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Introduction  
Pile foundations have been used in construction for 
thousands of years as an economical means of 
transmitting the loads from superstructures to the 
underlying soil or rock strata. In pile design, piles 
must be able to sustain axial loads from the 
superstructure without failing in bearing capacity or 
settling so much that structural damage occurs or 
serviceability of the superstructure is jeopardized. 
In general, settlement controls the design in most 
cases because, by the time a pile has failed in terms 
of bearing capacity, it is very likely that 
serviceability will have already been compromised. 
Therefore, realistic estimation of settlement for the 
given load is very important in design of axially 
loaded piles. This notwithstanding, pile design has 
relied on calculations of ultimate resistances 
reduced by factors of safety that would indirectly 
prevent settlement-based limit states. This is in part 
due to the lack of accessible realistic analysis tools 
for estimation of settlement, especially for piles 
installed in layered soil.  
 Micropiles are small-diameter piles that 
are sometimes called minipiles, root piles, pin piles 
or needle piles. The conceptual idea behind this 
important technological development was to create 

a type of pile that would be able to carry large 
loads while causing minimal vibration or 
disturbance to in situ materials at the time of 
installation.  The rigs required to install them are 
often relatively small. Because of these important 
advantages, micropiles have been widely used in 
seismic retrofitting, in the rehabilitation of 
foundations of structures that are very sensitive, 
and in locations with low headroom and severely 
restricted access conditions. Furthermore, 
micropiles have been increasingly used, not only 
as underpinning foundation elements, but also as 
foundations for new structures. 
 Prevalent design methods for micropiles 

are adaptations of methods originally developed 
for drilled shafts. However, installation of 
micropiles differs considerably from that of drilled 
shafts, and micropiles have higher pile length to 
diameter ratios than those of drilled shafts.  
Improved understanding of the load-transfer 
characteristics of micropiles and the development 
of pile settlement estimation tools consistent with 
the load-transfer response of these foundation 
elements is needed. 

Findings  

We obtained explicit analytical solutions for an 
axially loaded pile in a multilayered soil or rock.  
Using these solutions, we performed extensive 
parametric studies.  We also developed a user-
friendly spreadsheet program ALPAXL to 
facilitate the use of our analysis. To investigate 
the load-transfer behavior of a rock-socketed 
micropile, a fully instrumented static load test was 
performed. 
 
 
 
 

1. Piles in a multilayered soil 

We performed extensive parametric studies to 
investigate pile slenderness ratio and layering 
effects. 
 The results from FEA and our analysis 
for a multilayered soil showed good agreement; 
the results from our analysis for end-bearing piles 
also compared well with results from previous 
studies. 
 When the soil layer surrounding the pile 
shaft becomes very stiff or the pile slenderness 
ratio is large, as is the case for micropiles, the 
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normalized pile head stiffness is practically 
independent of the soil properties below the pile 
base. 
 In the case of piles in multilayered soil, 
the elastic response of the pile depends on soil 
layering, with the uppermost soil having the most 
effect on the pile head stiffness. A single layer 
with a simple weighted average of the soil 
modulus of different soil layers with layer 
thicknesses as weights will not produce correct 
pile head stiffness values. 
 
2. Rock-socketed piles 

For rock-socketed piles, we performed parametric 
studies to investigate pile socket geometry, 
stiffness of rock mass, and quality of in situ rock 
mass. 
 The load-settlement response of shorter 
socket was largely affected by the stiffness of the 
rock at the base, whereas that of longer socket 
was less sensitive to the stiffness of the rock at the 
base. Most of the applied load was carried by the 
pile shaft even for relatively short-socket length.  
This implies that base capacity may be ignored in 
design when a micropile is embedded in a very 
stiff rock, as there will be practically no load 
transferred to the base under working load. 
 Normalized pile stiffness increases with 
increasing rock mass modulus, irrespective of 

socket geometry. When the rock mass 
deformation modulus becomes larger than the 
elastic modulus of the pile, for practical purposes, 
socket geometry does not affect pile stiffness. 
 RQD has a more pronounced effect on 
load-transfer and load-settlement response for pile 
embedded in hard than in weak rocks.  As the 
RQD increases, less load is transferred to the pile 
base, and the pile response becomes stiffer. 
 For soft rocks, normalized pile stiffness 
increases as Ls/B increases.  However, this trend 
vanishes and pile stiffness becomes independent 
of socket geometry as the rock becomes stiffer. 
 A fully instrumented load test on a rock-
socketed micropile confirmed that most of the 
applied load was carried by the pile shaft with 
high slenderness ratio and high stiffness of the 
surrounding rock. The shaft capacity of hard 
limestone obtained from the load test at the final 
loading step was 1.4 times larger than the shaft 
capacity that is obtained using the highest value of 
limit unit shaft resistance suggested by FHWA 
(the limit unit shaft resistance qsL from the load 
test was 2950 kPa, while the suggested values 
from FHWA were 1035 – 2070 kPa). Using pile 
and soil properties, predictions were also made 
using ALPAXL.  The results from ALPAXL were 
in good agreement with the measured data at the 
design load level. 

Implementation  

We have developed a user-friendly spread sheet 
program ALPAXL to facilitate the implementation 
of our analysis in the design of axially loaded 
piles. However, the analytical solutions presented 
in this report are obtained from the assumption 
that soil and rock behave as linear elastic 
materials. Therefore, results from the parametric 
study are valid only when pile behavior is 
approximately elastic, as it tends to be under 
working loads. Furthermore, estimation of soil and 
rock elastic modulus values is very important. 
 In order to successfully use micropiles as 
foundations of new transportation structures, we 
recommend the following: 
  
(1) Extensive laboratory and in situ tests need to 

be performed to allow development of 
reasonable correlations for estimation of the 
elastic properties of soils and rocks typically 
found in Indiana for use as input in ALPAXL.  
 

(2) Micropiles are usually installed in rock to 
support large loads from superstructures. The 
FHWA manual (2000) does not give guidance 
on how to select proper limit unit shaft 
resistance values for in design, suggesting 

only wide ranges. Development of a database 
containing in situ rock mass quality, such as 
RQD values, and load test data will be very 
beneficial to establish proper guidelines in the 
future. 

 
(3) The base capacity of micropiles is usually 

ignored in design.  However, when the 
surrounding rock is weak and pile or socket 
length is short, it would be more reasonable to 
consider base capacity as well in the design. 
More analyses are necessary to investigate the 
contribution of the stiffness of the base rock to 
the load-settlement response at the pile head 
for shorter socket installed in weak rock. 

 
(4) When the soil is very stiff or dense, 

micropiles are potentially advantageous as 
foundations of new structures.  To gain 
confidence in the use of micropiles for more 
general site conditions, instrumented load 
tests on micropiles installed in multilayered 
soil profiles are necessary. 

 
(5) ALPAXL is sufficiently general to be used 

not only for micropiles but also for drilled 
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shafts.  However, in the case of driven piles, 
the state of the soil surrounding the pile 
changes significantly during installation.  
Therefore, more research is necessary to 

investigate the effects of pile installation.  
This would be necessary for use of ALPAXL 
to design driven piles as well. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Pile foundations have been used in construction for thousands of years as an economical 

means of transmitting the loads from superstructures to the underlying soil or rock strata. 

Piles support the load applied from the superstructure Qt through basically two sources: 

1) friction between the pile shaft and the surrounding soil and 2) compressive resistance 

of the soil below the pile base. The frictional resistance offered by the soil surrounding 

the pile is called shaft resistance Qs, and the compressive resistance offered by the soil at 

the base is referred to as base resistance Qb (Figure 1.1). 

 

Applied load Qt

Shaft resistance Qs

Base resistance Qb

Pile shaft

Pile head

Pile base

 

Figure 1.1 Sources of pile resistances  

 As the applied load at the pile head is increased, pile settlement increases until 

eventually the pile plunges into the ground when the shaft and base resistances reach their 
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limit values.  During this loading process, there is high localization of shearing within a 

thin layer of soil around the pile shaft.  As the thickness of this layer (shear zone) is very 

small, only a small amount of axial displacement of the pile is sufficient for full 

mobilization of the limit shaft capacity (QsL). In contrast to the shaft resistance 

mobilization mechanism, mobilization of the base resistance involves substantial amount 

of soil compression and requires large pile settlements. In fact, it is almost impossible for 

the plunging load or limit load QL of piles routinely used in practice to be reached with 

conventional equipment unless the soil profile is very weak. Therefore, ultimate load 

(Qult) criteria have been traditionally used to define the capacity of a pile. In the case of 

the 10%-relative-settlement criterion, Qult corresponds to the load for which the pile head 

displacement is 10% of the pile diameter; this is an example of an ultimate load criterion 

that is widely used in practice. Figure 1.2 illustrates these concepts. 

 

QsL Qult

wt = 0.1B

Load

Settlement

Qt - wt

Qb - wt
Qs - wt

w = (0.01~0.02)B

 

Figure 1.2 Typical load-settlement response of pile (modified after Franke 1991) 

 Micropiles are small-diameter piles that are sometimes called minipiles, root 

piles, pin piles or needle piles. The motivation behind this important technological 

development was the need of developing a small-diameter pile that would be able to carry 

large loads and, at the same time, cause minimal vibration or disturbance of the in situ 

soil during installation.  Because of these important advantages, micropiles have been 
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widely used in situations where minimal disturbance of existing structures is a 

requirement, such as in seismic retrofitting and in the rehabilitation of foundations of 

structures that are very sensitive (Taylor et al. 1998; Zelenko et el. 1998; Davie and 

Senapathy 2002; Macklin et al. 2004; Stulgis et al. 2004), as well as in locations with low 

headroom and severely restricted access conditions (Scherer et al. 1996).  Micropiles 

have also been increasingly used, not only as foundation underpinning elements but also 

as foundations of new structures.  

 Micropiles can be installed through both rock and soil. Installation of micropiles 

involves three basic steps: 1) drilling a borehole, 2) placing the reinforcement and 

grouting the hole, and 3) injecting more grout under pressure as required. As a result of 

the way micropiles are installed, they are classified as nondisplacement or replacement 

piles.  Typically, they are 100 to 300 mm in diameter (4-12 in) with lengths up to 30 m or 

more (Bruce et al. 1999).  When micropiles are installed in competent rock within a 

reasonable depth below the ground surface, they are capable of resisting very large loads 

(Traylor and Bruce 2002; Bedenis et al. 2004a and 2004b). 

 Micropiles are designed to transfer the structural loads to competent soils or rocks 

through frictional resistance, with end bearing being usually neglected. The available unit 

friction resistance depends on the characteristics of the in situ materials, the method 

selected for drilling the holes, and the grouting procedures. 

1.2. Problem Statement 

In pile design, piles must be able to sustain axial loads from the superstructure without 

bearing capacity failure or structural damage. In addition, piles must not settle or deflect 

excessively in order for the serviceability of the superstructures to be maintained. In 

general, settlement controls the design of piles in most cases because, by the time a pile 

has failed in terms of bearing capacity, it is very likely that serviceability will have 

already been compromised. Therefore, realistic estimation of settlement for a given load 

is very important in design of axially loaded piles. This notwithstanding, pile design has 

relied on calculations of ultimate resistances reduced by factors of safety that would 

indirectly prevent settlement-based limit states. This is in part due to the lack of 
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accessible realistic analysis tools for estimation of settlement, especially for piles 

installed in layered soil.  

 It is well known that the shaft resistance of a pile is usually fully mobilized at 

relatively small pile head displacements and well before the base resistance reaches its 

maximum value (except in the case of a floating pile). After full mobilization of shaft 

resistance, any additional load applied at the pile head is completely transferred to the 

pile base. However, the pile shaft load-displacement response, even at very small 

settlement levels, will not be perfectly linear because the stress-strain relationships of 

soils are highly nonlinear, except at very small strains (typically smaller than 10-6). 

Considering that pile head settlement results from the compression of the pile material 

itself and the settlement of the soil at the pile base, a useful analysis tool must be able to 

account for pile compressibility as well. Furthermore, the load-settlement response of 

piles in multilayered soil is not the same as that observed for a pile installed in a single-

layer soil.  

Most of the analyses available in the literature for assessment of the load-

settlement response of an axially loaded pile were developed for either a homogeneous 

soil or Gibson soil (Poulos and Davis 1968; Randolph and Wroth 1978; Guo and 

Randolph 1997; Guo 2000).  Although there are analysis methods (Poulos 1979; Lee 

1991; Lee and Small 1991; Guo and Randolph 1997; Guo 2000) or closed-form solutions 

(Vallabhan and Mustafa 1996; Lee and Xiao 1999; Seo and Prezzi 2007) that are 

applicable to layered soils, these analyses are valid only for elastic soils. Therefore, 

development of advanced analysis tools that are able to capture realistically the pile axial 

load-settlement response in a multilayered soil is one of the goals of the present study. 

 Micropiles have been increasingly used, not only as foundations of new 

structures, but also as underpinning foundation elements. However, there are no design 

methods specifically developed for micropiles.  Prevalent design methods are adaptations 

of methods originally developed for drilled shafts. However, the installation of micropiles 

differs from that of drilled shafts, and micropiles have higher pile length to diameter 

ratios than those of drilled shafts. Additionally, drilled shafts and micropiles differ 

structurally as well.  In fact, results of a number of field axial load tests indicate that the 
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actual capacity of micropiles embedded in rock is grossly underestimated (Finno et al. 

2002; Bedenis et al. 2004b).  Improved understanding of the load-transfer characteristics 

of micropiles and the development of pile settlement estimation tools consistent with the 

load-transfer response of these foundation elements are the main goals of the proposed 

research. 

1.3. Objectives and Organization 

In this report, we develop a new analysis method for assessment of the load-settlement 

response of axially loaded piles installed in multilayered soil or rock. We then perform 

extensive parametric studies on the load-settlement response of axially loaded piles 

installed in layered soil and rock-socketed piles.  We also report the results of a static 

load test on a fully instrumented micropile embedded in hard limestone performed in 

cooperation with INDOT to investigate the load-transfer characteristics of rock-socketed 

micropiles. We compare the load test results with those obtained using the analysis 

developed in this study. 

 In Chapter 2, we review the analytical models available in the literature and 

examine the assumptions typically made in the analysis for axially loaded piles. 

Furthermore, we review the micropile design methods available in the literature. 

 In Chapter 3, using energy principles, we obtain the governing differential 

equations for an axially loaded pile installed in a multilayered linear elastic soil. We 

solve these differential equations and obtain explicit analytical solutions.  We then 

compare the results from our solutions with those from finite element analyses. 

 In Chapter 4, we present the analysis results for rock-socketed piles. Extensive 

parametric studies are performed to investigate the load-settlement and load-transfer 

response of rock-socketed piles. 

 In Chapter 5, we present a user-friendly spreadsheet program ALPAXL 

developed in this study. The ALPAXL uses elastic solutions obtained in Chapter 3.  We 

show how ALPAXL works and illustrate its use with a few micropile examples. 

 In Chapter 6, we present and analyze the results of the static load test performed 

in cooperation with INDOT on a micropile installed in rock. 
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 In Chapter 7, we present summarize the conclusions drawn from this study. 
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CHAPTER 2. LOAD-SETTLEMENT RESPONSE OF AXIALLY LOADED PILES  

2.1. Introduction 

The available analyses for load-settlement response of axially loaded piles either assume 

that the soil resistance can be represented by a series of independent springs (the spring 

stiffness is determined through theoretical, experimental or empirical means) or treat the 

soil as a continuum (either homogeneous soil or Gibson soil). In this Chapter, we review 

the available tools for analysis of axially loaded piles. We also discuss the advantages 

and limitations of these methods of analysis for the load-settlement response of axially 

loaded piles. 

2.2. Load-Transfer Models 

The load-transfer models (Seed and Reese 1957; Coyle and Reese 1966; Murff 1975; 

Randolph and Wroth 1978; Kraft et al. 1981; Armaleh and Desai 1987; Kodikara and 

Johnston 1994; Motta 1994; Guo and Randolph 1997; Guo 2000) assume that the soil 

resistance can be represented by a series of independent springs (the spring stiffness is 

determined through theoretical, experimental or empirical means). This approach has the 

advantage that approximate analytical or simple numerical solutions of pile settlement 

can be easily obtained (Randolph and Wroth 1978; Armaleh and Desai 1987; Motta 

1994; Mylonakis 2001). 

2.2.1. Randolph and Wroth’s solution 

Randolph and Wroth (1978) presented a closed-form solution for the load-settlement 

response of an axially loaded pile. Their solution has been used as the basis for many 
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other solutions that have been recently developed (Kraft et al. 1981; Guo and Randolph 

1997; Guo 2000).  The Randolph and Wroth’s solution is presented next. 

 Randolph and Wroth (1978) assumed that the deformation of the soil surrounding 

the pile shaft may be idealized as shearing of concentric cylinders. Based on this 

assumption, the vertical equilibrium of a soil element is represented as follows: 

 

( ) 0z
rzr r

r z
στ ∂∂

+ =
∂ ∂

 (2.1)

 

where r = radial distance from the pile axis; z = depth; τrz = shear stress; σz = vertical 

stress (taking compressive stresses as positive). These authors argued that the vertical 

stress σz term in Eq. (2.1) could be neglected because the increase in shear stress is much 

larger than the increase in vertical stress near the pile when the pile is loaded. Therefore, 

Eq. (2.1) is further simplified to: 

 

( ) 0rzr
r

τ∂
=

∂
 (2.2)

 

Denoting shear stress at the pile-soil interface as qs  at r = rp,  Eq. (2.2) is integrated to 

give: 

 

s p
rz

q r
r

τ =  (2.3)

 

where qs = shear stress at the pile-soil interface and rp = pile radius (= B/2, where B is pile 

diameter). 

 Considering that the vertical displacement of the soil uz is much larger than the 

radial displacement of the soil ur, the shear strain (reduction in angle taken as negative) is 

simplified to: 
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z r zu u u
r z r

γ ∂ ∂ ∂⎛ ⎞= − + ≈ −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (2.4)

 

Now using the relationship τ  = Gγ, Eq. (2.3)  is rewritten as: 

 

s pz
q ru

r rG
∂

≈ −
∂

 (2.5)

 

To solve Eq. (2.5), Randolph and Wroth (1978) assumed that there is a magical radius rm 

around the pile beyond which uz = 0.  Integrating Eq. (2.5) with this boundary condition 

gives: 

 

lns p m
z

q r ru
G r

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.6)

 

Accordingly, the pile shaft displacement ws is obtained by replacing r with rp in Eq. (2.6):  

 

lns p s pm
s

p

q r q rrw
G r G

ζ
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.7)

 

in which ζ = ln(rm/rp).  

 Eq. (2.7) clearly shows that determination of the magical radius rm is crucial in the 

estimation of pile shaft displacement. Furthermore, rm varies with depth. Randolph and 

Wroth (1978) assumed that rm is constant with depth and presented a depth-independent 

empirical equation that can be used to obtain rm: 

 

2.5 (1 )m p sr Lρ ν= −  (2.8)
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where Lp = pile length; νs = Poisson’s ratio of the soil; and ρ = G/GLp = inhomogeneity 

factor, which is defined as the ratio of the soil modulus at the pile mid-depth to that at the 

pile base (ρ becomes 1 for a homogeneous soil and 0.5 for a Gibson soil). 

 Randolph and Wroth (1978) used a rigid punch solution at the surface of an 

elastic half space to model the pile base response: 

 

(1 )
4

b s
b

p

Qw
r G

ν η−
=  (2.9)

 

where wb = pile base settlement; Qb = load at the pile base; and η = depth factor that 

accounts for the stiffening effect of the soil above the level of the loaded area. According 

to Randolph and Wroth (1978), η can be taken as unity for a straight (not underreamed) 

pile. 

 In order to estimate the effect of pile compressibility on the pile head settlement, 

Eq. (2.7) is written as: 

 

( ) ( )
( ) lns p s pm

p

q z r q z rrw z
G r G

ζ
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.10)

 

where w(z) = pile displacement at depth z, and qs(z) = shear stress at the pile-soil interface 

at depth z. The axial load in the pile Q(z) at depth z can be determined from the elastic 

compression of the pile:  

 

( )( ) p p z p p
dw zQ z E A E A

dz
ε= = −  (2.11)

 

where Ep = Young’s modulus of the pile and Ap = cross sectional area of the pile. The 

change in load dQ can be related to the shear stress qs by: 
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( ) 2 ( )p sdQ z r q z dzπ= −  (2.12)

 

Relating Eqs. (2.11) and (2.12) gives: 

 
2

2

( ) 2 ( ) 0p p p s
d w zE A r q z

dz
π− + =  (2.13)

 

Eq. (2.13) can be written as: 

 
2

2

( ) ( ) ( ) 0p p
d w zE A k z w z

dz
− + =  (2.14)

 

by defining: 

 

( ) 2 ( ) / ( )p sk z r q z w zπ=  (2.15)

 

The term k(z) is called a Winkler constant. This constant has FL-2 units (where F is force 

and L is length) and represents the unit shaft resistance per unit length of pile at depth z 

divided by the displacement there. Eq. (2.14) is simplified, using Eq. (2.10), to:  

 
2

2 2

( ) 2 ( ) 0
p

d w z w z
dz rψζ

− =  (2.16)

 

where ψ = Ep/G (ratio of the pile stiffness to the soil stiffness).  Eq. (2.16) is a 2nd order 

ordinary differential equation with a general solution given by: 

 

( ) z zw z Be Ceμ μ−= +  (2.17)
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where μ = [2/(ψζrp
2)]0.5.  The integration constants B and C can be determined from two 

boundary conditions at the pile base: 

 

(1 )( )
4

b s
p b

p

Qw L w
r G

ν η−
= =  (2.18)

( )
p

p b P p
z L

dwQ L Q E A
dz =

= = −  (2.19)

 

Solving for B & C and substituting back into Eq. (2.17) gives: 

 

(1 ) 1( ) cosh ( ) sinh ( )
4

b s
p p

p p

Qw z L z L z
r G r

η ν μ μ
π ψμ

⎧ ⎫−⎪ ⎪⎡ ⎤ ⎡ ⎤= − + −⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪⎩ ⎭

 (2.20)

 

Now, the axial load Q at any depth z can be obtained by integrating Eq. (2.12) using Eqs. 

(2.10) and (2.20): 

 

2 (1 )( ) sinh ( ) cosh ( )
4 2

pb s
p p

p

rQQ z L z L z
r

ζπ η ν μ μ
ζ μ π

⎧ ⎫− ⎡ ⎤ ⎡ ⎤= − + −⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭

 (2.21)

 

The settlement and load at the pile head can be determined from Eqs. (2.20) and (2.21) by 

making z = 0, respectively: 

 

( ) ( )(1 ) 1(0) cosh sinh
4

b s
t p p

p p

Qw w L L
r G r

η ν μ μ
π ψμ

⎧ ⎫−⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎩ ⎭

 (2.22)

( ) ( )2 (1 )(0) sinh cosh
4 2

pb s
t p p

p

rQQ Q L L
r

ζπ η ν μ μ
ζ μ π

⎧ ⎫−
= = +⎨ ⎬

⎩ ⎭
 (2.23)

 

Finally, relating Eqs. (2.22) and (2.23) gives us the load-settlement relationship at the pile 

head: 
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( )

( )

tanh4 11
(1 )

tanh4 2
(1 )

pp

s p pt
t

p pp

s p p

LL
r LQw

r G LL
r L

μ
η ν πψ μ

μπ
η ν ζ μ

⎧ ⎫⎪ ⎪+⎨ ⎬−⎪ ⎪⎩ ⎭=
⎧ ⎫⎪ ⎪+⎨ ⎬−⎪ ⎪⎩ ⎭

 (2.24)

 

 Although Eq. (2.24) is relatively simple, it contains key parameters that affect the 

load-settlement response of axially loaded piles such as: the pile-soil stiffness ratio ψ  

and the slenderness ratio of the pile Lp/rp. However, as Randolph and Wroth pointed out, 

Eq. (2.24) becomes unstable for long compressible piles. Furthermore, Eq. (2.24) is 

limited to linear elastic, homogeneous soils or Gibson soils. 

 Other researchers, working from Randolph and Wroth’s solution, included the 

effects of soil nonhomogeneity and layering.  For example, Guo and Randolph (1997) 

and Guo (2000), using the same conceptual framework as Randolph and Wroth, provided 

linear elastic solutions in which the soil shear modulus varies as a power function of the 

depth z.  Based on extensive numerical simulations in which the stiffness of the soil layer 

below the pile base is different from that just above it, Fleming et al. (1992) proposed an 

alternative expression for the magical radius: 

 

0.25 2.5(1 ) 0.25 p

p

L
m s p

L b

GGr L
G G

ν
⎧ ⎫⎡ ⎤⎪ ⎪= + − −⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
 (2.25)

 

where Gb is the shear modulus of the soil below the pile base.  Note that Eq. (2.25) 

reduces to Eq. (2.8) when GLp = Gb. 

 In summary, in seeking a closed-form solution for estimation of settlement of an 

axially loaded pile, Randolph and Wroth (1978) assumed that the deformation of the soil 

surrounding the pile may be idealized as shearing of concentric cylinders.  They also 

assumed that the soil is homogeneous and linear elastic. The effect of the vertical stress in 

the equilibrium equation (Eq. (2.1)) was disregarded.  They further assumed that the 



 

 

14

vertical displacement uz of the soil controls the load-settlement response of axially loaded 

piles, and, therefore, neglected the radial displacement ur in the displacement field of the 

soil. To solve the differential equation resulting from these assumptions, they further 

assumed that the vertical displacement becomes zero beyond a horizontal distance rm 

from the pile. They ignored the variation of rm with depth and presented a depth-

independent empirical equation for rm. Pile compressibility was taken into account by 

allowing variation of shear stress along depth. Randolph and Wroth (1978) solution is 

limited to piles installed in a single-layer soil. 

2.2.2. Mylonakis solution 

Mylonakis (2001) obtained analytical solutions for a solid cylindrical pile embedded in a 

homogeneous soil layer over a rigid base.  Mylonakis also neglected the radial soil 

displacement ur, but did consider the vertical stress σz term in Eq. (2.1). However, 

Mylonakis simplified the stress-displacement relations for σz and τrz as follows: 

 

z
z s

uM
z

σ ∂
≈ −

∂
 (2.26)

z
rz

uG
r

τ ∂
≈ −

∂
 (2.27)

 

where Ms is a constant that is determined from assumptions related to the stresses and/or 

strains in the stress-strain relationship. For example, assumption of zero radial and 

tangential strains in the soil medium (εr = 0 and εθ = 0) gives Ms = 2G(1−νs)/(1−2νs). A 

problem arising from this assumption is that Ms is very sensitive to the Poisson’s ratio of 

the soil (Ms becomes infinity as νs approaches 0.5). On the other hand, assumption of 

zero radial and tangential stresses in the soil medium (σr = 0 and σθ = 0) yields Ms = 

2G(1+νs).  Mylonakis argued that a condition of σr = 0 and εθ = 0 is the best choice for 

the soil surrounding axially loaded piles. With these assumptions, Ms = 2G/(1−νs). 
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 By defining χ2 = Ms/G and substituting Eqs. (2.26) and (2.27) into Eq. (2.1), we 

obtain: 

 
2

2
2 0z zu ur r

r r z
χ∂ ∂∂ ⎛ ⎞ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2.28)

 

Imposing the boundary conditions of zero normal tractions at the ground surface and zero 

vertical displacement at r = ∞ we get: 

 

( )0( , ) cosz cu r z B K r zαχ α=  (2.29)

 

where K0(·) = the modified Bessel function of the second kind of zero order; α = positive 

variable; and Bc = integration constant to be determined from the boundary condition. 

Using the relations qs(z) = τrz(rp, z) and w(z) = uz(rp, z) with Eqs. (2.27) and (2.29), Eq. 

(2.13) can be solved for end-bearing piles:  

 

0

0 2
0 1

( ) cos2( )
( ) ( )

2

m p mt

mp p p p
m m p m p

p p m

K r zQw z
E A L r G

K r K r
E A

χα α

π χ
α χα χα

α

∞

=

=
⎡ ⎤

+⎢ ⎥
⎢ ⎥⎣ ⎦

∑  
(2.30)

 

where K1(·) = the modified Bessel function of the second kind of first order and αm = 

π(2m+1)/(2Lp). The variable αm ensures that soil displacement vanishes at the pile base 

for end-bearing piles (w(Lp) = 0).  Recalling that k(z) = 2πrpqs(z)/w(z) [Eq. (2.15)], 

expression for depth-dependent Winkler modulus values can be obtained from Eqs. 

(2.27) and (2.30) using the relation qs(z) = τrz(rp, z).  If an average (depth-independent) or 

representative Winkler modulus is obtained, then a much simpler closed-form solution 

can be derived by solving Eq. (2.14).  Mylonakis (2001) obtained an average Winkler 

modulus by matching pile head settlement with results from depth-dependent Winkler 

modulus. Through further multi-variable regression analyses with key parameters, 
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Mylonakis (2001) proposed a simplified average (depth-independent) Winkler modulus  

equation: 

 
1/ 40 0.6

1.3 1 7p p

s

E Lk
G E B

− −⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥≈ +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

 (2.31)

 

where Es = Young’s modulus of the soil and B = pile diameter. 

 In summary, Mylonakis (2001) presented an analytical solution for the settlement 

of axially loaded piles installed over a rigid layer.  The soil within the pile length was 

assumed to be homogeneous and linear elastic. In the equilibrium equation, the 

contribution of the vertical stress term was considered. This allowed Mylonakis to find an 

analytical solution for the load-settlement response of an axially loaded pile without 

using the concept of magical radius rm. In the displacement field, he ignored the radial 

displacement of the soil. Mylonakis further assumed that σr = 0 and εθ = 0 to get 

simplified stress-displacement relations for the soil surrounding the pile. Finally, a 

closed-form solution was obtained by solving the differential equation resulting from 

these assumptions. For practical applications, Mylonakis presented an expression for 

calculation of a representative (depth-independent) Winkler modulus by matching pile 

head settlement with results obtained using depth-dependent Winkler modulus. 

Mylonakis solution is limited to elastic soils and considers only a homogeneous single 

soil layer within the pile. Furthermore, this solution is only applicable to an ideal end-

bearing pile 

2.3. Continuum-Based Models 

The continuum-based models treat the soil surrounding the pile as a three-dimensional 

continuum. Although these models are more appealing conceptually than the load-

transfer models, they have traditionally required expensive numerical techniques, such as 

the boundary integral method, the finite layer method or the finite element method, to 
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obtain solutions (Poulos and Davis 1968; Mattes and Poulos 1969; Butterfield and 

Banerjee 1971; Poulos 1979; Rajapakse 1990; Lee and Small 1991).  

 Recently, new continuum-based models were developed for axially loaded piles 

based on energy principles and calculus of variation (Vallabhan and Mustafa 1996; Lee 

and Xiao 1999; Seo and Prezzi 2007). The main advantage of these models is that they 

produce in seconds pile displacements and soil displacements using closed-form 

solutions. 

2.3.1. Vallabhan and Mustafa’s solution 

Vallabhan and Mustafa (1996), using an iterative procedure, presented a closed-form 

solution for settlement of axially loaded piles in two-layered soil.  Their solution was 

obtained by solving the differential equation resulting from potential energy minimization. 

 The domain consisted of two soil layers. The first layer, with elastic constants Es1 

and νs1, extends from the ground surface to the pile base (z = Lp), and the second layer, 

with elastic constants Es2 and νs2, extends from the pile base to infinity in the vertical 

direction. Assuming that the radial displacement in the soil is negligible, the vertical 

displacement uz of the soil at any location may be expressed as: 

 

( , ) ( ) ( )zu r z w z rφ=  (2.32)

 

where w(z) is the vertical displacement of the pile at a depth z, and φ(r) is the soil 

displacement dissipation function in the radial direction. Assuming no slippage between 

pile and soil and zero displacement at a greater distance from the pile, we get boundary 

conditions of φ(rp) = 1 and φ(∞) = 0.  From the strain-displacement relationships, we 

have: 

 

z
z

u dw
z dz

ε φ∂
= − = −

∂
 (2.33)
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z r
rz

u u dw
r z dr

φγ ∂ ∂⎛ ⎞= − + ≈ −⎜ ⎟∂ ∂⎝ ⎠
 (2.34)

 

Now, the total potential energy of the pile-soil system is given as: 
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∫ ∫ ∫ ∫
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 (2.35)

 

where σij and εij are the stress and strain tensors. 

 Using variational calculus, Vallabhan and Mustafa obtained the following 

differential equation for the pile (0 ≤ z ≤ Lp): 

 
2

1
1 1 12

( )( 2 ) ( ) 0p p
d w zE A t k w z

dz
− + + =  (2.36)

 

where 

 
2

1 12
pr

dk G r dr
dr
φπ

∞ ⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (2.37)

21 1
1

1 1
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(1 )(1 2 ) p

s s
r

s s

Et r drπ ν φ
ν ν

∞−
=

+ − ∫  
(2.38)

 

Natural boundary conditions follow from the minimization of the total potential 

energy: 

 

1
0

( 2 )p p t
z

dwE A t Q
dz =

− + =  (2.39)
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2
1 2 2 2( 2 ) ( 2 )

p

p p s p b
z L

dwE A t k E r t w
dz

π
=

⎡ ⎤− + = +
⎣ ⎦

 (2.40)

 

where k2 and t2 are obtained for the soil layer below the pile base from Eqs.  (2.37) and 

(2.38), respectively, by replacing the subscript 1 with 2. 

 The differential equation for the soil surrounding pile is given by: 

 
2

2
2

1 0d d
dr r dr

φ φ β φ+ − =  (2.41)

 

The parameter β in Eq. (2.41) is defined as: 
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where  
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Imposing the boundary conditions of φ(rp) = 1 and φ(∞) = 0, the solution for Eq. (2.41) is 

given as: 

 

0

0

( )( )
( )p

K rr
K r

βφ
β

=  (2.44)

 

 Similarly, using the two boundary conditions expressed by Eqs. (2.39) and (2.40), 

the solution for Eq. (2.36) is given as: 
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where 

 

1

12p p

k
E A t

λ =
+

 (2.46)

1 1 1( 2 )p pa k E A t= +  (2.47)

2
2 2 2 2( 2 )s pa k E r tπ= +  (2.48)

 

 The parameters λ, a1, and a2 in Eq. (2.45) contain k1, t1, k2, and t2 which are 

functions of φ.  Therefore, an iterative procedure is necessary to calculate w(z). By 

assuming initially that β = 1, values for k and t can be computed from Eqs.  (2.37) and 

(2.38). Using these values, λ, a1, and a2 can then be determined from Eqs. (2.46) through 

(2.48), and, finally, w(z) can be obtained from Eq. (2.45).  A new β value can be 

determined from Eq. (2.42).  This iteration process is repeated until β converges. 

 In summary, based on an iterative procedure, Vallabhan and Mustafa (1996) 

presented a closed-form solution for the response of axially loaded piles in two-layered 

linear elastic soil. The first layer extends from the ground surface to the pile base, while 

the second layer extends from the pile base to infinity in the vertical direction. They 

assumed that the radial displacement in the soil is negligible and that the vertical soil 

displacement can be expressed as multiplication of two independent functions: the pile 

displacement function and the soil displacement decay function. Although Vallabhan and 

Mustafa’s solution requires an iterative procedure, it does not rely on the concept of the 

“magical radius”. Also, it does satisfy the boundary conditions of the given problem both 
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vertically and horizontally. Furthermore their solution overcomes the shortcomings of 

solutions presented by Randolph and Wroth (1978) and Mylonakis (2001) in that it is 

applicable to two-layered soil profiles. 

2.4. Design Methods for Axially loaded Micropiles 

2.4.1. Geotechnical design 

● Bustamante and Gianeselli (1982) 

Based on results from a large number of pile load tests and cone penetration tests (CPT), 

Bustamante and Gianeselli (1982) proposed an empirically-based design method that 

contains factors that depend on pile and soil type. They classified micropiles with low 

injection pressures into Category IA together with drilled shafts, CFA piles, and barrettes. 

High pressure grouted micropiles with diameters less than 250mm were classified into 

Category IIIB. Table 2.1 gives the values of qsL/qc, where qsL is limit unit shaft resistance 

and qc is cone penetration resistance, for piles in Category IA and limit values of qsL/pA, 

where pA = reference stress = 100 kPa, for piles in Category IA and IIIB. 

Table 2.1 Values of qsL/qc and limit values of qsL/pA (modified after Bustamante and 
Gianeselli 1982) 
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Soil type qc/pA 
qsL/qc Limit values of qsL/pA

IA* IA IIIB** 
Soft clay and mud 10 0.0333 0.15 - 

Moderately compact clay 10-50 0.0250 0.35 (0.8) ≥1.2 
Silt and loose sand ≤50 0.0167 0.35 - 

Compact to stiff clay and compact silt >50 0.0167 0.35 (0.8) ≥2.0 
Soft chalk <50 0.0100 0.35 - 

Moderately compact sand and gravel 50-120 0.0100 0.8 (1.2) ≥2.0 
Weathered to fragmented chalk >50 0.0167 1.2 (1.5) ≥2.0 

Compact to very compact sand and gravel >120 0.0067 1.2 (1.5) ≥2.0 
Note: pA = reference stress = 100 kPa = 0.1 MPa ≈ 1 tsf = 2000 psf; qsL = limit unit shaft 
resistance and qc = cone penetration resistance  
* Category IA = micropiles grouted under low pressure, drilled shafts, CFA piles, and 
barrettes 
** Category IIIB = micropiles grouted under high pressure with diameters < 250mm 

 

● FHWA (1997) 

FHWA (1997) reviewed the literature and summarized the available recommendations 

for preliminary design of micropiles (Table 2.2). The authors of the report emphasized 

that extreme caution is required when using the recommended values in the design of 

micropiles.  This is because most of the suggested design values were obtained from a 

database of load tests on drilled shafts, which have different installation methods and 

ratios of pile diameter to pile length. 

Table 2.2 Summary of available recommendations for preliminary design of micropiles 
suggested by FHWA (modified after FHWA 1997) 
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Soil Type 
Micropile Type 

Type A 
Tremie-Grouted 

Type B 
Pressure-Grouted 

Cohesionless 
qsL = βσ′v 

        β = K tanφ′ 
K = 0.7 

qsL = pg tanφ′ 
qsL = βσ′v 

        β = K tanφ′ 
K = 4 –7 for fine to medium sands 

to coarse sands and gravels 

Cohesive qsL = αsu 

        α = 0.6 – 0.8 Similar to type A 

Rocks 

qsL = qu/10 ≤ 4MPa 
 

qsL/pA = 0.07NSPT + 1.2 
for weathered granite 

 
qsL/pA = 0.1NSPT 

for stiff to hard chalk 

Similar to type A 

Note: pA = reference stress = 100 kPa = 0.1 MPa ≈ 1 tsf = 2000 psf; σ′v = vertical 
effective stress in the center of the soil layer; K = coefficient of lateral earth pressure; φ′ = 
effective friction angle of the soil; su = undrained shear strength of the soil; qu = 
unconfined compressive strength of intact rock; qsL = limit unit shaft resistance; NSPT = 
SPT blow counts; pg = grouting pressure 
 

 

● FHWA (2000) 

FHWA (2000) suggested typical ranges of values for limit unit shaft resistance qsL for 

various micropile installation methods and ground conditions (Table 2.3). This has been 

widely used in practice since 2000. The authors of the report indicated that the 

recommended design values are intended to assist the designer with the preliminary 

design but that higher values may be used if load test data is available for the specific 

conditions considered. 

Table 2.3 Summary of typical values of limit unit shaft resistance (modified after FHWA 
2000) 
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Soil / Rock Description Typical range of qsL/pA 
Type A Type B Type C Type D 

Silt & Clay (some sand) 
(soft, medium plastic) 0.35-0.7 0.35-

0.95 0.5-1.2 0.5-1.45 

Silt & Clay (some sand) 
(stiff, dense to very dense) 0.5-1.2 0.7-1.9 0.95-1.9 0.95-1.9 

Sand (some silt) 
(fine, loose-medium dense) 0.7-1.45 0.7-1.9 0.95-1.9 0.95-2.4 

Sand (some silt, gravel) 
(fine-coarse, medium-very dense) 

0.95-
2.15 1.2-3.6 1.45-3.6 1.45-

3.85 
Gravel (some sand) 

(medium-very dense) 
0.95-
2.65 1.2-3.6 1.45-3.6 1.45-

3.85 
Glacial Till (silt, sand, gravel) 

(medium-very dense, cemented) 0.95-1.9 0.95-3.1 1.2-3.1 1.2-3.35 

Soft Shales (fresh-moderate fracturing, 
little to no weathering) 2.05-5.5 N/A N/A N/A 

Slates and Hard Shales (fresh-moderate 
fracturing, little to no weathering) 

5.15-
13.8 N/A N/A N/A 

Limestone (fresh-moderate fracturing, 
little to no weathering) 

10.35-
20.7 N/A N/A N/A 

Sandstone (fresh-moderate fracturing, 
little to no weathering) 

5.2-
17.25 N/A N/A N/A 

Granite and Basalt (fresh-moderate 
fracturing, little to no weathering) 13.8-42 N/A N/A N/A 

Note: pA = reference stress = 100 kPa = 0.1 MPa ≈ 1 tsf = 2000 psf 
Type A: Gravity grout only 
Type B: Pressure grouted through the casing during casing withdrawal 
Type C: Primary grout placed under gravity head, then one phase of secondary “global” 
pressure grouting 
Type D: Primary grout placed under gravity head, then one or more phases of secondary 
“global” pressure grouting 

2.4.2. Structural design 

As micropile reinforcements are placed either before or after the initial grouting 

operations, micropiles function, in essence, as composite materials. Depending on the 

local practice, different reinforcement configurations are used.  Figure 2.1 shows a 

typical configuration for the structural components of a micropile. The steel casing can 

either remain in the ground or be extracted. 
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Figure 2.1 Detail of a composite reinforced micropile (after FHWA 2000) 

 

● FHWA (2000) 

FHWA (2000) uses highway bridge design codes [AASHTO (1996)] for the structural 

design of various components of micropiles. The maximum axial load Q0 the pile can 

structurally carry is given by: 

 

0 0.85 c c y sQ f A f A′= +  (2.49)

 

where f′c = unconfined compressive strength of cement grout; Ac = cross sectional area of 

cement grout; fy = yield stress of steel; As = cross-sectional area of steel components. To 

ensure strain compatibility between the casing and the reinforcing bar, the yield stress for 
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the steel fy is selected as the minimum of fy-bar and fy-casing. Therefore, if the steel casing is 

left in the ground, Eq. (2.50) can be written as: 

 

0 -bar -casing bar casing0.85 min( , )( )c c y yQ f A f f A A′= + +  (2.50)

 

where Abar = area of reinforcing bar; Acasing = area of steel casing. Using factor of safety 

FS = 2.12, the allowable structural load is given by: 

 

0,all -bar -casing bar casing0.40 0.47 min( , )( )c c y yQ f A f f A A′= + +  (2.51)
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CHAPTER 3. ELASTIC SOLUTIONS FOR AXIALLY LOADED PILES IN 
MULTILAYERED SOIL 

3.1. Introduction 

In CHAPTER 2, we reviewed the analytical models for the response of axially loaded 

piles. Most of these models offer analytical solutions for a homogeneous, single soil 

layer. However, in reality, piles are rarely installed in an ideal, homogeneous, single soil 

layer. For this reason, analytical solutions for axially loaded piles embedded in a non-

homogeneous soil deposit have been sought. Lee (1991) and Lee and Small (1991) 

proposed solutions for axially loaded piles in finite layered soil using a discrete layer 

analysis. Chin and Poulos (1991) presented solutions for an axially loaded pile embedded 

in a Gibson soil and a two-layered soil using the load-transfer method. Guo and Randolph 

(1997) and Guo (2000) obtained elastic-plastic solutions for the axial response of piles in 

a Gibson soil. Most of the analytical studies have been developed for a Gibson soil rather 

than for a multilayered soil because the mathematical treatment is easier in that case. 

 As we saw in CHAPTER 2, Vallabhan and Mustafa (1996) proposed a simple 

closed-form solution for an axially loaded pile embedded in a two-layer elastic soil 

medium based on energy principles. Lee and Xiao (1999) expanded the solution of 

Vallabhan and Mustafa (1996) to multilayered soil and compared their solution with the 

results from Poulos (1979) for three-layered soil. Although Lee and Xiao (1999) 

suggested an analytical method for an axially loaded pile in a multilayered soil, they did 

not obtain explicit analytical solutions. 

 In this chapter, we present explicit analytical solutions for an axially loaded pile 

in a multilayered soil.  The soil is assumed to behave as a linear elastic material. The 

governing differential equations are derived based on energy principles and calculus of 

variations. The integration constants are determined using Cramer’s rule and a recurrence 

formula. In addition, solutions for a pile embedded in a multilayered soil with the base 
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resting on a rigid material are obtained by changing the boundary conditions of the 

problem. We also present solutions for a pile embedded in a multilayered soil subjected 

to tensile loading.  We first review the mathematical formulation and the derivation of the 

equations using energy principles. We then compare our solutions with others from the 

literature. Finally, we use the results of a pile load test from the literature to verify the 

results obtained using the solutions proposed in this study. 

3.2. Mathematical Formulation 

3.2.1. Problem definition and basic assumptions 

We consider a cylindrical pile of length Lp and circular cross section of diameter B (=2rp). 

The pile, which is subjected to an axial load Qt, is embedded in a total of N horizontal 

soil layers. The pile itself crosses m layers, while N − m layers exist below the base of the 

pile. All soil layers extend to infinity in the radial direction, and the bottom (Nth) layer 

extends to infinity downward in the vertical direction. As shown in Figure 3.1, Hi denotes 

the vertical depth from the ground surface to the bottom of any layer i, which implies that 

the thickness of layer i is Hi – Hi-1 with H0 = 0.  
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Figure 3.1 Geometry of the pile-soil system 

 We refer to the pile cross section at the top of the pile as the pile head and to the 

pile cross section at the base of the pile as the pile base. Since the problem is 

axisymmetric, we choose a system of cylindrical coordinates with the origin coinciding 

with the center of the pile cross section at the pile head, and the z axis coinciding with the 

pile axis (z is positive in the downward direction). One of the assumptions we have made 

is that the pile and the surrounding soil have perfect compatibility of displacements at the 

pile-soil interface and at the boundaries between soil layers. In other words, it is assumed 

that there is no slippage or separation between the pile and the surrounding soil and 

between soil layers. Furthermore, the soil medium within each layer is assumed to be 

isotropic, homogeneous, and linear elastic. Since radial and tangential strains are very 

small when compared with the vertical strains, they are neglected. As previously done by 
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Vallabhan and Mustafa (1996) and Lee and Xiao (1999), the vertical displacement at any 

point in the soil uz(r, z) is represented by: 

 

( , ) ( ) ( )zu r z w z rφ= ⋅  (3.1)

 

where w(z) is the vertical displacement of the pile at a depth equal to z, and φ(r) is the soil 

displacement dissipation function in the radial direction.  The function φ(r) is a shape 

function that determines the rate at which the vertical soil displacement decreases in the 

radial direction with increasing distance from the pile. Since the vertical displacements 

within any given cross section of the pile are the same, we assume that φ(r) = 1 from r = 

0 to r = rp. As the vertical soil displacement is zero as r approaches infinity, we assume 

that φ(r) = 0 at r → ∞.  

3.2.2. Stress-strain-displacement relationships 

The stress-strain relationship in an isotropic elastic soil medium can be expressed as: 
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 (3.2)

 

where Gs and λs = the elastic constants of the soil; σr, σθ, σz = normal stresses; τrθ, τrz, τθz 

= shear stresses; εr, εθ, εz = normal strains; γrθ, γrz, γθz = shear strains. 

 As the problem considered here is axisymmetric, all shear stresses and shear 

strains related to θ direction vanish. Accordingly, the strain-displacement relationship is 

given by 
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 (3.3)

 

where ur, uθ, uz = radial, tangential, and vertical displacement of the soil, respectively. 

 By substituting Eq. (3.3)  into (3.2), we obtain the strain energy density function 

W = ½σpqεpq, with summation implied by the repetition of the indices p and q as required 

in indicial notation: 

 

( )
2 21 1 2  

2 2pq pq s s s
dw dG G w
dz dr

φσ ε λ φ
⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (3.4)

 

where σpq and εpq are the stress and strain tensors. 

3.2.3. Governing differential equation for the pile and soil beneath the pile 

The total potential energy Π of an elastic body is defined as the sum of the internal 

potential energy (the sum of the strain energy U of the pile and soil) and the external 

potential energy (equal to minus the work done by the external forces applied to the pile 

in taking it from the at-rest condition to its configuration under load). The total potential 

energy of the soil-pile system subjected to an axial force Qt is given by: 
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 Substituting (3.4) into (3.5) and integrating it with respect to θ, we obtain: 
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 (3.6)

 

 We can now use calculus of variations to obtain the equilibrium equations. 

According to the principle of minimum total potential energy, exact solutions should 

minimize Eq. (3.6) and hence δΠ must be zero, where δ is a variational operator. 

Applying the principle of minimum potential energy yields an equation of the form:  

 

( ) ( ) 0A w w Bδ φ δφ+ =  (3.7)

 

Since the functions w and φ are not known a priori, their variations δw and δφ are not 

zero.  Therefore, Eq. (3.7) is satisfied if and only if A(w) = 0 and B(φ) = 0.  These 

equations represent the governing differential equations of the functions w(z) and φ(r), 

respectively; the equilibrium configuration of the pile-soil system is obtained by solving 

these equations. 

 For 0 ≤ z ≤ Lp, the following differential equation for the pile displacement in any 

layer i is obtained: 

 



 

 

33

2

2( 2 ) 0i
p p i i i

d wE A t k w
dz

− + + =  for 0 pz L≤ ≤  (3.8)

 

where, 
2

2
p

i si r

dk G r dr
dr
φπ

∞ ⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (3.9)

2( 2 )
p

i si si r
t G r drπ λ φ

∞
= + ∫  (3.10)

 

 Since we have m layers in this interval (0 ≤ z ≤ Lp), Eq. (3.8) is valid for i = 1 … 

m. The parameter ki has units of FL-2 (F and L denote force and length, respectively) and 

represents the shearing resistance of the soil in the vertical direction and, hence, the 

change in shear stress along the radial direction. On the other hand, ti has units of force 

and accounts for the soil resistance due to vertical compression of hollow cylinders 

around the pile (see Figure 3.2) 

 

r

z

Shear resistance due to differential
displacement between soil columns
(accounted for by ki term)

Infinitesimal soil columns

Normal resistance due to vertical 
compression of each soil column
(accounted for by ti term)

 

Figure 3.2 Illustration of two sources of soil resistance 
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 Similarly, we obtain the following differential equation for the soil displacement 

in any layer j beneath the pile: 

 
2

2
2( 2 ) 2 0j

p sj sj j j j

d w
r G t k w

dz
π λ⎡ ⎤− + + + =⎣ ⎦  for pL z≤ ≤ ∞  (3.11)

 

where kj and tj are also defined by Eqs. (3.9) and (3.10) with j in place of i. Equation 

(3.11) is valid for j = m + 1 … N. 

 Eqs. (3.8) and (3.11), which were obtained for different domains, can be 

consolidated into a single governing differential equation. This can be done by noting that 

λsi + 2Gsi is a function of the Poisson’s ratio νsi and the Young’s modulus Esi of the soil.  

This leads to: 

 

(1 )2
(1 )(1 2 )

si si
si si si

si si

EG Eνλ
ν ν

−
+ = =

+ −
 for pL z≤ ≤ ∞  (3.12)

 

where siE  is the constrained modulus of the soil for a given layer i. Using this notation, 

we can get the governing differential equation for the pile and soil below it: 

 
2

2( 2 ) 0i
i i i i i

d wE A t k w
dz

− + + =  (3.13)

 

where Ei = Ep and Ai = Ap when 1 ≤ i ≤m; =i siE E  and 2=i pA rπ  when m + 1 ≤ i ≤ N.  This 

notation for Ei and Ai will be used hereafter unless otherwise stated. Note that both ki and 

ti are functions of φ and of the shear modulus of the soil. 
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3.2.4. Governing differential equation for the soil surrounding the pile 

As done earlier, we obtain the governing differential equation for the soil surrounding the 

pile by taking the variation of φ and then equating the coefficient of it to zero: 

 
2

2
2

1 0d d
dr r dr

φ φ β φ+ − =  (3.14)

 

where 

s

s

n
m

β =  (3.15)

 

and, ms and ns are given by: 
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 The parameter ms has units of FL, and ns has units of FL-1. Therefore, β has units 

of L-1, and it determines the rate at which the vertical soil displacement diminishes in the 

radial direction. 

3.3. Solutions for a Pile in a Layered Soil under Compressive Load 

3.3.1. Solution for the displacement dissipation function φ 

Equation (3.14) is a form of the modified Bessel differential equation, and its general 

solution is given by:  
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1 0 2 0( ) ( ) ( )r c I r c K rφ β β= +  (3.18)

 

where I0(·) is the modified Bessel function of the first kind of zero order, and K0(·) is the 

modified Bessel function of the second kind of zero order.  

 As discussed earlier, φ(r) = 1 at r = rp, and φ = 0 at r → ∞. Imposition of these 

boundary conditions leads to: 
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K rr
K r

βφ
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=  (3.19)

 

 Substituting Eq. (3.19) into Eqs. (3.9) and (3.10) and using the properties of the 

modified Bessel functions, we can now have explicit expressions for ki and ti: 
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( ) ( ) ( 1) ( )

( )
p p p p p

i si

p

K r r K r r K r
k G

K r

β β β β β
π

β

⎡ ⎤ ⎡ ⎤+ − +⎣ ⎦ ⎣ ⎦=
⎡ ⎤⎣ ⎦

 (3.20)
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p

K r K r
t r G

K r

β β
π λ

β

⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦= +
⎡ ⎤⎣ ⎦

 (3.21)

 

where K1(·) is the modified Bessel function of the second kind of first order. 

3.3.2. Solution for the pile displacement function w 

The general solution of Eq. (3.13), which is a second-order linear differential equation, is 

given by 

 

( ) i iz z
i i iw z B e C eλ λ−= +  (3.22)

 

where 
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2
i

i
i i i

k
E A t

λ =
+

 (3.23)

 

and Bi and Ci are integration constants. We obtain the pile axial strain by differentiating 

(3.22) with respect to z.  Based on the relationship between the axial strain and the axial 

force, we get: 

 

( ) ( 2 ) i
i i i i

dwQ z E A t
dz

= − +  (3.24)

 

where Qi(z) is the axial load acting in the pile at a depth z in the ith layer. 

 Then, the following equation for the axial load transferred to the pile results: 

 

( ) i iz z
i i i i iQ z a B e a C eλ λ−= − +  (3.25)

 

where 

 

( 2 ) ( 2 )i i i i i i i i ia E A t k E A tλ= + = +  (3.26)

 

 As we have 2N unknown integration constants (B1, C1, B2, C2, …, BN, CN), we 

need to identify 2N boundary conditions in order to determine their values. First of all, 

the vertical soil displacement at an infinite depth below the pile base must be zero. Also, 

the magnitude of the load at the pile head should be equal to the applied external load. 

Finally, displacement and force should be the same at the interface between any two 

layers when calculated with the properties of either layer. These give us the 2N boundary 

conditions, which can be used to determine all the integration constants. These boundary 

conditions can be expressed as follows: 

 

( ) 0N zw z →∞ =  (3.27)
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1 0( ) z tQ z Q= =  (3.28)

1 1
1 1 0i i i i i i i iH H H H

i i i ie B e C e B e Cλ λ λ λ+ +− −
+ ++ − − =  for 1 1i N≤ ≤ −  (3.29)

1 1
1 1 1 1 0i i i i i i i iH H H H

i i i i i i i ia e B a e C a e B a e Cλ λ λ λ+ +− −
+ + + +− + + − =  for 1 1i N≤ ≤ −  (3.30)

 

 From Eqs. (3.22) and (3.27) and Eqs. (3.25) and (3.28), we get: 

 

0NB =  (3.31)

1 1 1 1 ta B a C Q− + =  (3.32)

 

 No matter how many layers we have, Eqs. (3.31) and (3.32) always apply and 

remain unchanged. Equations (3.29) to (3.32) can be expressed in matrix form as follows: 

 

[ ][ ] [ ]M X V=  (3.33)

where, [X] = [B1 C1 B2 C2 … BN-1 CN-1 BN CN]T; [V] = [0 Qt 0 0… 0 0 0 0]T; and [M] is 

given as: 
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⎢ ⎥
⎢ ⎥− −⎢ ⎥

− −⎢ ⎥⎣ ⎦

− −
− −

L

L

(3.34) 

 

 The dimensions of [M], [X], and [V] are [2N×2N], [2N×1] and [2N×1], 

respectively. If we solve Eq.(3.33), which can be solved either analytically or 

numerically, we can determine the integration constants. However, a more efficient way 

to determine all the integration constants is by finding a recurrence relation based on the 

boundary conditions. For this purpose, we rewrite Eqs. (3.22) and (3.25) in matrix form: 
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( )
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z z
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−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (3.35)

 

 From the continuity condition of displacement and force at the interface between 

layers, we obtain the following: 

 

( )
( )

i i

i i

z z
i i

z z
i ii i

w z Be e
Q z Ca e a e

λ λ

λ λ

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (3.36)

 

Equations (3.35) and (3.36) give us the following recurrence formula for the integration 

constants: 
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⎡ ⎤+ −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦⎣ ⎦

 for 1 ≤ i ≤ N −1 (3.37)

 

 Therefore, if we determine BN and CN, we can determine all Bi's and Ci's, in 

sequence.  

 Using Cramer’s rule, Bi and Ci are obtained from: 

 

2 1i
i

M
B

M
−=   (3.38)

2i
i

M
C

M
=   (3.39)

 

where |M| = determinant of [M]; |Mk| = determinant of [M] with the kth column replaced 

by the vector [V]. In order for a given problem to have physical meaning, |M| must not be 

zero. Therefore, from (3.31) and (3.38), we obtain 
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2 1 0NM − =   (3.40)

 

Similarly, CN is given by 

 

2N
N

M
C

M
=   (3.41)

 

where,  
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1 1 1 1 1
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1 1

0 0 0 0 0 0 1 0
0 0 0 0 0
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−
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−
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  (3.42)

 

The determinant of  |M2N| is: 

 
1

1
2

1

2
N

N
N i

i

M P a
−

−

=

= ∏   (3.43)

 

where the symbol ∏ is used to indicate a product: 1 2 3
1

k

i k
i

x x x x x
=

=∏ L . If we substitute 

Eqs. (3.38) and (3.39) into Eq.(3.37), we get: 
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⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 for 1 ≤ i ≤ N −1 (3.44)

 

In order to obtain |M|, we will use the boundary condition at the pile head. By substituting 

B1 = |M1|/|M| and C1 = |M2|/|M| into Eq.(3.32), we obtain the following relationship: 
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( )1
2 1

aM M M
P

= −  (3.45)

 

 Consequently, the numerators in Eqs. (3.38) and (3.39) can be recurrently 

determined from Eq. (3.44) by using Eqs. (3.40) and (3.43) as its ignition terms.  The 

denominators in Eqs. (3.38) and (3.39) are obtained from (3.45). Finally, we determine 

all the integration constants using Eqs. (3.38) and (3.39).  The displacement and force at 

each layer follow from Eqs. (3.22) and (3.25), respectively. Using this procedure, we can 

obtain explicit analytical solutions for a vertically loaded pile installed in a soil with N 

layers.  

 In design, we are interested in estimating the settlement at the pile head when the 

pile is subjected to the design load. This can be obtained from the solution for the 

displacement within the first layer: 

 

1 2
1 1 1(0)t

M M
w w B C

M M
= = + = +  (3.46)

 

3.4. Solution for a Pile Embedded in a Layered Soil Resting on a Rigid Base under 
Compressive Load 

Piles are often socketed in a competent layer or rock to obtain a large base capacity. If we 

know the elastic properties of such a layer, we can use the solution presented in the 

previous section. We can also obtain analytical solutions for a vertically loaded pile with 

the base resting on a rigid material that can be used when we do not know the elastic 

properties of the bearing layer but know it to be very stiff. We can do this by restricting 

the vertical displacement at the base of the pile to zero. The pile-soil system considered 

here is shown in Figure 3.3.  
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Figure 3.3 Pile embedded in a multilayered soil with the base resting on a rigid material 

 In this case, we have zero displacement at the base of the pile instead of at 

infinity. All other boundary conditions remain the same. Therefore, only Eq. (3.27) 

changes to the following: 

 

( ) 0N p N p

p

L L
N z L N Nw z e B e Cλ λ−

→ = + =  (3.47)

 

 Now we have a new matrix [M] for the case of an axially loaded pile with the 

base over a rigid material.  As done before, we can calculate |M2N −1| and |M2N|: 
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−
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i

M e P aλ  (3.49)
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 Using these two ignition terms and Eq. (3.44), we can get explicit analytical 

solutions for this case. 

3.5. Solution for a Pile in a Layered Soil under Tensile Load 

A limited number of approximate solutions for the response of axially loaded piles 

subjected to tensile loading are available in the literature (Misra et al. 2004, Alawneh 

2005). Analytical solutions for an axially loaded pile in a multilayered soil subjected to 

tensile loading can be easily obtained by changing the pile base boundary condition. The 

pile-soil system considered here is shown in Figure 3.4. 
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Figure 3.4 Pile embedded in a multilayered soil under tensile load 

 In the derivation of the governing differential equations for the pile-soil system 

within the domain 0 ≤ z ≤ Lp, the strain energy from the soil below the pile base is 

assumed to be negligible. The governing differential equations remain the same as those 

derived for the case in which the pile is subjected to a compressive axial load (see Eqs. 
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(3.8) and (3.14)).  Therefore, the general solutions for the differential equations also 

remain the same (equations (3.19) and (3.22)). The boundary conditions for the soil 

displacement decay function φ(r) also remain unchanged (φ(r) = 1 at r = rp, and φ = 0 at r 

→ ∞).  On the other hand, we have a different boundary condition for the displacement 

function w(z). In the case of tensile loading, the axial load transferred to the base of the 

pile is zero because the tensile resistance of the soil below the pile base is negligible, 

unless we have suction there (in fact, this is obtained as a natural boundary condition 

following from the minimization of the total potential energy).  Therefore, instead of Eq. 

(3.27), we now have: 

 

( ) 0N p N p

p

L L
N z L N N N NQ z a B e a C eλ λ−

= = − + =  (3.50)

 

and a new matrix [M].  The |M2N −1| and |M2N| matrices are given as follows: 

 

1
2 1

1

2 N p
N

LN
N t i

i

M Q e aλ−−
−

=

= − ∏  (3.51)

1
2

1

2 N p
N

LN
N t i

i

M Q e aλ−

=

= − ∏  (3.52)

 

 As done before, using these two ignition terms and (3.44), we can determine all 

the Mi’s and, hence, all the integration constants Bi’s and Ci’s from Eqs. (3.38) and (3.39). 

By simply substituting these integration constants in Eq. (3.22), we obtain explicit 

analytical solutions for this case as well. 

 

3.6. Modification of Soil Moduli 

The above analysis assumes zero horizontal displacement in the soil.  This assumption is 

not strictly valid, particularly near the pile head where the downward drag by the pile on 

the surrounding soil induces horizontal displacements that point towards the pile.  Thus, 
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restraining the horizontal displacement results in pile response that is stiffer than it is in 

reality.  In fact, the term (λsi + 2Gsi) in Eqs. (3.17) and (3.23) represents the soil 

constrained modulus, which is an indication that the analysis produces a stiff response.  

As the soil Poisson’s ratio approaches 0.5, the pile load-settlement response becomes 

increasingly stiffer (the constrained modulus is equal to infinity for a Poisson’s ratio of 

0.5). 

In order to eliminate the artificial stiffness resulting from the assumption of zero 

lateral displacement for high νs values, we set λsi = Esiνsi/(1+νsi)(1-2νsi) = 0 (Esi is the soil 

Young’s modulus of the ith layer), which is equivalent to making the soil Poisson’s ratio 

νsi = 0 (removal of the artificial stiffness by setting λsi = 0 was proposed for laterally 

loaded piles by Guo and Lee (2001)), and replace Gsi by a modified shear modulus Gsi
*.  

The effect of Poisson’s ratio is indirectly taken into account through the modified shear 

modulus Gsi
* (a similar procedure was recommended by Randolph (1981) for laterally 

loaded piles).  We propose the following expressions for the modified shear modulus Gsi
* 

by matching the pile responses obtained from our analyses with those obtained from FEA 

(performed for identical pile and soil conditions) using ABAQUS: 

 

( )* 20.75 1 1.25si si siG G ν= +  (3.53)

 

Accordingly, Eqs. (3.16), (3.17) and (3.20), (3.21) are modified by making λsi = 0 

(irrespective of the value of Poisson’s ratio) and by replacing Gsi by Gsi
*. 

3.7. Solution Scheme for Elastic Solutions 

The β parameter in Eq. (3.19), which depends on the pile settlement w and its derivative 

dw/dz (Eqs. (3.16) and (3.17)), must be determined before we calculate the parameters ki 

and ti, which, in turn, are needed in the solution of Eq. (3.13) for the pile displacement.  

Hence, an iterative solution scheme is required.  In the first iteration, an initial value is 

assumed for β, and the pile displacement and its derivative (obtained from the axial 

force) are calculated.  At the end of the iteration, a new β value is obtained using the 
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calculated pile displacement and the values of its derivative; the calculated value of β is 

compared with the assumed initial value.  If the difference is greater than the prescribed 

tolerance, iterations are continued, with the calculated value of  β  taken as the new input 

in the calculations.  Successive iterations are continued until the value of β obtained from 

two consecutive iterations falls below the prescribed limit. This iterative solution scheme 

is provided in the form of a flow chart in Figure 3.5. 

 

Assume initial βini

Calculate ki, ti, λi, and ai

Calculate |M2N-1| and |M2N |

Calculate Bi and Ci

Calculate all |Mi| from recurrence formula

Calculate ms, ns, and βnew

|(βini – βnew)rp| < 10-5|(βini – βnew)rp| < 10-5

βini = βnew

No

Yes

Save all valuesSave all values

Input B, Lp, Ep, Hi, m, N, Gsi, νsi,  Qt

Calculate w(z) and Q(z)

 

Figure 3.5 Flowchart for the iterative procedure 
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3.8. Results 

3.8.1. Comparison with finite element analysis 

The results of our analysis are compared with those of finite element analysis (FEA) 

performed using ABAQUS.  Twenty-noded brick elements were used to represent both 

the pile and the soil. The horizontal extent of the soil domain (from the pile axis) was 

taken to be at least 15 times the pile diameter, and the vertical extent of the soil domain 

below the pile base was taken as at least the pile length.  The boundaries were varied to 

ensure that there were no boundary effects; convergence checks were also performed. 

 We consider a 30-m-long drilled shaft with 2m of diameter embedded in a four-

layered soil. The axial force Qt at the head of the piles is 8000 kN. The Young’s modulus 

of the piles is Ep = 25 GPa .  The piles are embedded in a four-layer deposit with H1 = 2 

m, H2 = 12 m and H3 = 22 m (the pile base rests in the fourth layer); Es1 = 15 MPa, Es2 = 

25 MPa, Es3 = 30 MPa and Es4 = 100 MPa; νs1 = 0.4,  νs2 = 0.3, νs3 = 0.3 and νs4 = 0.15 

(Esi and νsi are the Young’s modulus and Poisson’s ratio of the ith soil layer, respectively). 

The corresponding values of Gs
* for the four soil layers used along with λsi = 0 in the 

analysis are Gs1
* = 4.8 MPa, Gs2

* = 8.0 MPa, Gs3
* = 9.6 MPa, and Gs4

* = 33.5 MPa for the 

drilled shaft. 
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Figure 3.6 A comparison between displacements obtained using the analytical method 
and FEA for a 30-m-long pile: (a) pile displacement versus depth; (b) vertical soil 

displacement at the ground surface versus horizontal distance from pile center 

 Figure 3.6(a) shows the pile displacement as a function of depth, as obtained from 

our analysis and FEA. The results from our analytical solution are in good agreement 

with the FEA results. Figure 3.6 (b) shows the vertical soil displacements at the ground 

surface as a function of the horizontal distance from the pile center. The vertical soil 

displacements obtained from our analysis and FEA are in very good agreement. 

3.8.2. Comparison with previous pile settlement studies 

We compare results from our study with numerical or analytical solutions available in the 

literature (Blaney et al. 1976; Poulos and Davis 1980; El-Sharnouby and Novak 1990; 
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Fleming et al. 1992; Mylonakis 2001). The results are presented in terms of the 

normalized pile head stiffness KN defined as: 

 

t
N

t p

QK
w E B

=  (3.54)

 

where Qt = applied load at the pile head; wt = settlement at the pile head; Ep = Young’s 

modulus of the pile; B = pile diameter.  

 Figure 3.7 compares the values of normalized pile head stiffness versus 

normalized pile length of ideal end-bearing piles (piles with zero base settlement) 

obtained from this study with those from previous studies for two different pile-soil 

modulus ratios (Ep/Gs).  The pile base is assumed to rest on a rigid layer; the soil above 

the rigid layer is homogeneous with Es as its Young’s modulus and νs = 0.5 as its 

Poisson’s ratio.  It should be noted that, although we plotted the results obtained from the 

analysis of Fleming et al. (1992) in Figure 3.7, they did not specifically address the case 

of ideal end-bearing piles in their analysis.  However, by allowing the shear modulus 

below the pile base to tend to infinity in the equation of the magical radius rm (Randolph 

and Wroth 1978), the results shown in Figure 3.7 (corresponding to Fleming et al. 1992) 

are obtained. 
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Figure 3.7 Comparison of normalized pile head stiffness versus normalized pile length of 
end-bearing piles: (a) Ep/Gs = 300; (b) Ep/Gs = 3000 

 For Ep/Gs = 300, results from Blaney et al. (1976) and Poulos and Davis (1980) 

show that the pile head stiffness first decreases and then increases (Figure 3.7 (a)) as the 

pile slenderness ratio Lp/B increases.  As pointed out by El-Sharnouby and Novak (1990) 

and Mylonakis (2001), this trend cannot be true for ideal end-bearing piles because, no 

matter how much load is transferred to the pile base, it does not contribute to the head 

stiffness because the base is rigid.  El-Sharnouby and Novak (1990), who used 50 

discrete elements to discretize the pile in their analysis, reported that the small number of 

pile elements used in the analyses of Poulos and Davis (10 elements) and Blaney et al. 

(20 elements) led to the anomaly.  The results from our analyses are free from this 

anomaly and are in good agreement with the more rigorous solutions of Mylonakis 
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(2001) and El-Sharnouby and Novak (1990).  In the case of Ep/Gs = 3000, the normalized 

pile head stiffness decreases with increasing Lp/B for all cases, as seen in Figure 3.7 (b). 

 In order to further compare our analysis and its results to previous analyses of the 

same problem, we consider the analyses of Poulos (1979) and Lee (1991).  Poulos (1979) 

analyzed the settlement of a single pile in non-homogeneous soil using the method of 

analysis employed by Mattes and Poulos (1969). In this analysis, the pile is divided into a 

number of equal cylindrical elements, with any element j being acted upon by a shear 

stress τj. The expressions for the pile displacements are obtained from the vertical 

equilibrium of a small cylindrical element of the pile assuming that the pile deforms in 

simple axial compression. The vertical displacements of the soil due to the shear stress 

along the pile shaft are obtained by double integration of the Mindlin equation for vertical 

displacement. To calculate the displacement of the soil at any element i due to the shear 

stress τj on element j, the average of Young’s modulus of soil element i and j was used 

for the analysis of nonhomogeneous soils. By imposing a no slippage condition at the 

pile-soil interface, the shear stresses and the displacements along the pile can then be 

calculated. The solutions obtained were compared with those from finite element analysis 

for three idealized cases, shown in Figure 3.8.  The solutions were given in terms of a 

settlement influence factor Iw defined by: 

 

,s ref t
w

t

E Bw
I

Q
=  (3.55)

 

where Es,ref = reference Young’s modulus of soil; B = pile diameter; wt = settlement at the 

pile head; and Qt = applied load at the pile head.  

 Lee (1991) expanded the approach of Randolph and Wroth (1978) to layered soil. 

The analysis of Lee (1991) accounts for the effect of the change of the shear stress in the 

radial direction.  Like the analysis of Randolph and Wroth (1978), it relies on the concept 

of the magical radius rm, a radius at which the displacement becomes negligible. 
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Figure 3.8 Layered soil profiles for settlement analyses (modified after Poulos 1979) 

 To consider the differences between the three analyses, we perform calculations 

for the same cases proposed by Poulos (1979) and used also by Lee (1991) for validation 

of their analysis.  To use our analysis for these cases, we divide the soil profile into five 

layers, with the bottom of the third layer flush with the base of the pile. The 4th layer 

extends from a depth of L to 2L, and the 5th layer extends from 2L to infinity.  The same 

value for the Young’s modulus of the soil was used for the 3rd and 4th layers. For the rigid 

base (5th layer), Es5 = 1010Ep was used.  

 The results from our analyses are given together with those of Poulos (1979) and 

Lee (1991) in Table 3.1. For Case I, the analysis of Poulos (1979) produces an settlement 

influence factor very similar to the one obtained with our analysis. On the other hand, in 

Case II, the result of our analysis is closest to that of Lee (1991). In Case III, our analysis 
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produces almost the same value for the settlement influence factor as the finite element 

analysis of Poulos (1979). Overall, the results from our analyses are in reasonably good 

agreement with those from the previous studies. 

Table 3.1 Comparison between solutions in layered soil 

Case 
Settlement influence factor ,s ref t

w
t

E Bw
I

Q
=  

Poulos (1979) Poulos (1979) - FEA Lee (1991) Present solution 
1 0.0386 0.0377 0.0361 0.0394 
2 0.0330 0.0430 0.0372 0.0385 
3 0.0366 0.0382 0.0358 0.0383 

 

3.9. Parametric Studies 

To investigate the effects of the soil layering on the response of piles with different pile 

slenderness ratio (Lp/B) and pile-to-soil modulus ratio (Ep/Gs), parametric studies were 

carried out. All figures present the results with respect to the modified shear modulus Gs
* 

to avoid including additional charts for different Poisson’s ratios (the effect of Poisson’s 

ratio is already incorporated in the expressions for Gs
*). 

3.9.1. Effect of bearing layer 

If weak soil layers overly a stiff soil layer, depending on the depth of the stiff layer, it is 

often advantageous to extend the pile length to the stiff layer in order to capitalize on the 

end bearing resistance available there.  We consider the case of a weak soil layer with 

equivalent shear modulus Gs
* lying above a stiff layer with equivalent shear modulus 

Gsb
*.  The pile base is assumed to lie on the interface of the weak and the strong layer.  In 

practice, we would embed the pile at least two diameters into the stiff layer so as to 

guarantee proper development of base resistance.  In our analysis, there is no such 
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requirement, as the base resistance will directly reflect the modulus of the soil underlying 

the pile base. 

 Figure 3.9 shows the normalized pile head stiffness as a function of the modulus 

ratio Gsb
*/Gs

* of the two soil layers, for different values of Ep/Gs
* and Lp/B*.  Irrespective 

of the pile slenderness ratio, the pile head stiffness increases as Ep/Gs
* decreases (i.e., as 

the stiffness of the weaker soil increases).  When the soil layer surrounding the pile shaft 

becomes very stiff (Ep/Gs
* = 100) or the pile slenderness ratio is large (Lp/B* = 100), as is 

the case for micropiles, the normalized pile head stiffness is practically independent of 

the soil properties below the pile base.  If the soil below the pile base is only slightly 

stiffer than the soil surrounding the shaft (i.e., for low values of Gsb
*/Gs

*), the longer piles 

show a stiffer response, but if the base soil is much stiffer than the soil surrounding the 

shaft (i.e., for large values of Gsb
*/Gs

*), then the shorter piles have a normalized pile head 

stiffness that is greater than that of the longer piles. 
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Figure 3.9 Normalized pile head stiffness versus modulus ratio of the base soil to shaft 
soil Gsb

*/Gs
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3.9.2. Piles in two-layer soil 

We performed a parametric study for cases with two soil layers present along the pile 

shaft.  Figure 3.10(a) shows the results for five different soil modulus ratios Gs1
*/Gs2

* = 

0.2, 0.5, 1, 2, and 5, with Lp/B* = 25 and Ep/Gs2
* = 1000.  The thickness h of the top layer 

varies from 0 to Lp. Figure 3.10(b) shows the variation of the normalized pile head 

stiffness as a function of Ep/Gs2
* when the two layers have the same thickness. The curves 

shown in this figure may be used as design charts in early stages of pile design when 

similar soil profiles are encountered.   
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Figure 3.10 Normalized pile head stiffness in two-layer soil versus (a) h/Lp and (b) 
Ep/Gs2

* with h = 0.5Lp 

3.9.3. Piles in three-layer soil 

We also consider the case with three-layer soil deposits.  It is assumed that each soil layer 

has the same thickness, but has different equivalent shear modulus Gs
* such that the 

average value G*
s,avg [= (Gs1

*  + Gs2
*  + Gs3

* )/3] remains the same for the cases (I, II and 

III) considered.  In case I, the soil modulus increases with depth, with the smallest soil 

modulus observed for the uppermost layer.  In case III, the soil modulus decreases with 

depth, with the largest soil modulus observed for the uppermost layer.  Case II represents 

a profile with an intermediate weak layer.   

 Figure 3.11(a) shows the normalized pile head stiffness versus Ep/Gs
*, with Lp/B = 

25 for all the three cases (I, II and III).  Case III shows the stiffest behavior but the 

difference in the observed normalized pile head stiffness for the three cases becomes 

smaller as the soil becomes weaker (i.e., as Ep/Gs
* becomes larger).  When the soil 
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deposit is very weak (i.e., for Ep/Gs
* = 10000), there is no practical difference in the 

normalized pile head stiffness for the three cases. Figure 3.11(b) shows the normalized 

pile head stiffness as a function of pile slenderness ratio Lp/B*, with Ep/Gs
* = 1000 for all 

the three cases considered.  The normalized pile head stiffness decreases with Lp/B* for 

end-bearing piles (case I) and increases for floating piles (case III).  These results imply 

that analyses considering a single layer with a simple arithmetic average of the soil 

modulus of different soil layers will not produce correct pile head stiffness values. 
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(b) 

Figure 3.11 Normalized pile head stiffness in three-layer soil versus (a) Ep/Gs
* and (b) 

Lp/B 

3.10. Case Studies 

3.10.1. Micropile (Italy) 

Russo (2004) presented a case history on micropiles used for underpinning a historical 

building in Naples, Italy.  The micropiles were installed in a complex soil profile (there 

are thick layers of man-made materials accumulated over millennia at the site). The soil 

profile and representative values of cone resistance qc for each soil layer are shown in 

Figure 3.12. 
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Figure 3.12 Soil profile at the micropile test site 

 According to Russo (2004), the micropile installation steps were: 1) drilling of a 

200-mm-diameter hole using a continuous-flight auger, 2) inserting a steel pipe equipped 

with injection valves, 3) filling the annular space between the pipe and the soil with 

grout, 4) grouting the pile shaft through each valve using a double packer, and 5) filling 

the steel pipe with grout.  This micropile (0.2m in diameter and 19m in length) was load-

tested.  Two anchor piles were used to provide reaction to the loading frame, and the 

compressive load was applied on the test pile with a hydraulic jack.  The vertical 

displacement of the pile head was measured by LVDT's, and the axial strain along the 

shaft was measured by vibrating-wire strain gages. 

 Russo (2004) compared the pile load test results with those obtained from finite 

element analysis. The Young’s moduli of each soil layer were back-calculated from the 

FEA.  Although Russo (2004) did not provide information on the geometry and 

properties of the steel pipe left inside the micropile, its outer diameter and inner diameter 

were assumed to be 33.4mm and 25.4mm, respectively.  Accordingly, assuming that the 

Young’s moduli of the steel and grout are 200GPa and 25GPa, the equivalent Young’s 

modulus of the composite steel-grout cross section is calculated to be approximately 

27GPa.  Table 3.2 shows the input values used in the analysis. We used four soil layers in 

the analysis with the bottom of the second layer flush with the base of the pile. The 

Poisson’s ratio was assumed to be 0.3 for all the soil layers. 
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Table 3.2 Input values for the analysis of the microplile load-tested in Italy (B = 0.2m; Lp 
= 19m; Ep = 27GPa) 

Layer Hi (m) Esi (MPa) νsi 
1 12 50 0.3 
2 19 117 0.3 
3 21 117 0.3 
4 50 138 0.3 

 

Figure 3.13(a) shows both the measured and calculated load versus settlement curves. 

Figure 3.13(b) shows measured and calculated load-transfer curves for applied loads 

equal to 51, 253, and 542kN.  These figures show that there is very good agreement 

between the calculated and measured values, although the calculated values for the pile 

head settlement become smaller than the measured values for loads greater than about 

400kN. 
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(b) 

Figure 3.13 Comparison between the results from the present analysis and measured data 
(Italy case): (a) load-pile head settlement curves; (b) load-transfer curves 

3.10.2. Drilled shaft in rock (Singapore) 

Chang and Wong (1987) reported the results of instrumented load tests on drilled shafts 

installed in weathered sedimentary rocks of the Jurong Formation in Singapore.  The top 

11 meters of the soil profile consists of medium stiff to hard silty clay (NSPT = 7-36, 

where NSPT = SPT blow counts); underneath this layer there is a layer of highly 

weathered siltstone (NSPT = 50-145), with an undrained shear strength su ranging from 40 

to 200kPa.  The test pile, which was embedded 13m into the siltstone layer, was 0.9m in 

diameter and 24m in length. It was instrumented with five vibrating-wire strain gages at 

7.5, 11.0, 15.5, 20.5 and 24.0m below the ground surface.  The representative Young’s 

modulus of the pile was 31GPa.  The pile was designed to carry an axial load of 2500kN 
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and tested to 4 times the design load one month after its installation using the slow 

maintained-load test method. 

 The elastic properties of the soil and rock layers were not available in the original 

paper by Chang and Wong (1987).  For the rock layer, input values for the Young’s 

modulus was obtained from Kim et al. (1999) since they reanalyzed the pile load test 

results reported by Chang and Wong (1987) to develop load-transfer functions for drilled 

shafts installed in weathered rock.  The Young’s modulus of the weathered siltstone used 

in the analysis of Kim et al. (1999) was 1000 MPa.  For the silty clay layer, the Young’s 

modulus was estimated from the undrained shear strength su.  According to Calanan and 

Kulhawy (1985), values for the Es/su ratio generally ranges between 200 and 900, with an 

average value of 500.  Using Es/su = 500, Es values for the clay layer range from 20 to 

100 MPa; an average value Es,avg = 60MPa was used in the analysis.  The Poisson’s ratio 

was assumed to be 0.5 for the clay layer and 0.15 for the rock layer. The input values 

used in the analysis are summarized in Table 3.3. 

Table 3.3 Input values for the analysis of the drilled shaft load-tested in Singapore (Lp = 
24m; Ep = 31GPa) 

Layer Hi (m) Esi (MPa) νsi 
1 11 60 0.5 
2 24 1000 0.15
3 50 1000 0.15

 

 The results from our analysis are compared with measured data for up to 2 times 

the design load because our analysis is elastic and is valid only for the initial stages of 

loading.  Figure 3.14(a) shows the predicted and measured load-settlement curves for the 

test pile and the predicted load-settlement curve for the barrette.  The results from our 

analysis are in good agreement with the measured data.  In particular, the calculated 

settlement showed very good agreement with the measured values up to the design load 

level (Qt = 2500kN).  The reason for a sudden jump in the measured load-settlement 

curve at 3000kN is not mentioned in the original paper. Figure 3.14(b) shows the 

predicted and measured load-transfer curves for the test pile.  The results from both the 



 

 

65

load test and our analysis indicate that most of the applied load was carried by shaft 

friction, in particular along the pile-rock interface. 
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Figure 3.14 Comparison between the results from the present analysis and measured data 
(Singapore case): (a) load-pile head settlement curves; (b) load-transfer curves 
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CHAPTER 4. ANALYSIS OF ROCK-SOCKETED PILES 

4.1. Introduction 

Micropiles have been successfully used as underpinning foundation elements throughout 

the world because they can be installed under low headroom and restricted access 

conditions with minimal disturbance of existing structures.  Furthermore, they have been 

increasingly used as foundations of new structures as well. Even though micropiles may 

be installed in almost all ground conditions, they are particularly advantageous for 

conditions in which rock is near the ground surface because of the large load-carrying 

capacity that can be obtained. 

 In many situations, rock-socketed micropiles are expected to behave linear 

elastically under design loads. Therefore, use of the elastic solutions presented in 

CHAPTER 3 may be sufficient to evaluate the load-settlement response of rock-socketed 

piles. In order to use the elastic solutions presented in CHAPTER 3 for the case of rock-

socketed piles, we need the elastic properties of rock masses.  We briefly review the 

available methods for estimation of deformation properties of rock masses.  We then 

perform extensive parametric studies for rock-socketed piles. 

  

4.2. Estimation of deformation modulus of rock mass 

In situ rock masses usually include joints or discontinuities.  Therefore, their behavior is 

quite different from that of intact rocks.  The Young’s modulus or elastic modulus of 

intact rock Er can not be considered representative of the corresponding in situ rock mass.  

We use the term deformation modulus Em to describe the deformation properties of rock 

masses.  According to the International Society for Rock Mechanics (ISRM 1975), the 
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rock mass deformation modulus is defined as ‘the ratio of the stress to the corresponding 

strain during loading of a rock mass including elastic and inelastic behavior’. 

4.2.1. Correlation with unconfined compressive strength of intact rock 

Rowe and Armitage (1987) have correlated Em with average unconfined compressive 

strength of intact rock core. They deduced the following equation from a large number of 

field load tests for drilled shafts founded in weak rock deposits: 

 

680m u

A A

E q
p p

=  (4.1)

 
where pA = reference stress = 100 kPa = 0.1 MPa ≈ 1 tsf = 2000 psf 

4.2.2. Correlation with in situ rock mass quality 

A number of attempts have been made to correlate various rock mass quality designators 

to rock mass deformation modulus.  Among others, the most common correlations use 

RMR (rock mass rating) or RQD (rock quality designation) to estimate rock mass 

deformation modulus.  The RMR is a rock quality index that provides a general rock mass 

rating from 0 to 100 based on strength of the intact rock, drill core quality, groundwater 

conditions, discontinuity spacing, and discontinuity characteristics (see 
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Table 4.1).  The RQD is the percentage of the total length of the core drill run with rock 

core pieces longer than 100mm. The RQD is related to the drill core quality. Low RQD 

values are an indication of very fractured rock; high RQD values, on the other hand, 

indicate that the rock mass is fairly continuous. 
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Table 4.1 RMR (rock mass rating) for jointed rock (modified after Bieniawski 1989) 

A. Classification parameters and their ratings 

 Parameter Ranges of values 
1 Strength 

of intact 
rock 

Point-load 
strength 
index (MPa) 

>10 4-10 2-4 1-2 For this low 
range, 
unconfined 
compressive test 
is preferred

Unconfined 
compressive 
strength 
(MPa) 

>250 100-250 50-100 25-50 5-25 1-5 <1 

Rating 15 12 7 4 2 1 0 

2 Drill core quality RQD 
(%) 

90-100 75-90 50-75 25-50 <25 

Rating 20 17 13 8 3 
3 Spacing of 

discontinuities (m) 
>2 0.6-2 0.2-0.6 0.06-0.2 <0.06 

Rating 20 15 10 8 5 
4 Condition of 
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Rating 30 25 20 10 0 
5 Grounder water 

-General conditions 
Completely 
dry 

Damp Wet Dripping Flowing 

Rating 15 10 7 4 0 
 

B. Rating adjustment for joint orientations 

Strike and dip orientation 
of discontinuities 

Very 
favorable 

Favorable Fair Unfavora
ble 

Very 
unfavorable 

Adjustment for foundations 0 -2 -7 -15 -25 
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 Bieniawski (1978) suggested the following equation to predict Em from RMR: 

 

(GPa) 20 100mE RMR= −  (4.2)

 

 Eq. (4.2) is not defined for RMR values less than 50.  For the rock mass whose 

RMR value is less than 50, Em can be estimated from (Serafim and Pereira 1983): 

 
( 10) / 40(GPa) 10 RMR

mE −=  (4.3)

 

 Although the RMR has been widely used as a rock quality index for large 

underground construction projects, it may not be available for routine foundation projects.  

The RQD is often the rock quality index used in practice.  Gardner (1987) proposed the 

following equation, later adopted by American Association of State Highway and 

Transportation Officials in Standard Specification for Highway Bridges (AASHTO 1989), 

for estimating Em from RQD: 

 

0.0231 1.32 0.15m

r

E RQD
E

= − ≥  (4.4)

 

where Er = Young’s modulus of intact rock. Eq. (4.4) gives Em/Er = 0.15 for RQD less 

than 64%.  To overcome this limitation, Zhang and Einstein (2004) collected additional 

data and proposed the following equation as an average relation for the collected data set: 

 

0.0186 1.9110 RQDm

r

E
E

−=  (4.5)

 

  The Young’s modulus of intact rock can be determined from unconfined 

compression tests on rock core samples obtained from drilling using a diamond core 

barrel.  Typical values of elastic modulus of intact rocks are given in Table 4.2. 
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Table 4.2 Typical values of elastic modulus of intact rocks (modified after AASHTO, 
1989) 

 
Rock type 

 
Elastic modulus (GPa) 

 
Standard 
deviation 

Maximum Minimum Mean 
Granite 100 6.41 52.7 24.5 
Diorite 112 17.1 51.4 42.7 
Gabbro 84.1 67.6 75.8 6.69 
Diabase 104 69 88.3 12.3 
Basalt 84.1 29 56.1 17.9 

Quartzite 88.3 36.5 66.1 16 
Marble 73.8 4 42.6 17.2 
Gneiss 82.1 28.5 61.1 15.9 
Slate 26.1 2.41 9.58 6.62 
Schist 69 5.93 34.3 21.9 

Phyllite 17.3 8.62 11.8 3.93 
Sandstone 39.2 0.62 14.7 8.21 
Siltstone 32.8 2.62 16.5 11.4 

Shale 38.6 0.007 9.79 10 
Limestone 89.6 4.48 39.3 25.7 
Dolostone 78.6 5.72 29.1 23.7 

 

4.3. Analysis of load-transfer behavior of rock-socketed piles 

In this section, we analyze the effect of rock socket geometry, rock mass deformation 

modulus, and quality of in situ rock mass on the load-transfer behavior of rock-socketed 

pile.  In all the analyses, we assumed a rock mass Poisson’s ratio of 0.2.  The results are 

given as percentage of applied load along the depth of the socket. 
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4.3.1. Effect of rock-socket geometry 

We considered several rock-socket geometries in the analysis.  The rock-socket geometry 

is defined by the Ls/B ratio, where Ls and B are the rock socket length and diameter, 

respectively.  Two different ratios of rock-to-pile elastic modulus were assumed (Em/Ep = 

0.2 and 2) to represent weak and hard rock.  

 Figure 4.1 shows the distribution of axial load along the depth of a rock-socketed 

pile for Em/Ep = 0.2 and 2.  As Ls/B increases, less load is transferred to the pile base in 

both cases.  For example, for Em/Ep = 0.2, about 57% of the applied load is transferred to 

the base of the rock-socketed pile with Ls/B = 1, while only 11% of the applied load is 

transferred to the base of the rock-socketed pile with Ls/B = 5.  This implies that the load-

settlement response of shorter sockets will be largely affected by the stiffness of the rock 

at the base, whereas that of longer sockets will be less sensitive to the stiffness of the base 

rock.  For the same socket geometry and, hence, the same Ls/B, the transfer of load to the 

base is less in hard rock (Em/Ep = 2) than in weak rock (Em/Ep = 0.2).  For example, for 

Ls/B = 3, about 25% of the applied load is transferred to the base for Em/Ep = 0.2, while 

only 1.4% is transferred to the base for Em/Ep = 2.  This suggests that for very hard rock, 

even for relatively short socket lengths, the load-settlement response of rock-socketed 

piles will be controlled by the resistance developed along the shaft. 
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Figure 4.1 Distribution of axial load versus normalized depth for rock-socketed piles 
with: (a) Em/Ep = 0.2 and (b) Em/Ep = 2 
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4.3.2. Effect of rock mass modulus 

We now consider different values of Em/Ep for the same Ls/B ratio in order to investigate 

the effect of the rock mass deformation modulus. As rock becomes stiffer, Em/Ep 

increases, and a larger portion of the applied load is carried by the shaft.  Almost all the 

applied load is carried by the shaft for very stiff rock (Em/Ep = 5), while only half of the 

applied load is carried by the shaft for very soft rock (Em/Ep = 0.02).  These observations, 

together with the ones in the previous section on the effects of rock socket geometry, 

justify the usual decision often made in practice to ignore the base capacity of micropiles 

installed in hard rock because, as our analysis results show, there will be no load 

transferred to the base for high values of Em/Ep and Ls/B. 
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Figure 4.2 Distribution of axial load versus normalized depth for a rock-socketed pile 
with Lp/B = 3  
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4.3.3. Effect of rock mass quality 

In this section, we study the effects of in situ rock mass quality on the load-transfer 

behavior of rock-socketed piles. We considered a single value for the elastic modulus of 

intact rock Er and varied the RQD from 0 to 100%. A Young’s modulus Ep of 30 GPa 

was assumed for the pile.  Two different values of intact rock elastic modulus Er were 

assumed: 10 and 90 GPa.  Er = 10 GPa represents typical properties of weak rocks, such 

as slate or shale (see Table 4.2); Er = 90 GPa represents typical properties of hard rocks, 

such as granite or diabase.  We fixed the socket geometry to Ls/B = 3. The rock mass 

deformation modulus was estimated from the RQD values using Eq. (4.5). 

 Figure 4.3 shows the load-transfer behavior of a rock-socketed pile with Ls/B = 3 

for various values of RQD.  For weak rocks (Er/Ep = 1/3), the rock mass quality does not 

affect significantly the load-transfer response of the pile (see Figure 4.3(a)).  Almost the 

same load-transfer response is observed for highly fractured rocks (RQD = 0 – 40%).  It 

is interesting to note that Eq. (4.1), proposed by Rowe and Armitage (1984) based on a 

large number of field load tests for drilled shafts installed in weak rock deposits, 

correlates  the rock mass deformation modulus to the unconfined compressive strength of 

intact rock, regardless of in situ rock mass quality.  On the other hand, in hard rock (Er/Ep 

= 3), the RQD has a much more pronounced effect in the load-transfer response of rock-

socketed piles than in weak rock; as the RQD increases, less load is transferred to the pile 

base. 
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Figure 4.3 Distribution of axial load versus normalized depth for a rock-socketed pile: (a) 
Er/Ep = 1/3 and (b) Er/Ep = 3 
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4.4. Analysis of the load-settlement response of rock-socketed piles 

In this section, we investigate the effect of socket geometry, rock mass deformation 

modulus, and in situ rock mass quality on the load-settlement response of rock-socketed 

piles. The results are presented in terms of normalized pile head stiffness KN (= Qt/wtEpB), 

as seen in Eq. (3.54). 

4.4.1. Effect of socket geometry 

Figure 4.4 shows socket geometry versus normalized pile head stiffness. For soft rocks 

(Em/Ep = 0.02 and 0.2), normalized pile head stiffness increases slightly as Ls/B increases.  

However, this trend is not observed for stiffer rock (Em/Ep = 2).  This means that the pile 

head stiffness remains the same regardless the pile length of piles in hard rock because 

most of the applied load is carried by the top portion of the shaft (see Figure 4.1(b)). 
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Figure 4.4 Normalized pile head stiffness KN versus Ls/B for  Em/Ep = 0.02, 0.2, and 3 
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4.4.2. Effect of rock mass deformation modulus 

Figure 4.5 shows normalized pile head stiffness versus normalized rock mass 

deformation modulus on log-log scale. Pile head stiffness increases with increasing rock 

mass deformation modulus, irrespective of socket geometry. When the rock mass 

deformation modulus is larger than the elastic modulus of the pile (Em/Ep > 1), socket 

geometry no longer affects pile head stiffness as all curves for different Ls/B values 

merge on a single line (see Figure 4.5).  
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Figure 4.5 Normalized pile head stiffness KN versus Em/Ep for Ls/B =1, 2, 5, and 10 

4.4.3. Effect of rock mass quality 

Figure 4.6 shows normalized pile head stiffness versus RQD of rock mass. As we did in 

an earlier section, we fix the socket geometry to Ls/B = 3 and estimate the rock mass 

deformation modulus for different RQD values using Eq. (4.5).  Pile head stiffness 
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increases as the RQD increases.  In fact, the effect of RQD on pile head stiffness is more 

pronounced for stronger than weak rock.  This is in agreement with the finding that RQD 

has a larger effect on the load-transfer behavior of rock-socketed piles in hard rock than 

in weak rock (see Section 4.3.3). 
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Figure 4.6 Normalized pile head stiffness KN versus RQD for Em/Ep = 1/3 and 3 
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CHAPTER 5. DEVELOPMENT OF A USER-FRIENDLY SPREADSHEET PROGRAM 
ALPAXL 

5.1. Introduction 

In CHAPTER 3, we obtained elastic solutions for the load-settlement response of axially 

loaded piles.  These solutions were successfully used in the analysis of rock-socketed 

piles in CHAPTER 4.  However, in order to facilitate the use of the analysis in cases  

where the profile consists of many soil or rock layers, we developed a user-friendly 

spreadsheet program called ALPAXL (Axially Loaded Pile Analysis). This program is 

based on the solution scheme presented in CHAPTER 3 and uses built-in functions of 

Microsoft Excel.  ALPAXL provides the results of the analysis, the deformed 

configuration of the pile-soil system and the load-settlement curve in seconds. It can be 

downloaded at http://cobweb.ecn.purdue.edu/~mprezzi.  In this Chapter, we show how to 

use ALPAXL and perform a few analyses using ALPAXL. 

5.2. How to use ALPAXL 

Depending on the user’s settings of Microsoft Excel, Bessel’s function, which is used for 

the solution of the soil displacement decay function φ, may not be available.  In order to 

have Bessel’s function available, the Analysis ToolPak must be installed first. The 

installation procedures for the Analysis ToolPak are as follows: 

 

   1. On the Tools menu, click Add-Ins. 
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   2. In the Add-Ins available list, select the Analysis ToolPak box, and then click OK. 

 

 
 

   3. Restart Microsoft Excel. 

 

 Now we need to set the Macro security level. In order to run ALPAXL properly, 

the security level should be set to ‘Medium’.  This can be done as follows: 
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   1. On the Tools menu, place mouse over Macro and click Security. 

 

 
 

   2. In the Security Level tab, select the Medium button, and then click OK. 

 

 
 

   3. After running ALPAXL, click Enable Macros in the security warning message box. 
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 Figure 5.1 shows a screenshot of the ‘Main’ tab of ALPAXL. In the ‘Main’ tab, 

there are four input sections: pile geometry, number of soil layers, load information, and 

soil properties. All the input parameters should be in SI units.  Since the level of the last 

layer within the pile is flush with the base of the pile in our analysis, the depth to the last 

layer within the pile must be the same as the length of the pile. Mathematically, the depth 

of the last layer below the pile base is infinite, but two times the pile length is sufficient 

for most cases (no difference is observed in the output results unless the pile is very 

short). 

 After inputting all the values and selecting whether to use the original shear 

modulus or the modified shear modulus in the calculations, click the ‘Run’ button.   The 

pile head settlement appears in the output section.  We recommend the use of the 

modified shear modulus in the analysis to minimize the artificial stiffness resulting from 

the assumption of zero lateral displacement for high Poisson's ratios (see section 3.6). 

The ‘Plot’ tab shows the original and deformed configurations of the pile-soil system. 

The ‘Graphs’ tab gives the load-settlement and load-transfer curves, as well as soil 

displacement fields at the level of the pile head and base. 
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Figure 5.1 Screenshot of the ‘Main’ tab of ALPAXL 

  

5.3. Examples 

In this section, we choose two examples to illustrate the use of our analysis with 

ALPAXL. 

5.3.1. Example 1: Micropile in a four-layer soil 

Let us consider a 15-m-long micropile with 0.2m in diameter embedded in a four-layer 

soil. The axial force Qt at the head of the pile is 300 kN. The Young’s modulus Ep of the 

pile is equal to 25 GPa .  The pile is embedded in a four-layer deposit with H1 = 3 m, H2 

= 7 m and H3 = 12 m (the pile base rests in the fourth layer); Es1 = 10 MPa, Es2 = 70 MPa, 
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Es3 = 120 MPa and Es4 = 250 MPa; νs1 = 0.45,  νs2 = 0.3, νs3 = 0.3 and νs4 = 0.2.  Figure 

5.2 shows the soil profile and the pile. 
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Figure 5.2 Soil profile for Example 1 

 Figure 5.3 shows the input parameters for Example 1. Note that the last layer is 

subdivided into two layers, with the fourth layer flush with the pile base.  The analysis 

gives us 2.5mm settlement of the pile head for a load of 300 kN. Figure 5.4 shows the 

load-settlement and load-transfer curves, pile displacement along the pile length, and soil 

displacement in the radial direction at the level of the pile head and base that are obtained 

in the ‘Graphs’ tab.  Figure 5.5 shows the magnified deformed configuration of the pile-

soil system obtained in the ‘Plot’ tab. 
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Figure 5.3 Input parameters for Example 1 
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                                    (a)                                                                     (b) 

 
                                    (c)                                                                     (d) 

Figure 5.4 Results from ALPAXL (Example 1): (a) load-settlement curve; (b) soil 
displacement in the radial direction at the level of the pile head and base; (c) pile 

displacement along the pile length; and (d) load-transfer curve 
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Figure 5.5 Deformed configuration of pile-soil system after loading for Example 1 

5.3.2. Example 2: Rock-socketed micropile 

Let us consider a 7-m-long micropile with 0.2m in diameter embedded in a hard rock 

underlain by soft soil. The axial force Qt at the head of the pile is 400 kN. The Young’s 

modulus Ep of the pile is equal to 30 GPa.  From the ground level to 2 m, there is a very 

soft clay with Es1 = 10 MPa and νs1 = 0.5.  Below this layer, there is a medium dense 

sand layer with Es2 = 100 MPa and νs2 = 0.2 extending down to the bedrock at a depth of 

5.5m.  The deformation modulus Em of the rock layer is equal to 2500 MPa and the 

Poisson’s ratio of the rock mass is 0.2. Figure 5.6 shows the soil profile and the pile. 
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Es1= 10MPa, νs1 = 0.5

Qt = 400kN

2mEp= 30GPa

Es2= 100 MPa, νs2 = 0.2

Em= 2500MPa, νs3 = 0.2

3.5m
Lp = 7 m

B = 0.2m  

Figure 5.6 Soil profile and pile of Example 2 

 Figure 5.7 shows the input and output sections for Example 2.  For the applied 

load of 400 kN, the pile head settlement is 2 mm.  The pile base settlement and load are 

0.046 mm and 68 kN, respectively.  Figure 5.8 shows the pile displacement and axial 

load distribution with depth obtained from ALPAXL for Example 2. 

 

 

Figure 5.7 Input and output sections for Example 2 
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Figure 5.8 Pile displacement and axial load distribution with depth obtained from 
ALPAXL (Example 2) 
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CHAPTER 6. FIELD LOAD TEST ON A ROCK-SOCKETED MICROPILE 

6.1. Introduction 

In this chapter, we present the results of a static load test performed on a rock-socketed 

micropile.  The test pile was fully instrumented with vibrating-wire strain gages. We 

compare the results from the load test with those obtained from our analysis. 

6.2. Overview 

The test site is located on County Road 375W in Paoli, Indiana. As an old bridge over 

Lick Creek showed signs of collapse, there was the need to construct a new bridge to 

replace it.  Micropiles were selected to support the new bridge and concrete retaining 

wall abutment.  The pile load testing program was designed to evaluate the load-transfer 

characteristics of rock-socketed micropiles. The load test was performed up to the 

ultimate structural capacity of the micropile. 

6.3. Site description 

At the project area, limestone bedrock is found at relatively shallow depth. The 

subsurface profile of the test site consists of weak soil layers at shallow depths underlain 

by fractured to hard rock layers at greater depths. Five SPTs and rock core sampling were 

performed before installation of the piles. The groundwater level was found at a depth of 

2.4 - 3 m.  

 Figure 6.1 shows the geometry of the test pile and the subsurface profile at the 

location of the test pile.  Results of SPTs near the test pile location are also presented in 

the figure.  From the ground surface to 1.2m, there is a very soft silty soil layer. 

Underneath this layer to a depth of 2.4m below the ground surface, there is a dense sandy 
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loam layer, which overlies a very loose silty loam layer. From a depth of 4 m to 6.7 m, 

there is a fractured limestone layer underlain by a very hard limestone layer.  The 

unconfined compressive strength of the intact rock sample obtained from the fractured 

limestone layer was equal to 54 MPa.  The rock quality designation (RQD) for this layer 

varied from 0 to 45%.  The unconfined compressive strength of the rock sample obtained 

from the hard limestone layer varied from 71 to 88 MPa; the RQD for this layer was in  

50 - 88% range. 
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Figure 6.1 Subsurface profile and test pile 

6.4. Test pile installation 

A rotary duplex drilling technique was used to install the test pile and the production 

piles as well. First, a drilling rod with a drill bit on its end was inserted inside the drill 
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casing.  Then, the drilling rod and the casing were attached to the same rotary head, 

which rotates to advance the drilling into soil or rock. Figure 6.2 shows the outer drill 

casing and the inner rod with the drilling bit on its end. Figure 6.3 shows a view of the 

folded and expanded drilling bit.  During drilling, the drilling bit was expanded to 

produce a diameter larger that of the casing. The drilling rod, equipped with the drilling 

bit, advanced ahead of the tip of the casing, carrying the casing forward with it. High 

pressure air and water was used to clear the cuttings as drilling advances. When drilling 

was completed, the drilling bit was folded and the inner rod was extracted from the 

ground.   

 

inner roddrill casing

drill bit

 

Figure 6.2 Drilling tools used to install test pile 
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(a)                                                                        (b) 

Figure 6.3 A view of (a) folded and (b) expanded drilling bit 

 

 After reaching the desired depth, the inner rod was removed, whereas the outer 

steel casing was left permanently in the ground. The casing was then filled with grout 

until grout was observed flowing through the annulus between the drilled hole and the 

outer casing.  All the production piles were installed in this manner.  In the case of the 

test pile, a rebar with instrumented pipe segments attached to it was inserted into the 

grout-filled casing. The strain gages cables were carefully inserted through a hole drilled 

at the top of the test pile (the instrumentation details are presented in the next section).  

Figure 6.4 shows the steps in the test pile installation. 

 The outer and inner diameters of the steel casing left in the ground are equal to 

178mm of and 152mm, respectively.  The steel casing Young’s modulus Ecasing and yield 

strength fy,casing are equal to 200 GPa and 552 MPa, respectively. The nominal diameter of 

the test pile is 197mm.  The test pile length is 8.2m (the micropile was embedded 1.5 m 

into the hard limestone layer). 
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(a)                                                                      (b) 

  
(c)                                                                      (d) 

  
(e)                                                                      (f) 

Figure 6.4 Installation of test pile: (a) drilling of the hole into the ground; (b) connecting 
the rod and casing; (c) grouting; (d) insertion of instrumented pipe; (e) positioning 

properly the instrumentation cables; (f) completed test pile  
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6.5. Instrumentation 

The instrumentation of the steel pipe was done in the laboratory. A total of 18 vibrating-

wire strain gages were attached outside the three steel pipe segments at 9 different levels. 

The outer and inner diameters of the steel pipe are equal to 114 mm and 102 mm, 

respectively. The steel pipe Young’s modulus Epipe and yield strength fy,pipe are equal to 

200 GPa and 290 MPa, respectively. The strain gages were installed in pairs, 

diametrically opposite to each other at each level. A total of 14 strain gages were attached 

to one of the three pile segments.  These gages were planned to be installed in the rock 

layers to provide data for load-transfer behavior of rock-socketed piles.  Other two gages 

were attached to another pile segment to be intalled in the soil layer to provide 

intermediate points in the load-transfer curves.  The other two gages were attached to the 

other pile segment to be installed near the top of the pile; the data from these gages were 

used for calculation of the Young’s modulus of the pile to be used to convert the strains 

measured at other levels to load in the pile. The cable-to-lead-wire junction was firmly 

secured to the steel surface, leaving some slack in the lead wires. A stainless steel semi-

circular cover was placed over the gages and secured with an epoxy bond. The installed 

gages were waterproofed with silicone rubber.  

 The instrumented pipes were later moved to the test site and connected to a 

threaded rebar (Erebar = 200 GPa and fy,rebar = 517 MPa). To connect the threaded rebar to 

the instrumented pipes, a specially manufactured connector was welded onto both ends of 

each pipe. The connector had openings so that grout could flow through the pipes. After 

completing drilling and identifying the exact depths of the soil and rock layers at the 

location of the test pile, the connection of each instrumented pipe segment to the threaded 

bar was  adjusted such that the gages were located at the desired depths.  Figure 6.5 

shows this in detail.  
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pipe-rebar connector

 
(a)                                                                     (b) 

 

pipe segments

rebar

 
(c)                                                                     (d) 

Figure 6.5 Test pile instrumentation: (a) three instrumented pipe segments; (b) 
manufactured pipe connector; (c) connection of pipe segments with threaded rebar; (d) 

positioning the instrumented pipes for insertion into the grout-filled casing 

 The instrumentation details are provided in Figure 6.6 and Table 6.1. The gages at 

levels 1 through 4 were located in the hard limestone layer. 
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(diameter = 25 mm)grout
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N80 steel casing
O.D. = 178 mm
I.D. = 152 mm

Schedule 40 steel pipe
O.D. = 114 mm
I.D. = 102 mm

O.D. = outer diameter
I.D. = inner diameter

 

Figure 6.6 Instrumentation details 

Table 6.1 Gage installation depths 

 Level 
9 8 7 6 5 4 3 2 1 

Below ground (m) 0.34 2.78 4.96 5.61 6.26 6.71 7.16 7.61 8.06 
 

6.6. Testing procedures 

A static load test was performed on the test pile 7 days after installation. As shown in the 

test layout in Figure 6.7, four tension anchors were used as reaction for the load test. The 

total load applied to the pile head during the static load test was measured by a load cell 

with a capacity of 4450 kN. The vertical settlement of the pile head was measured by two 

dial gages (one on each side of the pile) attached to two reference beams. The load was 

applied in increments of 134 kN and maintained until the settlement rate from two 



 

 

100

consecutive settlement readings at the pile head was less than 0.5 mm/hr. The load 

increment was reduced to 89 kN as the load applied at the pile head approached the 

structural capacity of the pile (= 3620 kN). After reaching the maximum load, the pile 

was unloaded in 445-kN-load steps.  The data acquisition system recorded the strains at 

every 2 minutes during the load test. The strains obtained from the two strain gages 

installed on opposite sides of the pile were averaged to determine the corresponding load 

carried by the pile at each level. 

 

 

Figure 6.7 Axial load test layout 

6.7. Test results 

6.7.1. Evaluation of Young’s modulus of the micropile 

The strain values obtained from the gages at level 9 (0.34m below ground) were used to 

calculate the Young’s modulus of the test pile. We assumed that the load at this level was 

the same as the load applied at the pile head because the 0.34-m-thick very soft silt layer 

surrounding the pile would offer negligible shaft resistance. Therefore, the stress at this 

level was calculated by dividing the applied head load by the cross-sectional area of the 

pile. Figure 6.8 shows the stress-strain plot at level 9. As can be seen in this figure, a 
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Young’s modulus of 90 GPa for the micropile is appropriate for the range of strains 

expected to develop during the load test. 
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Figure 6.8 Determination of micropile Young’s modulus (r2 = coefficient of correlation) 

6.7.2. Load-settlement response 

Figure 6.9 shows the applied load versus pile head settlement curves obtained from the 

static load test. At a design load of 486 kN, the pile head settlement was 0.8 mm.  At 2.5 

times of design load (= 1215 kN), the settlement at the pile head increased to 3 mm.  At 

the final loading step, a pile head settlement of 13.97 mm (7% of the pile diameter) was 

recorded for an applied load of 3599 kN. Although the pile was loaded to up to 7.4 times 

the design load, which corresponds to the ultimate structural capacity of the micropile, 

the test pile did not show any sign of plunging into the ground. 
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Figure 6.9 Load-settlement response of test pile 

6.7.3. Load-transfer response 

Figure 6.10 shows the load distribution profiles corresponding to each loading step of the 

load test.  The strain gages at levels 5 and 6 were unstable throughout the test and, hence, 

the data obtained from them were ignored. Figure 6.10 shows that, even though there was 

some resistance mobilized in the dense sandy loam layer, almost all of the shaft capacity 

of the micropile is due to the shaft resistances provided by the rock layers, particularly, 

the hard limestone layer. Furthermore, practically, no load was transferred to the pile base 

(at the final loading step, the load at the pile base was 2.4% of the applied load). This is 

more evident in Figure 6.11, which shows pile head settlement versus applied pile head 

load, shaft load, and base load.  The pile shaft load Qs was obtained by subtracting the 

pile base load Qb, estimated using data from the strain gages at level 1, from the applied 

head load Qt.  As can be seen in this figure, almost all of the applied load is taken by the 

shaft (recall that the same trend was observed in CHAPTER 4 for sock geometries with 
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high-slenderness ratios; Ls/B = 7.6 for the test pile).  The pile base started to carry load at 

approximately Qt = 3000 kN. 
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Figure 6.10 Distribution of axial load versus depth 
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Figure 6.11 Pile head settlement versus applied head load, shaft load, and base load 

 Referring to Table 2.3, the shaft resistance of Type A micropiles installed in fresh 

to moderate limestone (FHWA 2000) is in the 1035 – 2070 kPa range, with the higher 

value of the range corresponding to fresh rock. However, the FHWA manual does not 

provide specific guidance on which value to use in design.   In fact, a qsL = 1292 kPa, 

closer to lowest value, was used in the design of the micropiles at the test site. As 

discussed in CHAPTER 4, the quality of the rock mass plays an important role in the 

shaft resistance of hard rocks.  Considering that the average RQD of the hard limestone 

layer is about 70%, the shaft resistance of the hard limestone layer at the test site is 

expected to be closer to the higher value prescribed by FHWA. At the final loading step 

(Qt = 3599 kN), the measured base load was equal to 88 kN and, hence, the shaft load Qs 

= 3511 kN.  The shaft load carried by the hard limestone layer, determined by subtracting 

the base load from the load at level 4, was 2719 kN.  This load corresponds to 77% of the 
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shaft load at the final loading step.  By dividing 2719 kN by the lateral surface area of the 

hard limestone layer, we get a shaft resistance of 2950 kPa. The shaft resistance obtained 

from this study based on the final loading step of the load test is 1.4 times larger than the 

higher value suggested by FHWA.   

6.8. Analysis of the pile load test with ALPAXL 

6.8.1. Estimation of input parameters 

In order to use ALPAXL, we need to determine the input parameters.  The pile diameter 

is 0.2 m, and the pile length is 8.2 m. The Young’s modulus of the pile is 90 GPa.  We 

also need to estimate the Young’s moduli of the soil and rock layers.  We estimated the 

Young’s modulus Es of the soil layers from the SPT blow counts using the correlation 

proposed by Lee and Xiao (1999): 

 

39.2s
SPT

A

E N
p

=  (6.1)

 

where pA = reference stress = 100 kPa = 0.1 MPa ≈ 1 tsf = 2000 psf.   In order to estimate 

the deformation modulus Em of the rock layers, we used Eq. (4.5) proposed by Zhang and 

Einstein (2004).  The Young’s modulus of intact limestone was assumed to be 39 GPa, 

following the guidelines in Table 4.2. 

   

Table 6.2 gives representative blow counts for the soil layers, RQD values for the rock 

layers and the estimated modulus values.  Poisson’s ratios for all the layers were assumed 

to be 0.2. 
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Table 6.2 Estimation of Young’s modulus of soil or rock layer 

Depth (m) Layer Representative NSPT 
or RQD 

Estimated Young’s 
modulus of layer 

(MPa) 
0 – 1.2 Very soft silt 3 12 

1.2 – 2.4 Dense sandy loam 31 122 
2.4 – 4.0 Loose silty loam 3 12 
4.0 – 6.7 Fractured limestone 22% 1230 
6.7 – 10.7 Hard limestone 69% 9210 

6.8.2. Analysis results 

Figure 6.12 shows the results of ALPAXL for a design load of 480 kN.  The predicted 

pile head settlement is 0.86 mm, while the measured settlement for the same load is about 

0.8 mm. We further run the analysis for an applied load of 1610 kN. 

 

 

Figure 6.12 Screenshot of the input values and results from ALPAXL for the Orange 
County micropile 
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 Figure 6.13 shows the measured and predicted load-settlement curves for an 

applied load of 1610 kN.  The predicted response is in reasonable agreement with the 

measured response up to a load of 800 kN.  Beyond this load, the curves start to deviate 

because soil and rock nonlinearity is not accounted for in the analysis. 

 Figure 6.14 shows measured and predicted load-transfer curves for an applied 

load of 1610 kN.  Even though there are small differences in the magnitude of the loads 

transferred at each depth, both these curves illustrate that the majority of the shaft 

resistance is mobilized in the rock layers. 
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Figure 6.13 Measured and predicted load-settlement curve for the Orange County 
micropile 
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Figure 6.14 Measured and predicted load-transfer curves for a load of 1610 kN  
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

7.1. Summary 

Pile foundations have been used in construction for thousands of years as an economical 

means of transmitting the loads from superstructures to the underlying soil or rock strata. 

In pile design, piles must be able to sustain axial loads from the superstructure without 

failing in bearing capacity of soil and structural damage. In addition, piles must not settle 

or deflect excessively in order for the serviceability of the superstructures to be 

maintained. In general, settlement controls the design in most cases because, by the time 

a pile has failed in terms of bearing capacity, it is very likely that serviceability will have 

already been compromised. Therefore, realistic estimation of settlement for the given 

load is very important in design of axially loaded piles. This notwithstanding, pile design 

has relied on calculations of ultimate resistances reduced by factors of safety that would 

indirectly prevent settlement-based limit states. This is in part due to the lack of 

accessible realistic analysis tools for estimation of settlement, especially for piles 

installed in layered soil.  

 Micropiles are small-diameter piles that are sometimes called minipiles, root piles, 

pin piles or needle piles. The motivation behind this important technological development 

was the need of developing a small-diameter pile that would be able to carry large loads 

and, at the same time, cause minimal vibration or disturbance of the in situ soil during 

installation.  Because of these important advantages, micropiles have been widely used in 

situations where minimal disturbance of existing structures is a requirement, such as in 

seismic retrofitting and in the rehabilitation of foundations of structures that are very 

sensitive, as well as in locations with low headroom and severely restricted access 

conditions.  Micropiles have also been increasingly used, not only as foundation 

underpinning elements but also as foundations of new structures. 
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 Prevalent design methods for micropiles are adaptations of methods originally 

developed for drilled shafts. However, the installation of micropiles differs considerably 

from that of drilled shafts, and micropiles have higher pile length to diameter ratios than 

those of drilled shafts.  Improved understanding of the load-transfer characteristics of 

micropiles and the development of pile settlement estimation tools consistent with the 

load-transfer response of these foundation elements are needed. 

 In order to obtain rigorous analysis tool for load-settlement response of an axially 

loaded pile, we obtained explicit analytical solutions for an axially loaded pile in a 

multilayered soil.  The soil was assumed to behave as a linear elastic material. The 

governing differential equations were derived based on energy principles and calculus of 

variations. The integration constants were determined using Cramer’s rule and a 

recurrence formula. In addition, solutions for a pile embedded in a multilayered soil with 

the base resting on a rigid material were obtained by changing the boundary conditions of 

the problem. We also obtained solutions for a pile embedded in a multilayered soil 

subjected to tensile loading. We then compared our solutions with the results from FEA 

and also with others from the literature. Finally, we used the results of a pile load test 

from the literature to verify the results obtained using the solutions proposed in this 

study. 

 Using the obtained elastic solutions, we performed extensive parametric studies 

on load-transfer and load-settlement response of rock-socketed piles. The effects of 

geometry of rock socket, deformation modulus of rock mass, and quality of in-situ rock 

mass was investigated. 

 To facilitate the use of our analysis, user-friendly spreadsheet program ALPAXL 

was developed. This program is based on the elastic solution obtained in this study and 

uses built-in functions of Microsoft Excel.  ALPAXL provides the results of the analysis, 

the deformed configuration of the pile-soil system and the load-settlement curve in 

seconds. It can be downloaded at http://cobweb.ecn.purdue.edu/~mprezzi. 

 A fully instrumented static load test on a rock-socketed micropile was performed. 

Total of 18 vibrating strain gages were attached outside the steel pipe at 9 different levels. 

The load testing program was designed to evaluate the load-transfer characteristics of 
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rock-socketed micropile.  Load test was performed to a maximum test load of the 

ultimate structural capacity.  Using pile and soil properties, predictions were made using 

ALPAXL.  The results from ALPAXL were in good agreement with the measured data at 

design load level. 

 

7.2. Conclusions 

Based on findings of the present study, we can draw conclusions as follows: 

 

 

(1) The results from FEA and our analysis for a multi-layered soil showed good 

agreement; the results from our analysis for end-bearing piles also compared well 

with results from previous studies. 

 

(2) When the soil layer surrounding the pile shaft becomes very stiff or the pile 

slenderness ratio is large, as is the case for micropiles, the normalized pile head 

stiffness is practically independent of the soil properties below the pile base. 

 

(3) In the case of piles in multilayered soil, the elastic response of pile depends on 

soil layering, with the uppermost soil having the most effect on the pile head 

stiffness. A single layer with a simple weighted average of the soil modulus of 

different soil layers with layer thicknesses as weights will not produce correct 

pile head stiffness values. 

 

(4) For rock-socketed piles, the load-settlement response of shorter socket is largely 

affected by the stiffness of the rock at the base, whereas that of longer socket is 

less sensitive to the stiffness of the base rock. 

 

(5) Load-settlement response of pile socketed in a very hard rock is dominated by the 

shaft resistance even for relatively short socket length. 
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(6) Base capacity may be ignored in design when a micropile is embedded in a very 

stiff rock, as there will be practically no load transferred to the base under 

working load. 

 

(7) RQD has a more pronounced effect on load-transfer and load-settlement response 

for pile embedded in hard than weak rocks.  As the RQD increases, less load is 

transferred to the pile base, and pile response becomes stiffer. 

 

(8) For soft rocks, normalized pile stiffness increases as Ls/B increases.  However 

this trend vanishes and pile stiffness becomes independent of socket geometry as 

rock becomes stiffer. 

 

(9) Normalized pile stiffness increases with increasing rock mass modulus, 

irrespective of socket geometry. When the deformation modulus of rock mass 

becomes bigger than elastic modulus of the pile (Em/Ep > 1), socket geometry 

does not make any practical difference in pile stiffness. 

 

(10) A fully instrumented load test on a rock-socketed micropile confirmed that most 

of the applied load was carried by the pile shaft with high slenderness ratio and 

high stiffness of surrounding rock. 

 

(11) The shaft capacity of hard limestone obtained from the load test at the final 

loading step was 1.4 times bigger than highest value of limit unit shaft resistance 

suggested by FHWA (the limit unit shaft resistance qsL from the load test was 

2950 kPa, while the suggested values from FHWA were 1035 – 2070 kPa).. 

 

(12) Using pile and soil properties, predictions were also made using ALPAXL.  The 

results from ALPAXL were in good agreement with the measured data at the 

design load level.  
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