
HAL Id: hal-01066667
https://hal.inria.fr/hal-01066667

Submitted on 22 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhanced matching perturbation attenuation with
discrete-time implementations of sliding-mode

controllers
Olivier Huber, Vincent Acary, Bernard Brogliato

To cite this version:
Olivier Huber, Vincent Acary, Bernard Brogliato. Enhanced matching perturbation attenuation with
discrete-time implementations of sliding-mode controllers. ECC - 13th European Control Conference,
Jun 2014, Strasbourg, France. pp.2606-2611, �10.1109/ECC.2014.6862437�. �hal-01066667�

https://hal.inria.fr/hal-01066667
https://hal.archives-ouvertes.fr


Enhanced matching perturbation attenuation with discrete-time
implementations of sliding-mode controllers

Olivier Huber, Vincent Acary and Bernard Brogliato

Abstract— Continuous-time Sliding Mode Control yields
when embedded into Filippov’s mathematical framework,
closed-loop systems with a set-valued controller, represented
by differential inclusions. In particular, besides finite-time
convergence to the sliding surface and robustness to matched
disturbances, such controllers allow an exact compensation of
the disturbance on the sliding manifold. In other words, the
set-valued input is the exact copy of minus the perturbation. A
novel discretization methodology has been recently introduced
by the authors, which is based on an implicit discretization
of the Filippov’s differential inclusion, which in theory totally
suppresses the chattering due to the discretization (numerical
chattering). In this work we propose an extension of the implicit
method, enhancing the perturbation attenuation (in terms of
chattering) by using previous values of the set-valued input.
This allows to estimate on-line the unknown perturbation, with
a time delay due to the sampling. Simulation results illustrate
the effectiveness of the method.

I. INTRODUCTION

The time discretization of sliding-mode controllers has
witnessed an intense activity in the past 30 years [1],
[2], [3], [4], [5], [6] and [7]. This concerns in particular
the classical Equivalent-Control-Based Sliding-Mode Con-
trol (ECB-SMC), which consists of two sub-controllers:
the state-continuous equivalent control ueq and the state-
discontinuous control us. The chattering phenomenon is seen
as a limiting factor to a more widespread deployment of
SMC. In this note, from the different sources of chattering,
we shall consider the one originating from the discretization
of the controller and the matching perturbations. In these past
research efforts, most of the focus was on the discontinuous
part of the control, since it introduces numerical chattering.
In previous works [8], [9] and [10], a new kind of discrete-
time controller was proposed. The basic idea is to implement
the discontinuous input us in an implicit form, while keeping
its causality (i.e. the controller is nonanticipative). Then this
input has to be computed at each sampling time as the
solution to a generalized, set-valued equation, which takes
the form of a simple projection on an interval in the simplest
cases. The other source of chattering considered here is
the perturbations that comprise noise, unmodeled dynamics,
and unknown inputs. One of the features of continuous-
time sliding-mode control is the disturbance rejection of
matched perturbations [11]. However this nice property is not
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preserved through discretization. Efforts aiming at improving
the accuracy with discrete-time controllers include the works
in [12] and [13]. In the latter, a constant prediction of the
perturbation was used to improve a deadbeat controller. The
work in [14], unknown to the authors at the time of writing,
shares some similarities with the present one. Other work like
the ones cited at the beginning aim at reducing the chattering
in general, which includes the numerical one. The specificity
of the approach in [12], [13], [14] and the present work is to
have a dedicated treatment for the chattering not originating
from the discretization.

In this work, we present a modified controller based
on the one found in [10], that takes advantage of the
previous measured values. Indeed, in this previous work,
the convergence of the discretized discontinuous input to the
perturbation as the sampling time goes to 0 was studied.
This motivates us to use this information in order to improve
the attenuation, using finite difference methods to exploit
the past informations. After presenting the basic idea, we
introduce finite difference formulæand how they can be used
to derive prediction of contribution of the perturbation. We
also investigate stability and finite-time convergence of the
modified controller.

The type of system under study is of the form
ẋ(t) = Ax(t) +Bu(t) +Bξ(t),

u(t) := ueq(t) + us(t) + up(t),

σ(t) := Cx(t),

us(t) ∈ −α Sgn (σ(x(t))) ,

(1)

with x(t) ∈ Rn, u(t) ∈ Rp, σ(t) ∈ Rp, C ∈ Rp×n, and
α > 0. The function σ is called the sliding variable and
the disturbance is denoted as ξ. As one can infer from the
dynamics in (1), in this note only matched perturbations are
considered. Furthermore we restrict ourselves to the case
where ξ is smooth, with no noise component in it. Let us
denote by up the new control input, designed to cancel the
effect of the perturbation. The method used to discretize the
dynamics is called Zero-Order Hold (ZOH).

In the remainder of this section, we introduce the notation.
In Section II we briefly recall the discrete-time sliding mode
controller introduced in [10]. The basic idea is exposed in
Section III and the proposed estimation scheme is presented
in Section IV. Section V presents the implementation details
of the controller. Simulation results using different time-
discretization methods are shown in Section VI, to illustrate
the different predictions. Finally, stability results are derived
in Section VII. Conclusions end the paper in Section VIII.



Notations: Let x : R+×Rp×Rn → Rn be the solution of
system (1), x := x( · , u, x0) is the solution associated with
a continuous-time control u and an initial state x0 ∈ Rn,
while x̄ := x( · , ū, x0) is the solution with a step function
ū and the same initial state. In the latter case, we denote by
σ̄ := Cx̄ the sliding variable. The control values change at
predefined time instants tk, defined for all k ∈ N : tk :=
t0 + kh, t0, h ∈ R+. The scalar h is the sampling period.
We denote x̄k := x̄(tk) and σ̄k := σ̄(tk) for all k ∈ N. Let
‖ · ‖ be the usual Euclidean norm.

Definition 1 (Multivalued sign function). Let x ∈ R. The
multivalued sign function Sgn: R ⇒ R is defined as:

Sgn(x) =


1 x > 0

−1 x < 0

[−1, 1] x = 0.

(2)

If x ∈ Rn, then the multivalued sign function Sgn: Rn ⇒
Rn is defined as: for all j = 1, . . . , n, (Sgn(x))j := Sgn(xj).

Definition 2. Let f : Rn × R → Rp and l ∈ R. One has
f = O(hl) if for all x ∈ Rn, there exists c ∈ Rp such that
f(x, h)/hl → c as h→ 0.

Definition 3 (Discrete-time sliding phase [10]). A sys-
tem (1), in its sampled-data form, is in the discrete-time
sliding phase if ūs takes values in (−α, α)p, with α the gain
of the controller.

II. DISCRETE-TIME CONTROLLER

We consider ūeq , ūs and ūp to be right-continuous step
functions, with for instance ūs(t) = ūsk if t ∈ [tk, tk+1).
Following previous works in [8], [9], [10], ūeq is designed
directly in discrete-time and ūs is obtained by an implicit
discretization of the Sgn multifunction. Integrating the nom-
inal (that is ξ ≡ 0) version of system (1) over [tk, tk+1), we
get the ZOH discretization of the system:

x̄k+1 = eAhx̄k +B∗ūeqk +B∗ūsk +B∗ūpk, (3)

with

B∗ :=

∫ tk+1

tk

eA(tk+1−τ)Bdτ. (4)

The control inputs are computed as follows: the equivalent
part ūeq is given by the relation

CB∗ūeqk = C(I − eAh)x̄k, (5)

and with the implicit discretization, for each k ∈ N, ūsk is
the solution to the generalized equation{

σ̃k+1 = σ̄k + CB∗ūsk
ūsk ∈ −α Sgn(σ̃k+1).

(6)

The computation of the input ūp is described in the next
section. If we set up ≡ 0, the closed-loop system (1) is
the one studied in [10], and exhibits properties as finite-
time duration of the reaching phase and convergence of the
discretized discontinuous input ūs to the continuous-time one
us. In Section VII, we shall investigate when those properties
are also shared by our modified controller.

III. PROBLEM STATEMENT

In continuous time, while in the sliding phase, the dis-
continuous control input us takes values to reject the pertur-
bation action, according to Filippov’s concept of solutions.
Let us illustrate this using an academic example, ẋ(t) ∈
−Sgn(x) + d(t), x scalar and d a continuous unknown
perturbation, with |d(t)| ≤ 1 for all t. In the sliding
phase, the value taken by Sgn(x(t)) is d(t). In [10], it
was established that in the discrete-time sliding phase the
input ūs is approximating the opposite of contribution of the
perturbation in the evolution of the sliding variable. But this
action is a posteriori, in the sense that at time tk, ūs corrects
for the contribution of the perturbation over the time interval
[tk−1, tk]. Hence the attenuation of the perturbation is limited
since the control is lagging by one sampling period.

Our approach to enhance the perturbation attenuation
consists in using the past values of the sliding variable in
order to predict the contribution of the perturbation on the
next time interval. Then we take into account this prediction
in the control input that is going to be applied for this time
interval. As we shall see, this additional control input is
computed independently of the other ones.

Let us study the dynamics of the ZOH-discretized discrete-
time system with a nonzero perturbation. We suppose the
system has been in the discrete-time sliding phase for more
than 1 sampling period. Adding the perturbation term to (3),
we get

x̄k+1 = eAhx̄k +B∗ūeqk +B∗ūsk +B∗ūpk + pk (7)

and with ūeqk as in (5), the sliding variable dynamics is

σ̄k+1 = σ̄k + CB∗(ūsk + ūpk) + Cpk, (8)

with

pk :=

∫ tk+1

tk

eA(tk+1−τ)Bξ(τ)dτ. (9)

We refer to pk or Cpk as the effect, or contribution, of
the perturbation. From (6), in the discrete-time sliding phase
σ̃k+1 = 0, so σ̄k + CB∗ūsk = 0. Therefore the relation (8)
becomes

σ̄k+1 = Cpk + CB∗ūpk. (10)

If we have an estimate C̃pk of Cpk at the time tk, then we
can use this information in the control input up, defined as

ūpk := −(CB∗)−1C̃pk. (11)

Then injecting (11) in (10), we get:

σ̄k+1 = Cpk − C̃pk =: Cp̂. (12)

In the rest of this note, we name the quantity denoted by
Cp̂ the residual perturbation. The chattering on the output
σ̄ is equal to the prediction error on the effect of the
perturbation. Therefore to reduce the chattering imputable to
perturbations like unmodeled dynamics, we can try to find a
good prediction of the value of the perturbation. The better
it is, the smaller the chattering will be. In the next section,
we build an estimate C̃pk of Cpk at the time tk.



IV. PREDICTION OF THE PERTURBATION

The method we propose to make use of is finite difference,
itself based on the Taylor expansion of a function. For
instance if we suppose that a function f : R → Rn is twice
differentiable, it holds that

f(x+ h) = f(x) + hḟ(x) +
h2

2
f̈(x) +O(h3). (13)

To use this recurrence formula for the prediction at the next
time instant, one need to estimate the values of the first and
second derivatives of the function. We use again the finite
difference method to get them. We suppose we have access
to Cpk for the previous r sampling periods. However Cp(t)
is not a continuous function. It is piecewise smooth, but
only right-continuous. From the definition in (9), we have
Cp(t+k ) = 0 for all k ∈ N. This prevents us from directly
applying the Taylor expansion to Cp(t) itself. Nonetheless,
we can use the Taylor expansion formula on the perturbation
ξ and then derive the one for the prediction of Cpk. Let us
illustrate this using a second order expansion of ξ:

ξ(τ + h) = ξ(h) + hξ̇(τ) +
h2

2
ξ̈(τ) +O(h3). (14)

Multiplying by eA(tk−τ) and integrating, we get:∫ tk

tk−1

eA(tk−τ)Bξ(τ + h)dτ =

∫ tk

tk−1

eA(tk−τ)Bξ(τ)dτ+

(15)

h

∫ tk

tk−1

eA(tk−τ)Bξ̇(τ)dτ +
h2

2

∫ tk

tk−1

eA(tk+1−τ)Bξ̈(τ)dτ +O(h4).

(16)

Using the change of variable τ ′ = τ+h in the left-hand side
of (16) and using (9), we obtain the relation

Cpk = Cpk−1 + hC

∫ tk

tk−1

eA(tk−τ)Bξ̇(τ)dτ (17)

+
h2

2
C

∫ tk

tk−1

eA(tk−τ)Bξ̈(τ)dτ +O(h4). (18)

Let us define Cp
(i)
k := C

∫ tk
tk−1

eA(tk−τ)ξ(i)(τ)dτ . We use
the finite difference method to estimate the second and third
terms in (18).

Lemma 1. Suppose we have an r-step approximation of the
i-th derivative of ξ, ξ(i)(τ) =

∑r
l=0 αlξ(τ−lh)+O(hr−i+1)

with r ≥ i. Then the approximation formula for Cp(i)k is∑r
l=0 αlCpk−l and is of order O(hr−i+2).

Proof. Starting from the approximation relation for the
derivative and with basic operations, we get:

C

∫ tk+1

tk

eA(tk+1−τ)Bξ(i)(τ)dτ = (19)

r∑
l=0

αlC

∫ tk+1

tk

eA(tk+1−τ)Bξ(τ − lh)dτ +O(hr−i+2).

(20)

For each integral, we use the change of variable τ ′ = τ− lh.

C

∫ tk+1

tk

eA(tk+1−τ)Bξ(i)(τ) = (21)

r∑
l=0

αlC

∫ tk+1−l

tk−l

eA(tk+1−l−τ ′)Bξ(τ ′)dτ ′ +O(hr−i+2)

(22)

=

r∑
l=0

αlCpk−l +O(hr−i+2). (23)

Using Lemma 1 for the approximate value of the first and
second derivatives in (18) yields:

Cpk ≈ Cpk−1 + h

r1∑
l=0

αlCpk−l +
h2

2

r2∑
l=0

α′lCpk−l. (24)

where r1 and r2 (both ≤ r) are the order for the prediction of
the first and second derivative. Those, with the coefficients αl
and α′l, are taken from [15]. As Equation (24) illustrates it,
the i-th derivative estimate is multiply by hi. By Lemma 1 we
know that the approximation error for the i-th derivative is of
order O(hr−i+2). Then the approximation error introduced
by the i-th derivative is of order O(hr+2).

Let us present some possible prediction formulæ. Using
only the first derivative, we have the relation

Cpk = 2Cpk−1 − Cpk−2 +O(h3) (25)

= C̃pk +O(h3), (26)

where both the approximation of the first derivative and the
prediction have the same order. Adding the second derivative
yields

Cpk =
5

2
Cpk−1 − 2Cpk−2 +

1

2
Cpk−3 +O(h3) (27)

= C̃pk +O(h3). (28)

The order is the same as in (26) since we use a 1-step
approximation for Cp(1)k , of order 1 which introduces an
error of order O(h3) in (28). Therefore to achieve an overall
error of order O(h4), we need an estimate with an order 2

for Cp(1)k , yielding

Cpk = 3Cpk−1 − 3Cpk−2 + Cpk−3 +O(h4) (29)

= C̃pk +O(h4). (30)

From now on, let us refer to (26) as a linear or order
1 prediction and to (28) as an order 2 prediction. Both
predictions are said to be high-order in contrast with the
one given by the relation

C̃pk = Cpk−1, (31)

which is said to be constant. Note that the order of the
prediction indicates also the number of times the perturbation
has to be differentiable for the approximation order to be
guaranteed.



V. CONTROLLER IMPLEMENTATION

Let p ∈ N be the approximation order. As long as the
closed-loop system is not in the discrete-time sliding phase,
we set ūp ≡ 0. Let k0 ∈ N be such that σ̃k0 = 0, that is the
system is in the discrete-time sliding phase, and let k > k0.
For k0 ≤ k < k0 + p, we let ūpk = 0 and we save σ̄k, which
is Cpk−1 according to (10). For k ≥ p+k0, we compute the
prediction of the perturbation C̃pk using one of the formula
in (26), (30) or (31) and we set ūpk = (CB)−1C̃pk. At
this point, we cannot know Cpk−1 directly from σ̄k since
ūpk changes the dynamics. From (12), at time tk, Cpk−1 is
obtained through the relation

Cpk−1 = σ̄k + C̃pk−1, (32)

where σ̄k is measured and C̃pk−1 is known from the last
estimation.

In [10], the condition ‖Cpk‖ ≤ αβ for all k, with β the
smallest eigenvalue of CB∗s := (CB+(CB∗)T )/2, was used
to guarantee a finite-time reaching phase and that the system
does not exit the discrete-time sliding phase. This inequality
condition ‖Cpk‖ < αβ gives us a “feasibility set” for the
prediction C̃pk. If C̃pk > αβ, then we project the estimate
onto the ball of radius αβ centered at the origin. With this
refinement of our algorithm, we make a first step towards
some stability property, which is studied in Section VII.

VI. NUMERICAL EXAMPLE

We illustrate the method on a simple 2 dimensional
system, taken from [10]:
ẋ(t) = Ax(t) +Bū(t) +Bξ(t)

σ = Cx

ū(t) = ūeq(t) + ūs(t)

A =

(
0 1
19 −2

)
,

B =

(
0
1

)
, CT =

(
1
1

)
.

(33)
The perturbation ξ is a simple sinusoid: ξ(t) = sin(4πt).
It was chosen as an example of unmodeled dynamics in
a mechanical system. The matrix A has the eigenvalues
λ1 = 3.47 and λ2 = −5.47. The dynamics on the sliding

surface is given by
(

0 1
0 −1

)
, which has eigenvalues 0 and

−1. The initial state is (−15, 20)T and the sampling period
is 10−2s. We have simulated with 4 different controllers:
the classical implicit one, one with the assumption that
the perturbation is constant (31), one with the prediction
presented in (26) and the last one with the prediction formula
in (30). The simulations run for 150 s and were carried
out with the SICONOS software package [16]1. Figures were
created using Matplotlib [17]. We present plots of the state
variables in Fig. 1, 2 and 3. Then we display the evolution
of the discontinuous control ūs in Fig. 4 and 5.

In Fig. 1, the state values for the last second are displayed,
when each system features some kind of steady-state be-
haviour. The improvement obtained using the prediction is
clearly visible, to the point that we need to zoom to see the
chattering with higher-order estimations. In Fig. 2, detail of

1http://siconos.gforge.inria.fr
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Fig. 1: Simulations of system (33), zoomed around the origin,
with h = 10−2s.
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Fig. 2: Detail of Fig. 1, with only the trajectories of the
closed-loop systems with prediction visible.

Fig. 1, only the trajectories of the closed-loop systems with
prediction are displayed. The behaviour between sampling
times can be seen with the constant prediction (order 0).
Each high-order predictions (order 1 and 2), yields a closed-
loop system featuring even less chattering, as we can see
in Fig. 3. At this level of detail, the difference between the
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x1 1e−5
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Fig. 3: Detail of Fig. 2, with only the trajectories of the
closed-loop system with higher-order prediction visible.

two estimations with high-order becomes visible. Markers
indicate the state of the system at each time instant tk, that
is when the control values change. We witness that for those
particular values, the prediction with order 2 yields better
results with a chattering one order of magnitude smaller.
However with the small contribution of the residual pertur-
bation, the inter-sampling dynamics provides an important
contribution to the behaviour of the system. For the present
example, the advantages of using a prediction order higher
than 1 are not so striking as the ones from using at least
a linear prediction. Therefore it is important to take into

http://siconos.gforge.inria.fr


account the inter-sampling dynamics when designing the
prediction of the perturbation.
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Fig. 4: Evolution of ūs for simulations of system (33) with
h = 10−2s.

Let us turn our attention to the control input. Firstly we
plot the evolution of the discontinuous part ūs, which is,
up to a constant, equal to the residual perturbation (12). In
Fig. 4, the evolution of ūs for the last 2s is displayed. As
expected, the better the approximation, the smaller ūs is. In
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Fig. 5: Detail of Fig. 4.

Fig. 5, detail of Fig. 4, the same phenomenon can be seen for
the high-order estimations. Let us turn our attention to ūp, as
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Fig. 6: Evolution of ūp for simulations of system (33)

displayed in Fig. 6. From a previous study in [10], we know
that with no perturbation prediction, ūs approximates the
perturbation with a delay of h. Recall that with an order 0, the
predicted value of the effect of the perturbation is the one the
system just measured. In this case, the values taken by ūp are
the ones that ūs would take with no perturbation prediction.
What we can witness from Fig. 6 and 7 is that with a high-
order prediction, this lag of one sampling period h seems to

have vanished. This is easier to assess on Fig. 7, where if we
shift the solid green curve (corresponding with the constant
prediction) by −h on the time axis, then it would more or
less overlap with the two other curves. This observation can
also be explained in the following way: with an estimation
of order 0, there is no use of a derivative of ξ to “look into
the future”. When this is the case, as for the order 1 and
2, the main difference between the different predictions is
the value that ūpk takes. This highlights the fact that using
high-order estimation yields a prediction, hence a chattering
attenuation, substantially better than a constant one. A last
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Fig. 7: Detail of Fig. 6.
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Fig. 8: Evolution of ūs + ūp for simulations of system (33)

interesting comparison is the control effort used in each of
these closed-loop systems. In particular, we want to compare
the sum ūs + ūp with the discontinuous input ūs in the case
where up ≡ 0. In Fig. 8, one can see that all the control
inputs are quite close, in terms of shape and value. At this
level of detail, there is no difference between the closed-loop
system with prediction. The main difference is that without
prediction, the control is shifted by h with respect to the one
with a prediction. Adding a perturbation prediction yields no
extra control effort in this example.

VII. STABILITY PROPERTIES

One natural question arising from this prediction proce-
dure is whether the use of a bad prediction can degrade the
closed-loop performances instead of improving them. Sliding
Mode Control is known for its robustness and such a feature
should not be lost while trying to reduce the chattering.

First we characterize the robustness with a discrete-time
feedback loop. Since we use an implicit discretization of the
discontinuous control us, we can divide the evolution of the



closed-loop system in two phases: the reaching phase, were
ūs has at least one of its element taking the maximum value
±α and the discrete-time sliding phase from Definition 3.
We define the robustness as the feature that the system does
not leave the discrete-time sliding phase, once it enters it.

Proposition 1. Suppose that CB∗s is positive-definite and
β > 0 is its smallest eigenvalue. Let the estimate C̃pk be
obtained by the mean of one of the formula in Section IV. If
α > 0 is such that for all k ∈ N, 2‖Cpk‖ < αβ and C̃pk
is projected onto the admissible set {v ∈ Rp : ‖v‖ < αβ},
then the perturbed closed-loop system given by (8) and (6)
enters the discrete-time sliding phase in finite time and stays
in it.

Proof. The proof is similar to one in [10] and is therefore
omitted on brevity ground.

The closed-loop system does not exit the discrete-time
sliding surface, even if the estimate is quite far from the
actual value. In the worst case the magnitude of the chattering
is doubled. The only change change required by the pre-
diction is to double the bound on the discontinuous control
input ūs. This is possible without degrading the performance
with the implicit discretization of us, since the numerical
chattering is non-existent with a LTI system discretized using
ZOH.

Remark 1. If it is not possible to double the bound α, it is
possible to project the estimate onto a ball with a smaller
radius γαβ, where (1 + γ)α is less than the componentwise
upper bound on the control input. It is then easy to adapt
the previous proposition to have a result with this estimate.
However the chattering reduction might be less appealing.

VIII. CONCLUSION

In this note, a modified discrete-time sliding mode con-
troller is proposed, which can improved the perturbation at-
tenuation of smooth perturbations. The core idea is to use the
previous values of the sliding variable to provide an estimate
of the effect of the perturbation on the system for the next
sampling period. The method proposed here is adapted from
finite-difference formulæ. Numerical simulations obtained
with the INRIA software package SICONOS, illustrate the
effectiveness of the proposed method. Stability properties of
the new controller are also discussed. Experimental com-
parisons between discrete-time controllers are currently con-
ducted and are about to be submitted for publication. They
illustrate that the implicit discretization allows to drastically
reduce the output and the input chattering effects, as well
as the input magnitude (contrarily to explicit discretizations
which invariably lead to bang-bang like controllers with full
switching at very high frequency). Further works will include
carrying on experimental comparisons as well as dealing with
perturbation having a noise component, and also studying the
convergence of the proposed controller as h→ 0.
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