold the hysteresis count and the MigrantStore page
tables hold the sub-block bits. The TLB would cache both
the page tables and the TLB entries would still reuse the
same field for the sub-block bits and the count.

Finally, because only the dirty sub-blocks of an evicted
page are written back from MigrantStore to PCM, the
page’s clean sub-blocks must be intact in the PCM. How-
ever, under normal page migration from a source to destina-
tion, the migrating page fully vacates its space resources in

the source so the space can be re-allocated to another page.
To avoid losing the clean sub-blocks due to such re-alloca-
tion, we do not re-allocate the migrating page’s space in
PCM. This lack of re-allocation implies that for every page
in the MigrantStore there is a stale page in the PCM.
Because MigrantStore is much smaller than the PCM, this
duplication overhead is small. The OS holds the stale pages
in a data structure isolated from the page tables (i.e., the
stale pages are not pointed to by any page table entry), so
that upon an eviction from MigrantStore, the OS directs
writeback from MigrantStore to the PCM to go to the
appropriate stale page. The OS then changes the page table
mapping to point to the updated stale page, turning the stale
page into a current page.

4  Methodology

We simulate MigrantStore using Wisconsin GEMS-2.1
[8] built on top of Simics, a full-system simulator. We simu-
late a SPARC-based multicore running Solaris 10. For com-
parison, we also simulate the hardware cache in [12], the
row buffers in [7], and page copying at the end of OS
quanta [18]. The hardware parameters are given in Table 1.
We obtain the PCM and DRAM latencies by combining
information from PCM technology papers
[13][2][6][3][17][4], CACTI’s DRAM models [16] for the
array decode, row buffers, and wiring latencies (these com-
ponents are similar in PCM and DRAM), and Micron Sys-

Table 1: Hardware parameters

Cores 8, in-order

L1 Caches Split I&D, Private, 32K 4-way set associative, 64B cache block, 3 cycle hit, LRU

L2 Cache Unified, Shared, Inclusive, 8M 8-way set associative, 8 banks, 37 cycle hit, LRU

Coherence MESI Directory, Full bit vector in the L2

Memory Subsystem Total latency = request/response queuing at controller + device latency + transfer latency

1 memory cycle = 10 CPU cycles

Bus 256 bits (total), 1 memory cycle

SIMULATED SYSTEMS’ LATENCIES and ENERGIES

Base DRAM (DRAM-ideal) 8 GB, 22 memory cycles (reads and writes), total 64 banks, 64-byte interleaving, 32-entry
bank queues

33 nJ row miss read/write; 16 nJ row hit read/write; 64 mW leakage

Base PCM (PCM-only) Per-cell latency w.r.t. DRAM : 4x (reads), 12x (writes)

8 GB, 55 memory cycles (reads) and 143 cycles (writes), 64 banks, 64-byte interleaving, 32-entry
bank queues

Per-cell energy w.r.t. DRAM: 2x (reads), 43x (writes)

33 nJ row miss read; 36 nJ and 170 nJ row miss 64-byte cache block write and 512-byte sub-block
write; 16 nJ row hit read/write; 6.4 mW leakage

MigrantStore 128 MB DRAM, 16 memory cycles (reads and writes), total 16 banks, 64-byte interleaving,
32-entry bank queues

15 nJ row miss read/write, 4 nJ row hit read/write, 8 mW leakage

negligible energy (0.025 nJ) for 20-entryRAPid buffer

Hardware cache parallel
(sequential)

128 MB DRAM, 16-way associative, 19 (25) memory cycles (reads and writes), total 16 banks,
64-byte interleaving, 32-entry bank queues

29 (15) nJ row miss read/write; 8 (4) nJ row hit read/write; 8 mW leakage
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tem Power Calculator [9]. In Table 1, the total latencies are
better than per-cell latencies, as described in Section 2.1.
We account for latencies, bank and bus occupancies, and
queuing at the controllers in all the memory components.
Because PCM occupancies are large, we model an aggres-
sively-banked base PCM-only system (many banks and
deep queues) so that we do not unduly penalize the PCM-
only case.

We simulate the extra PCM and DRAM accesses needed
for the page migrations in MigrantStore and the cache fills
in the hardware cache. We carefully model open-page mode
in both the PCM and DRAM for the page migrations and
cache fills which perform sequential accesses and hence
significantly benefit from open-page mode’s row hits. Spe-
cifically, a migration in MigrantStore or a cache fill in the
hardware cache involves reading the demand page from the
PCM, reading the victim page from the DRAM, writing the
demand page to the DRAM, and writing the victim page (if
dirty) to the PCM. The first three operations exploit (1) par-
allel accesses across as many banks as needed to retrieve a
page (all the 64 64-byte banks in PCM and all the 16 64-
byte banks in DRAM) and (2) row locality for multiple
accesses to the same bank (2 accesses in PCM and 8
accesses in DRAM). The last operation exploits selective
updates to write back only the dirty sub-blocks. To ensure
that our comparison with the hardware cache remains con-
servative, MigrantStore stalls the migration-triggering L2
miss for all the four operations to finish (otherwise the page
tables would point to stale pages) whereas the hardware
cache stalls the L2 miss only for the first operation assum-
ing the rest of the operations are hidden in hardware. We
tried returning the requested word(s) first for the hardware
cache but the optimization is not effective due to stalls
caused by further, immediate L2 misses to the DRAM
cache block being transferred. Unlike latencies of some of
the operations,all the operations incur bank occupancies in
both MigrantStore and the hardware cache. As mentioned
in Section 3.3, we trigger 64-byte bursts for the migrations
and cache fills while allowing non-migration, demand
accesses to proceed between the bursts. Each such burst
looks up the L2 cache to invalidate or write back matching
cache blocks. Overall, each migration incurs about 6000
cycles in the memory system. For MigrantStore, we charge
5000 cycles extra per migration for software overheadin
addition to the memory system overhead. This overhead

covers a fast trap startup (a few tens of cycles), initiating the
DMAs for the migrations (tens of insructions), and updat-
ing the page table entries and shooting down TLB entries
for the migrated pages (tens of instructions). The trap han-
dler also scans the RAPid buffer and updates the LRU
stack. Our code to scan a 20-entry RAPid buffer and update
an LRU stack is about 60 static instructions and about 400
dynamic instructions (overall total of about 600 counting
the other tens of instructions). Because OS trap code exhib-
its poorer locality than applications, we conservatively
assume that the 600 instructions take 5000 cycles. One
could hide the 400 instructions under the 6000 cycles of
migration, but we conservatively assume no hiding.

We model PCM and DRAM energies also using the
above sources. In Table 1, the total energies are better than
per-cell energies, as described in Section 2.2.We assume
that the PCM reads an entire row for non-migration reads
such as L3 misses inPCM-basewhich does not use any
DRAM (Section 5.1.1) and L2 misses under the hysteresis
threshold with MigrantStore, migrations in MigrantStore
and cache fills in the hardware cache; and that the PCM
writes only cache blocks (and not entire rows) for non-
migration writes (L2 writebacks in PCM systems without a
DRAM cache and L2 writebacks that miss in MigrantStore
due to hysteresis) and sub-blocks for dirty-page writebacks
from MigrantStore or the hardware cache. For page migra-
tions and cache fills, we carefully model row hits in both
PCM and DRAM which avoid the large array access ener-
gies. Overall, each migration incurs about 8000 nJ in the
memory system. For MigrantStore, we charge a software
energy overhead of 3000 nJ per migration assuming 5 nJ for
each of about 600 dynamic instructions in the trap software
(Intel Xeon consumes 5 nJ/instruction). We note that
because the software overhead of 5000 cycles and 3000 nJ
are similar to the average per-migration memory system
overhead of about 6000 cycles and 8000 nJ, reducing the
software overhead via hysteresis is important (while these
are averages, our simulations account for the actual per-
migration overhead).

We use commercial and scientific workloads briefly
described in Table 2. To account for statistical variations,
we use enough randomly-perturbed runs to achieve 95%
confidence [1].

Table 2: workloads
C

om
m

er
ci

al

Apache: 20k files (~500MB), 3200 clients, each with 25ms think time, warm up for ~1,500,000 transactions, 600
transactions executed.

Online Transaction Processing (OLTP): PostgreSQL 8.3.7 database server,5 GB database with 25k warehouses, 128
users with 0 think time, and warm up the database for ~100k transactions before taking measurements for 200 transactions.

SPECjbb2000: SPEC server workload v1.07, used Sun J2SE v1.5.0 JVM, simulated 1.5 warehouses/CPU with 0 think
time,warm up for 350,000 transactions and measured for 10,000 transactions. (300 MB)

S
ci

en
tifi

c FFT: Transpose computation in Fourier transform of 224 complex data points (256 MB).

LU decomposes a 4096 x 4096 matrix (between two barriers in one iteration of the main loop) (128 MB).
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5  Experimental Results

We first compare MigrantStore with other alternatives in
terms of performance and energy. Then, we analyze the
effectiveness of migration hysteresis and sub-blocking by
comparing MigrantStore with and without these mecha-
nisms. Next, we study the sensitivity of MigrantStore to its
DRAM size. Finally, we compare MigrantStore with other
alternatives in terms of wear.

5.1 Performance and Energy

We show commercial workloads in Section 5.1.1 and
scientific workloads in Section 5.1.2.

5.1.1 Commercial workloads
In Figure 3, we compare the performance of plain PCM

(PCM-only), plain DRAM (DRAM-ideal), PCM with an
SRAM-based L3 cache (PCM-base), the hardware cache
[12], enhanced row buffers (Row-buffers) [7], and page
copying at the end of OS quanta (OS-quanta-copy) [18]
against that of MigrantStore. We show commercial work-
loads here and scientific workloads later. The Y-axis shows
performance normalized to that ofPCM-base(higher is bet-
ter). While PCM-only does not have any extra cache like
the DRAM in MigrantStore and the hardware cache,PCM-
base uses an area-equivalent SRAM-based, 24-MB L3
cache with 1-KB blocks.DRAM-idealshows conventional
DRAM if DRAM scaling were to continue. We show two
variants of the hardware cache: one with sequential tag-fol-
lowed-by-data access (H/w-cache-seq) employed in large
caches to reduce energy by accessing only the matching
way at the cost of extra latency [16] and the other with par-
allel tag-data access (H/w-cache-par) to optimize latency at
the cost of extra energy to access all the set-associative
ways in parallel. Both the hardware cache variants use a
128-MB DRAM, and are 16-way associative with page-size
(8-KB) blocks, 512-byte sub-blocks, and LRU replacement.
While the authors in [12] assume 1-GB DRAM cache for
32-GB PCM, we assume similar proportions but smaller
sizes of 128-MB DRAM cache for 8-GB PCM to keep
GEMS’ cache warm-up from blowing up. The rest of the
parameters are similar to those in [12]. Despite the size dif-
ferences, our speedups for the hardware cache are similar to
those in [12].For the enhanced row buffers (Row-buffers),
we assume 8, 2048-byte-wide row buffers per PCM bank
(the energy-performance optimal point in [7] is 4, 512-byte-
wide row buffers per bank).MigrantStorealso uses a 128-
MB DRAM with 8-KB pages, 512-byte sub-blocks and
hysteresis threshold of 16. We give the latencies and ener-
gies of the various schemes in Table 1.OS-quanta-copy, the
last scheme, also uses a 128-MB DRAM. Though larger
DRAMs are available today, we choose 128 MB DRAM for
the hardware cache and MigrantStore to emulate the future
where data will increase but DRAM will have stopped scal-
ing.

Due to the lack of an L3 cache,PCM-only performs
worse thanPCM-base.DRAM-idealperforms better than
PCM-basebecause PCM has longer latencies and higher
occupancies than DRAM andPCM-base’s L3 cache is not

large enough. Because DRAM is expected to stop scaling
soon, this comparison is only to establish the opportunity
for the rest of the schemes.

Row-bufferperforms worse thanPCM-basedue to (1)
high row miss rate (75-96%) and (2) the fact that the L2
misses that incur a row miss need to wait for not only the
PCM-array read latency but also the long PCM-array write
latency of the row writeback if dirty (see the footnote in
Section 2.2). To be certain, we validated ourrow-buffer
implementation by runningocean and radix from the
SPLASH suite whererow-buffer achieves 2.77 and 1.09
speedups overPCM-only (6% and 42% row miss rate),
respectively, which are in line with therow-buffer paper.
However, our commercial workloads exhibit much poorer
row locality than SPLASH.

Our multitheaded workloads mostly absorb the modestly
longer latency ofH/w-cache-seqas compared toH/w-
cache-par, resulting in the variants achieving similar per-
formance. Both variants perform better thanPCM-basedue
to their DRAM caches.MigrantStoreperforms 7% better
thanH/w-cache-seq. Overall,MigrantStore’s larger DRAM
achieves about 24% better performance overPCM-base’s
SRAM-based L3. Finally,OS-quanta-copyperforms worse
than PCM-basebecause copying frequently-written pages
into DRAM at the end of the quanta is too late by when
many accesses have incurred PCM latencies and copying
frequently-written pages ignores frequently-read pages.
(Section 2.4).

In Figure 4, we compare the energy of the same
schemes. The Y-axis shows energy normalized to that of
PCM-base(lower is better). We break down energy into
leakage, dynamic and software overhead (for MigrantStore,
as discussed in Section 4). PCM’s leakage is much lower
than DRAM’s (Table 1). The open-page mode accesses for
MigrantStore’s migrations and the hardware cache’s cache
fills (Section 4) improve both performance and energy by
minimizing the high-energy row retrievals from the
(DRAM or PCM) arrays.

BecausePCM-base’s SRAM-based L3 cache consumes
high energy,PCM-only, DRAM-idealandrow-bufferscon-

FIGURE 3: Performance of commercial workloads
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sume lower energy thanPCM-base. WhileH/w-cache-seq
consumes lower energy thanH/w-cache-parby accessing
only the matching way,MigrantStoreconsumes 25% and
56% less energy thanH/w-cache-seqand PCM-base,
respectively. H/w-cache-par incurs associative accesses
(extra DRAM energy) and ineffectual cache fills (extra
DRAM and PCM energy).H/w-cache-seqdoes not incur
associative accesses but incurs ineffectual cache fills.
Because there is no associative access, the per-access
energy is equal to MigrantStore’s with a negligible tag over-
head (Table 1). MigrantStore does not have associative
accesses and reduces ineffectual migrations via hysteresis.
BecauseOS-quanta-copycopies much fewer pages than
MigrantStore and ends up mostly accessing the PCM
instead of the DRAM,OS-quanta-copy’s energy consump-
tion is similar to that ofPCM-only (as is performance in
Figure 3). We do not charge any software overhead for the
software copying inOS-quanta-copy. In apache, most of
the copying is too late be useful but consumes energy.

We explain MigrantStore’s energy using Table 3 which
shows the average number of busy banks inPCM-base,
DRAM-ideal,H/w-cache-seqand MigrantStorecomputed
by averaging overPCM-base’s execution cycles.Because
the execution times of these systems are quite different
(Figure 3), averaging over each system’s execution time
would distort the true counts of the systems’ busy banks.
The table shows the fraction of L2 misses that further miss
in H/w-cache-seqand inMigrantStore (%miss rate).In H/
w-cache-seq,all the cache misses trigger a cache fill (i.e.,

%miss rate= cache fills per L2 miss) and inMigrantStore
only those MigrantStore misses that are above the hystere-
sis threshold trigger a migration. We also show the fraction
of L2 misses that trigger migrations inMigrantStore
(%migrations/L2 miss). We discuss the last two columns
(NoH-noSandH-S128) in Section 5.2. The numbers forH/
w-cache-parare similar to those ofH/w-cache-seq, as
expected, and hence not shown.

PCM-onlyhas many more busy banks thanDRAM-ideal.
Given that there are 64 banks, the higher number of busy
banks inPCM-only confirms the bandwidth pressure on
PCM-only. PCM-base,H/w-cache-seq,and MigrantStore
considerably reduce this pressure via caching. Because
MigrantStore does not migrate on every MigrantStore miss
whereas H/w-cache-seqdoes, H/w-cache-seqachieves
lower cache miss rate thanMigrantStore (%miss ratein
Table 3). However, many of the fills are ineffectual and are
avoided by MigrantStore’s hysteresis, as confirmed by the
fact that despite the higher miss rates, MigrantStore per-
forms better thanH/w-cache-seq (Figure 3).H/w-cache-
seq’s fills (fills per L2 miss =%miss ratein Table 3) are
more than MigrantStore’s migrations (%migrations/L2 miss
in Table 3). These fills consume both PCM and DRAM
energy, resulting inH/w-cache-seq’s higher energy than
MigrantStore.

In summary, we have shown that MigrantStore performs
better than all the compared alternative schemes and con-
sumes less energy than all the DRAM-based alternatives.
Further, recall that MigrantStore avoids the SRAM tag cost
overhead of the hardware cache.

5.1.2 Scientific workloads
In Figure 5, we compare the performance and energy of

the same schemes as before running scientific benchmarks,
SPLASH’s FFT and LU. The Y-axis shows both perfor-
mance and energy normalized to those ofPCM_base.
Because of these benchmarks’ much lower memory pres-
sure than commercial workloads, there is little difference in
the various systems’ performance. Due to good row local-
ity, row-buffersperform 16% better than the rest inlu. In
terms of energy,PCM-only, row-buffers,h/w-cache-seq,h/
w-cache-par, andMigrantStoreperform better thanPCM-
base, for the same reasons as in the commercial workloads.
Due to low L2 miss rates inlu, the dynamic energy is much
lower than the DRAM leakage inDRAM-ideal,h/w-cache-
seq,h/w-cache-par, andMigrantStore(DRAM-ideal’s leak-
age is pronounced due to its large DRAM).

FIGURE 4: Energy of comercial workloads
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Table 3: Detailed metrics (cycle* = execution cycle in PCM-base)

Bench-
marks

DRAM
-ideal

PCM-
only

PCM-
base

H/w-cache-seq MigrantStore NoH-noS H-S128

#busy
bank/
cycle*

#busy
bank/
cycle*

#busy
bank/
cycle*

#busy
bank/
cycle*

% miss
rate

#busy
bank/
cycle*

% miss
rate

%migr
ations/
L2
miss

#busy
bank/
cycle*

% miss
rate

%write-
back
reduction

apache 0.53 3.61 0.5 0.4 1.03 0.39 6.11 0.31 0.44 0.80 44.48

OLTP 0.7 3.91 0.6 0.54 1.39 0.45 5.83 0.44 0.5 0.78 20

specjbb 0.91 5.74 0.9 0.8 2.9 0.64 16.61 1.02 0.87 2.98 8.85
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Because the performance of the systems are similar for
the scientific workloads, we do not analyze these workloads
any further.

5.2 Hysteresis, sub-blocking & RAPid buffer

In Figure 6, we compare the performance of many vari-
ants of MigrantStore: without hysteresis and without sub-
blocking (NoH-noS), without hysteresis and with 512-byte
sub-blocking (NoH-withS), with hysteresis threshold and
sub-block size in bytes of (1) 16 and 512 (default,Migrant-
Store), (2) 8 and 512 (H8-S), (3) 64 and 512 (H64-S), and
(4) 16 and 128 (H-S128), and migration only on writes with
hysteresis threshold of 16 and 512-byte sub-blocking (Wr-
only). The Y-axis shows the performance of these variants
normalized to that of the default. In Figure 7, we show the
variants’ energy.

Both NoH-noSandNoH-withSperform variedly across
our workloads (Figure 6) and more importantly incur sig-
nificant energy degradations (Figure 7) compared to

MigrantStore(the default), highlighting the importance of
hysteresis. The no-hysteresis configurations migrate on all
DRAM misses like the hardware cache and incur many
more migrations than the defaultMigrantStore (NoH-noS’s
migrations per L2 miss =%miss ratein Table 3). These
migrations are fewer than those ofH/w-cache-seq’s cache
fills (H/w-cache-seq’s fills per L2 miss =%miss ratein
Table 3) due to better miss rates of the fully-associative
MigrantStore versus the 16-way-associative hardware
cache. In the absence of sub-blocking,NoH-noS’sPCM
energy component is large due to full-page PCM writes.
H8-SandMigrantStorebars show that hysteresis thresholds
of 8 and 16 perform well (Figure 6), confirming that the
hysteresis is fairly stable across the 8-16 range of threshold
values.H64-S incurs performance loss (Figure 6) due to
considerably delayed migrations.

H-S128 compares our coarse 512-byte sub-blocks
against the fine 128-byte sub-blocks and shows that the
finer granularity does not considerably change performance
(Figure 6) but improves energy (Figure 7). This improve-
ment is explained by the dirty-page writeback reduction in
H-S128 as a percent of all PCM traffic in the default
MigrantStoreusing 512-byte sub-blocks (H-S128’s%write-
back reduction in Table 3), and exposes the trade-off
between page-table space overhead and the writeback traf-
fic. Finally, we see that migrating only on writes (Wr-only)
improves energy due to fewer migrations but incurs consid-
erable performance loss due to not migrating read-only or
read-mostly pages (also a problem forOS-quanta-copyin
Figure 3).

We note that MigrantStore’s 25% energy advantage over
h/w-cache-seq(Figure 4) would disappear without hystere-
sis and sub-blocking as seen by the nearly 120% energy
overhead ofNoH-noSover MigrantStore (Figure 7). This
comparison highlights the importance of hysteresis and
sub-blocking.

In Figure 8, we isolate the performance and energy
impact of MigrantStore replacement policies by comparing

FIGURE 5: Performance & energy of scientific
workloads
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MigrantStore with perfect LRU, 20-entry RAPid buffer
(which approximates perfect LRU whenever the buffer’s
capacity is exceeded), and random replacement. The Y-axis
shows the performance and energy normalized to that of the
default MigrantStore with the RAPid buffer. There are gaps
in average performance and energy of about 11% and 7%,
respectively, betweenrandomandLRU. A 20-entry RAPid
buffer is sufficient to bridge this gap. The energy gap is nar-
rower than the performance gap because the software over-
head incurred byLRU to update its data structures is not
present inrandom.

5.3 Wear

We evaluated MigrantStore’s wear and found that
MigrantStore’s lifetime is similar to that of the hardware
cache (see Appendix for details).

6  Conclusion

Architectural and system support will likely be required
to exploit PCM’s advantages (scalability and energy) and
alleviate its disadvantages (performance and reliability).
Previous DRAM-based hardware cache incurs significant
bandwidth and energy overhead due to ineffectual caching
where blocks are evicted before sufficient number of
accesses. Bandwidth and energy are two key but scarce
resources in modern multicores. We employed intelligent
OS policies to avoid the hardware cache’s ineffectual cache
fills. We proposed a DRAM-PCM hybrid memory architec-
ture that leverages virtual memory so that the OS migrates
pages on demand from the PCM to DRAM, which is called
theMigrantStore. Conventional OS placement and replace-
ment policies for managing physical memory cause
MigrantStore to incur significant performance and energy
degradations. We proposed two ideas to address these
issues. First, to reduce the energy, bandwidth, and wear
overhead of ineffectual migrations, we proposedmigration
hysteresis. Second, to reduce the software overhead of good
replacement policies, we proposedrecently-accessed-page-
id (RAPid) buffer, a hardware buffer to track the addresses
of recently-accessed MigrantStore pages.

Using simulations of commercial workloads, we showed
that MigrantStore performs better than all the compared
alternative schemes and consumes less energy than the
DRAM-based schemes (e.g., a 128-MB MigrantStore
improves energy and performance by 25% and 7%, respec-
tively, while achieving similar wear as compared to a 128-
MB hardware cache). Being a part of physical memory,
MigrantStore avoids the SRAM tag cost overhead of the
hardware cache. Our experiments showed that migration
hysteresis and page sub-blocking are crucial for Migrant-
Store’s performance and energy. MigrantStore’s perfor-
mance, energy, wear, and cost make it an attractive option
for architecting future memory systems using PCM tech-
nology. By leveraging virtual memory, MigrantStore also
opens up the possibility for interesting architecture-operat-
ing systems synergies to be exploited in PCM-based sys-
tems.

References

[1] A. R. Alameldeen and D. A. Wood. Variability in architectural
simulations of multi-threaded workloads. InHPCA ’03: Proceed-
ings of the 9th International Symposium on High-P erformance
Computer Architecture, page 7. IEEE Computer Society, 2003.

[2] F. Bedeschi et al. An 8Mb demonstrator for high-density 1.8v
phase-change memories. InVLSI Circuits, 2004. Digest of Techni-
cal Papers. 2004 Symposium on, pages 442–445, June 2004.

[3] F. Bedeschi et al. A multi-level-cell bipolar-selected phase-change
memory. InSolid-State Circuits Conference, 2008. ISSCC 2008.
Digest of Technical Papers. IEEE International, pages 428–625,
Feb. 2008.

[4] H-r. Oh et al. Enhanced write performance of a 64-mb phase-
change random access memory.Solid-State Circuits, IEEE Jour-
nal of, 41(1):122–126, Jan. 2006.

[5] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and
T. Moscibroda. Dynamically replicated memory: building reliable
systems from nanoscale resistive memories. InASPLOS ’10: Pro-
ceedings of the fifteenth edition of ASPLOS on Architectural sup-
port for programming languages and operating systems, pages 3–
14, 2010..

[6] K-J. Lee et al. A 90 nm 1.8 v 512 mb diode-switch pram with 266
mb/s read throughput.Solid-State Circuits, IEEE Journal of,
43(1):150–162, Jan. 2008.

[7] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase
change memory as a scalable dram alternative. InISCA ’09: Pro-
ceedings of the 36th annual international symposium on Computer
architecture, pages 2–13, New York, NY, USA, 2009. ACM.

[8] M. M. K. Martin et al. Multifacet’s general execution-driven mul-
tiprocessor simulator (gems) toolset.SIGARCH Comput. Archit.
News, 33(4):92–99, 2005.

[9] Micron. Micron System Power Calculator. http://www.mi-
cron.com/support/part info/powercalc, 2009.

[10] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-montaÒo.
Improving read performance of phase change memories via write
cancellation and write pausing. InHPCA ’10: Proceedings of the
16th International Symposium on High-Performance Computer
Architecture, 2010.

[11] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing lifetime and security of pcm-
based main memory with start-gap wear leveling. InMICRO 42:
Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 14–23, New York, NY, USA,
2009. ACM.

[12] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high per-
formance main memory system using phase-change memory tech-
nology. InISCA ’09: Proceedings of the 36th annual international
symposium on Computer architecture, pages 24–33, New York,

FIGURE 8: Performance & energy impact of
MigrantStore replacement policiies

apache oltp specjbb mean apache oltp specjbb mean
0

1

Random RAPid buffer
LRU

Performance    Energy
P

er
fo

rm
an

ce
 &

 E
ne

rg
y 

N
or

m
al

iz
ed

 to
R

A
P

id
 b

uf
fe

r
1.4

1.2

0.8

0.6

0.4

0.2



12

NY, USA, 2009. ACM.
[13] S. Kang et al. A 0.1-?m 1.8-v 256-mb phase-change random ac-

cess memory (pram) with 66-mhz synchronous burst-read opera-
tion. Solid-State Circuits, IEEE Journal of, 42(1):210–218, Jan.
2007.

[14] Semiconductor Industry Association. International technology
roadmap for semiconductors, 2007.

[15] N. H. Seong, D. H. Woo, and H.-H. S. Lee. Security refresh: pre-
vent malicious wear-out and increase durability for phase-change
memory with dynamically randomized address mapping. InISCA
’10: Proceedings of the 37th annual international symposium on
Computer architecture, pages 383–394, New York, NY, USA,
2010. ACM.

[16] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and
N. P. Jouppi. A comprehensive memory modeling tool and its ap-
plication to the design and analysis of future memory hierarchies.
In ISCA ’08: Proceedings of the 35th International Symposium on
Computer Architecture, pages 51–62, Washington, DC, USA,
2008. IEEE Computer Society.

[17] W. Cho et al. A 0.18-nm 3.0-v 64-mb nonvolatile phase-transition
random access memory (pram).Solid-State Circuits, IEEE Jour-
nal of, 40(1):293–300, Jan. 2005.

[18] W. Zhang and T. Li. Exploring phase change memory and 3d die-
stacking for power/thermal friendly, fast and durable memory ar-
chitectures. InPACT ’09: Proceedings of the 2009 18th Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, pages 101–112, Washington, DC, USA, 2009. IEEE
Computer Society.

[19] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy
efficient main memory using phase change memory technology.
In ISCA ’09: Proceedings of the 36th annual international sympo-
sium on Computer architecture, pages 14–23, New York, NY,
USA, 2009. ACM.

Appendix

Sensitivity to DRAM size

In Figure 9, we vary MigrantStore’s size (i.e., DRAM
size) as 128 MB and 256 MB. The Y-axis shows the mean
performance and energy ofapache,oltp, andspecjbbnor-
malized to that ofPCM-base. As the DRAM size increases,
MigrantStore improves performance, as expected. The
larger DRAM achieves lower miss rate than the smaller
DRAM so that fewer accesses go to the PCM, resulting in
lower energy for the larger DRAM.

Wear

In Figure 10, we show the distribution of writes per
block for PCM-only, PCM-base,H/w-cache-seq(128MB),
andMigrantStore(128MB), as five graphs, one for each of
our workloads. The X-axis shows the number of writes to a
given cache block in PCM and the Y-axis shows the cumu-
lative percent of all blocks accessed in the simulation run.
Because we did not observe any systematically biased
writes to each page’s block#0, as reported by the hardware
cache paper (Section 2.4), we do not include the hardware
cache’s block rotation scheme forh/w-cache-seq.PCM-
base,h/w-cache-seqandMigrantStoreachieve much fewer
number of per-block writes thanPCM-only. By avoiding
ineffectual migrations, MigrantStore incurs fewer dirty-
page evictions from the DRAM, and thereby achieves fewer
per-block writes thanh/w-cache-seq. In the case of
MigrantStore, the extra writes to the PCM due to L2 write-
backs to non-migrated pages spread out to different mem-
ory blocks and hence avoid worsening the per-block writes
to the PCM. This spreading occurs due to good L1 and L2
caching which prevents repeated writes to a given memory
block from reaching the PCM. With the scientific work-
loads,fft and lu, all the systems incur fewer than one write
to a large fraction of the memory blocks due to the work-
loads’ low memory pressure.

While the graphs show the number of per-block writes,
lifetimes, in general, depend upon both the rate at which the
workloads write to the PCM and the distribution of writes
per block. Taking write rates into account, Table 4 summa-
rizes theworst-case lifetimeof 99.99% of memory blocks
for the three schemes running the different workloads. We
use 99.99% of the blocks to remove any pathological cases
that hurt the base case much more than the other sys-
tems.We assume that random OS page churn smooths out
writes across physical frames so that the number of writes
to a frame does not exceed the maximum among 99.99% of
frames. Because real systems experience significant amount
of page churn, this assumption is likely to be conservative.
Further, if random page churn does not address the 0.01%
then an active PCM-to-PCM migration can do so.

We define worst-case lifetime of a set of blocks as the
lifetime of the subset of blocks that are written the most
number of times. Table 4 shows the maximum number of
writes to any of the 99.99% of blocks during the simulation
run and the expected normalized lifetime assuming that
PCM can endure 109 writes. To normalize the write rates
across these systems which vary in speed, we usePCM-
base’s execution time for all the systems, so that the rates
are not biased by execution speed. Compared toPCM-only,
PCM-base,H/w-cache-seqand MigrantStoresignificantly
reduce the maximum number of writes. MigrantStore fur-
ther reduces dirty-page evictions due to ineffectual migra-
tions to achieve even fewer writes.fft and lu have longer
lifetimes than the commercial workloads becausefft andlu
exert significantly lower memory pressure, and hence have
lower write rates.

FIGURE 9: Sensitivity to DRAM size
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FIGURE 10: Wear

Table 4: Worst-case lifetime of 99.99% of memory blocks
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