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The emergence of scanning tunneling microscope (STM) lithography and low temperature molecular beam
epitaxy (MBE) opens the possibility of creating scalable donor based quantum computing architectures. In
particular, atomically precise Si:P monolayer structures (δ-doped layers) serve as crucial contact regions and
in-plane gates in single impurity devices. In this paper we study highly confined δ-doped layers to explain the
disorder in the P dopant placements in realistically extended systems. The band structure is computed using
the tight-binding formalism and charge-potential self-consistency. The exchange-correlation corrected impurity
potential pulls down subbands below the silicon valley minima to create impurity bands. Our methodology is
benchmarked and validated against other theoretical methods for small ordered systems. The doping density
is shown to linearly control the impurity bands. Disorder within the Si:P δ-doped layer is examined using an
extended domain to describe the effects of experimentally unavoidable randomness through explicitly disordered
dopant placement. Disorder in the δ-doped layer breaks the symmetry in the supercell and creates band splitting
in every subband. Vertical segregation of dopants is shown to dramatically reduce valley splitting (VS). Such VS
can be used as a measure of ideality of the fabricated Si:P δ-doped layer. Although the resulting disorder induces
density of states fluctuations, this theoretical analysis shows that δ-doped layers can serve as quasimetallic 2D
electron sources even in the presence of strong nonidealities.

DOI: 10.1103/PhysRevB.84.205309 PACS number(s): 71.15.−m, 71.23.−k, 73.22.−f

I. INTRODUCTION

There has been rapid progress using scanning tunneling
microscopy (STM) to pattern phosphorus donors in silicon
using phosphine gas and then encapsulating them with low
temperature molecular beam epitaxy (MBE).1,2 The combi-
nation of these two technologies has created the possibility
for controlling dopant placement in silicon with atomic-scale
precision in all three dimensions. Using this technology,
experimentalists have built a variety of planar, highly doped
phosphorus δ-doped devices embedded in silicon (Si:P) such
as tunnel junctions, quantum dots, and nanowires.3–5 More
importantly, the precise incorporation of donors enables the
potential realization of donor-based quantum computers.6–10

Central to these planar Si:P device architectures is a highly
conductive 2D δ-doped sheet.11–14 By patterning the 2D
δ-doped layers into specific geometries, they can act as both
Ohmic contacts as well as gates for the control of electron
and spin transport through singly placed donor impurities in
quantum computing architectures. Understanding the impact
of impurity placement and position both within the plane and
vertically in 2D δ-doped sheets is important for understanding
the electron transport in highly confined, STM-patterned ar-
chitectures and essential for continuing efforts in experimental
device design.

Over the past few years a detailed understanding of the
incorporation mechanism of P atoms into silicon using phos-
phine gas has been developed.15–17 From this understanding it
has been possible to use an STM to lithographically position
single P atoms into the top atomic layer of silicon by opening

a hole in a hydrogen resist and annealing to temperatures of
350 ◦C.17 This anneal causes the phosphine gas to loose its
hydrogen atoms on the surface before a single P atom can
incorporate into the top layer of silicon, displacing a silicon
atom. The incorporation anneal can also be performed on
a phosphine saturation dosed sample. At saturation dosing
after room-temperature exposure, depending on the dosing
conditions the surface coverage will be a disordered alloy
of PH2 + H and PH + 2H. However, after the incorporation
anneal the final P dopant density invariably takes the nominal
value of 0.20–0.25 ML with the P atoms located in random
positions within the top layer of the Si surface.16 The high
doping density means that the P atoms are typically 1 nm
apart, which is much smaller than the Bohr radius. As a result,
one can expect extensive wave function overlap and metallic-
like behavior within atomically controlled 2D nanostructured
domains.

There have been efforts made to experimentally identify the
electronic structure of MBE fabricated δ-doped layer in silicon
by Eisele et al. using resonant tunneling spectroscopy.18–20 The
fabricated δ-doped layer was about 2 nm thick with the doping
density exceeding 1013 cm−2 and it showed quantized energy
levels originating from 2D subbands confined in the layer.
To compute the electronic structure of δ-doped layers, several
theoretical studies have been published. Initially, the potential
profile was computed using a Thomas-Fermi approximation
and then subsequently superimposed to the diagonal elements
of the Schrödinger equation to compute confined energy levels
in different types of δ layers in silicon.21–24 More rigorous
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self-consistent calculations were carried out by Qian et al. by
computing such systems using planar Wannier orbitals based
on an empirical pseudopotential method (PP) and parabolic
dispersions of silicon subbands.25 Cartoixà et al. focused on
determining Fermi level fluctuations with temperature and
doping density in the Si:P δ-layer structure using atomistic
sp3s∗ tight-binding (TB) calculations with an antibonding
orbital model.26 However the sp3s∗ model is well known
to misrepresent X points in the conduction band,27 and it
is clear that the basis size is too small to describe L and X
valleys.27–29 Carter et al. has calculated band structures of
Si:P δ-doped layers using different atom configurations within
density functional theory (DFT).30 The computational burden
of DFT calculations, however, prevents the method from
extending to 2D systems and structures with realistic degrees of
disorder, which require large supercell domains. To overcome
the computational limitation, a mixed-atom pseudopotential
(MP) was recently examined, which reduces the level of ab
initio input. This method has been shown to compare well with
earlier theoretical studies.31 In the MP approach, however,
atomistic effects cannot be handled since the model assumes
an averaged nuclear charge between silicon and phosphorus in
the δ layer.

Thus, to date all theoretical works have focused on either
ordered configurations or limited disorder using small domain
sizes; none of them have been able to investigate the effect
of realistic disorder in Si:P δ-doped layers using an extended
domain, which is critical for a reasonable approximation of
random dopant placement. Examining how disorder plays
a role in the electronic properties of Si:P δ-doped layers
will ultimately provide a critical theoretical background for
experimentalists. Therefore, the focus of this paper is to
develop the methodology to handle sufficiently large domains
to validate this approach against others, and then to investigate
the effect of horizontal and vertical disorder on the electronic
structure in highly doped monolayer systems.

Atomistic representation in realistically extended spatial
domains is essential to represent dopant disorder effects. The
nanoelectronic modeling tool (NEMO3D)32–35 can simulate
atomistic structures of realistic size and include nonparabol-
icity of bulk materials automatically by using an empirical
sp3d5s∗ TB model. NEMO3D has been successful in mod-
eling a spectrum of systems in which atomistic details and
interface effects are important to understand device behavior,
such as phosphorus impurities in silicon devices,36–40 valley
splitting in miscut Si/SiGe quantum wells,41 and InGaAs
embedded InAs quantum dots.42 Having demonstrated our
ability to model phosphorus in silicon accurately using an
atomistic approach, we expanded NEMO3D’s capabilities to
run efficiently on peta-scaled computer systems and included
a charge-potential self-consistent loop.32–35 We now apply
NEMO3D-peta to a highly doped Si:P system to explore
atomistic effects on the electronic structure of δ-doped
layers.

The paper is organized as follows. Section II summarizes
the simulation methodology and structure modeling. Sec-
tion III discusses the electronic structures of Si:P δ-doped
layers and shows the effect of disorder on band structures.
Section IV summarizes and concludes the paper.

1/4ML (ordered)

1/4ML
1/4ML (vertical spread)

FWHM=0.2
(disordered sample)

[010][100]

[001]

Si:P δ-layer
120ML

(~16nm)

[010]

[100]
Si P

Minimum supercell

)b()a(

)d()c(

Si

FIG. 1. (Color online) (a) The simulation structure used to
represent a 2D Si:P δ-doped layer encapsulated by silicon of thickness
120 ML. 2D periodic boundary conditions are imposed along the
doping plane. (b) A perfectly ordered 1/4 ML (1.7×1014 cm−2) Si:P
supercell used for the atomistic simulations. In this case, p(2 × 2)
represents the smallest supercell marked in red. (c) An example of a
disordered supercell, where p(8 × 8) is used for disorder simulations.
(d) An example representing vertical segregation of the dopants with
a Gaussian distribution (FWHM = 0.2 nm). Note: the lattice constant
of silicon is a = 0.54 nm.

II. METHODOLOGY

Simulation structure: The physical structure used in this
work is depicted in Fig. 1(a). To represent the infinite sheet of
the Si:P δ-layer buried in silicon, periodic boundary conditions
are applied to both in-plane directions ([100]/[010]). The
silicon substrate and encapsulation layer along [001] is
assumed to be intrinsic. We have calculated that at 4 K a
minimum confinement thickness of 120 monolayers (ML), or
approximately 16 nm is needed to avoid hard wall boundary
effects. At such large encapsulation thicknesses we find
variations of eigenenergies smaller than 3 meV upon further
increase in buffer size. Figure 1(b) shows the top view of δ layer
with 1/4 ML (1.7×1014 cm2) doping density in a perfectly
ordered p(8 × 8) unit cell. In such an ordered configuration,
the minimum supercell that we can use is p(2 × 2), which
corresponds to 960 atoms with a 120 ML buffer. The p(8 × 8)
cell corresponds to a total atom count of 15,360 atoms. Figure
1(c) shows an example of a disordered dopant configuration.
Scrambling the dopant placement can be readily achieved
due to the nature of atomistic simulations. However, disorder
simulations require a larger supercell of at least p(8 × 8)
to account for random effects in band structures. A similar
approach can be applied for electronic structure simulations
of III-V or SiGe alloys.43 The vertical straggle of dopants
can also be simulated by using Gaussian distributions to
model diffusive penetration of dopants from the δ-doped plane
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FIG. 2. (Color online) The graphical representation of self-
consistent band structure calculation. Eigenstates are computed out
of the single electron Schrödinger equation for each k point and
subband. The equation is comprised of an atomistic TB Hamiltonian
and external potential profiles. The Fermi level (EF ) is determined at
the charge neutrality condition which equates the number of electron
charge to the number of total impurity charge. The charge is then
integrated to determine the electron density [n(r)]. The potential
profile is subsequently computed at a given electron density. The
electrostatic potential {VH [n(r)]} is computed by solving Poisson’s
equation based on a finite difference grid. A correction is included for
electron-electron interaction effects {VXC[n(r)]} based on LDA.46 The
potential profile is the sum of electrostatic and exchange-correlation
potentials and it is finally fed back into the Schrödinger solver for the
next iteration of the charge calculation.

[Fig. 1(d)]. We use a measurement temperature of 4 K for all
numerical experiments. At 4 K it is valid to only consider the
conduction band occupation since electrons are only coming
from the donor levels and not from thermal excitation from
valence bands. Band gap and valence electrons are therefore
ignored in the charge calculations presented here, even though
our 20 band sp3d5s∗ model provides accurate results.

Self-consistent procedure: The simulation approach used
in this work is to obtain the potential profile and band
structure with charge density based self-consistent calculation
using NEMO3D-peta.44,45 The self-consistent loop has been
applied previously to observe the temperature dependence of
electronic properties in Si:P δ-doped layers.45 The graphical
representation of the self-consistent methodology is shown in
Fig. 2. First, eigenstates of the δ-doped layer from an atomistic
sp3d5s∗ TB single electron Hamiltonian28 are computed over
the first Brillouin zone (BZ) in the discretized 2D k space. Only
conduction band states are of interest in these simulations,
since the intrinsic carriers are frozen out at low temperature and
all carriers in the δ-doped layer are provided by the donors. We
can therefore reduce the basis size from 20 to 10 in the sp3d5s∗
model by only considering a single spin explicitly. This reduces
the computational burden by at least a factor of 2. The Fermi
level (EF ) of the system is determined iteratively by the
charge neutrality condition, which assumes the total number

of electrons to be equal to the number of donors. The local
density of states (LDOS) is obtained by binning k states and by
integrating the LDOS over the occupied 2D k space, resulting
in the electron charge profile [n(r)] of Si:P δ-doped layer.

The electron charge density profile is used to
determine two different terms that enter the Schrödinger
equation: the Hartree potential and the exchange-correlation
potential. The Hartree term VH [[n(r)]] can be obtained by
solving Poisson’s equation with a given electron and donor
ion profile. All charge contributions are treated as local point
charges on a zincblende lattice. Electron-electron interactions
must also be taken into account in such many-electron systems.
To first order we include an analytical form of exchange
and correlation functionals {VXC[n(r)]}46 based on the local
density approximation (LDA),47 which lowers the total energy
of the system and modifies the wave function.48 To obtain
the local charge density in space from the point charge in the
atomistic grid, the charge is assumed to be uniform within a
finite volume around each atom. The volume around each site
is computed as the volume of the unit cell divided by number of
atoms per unit cell. Therefore the local electron charge density
used for the exchange-correlation potential can be calculated
as the amount of charge at each site divided by its surrounding
volume. Note that VXC is treated as a linear function of
electron density and therefore is computed only for electrons
from donors, assuming the exchange-correlation effect of the
frozen-out valence electrons {VXC[nV (r)]} of silicon is inher-
ently included in the TB Hamiltonian {VXC ≈ VXC[n(r)] +
VXC[nV (r)]} . More rigorous calculation considering the non-
linear behavior of VXC in atomistic TB formalism is beyond the
scope of this paper, but can be found in other density-functional
based methodologies that also utilizes a TB scheme.49

In general, convergence is difficult to achieve because of the
sharp potential variations around each impurity location and
the low temperature condition. Therefore, the under-relaxed
potential [V (r)] is updated for the next iteration of the charge
calculation and the charge-potential loop is continued until
the mean square value of the potential is converged to within
0.1 meV. Convergence is typically achieved in about 25–35
iteration steps. The computations are carried out on state-of-
the-art cluster machines50 with 2 GB of memory per core and
a typical total compute time of 48 h using 256 cores.

III. RESULTS

A. Equilibrium properties of the ordered Si:P δ layer

Band structure: Figure 3(a) compares the equilibrium band
structure of the 1/4 ML Si:P δ-doped layer plotted with respect
to the silicon bulk band minimum with the band structure of the
pure silicon structure (without the δ-doped layer) of the same
minimal unit cell p(2 × 2) as depicted. The δ-doped layer
creates a strong confinement [Fig. 3(b)] and pulls down the
bands significantly, causing large splitting between confined
subbands. The positions of the 1�, 2�, � valleys, and Fermi
level (EF ) all reside under the silicon bulk band edge and are
within the confinement potential created by the δ-doped layer.
The first few subbands in this band structure can be easily
interpreted by the band projection of the bulk silicon valleys
as shown in Fig. 4. The two out-of-plane valleys marked in dark
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FIG. 3. (Color online) (a) Equilibrium band structure of an ideal
ordered 1/4 ML Si:P δ-doped layer at 4 K. The band structure of a
pure silicon structure with the same dimension without the δ-doped
layer is plotted (dashed line) for comparison. (b) Potential profile
plotted along confinement direction ([001]) passing through impurity
site. The relative position of the valley minimum point and Fermi level
with respect to the silicon conduction band minimum is indicated.

color are projected to the kx-ky plane to form 1� and 2� bands,
while the remaining four in-plane valleys are projected along
kx,y = ±0.18 × 2π/a in the reduced zone scheme. The lower
quantization energy (∝ m∗−1) of �-projected valleys is always
observed since the confinement mass is larger in �-projected
valleys (ml = 0.91m0) than in the remaining in-plane valleys
(mt = 0.19m0). The sharp electrostatic confinement in the z
direction due to the screened donor potential creates a very
narrow quantum well, which results in a large valley splitting
(VS, E2� − E1�) of ∼25 meV. This VS in a V-shaped QW51

is an order of magnitude larger than the VS of typical Si-SiGe
quantum wells.52

Table I compares the Fermi level and valley minimum
values with results from other methods for the ordered 1/4
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FIG. 4. (Color online) Band projection diagram for the highly
confined 2D δ layers. Two valleys (dark) along the z-confinement
direction are projected to the � point and four other valleys are
projected to their own positions.

ML δ-doped layers. The overall comparison results show that
the atomistic TB approach predicts reasonable values for the
band minima and Fermi level with respect to other methods.
Computed Fermi levels stay very close to each other except for
the MP method. Since the MP method uses an averaged dopant
representation, it may result in a weakly confined potential,
which causes a Fermi level shift and reduced valley splitting.31

DFT predicts a larger VS and lower � valleys but a higher �

valley. PP shows similar values to our results but smaller VS.
A major difference of the PP method can be seen by comparing
the details of the band structure, which for PP is based on a
parabolic band assumption.25 Details such as nonparabolicity
and band anticrossing, which may cause nonlinear modulation
of low-bias conductance, are not taken into account in the PP
method.

Potential and charge: The charge profile along the confine-
ment or z direction is shown in Fig. 5. 96% of the charge is
confined vertically within 21 monolayers (<3 nm) from the
donor positions, leaving the donor charges in the δ-doped layer
perfectly screened. Therefore, the potential profile along the
confinement direction decays faster than the ideal Coulombic
potential (∝ r−1) and the local field vanishes within a range
of ±20 monolayers (±3 nm) from the δ-doped layer. Our
charge distribution (FWHM = 0.81 nm = 7 ML) agrees well
with both DFT and MP calculations, which predict 0.67 nm
(DFT) and 0.84 nm (MP), respectively.30,31 The temperature
dependence of the charge screening in such Si:P δ-doped layers
is described further in Ref. 45.

TABLE I. Energies obtained from different models of the 1/4 ML
Si:P 2D δ layers showing the Fermi energy, 1�, 2�, and 1� bands in
meV (reference: silicon EC = 0.0 meV).

Approach EF 1� 2� 1�

This work −110 −394 −369 −242
Wannier/PP25 −111 −410 −400 −270
TB (sp3s∗)26 −110 N/A N/A N/A
DFT30 −110 −540 −420 −210
DFT/MP31 −62 −445 −425 −236
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FIG. 5. (Color online) Charge profile of a perfectly ordered
1/4 ML Si:P δ-doped layer at 4 K. 90%, 96%, and 99% of the charge
is confined within 15 (2.03 nm), 21 (2.85 nm), and 31 (4.21 nm)
ML, respectively. For reference, FWHM = 7 ML (0.81 nm) and it
contains 66% of the charge.

B. The effect of doping density in the Si:P δ layer

To examine the doping density dependence on the Si:P
δ-doped layer band structure, different numbers of impurities
are placed in a 4a × 4a simulation domain. The doping density
conversion table which relates the discrete atomistic density
with the more common per square centimeter density is
provided in Table II. As the doping density increases, more
subbands are occupied under the Fermi level to maintain
charge neutrality. Stronger electrostatic coupling contributes
to a further downshift of the subbands, promoting an increased
number of occupied subbands [Fig. 6(a)]. Our model predicts
a linear dependence of the critical 1�, 2�, and � energies as
a function of doping density as shown in Fig. 6(b). A slight
increase in VS as the doping density increase indicates that the
potential confinement of the δ-doped layer is also becoming
stronger. A more gradual trend of the � valley compared to �

valleys is predicted since the density of states (DOS) effective
mass of the � valley is larger. In other words, even a small
inclusion of sub-bands originating from � valleys causes a

TABLE II. Conversion table between doping constant and number
of impurities in the 4a × 4a supercell. Total number of atoms in the
δ layer is 32.

P coverage 1/6.4 1/5.3 1/4.6 1/4.0 1/3.6 1/3.2 1/2.9

Doping (1014 cm−2) 1.06 1.27 1.48 1.70 1.91 2.12 2.33
Impurities 5 6 7 8 9 10 11

larger increase in DOS and occupied states compared to the
lighter � valley subbands.

C. The effect of disorder in the Si:P δ layer

In reality it is impossible to make a perfectly arranged
infinite δ-doped layer. Random dopant incorporation causes a
disordered donor configuration within the Si:P δ-doped layer.
The Si:P system can be viewed as a random alloy system
with a different set of bonding parameters (Si-P, P-Si, Si-Si)
and an additional electrostatic potential caused by the donor
charges screened by their electrons. This is analogous to
typical III-V and Si-Ge alloys in heterostructures that have
different TB and strain parameters and bond lengths. For
δ-doped layers, however, it is computationally more intensive
to obtain the dispersion since the potential has to be computed
self-consistently. The simulation of such random alloy systems
is generally performed with repeated supercells that represent
the randomness. While true band structures only exist for
large supercells, the existence of band gaps and effective
masses in alloys validates the concept of an approximate band
structure.53

Supercell geometry: To represent the electronic properties
of a realistic alloy system, a large enough supercell is needed to
mimic the random nature of the target system and to consider
a sufficient number of statistical samples. Since the potential
profile in a Si:P δ-doped layer requires heavy computation,
it is difficult to collect enough samples without a reduced
supercell. Therefore, to set up a reasonable supercell geometry,
the size is first increased to 8a × 8a in the periodic plane
to appropriately represent randomness (Fig. 1). The cladding
thickness is reduced to save the overall computational burden
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respect to Fermi levels vs encapsulation thickness. The relative
position stays constant down to 64 ML regardless of the thickness. (b)
Energy change of 1�, 2�, and � measured against 120 ML structure.
Inset provides a zoom-in view of energy difference down to 40 ML
and difference is less than 1 meV.

and to enable the collection of a sufficient number of samples.
To determine the minimum cladding thickness to satisfy the
above conditions without losing any physical meaning due to
artificial domain boundaries, the valley minima with respect
to the corresponding Fermi levels are compared with varying
encapsulation thicknesses (120, 96, 80, 64, 40, and 24 ML).
As shown in Fig. 7, valley energies vary little within 1 meV
indicating the minimal effect on the band structure down to
40 ML. Therefore it is reasonable to reduce the encapsulation
thickness from 120 to 64 ML in modeling disordered samples,
which reduces the overall computational burden by 50%.

In-plane disorder: Initially, we considered a δ-doped layer
with a disordered dopant configuration within the atomic
dopant plane. Figure 8 compares the effect of disorder with
a 1/4 ML ordered supercell. Multiple band crossings of the �

and � originating bands occur due to the repeating supercell
structure as shown in Fig. 8(a). In contrast, disordered config-
urations couple some of these bands such that they anticross.
The disordered dopant configuration used for the disordered
sample [Fig. 8(a)] also breaks the translational symmetry
along [100]/[010], introducing distortions to every subband.
AC1–AC2 and AC3–AC4 labeled in the band structures in
Fig. 8(a) are the major anticrossings in the impurity subbands
for the ordered and disordered cases, respectively. Figures 8(b)
and 8(c) compare the effects of disorder on the potential and
charge density in the impurity plane. The disordered charge
shows a significant charge accumulation in impurity clusters,
while the ordered array shows a much smoother background
charge distribution. However, the randomness causes little
change in the positions of the 1�, 2�, and � valleys, as seen
in Fig. 6(b) where the statistical results of valley energies for
1/2.9 and 1/4.0 ML are indicated.

Since the band structure of the large supercell is com-
plicated without much insight beyond the lowest two band
edges, we also study the density of states (DOS). Figure 9
compares the DOS between the ordered and disordered Si:P
δ-doped layers. The ordered layer (Fig. 9, dashed line), shows
a nonparabolicity of the first two subbands as seen from the
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FIG. 8. (Color online) (a) Band structure comparison between
ordered and an example of disordered supercell. Zone unfolding
relationship in the perfectly ordered case is displayed (top) and the
band structure of ordered 8a × 8a supercell (bottom left) is shown
next to the disordered supercell (bottom right) for direct comparison.
AC1–AC2 and AC3–AC4 indicate gaps due to the band anticrossing in
the ordered and disordered supercell, respectively. The anticrossings
affect the density of states distribution, which will be discussed in
Fig. 9. Comparison of the (b) potential and (c) charge profile between
ordered and in-plane disordered supercell shown in (a).

gradual increase in the DOS. A perfectly parabolic dispersion
would show a flat DOS. The steep increase in the DOS at
−130 meV indicates the turn-on of the � bands, which have a
larger DOS mass (ml = 0.9 > mt = 0.19). The first subband
(1�) turns off at around −100 meV due to band anticrossing,
resulting in a decrease of the DOS at this energy as observed.
At the AC1–AC2 gap in Fig. 9, the DOS is lowered due to
anticrossing of the impurity bands indicated in Fig. 8(a).

The DOS for the disordered δ-doped layer (red line) has
a couple of interesting features compared to the ordered
case. The disordered DOS in Fig. 9 is averaged over 20
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caused by band anticrossing labeled in Fig. 8(a). Similar fluctuation
is also captured in disordered supercell between AC3 and AC4. For
disordered cases, the DOS for single sample (blue) and the DOS
averaged over 20 samples (red) are indicated.

statistical samples. Again, the � valley contribution can be
identified easily regardless of complicated subband splitting.
This subband splitting in addition to the gaps in the BZ
boundaries create additional fluctuations in the DOS as
indicated in the energy range AC3–AC4 of Figs. 8(a) and
9. Despite these additional DOS fluctuations, the overall DOS
appears very similar to the ideally ordered DOS and the DOS
is large enough to constantly provide electrons to the attached
narrow leads, which clearly have a smaller DOS. We note that
it is the DOS fluctuation at the Fermi level that will modulate
the conductance in the low bias regime. However, the variation
of the conductance is expected to be minimal among samples
fabricated under the same doping density.

Out-of-plane (vertical) disorder: Finally, to simulate what
would happen if there were dopant diffusion leading to disorder
out of the δ-doped layer, a Gaussian distribution of dopants
with a varying FWHM is considered assuming a vertical
segregation of no more than 7 layers, or 0.81 nm. To date
the maximum limit of vertical segregation of δ-doped layers
encapsulated at low temperatures of 250 ◦C has been measured
experimentally to be 0.58 nm.11 To mimic this finding in
simulation, 1/4 ML is taken into account and an ensemble
of 20 samples for every case (FWHM = 0.0, 0.15, 0.2, 0.3,
and 0.4 nm) is considered.

Figure 10(a) compares the valley minimum values of these
samples. Spreading out the doping out of the central layer
can be associated with a weak doping reduction in that
particular layer. Such doping reduction allows the impurity
bands to rise slightly in energy (compare with Fig. 6). A
more significant effect is seen by the reduction of the strong
confinement, which will be most evident in the VS between
the � valleys [Fig 10(b)]. A perfect Si:P δ-doped layer
exhibits large VS (∼27 meV) with small variations. On the
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FIG. 10. (Color online) (a) 1�, 2�, and � valley minimum values
are plotted with respected to the Fermi level vs vertical impurity
segregation. Statistical samples of vertical segregation of dopant
atoms with a nominal 1/4 ML doping is considered. (b) Valley
splitting as a function of vertical segregation.

contrary, as the vertical impurity segregation increases, the
VS decreases significantly. As a result measuring the VS
experimentally, such as by using Schottky-barrier tunneling
spectroscopy,18,20,54,55 can be used to determine the degree of
vertical dopant diffusion.

IV. CONCLUSION

We use an empirical tight binding, self-consistent poten-
tial approach to model realistically extended Si:P δ-doped
layer structures. The methodology is validated against other
approaches, such as DFT and pseudopotential methods. The
scalability of the NEMO methodology enables us to study
supercells that resemble realistically disordered systems. We
compare statistical samples for dopant disorder in the doping
plane and out of the doping plane, and study the sensitivity
to doping density. The δ-doped layer creates a Coulombic
quantum well that confines electrons in a dense quasimetallic
impurity band under the standard silicon conduction band. An
increased doping density is found to increase the confinement
and to lower the impurity band energies. The 1�, 2�, and �

bands all depend linearly on the doping, but react to doping
changes at a different rate, mainly due to the DOS effective
mass difference. In-plane disorder is predicted to only weakly
affect the VS and DOS of the quasimetallic sheet. Doping
disorder leads to an increased DOS modulation close to the
Fermi energy, thus in turn leading to stronger conductance
variation with device gating. Out-of-plane disorder shows a
significant effect on the band edges and VS. VS is predicted
to be reduced with increased out-of-plane disorder. The strong
VS modulation may serve as a metrology tool to gauge vertical
doping straggle in a well-controlled sequence of experiments.
With extensive simulation results, we provide new information
about the properties of these highly confined sheets that
will guide experimentalists in understanding and validating
electronic properties of Si:P δ-doped layers.

205309-7



SUNHEE LEE et al. PHYSICAL REVIEW B 84, 205309 (2011)

ACKNOWLEDGMENTS

NSF-funded nanoHUB.org and TeraGrid resources pro-
vided by the National Institute for Computational Sciences
(NICS) and the Texas Advanced Computing Center (TACC)
computational resources were used in this work. This research
was conducted by the Australian Research Council Centre

of Excellence for Quantum Computation and Communication
Technology (Project No. CE110001027). The research was
also supported by the US National Security Agency and the
US Army Research Office under Contract No. W911NF-08-
1-0527. The authors would like to thank the reviewers for
insightful comments. The authors also acknowledge Yui-Hong
Tan for spending his time on improving this manuscript.

*sunnyleekr@purdue.edu
†http://nanohub.org
‡http://www.cqc2t.org
1M. Y. Simmons, S. R. Schofield, J. L. O’Brien, N. J. Curson,
L. Oberbeck, T. Hallam, and R. G. Clark, Surf. Sci. 532-535, 1209
(2003).

2F. J. Rueß, L. Oberbeck, M. Y. Simmons, K. E. J. Goh, A. R.
Hamilton, T. Hallam, S. R. Schofield, N. J. Curson, and R. G.
Clark, Nano Lett. 4, 1969 (2004).

3F. J. Rueß, W. Pok, K. E. J. Goh, A. R. Hamilton, and M. Y.
Simmons, Phys. Rev. B 75, 121303 (2007).

4M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, M. Friesen, M. A.
Eriksson, and M. Y. Simmons, Nat. Nanotechnol. 5, 502 (2010).

5F. J. Rueß, B. Weber, K. E. J. Goh, O. Klochan, A. R. Hamilton,
and M. Y. Simmons, Phys. Rev. B 76, 085403 (2007).

6B. Kane, Nature (London) 393, 133 (1998).
7R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin,
V. Roychowdhury, T. Mor, and D. DiVincenzo, Phys. Rev. A 62,
012306 (2000).

8L. C. L. Hollenberg, A. S. Dzurak, C. Wellard, A. R. Hamilton, D. J.
Reilly, G. J. Milburn, and R. G. Clark, Phys. Rev. B 69, 113301
(2004).

9C. D. Hill, L. C. L. Hollenberg, A. G. Fowler, C. J. Wellard, A. D.
Greentree, and H. S. Goan, Phys. Rev. B 72, 045350 (2005).

10L. C. L. Hollenberg, A. D. Greentree, A. G. Fowler, and C. J.
Wellard, Phys. Rev. B 74, 045311 (2006).

11L. Oberbeck, N. J. Curson, M. Y. Simmons, R. Brenner, A. R.
Hamilton, S. R. Schofield, and R. G. Clark, Appl. Phys. Lett. 81,
3197 (2002).

12K. E. J. Goh, L. Oberbeck, M. Y. Simmons, A. R. Hamilton, and
R. G. Clark, Appl. Phys. Lett. 85, 4953 (2004).

13K. E. J. Goh, Y. Augarten, L. Oberbeck, and M. Y. Simmons, Appl.
Phys. Lett. 93, 142105 (2008).

14K. E. J. Goh and M. Y. Simmons, Appl. Phys. Lett. 95, 142104
(2009).

15H. F. Wilson, O. Warschkow, N. A. Marks, S. R. Schofield, N. J.
Curson, P. V. Smith, M. W. Radny, D. R. McKenzie, and M. Y.
Simmons, Phys. Rev. Lett. 93, 226102 (2004).

16H. F. Wilson, O. Warschkow, N. A. Marks, N. J. Curson, S.
R. Schofield, T. C. G. Reusch, M. W. Radny, P. V. Smith, D.
R. McKenzie, and M. Y. Simmons, Phys. Rev. B 74, 195310
(2006).

17S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rueß,
T. Hallam, L. Oberbeck, and R. G. Clark, Phys. Rev. Lett. 91,
136104 (2003).

18G. Tempel, F. Koch, H. P. Zeindl, and I. Eisele, J. Phys. Colloq. 48,
C5-259 (1987).

19I. Eisele, Appl. Surf. Sci. 36, 39 (1989).
20I. Eisele, Superlattices Microstruct. 6, 123 (1989).

21L. M. Gaggero-Sager, M. E. Mora-Ramos, and D. A. Contreras-
Solorio, Phys. Rev. B 57, 6286 (1998).

22L. Gaggero-Sager, S. Vlaev, and G. Monsivais, Comput. Mater. Sci.
20, 177 (2001).

23A. L. Rosa, L. M. R. Scolfaro, R. Enderlein, G. M. Sipahi, and J.
R. Leite, Phys. Rev. B 58, 15675 (1998).

24L. M. R. Scolfaro, D. Beliaev, R. Enderlein, and J. R. Leite, Phys.
Rev. B 50, 8699 (1994).

25G. Qian, Y. C. Chang, and J. R. Tucker, Phys. Rev. B 71, 045309
(2005).
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