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ABSTRACT
Assessing the trustworthiness of location data corresponding to in-
dividuals is essential in several applications, such as forensic sci-
ence and epidemic control. To obtain accurate and trustworthy
location data, analysts must often gather and correlate informa-
tion from several independent sources, e.g., physical observation,
witness testimony, surveillance footage, etc. However, such infor-
mation may be fraudulent, its accuracy may be low, and its vol-
ume may be insufficient to ensure highly trustworthy data. On the
other hand, recent advancements in mobile computing and posi-
tioning systems, e.g., GPS-enabled cell phones, highway sensors,
etc., bring new and effective technological means to track the loca-
tion of an individual. Nevertheless, collection and sharing of such
data must be done in ways that do not violate an individual’s right
to personal privacy.

Previous research efforts acknowledged the importance of as-
sessing location data trustworthiness, but they assume that data
is available to the analyst in direct, unperturbed form. However,
such an assumption is not realistic, due to the fact that reposito-
ries of personal location data must conform to privacy regulations.
In this paper, we study the challenging problem of refining trust-
worthiness of location data with the help of large repositories of
anonymized information. We show how two important trustworthi-
ness evaluation techniques, namely common pattern analysis and
conflict/support analysis, can benefit from the use of anonymized
location data. We have implemented a prototype of the proposed
privacy-preserving trustworthiness evaluation techniques, and the
experimental results demonstrate that using anonymized data can
significantly help in improving the accuracy of location trustwor-
thiness assessment.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Security, Experimentation
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Data Trustworthiness, Location Data, Privacy
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1. INTRODUCTION
For law-enforcement and homeland security agencies, it is often

very important to verify the location information of certain indi-
viduals, in order to perform forensic investigations [19] or manage
natural disasters, control epidemics [1], etc. The recent advances in
mobile computing and positioning systems, e.g., GPS-enabled cell
phones, provide the technological means to find out the location of
an individual. However, even with extremely rich location infor-
mation provided by those modern devices, it is sometimes difficult
to find one’s true location due to data loss, malicious data modifica-
tion, or device limitations. For instance, a crime suspect is highly
likely to avoid being associated with a crime scene, therefore s/he
may turn off his or her phone. A potential disease carrier may lie
about the locations s/he visited because of the fear of immediate
isolation and infection control procedures [8]. Furthermore, mo-
bile devices may be disabled for a period of time because of lack of
signal or power.

Therefore, it may be necessary to corroborate information origi-
nating at multiple sources in order to determine with high trustwor-
thiness the actual location of an individual at a given time. There
are many repositories of data that could provide valuable location
information, such as surveillance cameras, highway traffic monitor-
ing sensors, etc. However, sharing of such information is governed
by certain privacy laws, that ensure that the personal details of inno-
cent individuals are being protected. For example, law enforcement
agencies can obtain exact trajectories of an individual only if they
have a valid search warrant [2]. In many cases, at the early stages
of an investigation when there is a lack of evidence, it is difficult
to obtain such a search warrant. In addition, to preserve individ-
ual privacy, some data gathering entities, e.g., traffic management
systems, highway sensors, collect only anonymous data that is fur-
ther transformed before being sent to the database server [3]. As
original data are permanently modified, it is not possible to link a
particular device with a user. In such a case, the location verifica-
tion procedure is not straightforward, and an in-depth analysis step
of the anonymized data must be performed to deal with the inherent
information loss and to yield useful results.

Consider the example in Figure 1, where the police department
is investigating a crime that occurred at location z, and there are
three suspects traveling on the highway leading from x to y through
z. The investigators were able to identify three trajectories (blue
lines) that correspond to these three suspects, namely Alice, Bob
and Carol. According to the witnesses, Alice, Bob and Carol were
together at location x at 1pm and at location y at 3pm, respectively.
But only Alice and Carol were observed by another witness at lo-
cation z at 2pm. The location of Bob at 2pm was self-reported as
being at the midpointm of one of the other roads from x to y on the
map. Witnesses have observed Alice and Carol’s car, but not Bob’s.



To further the investigation, the police department consults a traffic
management system (TMS) which monitors the highway using sen-
sors. Since the location information recorded by the TMS is avail-
able only in anonymized form, the police department receives a set
of anonymized trajectories (red lines), and their associated enclos-
ing cylinder with a diameter of δ (we provide formal details about
the anonymization model used in Section 2). If the anonymized
trajectories are in fact the anonymized versions of the trajectories
of Alice, Bob and Carol, then the police can conclude that Bob’s
trajectory should be one of the three anonymized trajectories, since
nobody else was present in the cylinder area. Although it may not
be possible to tell which one of the anonymized trajectories exactly
corresponds to Bob, it is highly likely that Bob was in location z at
2pm, instead of the reported location m.

(3, δ)
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(3, δ)
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Figure 1: Trustworthiness Assessment with Anonymized Data

The example above illustrates how a repository of anonymized
location data can be used to assess the trustworthiness of data that is
already available in exact form, but which may not always be truth-
ful. Such assessment can be performed through two distinct types
of analyses: common pattern analysis and conflict/support analy-
sis. Specifically, if the majority of movements between a source
and destination location follow a certain pattern, i.e., from x to
z and then to y as is the case for all three anonymized trajecto-
ries, then reported trajectories that deviate from this pattern may be
less trustworthy. In this case, the trajectory reported by Bob does
not appear trustworthy due to its dissimilarity with all other move-
ments. Note that, since anonymized data is typically available in
large volumes, as large populations of users are often observed, the
reliability of such movement patterns can be properly estimated,
even if the anonymized data is not entirely accurate. In other words,
aggregate-level information is preserved, despite the inherent infor-
mation loss about individual trajectories. Hence, anonymized data
from a large number of observations is very suitable for common
pattern analysis.

Furthermore, given the anonymized information, we can try to
link the data with the exact data available to the investigators. In
other words, it is possible to link the local dataset of exact infor-
mation with the remote dataset of anonymized information. Since
there are three anonymized trajectories, and they all begin at x and
end at y, and three exact observations at these respective endpoints
corresponding to Alice, Bob and Carol’s trajectories, then since
there is no other individual that could have generated the reading of
the third observation at location z, it can be inferred that Bob was
indeed at z, and not at the self-reported location m. This way, even
though there are no identifiers in the anonymized data, through a
careful mapping of available trajectories it is possible to perform
a conflict/support analysis to evaluate the trustworthiness of a lo-
cal reading. In other words, it is possible to determine whether the

local information is supported by the remote anonymized data, or
contradicted.

This paper contributes mechanisms to perform common pattern
and conflict/support analyses for location data trustworthiness as-
sessment in the presence of anonymized data. In practice, the amount
of data available to investigators in a single case is relatively small
in size, and large repositories of anonymized data can significantly
improve the process of assessing data trustworthiness, despite the
inaccuracy incurred in the anonymization process. The rest of the
paper is organized as follows: Section 2 introduces the data and
privacy model adopted in this paper, as well as other fundamen-
tal concepts and definitions. Section 3 presents the algorithms for
computation of trajectory trust scores. We report experimental re-
sults on real datasets in Section 4. Section 5 reviews related work,
whereas Section 6 concludes the paper and outlines future research
directions.

2. SYSTEM ARCHITECTURE AND
PRIVACY MODEL

In this section, we introduce our system and privacy models. Fig-
ure 2 illustrates our system architecture. Our system has one local
dataset and several remote datasets. Our goal is to refine the trust-
worthiness of the local dataset by comparing our local dataset with
remote datasets. As an example, in Figure 2, the law enforcement
agency queries two remote datasets, namely a cell phone company
and a traffic management system, for additional information. The
two remote parties then send their anonymized datasets to the law
enforcement agency, which later on performs trustworthiness score
computation based on both local datasets and anonymized datasets.
Our architecture can adopt any generalization-based anonymization
models.
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Figure 2: System Architecture

Following [10], a trajectory is a polyline in three-dimensional
space represented as a sequence of spatio-temporal points, and each
point is associated with a unique identifier.

DEFINITION 1. Trajectory: A position P is defined as a tu-
ple (oid, x, y, t), where oid is a unique identifier of an object and
(x,y,t) is a spatio-temporal point. A trajectory T is a sequence of
time-stamped positions P0 = (oid, x0, y0, t0), . . ., Pk = (oid,
xk, yk, tk) where ∀0≤i<k(ti < ti+1). We denote the position Pi
of T by T .Pi, and we call Pi+1 the successor of Pi. 2

DEFINITION 2. Movement: A movementM is a pair of posi-
tion Pi and its successor Pi+1 within a trajectory.



DEFINITION 3. Group of Movements: LetM be a movement,
and let M.Ps and M.Pe denote its start and end positions. A
groupG of movements from clusterCx of positions to another clus-
ter Cy is a set of movements such that for each movementM∈ G,
D(M.Ps, µ(Cx)) ≤ θ and D(M.Pe, µ(Cy)) ≤ θ where D(., .)
is the two-dimensional Euclidean distance of the two positions and
µ(Cx), µ(Cy) are the centroids of the cluster Cx and Cy respec-
tively.

DEFINITION 4. Pattern: A pattern PT is a set of movements
from one cluster Cx of positions to another cluster Cy such that
for each movementM∈ PT , (s, e) resides in a bounding circle of
radius ϵ on the plane of start time and end time where s is the start
time ofM and e is the end time ofM.

DEFINITION 5. Trust Score: The trust score, denoted as S(.),
ranging from 0 to 1, indicates the probability of location informa-
tion being correct.2

Location information can be either a positionP , a trajectory
T , a movement M or a pattern PT . Higher scores indicate
higher trustworthiness. The use of trust score can vary depending
on different applications. In the forensic analysis example, police
officers can rank the suspects based on the trust scores of those
suspects being at the crime scene, and then start the investigation
from the suspect with the highest score. They can also rank the
suspects based on the trust scores of those suspects not being at the
crime scene and start the investigation from the suspect with the
lowest score. Trust score is not the exact probability, however, it
can be used as an indication of probability.

2.1 Privacy Model
The Never Walk Alone (NWA) [4] system for anonymizing tra-

jectories proposed the (k, δ)-anonymity model, where δ represents
the imprecision in the positioning systems used. The basic idea is to
move some positions along each trajectory so that all trajectories in
the anonymized dataset satisfy the (k, δ) anonymity requirement.
In our privacy model, we adopt this concept. We briefly introduce
related definitions in the following.

DEFINITION 6. Co-localization: Two trajectories T1, T2 de-
fined in [t1, tn] are said to be co-localized w.r.t. δ, iff for each posi-
tion (o1, x1, y1, t) in T1 and (o2, x2, y2, t) in T2 with t ∈ [t1, tn],
it holds that Dist((x1, y1), (x2, y2)) ≤ δ, where Dist is the Eu-
clidean distance. We also write Colocδ(T1, T2) if T1 and T2 are
co-localized w.r.t. δ.

DEFINITION 7. k-Anonymity Set of Trajectories: Given a po-
sition uncertainty threshold δ and an anonymity threshold k, a
set S of trajectories is a (k, δ)-anonymity set iff |S| ≥ k and
∀Ti, Tj ∈ S, Colocδ(Ti, Tj).

Figure 3 is an example of (2, δ)-anonymity set formed by 2 co-
localized trajectories.

Note that in Definition 6, identifiers o1 and o2 are only used to
distinguish trajectories. In other words, it can be a random num-
ber for each trajectory and cannot be used to link to a specific in-
dividual. Different remote providers may use different identifiers
for trajectories belonging to the same individual. In this model, a
remote provider anonymizes its original dataset to fulfill the (k, δ)-
anonymity requirement and then sends it to the local provider.

Here we also briefly describe how the anonymization of trajec-
tories is done in [4]. First, all the trajectories will be partitioned
into different equivalence classes with respect to their time spans.

Volume of Trajectory

T1 of Radius δ

Volume of Trajectory

T2 of Radius δ

Anonymity Set (Bounding

Tube of Diameter δ)

Time

Y

X

δ

Figure 3: An example of a (2, δ)-set formed by 2 co-localized
trajectories, their respective uncertainty volumes, and the cen-
tral cylinder of diameter δ containing both trajectories.

Two trajectories are considered to be in the same equivalence class
if they have same start time and end time. Second, for each of
these equivalence classes produced, a clustering algorithm does the
clustering on the trajectories within this equivalence class and then
produces a set of clusters of trajectories such that any two trajecto-
ries within a cluster are close to each other. Finally, for each cluster
mentioned above, some positions of points within the cluster will
be modified so that any two of the trajectories are co-localized to
each other.

Notice in the Definition 6, two trajectories to be co-localized
must be defined over the same time interval. Although it’s not
usual for two trajectories starting and ending at the exact same time,
this problem can be dealt with by allowing small time gaps, or by
choosing coarser time samplings.

3. COMPUTING TRUSTWORTHINESS OF
TRAJECTORIES

In this section, we present our algorithms for computing the
trustworthiness of positions. The trust scores are computed by tak-
ing into account two types of analysis: (1) common pattern anal-
ysis and (2) conflict/support analysis. The common pattern anal-
ysis extracts the similarities between movements within the local
and remote datasets, while conflict/support analysis determines the
conflicts and supports between trajectories from the local dataset
and the remote dataset.

3.1 Common Pattern Analysis
The goal of common pattern analysis is to extract a set of move-

ment patterns from both the local and the remote data sources. Such
patterns will be later used to measure the trustworthiness of a given
trajectory. Algorithm 1 works as follows: given a set of local tra-
jectories and a set of remote trajectories, it will first produce a set
of groups of local movements by calling the procedure CLUSTER-
INGLOCALPOSITIONS, then refine those clusters by taking into
account anonymized trajectories from a remote source — in pro-
cedure CLUSTERINGREMOTEPOSITIONS. Then for each group of
movements, it will further partition those movements into different
patterns according to their corresponding start times and end times
by the call to the procedure GROUPINGPATTERNS.

We emphasize that, the reason we would like to take remote tra-
jectories into consideration is that it’s possible those remote tra-
jectories contain some patterns we do not have locally. However,
because of the uncertainty of those remote trajectories, we do not
want the quality of our local data to be deteriorated by including all
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Figure 4: An Example of a Good Clustering
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Figure 5: An Example of a Bad Clustering

of those remote trajectories. Thus, in some cases, we will choose
to include a remote trajectory while in some other cases, we will
choose to discard a remote trajectory.

Note that in CLUSTERINGLOCALPOSITIONS, we need to choose
a threshold ρ, which is the upper bound for the approximate bound-
ing circles of clusters of positions. The choice of ρ requires some
careful fine-tuning, since on the one hand, we do not want this ρ
to be too large because in this case, the radii of those approximate
bounding circles might be so large that those circles intersect each
other, which makes it difficult for us to identify the groups of move-
ments later and also make the data quality worse. For instance, in
Figure 4 (movements from West Lafayette to Chicago), we can see
the pattern in this group of movements is more accurate compared
to the pattern in Figure 5 (movements from Indiana to Illinois). In
addition, we would also like to make room for some other possi-
ble locations that we don’t have locally which are provided by the
remote party.

But on the other hand, we don’t want ρ to be too small since it
might induce too many small clusters of positions and small groups
of movements in CLUSTERINGLOCALPOSITIONS and GROUPING-
MOVEMENTS, which will make the patterns less obvious. Ideally,
those remote positions corresponding to the objects that we have
will reside in the approximate bounding circles for local positions
with radii upper bounded by ρ while those positions corresponding
to other objects that we don’t have locally can be taken in without
creating a bounding circle intersecting with other existing ones. In
our experiments (Section 4), we choose ρ to be 5% of the diagonal
of the minimum bounding rectangle of our dataset.

Notice in the procedure CLUSTERINGREMOTEPOSITIONS we
need to compute the radius of the approximate bounding circle of
a cluster C ∪ {P} where P is a remote position. This can be com-
puted using the procedure RADIUSIFADDED. In addition, two ap-
proximate bounding circles K1, K2 (centered at c1 and c2 respec-
tively) intersect if D(c1, c2) − (r1 + r2) < 0 where r1 and r2
are their corresponding radii. Also, the radius of a bounding circle
containing only a remote position P is set to ρ, the threshold we
used in CLUSTERINGLOCALPOSITIONS. Last thing to note is the
relaxation factor σ in line 6 of CLUSTERINGREMOTEPOSITIONS.
We found in experiments that if there is not enough data in the local

Algorithm 1: COMMONPATTERNANALYSIS

Input: A set ΩL of local trajectories, a set ΩR of remote
trajectories preprocessed by NWA, a radius threshold
ρ, a relaxation factor σ, and a time threshold ϵ.

Output: A group of patterns with their corresponding scores.
1 ΠL ← the set of positions extracted from ΩL;
2 ΠR ← the set of positions extracted from ΩR;
3 C ←CLUSTERINGLOCALPOSITIONS(ΠL, ρ);
4 C′ ← CLUSTERINGREMOTEPOSITIONS(C,ΠR, σ);
5 G ← GROUPINGMOVEMENTS(C′);
6 foreach group of movement K ∈ G do
7 PT ← GROUPINGPATTERNS(K, ϵ);
8 end
9 foreach pattern PT ∈ PT do

10 assign a score to PT ;
11 end
12 return {PT1, . . . , PTn}

Procedure CLUSTERINGLOCALPOSITIONS

Input: A set S of local positions, a threshold ρ.
Output: A set C = {C1, . . . , Cm} of clusters of positions.

1 foreach position P from S do
2 if there is no cluster C such that D(P, µ(C)) ≤ ρ then
3 make a new cluster Ci;
4 include P into Ci;
5 else
6 find the cluster C closest to P;
7 include P into C;
8 end
9 end

10 return {C1, . . . , Cm};

dataset, then by carefully setting σ to a value a little greater than 1,
more remote positions and movements could be included, which
can also help when computing the trustworthiness of movements in
local dataset.

Given a position P , we can compute the trust score for P by
computing the average score of the movement(s) in which P is
the start position or the end position. To compute a score for a
given movement M from a location x (at time s) to a location
y (at time e), we need to first find out the source cluster Cx of
positions that contains x and the destination cluster Cy of positions
that contains y. If there exist such Cx and Cy , then according to
these two clusters of positions, we are able to construct the group of
movements fromCx toCy and thus the corresponding pairs of start
time and end time. The score ofM may be computed as follows:

S(M) =

{
S(PT ) if D((s, e), µ(PT )) < ϵ

ϵ
D((s,e),µ(PT ))

· S(PT ) otherwise

where PT is the closest pattern to (s, e) on the plane of start time
and end time, and ϵ is the parameter used in the procedure GROUP-
INGPATTERNS. From above we know if (s, e) falls in the bounding
circle of PT , the score ofM would be equal to those movements
in PT while the score ofM is inversely proportional to its distance
from the center of PT when (s, e) falls outside the bounding circle
of PT .

However, if either one or both of Cx and Cy does not exist, then
we simply assign 0 toM since we do not have any pattern that is
similar to the movementM from x to y. Specifically, we consider
that Cx does not exist if there is no cluster of positions C such that



Procedure CLUSTERINGREMOTEPOSITIONS

Input: A set CL = {C1, . . . , Cm} of clusters of local
positions, a set T of remote positions, a relaxation
factor σ.

Output: A set C′ = {C1, . . . , Cm′} of clusters of positions.
1 foreach cluster Ci ∈ CL do
2 ri ← maxP∈Ci D(P, µ(Ci));
3 end
4 rmax ← max{r1, . . . , rm};
5 foreach position P ∈ T do
6 if there is no cluster C such that the radius of the

approximate bounding circle of C ∪ {P} ≤ σ · rmax then
7 if the approximate bounding circle of {P} intersects

any other approximate bounding circle then
8 discard P;
9 else

10 make a new cluster C′ and include P into C′;
11 end
12 else
13 find the cluster C closest to P;
14 include P into C;
15 end
16 end
17 return {C1, . . . , Cm′};

Procedure RADIUSIFADDED

Input: A cluster C of positions, a remote position P , and ρ,
the threshold used in CLUSTERINGLOCALPOSITIONS.

Output: The radius r of the approximate bounding circle of
C ∪ {P}.

1 find a local positionQL ∈ C among all the local positions in
C such that
D(QL, µ(C∪{P})) = maxPL∈C∪{P}D(PL, µ(C∪{P}));

2 find a remote positionQR ∈ C among all the remote positions
in C such that
D(QR, µ(C∪{P})) = maxPR∈C∪{P}D(PR, µ(C∪{P}));

3 r ← max{D(QL, µ(C ∪ {P})), D(QR, µ(C ∪ {P})) + ρ};
4 return r;

the distance between location x and the centroid ofC is less than or
equal to rmax, the maximum radius of those clusters of positions
we got after the call to the procedure CLUSTERINGLOCALPOSI-
TIONS.

Next we explain how to assign a score to each pattern produced
in the procedure GROUPINGPATTERNS. Let CPTs be the source
cluster of positions of the pattern PT and CPTt the destination
cluster of positions of the pattern PT . LetK be the group of move-
ments from which PT is built (recall that PT ⊆ K). The score of
a pattern PT can be computed as follows:

S(PT ) =


min{|PT |/|K′|, 1} if |K| > λ

min
{

|PT |∑m
i=1 |G′

i|+
∑n

j=1 |H′
j |+|K′| , 1

}
if |K| ∈ [β, λ]

|PT |/|T | if |K| < β

where G′
i ⊆ Gi is the set of all local movements in Gi, a group

of movements (containing both local and remote ones) not equal
to K that starts from the cluster CPTs, H ′

j ⊆ Hj is the set of
all local movements in Hj , a group of movements not equal to K
that ends with the cluster CPTt. Similarly, K′ ⊆ K is the set

Procedure GROUPINGMOVEMENTS

Input: A set C = {C1, . . . , Cm} of clusters of positions.
Output: A set G = {G1, . . . , Gn} of groups of movements.

1 foreach cluster Ci ∈ C do
2 foreach Px ∈ Ci do
3 if there does not exist Cj such that succ(Px) ∈ Cj or

Px and succ(Px) are both in Ci then
4 Ci ← Ck\{Px};
5 end
6 end
7 foreach unmarked position Pℓ in Ci do
8 create a new group Gk;
9 add the movement (Pℓ, succ(Pℓ)) to Gk;

10 mark Pℓ;
11 foreach each unmarked position Py in Ci do
12 if both succ(Pℓ) and succ(Py) are in the same

cluster then
13 add the movement (Py, succ(Py)) to Gk;
14 mark Py;
15 end
16 end
17 end
18 end
19 return {G1, . . . , Gn};

Procedure GROUPINGPATTERNS

Input: A set T of the pairs of start time and end time for a
group of movements (with similar sources and
destinations), ϵ.

Output: A set PT = {PT1, . . . , PTn} of patterns.
1 foreach pair (s, e) of start time and end time in T do
2 if there is no cluster C such that D((s, e), µ(C)) ≤ ϵ then
3 make a new cluster Ci and include (s, e) into Ci;
4 else
5 find the cluster C closest to (s, e);
6 include (s, e) into C;
7 end
8 end
9 return {PT1, . . . , PTn};

of all local movements in K. T is the union of all the groups of
movements (both local and remote ones), β = α|T |, α ∈ [0, 1],
λ = γ|T | and γ ∈ [0, 1]. Note also that if all the G′

i, H
′
j , and

K′ are empty, then we will give this movement a 0 score since we
do not have any local evidence for this movement. The reason we
define the score function this way is that we’d like to categorize all
the groups into 3 classes: (1) common, (2) not common but neither
rare, and (3) rare. If a group K from cluster Cx to cluster Cy is
really large (above the threshold γ|T |), then the scores of patterns
in K should not be affected because of adding other groups that
also start from cluster Cx or end with cluster Cy . If K is not that
large (α|T | < |K| < γ|T |), then we should take into consideration
those groups that also start from cluster Cx or end with cluster Cy
when calculating the scores for patterns in |K|.

However, we also have to consider the situation in which there
are very few movements within a group (|K| < α|T |). For exam-
ple, consider the case in which PT = {M} whereM is a move-
ment from location x (2pm) to location y (3pm). If CPTs = {x},
CPTt = {y} and K = {M}, then we can see this pattern is pretty



rare compared to other patterns and thus we would like to give this
kind of patterns a lower score.

Whether a pattern PT is rare (or common) should be decided
by the user. This can be done by adjusting the parameter α in the
scoring function. For instance, if α is set to 0.001, then a pat-
tern PT would be considered rare if the cardinality of the group of
movements from which PT is built is less than 0.1 percent of the
cardinality of T , the union of all the groups of movements.

Another reason why we have this score function is that we do not
want the score of a local movement to be decreased by including
those movements from another party unless this local movement is
“really” rare with respect to |T |, the cardinality of the union of all
the groups of movements. That’s also why in the procedure CLUS-
TERINGREMOTEPOSITIONS, sometimes we still need to create a
new cluster containing a remote position. In this way, a movement
from a remote position in another cluster to this newly constructed
cluster could be included in T .

From the score function above, it seems a movement will be pe-
nalized because of being rare and thus will be given a low score.
But if this movement is truthful, it will be given a higher score in
the conflict and support analysis later so a truthful movement will
not be treated as a fake one. Also, the reason why we do not assign
a zero score to PT in the third case is that we would like to differ-
entiate a movementM1 that does not match any movement in our
database (i.e. its corresponding Cx or Cy does not exist or there is
no movement from Cx to Cy directly) from a movementM2 that
is similar to some movements in our database when calculating the
trust scores for them. If a movementM does not match any move-
ment in our database, it will be assigned a zero score while ifM
matches some rare pattern in our dataset, it will be assigned some
non-zero score although it’s still much lower when compared to the
scores of other common patterns.

Figure 6 illustrates how we assign a score to a pattern PT . Sup-
pose in this case, β is set to 2 and λ is set to 10 (soK is not a “com-
mon” group) and thus we will use the second part of the score func-
tion to compute the score. Also we assume right now those groups
contain only “local” movements. Therefore, |G′

1| = 2, |G′
2| = 2,

|G′
3| = 2, |H ′

1| = 2, |H ′
2| = 2, |K′| = 4, and |PT | = 2. There-

fore, S(PT ) = 2/((2 + 2 + 2) + (2 + 2) + 4) = 2/14 and every
movement in PT has the same score. If later we include a remote
movementMR from CPTs (2pm) to CPTt (4pm), then this move-
ment will be added to K and also to the pattern PT . The score of
this pattern will be raised to 3/((2+2+2)+(2+2)+4) = 3/14
since |PT | is equal to 3 now.

3.2 Conflict/Support Analysis
In this section, we propose an approach for computing the trust

scores of a position P in the local dataset based on whether it con-
flicts or is supported by a position in the remote dataset. Our ap-
proach takes two input datasets: 1) local dataset which contains
exact trajectories; 2) remote dataset which contains anonymized
data. Our goal is to use the remote data to refine the trustworthiness
of the local ones based on conflict/support information. Before
we propose algorithms, we first define the concept of support and
conflict. Note that in our privacy model, it is impossible to have
identifiers for positions and trajectories. Without identifiers, we are
not able to link two trajectories corresponding to the same individ-
ual precisely. The only thing that can be done is to estimate the
likelihood of a local trajectory corresponding to a remote one and
then map the local trajectory to a remote one based on this likeli-
hood. After the mapping, we treat the two mapped trajectories as
if they have the same identifier. We then adjust the trust scores of
each position of the local trajectory based on whether it conflicts

H1 H2

K

G1

G2

G3 PTs PTt

2pm 4pm

CPTt

CPTs

PT

Figure 6: An Example of How to Compute the Score for PT

the remote trajectory or is supported by the remote one.
We introduce the definition of conflict and support as follows:

DEFINITION 8. Support and Conflict Let T and T ′ be two dif-
ferent trajectories of the same object. Let Pa = (oid, xa, ya, ta)
be a position in T , Pb = (oid, xb, yb, tb) a position in T ′ such that
tb = ta. Given a threshold ψ, if D(Pa,Pb) ≤ ψ, we say that Pa
and Pb support each other; otherwise (i.e., D(Pa,Pb) > ψ), we
say that Pa conflicts with Pb. 2

Here, ψ is a user specified threshold that determines whether two
positions support or conflict with each other. Determining a good ψ
value is a very difficult work. If ψ is set too small, most positions in
local dataset will have counterparts in remote dataset that conflict
with them. However, if ψ is too big, most positions in the local
dataset will be supported by one in remote dataset. We will show
in the experiments how different ψ values affect the experimental
results. As mentioned above, since we cannot be sure which remote
trajectory corresponds to which local one, the only thing we can do
is to make a best-effort assignment based on the similarity of each
local/remote trajectory pair. To do that, we first define the distance
between trajectories.

DEFINITION 9. Distance between Two Trajectories Let T be a
local trajectory and T ′ be a remote trajectory defined in the same
time span [t1, tn]. We define the average distance between T
and T ′ as (

∑n
i=1D(Pi,P ′

i))/n, denoted as AvgD(T , T ′). We
also define the max and min distance as maxni=1D(Pi,P ′

i) and
minni=1D(Pi,P ′

i) respectively, denoted as maxD(T , T ′)
and minD(T , T ′) 2

Our goal is to come up with a one-to-one mapping between each
local trajectory and remote trajectory, such that the cost of this map-
ping is minimum with respect to the distances between those trajec-
tory pairs. The semantic behind a mapping is that we “guess” the
local trajectory and the remote one corresponding to the same indi-
vidual. We use AvgD instead of minD or maxD here, however,
our algorithm can also adopt those two easily.

Since we do not have an identifier associated with a remote tra-
jectory, we need to assign each local trajectory to a remote one
based on certain criteria. Such an assignment needs to satisfy the



following requirement: each local trajectory is assigned to at most
one remote one and each remote trajectory has at most one local
trajectory assigned to it.

Time

Y

X

ψ

R1 R2
R3

L1 L2 L3 L4

(a) Mapping 1

Time
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ψ

L1

R1

L2

R2

(b) Mapping 2

Figure 7: Example of Mapping Trajectories

In addition to the above requirement, we also need to make sure
a local trajectory is assigned to a remote one which is closest to
it. However, it is not trivial. Consider the following two scenar-
ios in Figure 7(a) and Figure 7(b): in Figure 7(a) we have four
local trajectories (L1, L2, L3, L4) marked in green, and three re-
mote ones (R1, R2, R3) marked in red. If we start from L1 to
look for a candidate mapping, there is only one possible assign-
ment for L1 which is R1. Since R1 is already taken, L2 will be
assigned to R2 and so forth. In the end, we get a mapping as fol-
lows: {(L1, R1), (L2, R2), (L3, R3)}. However, this is not the
optimal solution. In the figure, we can see that the distances be-
tween Li+1 and Ri where i = 1, 2, 3 are very small. So a bet-
ter mapping could be {(L2, R1), (L3, R2), (L4, R3)}. A greedy
algorithm which pairs a local to a remote trajectory with least av-
erage distance is able to find such mappings for the example in
Figure 7(a). However, will this solve our problem? Let us consider
the following scenario shown in Figure 7(b).

From Figure 7(b), if we use a greedy algorithm to find the map-
ping, we will end up with the pair {(L2, R1)} whereas L1 will be
mapped to R2 which is a trajectory far away. A much better so-
lution could be {(L1, R1), (L2, R2)}. The decision of whether a
mapping is good or not really depends on users’ preferences. For
example, the user may try to find a reasonable mapping for each
trajectory. In such a case, we may need to discard some mappings
even though the local trajectory is very close to the remote one (e.g.,
the case in Figure 7(b)). However, if users want to have the closest
mapping for one specific trajectory, some other local trajectories
may be mapped to remote trajectories that are far away.

To solve the above problems, we propose a cost function between
each pair of trajectories. Given a local trajectory T and a remote
trajectory T ′, the cost of mapping T to T ′ is as follows:

Cost(T , T ′) =

 AvgD(T , T ′) if AvgD(T , T ′) ≤ ψ
W if AvgD(T , T ′) > ψ
W if T ′ does not exist.

where W is a system parameter assigned by the user which is in
general greater than ψ. The above equation captures the semantic
of each assignment. If the average distance between T and T ′ is
less than ψ, then the cost is the average distance itself. Otherwise,
the cost is equal to a user assigned parameter.

Given a local dataset with n trajectories and a remote dataset
with m trajectories, if n < m we introduce m − n dummy local

trajectories, if m < n we then introduce n − m dummy remote
trajectories. Since we introduced dummy trajectories, we need to
modify the cost function as follows:

Cost(T , T ′) =


AvgD(T , T ′) if AvgD(T , T ′) ≤ ψ
W if AvgD(T , T ′) > ψ
W if T ′ is dummy
0 if T is dummy.

As an example, Figure 7(a) can be converted into the following
cost matrix with W set to 10. Since the number of local trajecto-
ries is greater than number of remote trajectories, we introduce a
dummy trajectory R4.

Table 1: Cost Matrix
R1 R2 R3 R4

L1 0.5 10 10 10
L2 0.1 0.3 10 10
L3 10 0.1 0.3 10
L4 10 10 0.1 10

Given a local dataset D with n trajectories, a configuration C
is defined as a one-to-one mapping between each local and remote
trajectory. Our goal now is to minimize the following equation

Cost(C) =W ∗ k +

n−k∑
i=1

Cost(Ti, T ′
i ) (1)

where Ti is mapped to T ′
i and k is the number of local trajecto-

ries mapped to dummy remote ones. This is an assignment prob-
lem [7], a well-known combinatorial optimization problem. It con-
sists of finding a minimum weight matching in a weighted bipartite
graph. By applying the cost function and introducing dummy tra-
jectories in either local dataset or remote dataset, we can reduce our
problem to an assignment problem.

Our optimization problem can be expressed as an integer pro-
gram with the objective function:∑

i∈L

∑
j∈R

Cost(i, j) ∗ xij

subject to the constraints:∑
j∈R

xij = 1 for i ∈ L

∑
i∈L

xij = 1 for j ∈ R

xij ∈ {0, 1} for i ∈ L, j ∈ R

where Cost(i, j) is the element in the i-th row and j-th column
of the cost matrix. The above optimization problem is essentially
a 0-1 integer programming or binary integer programming (BIP)
problem [16]. Since our constraint matrix is totally unimodular and
the right-hand sides of the constraints are integers, there exists a
polynomial algorithm with O(n3) complexity, the details of which
can be found in [20].

3.2.1 Adjusting Trust Scores
After the assignment procedure, the next step is to adjust trust

scores based on each mapping. Given a local trajectory TL and a
remote trajectory TR mapped to each other, we use the following
cases to adjust the trust scores of each position P ∈ L.



• if P ∈ TL and P ′ ∈ TR and P is supported by P ′, we
adjust the conflict and support analysis score Scas(P) of P
as follows:

S cas(P) = 1−(1−Sinit(P))·(1−Sinit(P ′)·(1−D(P,P ′)

ψ
))

• if P conflicts with P ′, we adjust the conflict and support
analysis score Scas(P) of P as follows:

Scas(P) = Sinit(P) · (1−Sinit(P ′) · D(P,P ′)− ψ
D(P,P ′)− ψ + 1

)

Assuming that P and P ′ are independent events, the intuition
behind these two functions is that if two positions P and P ′ sup-
port each other, the probability of P being true is one minus the
probability of them all being false. On the other hand, if two con-
flict each other, the probability of P being true is the probabil-
ity of P being true times the probability of P ′ being false. Note
that we should also consider the distance between P and P ′. We
take it into account by introducing two factors, 1 − D(P,P′)

ψ
and

D(P,P′)−ψ
D(P,P′)−ψ+1

. Recall that ψ is used to decide whether two posi-
tions support each other or not, these two factors range from 0 to 1.
When D(P,P ′) = ψ, both factors evaluate to 0, which makes the
trust score of P unchanged.

3.3 Combining Trust Scores
We have seen how to calculate trust scores resulting from Com-

mon Pattern Analysis and Conflict/Support Analysis. We indicate
those two trust scores for a positionP by Scommon(P) and Scas(P)
respectively. We indicate the final trust score by S(P). We obtain
S(P) by simply computing a weighted average of two scores as
follows:

S(P) = wcommon · Scommon(P)
+ wcas · Scas(P),

where wcommon + wcas = 1.0.

The weighting factors wcommon and wcas can be determined by
many factors (e.g., quality of anonymized dataset, types or charac-
teristics of trajectories, and so forth).

4. EXPERIMENTS
We report the empirical evaluation we have conducted in or-

der to show the effectiveness and efficiency of the proposed algo-
rithms. We developed a Java prototype, and all experiments were
performed on a Intel(R) Core2 2.66GHz workstation with 4GB
memory, running Windows Vista. The dataset used in our exper-
iments is a pre-processed Truck dataset1, which had also been used
in [13, 4]. The difference between two consecutive time stamps
in a trajectory is set to 300 seconds after pre-processing. We also
cut trajectories when the difference in time between two consec-
utive observations is more than 600 seconds. In addition, we as-
sume each trajectory starts at the beginning of a day so the first
time stamp of each trajectory is 0. The reason why we re-align the
trajectories is that by doing this the size of each equivalence class
produced would be larger. Thus we can apply NWA algorithm to
the dataset with larger k’s. We refer to the pre-processed dataset as
real dataset D. There are 17, 320 points and 2, 675 trajectories in
D. Another thing to note is that δ and ψ are measured in meters
and 1 unit of ϵ represents 300 seconds on the plane of start time and
end time.
1Download at http://www.rtreeportal.org

4.1 Common Pattern Analysis
We use two datasets for this experiment: 1) datasetl is a subset

taken from the real dataset D; 2) datasetr is the anonymization
result by applying algorithms in [4] to the real dataset D.

Parameter Setting
Completeness Ratio 20% 40% 60% 80% 100%
k 5 10 20 30 40 50
δ 400 600 800 1000 2000
ρ 3494 (5% of the diagonal)
σ 1.2
ϵ 5
α 0.0001
γ 0.001

Table 2: Parameters for Common Pattern Analysis

Table 2 lists the parameters used in the experiment. Completeness
Ratio indicates the percentage of trajectories in real dataset that are
put into datasetl. In other words, if the completeness ratio is 10%,
the probability that a trajectory in the real dataset will be put into
datasetl is 0.1.

Figure 8 (a) shows how completeness ratio affects the average
score of local movements in datasetl before and after taking in the
anonymized data from datasetr when k = 5 and δ = 2000. In
the figure, the trust score reports the average score of the move-
ments in datasetl. We can easily tell that by using the anonymized
datasetr , the trust scores of local movements have been improved.
Another thing to note is that the average score decreases when com-
pleteness ratio increases. One of the reasons is that there will be
more movements (as well as patterns) included when the data is
more and more complete. If many of them are related to each other,
e.g., a lot of them share the same source cluster or the same desti-
nation cluster, then the average score would decrease. This reflects
the rationale behind our score function for a pattern. Figure 8 (b)
also shows how the completeness ratio affects the running time of
our common pattern analysis algorithm.
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Figure 8: Varying Completeness Ratio

Figure 9 (a) and 9 (b) show the effects of changing k and δ on the
average trust score for local movements. From Figure 9 (a), we can
see the increase of score is less obvious when k is larger. It is in-
tuitive since a larger k would imply a larger translation error in the
procedure of anonymization and thus the quality of the anonymized
data is lower. Figure 9 (b) indicates that when δ increases, the in-
crease of average trust score is more obvious. This is also intuitive
since a larger δ would imply a lower translation error in the proce-
dure of anonymization and thus the quality of the anonymized data
is higher.
4.2 Conflict/Support Analysis

We use two datasets for this set of experiments: 1) datasetl is
taken from the real dataset with distortion; 2) datasetr is a subset
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Figure 9: Varying Anonymization Parameters

of the anonymization result by applying algorithms in [4] on the
real dataset. Different from the previous setting, we choose a cer-
tain number of trajectories from the real dataset as our datasetl.
Doing so reflects reality, since the number of suspects is rather
small in practice. As to datasetr , it is the union of all equiva-
lent classes which share the same time span with trajectories in
datasetl. The initial trust scores of both datasetl and datasetr
are 0.5.

Parameter Setting
Number of Suspects 10 20 30 40 50
Distortion Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%
k 5 10 20 30 40
δ 200 400 600 1000 2000
Distortion Percentage 5% 10% 15% 20% 25% 30%
ψ 5% 10% 20%
Initial Trust Score 0.5

Table 3: Parameters for Conflict and Support Analysis

Table 3 lists the parameters used in this experiment, where val-
ues in bold denote default values. Number of Suspects indicates
trajectories that are put into datasetl. Distortion Ratio controls
how many positions in datasetl are maliciously modified. Distor-
tion Percentage controls how much error we introduce to a single
position. The percentile values represents the percentage of the
dataspace (the diagonal of the rectangle that contains all trajecto-
ries). We refer to local data that have been modified as incorrect
and the others as correct.
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Figure 10: Varying Number of Suspects
Figure 10 (a) reports the average trust scores of both correct and

incorrect data for different number of trajectories in datasetl. We
can observe clearly that our approach is able to distinguish those in-
correct data from correct ones. The trust scores of correct data are
consistently higher than the incorrect ones, and very close to 0.75,
which is the highest score achievable in this scenario. The trust
scores of incorrect data are close to 0.25 which, on the other hand,
is the lowest possible value. We can also observe that the aver-
age scores of correct data increase slightly when ψ increases. This
is because if two positions are considered to support each other,
the greater ψ, the higher the trust score. Figure 10 (b) reports the

execution time with the change of number of local trajectories. Al-
though the execution time increases when the number of trajecto-
ries increases, the total running time is still very low.

Figure 11 (a) reports the average trust scores when changing the
distortion percentage. Note that: 1) when distortion percentage is
small, the trust score of incorrect data is close to the correct data,
however, we are still able to distinguish between them especially
for small ψ value (e.g., ψ = 5%); 2) When distortion percentage
grows, the gap between correct data and incorrect data is widening.
This is because when distortion is larger, it is easier to identify
incorrect data; 3) There is a remarkable drop of trust score for each
different ψ value, this is because when the distortion percentage is
bigger than ψ, suddenly those data will be considered as conflicting
with their remote counterparts; 4) The trust scores of correct data
remain almost constantly high, which demonstrates the robustness
of our approach.
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Figure 11: Varying Distortion Percentage and Ratio

Figure 11 (b) reports the average trust scores by varying the num-
ber of modified data. We can observe that our method is robust:
even when 90% of data are being modified, our method can still
distinguish correct data and incorrect data very easily.

Figure 12 (a) reports how the change of δ values affects the av-
erage trust scores (k = 40). The scores of incorrect data are almost
constant and close to 0.25. The average scores of correct data in-
crease slightly when δ increases, because the space distortion be-
comes smaller when δ is large.
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Figure 12: Varying Anonymization Parameters

Figure 12 (b) reports how the change of k values affects the trust
scores (δ = 1000). Incorrect scores still remain constant, however,
the correct scores decrease when k increases. This is because a
large k introduces more space distortion. Figures 12 (a) and 12 (b)
demonstrate that large k and small δ introduce more space distor-
tion and thus reduce the quality of the data.

5. RELATED WORK
Work related to our approach falls into three categories: trust-

worthiness computation, uncertainty in moving objects, and loca-
tion privacy.



In [10], an approach is proposed for computing the trustworthi-
ness of location data based on provenance. They use intra/inter-
source assessment along with the provenance information to assign
trust scores for location data. However, their approach cannot be
applied to anonymized data. A conceptual framework is proposed
in [6] for computing the trust scores of both data items and data
sources. Trust scores are affected by four factors: data similar-
ity, data conflict, path similarity, and data deduction. Based on the
framework, an approach for computing trust scores of data items
and data sources is also proposed in [11]. However, it does not deal
with location data. The work in [13] proposed pattern mining for
trajectories, which is similar to the approach we used in our com-
mon pattern analysis. However, their approach cannot be applied to
anonymized data. To the best of our knowledge, our method is the
first that studies privacy-preserving trustworthiness computation.

Uncertainty problems in moving object databases have been well-
investigated [22]. Uncertainty is an inherent aspect in trajectories
of moving objects since the location of a moving object is not al-
ways precise due to the continuous motion and network delays [21].
Pfoser and Jensen [18] presented a formal quantitative method to
handle uncertainty in moving objects. Recently, [9] gave a prob-
abilistic approach for estimating the answer to a few categories of
queries over uncertain values of dynamic data. These approaches,
however, can only handle precision issues, but not trustworthiness
issues. In contrast, our work addresses trustworthiness of trajectory
data.

The topic of location k-anonymity for LBS has been exten-
sively studied [14, 12, 17, 5, 15]. The basic idea is that a message
sent from a user is k-anonymous when it is indistinguishable from
the spatial and temporal information of at least k - 1 messages sent
from other users. In [4], the authors studied how to publish tra-
jectories such that anonymity of the individuals is preserved, while
at the same time maintaining good data quality. We adopted their
privacy model and developed our approach based on it.

6. CONCLUSION
In this paper, we illustrated the importance of taking into account

privacy when computing trustworthiness of location data in appli-
cations such as forensics. We proposed two privacy-preserving
techniques for common pattern analysis and conflict/support anal-
ysis that can improve trustworthiness of location data with the help
of large repositories of anonymized trajectories. An extensive ex-
perimental evaluation demonstrated the effectiveness and efficiency
of our approach.

In future work, we plan to investigate how to extend our tech-
niques to other privacy-preserving paradigms, such as differential
privacy, a model that has gained a lot of traction in recent years.
Also, we plan to research mechanisms for privacy-preserving pro-
cessing of provenance, which can further provide insights into the
level of data trustworthiness based on the reliability of data sources.
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