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CHAPTER 1. OVERVIEW OF LATERALLY LOADED PILE RESEARCH AND PRACTICE 

1.1. Introduction 

The report documents the development of a new method of analysis of laterally loaded 

piles.  The prevalent method of analysis in the U.S., namely the p-y method, often fails to predict 

pile response (Kim et al. 2004, Anderson et al. 2003). This is not surprising because the p-y 

curves, which describe the resistive properties of soil as a function of pile deflection, used in the 

p-y analysis are developed empirically by back-fitting the results of numerical analysis to match 

the actual field pile-load test results.  Thus, p-y curves developed for a particular site are not 

applicable to other sites.  In order to obtain an accurate prediction of lateral pile response by the 

p-y method, p-y curves must be developed through pile load tests for every site.  Since a pile 

load test at every site is not feasible economically, an alternative method of analysis is required.   

A method of laterally loaded pile analysis is developed that takes into account the physics 

behind the complex three-dimensional pile-soil interaction.  The method rationally relates the 

elemental resistive properties of soil to the overall resistance of the ground against lateral pile 

movement.  Since the physics of the resistive mechanism is captured, no site specific calibration 

is necessary for this method.  The inputs required for the analysis are simple soil parameters that 

an engineer can determine in the field without much difficulty. 

In this chapter, we provide a general overview of laterally loaded piles and pile groups.  

We explain why lateral loads act on piles and how piles interact with the surrounding ground as a 

result of those lateral loads.  We then examine the available methods of analysis of laterally 

loaded piles, discuss where improvements are necessary and point out scope of this research. 

1.2. Lateral Loads and Piles 

Piles are commonly used to transfer vertical (axial) forces, arising primarily from gravity 

(e.g., the weight of a superstructure).  Examples of structures where piles are commonly used as 
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foundations are tall buildings, bridges, offshore platforms, defense structures, dams and lock 

structures, transmission towers, earth retaining structures, wharfs and jetties.  However, in all 

these structures, it is not only the axial force that the piles carry; often the piles are subjected to 

lateral (horizontal) forces and moments.  In fact, there are some structures (e.g., oil production 

platforms, earth retaining structures, wharfs and jetties) where the primary function of piles is to 

transfer lateral loads to the ground. 

Wind gusts are the most common cause of lateral force (and/or moment) that a pile has to 

support.  The other major cause of lateral force is seismic activity.  The horizontal shaking of the 

ground during earthquakes generates lateral forces that the piles have to withstand.  Certain 

buildings are also acted upon by lateral earth pressures, which transmit lateral forces to the 

foundations.  That apart, depending on the type of structure a pile supports, there can be different 

causes of lateral forces.  For tall buildings and transmission towers, wind action is the primary 

cause.  For offshore oil production platforms, quays, harbors, wharfs and jetties, wave action 

gives rise to lateral forces.  In the case of bridge abutments and piers, horizontal forces are 

caused due to traffic and wind movement.  Dams and lock structures have to withstand water 

pressures which transfer as horizontal forces on the supporting piles.  Defense structures often 

have to withstand blasts that cause lateral forces.  In the case of earth retaining structures, the 

primary role of piles is to resist lateral forces caused due to the lateral pressures exerted by the 

soil mass behind the retaining wall.  Sometimes, piles are installed into slopes, where slow 

ground movements are taking place, in order to arrest the movement.  In such cases, the piles are 

subjected only to lateral forces.  Piles are used to support open excavations; here also, there is no 

axial force and the only role of the piles is to resist lateral forces. 

In the above examples, there are some cases in which the external horizontal loads act at 

the pile head (i.e., at the top section of the pile).  Such loading is called active loading (Fleming 

et al. 1992, Reese and Van Impe 2001). Common examples are lateral loads (and moments) 

transmitted to the pile from superstructures like buildings, bridges and offshore platforms.  

Sometimes the applied horizontal load acts in a distributed way over a part of the pile shaft; such 

a loading is called passive loading.  Examples of passive loading are loads acting on piles due to 

movement of slopes or on piles supporting open excavations.  There are cases in which external 

horizontal loads are minimal or absent; even then external moments often exist because of load 

eccentricities caused by construction defects, e.g., out-of-plumb constructions.  Thus, piles in 
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most cases are subjected to lateral loads.  Consequently, proper analysis of laterally loaded piles 

is very important to the geotechnical and civil engineering profession. 

1.3. Load Transfer Mechanisms (Statics) of Piles 

A proper understanding of the load transfer mechanisms for piles is necessary for 

analysis and design.  Piles transfer axial and lateral loads through different mechanisms.  In the 

case of axial (vertical) loads, piles may be looked upon as axially loaded columns; they transfer 

loads to the ground by shaft friction and base resistance (Figure 1-1) (Salgado 2008).  As a pile is 

loaded axially, it slightly settles and the surrounding soil mass offers resistance to the downward 

movement.  Because soil is a frictional material, frictional forces develop at the interface of the 

pile shaft and the surrounding soil that oppose the downward pile movement.  The frictional 

forces acting all along the pile shaft partly resist the applied axial load and are referred to as shaft 

resistance, shaft friction or skin friction.  A part of the axial load is transferred to the ground 

through the bottom of the pile (commonly referred to as the pile base).  As a pile tries to move 

down, the soil mass below the pile base offers compressive resistance to the movement.  This 

mechanism is called base resistance or end-bearing resistance.  The total resistance (shaft friction 

plus end-bearing resistance) keeps a pile in equilibrium with the applied load.  Piles that transfer 

most of the axial load through the base are called end-bearing piles, while those that transfer 

most of the load through shaft friction are called friction piles.  For end-bearing piles, it is 

necessary to have the pile base inserted into a strong layer of soil (e.g., dense sand, stiff clay or 

rock).  Typically, engineers would prefer to design end-bearing piles because the base resistance 

is more reliable than shaft friction.  However, if no such strong layer is available at a site, then 

engineers have to rely only on shaft friction; in such a case the pile is called a floating pile. 
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Figure 1-1 Load Transfer Mechanism of Axially Loaded Piles 

In the case of lateral loads, piles behave as transversely loaded beams.  They transfer 

lateral load to the surrounding soil mass by using the lateral resistance of soil (Figure 1-2).  

When a pile is loaded laterally, a part or whole of the pile tries to shift horizontally in the 

direction of the applied load, causing bending, rotation or translation of the pile (Fleming et al. 

1992, Salgado 2008).  The pile presses against the soil in front of it (i.e., the soil mass lying in 

the direction of the applied load), generating compressive and shear stresses and strains in the 

soil that offers resistance to the pile movement.  This is the primary mechanism of load transfer 

for lateral loads.  The total soil resistance acting over the entire pile shaft balances the external 

horizontal forces.  The soil resistance also allows satisfaction of moment equilibrium of the pile. 
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Figure 1-2 Load Transfer Mechanism of Laterally Loaded Piles 

Often, the load acting on a superstructure is larger than the capacity of a single pile.  

When that happened, piles are grouped under each column to resist the total force acting at the 

column base.  The piles in a group no longer behave as isolated units but interact with each other 

and resist the external load in an integrated manner.  Consequently, the response of a single pile 

differs from that of a pile placed within a pile group (Prakash and Sharma 1990, McVay 1998., 

Ilyas et al. 2004, Bogard and Matlock 1983, Ashour et al. 2004).  Each pile in a group, whether 

loaded axially or laterally, generates a displacement field of its own around itself.  The 

displacement field of each pile interferes and overlaps with those of the adjacent piles; this 

results in the interaction between piles. 

Similarly to single piles, pile groups have two resistance mechanisms against vertical 

loads: friction along the sides and base resistance.  However, compared with the behavior of an 

isolated pile, the response of a pile within a group differs due to the interaction of the adjacent 

piles.  The difference in response is more pronounced for pile groups that resist vertical loads 

primarily by side friction (Figure 1-3).  Additional forces are induced along the pile shafts due to 

the settlement of adjacent piles.  Thus, the piles resist not only the vertical column load but also 
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the interaction forces along the pile shafts.  For end bearing piles, however, a larger fraction of 

the applied load is supported by the compressive resistance of the ground below the pile base 

because of which the interaction along the pile shafts is minimal.  Consequently, the response of 

each pile within a group is closer to that of a single isolated pile. 

 

 

Friction 
Resistance 

Vertical Force 

Base Resistance

Interaction 
Forces 
along  

Pile Shaft 

 

Figure 1-3 Load transfer mechanism for vertically loaded pile group 

Interaction between piles occurs in the case of laterally loaded pile groups as well.  In a 

laterally loaded pile group, each pile pushes the soil in front of it (i.e., in the direction of the 

applied force).  Movement of the piles placed in the first (leading) row in the direction of the 

applied force is resisted by the soil in front of it.  In contrast, the piles in the rows behind the first 

row (i.e., the piles in the trailing rows) push on the soil which in turn pushed on the piles in the 

rows in front of them (Figure 1-4).  The resistive forces acting on the trailing-row piles are in 

general less than the resistive forces acting on the leading row (Prakash and Sharma 1990, 

Salgado 2008, Ilyas et al. 2004, Ashour et al. 2004). 
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Figure 1-4 Illustration of overlapping zones creating additional load on piles within a group 

1.4. Kinematics and Failure Modes of Laterally Loaded Piles 

The kinematics of axially loaded piles is simple: the pile moves vertically downward 

under the acting load and, if the resistive forces (i.e., shaft and base resistances) exceed the limit 

values, then the pile suffers excessive vertical deflection (plunging) leading to collapse.  The 

kinematics and failure mechanisms of laterally loaded piles are more complex and vary 

depending on the type of pile. 

 Since laterally loaded piles are transversely loaded, the pile may rotate, bend or translate 

(Fleming et al. 1992, Salgado 2008).  As the pile moves in the direction of the applied force, a 

gap may also open up between the back of the pile and the soil over the top few meters.  If the 

pile is short and stubby, it will not bend much but will rotate or even translate (Figure 1-5).  Such 

piles are called rigid piles.  If the pile is long and slender, then it bends because of the applied 

load (Figure 1-6).  These piles are called flexible piles.  In most practical situations, piles are 

long enough to behave as flexible piles.  For flexible piles, the laterally loaded pile problem is 

one of soil-structure interaction; i.e., the lateral deflection of the pile depends on the soil 

resistance, and the resistance of the soil, in turn, depends on the pile deflection. 
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Rotation Translation  

Figure 1-5 Kinematics of Rigid Piles 

 

 

Figure 1-6 Kinematics of Flexible Piles 

The kinematics of a vertically loaded pile group is similar to that of an axially loaded pile. 

A vertically loaded pile group moves down under the applied load.  However, the difference in 

the response of a pile in a group and a similarly loaded isolated pile is that the pile in a group 

undergoes more settlement due to the additional downward forces acting on it due to the 

interaction of the adjacent piles (Figure 1-7) (Fleming and Randolph 1985, Salgado 2008). 
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Figure 1-7 Kinematics of a vertically loaded pile group 

The kinematics of a laterally pile group is such that the piles in a group may have vertical 

movement in addition to lateral movement, rotation and bending.  If, due to the externally 

applied force and moment, the pile cap rotates, then the piles in the rows in front of the pile-cap 

center undergo downward movement while those behind undergo uplift (Figure 1-8) (Fleming 

and Randolph 1985, Salgado 2008).  However, if the rotation of the pile cap is not large, then the 

piles can be assumed to move only in the horizontal direction. 

Failure is a term that we engineers define for our convenience.  We set some criteria 

which we want a structure or a foundation to satisfy.  If one or more of those criteria are not 

satisfied, we say that the structure or the foundation has failed.  In general, we identify two 

classes of criteria: (1) ultimate limit states and (2) serviceability limit states (Salgado 2008).  

Ultimate limit states are associated with dangerous outcomes, such as partial or total collapse of 

a structure.  Serviceability limit states are used as measures to maintain the serviceability of a 

structure.  In general, serviceability limit states refer to tolerable settlements or deflections.  For 

design, all the possible ultimate and serviceability limit states associated with a particular 

structural or foundation element are identified and then it is designed so that all the limit states 

are satisfied. 
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Figure 1-8 Kinematics of a laterally loaded pile group  

One ultimate limit state for a laterally loaded piles is reached if the resistive stresses in 

the soil attain the limit (yield) value over a substantial portion of the pile length so that plastic 

flow occurs within the soil mass resulting in large lateral deflections, translation or rotation of 

the pile (e.g., inflexible piles, with possible yield or breakage of the pile at one or more cross 

sections).  This ultimate limit state may lead to collapse of the superstructure.  For flexible piles, 

the mechanism consists of a plastic wedge of soil that forms in front of the pile, leading to 

excessive lateral deflection and bending.  If the bending moment is excessive, plastic hinges may 

form, leading possibly to collapse.  Much before this pile-centered ultimate limit state is reached, 

other ultimate limit states or serviceability limit states may occur as the pile head deflection 

exceeds the tolerable head deflection.  Hence, it is the restriction of the horizontal pile deflection 

that determines the limits of pile performance and designs in most cases.  In fact, in most cases, 

piles are first designed against ultimate limit states corresponding to axial loads (i.e., against the 

limit vertical load carrying capacity) and then checked against serviceability limit states 

corresponding to axial and lateral loads (i.e., against vertical and lateral deflections). 
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In the case of laterally loaded pile groups, a serviceability limit state restricting the lateral 

deflection would govern the design in most cases.  However, checks against ultimate limit states 

resulting from the yielding of soil in front of pile rows (as well as the limit states due to 

formation of plastic hinges in the piles) may also be required.  Additionally, checks might be 

necessary against the limit states arising due to the rotation of the pile cap and the associated 

vertical movement of the piles. 

1.5. Available Analysis Methods 

Having assessed the statics, kinematics and the possible failure modes of laterally loaded 

piles, we now discuss the methods available for analyzing them so that safe designs can be 

produced.  We restrict our discussion to only piles with active loading.  In fact, most of the 

analyses available in the literature are developed for active loading, although most of the 

methods can be extended to passive loading as well. 

Research on analysis of laterally loaded piles started more than five decades ago.   As a 

consequence of such sustained research, we have a number of analysis methods that can be used 

for design (an account of the salient analysis methods available can be obtained from Poulos and 

Davis 1980, Scott 1981, Fleming et al. 1992, Reese and Van Impe 2001, Reese et al. 2006).  

Broadly, the methods of analysis can be classified into two: 1) beam-on-foundation approach and 

2) continuum approach. 

1.5.1. Beam-on-Foundation Approach 

Long before the research on laterally loaded pile started, foundation engineers had looked 

into the possibility of representing shallow foundations that are long and flexible enough (e.g., 

strip footings) as beams resting on foundations.  In the context of beam-on-foundation approach, 

the beam represents the foundation (e.g., footings, piles etc.) and the foundation represents the 

soil mass.  As early as 1867, Winkler (1867) proposed that the vertical resistance of a subgrade 

against external forces can be assumed to be proportional to the ground deflection.  Researchers, 

extending the idea, represented the ground with a series of elastic springs so that the compression 

(or extension) of the spring (which is the same as the deflection of the ground) is proportional to 
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the applied load.  The spring constant represents the stiffness of the ground (foundation) against 

the applied loads. 

This concept was extended by placing an Euler-Bernoulli beam on top of the elastic 

foundation and applying loads on top of the beam (Figure 1-9).  A differential equation 

governing the beam deflection for such a beam-foundation system was developed (which is a 

fourth order linear differential equation) and analytical solutions for different types and positions 

of loads and load distributions were obtained (Biot 1937, Hetényi 1946).  The input parameters 

required are the elastic modulus and geometry of the beam, the spring constant of the foundation 

(soil) and the magnitude and distribution of the applied load.  As a result of the analysis, the 

beam deflection, bending moment and shear force along the span of the beam can be determined. 

 Applied Forces Beam

Foundation 
Springs  

Figure 1-9 A Beam on an Elastic Foundation 

It is important to mention here that there is a subtle difference between the foundation 

springs and the conventional springs.  In conventional springs, the spring constant multiplied by 

the spring deflection gives the spring force.  In foundation springs, the spring constant multiplied 

by the spring deflection (which is the same as the beam deflection) produces the resistive force 

of the foundation (ground) per unit beam length.  Therefore, the spring constant unit for a 

foundation in which the resistance is expressed per unit of length is FL−2 (F = force, L = length), 

while the spring constant unit of a conventional spring is FL−1. 

The beam-on-foundation approach can also be called subgrade-reaction approach because 

the foundation spring constant can be related to the modulus of subgrade reaction of a soil mass 

(Terzaghi 1955, Bowles 1997) (if the pressure at a point on the contact surface between the 

foundation and the beam is p and if, because of p, the deflection of the point is δ, then the 
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modulus of subgrade reaction is given by p/δ and has a unit of FL−3).  The modulus of subgrade 

reaction multiplied by the width of the beam gives the foundation spring constant.  In fact, the 

spring constants are often estimated by determining the soil subgrade reaction modulus (the 

modulus can be determined experimentally, e.g., by performing a plate load test). 

The beam-on-foundation concept was adapted by the researchers on laterally loaded piles 

(Davisson 1970, Francis 1964, Broms 1964a, b, Matlock and Reese 1960, Reese and Matlock 

1956) because, in most cases, the piles behave as flexible beams against lateral (transverse) loads 

and the problem can be looked upon as a beam-on-foundation problem rotated by 90° (Figure 1-

10).  However, the laterally loaded pile problem is more complex because soils in real field 

situations behave nonlinearly, particularly near the top part of the pile.  In other words, because 

of the nonlinear nature of a typical soil stress-strain plot, the head deflection of piles, when 

plotted against applied load, produce a nonlinear curve.  The linear springs, as hypothesized by 

Winkler (1867), could no longer be used for laterally loaded piles, and were replaced by 

nonlinear springs (for which the value of the spring constant changes with pile deflection).  As a 

result, the governing fourth order differential equation becomes nonlinear and the finite 

difference method was used to iteratively solve the equation (McClelland and Focht 1958).  In 

order to simplify the problem, some researchers assumed the soil to be linear elastic up to a 

certain value of pile deflection and perfectly plastic beyond that value (Bowles 1997, Hsiung and 

Chen 1997). 

 

 

Figure 1-10 A Laterally Loaded Pile in a Bed of Springs 
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Further modification of the beam-on-nonlinear-foundation approach led to the p-y 

method (Matlock 1970, Reese et al. 1974, 1975, Reese and Welch 1975, Reese 1977, 1997, 

O’neill et al. 1990).  In the p-y method, p stands for the soil pressure (resistance) per unit pile 

length and y stands for pile deflection (note that the soil resistance p is the product of pile 

deflection and the nonlinear spring constant).  Instead of giving inputs for the nonlinear spring 

constant (i.e., the values of the spring constant as a function of pile deflection), p-y curves are 

given as inputs to the analysis in the p-y method.  Different p-y curves have been developed over 

the years for different soil types, which give the magnitude of soil pressure as a function of the 

pile deflection (Reese et al. 1974, 1975, Reese and Welch 1975, Matlock 1970, Georgiadis 1983, 

O’Neill et al. 1990, Georgiadis et al. 1992, Yan and Bryne 1992, Gabr et al. 1994, Brown et al. 

1994, Reese 1997, Wu et al. 1998, Bransby 1999, Zhang et al. 1999a, Ashour and Norris 2000).  

For the analysis, the pile is divided into small segments, and for each segment, a p-y curve is 

given as input.  Depending on the magnitude of the deflection of a pile segment, the correct soil 

resistance is calculated from the p-y curve iteratively (since deflections and soil pressures are 

interdependent and since neither is known a priori, iterations are necessary to obtain their correct 

values) and solutions to the nonlinear fourth order differential equation are obtained using the 

finite difference method.  With the development of the finite element method, analysis using 

beam finite elements have replaced the finite difference method in many calculations involving 

the subgrade-reaction approach or the p-y method (Stewart 2000, Hsiung and Chen 1997, Sogge 

1981).  Today, the p-y method is the most widely used method for calculating the response of 

laterally loaded piles. 

The p-y method is often used for the analysis of pile groups as well.  However, in order to 

use the standard p-y curves developed for single piles, the p values are reduced to take into 

account the reduced resistance that a pile in a group offers due to pile interactions.  The reduction 

in the values of p is generally done by multiplying p of the single-pile case by a multiplier f, 

which depends, among other factors, on the number of piles in a group and their relative 

positions with respect to the pile in question (Salgado 2008).  Different values and equations of 

the multiplier f have been proposed by various authors and are available in the literature (Brown 

et al. 1991, McVay et al. 1998, Mokwa 1999, Ilyas et al. 2004, Reese et al. 2006).  

Using the p-y method or the subgrade-reaction approach, pile deflection is estimated as a 

function of applied load under working load conditions.  In other words, design against the 
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serviceability limit state of tolerable lateral deflection can be done using the p-y method.  Since 

the serviceability limit state is the primary concern in the design of laterally loaded piles, the p-y 

method has gained huge popularity, particularly in the US.  Over the years, several modifications 

and extensions of the beam-on-foundation approach and the p-y method have been made (Reddy 

and Valsangkar 1970, 1971, Madhav et al. 1971, Scott 1981, Aköz et al. 1981, Hsiung 2003, 

Shen and Teh 2004, Hsiung et al. 2006, Yang and Liang 2006).  The characteristic load method 

of Duncan et al. (1994), in which dimensionless equations are developed from p-y analysis, and 

the strain wedge model of Ashour and Norris (2000), which considers a mobilized passive soil 

wedge in front of the pile to determine p-y curves, are examples of these methods. 

The ultimate capacity due to the structural failure of a pile can be determined by using the 

p-y method if the plastic moment of the pile section is given as input to the p-y analysis.  

However, the p-y method cannot model the slip mechanism that would form if zones of soil 

adjacent to the pile were to yield.  The beam-on-foundation approach can be used to calculate the 

ultimate capacity due to soil yielding, in which the soil is assumed to be perfectly plastic and 

limit soil resistance is used to estimate the ultimate lateral capacity.  In such an approach, a limit 

soil pressure (i.e., passive pressure) is assumed to act throughout the length of the pile (in one 

direction above a certain center of rotation and in the opposite direction below it).  The 

magnitude of the limit soil pressure is estimated, the positions of plastic hinge formation in the 

pile are located (required only for flexible piles), and force and moment equilibrium conditions 

are applied to calculate the ultimate (limit) load and moment that can act at the pile head (Broms 

1964a, b, Poulos and Davis 1980, Fleming et al. 1992, Zhang et al. 2005). 

1.5.2. Continuum Approach 

Analysis of laterally loaded piles can be done by treating the soil surrounding the pile as a 

three-dimensional continuum.  Such an approach is conceptually more appealing than the beam-

on-foundation approach because the interaction of the pile and the soil is indeed three-

dimensional in nature.  Research in this direction was pioneered by Poulos (1971a), who treated 

the soil mass as an elastic continuum and the pile as a strip, which applied pressure on the 

continuum.  He used Mindlin’s solution (Mindlin 1936) for horizontal load acting at the interior 

of an elastic half space and applied a boundary integral technique to obtain pile deflection.  
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However, the method is less popular than the p-y method, most likely because the analysis steps 

are relatively involved.  The elastic analysis was extended to account for soil nonlinearity in an 

approximate way by assuming elastic-perfectly plastic soil (Poulos 1972, 1973, Davies and 

Budhu 1986, Budhu and Davies 1988).  A similar boundary element analysis was performed by 

Banerjee and Davies (1978). 

Today, the most versatile continuum-based method of analysis available is the finite 

element method.  The method can take into account the three-dimensional interaction, and both 

elastic and nonlinear soils can be simulated by giving inputs of elastic constants (e.g., Young’s 

modulus and Poisson’s ratio) or by plugging in appropriate nonlinear constitutive relationships.  

Several researchers have used different forms of the finite element method (e.g., two-

dimensional analysis, three-dimensional analysis, finite elements coupled with Fourier 

techniques, finite elements coupled with finite difference, finite elements with substructuring) to 

analyze laterally loaded piles (Desai and Appel 1976, Randolph 1981, Kooijman and Vermeer 

1988, Verruijt and Kooijman 1989, Trochanis et al. 1991, Bhowmik and Long 1991, Bransby 

1999). 

Other continuum-based analysis methods are also available (Baguelin et al. 1977, Pyke 

and Beikae 1984, Lee et al. 1987, Lee and Small 1991, Sun 1994a, Guo and Lee 2001, Einav 

2005).  However, these methods are rarely used by practitioners because either the analyses 

involve complicated mathematics and do not provide simple, practical steps for obtaining pile 

deflection or the methods are applicable only to linear elastic soils, which do not represent the 

reality of practical problems. 

Continuum-based analyses have also been used to analyze pile groups.  The boundary 

integral technique was used to capture the interaction between piles in groups (Poulos 1971b, 

Banerjee and Davies 1980, Basile 1999, Xu and Poulos 2000).  The finite element method 

(Shibata et al. 1988, Chow 1987) and variational methods (Shen and Teh 2002) have been 

applied to pile-group problems as well.  Because of the difficulties of applying the finite element 

method to large pile groups, Law and Lam (2001) proposed the application of periodic boundary 

conditions in finite element analysis of large pile groups. Additionally, some hybrid methods 

coupling both the continuum approach and the p-y have been used to model pile groups (Foch 

and Koch 1973, O’Neil et al. 1977, Horsnell et al. 1990). 
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1.6. Motivation for this Research Work 

The beam-on-foundation approach or the p-y method is an ideal candidate for laterally 

loaded-pile analysis from a practical point of view because of the ease with which solutions can 

be obtained.  Solutions of the ordinary fourth order differential equation, even if nonlinear, can 

be obtained quickly.  The assumption of an Euler-Bernoulli beam for the pile is satisfactory 

because most flexible piles are slender enough so that shear stresses and deformations within the 

piles can be neglected.  However, springs are a poor representation of the surrounding soil.  The 

interaction of a laterally loaded pile with the soil is three-dimensional in nature; the resistive 

properties of each element of soil surrounding the pile add up to generate the overall resistance 

against pile movement.  Therefore, the nonlinear spring constant should be related to the resistive 

properties (e.g., stress-strain response) of the soil elements by taking into account the three-

dimensional interaction.  Unfortunately, such a rigorous relationship is not available; for the 

beam-on-foundation approach, the spring constants are mostly estimated from empirical or semi-

empirical correlations (Francis 1964, Poulos and Davis 1980, Scott 1981, Bowles 1997, Hsiung 

and Chen 1997, Ashford and Juirnarongrit 2003). 

The same limitation is applicable for the p-y curves as well.  The method of preparation 

of the p-y curves developed from field observation and experience (Matlock 1970, Reese et al. 

1974, 1975).  The p-y curves used today are mostly obtained either by back fitting the results of 

numerical analysis (of the fourth-order beam-on-foundation equation) to match the observed 

deflections in the field or the results of model tests; or by correlating the curves with soil 

properties determined by laboratory or in-situ tests; or by comparing the results of p-y analysis 

with other numerical analyses (Matlock 1970, Reese et al. 1974, 1975, Brown and Kumar 1989, 

Yan and Byrne 1992, Brown et al. 1994, Gabr et al. 1994, Briaud 1997, Wu et al. 1998, Bransby 

1999, Ashour and Norris 2000, Anderson et al. 2003).  As a result, the p-y curves are site-

specific and do not take into account the three-dimensional pile-soil interaction.  Considerable 

judgment is required for using the p-y curves to predict proper pile response; in fact, analyses 

using the standard p-y curves often are reported to have failed to predict the actual pile load-

deflection response (Yan and Byrne 1992, Anderson et al. 2003, Kim et al. 2004).  For example, 

Figure 1-11 (adapted from Kim et al. 2004) compares the p-y curves obtained from back 

calculation of the results of model tests on steel piles installed in Nak-Dong river sand, as 

reported by Kim et al. (2004), with the standard p-y curves for sands proposed by Reese et al. 
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(1974), O’Neill and Murchinson (1983) and Wesselink et al. (1988) that are used in design.  The 

figure clearly shows the deficiency of the standard p-y curves in producing reliable designs. 
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Figure 1-11 Comparison of Pile Resistance p versus Normalized Pile Deflection y/D (D is the 
Pile Diameter) Curves Obtained from Model Tests with the Standard Curves Available for 

Design (Adapted from Kim et al. 2004) 

The finite element method, in its three-dimensional form, has the potential for producing 

realistic results for laterally loaded piles if appropriate soil constitutive relationships are used and 

if appropriate elements and domains are chosen for the soil and the pile.  However, the enormous 

computation time and resources required for such an analysis prohibit practitioners from using 

finite elements in routine design. 

An ideal method of analysis should have the rigor of a three-dimensional continuum 

approach, but should produce results as quickly as the beam-on-foundation approach.  This is 

precisely the aim of this research.  We hypothesize that a continuum-based, three-dimensional 

analysis can be developed for laterally loaded piles that rigorously relates the overall resistance 

of a soil mass to the soil constitutive relationship (i.e., stress-strain relationship).  The analysis 

would take into account the actual pile-soil interaction and add up the resistances of each soil 

element to produce the total soil resistance.  Consequently, the nonlinear properties of soil would 

be explicitly used to produce the nonlinear pile response, and the p-y curves would no longer be 
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required.  We further envisage connecting the continuum-based analysis to the to the beam-on-

foundation approach so that the ordinary differential equation of the beam-on-foundation 

approach can be used to quickly obtain pile deflection.  A particular aim is to develop the 

solutions in closed form so that expensive computer resources, essential for numerical analyses 

(e.g., by using finite elements), can be avoided. 

1.7. Scope of Present Study 

We develop a method of analysis of a laterally loaded pile embedded in a multi-layered 

soil medium and subjected to a horizontal force and moment at the pile head.  Only static 

response is considered.  We focus on serviceability and settlement-based limit states; i.e., we 

develop an analysis by which pile deflections can be predicted for the initial stages of loading 

(typically, a maximum pile-head deflection of the order of 25 mm is used as the criterion for 

serviceability limit state).  The research starts with the development of a general framework, 

which shows logically how an improved beam-on-foundation model can be used to effectively 

analyze a laterally loaded pile embedded in a multi-layered soil.  Then a continuum-based 

analysis is performed, which rigorously connects the properties of the three-dimensional 

continuum surrounding the pile to those of the soil springs, so that a one-to-one correspondence 

between the continuum-based approach and the beam-on-foundation approach can be established.  

The analysis is subsequently improved to incorporate the nonlinear stress-strain relationships of 

soils in the model.  Finally, a method for pile group analysis of is presented. 

In chapter 2, the pile is modeled as a beam resting on a multi-layered elastic foundation 

and solution for pile deflection is obtained analytically by using the method of initial parameters.  

In chapter 3, an elastic continuum model is introduced which is subsequently modified to 

incorporate soil nonlinearity in chapter 4.  In chapter 5, we extend the analysis to pile groups. 

Finally, in chapter 6, we consolidate the research findings and propose future extensions of the 

research. 
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CHAPTER 2. LATERALLY LOADED PILE IN LAYERED ELASTIC MEDIUM: A BEAM-
ON-ELASTIC-FOUNDATION APPROACH 

2.1. Introduction 

In this chapter, we derive the governing differential equations for deflection of laterally 

loaded piles using a beam-on-elastic-foundation approach.  Such an approach illustrates how 

simple idealizations of the statics and kinematics of pile-soil interaction can be used to model a 

laterally loaded pile as a beam resting on a foundation comprising of a series of springs.  We 

derive the equations for multi-layered, elastic foundations.  Then we obtain the analytical 

solutions for pile deflection, slope of the deflected curve (elastic curve), bending moment and 

shear force within each layer by using the method of initial parameters.  Finally we discuss the 

modifications of the analytical solutions required for applying the solutions to long piles. 

2.2. Overview 

The beam-on-foundation model has been used in the past to analyze the response of 

laterally loaded piles (Broms 1964a, b, Matlock and Reese 1960, Fleming et al. 1992, Bowles 

1997).  Generally, a one-parameter foundation model represented by k is considered (k being the 

spring constant per unit pile/beam length), although a two parameter model (which includes the 

shear parameter t in addition to k) can also be used. 

In order to account for soil nonlinearity, modification of the linear one-parameter model 

has been done by replacing the linear Winkler springs with nonlinear springs (McClelland and 

Focht 1958).  For nonlinear springs, the spring constant k (per unit pile or beam length) depends 

on the pile (beam) deflection w (in general, the value of k decreases with increasing w).  Hence, 

the soil reaction per unit length p = kw does not increase linearly with w.  The nonlinear 

modification of the one-parameter model culminated in the development of the p-y method 

(Reese and Cox 1969, Matlock 1970, Reese et al. 1974, 1975, Reese and Van Impe 2001).  In the 

p-y method, k is no longer given as input (as a function of w); the nonlinear relationship of k (or 
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p) with w are given as inputs to the analysis in the form of p-w curves, which are widely known 

in the literature as “p-y” curves. 

The one-parameter model assumes that the springs do not interact.  This implies that the 

soil mass has only compressive resistance.  Furthermore, the concentration of the load response 

at spring locations implies that there is no deflection beyond the loaded region (i.e., anywhere 

where there are no springs).  In reality, both compression and shearing develop within the soil 

mass; consequently, deflections spread out beyond the loaded region (Figure 2-1).  Thus, the 

one-parameter model cannot properly model the interaction between the pile and the soil.  

Different researchers have proposed different two-parameter models; these models result in the 

same differential equation but the interpretation of the second parameter t is different in each of 

the models (Kerr 1964, Zhaohua and Cook 1983).  Unfortunately, the two-parameter foundation 

model has rarely been used for laterally loaded pile analysis; on one occasion, Georgiadis and 

Butterfield (1982) assumed a two-parameter model to couple nonlinear soil shear force with the 

p-y method. 

 Beam

Foundation 
Springs  

                                                                      (a) 

Beam 

Ground 
 

                                                                     (b) 

Figure 2-1 (a) Deflection Predicted by One-Parameter Model; (b) Actual Deflection Profile  
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Another analysis approach is available in which the pile is treated as an Euler-Bernoulli 

beam and the surrounding soil mass is treated as an elastic continuum with a simplified 

assumption on the displacement field (Sun 1994a, Guo and Lee 2001).  The analysis finally 

produces equations that are the same as the two-parameter-model equations.  Thus, all these 

(one-parameter, two-parameter or continuum) approaches finally result in similar fourth-order 

differential equations, with pile deflection w as the variable. 

If the soil is assumed to be linear elastic, then the differential equations are also linear, 

and closed-form solutions for pile deflection can be obtained by solving the differential 

equations with proper boundary conditions.  In the case of nonlinear soils, the equations are 

nonlinear, and numerical methods like the finite element method or the finite difference method 

are generally used to solve the problem.  This applies equally to the continuum approach and to 

the p-y method, which is formulated using nonlinear (p-y) springs (McClelland and Focht 1958, 

Stewart 2000).  For linear soils, general solutions of the fourth-order, linear differential equations 

are readily available (Hetényi 1946, Vlasov and Leont’ev 1966), and the four constants of 

integration can be determined from the pile boundary conditions (Sun 1994a, Guo and Lee 

2001). 

Soil layering is an important factor that affects laterally loaded pile response (Basu and 

Salgado 2007a).  Layering has been taken into account approximately in some pile analyses by 

either assuming (typically) a linear variation of k with depth or by proposing different p-y curves 

for different soil depths (Broms 1965, Matlock and Reese 1960, Davisson 1970, Madhav et al. 

1971, Valsangkar et al. 1973, Scott 1981, Ashour et al. 1998, Hsiung 2003).  Such gradual 

variation of soil properties with depth has been assumed in many continuum-based analyses as 

well (Poulos 1973, Randolph 1981, Budhu and Davies 1988, Zhang et al. 2000, Banerjee and 

Davies 1978).  However, in real field situations, discrete soil layers are often present and the 

assumption of linear (or similar) variation of soil properties does not properly represent the 

ground conditions.  Analyses considering explicit layering (i.e., with multiple layers) are rather 

limited.  Davisson and Gill (1963) analyzed a two-layer system using the p-y method.  

Georgiadis (1983) developed a method of developing p-y curves for layered soil profiles.  A few 

continuum-based numerical analyses are also available (Pise 1982, Lee et al. 1987, Veruijt and 

Kooijman1989).  Thus, in order to design laterally loaded piles for practical problems, a method 

of analysis by considering a multi-layered deposit needs to be developed. 
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Although closed-form solutions of the fourth-order differential equation governing 

laterally loaded pile deflection exist for linear-elastic, homogeneous soils (Sun 1994a, Guo and 

Lee 2001), algebraic solutions for piles embedded in multi-layered soil deposits are difficult to 

obtain (albeit theoretically possible) because of the increased number of constants of integration.  

For example, for a four-layer laterally loaded pile problem, there are sixteen constants of 

integration (four constants per layer) that need to be determined algebraically by solving a set of 

sixteen simultaneous equations, arising due to the boundary conditions.   

A finite element analysis using beam elements or a finite difference analysis can be used 

to analyze the problem (Scott 1981, Zhaohua and Cook, 1983, Sun 1994b).  However, as 

described in chapter 3, our analysis requires the calculation of integrals, along depth, of the 

square of pile defection and slope.  These integrations are performed numerically and require 

fine discretization of the pile along its length for accurate results.  Therefore, if finite element or 

finite difference methods are used, the number of discretized pile elements will have to be very 

large resulting in increased computation time.  Thus, obtaining analytical solutions of the pile-

deflection equation is necessary for our analysis.  

We obtain analytical solutions by using the method of initial parameters (MIP), also 

known as the method of initial conditions (Hetényi 1946, Vlasov and Leont’ev 1966, Selvadurai 

1979, Basu and Salgado 2007b), which yields the final analytical solutions without directly 

determining the integration constants.  MIP was originally developed for solving problems of 

beams on elastic foundations (Hetényi 1946, Vlasov and Leont’ev 1966, Harr et al. 1969, Rao et 

al. 1971).  The method is particularly useful when some form of discontinuity exists within the 

span of a beam.  MIP has been applied to problems where the discontinuity is caused due to the 

application of concentrated forces at different points along the span of a beam (Vlasov and 

Leont’ev 1966, Harr et al. 1969, Rao et al. 1971). 

In this chapter, we develop the equations for pile deflection following the beam-on-

elastic-foundation approach by considering both the one-parameter and two-parameter 

foundation models.  This helps us to distinguish between the two models and to identify the 

advantages of the two-parameter model over the one-parameter model.  We then modify the 

existing MIP to account for discontinuities along a pile caused by abrupt change in soil 

properties due to soil layering.  This allows us to obtain analytical solutions for deflection of 

laterally loaded piles embedded in multi-layered elastic soils.  We do not address the issue of soil 
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nonlinearity in this chapter.  However, the framework built in this chapter is subsequently 

improved in chapter 3 by incorporating a rigorous, continuum-based analysis, which culminates 

in the incorporation of soil nonlinearity in chapter 4. 

2.3. Problem Definition 

We consider a pile of constant flexural rigidity EpIp (Ep is the Young’s modulus of the 

pile and Ip is the second moment of inertia of the pile section) and length Lp embedded in a 

multi-layered soil deposit (Figure 2-2).  The soil is assumed to behave as a linear, elastic 

material.  There are n horizontal soil layers, with the bottom (nth) layer extending to infinity 

downward.  The vertical depth to the bottom surface of any intermediate layer i is Hi, which 

implies that the thickness of layer i is Hi − Hi−1 with H0 = 0.  The pile top (head) is at the level of 

the ground surface.  The bottom (base) of the pile is considered embedded in the nth layer.  The 

pile is acted upon by a horizontal force Fa and moment Ma at the pile head.  

We assume a right-handed Cartesian coordinate system x-y-z with its origin at the center 

of the pile head such that the z axis coincides with the pile axis and the x-z plane coincides with 

the plane of the paper.  The force Fa acts in the x direction and lies on the x-z plane.  The moment 

Ma, when expressed as a vector following the right-hand cork screw rule, acts into the plane of 

the paper (i.e. opposite y-direction).  The bending of the pile takes place in the x-z plane. 

2.4. Differential Equation and Boundary Conditions 

The pile is modeled as an Euler-Bernoulli beam.  Considering the equilibrium of a pile 

cross section, as it bends under the action of the applied loads (Figure 2-3), we arrive at:  

n
p

Mx
I

σ =  (2-1) 

where σn is the normal stress within the pile in the direction of the pile axis (i.e., z-axis); x 

is the distance of the point (from the pile cross-section neutral axis) at which the normal stress σn 

acts; M = M(z) is the bending moment acting at the cross section (the positive sign convention 

for M is shown in Figure 2-4).  The corresponding normal strain (assuming compression 

positive) in the pile cross section can be obtained from equation (2-1) as: 
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Figure 2-2 (a) A Laterally Loaded Pile in a Layered Soil Medium  

n
p p

Mx
E I

ε =  (2-2) 

Considering the kinematics of the pile, we develop the following equation: 
2

2
i nd w

dz x
ε

=  (2-3) 

where wi = wi(z) is the lateral pile deflection at a depth z (at a level corresponding to the 

ith layer) from the pile head. 

Combining the statics and kinematics, we get (for the ith layer): 
2

2
i

p p i
d wE I M
dz

=  (2-4) 

As we go down the pile by an infinitesimal distance dz, the shear force Sp = Sp(z) on the 

pile cross section increases by dSp (the positive sign convention for Sp is shown in Figure 2-4).  
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Since the surrounding soil mass offers resistance to pile movement (Figure 2-3), the rate at which 

the shear force in the pile section increases over an infinitesimal length dz can be related to the 

soil resistance p = p(z) (produced by a “soil column” (Figure 2-3) of infinitesimal thickness dz) 

acting on the element (Figure 2-4). 
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Figure 2-3 Pile-Soil Interaction 

The soil resistance p is a continuous, distributed force (per unit length) acting along the 

pile shaft in the negative w(z) direction.  The total soil resistance p against pile movement has 

contributions from both the soil compressive resistance pc (since, the soil columns are 

compressed as the pile presses against them) and the soil shear resistance ps (since, the soil 

columns slide relative to each other due to differential change in pile deflection with depth) 

(Figure 2-3).  Thus, for any layer i, we get (Figure 2-5): 

i ci sip p p= +  (2-5) 
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Figure 2-5 Equilibrium of Pile and Soil 

The total soil resistance p balances the change in pile shear force dSp over an infinitesimal 

length dz and keeps the pile element in equilibrium (Figure 2-5).  Therefore, considering the 
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force equilibrium of the pile element for the ith layer, we get ( ) 0pi pi pi iS S dS p dz− + − = , which 

gives: 

pi idS p dz= −  (2-6) 

The increase dMi in the bending moment over the infinitesimal distance dz can be related 

to the shear force Spi using moment equilibrium of the pile element (Figure 2-5) as 

( ) 0
2i i pi i
dzM M dM S dz p dz− + + − + = .  Neglecting the higher order term we get: 

i pidM S dz=  (2-7) 

Equations (2-6) and (2-7) yield: 

pi
i

dS
p

dz
= −  (2-8) 

and 

i
pi

dM S
dz

=  (2-9) 

Using equations (2-8) and (2-9), equation (2-4) can be rewritten as: 
4

4
i

p p i
d wE I p
dz

= −  (2-10) 

Let us now consider the equilibrium of a soil column of infinitesimal thickness dz at a 

depth z as shown in Figure 2-5.  As mentioned before, the soil resistance pc develops because of 

the compressive resistance of the soil column.  Thus, in order to model the compressive 

resistance, the soil column can be replaced by an equivalent “soil spring” that reproduces the 

same compressive resistance.  Consequently the part pc of the soil resistance in the ith layer can 

be expressed as: 

ci i ip k w=  (2-11) 

where ki is the spring constant (FL−2). 

The soil columns move by different amounts as the pile deflects and bends in order to 

maintain displacement compatibility (Figure 2-3).  Since soil offers resistance against shearing, 

shear forces are developed at the interfaces of adjacent soil columns due to their relative motion.  

The relative motion is not a constant with depth because the pile slope θ ( )dw dz=  (i.e., the rate 

at which the pile deflection changes from one depth to another) is not a constant.  Consequently, 
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the soil shear force Ss = Ss(z) is a function of z.  As we move by an infinitesimal distance dz, the 

soil shear force increases from Ss to Ss + dSs (the positive sign convention of Ss is given in Figure 

2-4).  The change in the soil shear force dSs over a distance dz is balanced by the soil resistance 

ps (Figure 2-5).  Thus, considering the equilibrium of a soil element in the ith layer we get 

( ) 0si si si sip dz S S dS+ − + = , which, along with equation (2-5) gives: 

( ) ( )si si i ci i i idS p dz p p dz p k w dz= = − = −  (2-12) 

The average soil shear stress arising from the soil shear force Ssi can be related to the 

corresponding engineering shear strain γs as: 

1
2

si si
s

si e i

S S
G A t

γ = =  (2-13) 

where Gsi is the average soil shear modulus in the ith layer; Ae is an equivalent area in the soil that 

relates the soil shear force to the corresponding average soil shear stress; and ti is the soil shear 

parameter, which is related to the soil shear modulus (ti has a unit of force).  The engineering 

shear strain γs is also equal to the negative of the pile slope i
i

dw
dz

θ =  (a positive shear strain in 

the soil column causes a negative pile slope because of the sign convention for soil shear force 

shown in Figure 2-3).  Therefore, from equation (2-13), we get: 

2 i
si i

dwS t
dz

= −  (2-14) 

Using equations (2-12) and (2-14) we get: 
2

22 i
i i i i ci si

d wp k w t p p
dz

= − = +  (2-15) 

The above equation also follows from the continuum model, as will be seen in chapter 3, if some 

simplifying assumptions regarding the soil displacement fields are made. 

In the case of the one-parameter model, the shear resistance of soil is neglected (i.e., ti = 

0, which means psi = 0).  Consequently, using equations (2-10) and (2-15) with psi = 0, we get: 
4

4 0i
p p i i

d wE I k w
dz

+ =  (2-16a) 

In the case of the two-parameter model or the continuum model, in which the soil shearing 

resistance is taken into account, we get from equations (2-10) and (2-15):   



 35

4 2

4 22 0i i
p p i i i

d w d wE I t k w
dz dz

− + =  (2-17a) 

Equations (2-16a) and (2-17a) are the governing differential equations for pile deflection 

considering the one-parameter and the two-parameter (or the continuum) models, respectively. 

The bending moment at any pile section at a depth z is expressed in terms of pile 

deflection in equation (2-4).  The shear force on any horizontal plane (which passes through both 

the pile and the soil) at any depth is the sum of the shear force Sp acting in the pile section and 

the shear force Ss acting in the soil.  The shear force Sp in the pile section can be expressed in 

terms of pile deflection using equations (2-4) and (2-7) as: 

 
3

3
i i

pi p p
dM d wS E I
dz dz

= =  (2-18) 

The soil shear force Ss is expressed in terms of pile deflection in equation (2-14).  Hence, 

the total shear force S at any depth z within the ith layer can be expressed as:  

dz
dwt

dz
wdIESSS i

i
i

ppsipii 23

3

−=+=  (2-19) 

In the case of the one-parameter model, Ssi in the above equation is equal to zero (ti = 0); thus, 

the one-parameter model does not take into account the shear resistance of soil.  The soil 

resistance pi is given by equation (2-11) for the one-parameter model and by equation (2-15) for 

the two-parameter (or continuum) model. 

In an Euler-Bernoulli beam, the deflection, slope, bending moment and shear force is 

continuous along its span.  In order to satisfy equilibrium at the beam ends (boundaries), any 

applied concentrated force (or reaction force) at the ends must be equal to the shear force at the 

corresponding sections (or the negative of the shear force, depending on the choice of sign 

convention).  Similarly, any applied concentrated moment (or moment generated as a reaction 

due to restraints in rotation) at the ends must be equal to the bending moment at the 

corresponding sections (or the negative of the bending moment, depending on the choice of sign 

convention).  In the case of laterally loaded piles, this is also true.  These continuity and 

equilibrium requirements produce the boundary conditions for the governing differential 

equations (2-16a) and (2-17a). 

For our problem, the boundary conditions for equations (2-16a) and (2-17a) at the pile 

head (z = 0) are: 
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3
1 1

13
0

2p p a

z

d w dwE I t F
dz dz

=

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
 (2-20a) 

and   

1

0

0
z

dw
dz =

=  (2-21a) 

or 
2

1
2

0
p p a

z

d wE I M
dz

=

=  (2-22a) 

At the interface between the ith and (i + 1)th  layer (i.e., at z = Hi), the boundary conditions 

are:  

1
i i

i iz H z H
w w += =

=  (2-23a) 

1

i i

i i

z H z H

dw dw
dz dz

+

= =

=  (2-24a) 

2 2
1

2 2

i i

i i

z H z H

d w d w
dz dz

+

= =

=  (2-25a) 

3 3
1 1

13 32 2
i i

i i i i
p p i p p i

z H z H

d w dw d w dwE I t E I t
dz dz dz dz

+ +
+

= =

⎡ ⎤ ⎡ ⎤
− = −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (2-26a) 

At the pile base (z = Lp) the boundary conditions are: 

0
p

n z L
w

=
=  (2-27a) 

or 
3

13 2 2
p

p

n n
p p n n n n z L

z L

d w dwE I t k t w
dz dz + =

=

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
 (2-28a) 

and 

0
p

n

z L

dw
dz =

=  (2-29a) 

or 
2

2 0
p

n

z L

d w
dz

=

=   (2-30a) 
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with ti = 0 for the one-parameter model. 

Equation (2-20a) states that, at the pile head, the shear force is equal to the applied 

horizontal force.  The direction of the applied force Fa produces a positive shear force at the pile 

head.  For two-parameter models, the shear force in the pile section and the shear force in the soil 

have to be considered together.  Equations (2-21a) and (2-22a) state that at the pile head either 

the slope is equal to zero (this is the fixed-head condition, which might occur if a pile cap is 

present that may be considered to completely restrain pile head rotation) or the bending moment 

is equal to the applied moment (this is the free-head condition, which occurs when there is no 

pile cap present and the pile head is free to rotate).  The direction of the applied moment Ma 

produces a positive bending moment at the pile head.  Equations (2-23a) through (2-26a) ensure 

the continuity of the deflection, slope, bending moment and shear force across adjacent layers.  

Equations (2-27a) and (2-28a) state that, at the pile base, either the deflection is equal to zero 

(this is the fixed-base condition, which may be assumed to occur when the pile is socketed into a 

very firm layer, like rock) or the shear force just above the base of the pile is equal to the shear 

force just below the base.  It is worth mentioning here that, for the two-parameter or the 

continuum model, the shear force just below the pile base is equal to 12
p

n n n z L
k t w+ =

 (equation 

(2-28a)) as will be seen in chapter 3 (tn+1, defined in chapter 3, quantifies the shear force at the 

pile base produced by the soil column that starts immediately below the pile and extends to 

infinity downward and has the same cross section as the pile).  For the one-parameter model (ti = 

0), the shear force just below the pile base is equal to zero (which does not represent the real 

field condition and is a limitation of the one-parameter model).  Equations (2-29a) and (2-30a) 

state that, at the pile base, either the slope is zero (valid for fixed-base condition) or the bending 

moment is zero (this is the free-base condition which might occur if the pile base floats in a soft 

layer of soil). 

Equations (2-16a) and (2-17a) are normalized with respect to the length Lp of the pile so 

that the results are applicable to any field conditions.  We accomplished this by introducing the 

dimensionless variables z  = z/Lp and w = w/Lp (note that pdz dz L= ).  The relationships of the 

successive differentiations of the normalized deflection function w(z ) with respect to the 

normalized space (independent) variable z with those of the original variables with dimensions 

are given by: 
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1
p

p p

dw d w dz dw dwL
dz dz L dz L dz dz

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠
 (2-31a) 

2 2

2 2p p
d w d dw dz d dw d wL L
dz dz dz dz dz dz dz

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2-31b) 

3 2 2 3
2

3 2 2 3p p p
d w d d w dz d d w d wL L L
dz dz dz dz dz dz dz

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2-31c) 

4 3 3 4
2 3

4 3 3 4p p p
d w d d w dz d d w d wL L L
dz dz dz dz dz dz dz

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2-31d) 

Using the above relationships in equations (2-16a) and (2-17a), we get the normalized 

form of the governing differential equations for the one-parameter and the two-parameter (or 

continuum) models as: 
4

4 0i
i i

d w k w
dz

+ =  (2-16b) 

4 2

4 22 0i i
i i i

d w d wt k w
dz dz

− + =  (2-17b) 

where  
4

i p
i

p p

k L
k

E I
=  (2-32) 

2
i p

i
p p

t L
t

E I
=  (2-33) 

The slope i
i

dw
dz

θ = , bending moment Mi (equation (2-4)), shear force Si (equation 2-19) 

and soil resistance pi (equation (2-15)) (in the ith layer) are respectively normalized and 

expressed in terms of the normalized pile deflection wi using the relationships given by equations 

(2-31a) through (2-31c) as: 

zd
wd i

i ~
~~

=θ  (2-34) 

2

2

~
~~

zd
wd

IE
LM

M i

pp

pi
i ==  (2-35) 
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zd
wdt

zd
wd

IE
LS

S i
i

i

pp

pi
i ~

~~2~
~~
3

32

−==  (2-36) 

3 2

22i p i
i i i i

p p

p L d wp k w t
E I dz

= = −  (2-37) 

The applied force and moment can be similarly normalized as: 

pp

pa
a IE

LF
F

2~ =  (2-38) 

pp

pa
a IE

LM
M =~  (2-39) 

The normalized boundary conditions for equations (2-16b) and (2-17b) at the pile head (z  

= 0) are: 
3

1 1
13

0

2 a

z

d w dwt F
dz dz

=

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
 (2-20b) 

and   

1

0

0
z

dw
dz =

=  (2-21b) 

or 
2

1
2

0
a

z

d w M
dz

=

=  (2-22b) 

At the interface between the ith and (i + 1)th  layer (i.e., at z = Hi; where Hi = Hi/Lp), the 

boundary conditions are:  

1
i i

i iz H z H
w w += =

=  (2-23b) 

1

i i

i i

z H z H

dw dw
dz dz

+

= =

=  (2-24b) 

2 2
1

2 2

i i

i i

z H z H

d w d w
dz dz

+

= =

=  (2-25b) 

3 3
1 1

13 32 2
i i

i i i i
i i

z H z H

d w dw d w dwt t
dz dz dz dz

+ +
+

= =

⎡ ⎤ ⎡ ⎤
− = −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (2-26b) 

At the pile base (z = 1) the boundary conditions are: 
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1
0n z

w
=
=  (2-27b) 

or 
3

13 1
1

2 2n n
n n n n z

z

d w dwt k t w
dz dz + =

=

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
 (2-28b) 

and 

1

0n

z

dw
dz =

=  (2-29b) 

or 
2

2
1

0n

z

d w
dz

=

=   (2-30b) 

with ti = 0 for the one-parameter model.  Note that the normalized shear force at the pile 

base, for the two-parameter or the continuum model, is equal to 1 1
2 n n n z

k t w+ =
 (equation (2-

28b)) as we will show in chapter 3. 

2.5. General Solutions 

The general solution for both equations (2-16b) and (2-17b) is: 

4
)(

43
)(

32
)(

21
)(

1)~(~ Φ+Φ+Φ+Φ= iiii
i CCCCzw  (2-40) 

where, ( )
1

iC , ( )
2

iC , ( )
3

iC  and ( )
4

iC are integration constants for the ith layer; and Φ1, Φ2, Φ3 and Φ4 

are functions of z that are individual solutions of the differential equation (2-16b) or (2-17b).  

The above general solution is not valid for long piles; we discuss the solution procedure for long 

piles later in the chapter.   

Assuming a general solution of the form ( ) mzw z e= , the auxiliary equation corresponding 

to equation (2-16b) is given by: 
4 0im k+ =  (2-41) 

Solution of equation (2-41) produces 2
im k= ± − .  Introducing the imaginary unit i with 

the property i2 = − 1, we can write 2
im i k= ± , which produces im i k= ± ± .  Therefore, m 
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can be expressed as a complex number of the form m a ib= + , which yields 

2 2 2 2 im a b abi i k= − + = ± .  Since the real and imaginary part of a complex number are 

independent of each other, we get 2 2 0a b− =  and 2 iab k= ± .  These two equations, when 

solved simultaneously, produce 4 4ia b k= ± = ± . Thus, we get 

( ) ( ) ( ) ( ){ }4( ) cos sin cos 4 sin 4 .
ik za ib zmz az ibz az

i iw z e e e e e bz i bz e k z i k z
±+= = = = + = ± + ± The 

four possible combinations of signs of a and b produce the functions Φ1, Φ2, Φ3 and Φ4 (which 

are individual solutions of equation (2-16b)) as combinations of trigonometric and exponential 

(or hyperbolic) functions as given in Table 2-1. 

The auxiliary equation corresponding to equation (2-17b) is 
4 22 0i im t m k− + =  (2-42) 

Solution of equation (2-42) produces 2
i i im t t k= ± ± − , which leads to three 

conditions: 1) ki > ti2, 2) ki < ti2 and 3) ki = ti2.  Since condition 3) can occur only under very 

special conditions (when the numerical value of the square of ki exactly equals the numerical 

value of ti), we deal with the first two conditions only.  Condition 1) makes m a complex number 

of the form m a ib= + , similar to the case of equation (2-41), so that 

2 2 2 22 i i im a b abi t i k t= − + = ± − , which yields 2 2
ia b t− =  and 22 i iab k t= − .  Solving these 

two equations simultaneously gives the expressions for a and b, which are given in Table 2-1.  

Since m is complex, Φ1, Φ2, Φ3 and Φ4 are again combinations of trigonometric and hyperbolic 

functions.  To satisfy condition 2), m does not require an imaginary part; consequently, Φ1, Φ2, 

Φ3 and Φ4 are exponential or hyperbolic functions.  Table 2-1 gives the detailed expressions for 

the functions Φ1, Φ2, Φ3 and Φ4 as solutions to both equations (2-16b) and (2-17b). 

The constants ( )
1

iC , ( )
2

iC , ( )
3

iC  and ( )
4

iC need to be determined for different boundary 

conditions.  However, for multi-layered soil deposits, obtaining algebraic expressions of these 

constants is extremely tedious.  We avoid such algebra by using the method of initial parameters. 
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Table 2-1 Functions in Equation (2-40) for Piles Crossing Multiple Soil Layers 

C
on

st
an

ts
 a

 a
nd

 b
  

Individual Solutions of Equation (2-17b) 
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Φ zbza ~cos~sinh
 

zbza ~cos~cosh
 

zbza ~sin~cosh
 

zbza ~sin~sinh
 

Φ′ 42 Φ−Φ ba  31 Φ−Φ ba  24 Φ+Φ ba  13 Φ+Φ ba  

Φ″ 
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22 Φ− ba

32 Φ− ab  
( ) 2
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Note 1: For the individual solutions of equation (2-16b) (i.e., for the one-parameter model), the 

functions Φ1, Φ2, Φ3 and Φ4 are the same as for the case k > t 2 in Table 2-1, but 4 4a b k= = . 

Note 2: cosh , sinh
2 2

 
az az az aze e e eaz az

− −+ −
= = . 
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2.6. Method of Initial Parameters 

We first outline the conceptual basis for MIP and then illustrate how it works for laterally 

loaded piles embedded in a layered soil.  We illustrate the method for the two-parameter model 

(or the continuum model) for ki > ti2.  The method is also applicable for ki ≤ ti2 and for the one-

parameter model, but it is sufficient to demonstrate the method for the case of ki > t i2. 

For the case of ki > t i2, each of the functions Φ1, Φ2, Φ3 and Φ4 is a product of a 

trigonometric by a hyperbolic function, as shown in Table 2-1.  Successive differentiations of 

these functions with respect to z are also given in Table 2-1; these derivatives are required for 

obtaining the final solution for the laterally loaded-pile problem.  

Let us first consider the top layer (n = 1).  The following equations express the 

normalized deflection w(z), slope (equation (2-34)), bending moment (equation (2-35)) and shear 

force (equation (2-36)) for the top layer in terms of Φ1, Φ2, Φ3 and Φ4 as (see Table 2-1 under k 

> t2 for the differentiations of Φ1, Φ2, Φ3 and Φ4):   

443322111
~ Φ+Φ+Φ+Φ= CCCCw    (2-43) 

( ) ( ) ( ) ( )1342433124211
~

Φ+Φ+Φ+Φ+Φ−Φ+Φ−Φ= baCbaCbaCbaCθ  (2-44) 

( ){ } ( ){ }42
22

231
22

11 2 2 ~ Φ−Φ−+Φ−Φ−= abbaCabbaCM  

( ){ } ( ){ }24
22

413
22

3 2 2                       Φ+Φ−+Φ+Φ−+ abbaCabbaC  (2-45) 

( ) ( ){ } ( ) ( ){ }3
22

1
22

24
22

2
22

11  3 3  3 3 ~
Φ−+Φ−+Φ−+Φ−= abbbaaCabbbaaCS  

       ( ) ( ){ } ( ) ( ){ }1
22

3
22

42
22

4
22

3  3 3  3 3      Φ−−Φ−+Φ−−Φ−+ abbbaaCabbbaaC   

      ( ) ( ) ( ) ( ){ }1342433124211  ~2     Φ+Φ+Φ+Φ+Φ−Φ+Φ−Φ− baCbaCbaCbaCt  (2-46) 

where the constants C1, C2, C3 and C4 and the functions Φ1, Φ2, Φ3 and Φ4 are valid for layer 1 

(0 ≤ z ≤ H1).  Let the normalized pile deflection, slope, bending moment and shear force at the 

pile head (i.e., at z = 0) be (1)
0w , (1)

0θ , (1)
0M and (1)

0S , respectively.  If we substitute z = 0 in 

equations (2-43) through (2-46) (note that, for z = 0, Φ1 = Φ3 = Φ4 = 0 and Φ2 = 1), then we can 

express (1)
0w , (1)

0θ , (1)
0M and (1)

0S as: 

(1)
0 2w C=  (2-47) 

(1) 1
0 1 3

0z

dw C a C b
dz

θ
=

= = +  (2-48) 
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( ) ( )
2

(1) 2 21
0 1 42

0

2
z

d wM C a b C ab
dz

=

= = − +  (2-49) 

( ) ( ) ( )
3

(1) 2 2 2 21 1
0 1 1 3 1 1 33

0

2 3 3 2
z

d w dwS t C a a b C b b a t C a C b
dz dz

=

⎡ ⎤
= − = − − − − +⎢ ⎥
⎣ ⎦

 (2-50) 

Solving equations (2-47) through (2-50) simultaneously for C1, C2, C3 and C4 yields: 

( ){ }
( )

2 2 (1) (1)
1 0 0

1 2 2

3 2

2

a b t S
C

a a b

θ− − −
=

+
 (2-51) 

(1)
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− −
= −  (2-54) 

If we now substitute C1, C2, C3 and C4 in equations (2-43) through (2-46), we get the 

expression for pile displacement, slope, bending moment and shear force in the top layer as: 
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 (2-58) 

Thus, the normalized pile deflection, slope, bending moment and shear force can be 

expressed in terms of (1)
0w , (1)

0θ , (1)
0M and (1)

0S along with some known functions of Φ1, Φ2, Φ3 

and Φ4.  If (1)
0w , (1)

0θ , (1)
0M and (1)

0S are known, then we can determine the deflection, slope, 

bending moment and shear force at any point within the first layer.  This is the basic idea behind 

the method of initial parameters.  The quantities (1)
0w , (1)

0θ , (1)
0M and (1)

0S  are called the initial 

parameters for the first layer; the corresponding section of the pile (z = 0 in this case) is called 

the initial section.  The expressions in square brackets, containing Φ1, Φ2, Φ3 and Φ4, associated 

with the initial parameters, are called the influence functions or influence coefficients.   

Any section within the first layer can be chosen as the initial section and equations 

similar to equations (2-55) through (2-58) can be obtained.  The expressions for the influence 

coefficients will change if a different initial section is chosen.   
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Extending the method to account for multi-layered soil, we can state that the normalized 

deflection iw~ , the slope iθ , the bending moment iM  and the shear force iS  within any layer i 

can be expressed as: 
)()(
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where )(
0

~ iw , )(
0

~ iθ , )(
0

~ iM and )(
0

~ iS  are the initial parameters of the ith layer.  Each layer requires its 

own initial section.  The influence coefficients are denoted by K’s.  If the initial parameters and 

the influence coefficients are known for a layer, then the deflection, slope, bending moment, and 

shear force can be obtained as a function of depth. 

We now illustrate how MIP can be used for layered soil with the help of an example.  We 

consider, for our example, a pile embedded in a three-layer soil medium with ki > ti2 for all the 

layers (Figure 2-6).  There is no restraint at the pile head (i.e., it is free to translate and rotate).  

The same is true for the pile base. 

The first step is to choose an appropriate initial section for each layer.  We choose the 

pile head and base as the initial sections for the top and the bottom (third) layers respectively.  

For the middle (second) layer we choose the upper interface as the initial section.  Thus, the 

initial section for the top layer (layer 1) is at z  = 0.  The four initial parameters are (1)
0w , (1)

0θ , 

(1)
0M and (1)

0S , which are the normalized deflection, slope, bending moment and shear force at z  = 

0.  The initial section for the bottom layer (layer 3) is at z  = 1.  The corresponding initial 

parameters are (3)
0w , (3)

0θ , (3)
0M and (3)

0S .  The initial section for the middle layer (layer 2) is at z 

= H1 with the initial parameters (2)
0w , (2)

0θ , (2)
0M and (2)

0S .   

Next we impose the boundary conditions for the pile head and base on the initial 

parameters for the two end layers.  For a free pile head, equations (2-20b) and (2-22b) are valid; 

this yields: 

aFS ~~ )1(
0 =  (2-63) 

aMM ~~ )1(
0 =  (2-64) 
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For a free pile base, equations (2-28b) and (2-30b) are valid, which yields:  

(3) (3)
0 3 4 02S k t w=   (2-65) 

0~ )3(
0 =M  (2-66) 

Thus, the initial parameters (1)
0S , (1)

0M , (3)
0S and (3)

0M are now known.  The equations for 

the normalized deflection, slope, bending moment and shear force for layers 1 and 3 can now be 

rewritten by substituting the known initial parameters into equation (2-59) through (2-62) (for i = 

1 and 3) as: 

 

z

Ma

Lp

H1 

H2 

Layer 1 

Fa

Pile

x

∞ 

Layer 2 

Layer 3 

 

Figure 2-6 A Laterally Loaded Pile in a Three-Layer Medium 
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MSaMMaMMw KFKMKKwM +++= θθ  (2-69) 

)1()1()1()1(
0

)1()1(
01

~~~~~
SSaSMaSSw KFKMKKwS +++= θθ  (2-70) 
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(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
3 0 0 3 4 0 0 02ww w wS ww ww w K K k t w K w K Kθ θθ θ′= + + = +  (2-71) 

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
3 0 0 3 4 0 0 02w S ww K K k t w K w K Kθ θθ θ θ θθθ θ θ′= + + = +  (2-72) 

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
3 0 0 3 4 0 0 02Mw M MS Mw MM w K K k t w K w K Kθ θθ θ′= + + = +  (2-73) 

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
3 0 0 3 4 0 0 02Sw S SS Sw SS w K K k t w K w K Kθ θθ θ′= + + = +  (2-74) 

where (3) (3) (3)
* * 3 4 *2w w SK K t k K′ = + . Equations (2-67) through (2-70) are valid for layer 1 while 

equations (2-71) through (2-74) are valid for layer 3. 

Now we impose the interface boundary conditions on the initial parameters.  This leads to 

a set of algebraic equations consisting of the unknown influence coefficients and initial 

parameters.  In our example problem, there are two interfaces (z = H1 and z  = H2), and the 

boundary conditions at these interfaces are given by equations (2-23b) through (2-26b) with i = 1 

and 2 for z  = H1 and z = H2, respectively.  There are four equations per interface, resulting in 

eight simultaneous equations, which can be written in matrix form as: 
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 (2-75) 

We refer to equation (2-75) as the “matrix equation”.  In the matrix equation, the first 

four rows are valid at z  = H1 while the remaining four are valid at z  = H2.  If, in equation (2-75), 

we assume that the influence coefficients (K’s) are known, then all the unknown initial 
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parameters for the different layers can be obtained.  Thus, the matrix in the left-hand side of 

equation (2-75) has to be inverted to obtain the initial parameters.  Such inversions were done 

using the LU decomposition method (Chapra and Canale 1998). 

We can determine the influence coefficients for use in equation (2-75) by referring back 

to equations (2-55) through (2-58).  In these equations (1)
0M and (1)

0S  are now replaced by 

aM and aF , respectively, because of the boundary conditions of the example problem given by 

equations (2-63) and (2-64).  Hence, by comparing the coefficients of (1)
0w , (1)

0θ , aM and aF  in 

equations (2-55) through (2-58) with those in equations (2-67) through (2-70), we obtain the 

influence coefficients for layer 1 as: 
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For the second (middle) layer, the following equations need to be solved simultaneously 

in terms of C1, C2, C3 and C4 (note that these constants are different from the constants of layer 

1): 
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( ) ( ) ( ) ( ){ }2 1 2 4 2 1 3 3 4 2 4 3 1     2  t C a b C a b C a b C a bφ φ φ φ φ φ φ φ− − + − + + + +  (2-95) 

where φ1, φ2, φ3 and φ4 are the values of Φ1, Φ2, Φ3 and Φ4, respectively, at the initial section of 

the second layer (i.e., at z  = H1).  After obtaining the expressions of C1, C2, C3 and C4, the same 

procedure as for layer 1 needs to be followed to obtain the influence coefficients of layer 2.  

Similarly, the influence coefficients of layer 3 can be obtained by solving the following 

equations for C1, C2, C3 and C4: 

44332211
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0
~ φφφφ CCCCw +++=    (2-96) 
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( ) ( ) ( ) ( )134243312421
)3(

0
~ φφφφφφφφθ baCbaCbaCbaC ++++−+−=  (2-97) 

( ){ } ( ){ }(3) 2 2 2 2
0 1 1 3 2 2 40 2 2  M C a b ab C a b abφ φ φ φ= = − − + − −  

( ){ } ( ){ }2 2 2 2
3 3 1 4 4 2         2  2C a b ab C a b abφ φ φ φ+ − + + − +  (2-98) 

( ) ( ){ }(3) (3) 2 2 2 2
0 3 4 0 1 2 42 3 3S k t w C a a b b b aφ φ= = − + −    

( ) ( ){ } ( ) ( ){ }2 2 2 2 2 2 2 2
2 1 3 3 4 23 3 3 3           C a a b b b a C a a b b b aφ φ φ φ+ − + − + − − −   

( ) ( ){ } ( ) ( ){2 2 2 2
4 3 1 3 1 2 4 2 1 33 3 2C a a b b b a t C a b C a bφ φ φ φ φ φ+ − − − − − + −         

     ( ) ( )}3 4 2 4 3 1C a b C a bφ φ φ φ+ + + +  (2-99) 

where φ1, φ2, φ3 and φ4 are the values of Φ1, Φ2, Φ3 and Φ4, respectively at z =1. 

Once the influence coefficients are known, the unknown initial parameters are 

determined by solving equation (2-75).  The initial parameters and influence coefficients are then 

used to find the normalized pile deflection, slope, bending moment and shear force at any pile 

section by using equations (2-67) through (2-70) for layer 1, (2-59) through (2-62) for layer 2 

(with i = 2), and (2-71) through (2-74) for layer 3. 

Evidently, MIP can be used for solving problems with any number of layers and for 

different boundary conditions.  It is important to note that the matrix equations for the different 

cases (arising due to soil layering and pile boundary conditions) are different.  However, for a 

given pile head boundary condition, the influence coefficients for the top layer are the same 

irrespective of the number of soil layers and of the boundary conditions at the pile base.  

Similarly, for the bottom layer, the influence coefficients are independent of the number of soil 

layers and of the pile head boundary conditions.  Likewise, for any intermediate layer, the 

expressions of the influence coefficients are the same irrespective of the pile head and base 

boundary conditions and the number of layers present.  This makes the determination of the 

influence coefficient expressions and subsequent programming easy because the expressions for 

the top and bottom layers do not vary from problem to problem if the boundary conditions 

remain the same, and the expressions for intermediate layers are always the same, being also 

independent of the head and base boundary conditions. 
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The influence coefficients and matrix equations for one-, two-, three- and four-layer soil 

deposits have been obtained for all possible boundary conditions (i.e., free or fixed pile head 

with free or fixed pile base).  The expressions are given in Basu (2006). 

2.7. Solution for Long Piles 

2.7.1. General Solution 

Long piles are piles whose response is identical to that of infinitely long piles.  For such 

piles, the boundary conditions at the pile base do not affect the pile response.  Pile response 

depends on the relative magnitudes of the pile and soil stiffness and on the pile geometry (pile 

slenderness ratio).  Depending on such ratios, as illustrated in Figure 2-7, a pile of length 5 m 

may behave as a long pile, while a 10-m-long pile may not.  

Figure 2-7a shows the deflection versus depth profiles of a set of 500-mm-diameter 

concrete piles (Ep = 2.4 × 106 kPa) of lengths 2.5 m, 5 m and 6 m, respectively, embedded in a 

dense sand layer (k = 130 MPa, and t = 7.9 MN).  A horizontal load of 100 kN is applied to all 

the piles at the pile head.  The piles are assumed to be free at the head; however, both free and 

fixed conditions for the base are considered.  It is evident from Figure 2-7a that the deflection 

profile of the 5 m-long pile is independent of the pile base conditions and that the pile behaves as 

a long pile.  This happens because the ground is stiff enough when compared to the pile so that it 

prevents lateral movement of the pile beyond a certain depth hf (= 3.3 m in this example), known 

as the depth of fixity, which is less than the length of the pile.  The 6-m-long pile also behaves as 

a long pile because the depth of fixity remains at 3.3 m, which is less than the pile length (Figure 

2-7a).  However, the response of the 2.5-m-long pile depends on the base condition because the 

pile has a length less than the depth of fixity; consequently, it does not behave as a long pile.   

Figure 2-7b shows the deflection versus depth profile of a 1-m-diameter concrete pile of 

length 10 m, embedded in a soft clay deposit with k = 11.6 MPa and t = 6.8 MN and subjected to 

a 100 kN horizontal load at the head.  The pile head is assumed to be free, while both free and 

fixed conditions are considered for the base.  The deflection profile clearly shows the influence 

of the pile base condition, which is a contrast to the response of the 5-m-long pile of Figure 2-6a 

(note that both the 5-m and 10-m piles have the same slenderness ratio).  This indicates that the 
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10-m-long pile in clay does not behave as a long pile and that the depth of fixity hf is greater than 

the length of the pile.  Thus, the greater the ratio of pile to soil stiffness is, the larger the depth of 

fixity is and the larger the length required for a pile to behave as a long pile is. 

For long piles, the solution given by equation (2-40) must be modified.  This is required 

because, for long piles, the exponential terms with positive exponents (i.e., the terms containing 
aze or bze ) in the functions Φ1, Φ2, Φ3 and Φ4 (Table 2-1) become excessively large for 

sufficiently large z (note that, the stiffer the soil, the greater the values of k, t, a and b are) and 

the solution no longer represents the actual physical problem.  The reason why this happens is 

that, for long piles, the exponential terms with negative exponents (i.e., the terms containing 
aze− or bze− ) become negligible beyond a threshold value of z  and cannot balance the effects of 

the extremely large positive exponential terms.  This makes the general solution unacceptable 

because the pile deflection, and thus the functions Φ1, Φ2, Φ3 and Φ4, should decrease with 

increasing z, while the positive exponential terms produce the opposite result. 

The solution of equation (2-16b) or of equation (2-17b) for k i > ti2, when rewritten by 

uncoupling the positive and negative exponential terms of the hyperbolic functions (Table 2-1), 

leads to: 
( ) ( ) ( ) ( )
1 2 3 4( ) cos sin cos sinaz i i az i i

iw z e C bz C bz e C bz C bz− ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦  (2-100) 

But, as z → 1 (z → Lp), 0~ →iw  (i.e., as the depth z gets closer to the pile base, the 

deflection decreases and approaches a zero value).  This condition can be satisfied only if the 

constants C3
(i) and C4

(i) are each identically equal to zero because, otherwise, the term aze  will 

dominate (i.e., it will increase greatly with increases in z and produce large values of iw~ ).  

Consequently, we get only two functions Φ1 and Φ2, associated with the negative exponent term, 

as the solutions for equation (2-16b) and for equation (2-17b) with ki > t i2.  The solution for 

equation (2-17b) with ki < t i2 can be similarly written by decoupling the positive and negative 

exponents as: 
( ) ( ) ( ) ( )
1 2 3 4( ) i az i bz i az i bz

iw z C e C e C e C e− −= + + +  (2-101) 

Following similar logic as for equation (2-100), the constants C3
(i) and C4

(i) in equation 

(2-101) are zero, and again we get only two functions which contain the negative exponential 

terms.  Thus, for long piles, the general solution can be written as: 
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2
)(

21
)(

1)~(~ Φ+Φ= ii
i CCzw  (2-102) 

The details of the functions Φ1 and Φ2 and their derivatives are given in Table 2-2. 

The reduction of the solution functions from four to two can be explained using linear 

algebra as well.  The arguments az  or bz  of the hyperbolic functions in Table 2-1 have values 

greater than 3 for values of z corresponding to depths greater than the depth of fixity.  For such 

values of arguments, hyperbolic sine and cosine functions give almost identical results (i.e., the 

functions, when plotted, fall on top of each other for arguments greater than 3).  Since functions 

can be treated as vectors in linear algebra, the solution 4
)(

43
)(

32
)(

21
)(

1)~(~ Φ+Φ+Φ+Φ= iiii
i CCCCzw  

can be assumed to represent a vector space (Strang 1988) with the linearly-independent vectors 

Φ1, Φ2, Φ3 and Φ4 (the functions Φ1, Φ2, Φ3 and Φ4 are linearly independent because they are 

solutions of linear differential equations) forming the basis of the four-dimensional vector space.  

However, when two of the functions become equal to the other two (i.e., sinhaz = coshaz and 

sinhbz = coshbz ), there are only two linearly-independent vectors, and the four-dimensional 

solution (vector) space collapses to a two-dimensional space.  Consequently, we need only two 

functions to produce the required solution. 
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Figure 2-7 Piles in (a) Dense Sand and (b) Soft Clay  
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Table 2-2 Functions in Equation (2-102) for Infinitely Long Piles Crossing Multiple Soil Layers 
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Note: For the individual solutions of equation (2-16b) (i.e., for the one-parameter model), the 

functions Φ1 and Φ2 are the same as for the case k > t 2 in Table 2-2, but 4 4a b k= = . 
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2.7.2. Method of Initial Parameters 

Application of MIP to equation (2-102) requires modifications to the method described 

earlier, although the procedure, in principle, is the same.  The solution procedure using MIP is 

simple in case of a homogeneous soil deposit; however, for layered deposits, MIP equations will 

be different depending on the location of the depth of fixity.  For layers deeper than the depth of 

fixity hf (and, indeed, for portions of a layer deeper than it), the MIP equations are not the same 

as the equations derived earlier, which apply to z < hf . 

In order to perform the analysis, it is essential to know whether a pile falls under the 

category of long (infinite) pile or not (i.e., whether or not the depth of fixity is less than the pile 

length).  Such studies for beams on elastic foundations (i.e., whether a beam on elastic 

foundation behaves as an infinite beam so that its boundary conditions do not affect its response) 

have been studied by several authors.  For example, Hetényi (1946) suggested that, for a beam 

on a one-parameter foundation, if the length lb of the beam is greater than π/λb, where 

4 4b b bk E Iλ =  (k is the soil spring constant per unit beam length, Eb is the beam Young’s 

modulus and Ib is the second moment of inertia of beam section), then the beam behaves as an 

infinite beam.  Vesić (1961), on the other hand, suggested that lb should be greater than 5/λb for a 

beam on a one-parameter foundation to behave as an infinite beam.  Similar limits are available 

for beams on two-parameter foundations as well (Vlasov and Leont’ev 1966).  However, these 

limits were obtained by considering some specific examples (with specific loading conditions 

and specific values of foundation parameters) and comparing the responses of beams of different 

lengths for those specific conditions.  Consequently, the limits suggested by these authors are 

applicable to some specific cases; the limits change with loading condition and foundation 

parameters.  Moreover, these limits were obtained for infinite beams for which both the beam 

ends are at infinite distance from the applied loads, while a long laterally loaded pile behaves as 

a semi-infinite beam with only one end far away from the applied loads.  Fleming et al. (1992) 

suggested that the depth of fixity of laterally loaded piles in a one-parameter foundation is 4/λp 

where 4 4p p pk E Iλ = .  Poulos and Davis (1980) suggested that the depth of fixity is 2.5/λp and 

1.5/λp for free-head and fixed-head piles, respectively.  Clearly, there is no consensus in the 

literature regarding the issue, and no limit for the depth of fixity for piles in two-parameter 

foundation is available.  Additionally, these limits for beams and piles were proposed based on 
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the assumption of a homogeneous deposit (i.e., with one value for k and one value for t 

throughout), while, in our case, we have a layered deposit.  For these reasons, these limits, 

proposed for beams and piles, cannot be adapted in our study.  The criterion adapted in this 

thesis to identify depths greater than the depth of fixity (i.e., to identify long piles) is the 

following: if, at any depth z within a layer i, 3ia z >  or 3ib z >  (a value slightly higher but not 

greater than 3.5 can be used as well), then the depth of fixity corresponds to that depth z.  Thus, 

piles longer than that depth behave as long piles.  This criterion is mathematically rigorous, as 

explained before, and is easily applicable for layered media. 

The MIP equations for equation (2-102) can be developed by following a similar 

procedure as was followed before for equation (2-40).  Since there are only two constants now, 

only two initial parameters are required.  For any layer i, the new MIP equations are given by: 

( ) ( ) ( ) ( ) ( )
0 0
i i i i

i ww ww z w K K θθ= +  (2-103) 

( ) ( ) ( ) ( ) ( )
0 0
i i i i

i wz w K Kθ θθθ θ= +  (2-104) 

( ) ( ) ( ) ( ) ( )
0 0
i i i i

i Mw MM z w K K θθ= +  (2-105) 

( ) ( ) ( ) ( ) ( )
0 0
i i i i

i Sw SS z w K K θθ= +  (2-106) 

In order to illustrate how MIP works for long piles, we will again consider the same 

example of a three-layer soil (Figure 2-5) with ki > ti2 for all the layers.  The pile head is assumed 

to be free; however, no condition for pile base is required to be stated explicitly because, for long 

piles, the base is so far away from the influence of the applied force or moment that the 

deflection, slope, bending moment and shear force at the base are all equal to zero.  We will 

further assume that the depth of fixity lies in the second (middle) layer.  In other words, the 

arguments az  and bz  become greater than 3 in the second layer.  Thus, the MIP equations 

corresponding to the top layer, as described before in the example, are all valid, while, for the 

second and the third (bottom) layers new equations need to be developed. 

A point to be noted here is that, although az  and bz  are assumed to become greater than 3 

in the middle layer in this example, they are not necessarily greater than 3 in the bottom layer 

(this can happen if the bottom layer consists of soft or loose soil so that the values of a and b are 

lower than 3).  However, equation (2-102) is still valid for the bottom layer (even if az and bz are 

less than 3) because, once the depth of fixity is reached for any layer, deflections can only 
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decrease with further increase in z (which means that the positive exponential terms should be 

omitted).  

As before, we first choose the initial sections for each soil layer.  For the top layer, the 

pile head is chosen as the initial section.  For the bottom layer, the pile base cannot be chosen as 

the initial section because the corresponding initial parameters (i.e., the deflection and slope at 

pile base) are already known to be zero.  So, for both the middle and the bottom layers, we 

choose the upper interfaces as the initial sections.  Thus, the initial sections in the example are at 

z  = 0 for the top layer, at z = H1 for the middle layer and at z  = H2 for the bottom layer.  The 

initial parameters are (1)
0w , (1)

0θ , (1)
0M and (1)

0S  for the top layer, (2)
0w  and (2)

0θ  for the middle 

layer, and (3)
0w  and (3)

0θ  for the bottom layer. 

Next, we impose the boundary conditions.  Imposing boundary conditions at the pile head 

results in equations (2-63) and (2-64).  This leads to equations (2-67) through (2-70) again 

describing the top layer.  The pile base boundary conditions have already been used up in 

obtaining equation (2-102).  Using the interface boundary conditions at H1 and H2, we get the 

following matrix equation: 
(1) (1) (1)

0
(1) (1) (1)

0
(1) (1) (2) (2) (2)

0
(1) (1) (2) (2) (2)

0
(2) (2) (3)

0
(2) (2) (3)

0

1 0 0 0
0 1 0 0

0 0
0 0

0 0 1 0
0 0 0 1

ww w

w

Mw M Mw M

Sw S Sw S

ww w

w

K K w
K K
K K K K w
K K K K

K K w
K K

θ

θ θθ

θ θ

θ θ

θ

θ θθ

θ

θ

θ

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(1) (1)

(1) (1)

(1) (1)

(1) (1)

0
0

a wM a wS

a M a S

a MM a MS

a SM a SS

M K F K
M K F K
M K F K
M K F K

θ θ

⎡ ⎤− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥
− −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2-107) 

In the above matrix equation, the first four rows are valid at z  = H1 while the remaining two are 

valid at z = H2.     

The influence coefficients can be obtained as before.  Equations (2-76) through (2-91) 

give the influence coefficients for the top layer.  In order to obtain the influence coefficients for 

the middle (second) layer, we refer back to equation (2-102).  The normalized pile deflection, 

slope, bending moment and shear force can be obtained from equation (2-102) and its derivatives 

(see Table 2-2 under k > t  2 for the differentiations of Φ1 and Φ2) as: 

22112
~ Φ+Φ= CCw    (2-108) 

( ) ( )1222112
~

Φ+Φ−+Φ+Φ−= baCbaCθ  (2-109) 
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( ){ } ( ){ }12
22

221
22

12 2 2 ~ Φ−Φ−+Φ+Φ−= abbaCabbaCM  (2-110) 

( ) ( ){ } ( ) ( ){ }122
2

22
22

22
1

22
12  3 3  3 3 ~

Φ−−Φ−−+Φ−+Φ−−= abbbaaCabbbaaCS  

             ( ) ( ){ }1222111  ~2     Φ+Φ−+Φ+Φ−− baCbaCt  (2-111) 

where the constants C1 and C2 are valid for the second layer.  

We solve equations (2-108) and (2-109) for C1 and C2 at the initial section of the second 

layer (i.e., at z  = H1):  

2211
)2(

0
~ φφ CCw +=   (2-112) 

( ) ( )122211
)2(

0
~ φφφφθ baCbaC +−++−=  (2-113) 

where φ1 and φ2 are the values of Φ1 and Φ2 (Table 2-2) at z = H1.  Solving equations (2-112) and 

(2-113), we get: 

( )
( )

(2) (2)
0 1 2 0 2

1 2 2
1 2

w b a
C

b
φ φ θ φ
φ φ
− −

=
+

 (2-114) 

( )
( )

(2) (2)
0 1 2 0 1

2 2 2
1 2

w a b
C

b
φ φ θ φ
φ φ
+ +

=
+

 (2-115) 

Substituting the constants C1 and C2 into equations (2-108) through (2-111) and 

comparing the coefficients of (2)
0w  and (2)

0θ in these four equations with those in equations (2-

103) through (2-106) (with i = 2), we obtain the influence coefficients for the middle layer.  The 

influence coefficients for the bottom layer can be obtained following similar steps, and, in fact, 

the expressions are identical to those of the middle layer (with the exception that φ1 and φ2 are 

the values of Φ1 and Φ2 at z = H2). 

Using the values of the influence coefficients, the unknown initial parameters are 

determined by solving equation (2-107).  The initial parameters and the influence coefficients are 

then used to find the normalized pile deflection, slope, bending moment and shear force at any 

pile section by using equations (2-67) through (2-70) for layer 1 and by using equations (2-103) 

through (2-106) for layers 2 (with i = 2) and 3 (with i = 3), respectively. 

The influence coefficients and matrix equations for up to four layers, with the depth of 

fixity lying in the first, second, third or fourth layers have been obtained for free or fixed pile 

head conditions and can be readily used. 
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MIP can also be used to solve nonlinear problems by the recurring use of the MIP 

equations with different k and t values (when the relationships of k and t versus deflection or 

strain are known), until convergence is attained.  This is illustrated in chapter 8.  So the theory 

we present in this chapter can be the basis for nonlinear analyses that will be capable of handling 

very realistic problems. 

2.8. Example 

One example problem is solved for a laterally loaded pile in a four-layer soil deposit.  

The pile has a length Lp = 20.0 m, radius rp = 0.3 m and modulus Ep = 25 × 106 kN/m2 and is 

acted upon by a lateral force Fa = 300 kN and a moment Ma = 100 kNm at the pile head.  The 

pile is assumed to be free both at the head and at the base.  The soil deposit has four layers with 

H1 = 5 m, H2 = 10 m and H3 = 15 m.  A two-parameter or continuum model with k1 = 56.0 MPa, 

k2 = 140.0 MPa, k3 = 155.0 MPa and k4 = 200.0 MPa, and t1 = 11.0 MN, t2 = 28.0 MN, t3 = 40.0 

MN and t4 = 60.0 MN is assumed.  Figure 2-8(a), (b), (c) and (d) show the pile deflection, 

bending moment, shear force and soil resistance, respectively.  Note that the depth of fixity is at 

about 8 m. 
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Figure 2-8 (a) Deflection, (b) Bending Moment, (c) Shear Force and (d) Soil Resistance of a 
Laterally Loaded Pile 

2.9. Summary 

The governing differential equations and boundary conditions for laterally loaded piles 

embedded in layered elastic media were developed following a beam-on-elastic-foundation 

(c) (d) 

(b) (a) 
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approach.  The method of initial parameters, traditionally used to solve problems of beams on 

elastic foundations, was then modified to obtain analytically the pile deflection, slope, bending 

moment and shear force as functions of depth.  The method was illustrated using an example of a 

laterally loaded pile embedded in a three-layer soil deposit. 
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CHAPTER 3. CONTINUUM ANALYSIS OF LATERALLY LOADED PILE IN LAYERED 
ELASTIC MEDIUM 

3.1. Introduction 

In this chapter, we develop a method of analysis for a laterally loaded pile embedded in a 

multi-layered soil deposit by treating the soil deposit as a three-dimensional, elastic continuum.  

We apply the principle of minimum potential energy to obtain the governing differential 

equations for deflection of pile and displacements in the continuum, after making some 

simplified assumption regarding the displacement field within the elastic medium.  The resulting 

differential equations describing the pile deflection and soil displacements are interdependent, 

showing that the analysis takes explicit account of the soil-structure interaction. 

The differential equations governing the pile deflection function and the boundary 

conditions are exactly the same as the corresponding equations obtained for the two-parameter 

foundation model in chapter 2.  Thus, we show a one-to-one correspondence between the 

continuum-based approach and the beam-on-elastic-foundation approach for laterally loaded 

piles in layered media.  Moreover, the analysis developed in this chapter provides a rational basis 

for the calculation of the parameters k and t for the elastic foundation models described in 

chapter 2.  Because of the correspondence between the two approaches, analytical solutions of 

the pile deflection equations developed in this chapter can be obtained using the MIP, which was 

described in chapter 2. 

3.2. Overview 

The beam-on-elastic foundation approach, outlined in chapter 2, can be efficiently used 

for the analysis of laterally loaded piles in elastic soil if we can readily obtain the values of the 

parameters k and t for different soils.  The spring constant k can be determined from plate load 

tests; but the limitation is that the obtained values of k are not unique because the values depend 

on many factors like the size, shape and flexibility of the plate, depth at which the test is 
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performed and the rate of loading (Selvadurai 1979).  Moreover, a plate load test determines the 

vertical stiffness of ground, whereas, for laterally loaded piles, horizontal stiffness is required.  A 

few laterally loaded plate tests were performed by Georgiadis and Butterfield (1982) to obtain 

both the parameters k and t (and their nonlinear variation with pile deflection) by fitting a two-

parameter foundation-model equation, proposed by Kerr (1964), to the experimental results.  

However, performing such tests for routine projects is uneconomical and is not used in practice.  

Efforts have been made to relate results of the standard penetration test (SPT) and the cone 

penetration test (CPT) with the modulus of subgrade reaction (Anderson and Townsend 2001).  

The pressuremeter test and the dilatometer test can also be used to estimate k; in fact, they have 

been used to develop p-y curves (Gabr et al. 1994, Briaud 1997).  But such correlations are 

empirical and not generally applicable.  Thus, there is no easy and rational way of directly 

determining the value of k or t that is applicable for laterally loaded pile analysis.  In fact, most 

researchers neglect the shear parameter (i.e., assume a one-parameter model).  Some authors, 

based on experience and back calculation of numerical analyses, have proposed some bulk-part 

values (or range of values) of k for different soils (Poulos and Davis 1980, Scott 1981, Bowles 

1997).  Similar empirical approach is adopted to develop the p-y curves as well (Reese and Cox 

1969, Matlock 1970, Reese et al. 1974, 1975). 

Clearly, improvements in estimating the soil parameters are necessary if realistic 

predictions for lateral deflections of piles are to be made.  Such an effort for beams on elastic 

foundations led several authors to develop empirical and semi-empirical relationships between 

the parameter k and the elastic constants of the soil, namely, Young’s modulus Es and Poisson’s 

ration υs (Vesić 1961, Biot 1937).  The advantage of this approach is that the elastic constants 

can be determined with reasonable accuracy from a variety of laboratory and field tests or 

through simple correlations with easily measurable soil properties (Salgado 2008, Bowles 1997, 

Selvadurai 1979), and typical values (or range of values) of the constants for different types of 

soil are available in the literature (Selvadurai 1979, Rao 1998, Bowles 1997).  However, the 

available relationships relating k with Es and υs for beams are semi-empirical, and although 

modifications of these expressions for laterally piles are available (Francis 1964, Hsiung and 

Chen 1997, Ashford and Juirnarongrit 2003), these relationships are restrictive in their 

applicability and not rigorous enough to be used reliably in design. 
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A rational method of analysis of beams on elastic foundations was developed by Vlasov 

and Leont’ev (1966) based on an elastic continuum approach.  Their analysis rigorously related 

the two parameters k and t with the soil elastic constants Es and υs using variational principles.  

These relationships are valid for any generalized loading and for all boundary conditions.  In 

their analysis, Vlasov and Leont’ev (1966) considered only vertical displacement within the 

continuum (displacements in the horizontal directions were assumed to be zero) and expressed 

the displacement as a product of two separable functions; an unknown function describing the 

beam deflection and a known function describing the variation of displacement within the 

continuum.  Applying the principle of virtual work, Vlasov and Leont’ev (1966) obtained the 

governing differential equation for the beam deflection function, which is exactly the same as the 

equation for the two-parameter foundation.  Improvement to this analysis was done by Rao et al. 

(1971), who considered non-zero horizontal displacement in the foundation. 

Vlasov and Leont’ev (1966) had assumed a known function that described the variation 

of displacement with depth within the continuum.  Vallabhan and Das (1988), (1991), following 

a methodology adapted by Jones and Xenophontos (1977) for analyzing plates on elastic 

foundations, improved the analysis of Vlasov and Leont’ev (1966) by letting the spatial function 

be unknown to begin with, and then rigorously determined the function using variational 

principles.  This analysis framework was adapted by Sun (1993), (1994a), who applied it to 

laterally loaded piles embedded in homogeneous elastic media.  Guo and Lee (2001) modified 

the analysis by assuming a simplified stress field in the continuum surrounding the pile; 

however, such simplification led to empirical equations relating k and t with Es and υs.  Yang et 

al. (2002) extended the analysis of Sun (1994a) for a two-layer system; however, the boundary-

condition equations pertaining to shear force were incorrect, making the analysis unusable. 

In the analysis of Sun (1994a), the assumption regarding the displacement field, that the 

variation of displacements within the soil mass depends on the same displacement function for 

both the radial and circumferential directions, leads to a soil response that is stiffer than it is in 

reality.  In this chapter, we adapt the basic methodology of Sun (1994a) but propose a new 

displacement field by assuming different displacement functions for the radial and 

circumferential directions that removes the artificial stiffness in the model of Sun (1994a).  At 

the same time, we extend the analysis to account for multi-layered soil.   A similar attempt to 
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remove the artificial stiffness was made by Vallabhan (1999); however, the expressions obtained 

in that paper are valid only for a single layer.  

This analysis allows us to rationally link ki and ti with the Young’s modulus Esi and 

Poisson’s ratio υsi for any layer i.  It also shows how the resistive properties of soil elements (i.e., 

the stress-strain relationships) add together to produce the overall soil resistance against laterally 

loaded pile movement.  At the same time, the analysis forms the basis for future formulations 

that can take into account the nonlinear stress-strain behavior of soil. 

3.3. Analysis 

3.3.1. Problem Definition 

We consider a pile with a circular cross section of radius rp and length Lp embedded in a 

soil deposit that has n layers (Figure 3-1).  Each layer extends to infinity in all radial directions, 

and the bottom (nth) layer extends to infinity in the downward direction.  The vertical depth to 

the base of any intermediate layer i is Hi, which implies that the thickness of the ith layer is Hi − 

Hi−1 with H0 = 0.  The pile head is at the ground surface, and the base is embedded in the nth 

layer.  The pile is subjected to a horizontal force Fa and a moment Ma at the pile head such that 

Fa and Ma are orthogonal vectors. 

In the analysis, we choose a cylindrical (r-θ-z) coordinate system with its origin 

coinciding with the center of the pile head and the positive z-axis (coinciding with the pile axis) 

pointing downward.  The goal of the analysis is to obtain pile deflection as a function of depth 

caused by the action of Fa and/or Ma at the pile head. 

The soil medium is assumed to be isotropic, homogeneous within each layer, and linearly 

elastic with Lame’s constants λs and Gs.  There is no slippage or separation between the pile and 

the surrounding soil or between the soil layers.  The pile behaves as an Euler-Bernoulli beam 

with a constant flexural rigidity EpIp. 
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Figure 3-1 A Laterally Loaded Pile in a Layered Elastic Medium 

3.3.2. Potential Energy 

The total potential energy of the pile-soil system, including both the internal and external 

potential energies, is given by: 
2 2 22
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2 2 2

       

p p

p p

L r
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∫ ∫ ∫ ∫ ∫ ∫ ∫
 (3-1) 

where w is the lateral pile deflection; and σpq and εpq are the stress and strain tensors (see Figure 

3-2) in the soil (summation is implied by the repetition of the indices p and q in the product of 

corresponding stress and strain components).  The first integral represents the internal potential 

energy of the pile.  The second and third integrals represent the internal potential energy of the 

continuum (note that the third integral represents the energy of the column of soil with radius rp 
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starting at the pile base and extending to infinity downward, while the second integral represents 

the energy of the soil surrounding both the pile and this column of soil).  The remaining two 

terms represent the external potential energy. 
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Figure 3-2 Stresses Within a Soil Continuum 

3.3.3. Displacement Field 

We assume the following displacement fields (Figure 3-3) in the soil: 

( ) ( )cosr ru w z rφ θ=  (3-2a) 

( ) ( )sinu w z rθ θφ θ= −  (3-2b) 

0zu =  (3-2c) 

where w(z) is a displacement function (with a dimension of length), varying with depth z, 

representing the deflection of the pile axis; φr(r) and φθ(r) are dimensionless displacement 

functions varying with the radial coordinate r, and θ is the angle measured clockwise from a 

vertical reference section (r = r0) that contains the applied force vector Fa.  Note that the 
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reference plane r0-z coincides with the x-z plane of the x-y-z coordinate system (Figure 2-2) 

assumed in chapter 2.  Equation (3-2c) is based on the assumption that the vertical displacement 

of the pile caused by the lateral load and moment applied at the pile head is negligible. 

The functions φr(r) and φθ(r) describe how the displacements within the soil mass (due to 

pile deflection) decrease with increasing radial distance from the pile axis.  We set φr(r) = 1 and 

φθ(r) = 1 at r = rp (this ensures compatibility at the pile-soil interface) and φr(r) = 0 and φθ(r) = 0 

at r = ∞ (this ensures that displacements in the soil decrease with increasing radial distance from 

the pile).  Thus, φr and φθ vary between 1 at the pile-soil interface to 0 at infinite radial distance 

from the pile.   

 

θ

uθ 

r0 

z

ur 
uz

Fa

 

Figure 3-3 Displacements Within a Soil Continuum 

3.3.4. Stress-Strain-Displacement Relationships 

The strain-displacement relationship, considering equation (3-2), leads to: 
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The stress-strain relationship in any elastic layer is given by: 

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

rr s s s s rr

s s s s

zz s s s s zz

r s r

rz s rz

z s z

G
G

G
G

G
G

θθ θθ

θ θ

θ θ

σ λ λ λ ε
σ λ λ λ ε
σ λ λ λ ε
τ γ
τ γ
τ γ

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3-4) 

Combination of equations (3-3) and (3-4) gives the strain energy density within any layer 

as: 
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 (3-5) 

Substituting equation (3-5) into equation (3-1), we get: 
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 (3-6) 

3.3.5. Principle of Minimum Potential Energy 

A system in equilibrium exists with its potential energy at a minimum.  Hence, 

minimizing the potential energy of the pile-soil system (i.e., setting the first variation δΠ of the 
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potential energy equal to 0) produces the equilibrium equations.  Applying δΠ = 0 to equation 

(3-6), we get:  
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 (3-7) 

Simplifying further and considering a layered system (Figure 3-1): 
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The subscript i in the above equations refers to the ith layer of the multi-layered continuum 

(Figure 3-1); wi represents the function w(z) in the ith layer with 1
i i

i iz H z H
w w += =

= .  Note that the 

nth (bottom) layer is split into two parts with the part below the pile denoted by the subscript 

n+1; therefore, in the above equations, Hn = Lp and Hn+1 → ∞. 

Equation (3-8) is of the form: 

( ) ( ) ( ){ } ( ){ } 0r r
dwA w w B w C D
dz θ θδ δ δ φ δφ φ δφ⎧ ⎫⎛ ⎞Π = + + + =⎨ ⎬⎜ ⎟
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 (3-27) 

Since the variations δw(z), δ(dw/dz), δφr(r) and δφθ(r) of the functions w(z) (and its derivative), 

φr(r) and φθ(r) are independent, the terms associated with each of these variations must 

individually be equal to zero (i.e., ( ) 0A w = , ( ) 0B w = , ( ) 0rC φ =  and ( ) 0D θφ = ) in order to 

satisfy the condition δΠ = 0.  The resulting equations produce the optimal functions wopt(z), 

φr,opt(r) and φθ,opt(r) that describe the equilibrium configuration of the pile-soil system.   

While considering the terms of the variation of potential energy related to w, we do so for 

the following sub-domains: 0 ≤ z ≤ H1, H1 ≤ z ≤ H2, …, Hn−1 ≤ z ≤ Lp, and Lp ≤ z < ∞.  

Accordingly, w is forced to satisfy equilibrium within each of these sub-domains and hence over 

the entire domain.  For φr and φθ, the domain over which the potential energy and its variation 

are calculated is rp ≤ r < ∞. 

3.3.6. Soil Displacement 

We first consider the variation of φr(r).  Referring back to equation (3-8) and equation (3-

27), which represents in a simplified manner the form of equation (3-8), we first collect all the 

terms of δΠ associated with δφr and add them together, obtaining: 
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The last term on the left-hand side of equation (3-28) is a multiple of the subtraction of 

the value of δφr at r = rp from the value of δφr at r = ∞ and is therefore identically zero for the 

boundary conditions of our problem (φr = 0 at r = ∞ and φr = 1 at r = rp).  This is so because a 

known (or prescribed) φr implies that δφr = 0.  After this term is made equal to zero, what is left 

is an equation of form ( ){ } 0r rC φ δφ = .  As discussed earlier, the function φr(r) has a non-zero 

variation (i.e., δφr ≠ 0) for rp < r < ∞ because φr is not known a priori in this interval, so 

( ) 0rC φ = , which means the integrand in equation (3-28) must be set to zero, leading to the 

following differential equation, which, when solved, yields φr,opt: 
22 222

31 2 1
2

1r r
r

p

dd d
dr r dr r r r dr r

θ
θ

γ φφ φ γ γ γφ φ
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥+ − + = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 (3-29) 

where the γ’s are dimensionless constants given by: 
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We now consider the variation of φθ(r).  We collect the terms of equation (3-8) 

containing δφθ and, following a similar procedure as for φr, we get the following governing 

differential equation for φθ: 
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with the boundary conditions that φθ = 0 at r = ∞ and φθ = 1 at r = rp, where  
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3.3.7. Pile Deflection 

Finally, we consider the variation of the function w and its derivative.  We again refer 

back to equation (3-8), collect all the terms associated with δw and dw
dz

δ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 and equate their sum 

to zero: 
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We first consider the domain below the pile, i.e., Lp ≤ z ≤ ∞.  The terms associated with 

δw and ⎟
⎠
⎞

⎜
⎝
⎛

dz
dwδ  in equation (37) for Lp < z ≤ ∞ are equated to zero.  Since the variation of w(z) 

with depth is not known a priori within the interior of the domain Lp < z < ∞, δwn+1 ≠ 0 and so 
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the integrand in the integral between z = Lp and z = ∞ must be equal to zero in order to satisfy 

equation (3-37).  This results in the following differential equation: 
2

1
1 122 0n

n n n
d wt k w

dz
+

+ +− =  (3-38) 

The displacement in the soil must vanish at infinite vertical distance.  We use this as our 

boundary condition: 

01 =+nw  (at z = ∞) (3-39) 

The above equation implies that δwn+1 = 0 at z = ∞, making the term associated with δw at z = ∞ 

equal to zero (which is of course required to satisfy equation (3-37)). 

 The solution of equation (3-38) satisfying the boundary condition (3-39) is:  

( )
12

1  
n

p
n

p

k z L
t

n n z L
w w e +

− −

+ =
=  (3-40) 

We now consider the function w for the domains 0 ≤ z ≤ H1, H1 ≤ z ≤ H2, …, Hn-1 ≤ z ≤ Lp.  

The terms containing δw and ⎟
⎠
⎞

⎜
⎝
⎛

dz
dwδ  in equation (3-37) are equated to zero for each domain.  

Considering the integrals associated with each individual layer (or each domain Hi−1 < z < Hi), 

the integrand for each of these integrals must equal zero because δwi = 0 (as the variation of wi 

with z within the domains is not known a priori).  This gives us the differential equation for the 

ith layer, which, expressed in terms of normalized depth z  = z/Lp and displacement w = w/Lp (see 

equations (2-31a) through (2-31d) for the normalization), is given by: 
4 2

4 22 0i i
i i i

d w d wt k w
dz dz

− + =  (3-41) 

The terms associated with the boundaries of each domain (i.e., at z = Hi) in equation (3-37) must 

also each be equal to zero.  For each layer, there are two terms: one multiplying δwi and another 

multiplying δ(dwi/dz).  Setting each separately equal to zero yields the boundary conditions for 

the differential equations represented by equation (3-41).  These terms can be seen to be a 

product of an expression and the variation of the displacement or of its derivative.  If the 

displacement or its derivative is specified at the boundary, then its variation is equal to zero; 

otherwise, the expression multiplying the variation of the displacement or of its derivative is 

equal to zero.  The boundary conditions at the pile head (z = z  = 0) are as follows: 
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1 constantw =  (3-42a) 

or  
3

1 1
13 2 0a
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dz dz

− − =  (3-42b) 
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dz

=  (3-42c) 

or 

0~
~
~
2

1
2

=− aM
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At the interface between any two layers (z = Hi or z = Hi): 

1
~~

+= ii ww  (3-43a) 
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At the pile base (z = Lp or z = 1), the boundary conditions are: 

constantnw =  (3-44a) 

or  
3

1
13 2 2n n n

n n
d w dw dwt t
dz dz dz

+
+− = −  (3-44b) 

constantndw
dz

=  (3-44c) 

or  
2

2 0nd w
dz

=  (3-44d) 

Equation (3-44b) is further simplified and solely expressed in terms of wn by 

differentiating wn+1 in equation (3-40) with respect to z, normalizing the expression and then 

substituting it back into equation (3-44b) to yield: 
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d w dwt k t w
dz dz +− − =  (3-44b′) 

The dimensionless terms in the above equations are defined as follows: 
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The similarity between the above equations of pile deflection with those of chapter 2 

must be apparent.  Using the boundary conditions, we satisfy the equilibrium and continuity of 

forces and displacements, respectively, over the entire pile length.  The right hand side of 

equation (3-44) represents the shear force just below the pile base (note that the right hand side 

does not contain any shear from the pile section because below the pile base the contribution can 

come only from the soil).  This base shear acts only if the pile base displaces horizontally (i.e., if 

the base is floating, which results in nonzero wn+1).  Analytical solution of the pile equation is 

obtained using MIP described in chapter 2. 

3.3.8. Expression of γ’s in Terms of Dimensionless Deflections 

The γ’s in equations (3-30) though (3-32) and (3-34) through (3-36) are expressed in 

terms of the dimensionless pile deflection and slope as follows: 
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where p pL rψ = .  These expressions can be directly used in the computations. 

3.4. Finite Difference Solution for Soil Displacements 

The differential equations (3-29) and (3-33) for φr and φθ are solved using the finite 

difference method.  The equations are interdependent, and hence, must be solved simultaneously.  

Using the central-difference scheme, equations (3-29) and (3-33) can be respectively written as: 
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 (3-58) 

where j represents the jth node, which is at a radial distance rj from the pile axis; and Δr is the 

distance between consecutive nodes (discretization length).  The total number of discretized 

nodes m should be sufficiently large so that the infinite domain in the radial direction can be 

adequately modeled (Figure 3-4).  The discretization length Δr should be sufficiently small to 

maintain a satisfactory level of accuracy. 
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1 3 … j j+1 m Node number 
Δr Δr
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…
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Figure 3-4 Finite difference discretization for φr and φθ 

Equation (3-57) along with the boundary conditions φr
(1) = 1 (at r = rp) and φr

(m) = 0 (at r 

= ∞) is applied to the discretized nodes, which yields the following equation: 
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 (3-59) 

The nonzero elements of the left-hand side matrix r

m m
K φ

×
⎡ ⎤⎣ ⎦  in the above equation are 

given by: 
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j j
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K
r r r
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Δ Δ
 (3-60) 
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K
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φ
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Δ Δ
 (3-62) 

in which the subscript j is valid for nodes 2 through m−1 with the exception that 2,1 0rK φ =  and 

1, 0r
m mK φ
− =  (as is evident from equation (3-59)). 

The elements of the right-hand side vector { }
1

r

m
Fφ

×
 in equation (3-59) are given by: 
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where j represents nodes 3 through m−2.  The elements corresponding to node 2 and m−1 are 

given by: 
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Using equation (3-58) and the boundary conditions that φθ(1) = 1 (at r = rp) and φθ(m) = 0 

(at r = ∞), a matrix equation (similar to equation (3-59)) for φθ can also be formed for the 

discretized nodes: 

{ } { }K Fθ θφ φ
θφ⎡ ⎤ =⎣ ⎦  (3-66) 

The number and positioning of the nonzero elements of 
m m

K θφ

×
⎡ ⎤⎣ ⎦ in equation (3-66) are 

exactly the same as that of r

m m
K φ

×
⎡ ⎤⎣ ⎦  of equation (3-59).  The expressions of the off-diagonal 

elements of K θφ⎡ ⎤⎣ ⎦  and r

m m
K φ

×
⎡ ⎤⎣ ⎦ are also the same (i.e., , ,

r
p q p qK K θφφ =  for p ≠ q) .  The diagonal 

elements of K θφ⎡ ⎤⎣ ⎦  for j = 2 through m−1 are given by: 
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The structure of { }
1m

F θφ

×
 in equation (3-66) is also similar to { }

1
r

m
Fφ

×
 of equation (59) 

with 1 1F θφ =  and 0mF θφ = .  The remaining elements of { }F θφ are given by: 
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Since the right-hand side vectors { }rFφ  and { }F θφ  contain the unknowns φθ and φr, 

iterations are necessary to obtain their values.  An initial estimate of j
rφ is made and given as 

input to { }F θφ , and j
θφ  is determined by solving equation (3-66).  The j

θφ  values are then given 

as input to { }rFφ  to obtain j
rφ  from equation (3-59).  The newly obtained values of j

rφ  are again 

used to obtain new values of j
θφ , and the iterations are continued until convergence is reached. 

The criteria previous current 6

1

1 10
m

j j
r r

jm
φ φ −

=

− ≤∑ and previous current 6

1

1 10
m

j j

jm
θ θφ φ −

=

− ≤∑  are used (a stringent 

value of 10-6 is used because this iterative solution scheme is central to another set of iterations 

described next) to ensure that accurate values of φr and φθ are obtained. 

3.5. Solution Algorithm 

In order to obtain pile deflections by solving equation (3-41), ki and ti must be known.  

However, the soil parameters depend on φr and φθ, which are not known a priori.  Hence, an 

iterative algorithm (separate from the iterations between φr and φθ described in the previous 

section) is necessary to solve the problem.  First, initial guesses for γ1 through γ6 are made, and 

for these assumed values, φr and φθ are determined using the iterative technique described in the 

previous section.  Using the calculated values of φr and φθ, η1 through η9 and ξ1 and ξ2 are 

calculated by numerical integrations (with Δr as the step length) and, subsequently, ki and ti are 

determined.  Using the values of ki and ti, the pile deflection is calculated.  From the calculated 

values of pile deflection and slope of the deformed pile, γ1 through γ6 are obtained.  The new 

values of γ1 through γ6 are then used to recalculate φr and φθ, and so on.  The entire process is 

repeated until convergence on each of the γ’s is attained.  The tolerance limit prescribed on the 

γ’s between the ith and (i+1)th iteration is ( ) ( )1
1/ 2 / .../ 6 1/ 2 / .../ 6 0.001i iγ γ+ − < .  The details of the solution 

steps are given in the form of a flow chart in Figure 3-5.  We chose an initial guess of “one” for 
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all the γ’s but any other choice would produce results with the same level of accuracy at 

approximately the same computation time. 

3.6. Results 

In this section, we choose a few example problems to investigate if the analysis produces 

reliable results.  We consider as an illustration of use of the analysis a 15-m-long drilled shaft, 

with a diameter of 0.6 m and pile modulus Ep = 24 × 106 kN/m2, embedded in a four-layer soil 

deposit with Es1 = 20 MPa, Es2 = 35 MPa, Es3 = 50 MPa and Es3 = 80 MPa; υs1 = 0.35, υs2 = 0.25, 

υs3 = 0.2 and υs4 = 0.15 (Esi and υsi are the soil Young’s modulus and Poisson’s ratio for the ith 

layer; Esi and υsi are related to λsi and Gsi by ( )( )1 1 2si si si si siEλ υ υ υ= + −  and 

( )2 1si si siG E υ= + ).  A horizontal force Fa = 300 kN acts on the pile.  Figure 3-6 shows the pile 

deflection profile obtained using our analysis, the analysis based on the displacement assumption 

of Sun (1994) and a three-dimensional (3D) finite element analysis (FEA).  The pile response 

obtained from our analysis closely matches that of 3D FEA; the analysis based on the 

displacement field assumed by Sun (1994a) produces a stiffer pile response. 

Next, we consider a large-diameter drilled shaft, 40-m long, with a diameter of 1.7 m and 

Ep = 25 × 106 kPa, embedded in a four-layer soil profile with H1 = 1.5 m, H2 = 3.5 m, and H3 = 

8.5 m; Es1 = 20 MPa, Es2 = 25 MPa, Es3 = 40 MPa and Es4 = 80 MPa; υs1 = 0.35, υs2 = 0.3, υs3 = 

0.25 and υs4 = 0.2.  A 3000 kN force acts at the pile head.  Figure 3-7 shows the pile deflection 

profiles, as obtained from our analysis, the analysis based on the displacement assumption of Sun 

(1994a) and 3D FEA.  As before, our results match those of FEA more closely than results based 

on the Sun (1994a) assumption.  It is important to note that our analysis takes less than a minute 

to produce the results as opposed to the 3D FEA which takes approximately twenty to thirty 

minutes to run. 
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Figure 3-5 Solution Flow Chart 
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Figure 3-6 Deflection profile of a 15-m-long pile 
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Figure 3-7 Deflection profile of a 40-m-long drilled shaft 

Finally, we consider the field example of a laterally loaded pile load test performed by 

McClelland and Focht (1958).  The length (Lp) and radius (rp) of the pile are 23 m and 0.305 m, 
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and the pile was embedded into a normally consolidated clay.  The pile was acted upon by a 

lateral force Fa = 300 kN and a negative moment Ma = −265 kNm at the head.  Randolph (1981) 

back-calculated the pile modulus Ep as 68.42 × 106 kN/m2 from the reported pile flexural 

rigidity.  Randolph (1981) further suggested, based on back calculation of test results to match 

his finite element analysis (coupled with Fourier series), that the soil shear modulus profile for 

this soil deposit can be represented as: 
3 20.8 10 kN/msG z= ×  (3-71) 

with υs = 0.3.  We divided the soil profile into four layers and calculated the shear and Young’s 

moduli at the middle of each layer, which were considered the representative values for each 

layer (Table 3-1).  Using these values of soil modulus, we calculated the pile deflection profile 

using both our analysis and that based on the assumption of Sun (1994a).  Figure 3-8 shows the 

pile responses. Also plotted are the measured pile response and that obtained by Randolph 

(1981).  Our analysis produces a pile deflection profile that closely matches the measured 

profile; the analysis of Sun (1994a) produces a stiffer response. 
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Figure 3-8 Deflection profile for the pile load test of McClelland and Focht (1958) 
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Table 3-1 Soil Properties at the Pile Load Test Site of Ismael and Klym (1978) 

Depth 
(m) 

Extent of Soil 
Layers (m) 

Shear Modulus 
Gs (MPa) 

Es 
(MPa) 

2.0 0 to – 4.0 1.6 4.2 
6.0 – 4.0 to – 8.0 4.8 12.5 
10.0 – 8.0 to – 12.0 8.0 20.8 
17.5 – 12.0 to great depth 14.0 36.4 

 

3.7. Summary 

A continuum-based elastic analysis for a single, circular pile embedded in a multi-layered 

elastic medium and subjected to a horizontal force and a moment at the head was developed.  

The solution is fast and produces results comparable to three-dimensional finite element analysis.  

Using this method, pile deflection, slope of the deflection curve, bending moment and shear 

force for the entire length of the pile can be obtained if the following are known: the pile radius 

and length, thicknesses of the soil layers, Young’s modulus of the pile material, the elastic 

constants of the soil in the various layers, and the magnitudes of the applied force and moment. 

The governing differential equation for pile deflection is obtained using the principle of 

minimum potential energy, and closed-form solutions are obtained.  The solution depends on a 

set of parameters γ1 through γ6 that determine the rate at which the deflections in the soil medium 

decay with increasing radial distance from the pile axis.  These parameters are not known a priori 

and must be determined iteratively.  Hence, an iterative scheme was developed to obtain 

solutions for a variety of boundary conditions and soil profiles consisting of one, two, three and 

four layers.  Notwithstanding the iterations on the γ’s, the solutions are obtained in seconds. 
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CHAPTER 4. NONLINEAR ANALYSIS OF LATERALLY LOADED PILE IN LAYERED 
SOIL MEDIUM 

4.1. Introduction 

In this chapter, we modify the model developed in chapter 3 to account for the nonlinear 

stress-strain behavior of soil.  The degradation (i.e., the decrease in magnitude) of modulus with 

strain renders the soil mass within each layer heterogeneous because the strains, due to the 

application of lateral load, are different at different points within the soil mass.  Consequently, 

the equations are modified to take into account the heterogeneity, following which a nonlinear 

stress-strain relationship is plugged in to develop a nonlinear solution algorithm.  The analysis 

takes into account the three-dimensional pile-soil interaction but produces results much quicker 

than a standard three-dimensional finite element analysis. 

4.2. Overview 

Scott (1981) had shown with the example of a field pile load test that the head deflection 

versus load curves for laterally loaded piles are nonlinear, in fact, much more nonlinear than the 

load-deflection curves for axially-loaded piles.  Such a strongly nonlinear response is caused by 

the nonlinear stress-strain behavior of soil.  The resistance against lateral pile movement is 

generated primarily in the top few meters of soil where the soil is more deformable and weak, 

which results in a nonlinear pile-soil response.  Consequently, it is important to take into account 

soil nonlinearity in the analysis of laterally loaded piles. 

There are two distinct components in the nonlinear analysis of laterally loaded piles: first, 

studying the soil nonlinearity in the elemental scale and, second, translating the effect of soil 

nonlinearity from the elemental scale to the scale of the problem so that the overall resistance of 

soil against pile movement can be properly estimated.  Unfortunately, the p-y method is not 

based on such a rational framework.  In the p-y method, the nonlinear resistance of soil p is 

estimated by empirical equations, which are obtained by back fitting the results of numerical 
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analysis or field-scale, pile load-test results to match the results of the one-parameter, beam-on-

foundation analysis (see chapter 2) by giving different inputs for p.  Thus, in the p-y method, 

there is no rational integration of the individual resistance of soil elements to obtain the total soil 

resistance.  The elemental stress-strain properties of soil can be estimated with much more 

certainty (from laboratory tests, in-situ tests, well established correlations) than the total soil 

resistance p.  But the brute-force approach involved in the p-y method often does not allow the 

reflection of the actual stress-strain behavior and, unless site specific p-y curves are developed 

from field load tests, there is no guarantee predictions using the p-y method will be accurate. 

The limitations of the p-y method can be overcome by a three-dimensional finite element 

analysis; but the computation expense for such an analysis is prohibitive for its use in routine 

practice.  On the other hand, the analysis framework developed in the previous chapters provides 

us with an opportunity to extend the linear elastic approach to account for soil nonlinearity. 

In this chapter, we rigorously connect the nonlinear stress-strain response of soil to the 

overall soil resistance against pile movement.  We develop the differential equations governing 

pile deflection and soil displacement, which are similar to those in chapter 3 but have the 

provisions to incorporate nonlinear stress-strain response.  Using these equations, we connect the 

soil parameters ki and ti (they produce the overall soil resistance) to the soil stress-strain 

relationships (i.e., the relationships showing the change in the elastic constants λs and Gs with 

strain).  Subsequently, we develop a nonlinear solution algorithm which produces the pile 

response. 

4.3. Soil Nonlinearity 

Soil is a unique material, showing nonlinearity at a very early stage of loading (typical 

stress-strain plots of soil are shown in Figure 4-1) (Salgado 2008).  A typical shear modulus 

versus shear strain plot makes this point clearer (Figure 4-2).  Soil behaves as a linear elastic 

material at an extremely low range of strain, and the modulus starts degrading at a strain as low 

as 10−5 (Shibuya et al. 1992, Salgado 2008).  Such a nonlinear behavior can be attributed to the 

granular nature of the material.  If a small load is applied to a soil mass, the soil particles 

themselves deform but do not move relative to each other, causing very small amount of strain.  

At this stage, if the load is removed, the stresses acting on the particles are released and no 
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permanent deformation is produced.  However, if the load is increased further, the soil particles 

start sliding and rolling over each other, which leads to permanent macroscopic deformation 

because if the load is removed, the particles can no longer go back to their original positions.  

Thus, soil deformation, in general, is largely plastic although some elastic fraction is also present.  

With further increase in load (at very high stress) there can be particle crushing and breakage 

leading to further plastic deformation.  Since, the soil particles constantly change their position 

during the application of a load, the resistance offered by the soil mass against deformation also 

changes; this results in the change in the value of soil modulus with increase in strain. 

 

Brittle soil (dense sand, stiff clay) 

Shear strain γs 

Shear stress τs 

Ductile soil (loose sand, soft clay) 

 

Figure 4-1 Typical Stress-Strain Plot of Soil under Drained Condition 

Gs0 = Initial modulus 

log(γs)

Gs 

Gs1 

γs1 

Gs0 

Gs2 

γs2  

Figure 4-2 Typical Modulus Degradation Curve of Soil 
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The relative fractions of elastic and plastic strains and the rate of modulus degradation 

with strain depend on the stress state and the soil state.  By stress state we mean the vertical and 

lateral stresses acting on a soil element (the representative equivalent volume REV in mechanics 

terminology).  Soil state, among other things, refers to the degree of packing of soil particles (i.e., 

whether the particles are densely or loosely packed).  In order to describe the soil state, we define 

a few soil parameters, which are called the state parameters.  Void ratio is one such state 

parameter which affects the soil stiffness.  It describes how densely the soil particles are packed 

and is defined as the ratio of the volume of voids (pores) within a REV to the volume of solid 

soil particles within the same REV.  The lower the void ratio, the denser the packing of soil 

particles is.  Owing to denser soil packing, a soil mass with lower void ratio offers greater 

resistance to deformation and hence, the modulus is higher and the degradation with strain 

occurs at a slower rate.  Dense sands and stiff clays have lower void ratio, and, in general, show 

higher stiffness and lower modulus degradation rate than loose sands and soft clays.  However, 

the void ratio is not the only controlling factor, the stress state and the soil type also play a role in 

determining the stiffness and its change with strain.  For the same soil with the same void ratio, a 

REV with a higher confining pressure (mean stress) has a higher stiffness and a faster 

degradation rate than a soil element with lower confining pressure.  Again, elements of two 

different types of soil with the same void ratio and the same confining stress may have different 

stiffness and modulus degradation rates because the shape and size of the grains (these are called 

the intrinsic soil parameters) play some role in the deformation. 

The highly nonlinear behavior of soil can be modeled by developing constitutive 

relationships using the concepts from classical, rate-independent plasticity (Lubliner 1990) if 

time effects on the stress-strain relationships can be neglected.  In fact, such models exist and 

have been used in the analysis of foundations (Loukidis 2006), although such rigorous, 

plasticity-based analyses for laterally loaded piles are not known to have been performed.  

However, plasticity-based constitutive relationships, which explicitly account for soil yielding 

and strain/work hardening or softening, are strictly required when we are interested in estimating 

the collapse load more than in estimating the load-deflection response.  For the calculation of 

pile deflection as a function of applied load, for the level of pile-head deflection (of the order of 

25 mm) we are interested in, a simpler approach of fitting a nonlinear stress-strain curve is 

sufficient. 
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A nonlinear stress-strain curve can be incorporated in an elastic analysis by properly 

estimating the secant modulus (Figure 4-3) for a given level of strain (or stress).  Many 

researchers in geotechnical engineering have used such an approach in the past; consequently, 

several nonlinear stress-strain relationships are available in the literature.  A common way of 

representing the soil response is the hyperbolic model (Figure 4-3) (Kondner 1963, Fahey and 

Carter 1993): 

0

1

1

s

ss

sr

G
G γ

γ

=
+

 (4-1a) 

where Gs is the shear modulus, Gs0 is the initial (small-strain) shear modulus, γs is the shear strain 

and γsr is the reference shear strain defined as: 

max

0

s
sr

sG
τγ =  (4-2) 

where τsmax is the shear strength.  Generally, the Mohr-Coulomb failure criterion (Lubliner 1990, 

Davis and Selvadurai 2002) is used to calculate soil shear strength, according to which: 

max tans cτ σ φ= +  (4-3) 

where τsmax is the shear strength on a plane (against slip) passing through a soil mass, σ is the 

normal stress acting on the plane, c is the cohesion (cementation, adhesion, bonding between soil 

particles) present in the soil and φ is the friction angle, which represents the frictional resistance 

of the soil (friction due to rolling, sliding and dislocation of soil particles).  Note that the symbol 

φ used in the above equation is conventionally used to represent the shear resistance of soil due 

to friction, and has got no relationship with the function φ used in chapter 3.  The friction angle φ 

to be used in equation (4-3) generally varies between 30° and 45° (values near the lower end of 

the range is applicable for clays while those near the upper end are applicable for sands).  In soils, 

including clays, the cohesion c is generally zero unless, in the rare case, there is cementation 

between particles (in which case, laboratory tests have to be performed to determine the 

cohesion).  For clays, often a nonzero (fictitious) cohesion is assumed in which the c and φ 

become curve-fitting parameters obtained from laboratory tests.  However, if proper estimation 

of φ can be made (which is possible using laboratory or in situ tests), then no such estimation of 

fictitious cohesion is necessary. 



 96

 

γsr 

Gs1 

γs1 Soil shear 
strain γs 

τs1 

O 

Gs = Secant modulus = τs/γs 

τsmax 

Soil shear 
stress τs 

 

Figure 4-3 Hyperbolic Stress-Strain Plot of Soil 

In equation (4-1a), Gs represents the secant modulus.  If at any instance of loading, τs is 

the shear stress acting on a plane that produces an engineering shear strain γs, then s s sG τ γ= .  

Using equation (4-1a) and (4-2), Gs in the hyperbolic model is expressed in terms of stress as 

(Fahey and Carter 1993): 

0 max

1s

s s

G
G

τ
τ

= −  (4-1b) 

The hyperbolic model, although simple, has been observed to not model the soil 

nonlinearity adequately.  Consequently, Fahey and Carter (1993) modified the hyperbolic model 

as: 
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 (4-4a) 

where the fitting parameters f and g depend on the soil type.  When expressed in terms of strain 

using equation (4-2), the f-g model is written as: 
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 (4-4b) 

The parameters f and g have to be determined by fitting equation (4-4) to stress-strain plots 

obtained from laboratory or in situ tests.  Based on a few experimental results, Fahey and Carter 
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(1993) suggested values of f ranging from 0.8 to 1.0 and of g ranging from 0.25 to 1.0.  They 

further suggested that f = 0.98 and g = 0.25 give reasonably good results for Toyoura sand.  

Mayne (2000) suggested that f = 1 and g = 0.3 can be used for clays with reasonable accuracy.     

Lee and Salgado (2000) extended the f-g model for three-dimensional stress state as: 

0

0 max 0

1
g

s ss

s s s

II IIG f
G II II

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟−⎝ ⎠

 (4-5) 

where IIs is the second invariant of stress deviator tensor (it is a three-dimensional equivalent of 

shear stress τ); IIs0 is the second invariant of the initial stress deviator tensor (it is a three-

dimensional equivalent of the initial shear stress present in the soil mass, even before the 

application of load, due to inherent stress anisotropy of the soil mass) and IIsmax is the maximum 

value of IIs and is related to the soil shear strength (it is a three-dimensional equivalent of the 

maximum shear stress τsmax).  If the effect of initial stresses can be neglected, then equation (4-

5a) can be simplified to: 
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1
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IIG f
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= − ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4-6) 

IIsmax can be estimated by a suitable choice of a failure criterion.  The Drucker-Prager 

failure criterion (Lubliner 1990) has been used for determining three-dimensional failure state; 

accordingly, IIsmax can be expressed as: 

max 0sII Iσα κ− − =  (4-7) 

where α and κ can be related to the Mohr-Coulomb φ and c as: 

( )
2sin

3 3 sin
φα
φ

=
−

 (4-8) 

( )
6 cos

3 3 sin
c φκ

φ
=

−
 (4-9) 

Based on finite element analyses and experimental results, Lee and Salgado (2000) suggested 

that, for Ticino sand, f ranges between 0.93 and 0.98, and g ranges between 0.15 and 0.32. 

In order to account for the dependence of shear modulus on confinement (mean stress), 

Lee and Salgado (2000) modified equation (4-5a) as: 
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where Iσ  is the first invariant of the stress tensor and is a measure of the confining stress; Iσ0 is a 

measure of the initial confining stress (due to the presence of initial stresses), ng is a parameter 

that depends on the type of soil (intrinsic parameter). 

The f-g model and its three-dimensional modification discussed above are primarily 

stress dependent because the modulus can be determined directly (i.e., without iterations) by 

giving stress as input.  Strain-dependent models are also available in the literature and, in fact, 

are more suitable for our analysis.  One such widely used model was developed by Ishibashi and 

Zhang (1993), who proposed modulus degradation equations for sands based on a series of 

laboratory tests performed by various researchers: 

( ) ( )
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G K
G

γγ σ=  (4-11) 

where σm is the mean stress [= (σ11 + σ22 + σ33) /3] in kPa, the parameter K(γ) and the exponent 

q(γ) depend on the engineering shear strain γ as: 
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Ishibashi and Zhang (1993) also worked on clays and proposed the following equations: 

( ) ( )

0
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p m

s

G K I
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γγ σ=  (4-14) 

where the parameter K(γ, Ip) and the exponent q(γ) depend not only on the engineering shear 

strain γ but also on the plasticity index Ip (plasticity index is a measure of the water retention 

capacity of clay; it gives an approximate idea of how plastic or brittle a clay is): 
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 (4-15) 
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The parameter f (Ip) = 0 is given by: 
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For three-dimensional problems, γ should be the engineering octahedral shear strain (i.e., twice 

the octahedral shear strain). 

Isotropic elastic materials are defined by two constants (e.g., λs and Gs; or Ks and Gs; or 

Es and υs).  Both constants change with the application of load if a nonlinear elastic process is 

considered.  The variation of Gs with strain or stress is well documented in the literature (as 

shown above), but the variation of the other constant is not well studied.  Fahey and Carter 

(1993) suggested that the ratio of Ks and Gs can be assumed to remain constant during the 

loading process (i.e., Ks and Gs both degrade maintaining Ks/Gs a constant).  Naylor et al. (1981) 

proposed a linear relationship between the bulk modulus Ks and the mean stress σm.    Lee and 

Salgado (2000) suggested a nonlinear dependence of Ks on the mean stress, according to which: 
kn
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where Pa is a reference stress (100 kPa), σm is the mean stress, Ds is a material constant which 

can be determined from the initial bulk modulus Ks0 and the initial mean stress σm0: 
( )1

0 0
kk nn

s s m aD K Pσ −−=  (4-19) 

in which the initial bulk modulus Ks0 can be obtained from the initial shear modulus Gs0 and 

initial Poisson’s ratio υs0 ( ){ } ( ) ( ) ( ){ }( )3 1 2 2 3 2 1 3 1 2s s s s s s s sK E G Gυ λ υ υ= − = + = + − .  Lee 

and Salgado (2000) suggested a value of 0.5 for nk.  The Poisson’s ratio varies within a small 

range and a fair estimate of the Poisson’s ratio, for different soils, can be made from the 

available literature (Selvadurai 1979, Salgado 2008).  Salgado (2008) suggested that υs0 varies 

between 0.1 and 0.2 for sands.  For clays, a value between 0.3 and 0.5 is a reasonable estimate of 

υs0 depending on the degree of saturation of clay.  The greater the degree of saturation, the more 
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incompressible the clay initially is, the greater the value of υs0 is.  For the case of drained loading, 

υs0 would be in the 0.2 to 0.3 range. 

The initial shear modulus Gs0 has been found to be related, among other factors, to the 

(initial) void ratio e0 and to the (initial) mean stress σm0 (Hardin and Black 1966, 1968, Hardin 

and Drnevich 1972, Hardin 1978).  For sands, Gs0 can be estimated from (Salgado 2008): 
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where Cg, eg and ng depend on the soil type (intrinsic soil properties).  Cg = 650, eg = 2.17 and ng 

= 0.45 can be used for sands if no specific data are available.  For clays, the following equation 

can be used  (Salgado 2008): 
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where OCR is the overconsolidation ratio (it is defined as the ratio of the maximum stress 

experienced by a soil deposit to the present existing stress).  OCR plays an important role in 

deciding the stiffness in clayey soils in addition to the void ratio and the mean stress.  The 

exponent mg can be assumed to be equal to 0.5.  The exponent ng of equation (4-20) is the same 

exponent used in equation (4-10). 

Viggiani and Atkinson (1995) suggested a similar equation for clays: 
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where the reference stress pa is equal to 1 kPa, and the parameters A, ng, and mg can be estimated 

from the plasticity index Ip by using the following equations (Foye, Basu and Prezzi, personal 

communication): 
0.0453790 pIA e−=  (4-21) 

0.109ln 0.4374g pn I= +  for Ip > 5 (4-22) 

0.0015 0.1863g pm I= +  for Ip > 5 (4-23) 

The stresses to be used in all the above equations should be effective stresses. 
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4.4. Nonlinear Pile Analysis 

4.4.1. Problem Description 

We consider the same multi-layered problem described in chapter 3 with the added 

condition that the soil within each layer is not linear elastic but nonlinear elastic (i.e., the 

constants λs and Gs within each layer are not constants but is a function of soil strain or stress).  

When a pile is loaded laterally, the displacements and strains at the pile-soil interface are the 

same for both the pile and the soil if perfect soil-pile contact is assumed.  However, at any radial 

distance from the pile, the soil displacements and strains are less than the corresponding values at 

the pile-soil interface; they in fact decrease gradually with increasing radial distance from the 

pile (Figure 4-4).  For any constitutive relationship, the modulus degradation depends on the 

level of strain (i.e., the higher the strain, the greater the degradation is) (Figure 4-2); therefore, at 

any particular instance of the loading process, the soil modulus varies in the radial direction 

(Figure 4-4).  Assuming the soil deposit to be homogeneous in its initial state, the modulus has a 

minimum value at the pile-soil interface (where the strain is at a maximum) and increases with 

increasing r.  The modulus varies in the tangential direction as well, because the applied force Fa 

and moment Ma create displacement and strain fields that are not axisymmetric (Figure 4-5).  

Consequently, the elastic constants (e.g., the Lame’s constants) within each layer, at any instance 

of loading, are functions of both r and θ.  The elastic constants are functions of z as well, but its 

variation along z is taken into account by considering the soil layering. 
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In the derivation of the governing differential equations that can capture the nonlinear 

soil response, the soil within each layer is assumed to be elastic and isotropic, but heterogeneous 

(with respect to r and θ but not with respect to z) with no sliding or separation between the soil 

layers or between the pile and the soil.  By solving the equations (valid for elastic, heterogeneous 

soil) recurrently for different magnitudes of load (with appropriate values and variations of soil 

modulus), the analysis is capable of tracing the nonlinear progression of pile deflection (due to 

soil nonlinearity) with increasing applied load. 

4.4.2. Principle of Virtual Work 

Applying the principle of virtual work to the pile-soil system, we get: 
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π π
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 (4-24a) 

In the above equation, the first integral represents the internal virtual work of the pile.  The 

second and the third integrals represent the internal virtual work of the soil continuum 

(summation is implied by index repetition); in particular, the third integral represents the soil 

column of radius rp extending from below the pile to infinity downward while the second 

integral represents the rest of the soil mass.  The remaining two terms represent the external 

virtual work (due to the presence of the applied force and moment). 

We assume the same displacement field as given in equation (3-2); therefore the strains 

are related to the displacements through equation (3-3).  We further make the assumption that at 

any instance of loading, the total accumulated strain at any point within the soil mass is related 

linearly to the total accumulated stress at that point, and that the linear relationship between the 

different components of accumulated strain and stress follow elasticity (equation (3-4)).  

Relating the stresses to strains using secant modulus, and relating strains to displacements 

(following a similar procedure as that of chapter 3), we get:  
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 (4-24b) 

where λs = λs(r, θ) and Gs = Gs(r, θ) represent the secant modulus.  For the infinitely long 

column of soil (having the same radius as that of the pile) beneath the pile, λs and Gs are 

assumed to be constant.  

We consider separately the variations δw, δφr and δφθ of the functions w(z), φr(r) and 

φθ(r) (since the variations are linearly independent). We collect the terms associated with δw, δφr 

and δφθ  and equate each to zero so that equation (4-24b) is satisfied.  As in chapter 3, we 
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consider the variation of w over two separate sub-domains: 0 ≤ z ≤ Lp and Lp ≤ z < ∞.  For the 

functions φr and φθ, we consider the variations over the domain rp ≤ r < ∞. 

4.4.3. Soil Displacement 

We first consider the variation on φr(r).  From equation (4-24b), we collect all the terms 

associated with δφr and equate their summation to zero.  By doing so, we ensure that the terms 

collectively satisfy the principle of virtual work.  The expression containing the pertinent φr-

related terms is written as: 
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In equations (4-26) through (4-29), the subscript i represents the ith layer of the multi-layered 

continuum; wi represents the function w(z) in the ith layer with 1
i i

i iz H z H
w w += =

= ; and Hn = ∞.  

Further simplification of equation (4-25a) by performing integration by parts of the terms 

containing rd
dr
φδ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 produces: 
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Since the function φr is not known a priori within the domain rp ≤ r < ∞, φr has a non-zero 

variation (i.e., δφr ≠ 0).  Therefore, equation (4-25b) is satisfied if and only if the terms within 

the integral in the left-hand-side are collectively equal to zero (because δφr ≠ 0); this gives the 

differential equation of φr: 
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which, when rearranged, produces: 
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 (4-30b) 

At r = ∞, φr = 0 because the displacements within the soil due to the pile deflection must 

be negligible at sufficiently large distances from the pile.  Hence, φr is known at r = ∞ and the 

first variation of φr at that point is equal to zero (i.e., δφr = 0 at r = ∞).  This satisfies equation (4-

25b) and produces the boundary conditions for equation (4-30).  The other boundary condition 

imposed is φr = 1 at r = rp (which makes δφr = 0 at r = rp and satisfies equation (4-25b) as well).   

We now consider the variation on φθ(r).  From equation (4-24b) we collect the terms 

containing δφθ and d
dr

θφδ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 and, following a similar procedure as for φr, we get the following 

governing differential equation for φθ: 
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with the boundary conditions that φθ = 0 at r = ∞ and φθ = 1 at r = rp, where 
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4.4.4. Finite Difference Solution for Soil Displacements 

The differential equations (4-30b) and (4-31) for φr and φθ are interdependent, and 

following similar steps as done in chapter 3, can be solved by the finite difference method.  

Using the central-difference scheme, equations (4-30b) and (4-31) can be respectively written as: 
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 (4-34) 

where j represents the jth node and Δr is the step length of the finite difference discretization 

described in chapter 6 for obtaining φr and φθ (Figure 3-4). 

The finite difference solution procedure is similar to that described in chapter 3. 

Equations (4-33) and (4-34), when applied to the discretized nodes (except the 1st and the last 

(mth) node, at which the values of φr and φθ  are known from the boundary conditions) produce 

two sets of simultaneous equations.  Each equation set contains m−2 equations (there are 
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altogether m nodes, but we need to determine φr and φθ for the second through the (m−1)th nodes), 

represented by the following matrix equation: 

[ ]{ } { }δK F=  (4-35) 

where [K](m−2)×(m−2) represents the left-hand-side tridiagonal matrix containing the coefficients of 

φr
 j and φθ j (see below); {δ}(m−2)×1 represents the unknown vector of nodal φr or φθ values; and 

{F}(m−2)×1 represents the right-hand side vector.   

When [K] is formed from equation (4-33) (i.e., when φr is the unknown), the non-zero 
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where l = j−1.  The lth row of the corresponding {F} vector is given by: 
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The boundary conditions (φr = 1 at node 1 and φr = 0 at node m) modify the first and the (m−2)th 

rows of {F}, because φr
j−1 = 1 for node 2 (which corresponds to the first row of {F}) and φr

j+1 = 

0 for node m−1 (which corresponds to the last row of {F}).  These modified equations for nodes 

2 and m−1 are given by: 
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The non-zero elements of [K], when formed from equation (4-34) (i.e., when φθ is the 

unknown), are given by: 
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The lth, first and (m−2)th rows of the corresponding {F} vector are given by: 

 { }
1 11 1

2 3 1 2 2
2

2 2 2

1 1 1 1
2 2

j j j j jj j
js s s s sr r

rj j jl
s j j s j s

m m m m mF
m r r r m r m r

φ φ φ
+ −+ − ⎤⎡+ −−

= − − + ⎥⎢
Δ Δ⎢ ⎥⎣ ⎦

 (4-45) 

{ }
(3) (1) (2) (2) (3)
2 2 2 3

2 (2) (2)1
2 2 2

(2) (3) (3)
(2)1 2 2

2 (2) (2)
2 2 2 2

11 1 1 1
2 2 2

1 1 1                                                              
2

s s s s r

s s

s s s
r

s s

m m m mF
r m r r m r r

m m m
r m r m r

φ

φ

− + −
= − + −

Δ Δ Δ Δ

⎤⎡ −
− + ⎥⎢ Δ⎣ ⎦

 (4-46) 

{ }
1 1 1 22

12 3 1 2 2
1 2 1 12

2 1 1 2 1 2

1 1 1 1
2 2

m m m m mm
ms s s s sr
rm m mm

s m m s m s

m m m m mF
m r r r m r m r

φ φ
− − − −−

−
− − −−

− − −

⎡ ⎤+ −−
= − − +⎢ ⎥Δ Δ⎣ ⎦

 (4-47) 

The functions φr or φθ are solved using an iterative process similar to that described in 

chapter 3.  Using an initial estimate of j
rφ , {F} is calculated using equations (4-45) through (4-

47), and j
θφ  are determined by solving equation (4-35) ([K] is formed using equations (4-42) 

through (4-44)).  Using the calculated j
θφ  as input, {F} is calculated (from equations (4-39) 

through (4-41)) to obtain j
rφ  ([K] for this case is formed using equations (4-36) through (4-38)).  

Iterations are performed with the newly obtained j
rφ  to calculate j

θφ  and so on until convergence 

is reached (we call the iterations between φr and φθ the φ-iterations).  The criteria used for 

convergence is previous current 8
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− ≤∑  where m is the 

total number of nodes.  A less stringent convergence criterion, with a maximum of 10−5, can be 
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used, but then we have to ensure (by varying the criterion between 10−5 and 10−8) that accurate 

values of j
rφ and j

θφ  are obtained for the chosen criterion. 

4.4.5. Pile Deflection 

Finally, we consider the variation of w.  We again refer back to equation (4-24b) and 

collect all the terms associated with δw and dw
dz
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Considering a layered soil deposit as the one shown in Figure 3-1, equation (4-48a) can 

be simplified as: 
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As before, the nth (bottom) layer is split into two parts, with the part below the pile denoted by 

the subscript n+1; therefore, in the above equation, Hn = Lp and Hn+1 → ∞.  The soil parameters 

in the above equation are defined as: 
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 (4-50) 

From equation (4-48b), we get the same set of equations of pile deflection, as given in 

chapter 3, for the domains Lp ≤ z < ∞ and 0 ≤ z ≤ Lp, respectively.  The parameters ti and ki of 
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equations (4-49) and (4-50) should be used with those equations.  The equations involving w(z) 

are normalized in a similar way as done in chapters 2 and 3; the normalized parameters to be 

used with the normalized equations are given by: 
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 (4-52) 

Numerical integrations along r and θ  are required for the calculation of k i and ti.  A three-

dimensional discretization of the soil mass along the r, θ, and z directions is done with Δr, Δθ 

and Δz  as the step lengths, respectively (Figure 4-6).  Note that the step length Δr used for 

calculating k i and ti is the same as that used in the finite difference discretization used for 

calculating φr and φθ.  Therefore, the finite difference discretization (along the radial direction) 

coincides with this three-dimensional discretization. 

At any given depth zl (the subscript l is used to denote the nodes along the z direction), 

integration following the trapezoidal rule is performed first along θ for any radial distance rj with 

a step length of rjΔθ.  The value of the integral thus obtained is used as the integrand at the jth 

node in the radial direction, for subsequent integration along r with Δr as the step length.  The 

sequential integrations, first along θ and then along r, gives k i and ti at any particular node l at 

depth zl.  Values of ki and ti are calculated for each depth z l within each layer i and then the 

average values of k i and t i are determined for each of the layers, which are used for the 

calculation of pile deflection.  In order to perform the integration, the correct values of elastic 

constants are determined at each node (corresponding to the level of stress or strain at the nodes) 

by an iterative nonlinear algorithm described later.  
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Figure 4-6 Discretization in a Soil Mass 

Solution of pile deflection can be obtained analytically if we assume that the parameters 

k i and t i are constants.  The secant modulus approach used in the nonlinear algorithm, described 

later, makes the parameters ki and t i constant at every instance of loading.  Hence, the method of 

initial parameters, described in chapter 2, can be used recurrently to obtain the nonlinear pile 

deflection, slope, bending moment and shear force as functions of applied load. 
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4.5. Interdependence and Iterative Solutions of Pile and Soil Displacements 

It is evident from equations (4-51) and (4-52) that the functions φr(r) and φθ(r) need to be 

known to estimate the parameters ki and t i.  This means that pile deflection cannot be obtained 

unless φr(r) and φθ(r) are determined.  In order to determine φr(r) and φθ(r), the quantities ms1, 

ms2, ms3, ns1 and ns2 need to be known, which, in turn, depend on the pile deflection w and slope 

dw dz .  Therefore, the pile-deflection and the soil-displacement equations are coupled (similarly 

to the linear elastic case of chapter 3), and have to be solved simultaneously using an iterative 

scheme (note that this iteration is separate from the φ-iterations described before). 

In order to solve the coupled equations, trial profiles for φr and φθ are assumed and the 

values of ti and ki are obtained from equations (4-51) and (4-52) using numerical integration.  

Pile deflection is then obtained using the method of initial parameters so that ms1, ms2, ms3, ns1 

and ns2 can be determined.  Using the calculated values of ms1, ms2, ms3, ns1 and ns2, φr and φθ are 

determined by solving equations (4-33) and (4-34) (using φ-iterations).  The newly obtained 

profiles of φr and φθ are then compared with the previous (trial) profiles.  If the differences are 

within the tolerable limits of previous current 3

1

1 10
m

j j
r r

jm
φ φ −

=

− ≤∑ and previous current 3

1

1 10
m

j j

jm
θ θφ φ −

=

− ≤∑ , 

then we accept the φr and φθ, and the corresponding w as the final solutions (note that the 

convergence criterion of 10−3 is different from the convergence criterion of 10−8 for the φ-

iterations described before) .  However, if the differences are greater than the tolerable limits, 

then we assume the newly obtained profiles of φr and φθ as the new trial profiles for the next 

iteration and repeat the process until convergence on both φr and φθ is achieved (we call this set 

of iterations involving w, φr and φθ the w-iterations).  The convergence criterion for the φ-

iterations is more stringent than that for the w-iterations because the φ-iterations are at the core of 

this nonlinear analysis, and the accuracy of w, obtained from the w-iterations, depends on the 

accuracy of φr and φθ obtained from the φ-iterations. 

4.6. Nonlinear Algorithm 

The nonlinear algorithm is fundamentally based on the concept of applying the external 

load (or/and moment) (or a fraction thereof) and solve for pile deflection (through φ-iterations 
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and w-iterations) after obtaining the correct values of soil modulus based on the correct 

displacement, strain and the stress fields, which are consistent with the applied loads.  

Incremental load application is not necessary in this algorithm because the analysis is based on 

secant modulus (ratio of total accumulated stress to corresponding strain) approach.  If, for 

example, the design load acting on the pile is Fa = 300 kN and Ma = 100kNm, the total load of 

300 kN and 100 kNm can be applied in one step and pile deflection can be obtained.  However, 

if one needs to follow the progression of displacements as a function of the applied load (e.g., a 

plot of head deflection versus applied load), then fractions of the total design load have to be 

applied recurrently in increasing magnitudes (e.g., in the sequence of, say, 30 kN, 10 kNm; 60 

kN, 20 kNm and so on) and the corresponding deflections have to be determined. 

In order to start the algorithm, a small magnitude (say, 1 kN) of force (and/or moment) is 

applied to determine the initial profiles of φr and φθ.  For this “initial” load application, it is 

assumed that the soil mass is homogeneous, isotropic and elastic within each layer.  Thus, the 

initial applied load has to be sufficiently small in order for the modulus to not degrade by any 

significant amount such that the assumption of homogeneity with respect to soil modulus holds 

good.  For such an assumption, the analysis and algorithm developed in chapter 3 are valid, and 

are used to obtain the initial pile deflection.  For calculating the values of ki and ti for the initial 

load application, the initial values of the elastic constants (Gs0 and υs0; or Gs0 and Ks0; or λs0 and 

Gs0; or Es0 and υs0) are used.  At the end of the initial load application, the profiles of φr and φθ 

obtained from the initial load step are recorded for use as the initial trial profiles (φr
ini and φθini) 

during the actual load application. 

Next, the actual design load (or a fraction of it) is applied.  Profiles of φr
ini and φθini are 

used to calculate the strains using equation (3-3) at different points within the soil mass (the 

values of pile deflection wi and slope idw dz  obtained from the initial load application are used 

in the calculation).  Strains are calculated at the discrete points spaced at intervals of Δr and of 

Δθ  along the radial and circumferential directions, respectively (Figure 4-6).  This discretization 

is the same as described before for the calculation of k i and t i.  Using the values of strains, the 

elastic constants are calculated (by the use of an appropriate stress-strain relationship) at each of 

the discretized points.  From the calculated values of elastic constants and φr
ini and φθini at the 
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nodes, ti and k i are calculated using equations (4-51) and (4-52) (by the use of numerical 

integration). 

After the calculation of k i and ti, profiles of pile deflection and slope are obtained using 

the method of initial parameters.  Using these values, ms1, ms2, ms3, ns1 and ns2 are then calculated 

from equations (4-26) through (4-29) and (4-32), respectively, using numerical integrations.  

Here, the numerical integration (following the trapezoidal rule) is done along θ and z .  For any 

radial distance rj, integration along θ is first performed (with a step length of rjΔθ).  The value of 

the integral thus obtained is then used as the integrand to perform the integration along z  with a 

step length of Δz . 

After obtaining ms1, ms2, ms3, ns1 and ns2, φr and φθ are determined by solving equations 

(4-30b) and (4-31) using φ-iterations.  Using the new values of φr,φθ, wi and idw dz , strains and 

subsequently soil moduli are recalculated to again calculate ki and ti, which are then used to 

calculate pile deflection.  Iterations (w-iterations) are performed until the profiles of φr and φθ 

between successive w-iterations match to the specified tolerable limits.  Tolerance limits of 

previous current 3
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r r
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φ φ −

=

− ≤∑ and previous current 3

1

1 10
m

j j

jm
θ θφ φ −

=

− ≤∑  are used, which ensured proper 

convergence.  After the convergence is ensured, we get the pile deflection corresponding to the 

applied load. 

As mentioned before, the above solution scheme is valid for the full design load or a 

fraction of it.  If fractions of the design load are recurrently applied in increasing magnitudes to 

determine how the pile deflection profile evolves with time, the same procedure has to be 

repeated for each such load application.  The nonlinear algorithm is outlined in Figure 4-7. 
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Figure 4-7 Nonlinear Solution Flow Chart 
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4.7. Results 

In this section, we consider two examples to illustrate how the nonlinear analysis works.  

In the first example, we consider a 20-m long concrete pile (Ep = 25 GPa) with a diameter of 0.6 

m embedded in a layered sand deposit (the water table is assumed to be at a large depth).  The 

top 5 m of the deposit consists of a sand with a relative density DR = 50% (DR describes the 

closeness of packing of sand grains and is defined as the ratio (emax − e)/( emax − emin), where e is 

the void ratio of sand at its natural state, emax is the void ratio when the sand is reconstituted in a 

manner such that it is in its loosest state, and emin is the void ratio when the sand is reconstituted 

in a manner such that it is in its densest state), the second layer extends from a depth of 5 m to a 

depth of 10 m (5-m thickness) and has a DR = 60%, while the third and bottom layer has a 

relative density of 70% and extends from a depth of 10 m to large distance downward.  We use 

the f-g model of modulus degradation for our nonlinear analysis.  We assume that, for all the 

three sand layers, the critical state friction angle φc = 33°, the unit weight is equal to 18 kN/m3 

and the coefficient of earth pressure is 0.45.  We used standard correlation of Bolton (1986) to 

obtain the peak friction angle φp for the three layers as 40.5°, 40° and 39.5° (for layers 1, 2 and 3, 

respectively).    We used these values as input (with c = 0) in equation (4-7) for use with the f-g 

model.  We further assumed emax = 0.8 and emin = 0.4 and used the relationship of DR to obtain 

the initial void ratios e0 as 0.6, 0.56 and 0.52 for layers 1, 2 and 3, respectively.  We calculated 

the initial stiffness modulus using equation (4-20a).  We used f = 0.97 and g = 0.23 for all the 

layers.  We assume that the pile head and base are free to translate and rotate.  In our nonlinear 

analysis, we divide each sand layer into a number of sub-layers so that degradation of the moduli 

can be calculated in an accurate way.  We also performed p-y analysis for the same problem 

using the software PYGMY (Stewart 2000) using similar discretization of the pile.  Figure 4-8 

shows the head deflection as a function of applied force.  It is evident that our analysis and p-y 

method produces pile deflections that are of the same order of magnitude. 
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Figure 4-8 Head Deflection as a Function of Applied Force for a Pile in Sand 

Next, we consider a problem of a 15-m long concrete pile (Ep = 25 GPa) embedded in a 

bed of clay underlain by sand.  The water table is at the ground surface.  The diameter of the pile 

is 1.0 m and is free at both the head and base.  A horizontal force acts at the head.  The clay 

deposit is assumed to be normally consolidated (with a coefficient of earth pressure of 0.45) 

extending from the ground surface to a depth of 13 m.  We assumed that the bulk unit weight of 

clay is 16 kN/m3 and φc = 30° for both the layers.  The sand layer, in which the pile base sits, 

consists of sand with DR = 70%, φc = 33°, emax = 0.8 and emin = 0.4, for which we got φp = 40.5° 

and e0 = 0.52.  We used equation (4-20b) to calculate the initial shear modulus of clays and used 

equation (4-20a) for sand.  For a comparison with the p-y method, we considered the criteria for 

“soft-clay” as prescribed by API (1993).  For obtaining the initial shear modulus of the clay 

layers, we assumed the values available for lower Cromer till, which belongs to the category of 

soft clays (Chakraborty, T. and Salgado, R., personal communication) for inputs in equation (4-

20b): Cg = 150.0, ng = 0.3, eg = 2.17.  In order to calculate the initial void ratio of clay e0 from 

the existing mean effective stress σm and OCR, we used the following equation 

0
1ln ln

OCR
m

a

e N
P
σλ κ
⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
  (4-53) 
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where N = 0.47, λ = 0.063 and κ = 0.009.  Using the above equation, e0 for clay was found to be 

0.65, 0.58, 0.55 and 0.44 for the soil in the depth ranges 0 m to 3 m, 3 m to 6 m, 6 m to 9 m, and 

9 m to 13 m, respectively.  The undrained shear strength (cohesion) of clay su was calculated 

using the following equation: 

( )0.8OCR
100

u c

v

s φ
σ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4-54) 

where σv is the vertical effective stress at a depth.  The values of su obtained for the clay layers 

are 2.79 kPa, 8.34 kPa, 13.9 kPa and 19.5 kPa for the depth ranges of 0 m to 3 m, 3 m to 6 m, 6 

m to 9 m and 9 m to 15 m, respectively.  The value of su was given as input to the p-y analysis 

(PYGMY) and also to equation (4-7) for use with the f-g model. We assumed f = 1 and g = 0.3 

for clay in the analysis.  Figure 4-9 shows the head deflection as a function of applied horizontal 

force for our method and the p-y method.  It is again evident that our analysis and p-y method 

produced results that are of the same order of magnitude.  
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Figure 4-9 Head Deflection as a Function of Applied Force for a Pile in Sand  
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Finally, we consider the pile load test performed at the Orange County in Indiana.  A 

closed-ended steel pipe pile of diameter 356 mm and thickness 12.7 mm was embedded into the 

ground to a depth of 17.4 m.  The soil profile is described in Figure 4-10.  The soil properties are 

given in Table 4-1. 
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Figure 4-10 Soil Profile at the Pile Load Test Site in Orange County, Indiana 
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Table 4-1 Soil Properties at the Pile Load Test Site in Orange County, Indiana 

Layer 
No. 

Depth   
(m) 

wc 
(%) 

LL 
(%) 

PL 
(%) 

PI 
(%) 

Total Unit Weight  
(kN/m3) 

DR 
(%) e0 Cc Cs

cv 
(m2/sec) 

σ'vp 
(kPa)OCR φc 

(deg)
su 

(kPa)

1 0-2.9 96 138 49 89 13.4 - 3.56 0.67 0.821.66E-06 - - - - 

2 2.9-3.7 15 - - - 22* 78 -  - - - - 31* - 

3 3.7-5.7 19 18 10 8 21.6 - 0.47 0.11 0.032.45E-07 265 5.6 - 78 

4 5.7-7.3 - - - - 22* 52 - - - - - - 29* - 

5 7.3-7.8 - - - - 21* - - - - - - - - - 

6 7.8-9.0 - - - - 22* 81 - - - - - - 29* - 

7 9.0-10.2 25 37 18 19 20.1 - 0.73 0.19 0.036.82E-07 365 3.2 - 220

8 10.2-12.0 23 29 19 10 20.6  0.63 0.13 0.013.43E-06 265 1.9 - 320

9 12.0-14.5 15 21 12 9 21.9 - 0.45 0.10 0.015.30E-07 750 4.9 - 103

10 14.5-17 11 22 12 10 21.6 - 0.40 0.08 0.023.75E-07 365 2.0 - 292

11 17-18.4 - - - - 21* 95~100 - - - - - - 30* - 

Note: wc = natural water content, e0 = initial void ratio, LL = liquid limit, PL = plastic limit, PI = 
plasticity index;. Cc = compression index; Cs = recompression index, cv = vertical coefficient of 
cosolidation; σ′vp = preconsolidation pressure, OCR = overconsolidation ratio, φc = critical state 
friction angle, su = undrained shear strength, DR  = relative density.  
* These values are assumed. 
 
 

For analysis, we assume alternate clay and sand layers (layers 1, 3, 5 and 7 are assumed 

to be clay while layers 2, 4 and 6 are assumed to be sands).  The seventh layer is assumed to 

have properties that are approximately the average of the layers 7 through 10.  The initial void 

ratio assumed for all the layers is 0.5 except for the top layer which is assumed to have a void 

ratio of 1.6.  For clays, the parameters corresponding to those of lower Cromer till, described 

above, are assumed for determining the initial shear modulus.  The f-g model with f = 0.97 and g 

= 0.23 is considered.  Figure 4-11 shows the plot of the pile head deflection versus applied 

horizontal load as obtained from the field experiment and the analysis.  It is evident that the 

analysis result matches reasonably well with the field result. 
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Figure 4-11 Head Deflection versus Applied Force for the Orange County Pile Load Test 

4.8. Summary 

The equations for the linear elastic analysis are modified to take into account soil 

heterogeneity in the radial and tangential directions.  The developed equations were coupled with 

a nonlinear algorithm that accounts for the degradation of soil modulus (which renders the soil 

heterogeneous) due to soil nonlinearity.  A nonlinear algorithm, based on a secant modulus 

approach, was developed that explicitly takes into account the modulus degradation of each soil 

element surrounding the pile and relates it to the degraded soil resistance with increasing applied 

load.  Thus, the three-dimensional interaction between the pile and the nonlinear soil is taken 

into account.  Nonlinear soil constitutive relationships are outlined that can be used to obtain the 

nonlinear pile response.  Comparisons were made with the p-y method and a field load test.  The 

method predicts the pile deflection reasonably well. 
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CHAPTER 5. PILE GROUP ANALYSIS 

5.1. Introduction 

In this chapter, the interaction of piles embedded in a linear elastic continuum is studied.  

The influence of one pile on any other in a group is modeled by modifying the soil resistance 

which is assumed to be a function of the number of piles and their positions.  The additional 

displacement that a pile undergoes due to the loading of the other is captured.   

5.2. Overview 

Interactions between piles within a pile group play an important role in determining the 

response of the group to external lateral loads. As a pile group is loaded, each pile pushes the soil 

in the direction of the applied force and generates stresses in the soil mass.  Each pile creates a 

zone of influence within which the stresses caused by the pile are significant.  Such zones of 

influence of all the piles in a group overlap due to the close pile spacings (Figure 1-4).  The 

overlapping zones of influence of each pile not only transfer load to neighboring piles but also 

cause a reduction in the soil stiffness between piles (Matlock et al 1980, Meimon et al. 1986, 

Brown et al. 1987, McVay 1996).  

The p-y method, modified to take into account the overall stiffness reduction of group 

piles, is one of the most common methods of pile group analysis (Brown et al. 1988, 1987).  In 

this method, the soil resistance p is reduced by multiplying p by a factor f (called the p-

multiplier).  The values of the p-multipliers are a function of spacing and position of the piles 

(Reese et al. 2006).  The multipliers have been back-calculated to match experimental and 

numerical results (Brown and Shie 1991, Ruesta and Townsend 1997, Rollins et al. 1998, Zhang 

et al. 1999b, Ng et al. 2001, Holloway et al. 1981, Baguelin et al. 1985, McVay et al. 1994, 1995, 

1998, Ilyas et al. 2004). 

Alternative approaches are also available based on the concept of beams on elastic 

foundations.  Ooi and Duncan (1994) and Ooi et al. (2004) addressed the issue of increase in 
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deflection by a group-amplification procedure, which is based on the characteristic load method 

(Duncan et al. 1994).  Davisson (1970), based on a subgrade-reaction analysis, proposed a 

reduction in the values of the modulus of subgrade reaction for use in group analysis.  

Dunnuvant and O’Neill (1986) proposed a reduction in stiffness of the piles depending on their 

position in the group.  Nogami and Paulson (1985) used a network of Winkler springs 

interconnected to all the piles in the group and a transfer matrix to analyze the problem.  Bogard 

and Matlock (1983) replaced the actual piles within a group with an equivalent single pile 

(applicable for closely-spaced piles) and developed equivalent p-y curves.  They proposed a y-

multiplier concept (with multiplier values greater than one) to account for the excess deflection 

of pile groups with respect to that of individual piles (applicable for groups with widely spaced 

piles).  Ashour et al. (2001) and (2004) applied the strain wedge model to analyze pile groups. 

Several continuum-based approaches are also available.  Poulos (1971b) pioneered the 

continuum-based research by modifying his boundary integral technique, based on Mindlin’s 

solution, to account for interaction between piles within groups.  Many researchers have since 

then used different forms of the boundary integral technique, including the boundary element 

method, and have approximately accounted for soil nonlinearity and heterogeneity (Poulos 1975, 

Banerjee 1978, Banerjee and Davies 1980, Sharnouby and Novak 1985, Basile 1999, Xu and 

Poulos 2000).  The finite element method, with several modifications (e.g., finite elements with 

Fourier technique, finite elements with substructuring, finite elements with periodic boundary 

conditions), has also been used quite extensively to model pile groups in elastic and elasto-

plastic soils (Chow 1987, Shibata et al. 1988, Kooijman 1989, Brown and Shie 1991, Bransby 

1996, Zhang et al. 1999b, Wakai et al. 1999, Zhang and Small 2000, Law and Lam 2001, 

Budiman and Ahn 2005).  That apart, the discrete element method (Holloway et al. 1981), the 

finite difference method (Comodromos and Pitilakis 2005) and the variational method (Shen and 

Teh 2002) have been used to analyze pile groups. 

 A few mixed methods of analysis are also available, which are the combinations of the 

continuum-based approach and the beam-on-foundation approach.  Focht and Koch (1973) 

combined the integral equation approach of Poulos (1971b) and the p-y method, assuming that 

the deflection of a pile group depends both on the nonlinear soil behavior and on the pile-soil-

pile interaction.  A similar hybrid model was developed by Leung and Chow (1987), who 

modeled the soil response using the subgrade reaction method, and interaction between piles was 
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captured using Mindlin’s solution.  Reese et al. (1984) modified the method of Focht and Koch 

(1973) by calculating the elastic deflection from the linear portion of the p-y curves.  O’Neill et 

al. (1977) proposed a mixed method involving Mindlin’s solution and functional relationships 

between load and deformations at the pile head, which were developed using the finite difference 

method and cubic spline functions.  Based on elastic interaction in a horizontal plane, Hariharan 

and Kumarasamy (1983) obtained expressions for load and displacement multipliers for p-y 

curves. 

In this chapter, we propose coefficients f (Reese et al. 2006) to be multiplied with the soil 

resistances ki and ti of the single-pile analysis (see chapter 4) to obtain the modified soil 

resistances for pile groups.  Thus, the single-pile analysis is modified to obtain the nonlinear 

response of pile groups.  We consider pile groups consisting of 2, 3, 4 and 6 piles. 

5.3. Soil Resistance for Pile Groups 

The two-pile-group problem can be described by Figure 5-1.  For coefficient f to be used 

for pile 1 and 2 are respectively given by: 
0.26
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where r12 is the center-to-center spacing between the two piles. 
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Figure 5-1 Two-Pile Group 
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The three-pile group can be described by Figure 5-2.   The coefficient f for pile 1 can be 

expressed as: 

1 2f β β=  (5-3) 

with  
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For pile 2, equation (5-3) is valid with  
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For pile 3, equation (5-3) is valid with  
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Figure 5-2 Three-Pile Group 



 128

Figure 5-3 describes the geometry of the four-pile group.  The coefficient for piles 1 and 

2 is the same, while the coefficient for piles 3 and 4 is the same.  The coefficient f for pile 1 or 2 

can be expressed as: 

1 2 3f β β β=  (5-9) 
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Figure 5-3 Four-Pile Group 

For pile 3 or 4, equation (5-9) is valid with  
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2 2 2 2
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The six-pile group is described by Figure 5-4.  The factor f for pile 1 or 2 is given by  

1 2 3 4 5f β β β β β=  (5-16) 
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Figure 5-4 Four-Pile Group 

5.4. Results 

In order to illustrate the pile group analysis, we consider the soil profile of the example 

problem of Figure 4-9 (clay layers overlain by a sand layer); however, instead of a single pile, 

we assume a four-pile group with a center-to-center spacing of 2.5 m.  All the piles in the group 

are assumed to be 15 m long with diameters equal to 1.0 m.  We restrain the rotation at the head 

of all the piles with the assumption that the piles are attached to a rigid pile cap.  Figure 5-5 

shows the head deflections of the leading and trailing piles as a function of applied force.  Also 

plotted in the figure is the head deflection of a single pile (i.e., without a group) with a restrained 

head condition that has the same length and diameter as those of the piles in the group.  It is 

evident that the leading pile has a slightly stiffer response than the trailing pile.  In general, the 
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pile group deflects more than a single pile.  For example, if we want to restrict the head 

deflection at 10 mm, say, then the corresponding load at the head of the leading pile is 155 kN, 

while that at the head of the trailing pile is 125 kN.  Thus, a maximum total load of 2 × (155 + 

125) = 560 kN can be applied on the group.  In contrast, the maximum load that can be applied 

for a 10 mm deflection for a single pile is 165 kN. 
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Figure 5-5 Six-Pile Group 

5.5. Summary 

In this chapter, we propose a method for analysis of pile groups.  The method is an 

extension of the single pile analysis.  Different coefficients (depending on the position of a pile 

in a group and the number of piles in a group) are proposed that modify the soil resistances 

obtained from single pile analysis for different pile groups.  An example is provided to illustrate 

the method. 
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CHAPTER 6. RETROSPECTION AND RECOMMENDATIONS 

6.1. Introduction 

In this final chapter, we present a summary of the research presented in the previous 

chapters.  We also present the main conclusions.  Finally, we give recommendations for future 

extensions of this research. 

6.2. Summary 

In this research study, we developed a continuum-based analysis of piles embedded in 

multiple soil layers and subjected to a horizontal force and moment at the pile head.  The pile is 

modeled as an Euler-Bernoulli beam while the soil surrounding the pile is modeled as either a 

linear elastic or a nonlinear elastic material.  The displacements in the soil are described as 

products of separable variables with different dimensionless shape functions for radial and 

tangential displacements accounting for the decay in the soil displacements with increasing radial 

distance from the pile.  The differential equations governing the equilibrium configuration of the 

pile-soil system were derived applying the principle of minimum potential energy. The 

differential equation of pile deflection was solved analytically while the differential equations of 

soil displacements were solved using the one-dimensional finite difference method.  An iterative 

solution algorithm was developed that ensured the global equilibrium of the pile-soil system.  

The method takes into account the three-dimensional interaction of the pile with the surrounding 

soil and produces pile response comparable with that from three-dimensional (3D) finite element 

method (FEM); however, the computational effort required by the method is much less than that 

required by an equivalent 3D FEM (nonlinear pile response is produced within minutes).  

Analysis of pile group was also performed by modifying the soil resistance depending on the 

number of piles in a group and the relative positions of the piles 

In chapter 1, we presented a brief overview of piles foundations.  We discussed the statics 

and kinematics of pile response against vertical and lateral loads and discussed the soil spring 
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approach and the continuum approach of analysis of laterally loaded piles. We established that 

the continuum approach is conceptually more appropriate for analysis of laterally loaded piles; 

this set the stage for the analysis that was performed as a part of this research.  In chapter 2, we 

showed that a simple beam-on-elastic foundation approach can also be used to analyze laterally 

loaded piles as a prologue to the continuum analysis subsequently performed. It revealed the 

analogy between the soil-spring approach and the continuum approach.  An analytical method of 

solving differential equations, the method of initial parameters, was modified and applied to the 

governing differential equation of pile deflection.  In chapter 3, the continuum-based elastic 

analysis for a single, circular pile was presented.  The differential equations for pile deflection 

and soil displacements were systematically developed using the principle of minimum potential 

energy and calculus of variations.  An iterative solution algorithm was used.  The linear elastic 

analysis was extended to take into account the soil nonlinearity in chapter 4.  Different 

constitutive models describing soil nonlinearity were first introduced and then the mathematical 

analysis developed for linear soil was modified to produce the nonlinear pile response.  Pile 

groups were analyzed in chapter 5 by incorporating into the analysis modified soil resistance as a 

function of the number of piles in a group and of the relative position of the piles. 

Through this research, we have demonstrated that a complex three-dimensional boundary 

value problem, that have so far been analyzed either by simple soil-spring approach or expensive 

three-dimensional numerical analysis, can be solved with minimal computational effort yet 

maintaining sufficient rigor so that the essential features of the pile-soil interaction are captured.  

The need for representing soil resistance by springs with empirical spring constants (which, in 

the case of nonlinearity, depend on pile deflection) is completely eliminated as the resistance is 

rigorously calculated using integral equations that are functions of soil modulus and of the rate of 

decrease of soil displacements with radial distance from the pile.  The unique feature of this 

analysis is that, along with the pile response (i.e., pile deflection, bending moment and shear 

force), displacements and strains in the surrounding soil can also be obtained.  Such a detailed 

analysis has so far been possible only by the use of three-dimensional numerical analysis like the 

finite element analysis, which is expensive and cannot be performed routinely for design.  By the 

use of this analysis, pile response is obtained semi-analytically in minutes and can be readily 

used in design calculations.  The inputs required for the analysis are pile geometry and modulus; 

and the soil properties, typically the soil Poisson’s ratio, the void ratio, and the number and 
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thickness of soil layers, that can be determined from simple in situ or laboratory tests.  The 

inputs can be typed in a text file requiring minimum effort on the part of the user. 

6.3.  Future Research 

Any new analysis method requires sufficient checks before it can be accepted in practice.  

In the above research, the analysis has been compared with the exiting p-y method.  However, 

the p-y method cannot truly represent soil behavior, and moreover, the present analysis produces 

soil displacements and strains along side pile deflection, which the p-y method cannot produce.  

Thus, we need a systematic way of validating the analysis developed in the research, which will 

check the pile deflections, and soil displacements and strains.  An important point to note is that, 

unlike the p-y method, the analysis uses soil parameters that can be estimated from routine tests.  

Controlled pile load tests, in which soil properties are estimated using routine tests, is an 

appropriate way to validate the analysis.  That will help us to estimate the soil resistance with 

reasonable accuracy, which is often not possible in real field problems due to inadequate site 

characterization.  Thus, we recommend the development of a load testing program.  The Bowen 

laboratory at Purdue University has the facility for performing laboratory-scale pile load tests 

under controlled conditions.  It is envisaged that the facility can be used successfully to develop 

the testing program. 
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