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MigrantStore: Leveraging Virtual Memory in DRAM-PCM
Memory Architecture
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School of Electrical and Computer Engineering, Purdue University
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Abstract the technology nodes where DRAM scaling stops, PCM is
not without challenges. Compared to DRAM, PCM is about
four times slower for reads and about twelve times slower for
Writes; and can endure only about®1010" writes before
wearing out [14]. These longer latencies also imply longer
Mank busy times and hence lower bandwidth. Though PCM is
likely to improve significantly before DRAM completely

S5tops scaling, PCM’s reliability and performance (latency
work has proposed to use a large, DRAM-based hardwargnd bandwidth) will likely continue to require improvements

cache to absorb writes and provide faster access. Howevq/ri,a architectural and system support. PCM dissipates about

due to ineffectual caching where blocks are evicted befor orty-times more energy per cell for writes and about twice as

sufficient number of accesses, hardware caches incur signi lnuch energy per cell for reads. Fortunately, PCM's technol-
cant overheads in energy and bandwidth, two key but scarc rgy offers other advantages over DRAM, 1such as signifi

Lestoutr.ces n dmodern. multlcc:gs. ﬁBe(t:aulse uil'ng hardl\glgre f%antly less leakage, non-destructive reads, and writes that cat
zdeff lnglarzn dremovmg tsucd ine elc uf: cac Ilng wou thlnc(l)Jr electively update a part of a row in a memory array without
acdadrtional hardware cost and compiexity, we leverage tne equiring additional selection circuitry within the array which

virtual memory support for this purpose. We propose Avould degrade density. These advantages more than offse

DRA'\:I'PCM hybn% memcci)rfy ar(t:glte;éuh;et ngfMthV?/ OS”the per-cell energy disadvantage enabling PCM to achieve
migrates pages on demand from thée = 0 - e ca energy comparable to DRAM. Recent architecture papers
the DRAM part of our memory adigrantStore which

. ) . . 47][12][19] have proposed several hardware schemes to
includes two ideas. F'rSF’ o reduce the energy, bandwidt exploit PCM’s advantages (scalability and energy) and allevi-
and wear overhea_d of ineflectual migrations, we ProPOS&ye jts disadvantages (performance and reliability). While
migration hysteresisSecond, to 're'duce the software over- these papers propose interesting ideas for PCM-based mem
head of good replacement policies, we proposeently-

k iff hin thi )
accessed-page-id (RAPid) buffer hardware buffer to track ory systems, we take a different approach in this paper

. Qureshi et al. [12] propose to improve performance and
the addresses of recently-accessed MigrantStore pages. wear by employing a large, DRAM cache in hardware (e.g.,

1 Introduction 128 MB). However, the bandwidth demand on and the energy
) _dissipation of the PCM are worsened if the DRAM-cached
Since the advent of VLSI, DRAM technology has contin- pjocks are not accessed enough. We make the key observa
ued to scale in density and cost even faster than Moore’a Lawgn that because of good caching at the L1 and L2, many
to provide larger and cheaper main memory in modern comp|ocks are evicted from the DRAM cache before being
puter systems. However, experts agree that DRAM's chargesccessed enough to amortize the bandwidth and energy cos
based approach to providing storage is not likely to scalgf caching the block in the DRAM cache. Further, most of
beyond a few more technology generations (e.g., 20nm) [14}ne data is written only once before eviction from the DRAM
The end of DRAM scaling has prompted researchers t@ache so that the PCM is written only once with or without
investigate a number of alternative storage technologies sughram caching and hence sudheffectualcache fills do not
as spin torque transfer RAM (STTRAM), Flash, and phaserequce PCM wear. In fact, by evicting useful, dirty pages

change memory (PCM). To store a binary value, STTRAM.from the DRAM cache, the ineffectual cache fills increase
Flash, and PCM, respectively, use spin, electrically-isolategyritepacks to the PCM, worsening PCM wear. Bandwidth
charge, and phase (crystalline versus amorphous). Becauggq energy are two key but scarce resources in modern multi-
these properties do not depend on electric power to bggres. To make matters worse, PCM’s long latencies imply
retained, these storage technologies are non-volatile. Amongng bank occupancies which degrade bandwidth despite
the alternatives, PCM is emerging as the lead contender due?ggressive banking; Unfortunately, multicores can absorb
to its superior combination of energy, speed, density, and religtencies via thread overlap but cannot compensate for lack
ability (wear) characteristics. PCM is about two orders-of-of handwidth.
magnitude faster and can endure about four orders-of-magni- gqr performance, energy, and wear, large buffering using
tude more writes than Flash, and dissipates two orders-ofpRraM appears to be a reasonable approach. However, we
magnitude less energy and is two-orders-of-magnitud@mpioy intelligent OS policies to avoid the hardware cache’s
denser than STTRAM. _ _ ineffectual cache fills. We propose a DRAM-PCM hybrid
While PCM is projected to scale in density well beyond memory architecture that leverages virtual memory so that

With the imminent slowing down of DRAM scaling,
Phase Change Memory (PCM) is emerging as a lead altern
tive for main memory technology. While PCM achieves low
energy due to various technology-specific advantages, PC
is significantly slower than DRAM (especially for writes) and
can endure far fewer writes before wearing out. Previou



the OS migrates pages on demand from the PCM to The rest of the paper is organized as follows. We provide
DRAM. We call the DRAM part of our memory as background on PCM and discuss related work in Section 2.
MigrantStore.Being a part of physical memory, Migrant- We describe MigrantStore in Section 3. We explain our
Store’s access is handled by virtual address translation. Thmethodology in Section 4. We show our results in Section 5
DRAM in [12] is a hardware cache and not part of OS-man-and conclude in Section 6.
aged physical memory.

Conventional OS placement and replacement policie ]
for managing physical memory cause MigrantStore to incu? Phase Change Memory (PCM): Background

significant performance and energy degradations. We pr@@nd Related Work

pose two ideas to address these issues. First, like the hard- \yhile DRAM is a charge-based storage technology,
ware cache, MigrantStore also incurs the bandwidth angbcph uses phase — crystalline or amorphous — to store
energy cost of ineffectual migrations. The software OVergiate The two phases exhibit different resistivities that can
head of the migrations further degrade system performancgy getected to determine the phase. PCM retains its phase
and energy. To address this issue, we propose to isolate thgen i the absence of electric power, making PCM a non-
heavily-accessed pages via ouigration hysteresisvhere \,|atile storage medium. There are diode- [6] and transis-
a page is placed (i.e., migrated) only after some number of,. hased [2] PCM implementations. Because the supply
accesses have occurred to the page in PCM. One may thinfiage scales better in transistor-based implementations
that the hysteresis can be implemented in the hardwargs) \ve assume transistor-based implementation in the rest
cache as well. However, doing so would require trackingyf the paper.

pages that are not in the DRAM cache butin the PCMmain - g4ch pcM cell is made of a BIT transistor and a storage
memory. Because potentially a large fraction of the maingigment (a resistor) between the BJT's emitter and the bit-
memory may need to be tracked, implementing the hysterg;ng (3] (see Figure 1). The BJT's base is connected to the
sis in the harware cache would be impractical whereas thg,qqjline and the collector is connected to ground. Reads
OS Is a natural choice for such tracking. _cause current flow through the storage element due to a
~ Second, current OS’s periodically scan the reference bitgo age applied at the bitline. This current, which varies
in the page tables to identify recently-accessed pages fQfenending on the storage element’s state, is sensed at the
implementing replacement policies for main memory. How-gn of the bitline to determine the cell’'s state. For writes,
ever, being a small fraction of physical memory, Migrant-i,steaqd of sensing the current flow through the storage ele-
Store incurs much more frequent replacements than typicahent, a current is sent through the bitline to heat the storage
main memory. (Because of DRAM's worse scaling thang|ement, causing the element to change its phase. The mag-
PCM, MigrantStore would always be a small fraction of iyde and duration of the current flow determines the ele-
physical memory.) To keep the OS scan overhead low, the,onrs  resultant phase. We now discuss PCM's
scans are done at coarse time granularities (e.g., every %rformance, energy, and wear.

seconds), whereas the migrations occur more frequently

(e.g., every 10-20 microseconds at 2 GHz). While the rela2.1 Performance

tively-infrequent scanning would render the replacement .
y d g P A DRAM or PCM access includes not only the cells but

information stale, using random replacement would incur lso address decod ow buffers. and selection ot of the
significant performance loss. To address this issue, we proqs ress €rs, row buflers, and selection out o

pose a small hardware buffer, calledcently-accessed- row buffer. These compone_nts are common between
page-id (RAPid) bufferto hold (a truncated set of) the DRAM and PCM so that the differences in theal access
addresses of the MigrantStore pages accessed between t Fney and energy between DRAM and PCM are Iess_ than
migrations so that the replacement software can scan t e differences in theper-cel_l latency _and energy. Wh.'le
buffer instead of the page tables. We exploit the fact that —™ Per-cell read and write latencies are, respectively,

o ; bout four and twelve times longer than DRAM per-cell
because migrations are frequeRAPid buffercan be small 2 _ .
69 " en'tgries') qUERETIC bu latencies [2][6][3][17][4], the total PCM read and write

The key contributions of this paper are: latencies are, respectively, only about two and six times as

¢ MigrantStore, a DRAM-PCM hybrid memory architecture slow "_is DRAM. . .
that leverages virtual memory to reduce cost and energy over- Writés to PCM occur in the background upon write-

head compared to hardware caching; backs from the on-chip caches, off the program critical path
- migration hysteresis, a placement policy, to reduce the band{except in the uncommon case of filling up of writeback

width, and energy overhead of ineffectual migrations; buffers). Consequently, PCM’s long write latencies may not
+ recently-accessed-page-id (RAPid) bufferreduce the soft- impact performance by much. While reads are critical, the

ware overhead of good replacement policies; and 2x read latency does not translate to doubling of read miss

. U§ing simulations of commercial workloads, we show th?‘tpenalty which includes latencies and queuing delays at the
MigrantStore performs better than all the compared alternatlve(.nemOry controller and the memory bus in addition to the
schemes and consumes less energy than the DRAM-based,, o4 |atency. Typically, the raw latency contributes only

schemes. For instance, a 128-MB MigrantStore improve o . .
energy and performance by 25% and 7%, respectively, oversé'*t)’3 20% of the miss penalty, and hence the miss penalty

128-MB hardware cache. while achieving similar wear. may go up by 1.16-1.5x. . . .
The longer read and write latencies fundamentally imply



Bitline at the same time the array is large enough that the wiring

Wordline overhead does not increase the area significantly. Due to
selective updates, PCM nearly eliminates this area-energy
Storage trade-off by allowing the PCM designer to size the array
Element based almossolelyon area constraints while using selec-
tive update to tackle energpdependently{reads can also
BIT be done selectively but read energy is much less than write
Pass T '\ / energy). . '
Transistor . ) i As such, because most writes to main memory (DRAM
Write Write Floating

) or PCM) are much narrower than a row, selective update
FIGURE 1: PCM cell and selective update achieves a large reduction in the write energy (e.g., 64-byte

that PCM banks remain busy for longer times. This longer-2 block versus 8-KB PCM row spanning the DIMM mod-

occupancy reduces bandwidth even in heavily-banked PCMles amounts to an 128x reduction).

memories where bank conflicts are inevitable. While Because PCM is not charge-based, PCM's leakage is

PCM's longer latencies can be hidden by multi-threading significantly lower than that of DRAM (e.g., 10x lower)

such hiding exacerbates bandwidth pressure which is a sig13][2][6]. This advantage is substantial given that DRAMs

nificant concern. incur significant leakage (e.g., more than 15% of the total
energy comes from leakage in non-standby mode) [16].
2.2 Energy Together with selective update, the lack of leakage enables

PCM to be nearly equal to DRAM in total access energy

Like latencies, the¢otal energy cost of a PCM access rel- . X ; .
despite being worse in the per-cell energies.

ative to a DRAM access is less than tier-cellenergy cost
of a PCM access relative to that of a DRAM access.o 3 \Wear
Because PCM reads are non-destructive, unlike DRAM
reads, the read row need not be written back. Therefore, Because writes involve heating the storage element to
though PCM per-cell read energy is about twice as much aghange its phase, writes cause PCM cells to wear out. In
DRAM per-cell energy [2][6][3][L7][4], the total PCM read general, PCM cells can endure about’ 20102 writes
energy is about as much as that of DRAM. PCM writes,whereas DRAM cells wear out after about'§@vrites [14].
however, need to heat the storage element to change itsleft unaddressed, PCM used in main memory could wear
phase, in contrast to DRAM writes which change theout in a few months depending on the applications’ L2
charge on a storage capacitor. The current flow for writes igVriteback behavior. Selective updates help reduce the wear
much higher than that for reads — PCM per-cell write by avoiding unnecessary writes. In addition, large buffer-
energy is about forty times as much as that of DRAM [3] ing, as provided by MigrantStore or the hardware cache in
(diode-based implementations may incur less write energ{d2] can absorb a significant fraction of the writebacks.
but they do not scale well, as mentioned above). However,
the total PCM write energy is about twenty times as muchz'4 Related Work
as that of DRAM. Further, PCM’s ability to update selec-  Starting with the pioneering work on PCM [17], there
tively parts of a row more than offsets this factor of twenty. has been significant work on technology, devices, and mate-
Fundamentally, PCM’s selective updates stems from theials for PCM [2][6][3][13][4]. There have been some
fact that PCM is phase-based whereas DRAM is chargearchitecture proposals to alleviate PCM's reliability and
based. In a PCM write, though the wordline is fired causingperformance problems.
all the BJTs in the entire row to be turned on, bitlines in ~ Zhou et al. [19] propose (1) fine-grain wear leveling by
parts of the row need not carry any current and can simplyotating the PCM row upon every write; (2) coarse-grain
float without affecting the phase of the storage elements invear leveling by swapping segments after some number of
those parts (see Figure 1). Consequently, selective updateimites; and (3) reducing write energy (and bit-level wear)
PCM can occur simply in the write driver circuitry at the by using bit-level comparisons to avoid writing the same bit
periphery of the array without changing the wordline cir- values via selective update. However, the scheme requires a
cuitry. In contrast, DRAM is charge-based, and hence théarge barrel shifter per PCM chip for the row rotation (e.g.,
DRAM cells in those parts of the row would simply dis- 4K bytes), in addition to hardware tables for maintaining
charge through the floating bitlines and would corrupt the(1) the rotation amounts per PCM row and (2) the mapping
stored state. Hence, selective update in DRAM (or SRAM)between segments’ physical address to segments’ physical
would require selective activation of the wordlines so thatlocation. For large memories, the hardware tables, which
the parts of the wordline connected to the cells that are nodre as large as page tables, add significant overhead and
written would not be fired. Such selective activation wouldcomplexity. In contrast, MigrantStore exploits existing
require extra control wires and circuitryithin the array, address translation mechanisms without needing any extra
severely degrading density. Therefore, DRAM designers dhardware tables.
not employ selective update and instead rely on sizing the Lee et al. [7] propose to reduce PCM write energy and
arrays such that the array is small enough that reading anglear by optimizing PCM’s row buffers so that multiple
writing to the whole row does not require high energy andwrites to the same location are absorbed in the buffers

3



resulting in only a single writeback to the PCM array. The

authors propose more and narrower buffers than DRAMs to [ Core ] [ Core ] [ Core] [ Core ]
balance temporal and spatial locality. However, PCM wears , , I I
out so much sooner than DRAM (e.g., six orders of magni- Interconnect

tude fewer writes) that a large fraction of PCM writes need . : ! '

to be absorbed requiring large buffers. Unfortunately, the [LZ Bank] (LZ Ba"kj"' [LZ Bankj [LZ Ba”k]
row buffers take up area and cannot be increased beyond a [ Migrations

few megabytes, and are inflexible in that a given row buffer \ [
can hold data only from its own subarray and not from other igrantStore bCM
subarrays. We show that the row buffedsne are insuffi- (DRAM)

cient for commercial applications using multi-gigabyte FIGURE 2: MigrantStore

PCM memory. In contrast, MigrantStore and the hardware )
cache [12] are more plentiful in capacity and flexible in than 2% in size — may suffice). Because of MigrantStore’s
mapping, and hence are more effective. small size, the physical memory or the page tables do not

In addition to proposing the hardware cache, Qureshi egrow much. _ _
al. [12] observe that in their database workload, writes to Conventional OS policies for managing physical mem-
the cache block at the top of a page (i.e., block #0 in eaclRry cause MigrantStore to incur significant performance
page) are more frequent than writes to the rest of the blockgind energy degradations. Recall from Section 1 that to
Accordingly, they propose leveling this uneven wear ofaddress these issues, we propose two ideasnidation
cache blocks by rotating the blocks within a physical pagdysteresisto reduce bandwidth and energy overhead of
by a random amount, at the time the page is swapped inttheffectual migrations where the migrated pages are evicted
memory from disk. The rotation amount is held in a hard-before being accessed enough number of times in Migrant-
ware table in the memory controller. Unfortunately, the Store; (2) recently-accessed-page-id (RAPid) buffer
table is as large as virtual memory page table and impose€§duce the replacement policy software overhead of scan-
significant overhead. Despite many attempts, however, wBiNg page tables to identify recently-accessed MigrantStore
did not observe any systematic bias in our commerciaPages. By triggering fewer migrations, the hysteresis also
workloads. Consequently, we do not rotate the blockgeduces the OS software overhead.
within a page, and avoid this overhead.

While another work [18] proposes copying of fre-
quently-written pages from PCM to DRAM at the end of  An access to a page in PCM triggers a fault causing the
OS quanta, the scheme does not leverage on-demand migigage to be migrated to MigrantStore (page faults directly
tion, a fundamental feature and cornerstone of modern virmap the page into MigrantStore). Because physical mem-
tual memory. As such, the scheme ends up copying pagesy includes both PCM and MigrantStore, we need to iden-
accessed in a quantum at the end of the quantum by whictify whether a page is in PCM or MigrantStore. To this end,
time the pages are no longer frequently accessed whilthe OS sets a bit in the page table entry when a page is
incurring PCM latencies when the pages are being accessaqigrated or swapped into MigrantStore, and clears the bit
— i.e.,, OS quanta are too long during which locality when the page is evicted out of MigrantStore.
changes significantly. Further, copying frequently-written  Unlike a page fault which must retrieve data from the
pages ignore frequently-read pages which incur PCM latenslow disk, PCM faults transfer data between storage media
cies. We show that the scheme is not effective in improvinghat are much faster than the disk — from the PCM to
performance or wear. MigrantStore. Accordingly, we assume a fast trap for PCM

A few other papers address PCM’'s wear problemfaults. The trap handler invokes a DMA to copy the page
[11,15,5]. Another work targets PCM’s slow writes by from PCM to MigrantStore, and to write back the evicted
pausing writes to allow intervening reads [10]. While theseMigrantStore page (if dirty) to the PCM. Two points similar
four schemes do not reduce but either spread out wear or rée today’s systems are: (1) Because a page contains contig-
schedule writes, the hardware cache and MigrantStore useus addresses, the DMA achieves high bandwidth via
DRAM to reduce the write traffic to the PCM improving open-page mode and cache-block-size bursts to exploit row
not only wear but also performance and energy. locality in both the PCM and MigrantStore’s DRAM. (2)

. Stale cache blocks belonging to the copied pages are
3 MigrantStore flushed from the caches. The DMA frees the CPU to track

To avoid the hardware cache’s ineffectual cache fills, wethe replacement priority of MigrantStore pages using the
employ intelligent OS policies for a DRAM-PCM hybrid RAPid buffer. Because both PCM and MigrantStore are
memory architecture that leverages virtual memory. Ag'easonably fast, switching to another thread during a migra-
described in the Section 1, the OS migrates pages oton in addition to or instead of replacement-policy book-
demand from the PCM to DRAM which is called the keeping may incur higher overhead. Accordingly, our
MigrantStore (see Figure 2). Due to locality, a small experiments assume that the processor does not switch
MigrantStore, when compared to PCM, would be effectivethreads and instead runs the replacement-policy software
(e.g., for an 8GB PCM, a 128-MB MigrantStore — less during migrations (Section 3.2). While the migrations inev-

3.1 MigrantStore Operation

4



itably incur some performance and energy overhead, oureplacements but does not prevent unnecessary placement
migration hysteresis reduces this overhead for ineffectualvhere performance and energy penalty are paid well before
migrations (Section 3.3). replacements occur (our results show that hysteresis
MigrantStore can be located on the system memory buachieves lower energy even in the presence of LRU).
along side PCM, or behind the L2 on a dedicated link simi- To count the accesses to a page, we reuse the sub-block
lar to an L3 cache. Irrespective of its placement, Migrant-dirty bits (Section 3.4) which are not used by the sub-block-
Store does not raise any new coherence issues for 1/@g scheme when the page is in PCM which is when our
because MigrantStore is part of physical memory and pagdsysteresis needs to count. Blindly counting all accesses
in MigrantStore may be involved in I/O similar to PCM including cache hits may confuse our hysteresis because
pages. Further, MigrantStore does not need any extra pra@ache hits do not access the PCM and inject noise into the
cessor pins because it shares the processor pins with tleeunts. Consequently, we count off-chip misses to a page in
PCM. For high bandwidth, MigrantStore is banked, just asthe hysteresis counter. Because current systems do not
the PCM is banked. report off-chip misses to the TLB, we modify cache miss
The key hardware cost of MigrantStore is the DRAM. replay in the processor pipeline to enable our count. With
As discussed before, because MigrantStore is much smalléne return of data to the pipeline for an off-chip cache miss,
than the PCM, the page table overhead is small. While théhe off-chip miss is identified so that when the pipeline
usual address translation locates the desired page meplays the access, the count is incremented in the TLB
MigrantStore, the hardware cache in [12] relies on tags angpiggy-backed with the update of the per-page reference bit

incurs higher cost overhead. as done in conventional TLBs upon every access, so there
are no extra TLB accesses). The count is propagated to the
3.2 Replacements page table upon a TLB eviction as done in current systems,

Recall from Section 1 that migrations occur too fre- incurring little overhead. A page is migrated when the
quently to allow the MigrantStore replacement software toount reaches theysteresis threshold.
scan the reference bits in the page tables at every migration 10 €nsure that migrations do not prevent non-migration,
for avoiding replacement of recently-accessed Migrant-dema”d accesses (that are under the threshold) by swamp-
Store pages. Unfortunately, random replacement instead &9 the PCM banks and memory bus, we give priority to
any of the stack-based policies evicts useful pages angon-migration accesses over migrations. We allow non-
incurs considerable performance and energy loss. THlgration accesses to proceed in between consecutive
address this issue, we propose a hardware buffer, called tif@che-block-size bursts of a migration (Section 3.1). This
RAPid buffer, to hold the addresses of MigrantStore pageg)rioritization balances the migrations’ bandwidth and the
accessed between two consecutive migrations. The buffer RON-migration accesses’ delay.
placed in the memory controller which inserts the page ©Oneé may think that migration hysteresis can also be
addresses in hardware. During the DMAs of each migradone in the hardware cache, but there is a subtle issue.
tion, the replacement module in the OS scans the RAPiMigration hysteresis in the hardware cache would require
buffer instead of the full page tables to update its data struci@cking the access counts for all the blocks in physical
tures (e.g., LRU stack for LRU replacement), allowing theMemory, most of which araotin the cache. This tracking
OS to avoid replacement of recently-accessed MigrantStor&ould add significant state overhead and complexity to the
pages. Due to locality and reasonable migration frequency)ardware cache. By piggybacking on the page tables,
the number of unique pages touched between two migraVligrantStore incurs much less overhead.
tions is small enough that both a small buffer captures mo
of the benefits (e.g., 20 entries) and the runtime overhead o
the software is hidden well under the migration DMAs. In  To save write energy and wear, we expose PCM'’s selec-
case the buffer capacity is exceeded, then the oldest entrytige updates (Section 2.2) to the OS yiage sub-blocking
overwritten to provide a truncated list of recently-accessedo that only the dirty sub-blocks within a page (e.g., 512-
pages and the software uses this truncated list to update itg/te sub-blocks) are written back to PCM upon page evic-

.4 Page Sub-blocking

data structures. tion from MigrantStore. While the hardware cache per-
i i i forms this sub-blocking entirely in hardware, we expose
3.3 Migration Hysteresis this key aspect of PCM to the OS.

Recall from Section 1 that to reduce the bandwidth and T0 implement sub-blocking, the page tables expand their
energy overhead of ineffectual migrations, we propose’€r-page dirty to per-sub-block dirty bits, which are held in
migration hysteresis where a page is migrated only aftethe TLBs as well. The_ sgb-bllock dirty bits are S|gn!f|cant
some number of accesses have occurred to the page Mlly when the page is in MigrantStore and the bits are
PCM. By reducing the number of ineffectual migrations, cleared when page is migrated into MigrantStore. Upon a
our hysteresis also reduces the software overhead on systéiite 1 a page in MigrantStore, the sub-block dirty bits are
performance and energy. One may think that replacemertPdated in the TLB (piggybacked with the update of the
policies like LRU have built-in hysteresis obviating our Per-page dirty bit as done in conventional TLBs, so there is
explicit hysteresis. However, our hysteresis controls placel® extra TLB accsses). Upon replacing a page from
ment instead of replacement. While LRU prevents pOO,I\AlgrantStore,the OS looks up the TLB and/or page table to
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Table 1: Hardware parameters

Cores 8, in-order

L1 Caches Split I&D, Private, 32K 4-way set associative, 64B cache block, 3 cycle hit, LRU

L2 Cache Unified, Shared, Inclusive, 8M 8-way set associative, 8 banks, 37 cycle hit, LRU
Coherence MESI Directory, Full bit vector in the L2

Memory Subsystem Total latency = request/response queuing at controller + device latency + transfer latenc

1 memory cycle = 10 CPU cycles

Bus 256 bits (total), 1 memory cycle
SIMULATED SYSTEMS’ LATENCIES and ENERGIES

Base DRAM (DRAM-ideal) (8 GB, 22 memory cycles (reads and writes), total 64 banks, 64-byte interleaving, 32-entry
bank queues

33 nJ row miss read/write; 16 nJ row hit read/write; 64 mW leakage
Base PCM (PCM-only) Per-cell latency w.r.t. DRAM : 4x (reads), 12x (writes)

8 GB, 55 memory cycles (reads) and 143 cycles (writes), 64 banks, 64-byte interleaving, 3p-entry
bank queues

Per-cell energy w.r.t. DRAM: 2x (reads), 43x (writes)

33 nJ row miss read; 36 nJ and 170 nJ row miss 64-byte cache block write and 512-byte sub-block
write; 16 nJ row hit read/write; 6.4 mW leakage

MigrantStore 128 MB DRAM, 16 memory cycles (reads and writes), total 16 banks, 64-byte interleaving,
32-entry bank queues

15 nJ row miss read/write, 4 nJ row hit read/write, 8 mW leakage
negligible energy (0.025 nJ) for 20-enBAPId buffer

Hardware cache parallel 128 MB DRAM, 16-way associative, 19 (25) memory cycles (reads and writes), total 16 banks,
(sequential) 64-byte interleaving, 32-entry bank queues

29 (15) nJ row miss read/write; 8 (4) nJ row hit read/write; 8 mW leakage

determine which of the page’s sub-blocks need to be writthe source so the space can be re-allocated to another page.
ten back to the PCM. To avoid losing the clean sub-blocks due to such re-alloca-
Smaller sub-block size reduces the write energy andion, we do not re-allocate the migrating page’s space in
wear but also increase the space overhead of the extra dirBICM. This lack of re-allocation implies that for every page
bits in the page tables. Because multiple adjacent cachiea the MigrantStore there is a stale page in the PCM.
blocks are often clean or dirty together due to spatial localBecause MigrantStore is much smaller than the PCM, this
ity, the sub-blocks comprise many cache blocks whichduplication overhead is small. The OS holds the stale pages
reduces the space overhead (e.g., 512-byte sub-blocks neda data structure isolated from the page tables (i.e., the
16 extra bits in the page table entry). As discussed irstale pages are not pointed to by any page table entry), so
Section 3.3, because sub-block dirty bits are needed onlthat upon an eviction from MigrantStore, the OS directs
for MigrantStore pages and hysteresis count only for PCMwriteback from MigrantStore to the PCM to go to the
pages, we can reuse the same field in the page tables aagpropriate stale page. The OS then changes the page table
TLB for the dirty bits and the counts. However, the sub-mapping to point to the updated stale page, turning the stale
block dirty bits (e.g., 16) being more than the count (e.g., 4page into a current page.
6) may impose some space overhead on the PCM pag
tables which are significantly larger than the MigrantStoref Methodology

page tables. One option would be to employ separate page We simulate MigrantStore using Wisconsin GEMS-2.1
tables for the PCM and MigrantStore so that the PCM paggg] built on top of Simics, a full-system simulator. We simu-
tables hold the hysteresis count and the MigrantStore padgte a SPARC-based multicore running Solaris 10. For com-
tables hold the sub-block bits. The TLB would cache bOthparison, we also simulate the hardware cache in [12], the
the page tables and the TLB entries would still reuse theow buffers in [7], and page copying at the end of OS
same field for the sub-block bits and the count. quanta [18]. The hardware parameters are given in Table 1.
Finally, because only the dirty sub-blocks of an evicted\we obtain the PCM and DRAM latencies by combining
page are written back from MigrantStore to PCM, theinformation from PCM technology papers
page’s clean sub-blocks must be intact in the PCM. How113][2][6][3][17][4], CACTI's DRAM models [16] for the
ever, under normal page migration from a source to destinaarray decode, row buffers, and wiring latencies (these com-
tion, the migrating page fully vacates its space resources igonents are similar in PCM and DRAM), and Micron Sys-
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Table 2: workloads

Apache: 20k files (~500MB), 3200 clients, each with 25ms think time, warm up for ~1,500,000 transactions, 600

® [[transactions executed.

(8]

@ (|Online Transaction Processing (OLTP): PostgreSQL 8.3.7 database seb/&B database with 25k warehouses, 128

g users with 0 think time, and warm up the database for ~100k transactions before taking measurements for 200 transactions.

8 SPEC|jbb2000: SPEC server workload v1.07, used Sun J2SE v1.5.0 JVM, simulated 1.5 warehouses/CPU with 0 think
time,warm up for 350,000 transactions and measured for 10,000 transactions. (300 MB)

£ ||FFT: Transpose computation in Fourier transform?c?‘ftﬂ)mplex data point266 MB).

_ac_a LU decomposes a 4096 x 4096 matrix (between two barriers in one iteration of the maid 28oIB).

(8]

%)

tem Power Calculator [9]. In Table 1, the total latencies arecovers a fast trap startup (a few tens of cycles), initiating the
better than per-cell latencies, as described in Section 2. DMAs for the migrations (tens of insructions), and updat-
We account for latencies, bank and bus occupancies, aridg the page table entries and shooting down TLB entries
gueuing at the controllers in all the memory componentsfor the migrated pages (tens of instructions). The trap han-
Because PCM occupancies are large, we model an aggredler also scans the RAPid buffer and updates the LRU
sively-banked base PCM-only system (many banks andtack. Our code to scan a 20-entry RAPid buffer and update
deep queues) so that we do not unduly penalize the PCMan LRU stack is about 60 static instructions and about 400
only case. dynamic instructions (overall total of about 600 counting
We simulate the extra PCM and DRAM accesses needethe other tens of instructions). Because OS trap code exhib-
for the page migrations in MigrantStore and the cache fillsts poorer locality than applications, we conservatively
in the hardware cache. We carefully model open-page modassume that the 600 instructions take 5000 cycles. One
in both the PCM and DRAM for the page migrations andcould hide the 400 instructions under the 6000 cycles of
cache fills which perform sequential accesses and henaaigration, but we conservatively assume no hiding.
significantly benefit from open-page mode’s row hits. Spe- We model PCM and DRAM energies also using the
cifically, a migration in MigrantStore or a cache fill in the above sources. In Table 1, the total energies are better than
hardware cache involves reading the demand page from thger-cell energies, as described in Section 2.2.We assume
PCM, reading the victim page from the DRAM, writing the that the PCM reads an entire row for non-migration reads
demand page to the DRAM, and writing the victim page (if such as L3 misses iRCM-basewhich does not use any
dirty) to the PCM. The first three operations exploit (1) par-DRAM (Section 5.1.1) and L2 misses under the hysteresis
allel accesses across as many banks as needed to retrievetheeshold with MigrantStore, migrations in MigrantStore
page (all the 64 64-byte banks in PCM and all the 16 64-and cache fills in the hardware cache; and that the PCM
byte banks in DRAM) and (2) row locality for multiple writes only cache blocks (and not entire rows) for non-
accesses to the same bank (2 accesses in PCM andn8igration writes (L2 writebacks in PCM systems without a
accesses in DRAM). The last operation exploits selectivdDRAM cache and L2 writebacks that miss in MigrantStore
updates to write back only the dirty sub-blocks. To ensuredue to hysteresis) and sub-blocks for dirty-page writebacks
that our comparison with the hardware cache remains corfrom MigrantStore or the hardware cache. For page migra-
servative, MigrantStore stalls the migration-triggering L2tions and cache fills, we carefully model row hits in both
miss for all the four operations to finish (otherwise the pagePCM and DRAM which avoid the large array access ener-
tables would point to stale pages) whereas the hardwargies. Overall, each migration incurs about 8000 nJ in the
cache stalls the L2 miss only for the first operation assummemory system. For MigrantStore, we charge a software
ing the rest of the operations are hidden in hardware. Wenergy overhead of 3000 nJ per migration assuming 5 nJ for
tried returning the requested word(s) first for the hardwareeach of about 600 dynamic instructions in the trap software
cache but the optimization is not effective due to stalls(Intel Xeon consumes 5 nJ/instruction). We note that
caused by further, immediate L2 misses to the DRAMbecause the software overhead of 5000 cycles and 3000 nJ
cache block being transferred. Unlike latencies of some oére similar to the average per-migration memory system
the operationsall the operations incur bank occupancies inoverhead of about 6000 cycles and 8000 nJ, reducing the
both MigrantStore and the hardware cache. As mentionedoftware overhead via hysteresis is important (while these
in Section 3.3, we trigger 64-byte bursts for the migrationsare averages, our simulations account for the actual per-
and cache fills while allowing non-migration, demand migration overhead).
accesses to proceed between the bursts. Each such burstWe use commercial and scientific workloads briefly
looks up the L2 cache to invalidate or write back matchingdescribed in Table 2. To account for statistical variations,
cache blocks. Overall, each migration incurs about 600@ve use enough randomly-perturbed runs to achieve 95%
cycles in the memory system. For MigrantStore, we chargeonfidence [1].
5000 cycles extra per migration for software overhé&ad
addition to the memory system overhead. This overhead



5 Experimental Results ] PCM-only A DRAM-ideal K3 Row-buffers

) . . L [ H/w-cache-par H/w-cache-seq (X MigrantStore
We first compare MigrantStore with other alternatives in OS-quanta-copy - a 9

terms of performance and energy. Then, we analyze the 1.75
effectiveness of migration hysteresis and sub-blocking by
comparing MigrantStore with and without these mecha-
nisms. Next, we study the sensitivity of MigrantStore to its

DRAM size. Finally, we compare MigrantStore with other

alternatives in terms of wear.
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5.1 Performance and Energy 0.75

We show commercial workloads in Section 5.1.1 and
scientific workloads in Section 5.1.2.

5.1.1 Commercial workloads

In Figure 3, we compare the performance of plain PCM ‘
(PCM-only), plain DRAM (DRAM-ideal), PCM with an 0 apache oltp Speqb mean
SRAM-based L3 cache (PCM-base), the hardware cache FIGURE 3: Performance of commercial workloads
[12], enhanced row buffers (Row-buffers) [7], and page _
copying at the end of OS quanta (OS-quanta-copy) [18]arge enough. Because DRAM is expected to stop scall_ng
against that of MigrantStore. We show commercial work-S00n, this comparison is only to establish the opportunity
loads here and scientific workloads later. The Y-axis showd0r the rest of the schemes.
performance normalized to that BEM-basehigher is bet- Row-bufferperforms worse thaCM-basedue to (1)
ter). While PCM-only does not have any extra cache like high row miss rate (75-96%) and (2) the fact that the L2
the DRAM in MigrantStore and the hardware cacREM- misses that incur a row miss need to wait for not only the
base uses an area-equivalent SRAM-based, 24-MB L3PCM-array read latency but also the long PCM-array write
cache with 1-KB blocksDRAM-idealshows conventional latency of the row writeback if dirty (see the footnote in
DRAM if DRAM scaling were to continue. We show two Section 2.2). To be certain, we validated aomw-buffer
variants of the hardware cache: one with sequential tag-follmplementation by runningocean and radix from the
|0wed-by-data access (H/W-Cache_seq) emp|oyed in |arg§PLASH suite wheraow-buffer achieves 2.77 and 1.09
caches to reduce energy by accessing only the matchingPeedups ovePCM-only (6% and 42% row miss rate),
way at the cost of extra latency [16] and the other with parfe€spectively, which are in line with thew-buffer paper.
allel tag-data access (H/w-cache-par) to optimize latency atiowever, our commercial workloads exhibit much poorer
the cost of extra energy to access all the set-associatiV@W locality than SPLASH.
ways in parallel. Both the hardware cache variants use a Our multitheaded workloads mostly absorb the modestly
128-MB DRAM, and are 16-way associative with page-sizelonger latency ofH/w-cache-segas compared taH/w-
(8-KB) blocks, 512-byte sub-blocks, and LRU replacementcache-par resulting in the variants achieving similar per-
While the authors in [12] assume 1-GB DRAM cache for formance. Both variants perform better tHa&@M-basedue
32-GB PCM, we assume similar proportions but smalletto their DRAM cachesMigrantStoreperforms 7% better
sizes of 128-MB DRAM cache for 8-GB PCM to keep thanH/w-cache-seq. OveralMigrantStores larger DRAM
GEMS’ cache warm-up from blowing up. The rest of the achieves about 24% better performance dv@M-base’s
parameters are similar to those in [12]. Despite the size difSRAM-based L3. FinallyDS-quanta-copperforms worse
ferences, our speedups for the hardware cache are similar #3an PCM-basebecause copying frequently-written pages
those in [12].For the enhanced row buffers (Row-buffers),into DRAM at the end of the quanta is too late by when
we assume 8, 2048-byte-wide row buffers per PCM banknany accesses have incurred PCM latencies and copying
(the energy-performance optimal point in [7] is 4, 512-byte-frequently-written pages ignores frequently-read pages.
wide row buffers per bankMigrantStorealso uses a 128- (Section 2.4).
MB DRAM with 8-KB pages, 512-byte sub-blocks and  In Figure 4, we compare the energy of the same
hysteresis threshold of 16. We give the latencies and enefchemes. The Y-axis shows energy normalized to that of
gies of the various schemes in TabledS-quanta-copgthe ~ PCM-base(lower is better). We break down energy into
last scheme, also uses a 128-MB DRAM. Though largefeakage, dynamic and software overhead (for MigrantStore,
DRAM s are available today, we choose 128 MB DRAM for s discussed in Section 4). PCM’s leakage is much lower
the hardware cache and MigrantStore to emulate the futurdan DRAM's (Table 1). The open-page mode accesses for
where data will increase but DRAM will have stopped scal-MigrantStore’s migrations and the hardware cache’s cache
ing. fills (Section 4) improve both performance and energy by

Due to the lack of an L3 cach®CM-only performs ~ Minimizing the high-energy row retrievals from the
worse thanPCM-base.DRAM-ideal performs better than (DRAM or PCM) arrays.
PCM-basebecause PCM has longer latencies and higher Because’CM-base’s SRAM-based L3 cache consumes

occupancies than DRAM arfdCM-base’s L3 cache is not high energyPCM-only, DRAM-ideaknd row-bufferscon-

o
3]
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'

Performance Normalized to PCM_base
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Table 3: Detailed metrics (cycle* = execution cycle in PCM-base)

Bench- || DRAM PCM- | PCM- H/w-cache-seq MigrantStore NoH-noS H-S128
marks -ideal only base
#busy #busy | #busy | #busy | % miss | #busy | % miss | %migr | #busy | % miss | %write-
bank/ bank/ | bank/ bank/ | rate bank/ | rate ations/ | bank/ | rate back
cycle* cycle* | cycle* | cycle* cycle* L2 cycle* reduction
miss
apache 0.53 | 3.61 0.5 0.4 1.03 0.39 6.11 0.31 0.44 0.80 44.48
OLTP 0.7 3.91 0.6 0.54 1.39 0.45 5.83 0.44 0.5 0.78 20
specjbb 0.91 | 5.74 0.9 0.8 2.9 0.64 16.61 1.02 0.87 2.98 8.85
a- PCM-only e-H/w-cache-seq m S/w overhead %miss rate= cache fills per L2 miss) and ikligrantStore
b- DRAM-ideal  f-MiigrantStore = 1'5‘;"}:(&93 _ only those MigrantStore misses that are above the hystere-
(Ci-lil%vvf;gﬁ:par FoS-quanta-copy . B A ynamic sis threshold trigger a migration. We also show the fraction
1.2 7 : 5 of L2 misses that trigger migrations iMigrantStore
U 6.56 e (Y%omigrations/L2 miss). We discuss the last two columns
1 / (NoH-noSandH-S12§ in Section 5.2. The numbers fét/

w-cache-parare similar to those oMH/w-cache-seq, as
expected, and hence not shown.

PCM-onlyhas many more busy banks tHaRAM-ideal.
Given that there are 64 banks, the higher number of busy
banks inPCM-only confirms the bandwidth pressure on
PCM-only PCM-base,H/w-cache-seqand MigrantStore
considerably reduce this pressure via caching. Because
MigrantStore does not migrate on every MigrantStore miss
whereas H/w-cache-seqdoes, H/w-cache-seqachieves
lower cache miss rate thadligrantStore (%omiss ratein
Itp specjbb mean Table 3). However, many of the fills are ineffectual and are
avoided by MigrantStore’s hysteresis, as confirmed by the
sume lower energy thaRCM-base. WhileH/w-cache-seq fact that despite the higher miss rates, MigrantStore per-
consumes lower energy thaffw-cache-parby accessing forms better thanH/w-cache-seq (Figure 3}/w-cache-
only the matching wayMigrantStoreconsumes 25% and seq’s fills (fills per L2 miss #miss ratein Table 3) are
56% less energy tharH/w-cache-seqand PCM-base, more than MigrantStore's migrations (%migrations/L2 miss
respectively. H/w-cache-par incurs associative accessesin Table 3). These fills consume both PCM and DRAM
(extra DRAM energy) and ineffectual cache fills (extra energy, resulting inH/w-cache-se@ higher energy than
DRAM and PCM energy)H/w-cache-segloes not incur  MigrantStore.
associative accesses but incurs ineffectual cache fills. In summary, we have shown that MigrantStore performs
Because there is no associative access, the per-accasstter than all the compared alternative schemes and con-
energy is equal to MigrantStore’s with a negligible tag over-sumes less energy than all the DRAM-based alternatives.
head (Table 1). MigrantStore does not have associativEurther, recall that MigrantStore avoids the SRAM tag cost
accesses and reduces ineffectual migrations via hysteresisverhead of the hardware cache.
BecauseOS-quanta-copycopies much fewer pages than ¢ ; 5 scientific workloads

MigrantStore and ends up mostly accessing the PCM |, Figure 5, we compare the performance and energy of
instead of the DRAMOS-quanta-copy’s energy CoNSUmp- the same schemes as before running scientific benchmarks
tion is similar to that ofPCM-only (as is performance in gp| ASH's FFT and LU. The Y-axis shows both perfor-
Figure 3). We QO not charge any software overhead for thg,ance and energy normalized to those REM_base.
software copying inOS-quanta-copyin apache, most of gecayse of these benchmarks’ much lower memory pres-
the copying is too late be useful but consumes energy.  gyre than commercial workloads, there is little difference in
We explain MigrantStore’s energy using Table 3 whichihe various systems’ performance. Due to good row local-
shows the average number of busy banksPdM-base, iy yow-buffersperform 16% better than the rest fin. In
DRAM:-ideal, H/w-cache-secand MigrantStore computed  arms of energyPCM-only row-buffers,h/w-cache-sedy/
by averaging ovePCM-basé execution cyclesBecause y_cache-par and MigrantStoreperform better thaPCM-
the execution times of these systems are quite differenfase for the same reasons as in the commercial workloads.
(Figure 3), averaging over each system's execution timey e 1 Jow L2 miss rates ifu, the dynamic energy is much
would distort the true counts of the systems’ busy banksq\ver than the DRAM leakage iDRAM-ideal, h/w-cache-

The table shows the fraction of L2 misses that further mis%eq h/w-cache-parandMigrantStore(DRAM-ideal’s leak-
in H/w-cache-se@nd inMigrantStore (%miss rate)n H/ age is pronounced due to its large DRAM).
w-cache-seqall the cache misses trigger a cache fill (i.e.,

o
o]

o©
~

Energy Normalized to PCM_base
o o
N o

apache

FIGURE 4: Energy of comercial workloads
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a- PCM-only e-Hiw-cache-seq ™ S/w overhead MigrantStore(the default), highlighting the importance of
b- DRAM-ideal  f- MiigrantStore K Leakage hysteresis. The no-hysteresis configurations migrate on all
g c-Row-buffers  g-OS-quanta-copy = DRAM-dynamic DRAM misses like the hardware cache and incur many
g, d- Hiw-cache-par = PCM-dynamic more migrations than the defattigrantStore (NoH-noS'’s
g 2 Performance Energy migrations per L2 miss @6miss ratein Table 3). These
% 18 o cm oo migrations are fewer than those Hfw-cache-seq's cache
% Y fills (H/w-cache-seq’s fills per L2 miss &miss ratein
S N Table 3) due to better miss rates of the fully-associative
£ MigrantStore versus the 16-way-associative hardware
212 bedory éba'e'f'g' cache. In the absence of sub-blockifgoH-noS'sPCM
3 1 = J =N N energy component is large due to full-page PCM writes.
E 0.8 [ |BN - EH :: H8-SandMigrantStorebars show that hysteresis thresholds
3 g Et ) 5‘ 4 of 8 and 16 perform well (Figure 6), confirming that the
§ 04 Et ) EH g hysteresis is fairly stable across the 8-16 range of threshold
g =N §| 4 values.H64-S incurs performance loss (Figure 6) due to
5 02| AN - EH :: considerably delayed migrations.
g o =N T H-S128 compares our coarse 512-byte sub-blocks
FIGURE 5: Performance & energy of scientific against the fine 128-byte sub-blocks and shows that the
workloads finer granularity does not considerably change performance
(Figure 6) but improves energy (Figure 7). This improve-
[Z4 NoH-noS  HM NoH-withS [ H8-S ment is explained by the dirty-page writeback reduction in
B MigrantStore [N] H64-S #d H-s128 H-S128as a percent of all PCM traffic in the default
012 KX wr-only MigrantStoreusing 512-byte sub-blocks (H-S128swrite-
S back reductionin Table 3), and exposes the trade-off
% 1 between page-table space overhead and the writeback traf-
g fic. Finally, we see that migrating only on writes (Wr-only)
§ 08 ] o ) improves energy due to fewer migrations but incurs consid-
h erable performance loss due to not migrating read-only or
8 06 - read-mostly pages (also a problem fa-quanta-copyn
£ Figure 3).
S 04 . We note that MigrantStore’s 25% energy advantage over
§ ’ h/w-cache-se@Figure 4) would disappear without hystere-
goz N sis and sub-blocking as seen by the nearly 120% energy
S overhead ofNoH-noSover MigrantStore (Figure 7). This
E 0 comparison highlights the importance of hysteresis and
apache oltp specjbb mean sub-blocking.
FIGURE 6: Performance impact of hysteresis & In Figure 8, we isolate the performance and energy
sub-blocking impact of MigrantStore replacement policies by comparing
Because the performance of the systems are similar for 2‘ mg:c\/?tﬁs (:_HHGS‘ll_SB ; fé‘gk(;‘éeefhead
the scientific workloads, we do not analyze these workloads o H8-S g-Wronly = DRAM-dynamic
any further. 225 d- MigrantStore @ PCM-dynamic
5.2 Hysteresis, sub-blocking & RAPId buffer o 3 5
o
In Figure 6, we compare the performance of many vari- @; 2‘27:
ants of MigrantStore: without hysteresis and without sub- -gz 2;5
blocking (NoH-noS), without hysteresis and with 512-byte S
sub-blocking (NoH-withS), with hysteresis threshold and 2 17§
sub-block size in bytes of (1) 16 and 512 (defaMligrant- 8
Store), (2) 8 and 512 (H8-S), (3) 64 and 512 (H64-S), and 112;2
(4) 16 and 128 (H-S128), and migration only on writes with g ' 1
hysteresis threshold of 16 and 512-byte sub-blocking-( 3075
only). The Y-axis shows the performance of these variants @
normalized to that of the default. In Figure 7, we show the “ 05
variants’ energy. '22

Both NoH-noSand NoH-withSperform variedly across
our workloads (Figure 6) and more importantly incur sig-

apache oltp specjbb mean
FIGURE 7: Energy impact of hysteresis & sub-

nificant energy degradations (Figure 7) compared to blocking
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Performance & Energy Normalized to RAPId buffer

FIGURE 8: Performance & energy impact of
MigrantStore replacement policiies

MigrantStore with perfect LRU, 20-entry RAPid buffer
(which approximates perfect LRU whenever the buffer’s
capacity is exceeded), and random replacement. The Y-axis
shows the performance and energy normalized to that of the
default MigrantStore with the RAPid buffer. There are gaps, 2]
in average performance and energy of about 11% and 7%,
respectively, betweerandomandLRU. A 20-entry RAPid
buffer is sufficient to bridge this gap. The energy gap is nar{3]
rower than the performance gap because the software over-
head incurred by RU to update its data structures is not
present irandom. 4]

5.3 Wear

We evaluated MigrantStore’s wear and found that
MigrantStore’s lifetime is similar to that of the hardware
cache (see Appendix for details).

(5]

6 Conclusion
6
Architectural and system support will likely be required 1

to exploit PCM’s advantages (scalability and energy) and
alleviate its disadvantages (performance and reliability)![7]
Previous DRAM-based hardware cache incurs significant
bandwidth and energy overhead due to ineffectual caching
where blocks are evicted before sufficient number ofjg
accesses. Bandwidth and energy are two key but scarce
resources in modern multicores. We employed intelligent
OS policies to avoid the hardware cache’s ineffectual cach®!
fills. We proposed a DRAM-PCM hybrid memory architec- [10]
ture that leverages virtual memory so that the OS migrates
pages on demand from the PCM to DRAM, which is called
the MigrantStore. Conventional OS placement and replace-
ment policies for managing physical memory cause
MigrantStore to incur significant performance and energ)lll]
degradations. We proposed two ideas to address these
issues. First, to reduce the energy, bandwidth, and wear
overhead of ineffectual migrations, we proposeijration
hysteresis. Second, to reduce the software overhead of go?ld2 ]
replacement policies, we proposegtently-accessed-page-

id (RAPId) buffer a hardware buffer to track the addresses

of recently-accessed MigrantStore pages.

11

Using simulations of commercial workloads, we showed
that MigrantStore performs better than all the compared
alternative schemes and consumes less energy than the
DRAM-based schemes (e.g., a 128-MB MigrantStore
improves energy and performance by 25% and 7%, respec-
tively, while achieving similar wear as compared to a 128-

. MB hardware cache). Being a part of physical memory,
MigrantStore avoids the SRAM tag cost overhead of the
- hardware cache. Our experiments showed that migration
hysteresis and page sub-blocking are crucial for Migrant-
Store’s performance and energy. MigrantStore’s perfor-
. mance, energy, wear, and cost make it an attractive option
for architecting future memory systems using PCM tech-
nology. By leveraging virtual memory, MigrantStore also
opens up the possibility for interesting architecture-operat-
ing systems synergies to be exploited in PCM-based sys-
tems.

References

A. R. Alameldeen and D. A. Wood. Variability in architectural
simulations of multi-threaded workloads. HPCA '03: Proceed-
ings of the 9th International Symposium on High-P erformance
Computer Architecture, page 7. IEEE Computer Society, 2003.
F. Bedeschi et al. An 8Mb demonstrator for high-density 1.8v
phase-change memoriesMhSI Circuits, 2004. Digest of Techni-
cal Papers. 2004 Symposium on, pages 442—-445, June 2004.

F. Bedeschi et al. A multi-level-cell bipolar-selected phase-change
memory. InSolid-State Circuits Conference, 2008. ISSCC 2008.
Digest of Technical Papers. |IEEE Internationphges 428-625,
Feb. 2008.

H-r. Oh et al. Enhanced write performance of a 64-mb phase-
change random access memdsyplid-State Circuits, IEEE Jour-
nal of, 41(1):122-126, Jan. 2006.

E. Ipek, J.Condit, E.B. Nightingale, D.Burger, and
T. Moscibroda. Dynamically replicated memory: building reliable
systems from nanoscale resistive memorie®A$PLOS '10: Pro-
ceedings of the fifteenth edition of ASPLOS on Architectural sup-
port for programming languages and operating systems, pages 3—
14, 2010..

K-J. Lee etal. A90 nm 1.8 v 512 mb diode-switch pram with 266
mb/s read throughputSolid-State Circuits, |IEEE Journal of
43(1):150-162, Jan. 2008.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase
change memory as a scalable dram alternativéSGA '09: Pro-
ceedings of the 36th annual international symposium on Computer
architecture pages 2-13, New York, NY, USA, 2009. ACM.

M. M. K. Martin et al. Multifacet’s general execution-driven mul-
tiprocessor simulator (gems) tools&GARCH Comput. Archit.
News 33(4):92-99, 2005.

Micron. Micron System Power Calculator. http://www.mi-
cron.com/support/part info/powercalc, 2009.

M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-montaQo.
Improving read performance of phase change memories via write
cancellation and write pausing. HPCA '10: Proceedings of the
16th International Symposium on High-Performance Computer
Architecture, 2010.

M. K. Qureshi, J.Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing lifetime and security of pcm-
based main memory with start-gap wear levelingMICRO 42:
Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecturepages 14-23, New York, NY, USA,
2009. ACM.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high per-
formance main memory system using phase-change memory tech-
nology. InNISCA '09: Proceedings of the 36th annual international
symposium on Computer architectupages 24-33, New York,



NY, USA, 2009. ACM. ear
[13] S. Kang et al. A 0.1-?m 1.8-v 256-mb phase-change random ac-
cess memory (pram) with 66-mhz synchronous burst-read opera-

tion. Solid-State Circuits, IEEE Journal of, 42(1)-210-218, Jan, 1" Figure 10, we show the distribution of writes per

2007. block for PCM-only PCM-base H/w-cache-sed128MB),
[14]  Semiconductor Industry Association. International technology andMigrantStore(128MB), as five graphs, one for each of
roadmap for semiconductors, 2007. our workloads. The X-axis shows the number of writes to a

(151 N.H.Seong, D. H. Woo, and H.-H. S. Lee. Security refresh: pre- giyen cache block in PCM and the Y-axis shows the cumu-
vent malicious wear-out and increase durability for phase-changeiative percent of all blocks accessed in the simulation run
memory with dynamically randomized address mappindSIDA . . . )
10: Proceedings of the 37th annual international symposium on B€cause we did not observe any systematically biased
Computer architecturepages 383-394, New York, NY, USA, writes to each page’s block#0, as reported by the hardware
2010. ACM. cache paper (Section 2.4), we do not include the hardware

[16] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and cache’s block rotation scheme fdnfw—cache-seqPCM-

N. P. Jouppi. A comprehensive memory modeling tool and its ap-y) < by cache-se@nd MigrantStoreachieve much fewer
plication to the design and analysis of future memory hierarchies. !

In ISCA '08: Proceedings of the 35th International Symposium on!']umber of pe_r'bk?Ck writgs thaﬁCM'c_’nly By aVOiding
Computer Architecture, pages 51-62, Washington, DC, USA,ineffectual migrations, MigrantStore incurs fewer dirty-
2008. IEEE Computer Society. page evictions from the DRAM, and thereby achieves fewer

[17] W. Cho et al. A0.18-nm 3.0-v 64-mb nonvolatile phase-transition per-block writes than h/w-cache-seq. In the case of
random access memory (prariplid-State Circuits, IEEE Jour- y i rantStore, the extra writes to the PCM due to L2 write-
nal of, 40(1):293-300, Jan. 2005. T .

[18]  W.Zhang and T. Li. Exploring phase change memory and 3d die-P@cks to non-migrated pages spree_ld out to different mem-
stacking for power/thermal friendly, fast and durable memory ar- Ory blocks and hence avoid worsening the per-block writes
chitectures. IlPACT '09: Proceedings of the 2009 18th Interna- to the PCM. This spreading occurs due to good L1 and L2
tional Conference on Parallel Architectures and Compilation caching which prevents repeated writes to a given memory
o pees 101-112, Washington, DC, USA, 2009: I=881ock from reaching the PCM. With the scientific work-

[19] P.Zhou, B. Zhao, J. Yang, and V. Zhang. A durable and energyIoads,f“ft andlu,_all the systems incur fewer than one write
efficient main memory using phase change memory technologyt0 a large fraction of the memory blocks due to the work-
In ISCA '09: Proceedings of the 36th annual international sympo- [oads’ low memory pressure.

sium on Computer architectur@ages 14-23, New York, NY, While the graphs show the number of per-block writes,
USA, 2009. ACM. lifetimes, in general, depend upon both the rate at which the
Appendix workloads write to the PCM and the distribution of writes

per block. Taking write rates into account, Table 4 summa-
Ce . . rizes theworst-case lifetimef 99.99% of memory blocks
SenS|t|V|ty to DRAM size for the three schemes running the different workloads. We
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DRAM so that fewer accesses go to the PCM, resulting IIwzurther, if random page churn does not address the 0.01%
lower energy for the larger DRAM.

then an active PCM-to-PCM migration can do so.
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° Performance Energy o .

214 lifetime of the subset of blocks that are written the most
9 B MigrantStore-128 number of times. Table 4 shows the maximum number of
% 12t---- -----1--------------- writes to any of the 99.99% of blocks during the simulation
< M MigrantStore-256' run and the expected normalized lifetime assuming that
% 1 PCM can endure fowrites. To normalize the write rates

= across these systems which vary in speed, weRGHkI-

g 08f----1 | """~ """ttt base’s execution time for all the systems, so that the rates
z are not biased by execution speed. CompardiG-only
gO-G T PCM-base,H/w-cache-seqnd MigrantStore significantly

5 reduce the maximum number of writes. MigrantStore fur-
ﬁ 0.4 4---- ther reduces dirty-page evictions due to ineffectual migra-
2 tions to achieve even fewer writeit and lu have longer
g02f- - lifetimes than the commercial workloads becaffsandlu

% 0 exert significantly lower memory pressure, and hence have
o mean mean lower write rates.

FIGURE 9: Sensitivity to DRAM size
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