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ABSTRACT

We consider the problem of estimating one of the parame-

ters of a marked point process, namely the tradeoff parameter

between the data and prior energy terms defining the proba-

bilit density of the process. In previous work, the Stochastic

Expectation-Maximization (SEM) algorithm was used. How-

ever, SEM is well known for having bad convergence proper-

ties, which might also slow down the estimation time. There-

fore, in this work, we consider an alternative to SEM: the

Stochastic Approximation EM algorithm, which makes an ef-

ficient use of all the data simulated. We compare both ap-

proaches on high resolution satellite images where the objec-

tive is to detect boats in a harbor.

Index Terms— Image processing, object detection,

marked point process, Stochastic EM, Stochastic Approxi-

mation EM, .

1. INTRODUCTION

Object detection is an important problem in several areas of

image processing, such as monitoring of populations of an-

imals or plants in ecology, monitoring of vehicles, boats, or

cargos in highways/harbours, or detection of roads in remote

sensing. When the number of objects is unknown and possi-

bly important (several hundreds or thousands) and when the

objects can be modelled by a simple parametric shape, it is in-

teresting to use marked point processes [1, 2]. This stochastic

geometry methodology combines object-based methods with

probabilistic approaches. It consists in defining the probabil-

ity density of the configuration of objects from two terms: the

data term using the knowledge given by the intensity of an

image and assessing the quality of the estimated configura-

tion for the image; the prior term introducing any preliminary

knowledge on the shape of the objects or on the interaction be-

tween them (see Section 2). These two terms are weighted by

a tradeoff parameter, which does not have a physical meaning

in most cases and is usually difficult to compute analytically
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or numerically. Indeed, we are faced here with two issues:

first, both the configuration and the parameter are unknown,

resulting in an incomplete data case; second, the probability

density of the configuration involves a normalizing constant

that depends on the parameter, making the optimization prob-

lem harder to solve.

The problem of estimating this weight parameter has been

studied rather scarsely, and very few works actually consider

a valid method for that purpose, while finding a correct value

is crucial for a good extraction. Among such works, Chatelain

et al. (2009) [3] and Ben Hadj et al. (2010) [4] dealt with the

first issue by using the Stochastic Expectation-Maximization

(SEM) algorithm developed by Celeux & Diebolt (1985) [5],

which consists in alternatively simulating the configuration

and approximating its expected likelihood for a fixed value

of the parameter, and maximizing the likelihood for a fixed

configuration (see Section 3.1). The second issue was treated

by replacing the likelihood by the pseudo-likelihood, whose

normalizing constant is much easier to compute. However, it

is well known that the SEM algorithm only converges in law,

and not pointwisely [6]. Therefore, it can lead to a prohibitive

computational time for large images. This is the reason why,

in this work, we investigate alternatives to SEM that have

good convergence properties and can give an estimate of the

parameters in a shorter time. In particular, we consider

the Stochastic Approximation Expectation-Maximization

(SAEM) algorithm proposed by Delyon et al. (1999) [7]

(see Section 3.2). Section 4 shows numerical comparisons

for the application on boat detection in harbours. Finally, we

discuss in Section 5 of other possible methods that we intend

to study in future works.

2. BASIC BACKGROUND ON MARKED POINT

PROCESSES

Marked point processes add a mark on the point process rep-

resenting the shape of the objects [1, 2, 8]. This shape should

be characterized by a few number of parameters for an easier

analysis and a faster computation. The probability density of

the configuration of objects is modelled by a Gibbs distribu-



tion
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where ❳ is the configuration of objects, ② is the intensity

of pixels in the image, ❝✭✒✮ is the normalizing constant and

❯✒✭❳❀②✮ is the energy of the model. The latter term itself is

decomposed as

❯✒✭❳❀②✮ ❂ ✌❞❯
❞
✒ ✭❳❀②✮ ✰ ❯♣

✒ ✭❳✮❀

where ❯❞
✒ ✭❳❀②✮ is the data term assessing how well the es-

timated configuration fits the image, ❯♣
✒ ✭❳✮ is the prior term

including any preliminary information, and ✌❞ is parameter

realizing the tradeoff between the two latter terms and is an

element of ✒. Examples of ❯❞ are functions of the contrast

between the intensity in the interior the object and the one in

its border, measured by a distance. The prior term can take

into account the specificities of the distribution of the objects

in the space, such as orientation, alignment, overlapping ...

Hence, the parameter ✒ includes not only the weight parame-

ter ✌❞, but also thresholds on the contrast and the measure of

interactions.

In the numerical study of Section 4, we will focus on the

ellipse model developed by Chatelain et al. (2009) [3] and

extended both by Ben Hadj et al. (2010) [4] and Craciun

& Zerubia (2013) [9] for boat detection in harbors. In this

model, which was adapted from the one for tree detection by

Perrin et al. (2004) [10], they used the Bhattacharya distance

for the contrast, and Craciun & Zerubia (2013) [9] considered

only alignment and relaxed orientation from the former model

in [3, 4], while using a more sophisticated model of ellipses.

3. ESTIMATION OF THE WEIGHT PARAMETER

The estimation of ✌❞ can be described by the following opti-

mization problem

♠❛①
✌✷❘✄✰

❢❧✌✭❳❀②✮ ❂ ❢✒❬❳❥❨ ❂ ②❪❣❀ (2)

which corresponds to the maximization of the likelihood, that

is, we look for the value of ✌❞ yielding the most probable con-

figuration. As mentioned in the introduction, this problem is

hard to solve for two reasons: (i) the problem corresponds to

an incomplete data case since both ❳ and ✌❞ are unknown

and (ii) the normalizing constant ❝✭✒✮ depends on all the pa-

rameters, including the weight ✌❞. Also, it belongs to the set

✭✵❀✶✮ so that estimation from a grid or from trial and error

cannot be efficient. Up to now, the answer to both problems

has been given by the Stochastic EM algorithm applied to the

pseudo-likelihood, which we develop in the next paragraph.

Note that the other parameters (thresholds on contrast, ori-

entation, or weight between the different terms involved in the

prior) have been chosen by trial and error sofar, but will also

require full consideration in future works.

3.1. Pseudo-likelihood and Stochastic EM

The Stochastic Expectation-Maximization (SEM) algorithm

was designed by Celeux & Diebolt (1985) [5] as an alter-

native to EM for cases where the exact expected likelihood

can be difficult to compute, either analytically or numerically.

The expectation step is thus replaced by a simulation step fol-

lowed by an approximation of the expectation based on the

simulated data.

The algorithm cannot be applied directly here, since the

normalizing constant in the likelihood is itself hard to com-

pute. Therefore, Chatelain et al. (2009) [3] proposed to re-

place it by the pseudo-likelihood as was done by Besag (1975)

[11]
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where ✕✒✭✉❀①❀②✮ ❂ ☞ ❡①♣❢�✌❞❯❞✭✉✮ � ❯♣✭✉✮❣ is the ex-

tended Papangelou intensity for one object and ✄ is the Pois-

son distribution. In other words, the pseudo-likelihood con-

siders all objects to be independent. Note that the first term

in Equation (3) represents the normalizaing constant of the

pseudo-likelihood and its computation can be done numeri-

cally much more easily than the likelihood in Equation (1).

More details can be found in [4].

The SEM algorithm hence gives an approximation of

the maximum of pseudo-likelihood (MPL) estimator, as de-

scribed in Algorithm 1. However, the SEM algorithm presents

a major issue: it does not converge pointwisely, as mentioned

by Celeux et al. (1996) [6].

Algorithm 1 SEM algorithm for Problem (2)

Inputs

- Initial value ✌✭✵✮, image ②

❦ ❂ ✵
repeat

(S) Simulate ❳✭❦✮ ✘ ❧✌✭❦✮✭❳❀②✮
(E) Compute an approximation of the expected pseudo-

likelihood

❫◗✭✌❀ ✌✭❦✮❀②✮ ❂ ❧♦❣P▲✒✭①
✭❦✮❀②✮

(M) Update ✌ with

✌✭❦✰✶✮ ❂ ❛r❣♠❛①
✌

❫◗✭✌❀ ✌✭❦✮❀②✮

❦ ✦ ❦ ✰ ✶
until ❥✌✭❦✰✶✮ � ✌✭❦✮❥ ✔ ✎



3.2. Improving on the convergence of SEM

3.2.1. Monte Carlo EM and Simulated Annealing

In order to overcome the issues of convergence of SEM,

Celeux et al. (1996) [6] suggested averaging over the

next iterations. This amounts to running the Monte Carlo

Expectation-Maximization (MCEM) algorithm for the last

step. Indeed, the SEM algorithm is actually a particular case

of the MCEM algorithm, developped by Wei & Tanner (1990)

[12], where several observations ①✶❀ ✿ ✿ ✿ ❀①▼ are generated

at the simulation step and the expectation step is obtained

by averaging the log-likelihood over the ▼ observations.

Hence, SEM is just MCEM with ▼ ❂ ✶. However, such a

strategy raises the question of how many observations should

we generate in order to obtain a satisfying value of ✌❞. Espe-

cially, in our context where ① is the configuration of all the

objects, each observation is obtained by running of a Multiple

Birth and Death (MBD) algorithm on the current configura-

tion [2]. This means we have to run enough moves of the

MBD algorithm for the new configuration to be different

from the current one. Hence, a single simulated observation

already results from a large number of simulated moves from

MBD, and the computational cost of ♠ observations can be

prohibitive even for a moderate number ▼ .

On the other hand, Ben Hadj et al. (2010) [13] and De-

scombes (2013) [2, Chapter 7] considered running a Simu-

lated Annealing algorithm after few iterations of SEM in or-

der to reach convergence. In other words, the maximization

step is modified by

✌✭❦✰✶✮ ❂

✭
❛r❣♠❛①✌ ❫◗✭✌❀ ✌✭❦✮❀②✮ if ✉ ✔ ❡

❫◗✭❦✰✶✮� ❫◗✭❦✰✶✮

❚❦

✌✭❦✮ otherwise❀

where ✉ is generated from the uniform distribution on ❬✵❀ ✶❪,
❫◗✭❦✰✶✮ ❂ ❛r❣♠❛①✌ ❫◗✭✌❀ ✌✭❦✮❀②✮ and ❚❦ ❂ ❚✵❂ ❧♦❣✭❦ ✰ ✶✮
is the temperature of the Simulated Annealing process. In the

sequel, we refer to that procedure as SEM-SA. Although this

ensures a better estimate of ✌❞, it also increases the computa-

tion time compared to SEM.

3.2.2. Stochastic Approximation EM

In view of the computational limitations of the marked point

process we consider, we propose to deal with another op-

tion, namely the Stochastic Approximation Expectation-

Maximization (SAEM) algorithm. The SAEM algorithm

was proposed by Delyon et al. (1999) [7] as alternative to

the Monte Carlo and the Stochastic EM algorithms. SAEM

itself differs from both algorithms in the way the expectation

is approximated. Indeed, it is based on the Stochastic Ap-

proximation method introduced by Robbins & Monro (1951)

[14], which in our context corresponds to

❫◗✭✌❀ ✌✭❦✮❀②✮ ❂ ✭✶ ✰ ✜❦✮ ❫◗✭✌❀ ✌✭❦�✶✮❀②✮

✰
✜❦

▼✭❦✮

▼✭❦✮❳
✐❂✶

❧♦❣P▲✒✭①
✭❦✮
✐ ❀②✮❀

where ✜❦ is the step size, also called forgetting factor. Hence,

it keeps memory of the past simulations through a convex

combination of the previous approximated expectation and

the one for the new simulated data governed by the stepsize.

Jank (2006) [15] argues that this stepsize is crucial for the al-

gorithm to have good convergence properties. In particular,

he considers the choice ✜❦ ❂ ❦�☛, with ☛ ✷ ✭✵✿✺❀ ✶✮.

In our case, we consider the case where ▼✭❦✮ ❂ ✶, just

as in SEM, for the reason we mentioned before about com-

putational cost in the simulation scheme. Therefore, SAEM

improves on both MCEM and SEM by taking the best of both

worlds: good convergence properties of the approximation

obtained from only one simulated observation. It should thus

be faster than the SEM-SA procedure proposed in [2, Chapter

7] at little or no cost in accuracy of extraction.

Algorithm 2 SAEM algorithm for Problem (2)

Inputs

- Initial value ✌✭✵✮, image ②

❦ ❂ ✵
repeat

(S) Simulate ❳
✭❦✮
♠ ✘ ❧✌✭❦✮✭❳❀②✮, ♠ ❂ ✶❀ ✿ ✿ ✿ ❀▼✭❦✮

(E) Compute an approximation of the expected pseudo-

likelihood

❫◗✭✌❀ ✌✭❦✮❀②✮ ❂ ✭✶ ✰ ✜❦✮ ❫◗✭✌❀ ✌✭❦�✶✮❀②✮

✰ ✜❦ ❧♦❣P▲✒✭①
✭❦✮❀②✮

(M) Update ✌ with

✌✭❦✰✶✮ ❂ ❛r❣♠❛①
✌

❫◗✭✌❀ ✌✭❦✮❀②✮

❦ ✦ ❦ ✰ ✶
until ❥✌✭❦✰✶✮ � ✌✭❦✮❥ ✔ ✎

4. NUMERICAL RESULTS

We applied the SAEM algorithm to the program developed

from the works in [3], [4] and [9] for the detection of boats on

high resolution satellite images. The program mainly consists

of two parts: first, the estimation of the parameters, which

also give a first configuration of the objets as a result of the

iterative algorithm ; then, a simulated annealing procedure

for the refinement of the configuration based on the estimated

parameters.



Before running the algorithm and comparing the results to

those obtained with SEM, we did our own ground truth from

a part of the original image, shown on Figures 1 (top).

We then run the program 50 times for different values of

the forgetting factor ☛ ✷ ❬✵✿✺❀ ✶✮, and computed several mea-

sures of performance. The first measure is the F-score which

compares the quality of the extraction obtained at the end of

the program compared to the ground truth. It is defined by

F-score ❂
✷❚P

✷❚P ✰ ❋P ✰ ❋◆
❀

where ❚P (true positive) is the number of pixels correctly

estimated as part of a boat, ❋P is the number of pixels that

have been incorrectly estimated as part of a boat, and ❋◆ is

the number of pixels that have been incorrectly estimated as

part of the background. The F-score thus gives an estimation

of the detection rate: the closer to 1, the better the detection

is. The second measure is the time of computation of the

estimation part: the program was run on Linux with a 2.4

GHz Intel processor and 4 GB of RAM. Note that the code

is currently neither optimized nor parallelized and is mostly

done in static programming.

Table 1 displays the F-scores and computational time of

estimation averaged over the 50 runs, along with their stan-

dard deviations, for SAEM with different values of ☛ com-

pared with the SEM-SA procedure described in Section 3.2.1.

We can first notice that SAEM does not lead to a loss in accu-

racy of the extraction since the difference in average detection

rate with SEM-SA is less than ✶✪ in the worst case (☛ ❂ ✵✿✽),

and about ✵✿✸✪ in the best case (☛ ❂ ✵✿✾). When looking at

the time for computing the estimation part, we clearly see a

gain of approximately ✶✸✪ for ☛ ❂ ✵✿✺ or 0.9, whose average

time is a little more than 7 minutes compared to the 8 minutes

necessary for SEM-SA to give an estimate of ✌❞. Hence, the

advantage of using SAEM with ☛ ❂ ✵✿✾ is obvious here, as a

similar detection rate is obtained in a shorter time. Note how-

ever that the gain might not be as important as expected. This

is certainly due to the fact that the SEM-SA procedure is not

programmed to reach convergence, but instead it is set to run

the simulated annealing maximization step during only 10 it-

erations. The gain would probably be larger if this constraint

was relaxed.

5. DISCUSSION

This work is a first step in the study of the estimation of the

weight parameter. We proposed here to use the Stochastic Ap-

proximation EM algorithm instead of the procedure currently

used for boat detection, which consists in an hybrid Stochastic

EM algorithm where the maximization step is performed by

Simulated Annealing. In practice, we were able to decrease

the computational time for the estimation of the weight pa-

rameter at no loss in accuracy of the detection, which was

our purpose. However, we believe that we can decrease even

(a) Original image c✌CNES (b) Ground truth

(c) SEM-SA (d) SAEM (☛ ❂ ✵✿✾)

(e) SEM-SA, detail (f) SAEM (☛ ❂ ✵✿✾), detail

Fig. 1. Detection of boats on a satellite image.

more the computational time with other methods. Therefore,

in future work, we intend to study and compare methods such

as Bayesian methods, Quasi Monte Carlo and Genetic Algo-

rithms.

Finally, in the long run, it is important to check the validity

and performances of these methods when we estimate more

than one parameter, such as the weights for the different terms

involved in the prior energy, or the thresholds on the contrast

and the overlapping. This direction of research is however

much more difficult to perform, as it is not clear how changing

one parameter affects the others and as it can considerably

increase the computational time.
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