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L1-optimal linear programming estimator for periodic

frontier functions with Hölder continuous derivative

A.V. Nazin.∗

(Trapeznikov Institute of Control Sciences RAS, Moscow, Russia),

S. Girard.
(LJK, Inria Grenoble Rhône-Alpes, Grenoble, France)

Abstract

We propose a new estimator based on a linear programming method for smooth
frontiers of sample points. The derivative of the frontier function is supposed to be
Hölder continuous. The estimator is defined as a linear combination of kernel functions
being sufficiently regular, covering all the points and whose associated support is of
smallest surface. The coefficients of the linear combination are computed by solving a
linear programming problem. The L1 error between the estimated and the true frontier
functions is shown to be almost surely converging to zero, and the rate of convergence
is proved to be optimal.

1 Introduction

Many proposals are given in the literature for estimating a set S given a finite random set
of points drawn from the interior. Here, we focus on the case where the unknown support
can be written as S = {(x, y) : 0 ≤ x ≤ 1 ; 0 ≤ y ≤ f(x)}, where f is an unknown
function. The initial problem reduces to estimating f , called the frontier or the boundary,
from random pairs (X, Y ) included in S.

Under monotonicity assumptions, the frontier can also be interpreted as the endpoint of
Y given X ≤ x. Specific estimation techniques have been developed in this context, see for
instance Deprins et al. [6], Farrel [7], Gijbels et al. [9]. We also refer to Aragon et
al. [1], Cazals et al. [4], Daouia & Simar [5] for the definition of robust estimators.

In the general case, that is without monotonicity assumptions, Girard & Jacob [16]
introduced an estimator based upon kernel regression on high power-transformed data. In
the particular case where Y given X = x is uniformly distributed they proved that this
estimator is asymptotically Gaussian with the minimax rate of convergence for Lipschitzian
frontiers. (Loosely speaking, under the rate of convergence we understand infinitely small
positive number sequence which characterizes the convergence to zero of a norm of the esti-
mation error, as the sample size N → ∞.) Compared to the extreme-value based estimators

∗The work of A.V. Nazin was carried out during his stay in MISTIS Project, Inria Grenoble Rhône-Alpes,
June and October 2013; partially supported by PreMoLab/MIPT, RF government grant 11.G34.31.0073.
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(Geffroy [8], Girard & Jacob [13, 14, 15], Girard & Menneteau [17], Härdle et
al. [20], Menneteau [25]), projection estimators (Jacob & Suquet [21]), or piecewise
polynomial estimators (Hall et al. [18], Knight [22], Korostelev & Tsybakov [24],
Korostelev et al. [23], Härdle et al. [19]), this estimator does not require a partition
of the support S. When the conditional distribution of Y given X is not uniform, this
estimator is still convergent (Girard & Jacob [16], Theorem 1) but may suffer from a
strong bias (Girard & Jacob [16], Table 1). A modification of this estimator has been
proposed by Girard et al. [10, 11] to tackle the situation where the conditional distribution
function of Y given X = x decreases at a polynomial rate to zero in the neighborhood of the
frontier f(x). The asymptotic normality as well as the strong consistency of the estimator
are established.

The estimator proposed in Bouchard et al [2] for estimating S shares some common
characteristics with the one of Girard & Jacob [16]. It assumes that Y given X = x is
uniformly distributed but does not require a partition of the support. Besides, it is defined as
a kernel estimator obtained by smoothing some selected points of the sample. These points
are, however, chosen automatically by solving a linear programming problem to obtain an
estimated support covering all the points and with smallest surface. From the theoretical
point of view, this estimator is shown to be consistent for the L1 norm. An improvement
of this estimator has been proposed in Girard et al. [12] in order to reach the optimal
minimax L1 rate of convergence (up to a logarithmic factor) for Lipschitzian frontiers.

In this paper, we propose an adaptation of these methods for estimating smoother fron-
tiers: It is assumed that the first derivative of frontier is Hölder continuous. The resulting
estimator is proved to reach the optimal minimax L1 rate of convergence (up to a logarithmic
factor). The paper is organized as follows. The estimator is defined in Section 2. Assump-
tions and preliminary results are given in Section 3 while our main result is established in
Section 4. Proofs are postponed to the Appendix.

2 Problem statement and boundary estimator

Let all the random variables be defined on a probability space (Ω,F , P ). The problem
under consideration is to estimate an unknown 1-periodic function f : R → (0,∞), that
is f(x + 1) = f(x) for all x ∈ R, on the basis of independent observations (Xi, Yi)i=1,N

uniformly distributed in

S , {(x, y) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ f(x)} . (1)

Note that, the notation i = m,n is used for i = m, . . . , n. Since f is 1-periodic, it is
convenient to extend the indices of data (Xi, Yi) out of those of i = 1, N by periodic con-
tinuation w.r.t. x. Therefore, we put (Xi, Yi) = (Xi+N − 1, Yi+N) for i = 1−N, 0, and
(Xi, Yi) = (Xi−N + 1, Yi−N) for i = N + 1, 2N .

Remark 1 An example of the boundary of 2π-periodic function occurs in the description of
the boundary of a convex planar set in polar coordinates with the center inside the set. The
normalization of the polar angle allows to come to 1-periodic function.
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Remark 2 Note that the condition of periodicity of the boundary function is, on the one
hand, a significant assumption that distinguish a special class of problems, on the other hand,
the technical condition that allows (together with the conditions on the kernel function, see
below) to avoid the “difficulties at the borders” of the interval [0, 1], simplify the calculations
in the analysis of the estimation error and arrive to the optimal rate of convergence.

Letting

Cf ,

∫ 1

0

f(u) du , (2)

each variableXi is distributed in [0, 1] with p.d.f. f(·)/Cf while Yi has an uniform conditional
distribution with respect to Xi in the interval [0, f(Xi)]. In what follows, it is assumed that
f ∈ Σ(1, β, Lβ ), 1 < β ≤ 2, i.e. the function f : R → (0,∞) is 1-periodic, continuously
differentiable with Hölder continuous derivative f ′ having exponent β − 1 and upper bound
for Hölder coefficient Lβ :

|f ′(x)− f ′(u)| ≤ Lβ |x− u|β−1 ∀ x, u ∈ R . (3)

The considered estimator f̂N : [0, 1] → [0,∞) of the frontier is chosen from the family of
functions

f̂N (x) =
N∑

i=1

αiKh(x,Xi), αi ≥ 0, i = 1, . . . , N, (4)

with kernel function

Kh(x, t) =
1

h
K

(
x− t

h

)
+

∣∣∣∣∣∣∣∣∣∣

0 if h < t < 1− h,
1

h
K

(
x− t− 1

h

)
if 0 ≤ t ≤ h,

1

h
K

(
x− t + 1

h

)
if 1− h ≤ t ≤ 1,

(5)

being defined for all (x, t) ∈ [0, 1]2 and h ∈ (0, 1/2), where K is a given sufficiently smooth
centered density function K : R → [0,∞) with support included in [−1, 1], see assumption
B2, Section 3. The bandwidth parameter h depends on N such that h → 0 as N → ∞.

Remark 3 The estimate (4) is not supposed to be periodic itself.

Remark 4 Since the supports of the different terms appearing in (5) do not intersect, the
kernel may be rewritten as

Kh(x, t) =
1∑

j=−1

1

h
K

(
x− t+ j

h

)
(6)

for (x, t) ∈ [0, 1]2. The kernel function (6) is thus as smooth w.r.t. t as the density function
K(·) is. For instance, one always has Kh(x, t) ≤ Kmax/h and the k-th derivative bound

|∂ kKh(x, t)/∂t
k| ≤ K

(k)
max/hk+1 if K(·) has a continuous k-th derivative.
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Remark 5 The optimal choice of the bandwidth h is carried out here in the spirit of [12].
Also see Remark 7 below at the end of Section 6.3.

Remark 6 In the definition of estimator (4), the kernel (5) is introduced for x ∈ [0, 1].
However, it is convenient to introduce a wider interval like [−h, 1 + h] for variables x and
t in the kernel function (5) and define additional points X− ∈ [−h, 0] and X+ ∈ [1, 1 + h]
a.s., see below (20).

As it is proved below in Lemma 2 the surface of the estimated support

ŜN , {(x, y) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ f̂N(x)} (7)

is given by ∫ 1

0

f̂N(x) dx =
N∑

i=1

αi . (8)

This suggests to define the estimator of the parameter vector α = (α1, . . . , αN)
T as a solution

of the following optimization problem

J∗
P , min

α

N∑

i=1

αi (9)

subject to, for all i = 1, N,

f̂N(Xi) + (Xj −Xi) f̂
′
N(Xi) ≥ Yj , ∀ j : |Xj −Xi| ≤ h , (10)

|f̂ ′′
N (Xi)| ≤ 2Lβ K

′′
max

logN

Nh3
, (11)

N∑

i=1

αi 1{(m− 1)/mh ≤ Xi < m/mh} ≤ Cαh , m = 1, mh , (12)

0 ≤ αi , (13)

where mh = ⌊1/h⌋ is the integer part of 1/h,

K
′′

(x, u) ,
∂ 2

∂x2
Kh(x, u) , (x, u) ∈ [0, 1]2 ,

and 1{·} is the indicator function which equals 1 if the argument condition holds true, and
0 otherwise. The value of the positive parameter Cα in the constraints (12) is discussed in
Section 4. Evidently, this optimization problem represents a linear program (LP). Therefore,
we call the defined boundary estimator as the LP-estimator (9)–(13).

3 Basic assumptions and preliminary results

The basic assumptions on the unknown boundary function f : R → (0,+∞) are:

A1. f(x) = f(x+ 1) and 0 < fmin ≤ f(x) ≤ fmax < ∞, for all x ∈ R.
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A2. f(x) is continuously differentiable having the Hölder exponent β−1 for function deriva-
tive f ′, i.e.

|f ′(x)− f ′(y)| ≤ Lβ |x− y|β−1 for all x, y ∈ [0, 1] ,

where constants Lβ < ∞ and β ∈ (1, 2] are supposed to be given.

The following assumptions on the kernel function are introduced:

B1. K : R → [0,+∞) has a compact support: supp
t∈R

K(t) = [−1, 1],

B2.

∫ 1

−1

K(t) dt = 1,

∫ 1

−1

tK(t) dt = 0,

B3. K is four times continuously differentiable.

The next two lemmas are of analytical nature. They can be interpreted as extensions of
Bochner’s Lemma for controlling the smoothing error introduced by the kernel.

Lemma 1 Let f be a 1-periodic function on R. Then, assumptions B1 and B2 imply

∫ 1

0

f(u)Kh(x, u) du =

∫ 1

−1

f(x− hv)K(v) dv ∀ x ∈ [0, 1] . (14)

Particularly, for f(x) ≡ 1 one obtain

∫ 1

0

Kh(x, u) du = 1 ∀ x ∈ [0, 1] . (15)

In addition,

∫ 1

0

(u− x)Kh(x, u) du = 0 ∀ x ∈ [h, 1− h] , (16)

∫ 1

0

Kh(x, u) dx = 1 ∀ u ∈ [0, 1] , (17)

∫ 1

0

(x− u)Kh(x, u) dx = 0 ∀ u ∈ [0, 1] . (18)

Now, we quote several preliminary results on the estimator f̂N . First, Lemma 2 establishes

that the surface of the related estimated support ŜN equals
∑N

i=1 αi. Second, functions f̂N
and f̂ ′

N are proved to be Lipschitzian, see Lemma 3 and Lemma 4 respectively. Proofs are
postponed to Subsection 6.1.

Lemma 2 Suppose B1, B2 are verified and 0 < h < 1/2. Then, the surface of the estimated
support (7) is

∫ 1

0

f̂N(x) dx =

N∑

i=1

αi . (19)
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Introduce additionally

X− , max
i=1,N

{Xi} − 1 , X+ , min
i=1,N

{Xi}+ 1 . (20)

Lemma 3 Suppose A1, A2, and B1, B3 are verified. Then, the Lipschitz constant of the
LP-estimator (9)–(13) is bounded by

Lf̂N
, max

x∈[X−,X+]
|f̂ ′

N(x)| ≤ 3CαK
′
max h

−1 . (21)

Lemma 4 Suppose A1, A2, and B1, B3 are verified. Moreover, let h → 0 as N → ∞ such
that

lim
N→∞

logN

Nh
= 0 . (22)

Then, there exists almost surely finite N4 = N4(ω) such that for any N ≥ N4 the Lipschitz

constant for the derivative estimator f̂ ′
N over interval [X−, X+] ⊇ [0, 1] is bounded as follows:

Lf̂ ′

N
, max

x∈[X−,X+]
|f̂ ′′

N (x)| ≤ 4Lβ K
′′
max

logN

Nh3
. (23)

Below in the next section (see also the proof of Theorem 1), it appears that the LP-estimator

f̂N solution to the optimization problem (9)–(13) defines the kernel estimator of the support
covering all the points (Xi, Yi) and having the smallest surface. Moreover, constraints (11)–

(13) impose the first derivative f̂ ′
N of the estimator to be Lipschitzian with a particular

Lipschitz constant Lf̂ ′

N
given in Lemma 4. The constraint (10) says that, for any Xi, the

local linear estimate function f̂N (Xi)+(x−Xi)f̂
′
N(Xi) covers all points (Xj, Yj) with x = Xj

from interval {x : |x−Xi| ≤ h}. Additionally, the constraints αi ≥ 0 for all i = 1, N ensure

that f̂N(x) ≥ 0 for all x ∈ [0, 1] since the densityK is non-negative; this is consistent with the
condition of positivity of the estimated boundary function f(·). The constraints (10)–(11)

allow you to control the local properties of smoothness estimation f̂N on the interval [0, 1],
which are used in the proofs. It is interesting to note that the above described estimator (4),
(9)–(13) may be treated as the approximation to Maximum Likelihood Estimate related to
the estimation family (4); see Bouchard et al. [2] for similar remarks.

4 Main results

In the following theorem, the consistency and the convergence rate of the estimator towards
the true frontier is established with respect to the L1 norm over interval [0, 1].

Theorem 1 Let the above mentioned assumptions A1, A2, and B1–B3 hold true and the
estimator parameter Cα ≥ 8fmax. Moreover, let h → 0 as N → ∞ such that

ρ− < lim inf
N→∞

logN

Nh1+β
, lim sup

N→∞

logN

Nh1+β
≤ ρ+ < +∞, (24)

where

ρ− >
fmax

Lβ

CXK
′
max

10× 3βK ′
max + 3Cβ(K ′)

and CX > 4
Cf

fmin

. (25)
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Then, the LP-estimator (4), (9)–(13) with kernel (6) for (x, t) ∈ [−h, 1+h]2 has the following
a.s.-properties:

‖f̂N − f‖1 ≤
(
C12(β)[ρ−]

− β

1+β + 2C4(β)[ρ
+]

2

1+β

)( logN

N

) β

1+β

(1 + o(1)) (26)

asymptotically as N → ∞ with constants

C12(β) , 5fmaxCXρ
+Kmax + 10× 3βLβKmax + 3LβCβ(K) (27)

and

C4(β) , 2Lβ

(
2Cf

fminLβ

) β

1+β (
1

ρ−

) 2

1+β

+ 7fmaxCXK
′
max

(
2Cf

fminLβ

) 1

1+β

. (28)

Let us highlight that (26) shows that f̂N reaches (up to a logarithmic factor) the minimax L1

rate for frontiers f with Hölder continuous derivative, see Korostelev & Tsybakov [24],
Theorem 4.1.1.

5 Conclusions

The results obtained above straightly extend the approach, developed in [2], [3], and [12]
under condition 0 < β ≤ 1, onto more smooth (and periodic) boundary functions when
the first derivative function is Hölder continuous with exponent β − 1, and 1 < β ≤ 2.
The estimation method itself for a boundary function, like there in [2], [12], reduces to
a linear combination of sufficiently smooth kernel functions, being centered at the sample
points, while weighting coefficients are defined by solving a linear programming (LP) problem
having minimized a sum of weighting coefficients under related constraints. Note that the
related LP problem changes in accordance with the value of β in a sense that the constraints
composition in LP problem depends on degree of smoothness of boundary function: when
1 < β ≤ 2 additional inequalities (10) under Xi 6= Xj include into constraints and the
upper bound of second derivative of LP-estimate (11) for all the sample points Xi. Remind
that under 0 < β ≤ 1 the LP problem of [12] contains the constraints (10) of this work

only for i = j, i.e., inequalities of type f̂N(Xi) ≥ Yi; in addition, the upper bound on
first derivative of LP-estimate (11) is used for all the sample points Xi. In particular it
is evident that the transition of the parameter β from interval (0, 1] to interval (1, 2] the
number of constraints of LP problem defining LP-estimate increases stepwise which may be
considered as a certain fee for providing an optimal estimate under a smoother boundary
function. Note as well that all the values of β ∈ (0, 2] give the error of estimation in L1-norm
of the type O

(
(logN/N)β/(1+β)

)
a.s. under the bandwidth selection of kernel function of

type h ∼ (logN/N)1/(1+β). Finally, the authors hope to present an adaptive analog of the
proposed method at the given paper for the case of unknown a priori parameter smooth β.
As a conclusion, the authors express their sincere thanks to the anonymous referees for their
critical comments contained the stimulating remarks and propositions.
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6 Appendix

The proof of Theorem 1 which is given in Subsection 6.4 is based on both upper and lower
bounds derived in Subsection 6.2 and Subsection 6.3 respectively. When proving these
bounds, we assume that the sequence of the sample X-points (Xi)i=1,N is already increase
ordered, without changing notation from Xi to X(i) for the sake of simplicity, that is

Xi ≤ Xi+1 , ∀ i . (29)

We essentially apply the uniform asymptotic bound O(logN/N) on ∆Xi , Xi−Xi−1 proved
in auxiliary Lemma 7 (see also Lemma A.2 in [12]). Before that, we prove in Subsection 6.1
some preliminary results.

6.1 Proof of preliminary results

Proof of Lemma 1. Under assumptions of the Lemma, one may easily demonstrate that
the kernel definition (5) ensures the equality (14). Indeed, the LHS (14) may be written
from (5) for any x ∈ [0, 1] as follows:

∫ 1

0

f(u)Kh(x, u) du =

∫ 1

0

f(u)
1

h
K

(
x− u

h

)
du (30)

+

∫ h

0

f(u)
1

h
K

(
x− u− 1

h

)
du (31)

+

∫ 1

1−h

f(u)
1

h
K

(
x− u+ 1

h

)
du (32)

and, by changing the variables in the integrals (30)–(32), using the 1-periodicity assumption
and the compact support assumption B1, one may obtain

∫ 1

0

f(u)Kh(x, u) du =

∫ x/h

(x−1)/h

f(x− hv)K(v) dv (33)

+

∫ (x−1)/h

(x−1−h)/h

f(x− hv)K(v) dv (34)

+

∫ (x+h)/h

x/h

f(x− hv)K(v) dv (35)

=

∫ 1

−1

f(x− hv)K(v) dv . (36)

Thus, (14) is proved. Now (15) follows directly from (14) and assumption B2 for f(x) ≡ 1.
One obtains from similar arguments to (30)–(36) that

∫ 1

0

(x− u)Kh(x, u) du = h

∫ 1

−1

v K(v) dv (37)

+

∫ (x−1)/h

(x−1−h)/h

K(v) dv (38)

−
∫ (x+h)/h

x/h

K(v) dv . (39)
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Hence, condition h ≤ x ≤ 1−h implies (16). Finally, equalities (17) and (18) follow directly
from the kernel definition (5) and from the assumption B2: for all u ∈ [0, 1] one may easily
verify that ∫ 1

0

Kh(x, u) dx =

∫ 1

−1

K(v) dv = 1 , (40)

and ∫ 1

0

(x− u)Kh(x, u) dx = h

∫ 1

−1

v K(v) dv = 0 . (41)

Proof of Lemma 2 is a straightforward consequence of (5) and assumptions B1 and B2,
since ∫ 1

0

Kh(x,Xi) dx = 1 ∀ i = 1, N . (42)

Proof of Lemma 3. For any x ∈ [0, 1], one may write

|f̂ ′
N(x)| ≤

N∑

i=1

αi

∣∣∣∣
d

dx
Kh(x,Xi)

∣∣∣∣ (43)

≤ sup
u,v

∣∣∣∣
∂

∂v
Kh(v, u)

∣∣∣∣ ·
N∑

i=1

αi 1{|x−Xi| ≤ h} (44)

≤ 3K ′
maxCαh

−1 , (45)

where constraints (12) are used and give (45). This proves the Lemma.

Proof of Lemma 4. We are to prove (23). Remind that we assume (29) which imply
X− = X0 and X+ = XN+1 due to (20). Consider the additional assumption (which holds
true for all sufficiently large N) that is

C2
X

logN

Nh
≤ 5

LβK
′′
max

CαK ′′′′
max

. (46)

By applying (11) and auxiliary Lemma 7 and Lemma 9 we arrive at

max
x∈[X0,XN+1]

|f̂ ′′
N (x)| (47)

= max
1≤i≤N+1

max
x∈[Xi−1,Xi]

|f̂ ′′
N (x)| (48)

≤ 2Lβ K
′′
max

logN

Nh3
+

1

8
max

1≤i≤N+1

[
(Xi −Xi−1)

2 max
x∈[Xi−1,Xi]

|f̂ ′′′′
N (x)|

]
(49)

≤ 2Lβ K
′′
max

logN

Nh3
+

1

8

(
CX

logN

N

)2

max
x∈[X0,XN+1]

|f̂ ′′′′
N (x)| , (50)
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with CX > 4Cf/fmin. The maximum term in (50) is bounded as follows: for any x ∈
[X0, XN+1] ,

|f̂ ′′′′
N (x)| ≤

N∑

i=1

αi

∣∣∣∣
d4

dx4
Kh(x,Xi)

∣∣∣∣ (51)

≤ sup
u,v

∣∣∣∣
∂4

∂v4
Kh(v, u)

∣∣∣∣ ·
N∑

i=1

αi 1{|x−Xi| ≤ h} (52)

≤ 3K ′′′′
maxCαh

−4 , (53)

since

sup
u,v

∣∣∣∣
∂4

∂v4
Kh(v, u)

∣∣∣∣ ≤ K ′′′′
maxh

−5. (54)

Substituting (51) and (53) into (50) and using (46) yield

max
x∈[X0,XN+1]

|f̂ ′′
N (x)| ≤ 2Lβ K

′′
max

logN

Nh3
+

3

8
K ′′′′

maxCα

(
CX

logN

Nh3

)2

h2 (55)

≤ 4Lβ K
′′
max

logN

Nh3
. (56)

The result follows.

6.2 Upper bound for f̂N in terms of J∗
P

Lemma 5 Let the assumptions of Theorem 1 hold true. Then for any

γ >

(
1 +

1

β

)
LβCβ(K) + fmax (5Kmax +K ′

max)CXρ
+ (57)

where CX > 4Cf/fmin and parameter ρ+, meeting (24), and for almost all ω ∈ Ω there exist
finite numbers N1 = N1(ω, γ) such that for all N ≥ N1 the LP (9)–(13) is solvable and

J∗
P ≤ Cf + γhβ . (58)

Proof of Lemma 5. Recall that ∆Xi = Xi −Xi−1 > 0 a.s. for all i due to condition (29).
Consider arbitrary N ≥ N0(ω) with N0(ω) from Lemma 7. Introduce function fγ(u) =
f(u) + γhβ with parameter γ > 0 and pseudo-estimates

α̃i =
1∑

k=−1

ai,k

∫ Xi+k

Xi+k−1

fγ(u) du , i = 1, N , (59)

where

ai,k = fγ(Xi+k)

(∫ Xi+k

Xi+k−1

fγ(u) du

)−1 ∫ Xi+k

Xi+k−1

bi,−k(u) du , (60)
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and functions bi,k(·), k = −1, 0, 1, represent the coefficients of the 2nd order Lagrange
interpolation polynomial for the interval defined by three successive points Xi−k−1 < Xi−k <
Xi−k+1, i.e.,

bi,k(u) =

∏j=1
j=−1, j 6=k(u−Xi−k+j)∏j=1
j=−1, j 6=k(Xi −Xi−k+j)

. (61)

For any 3 times continuously differentiable function g : [0, 1] → R and for all u ∈ [Xi−1, Xi+1],
the interpolation error is bounded by

∣∣∣∣∣

1∑

k=−1

bi+k,k(u)g(Xi+k)− g(u)

∣∣∣∣∣ ≤ max
u∈[Xi−1,Xi+1]

∣∣∣∣∣
g′′′(u)

6

1∏

j=−1

[u−Xi+j]

∣∣∣∣∣ (62)

≤ 1

9
√
3

[
max

1≤i≤N+1
∆Xi

]3
max
u∈[0,1]

|g′′′(u)|. (63)

1. First, we prove constraints (10) under αi = α̃i, i = 1, N . For arbitrary x ∈ [0, 1],

f̃N (x) ,

N∑

i=1

α̃iKh(x,Xi) =

1∑

k=−1

N∑

i=1

ai,k

∫ Xi+k

Xi+k−1

fγ(u) duKh(x,Xi) (64)

=

1∑

k=−1

N+k∑

i=1+k

ai−k,k

∫ Xi

Xi−1

fγ(u) duKh(x,Xi−k) (65)

=

N∑

i=1

∫ Xi

Xi−1

fγ(u) du [ai,0Kh(x,Xi) + ai+1,−1Kh(x,Xi+1) (66)

+ai−1,1Kh(x,Xi−1)] (67)

+ a1,−1Kh(x,X1)

X0∫

X−1

fγ(u) du− a0,1Kh(x,X0)

X1∫

X0

fγ(u) du (68)

+ aN,1Kh(x,XN)

XN+1∫

XN

fγ(u) du− aN+1,−1Kh(x,XN+1)

XN∫

XN−1

fγ(u) du(69)

=

XN∫

X0

fγ(u)Kh(x, u) du (70)

+
N∑

i=1

Xi∫

Xi−1

fγ(u)

(
1∑

k=−1

ai+k,−kKh(x,Xi+k)−Kh(x, u)

)
du , (71)

since the sum of the terms (68)–(69) equals zero due to the 1-periodicity of function f
and the definition (5) of the kernel Kh . Particularly, one can verify that a1,−1 = aN+1,−1 ,

11



a0,1 = aN,1 , Kh(x,X1) ≡ Kh(x,XN+1) , and Kh(x,X0) ≡ Kh(x,XN) . Now we separately
bound each of the summands (70)–(71) from below.

Due to the kernel definition (5) and the conditions A1, B1, and B3, the main term (70)
is transformed and bounded as follows:

XN∫

X0

fγ(u)Kh(x, u) du =

1∫

0

fγ(u)Kh(x, u) du (72)

+

0∫

X0

fγ(u)Kh(x, u) du−
1∫

XN

fγ(u)Kh(x, u) du (73)

=

1∫

0

f(u)Kh(x, u) du+ γhβ (74)

since the difference of two integrals in (73) vanishes due to periodicity assumption A1 and
due to (20) and (6). We continue the integral in (74) by Lemma 1 as follows:

1∫

0

fγ(u)Kh(x, u) du =

1∫

−1

f(x− ht)K(t) dt+ γhβ (75)

= f(x) + γhβ (76)

+

1∫

−1

[f(x− ht)− f(x)− f ′(x)(−ht)]K(t) dt (77)

≥ f(x) +

[
γ − Lβ

β
Cβ(K)

]
hβ . (78)

Notice that Lemma 7 as well as the definitions for Cβ(·) and CX have been used in (77)–(78).
The i-th summand from (71) which is denoted below by (71)i is decomposed and then

bounded basing on the 2nd order Lagrange interpolation with the error upper bound (62)–

12



(63) being applied for g(u) = Kh(x, u) as follows:

(71)i ,

Xi∫

Xi−1

fγ(u)

(
1∑

k=−1

ai+k,−kKh(x,Xi+k)−Kh(x, u)

)
du (79)

[ by applying definition (60) ]

= fγ(Xi)

1∑

k=−1

Xi∫

Xi−1

bi+k,k(u)Kh(x,Xi+k) du−
Xi∫

Xi−1

fγ(u)Kh(x, u) du (80)

= fγ(Xi)

Xi∫

Xi−1

(
1∑

k=−1

bi+k,k(u)Kh(x,Xi+k)−Kh(x, u)

)
du (81)

−
Xi∫

Xi−1

(fγ(u)− fγ(Xi))Kh(x, u) du . (82)

So, we apply Lemma 7 and the upper bound on the interpolation in (62)–(63):

(71)i ≥ −2fmax
(max∆Xi)

3

9
√
3

max
u∈[0,1]

∣∣∣∣
∂3Kh(x, u)

∂u3

∣∣∣∣ ∆Xi 1{|x−Xi| ≤ 2h} (83)

−Lf (∆Xi)

∫ Xi

Xi−1

Kh(x, u) du (84)

≥ −
(
CX

logN

N

)3
2fmax LK ′′

9
√
3h4

∆Xi 1{|x−Xi| ≤ 2h} (85)

−Lf CX
logN

N

∫ Xi

Xi−1

Kh(x, u) du. (86)

Moreover, from Lemma 7, it follows that

N∑

i=1

∆Xi1{|x−Xi| ≤ 2h} ≤ 4h+
CX logN

N
.

Summing up by i = 1, N we arrive at the bound for the sum (71) as follows:

[(71)] =
N∑

i=1

[(71)i] (87)

≥ −
[
CX

logN

N

]3
fmaxLK ′′

4.5
√
3h4

[
4h+

CX logN

N

]
− LfCX

logN

N
. (88)

Thus, from (64), (72)–(78), (79)–(88), and (70)–(71) it follows for each j = 1, N that

f̃N (Xj) ≥ f(Xj) + δ0,N (89)
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with

δ0,N ,

(
γ −

Lβ

β
Cβ(K)

)
hβ (90)

−
(
CX

logN

Nh

)3
fmax LK ′′√

3
− Lf CX

logN

N
> 0 (91)

for sufficiently large N ≥ N0(ω) when the following inequality holds true:

γ −
Lβ

β
Cβ(K) ≥ CX

logN

Nh1+β

((
CX

logN

Nh

)2
fmax LK ′′√

3
+ Lfh

)
. (92)

1
′

. Similarly, for arbitrary x ∈ [0, 1], we now have to estimate the derivative value

f̃ ′
N(x) =

N∑

i=1

α̃i
d

dx
Kh(x,Xi) =

N∑

i=1

α̃i K̃h(x,Xi), (93)

similarly to the arguments (64)–(88). Here

K̃h(x, u) ,
∂

∂x
Kh(x, u) (94)

with the following upper bound (see (5) )

∣∣∣K̃h(x, u)
∣∣∣ ≤ h−2max

x

∣∣∣∣K
′

(
x− u

h

)∣∣∣∣ = h−2K ′
max . (95)

Hence, one may repeat the arguments of (65)–(71) by changingKh for K̃h, and, in particular,
equations (64), (70)–(71) give

f̃ ′
N(x) =

XN∫

X0

fγ(u) K̃h(x, u) du (96)

+
N∑

i=1

Xi∫

Xi−1

fγ(u)

(
1∑

k=−1

ai+k,−kK̃h(x,Xi+k)− K̃h(x, u)

)
du . (97)

Therefore, all the rates from (83)–(91) should be divided by h, while the value of the main
term of decomposition, due to conditions A1, B1–B3, as well as kernel representation (6) is
expressed as follows:

XN∫

X0

fγ(u) K̃h(x, u) du =
1

h

1∫

−1

f(x− ht)K ′(t) dt (98)

= f ′(x) +

1∫

−1

[f ′(x− ht)− f ′(x)]K(t) dt (99)

= f ′(x) + δ1,N (100)

14



with

|δ1,N | ≤ LβCβ(K)hβ−1 ; (101)

cf. (72)–(78). Furthermore, the summation of integrals in (97) gives the bound

|(97)| ≤
(
CX

logN

N

)3
2fmax LK ′′′

9
√
3h4

(
4 +

CX logN

Nh

)
+ Lf CX

logN

Nh
(102)

instead of (79)–(88). Thus, by taking (101) into account, for sufficiently large N ≥ N0(ω)
and for each x ∈ [0, 1] we arrive at

∣∣∣f̃ ′
N(x)− f ′(x)

∣∣∣ ≤ |δ1,N |+ O

(
log3N

N3h4

)
+ O

(
logN

Nh

)
. (103)

1
′′

. So, we now take (89)–(90) and (103) into account in order to prove constraints (10): for
any |Xj −Xi| ≤ h, this yields

f̂N (Xi) + (Xj −Xi) f̂
′
N(Xi) ≥ f(Xi) + (Xj −Xi) f

′(Xi)

+ δ0,N − h|δ2,N |

+O

(
log3N

N3h3

)
+O

(
logN

N

)

≥ Yj + δ3,N

where (recalling that δ0,N is defined in (90))

δ3,N , δ0,N − LβCβ(K)hβ + O

(
log3N

N3h3

)
+ O

(
logN

N

)

=

(
γ −

(
1 +

1

β

)
LβCβ(K)

)
hβ

+O

(
log3N

N3h3

)
+ O

(
logN

N

)

being positive for sufficiently large N ≥ N0(ω) when both inequalities (92) hold true and,
additionally,

γ >

(
1 +

1

β

)
LβCβ(K) . (104)

Notice, that inequality (104) implies (92).

2
′′

. Similarly, constraints (11) hold true under αi = α̃i, i = 1, N . Indeed, for arbitrary
x ∈ [0, 1], we now have to bound the absolute value of

f̃ ′′
N (x) =

N∑

i=1

α̃i
d2

dx2
Kh(x,Xi) =

N∑

i=1

α̃i
˜̃
Kh(x,Xi) (105)
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instead of (64). Here

˜̃
Kh(x, u) ,

∂2

∂x2
Kh(x, u) (106)

with the following upper bound (see (5) )
∣∣∣∣
˜̃
Kh(x, u)

∣∣∣∣ ≤ h−3max
x

∣∣∣∣K
′′

(
x− u

h

)∣∣∣∣ = h−3K ′′
max . (107)

Hence, one may repeat the arguments of (65)–(71) by changing Kh for K̃h. Therefore, all
the rates from (83)–(90) should be divided by h2, while the absolute value of the main term
of decomposition, due to conditions B1–B3, is bounded as follows:

∣∣∣∣∣∣

XN∫

X0

fγ(u)
˜̃
Kh(x, u) du

∣∣∣∣∣∣
=

1

h2

∣∣∣∣∣∣

1∫

−1

f(x− ht)K ′′(t) dt

∣∣∣∣∣∣
(108)

≤ 1

h2

∣∣∣∣∣∣

1∫

−1

[f(x− ht)− f(x)− f ′(x)(−ht)]K ′′(t) dt

∣∣∣∣∣∣
(109)

≤
2Lβ

β(β + 1)
K ′′

max h
β−2 , (110)

instead of (72)–(78). Thus, for sufficiently large N ≥ N0(ω) and for each Xj we arrive at

∣∣∣f̃ ′′
N (Xj)

∣∣∣ ≤
2Lβ K

′′
max

β(β + 1) h2−β
+ O

(
log3N

N3h5

)
+ O

(
logN

Nh2

)
(111)

≤
3Lβ

β ρ−
K ′′

max

logN

Nh3
. (112)

Namely, inequality (112) holds true almost surely for all those N ≥ N0(ω) such that in-
equalities (118) hold true and

Lβ

β CX

(
1

ρ−
− h1+βN

logN

)
≥

(
CX

logN

Nh

)2
fmax LK ′′′′√

3K ′′
max

+ 2Lf h . (113)

3. Finally, the constraints (12) with

Cα ≥ 4fmax (114)

also hold true under αi = α̃i, i = 1, N . Indeed, by Lemma 7 the following inequalities hold
a.s. for all N ≥ N0(ω) and for each j = 1, mh, where mh = ⌊h−1⌋ :

N∑

i=1

α̃i 1{(j − 1)/mh ≤ Xi < j/mh} (115)

≤ (fmax + γhβ)

(
1/mh + 2CX

logN

N

)
(116)

≤ 4fmaxh, (117)
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under additional assumptions

fmax ≥ γhβ , h ≥ 2CX logN/N . (118)

Thus, constraints (12) are fulfilled under (114) almost surely, for any sufficiently large N .

4. Since all α̃i ≥ 0, constraints (13) hold true. Hence, vector (α̃1, . . . , α̃N)
T is the admissible

point for the LP (9)–(13). Now inequality (58) follows from Lemma 2.

6.3 Lower bound for estimate f̂N

Lemma 6 Under the assumptions of Theorem 1, for almost all ω ∈ Ω there exist finite
numbers N2(ω) such that for any x ∈ [0, 1] and for all N ≥ N2(ω)

f̂N (x)− f(x) ≥ −
2Lβ

β
hβ −

(
2Cf

fmin

+ 2Lβ K
′′
max + 4CαK

′
maxCX

)
logN

Nh
(119)

assuming that Lfh ≤ CαK
′
max and CX > 4Cf/fmin.

Proof of Lemma 6. Let us take use of Lemma 8 and its Corollary 1 introducing

δy ∼
logN

Nh
, δx ∼ h . (120)

Thus, for any N ≥ N6(ω) and any x ∈ [0, 1] there exist (with probability one) integers
ik ∈ {1, . . . , N}, k = 1, mh, such that

|x−Xik | ≤ δx (121)

and inequality (154) that is

Lxf(Xik) ≤ Yik + δy +
Lβ

2
δβx . (122)

Now, we put a point x ∈ [0, 1], find index ix ∈ {1, . . . , N} such that |Xix −Xik | ≤ h and

|x−Xix| ≤ max{∆Xix−1,∆Xix} ≤ CX
logN

N
;

then the estimation error at point x can be decomposed as

f(x)− f̂N(x) = [f(x)− f(Xix)] (123)

+
[
f(Xix)−LXix

f(Xik)
]

(124)

+
[
LXix

f(Xik)−LXix
f̂N (Xik)

]
(125)

+
[
LXix

f̂N(Xik)− f̂N(Xik)
]

(126)

+
[
f̂N (Xik)− f̂N(x)

]
. (127)
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The first and the last decomposition components, i.e. RHS (123) and (127), can be similarly
bounded by using the proper Lipschitz constants as follows:

|f(x)− f(Xix)| ≤ Lf |x−Xix | ≤ LfCX
logN

N
, (128)

|f̂N(Xik)− f̂N(x)| ≤ Lf̂N
|x−Xix | ≤ Lf̂N

CX
logN

N
. (129)

The similar decomposition components (124) and (126) may be bounded as follows:

∣∣f(Xix)− LXix
f(Xik)

∣∣ ≤
Lβ

β
|Xix −Xik |

β ≤
Lβ

β
δβx , (130)

∣∣∣LXix
f̂N (Xik)− f̂N(Xix)

∣∣∣ ≤
Lf̂ ′

N

2
|Xix −Xik |

2 ≤
Lf̂ ′

N

2
δ2x, (131)

with Lipschitz constant Lf̂ ′

N
for the derivative estimator function f̂ ′

N(x). Finally, we bound

the central decomposition component (125) by applying Corollary 1 of Lemma 8 with

δx = h, δy =
2Cf

fmin

logN

Nh
, (132)

and using the estimator constraints (10); we obtain

LXix
f(Xik)− LXix

f̂N(Xik) ≤ Yik + δy +
Lβ

2
δβx − Yik (133)

=
2Cf

fmin

logN

Nh
+

Lβ

2
hβ . (134)

Therefore, equations (123)–(134) and Lemmas 3 and 4 lead to the lower bound

f̂N(x)− f(x) (135)

≥ −
(
2Cf

fmin

logN

Nh
+

2Lβ

β
hβ +

Lf̂ ′

N

2
h2 + (Lf + Lf̂N

)CX
logN

N

)
(136)

≥ −
2Lβ

β
hβ −

(
2Cf

fmin

+ 2Lβ K
′′
max + 4CαK

′
maxCX

)
logN

Nh
(137)

assuming additionally that
Lfh ≤ CαK

′
max .

Thus, the obtained lower bound holds true for any sufficiently large N (starting from random
a.s. finite integer, which does not depend on x). Lemma 6 is proved.

Remark 7 The optimal order of the lower bound, proved in Lemma 6, is attained by

h = h1

(
logN

N

) 1

1+β

(138)
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when two terms in (137) are balanced, and the lower bound in (135)–(137) becomes

f̂N(x)− f(x) ≥ −CLB(h1)

(
logN

N

) β

1+β

(139)

where constant

CLB(h1) =
2Lβ

β
hβ
1 +

(
2Cf

fmin

+ 2Lβ K
′′
max + 4CαK

′
maxCX

)
1

h1

(140)

may be optimized by h1 > 0. It is interesting to observe that four last components of the
estimation error decomposition (123)–(127) become of the same order while the first one
RHS (123) be negligible, see (128)–(134).

6.4 Proof of Theorem 1

1. Since |u| = u− 2u1{u < 0}, the L1-norm of estimation error can be expanded as

‖f̂N − f‖1 =

∫ 1

0

[
f̂N(x)− f(x)

]
dx (141)

+ 2

∫ 1

0

[
f(x)− f̂N (x)

]
1
{
f̂N(x) < f(x)

}
dx. (142)

2. Applying Lemmas 2 and 5 to the right hand side (141) yields

lim sup
N→∞

h−β

(∫ 1

0

[
f̂N (x)− f(x)

]
dx

)
≤ γ a.s. (143)

where γ > 0 is large enough.

3. In order to obtain a similar result for the term (142), note that Lemma 6 implies

ζN(x, ω) , ε−1
LB(N)

[
f(x)− f̂N (x)

]
≤ const < ∞ a.s.

uniformly with respect to both x ∈ [0, 1] and N ≥ N2(ω), with

εLB(N) , const
logN

Nh
(144)

with finite const > 0. Hence, one may apply Fatou’s lemma, taking into account that
u1{u > 0} is a continuous, monotone function:

lim sup
N→∞

ε−1
LB(N)

∫ 1

0

[
f(x)− f̂N (x)

]
1
{
f̂N(x) < f(x)

}
dx (145)

≤
∫ 1

0

lim sup
N→∞

ζN(x, ω) 1{ζN(x, ω) > 0} dx (146)

≤ const < ∞ a.s. (147)

4. Finally, we put bandwidth h from the balancing assumption

hβ
∼

logN

Nh
.

Thus, the obtained relations together with (141) and (142) imply (26). Theorem 1 is proved.
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The following results are quoted here for the sake of completeness.

Lemma 7 ((Lemma A.2 in [12])) Let function f : [0, 1] → R meets the assumption A1
and sequence (Xi)i=1,N be obtained from an independent sample with p.d.f. f(x)/Cf by
increase ordering (29), where Cf is defined by (2). Denote X0 = 0 and XN+1 = 1. Then for
any finite constant CX > 4Cf/fmin there exist almost surely finite number N0 = N0(ω) such
that

max
i=1,N+1

∆Xi ≤ CX
logN

N
∀ N ≥ N0 (148)

with probability 1. For instance, one may fix constant CX as follows:

CX = 5fmax/fmin . (149)

Lemma 8 ((Lemma A.3 in [12])) Let random sample {(Xi, Yi) | i = 1, N} be defined as
in Section 2. Let sequence δx = δx(N) be positive, and for some ε > 0

lim inf
N→∞

N1−εδx > 0 . (150)

Define
mδ , min{integer m : m ≥ δ−1

x } (151)

and assume a positive sequence δy = δy(N) < fmin meeting for all sufficiently large N the
inequality

δy ≥ κmδ

logN

N
, with κ >

(2− ε)Cf

fmin
. (152)

Then, under the assumptions of Lemma 7, with probability 1, there exists finite number
N6(ω) such that for any N ≥ N6(ω) there is such a subset of points

{
(Xik , Yik) , k = 1, mδ

}

in the sample {(Xi, Yi) , i = 1, N
}
, that the following inequalities hold:

(k − 1)/mδ ≤ Xik < k/mδ , f(Xik)− δy ≤ Yik ≤ f(Xik) . (153)

Corollary 1 Let δx and δy meet the conditions of Lemma 8. Then, with probability 1, for
any N ≥ N6(ω) and any x ∈ [0, 1] there exists integer ik ∈ {1, . . . , N} such that |x−Xik | ≤ δx
and f(Xik)−δy ≤ Yik ≤ f(Xik) . Furthermore, if constant Lipschitz Lβ < ∞ with 1 < β ≤ 2,
then

Lxf(Xik) ≤ Yik + δy +
Lβ

2
δβx . (154)

Lemma 9 ((Lemma A.4 in [12])) Let function g : [0,∆] → R be twice continuous dif-
ferentiable, ∆ > 0. Then

max
x∈[0,∆]

|g(x)| ≤ max{|g(0)|, |g(∆)|}+ ∆2

8
max
x∈[0,∆]

|g ′′(x)| . (155)
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