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ABSTRACT 

Background: Everyone is subject to environmental exposures from various sources, with 

negative health impacts (air, water and soil contamination, noise ...) or with positive effects 

(e.g. green space). Studies considering such complex environmental settings in a global 

manner are rare. We propose to use statistical factor and cluster analyses to create a composite 

exposure index with a data-driven approach, in view to assess the environmental burden 

experienced by populations. We illustrate this approach in a large French metropolitan area. 

Methods: The study was carried out in the Great Lyon area (France, 1.2M inhabitants) at the 

census block group (BG) scale. We used as environmental indicators ambient air NO2 annual 

concentrations, noise levels, proximity to green spaces, to industrial plants, to polluted sites 

and to road traffic. They were synthesized using Multiple Factor Analysis (MFA), a data 

driven technique without a priori modeling, followed by a hierarchical clustering to create 

BG classes. 

Results: The first components of the MFA explained respectively 30, 14, 11 and 9% of the 

total variance. Clustering in 5 classes group: 1) A particular type of large BGs without 

population; 2) BGs of green residential areas, with less negative exposures than average;3) 

BGs of residential areas near midtown;  4) BGs close to industries; 5) midtown urban BGs, 

with higher negative exposures than average and less green spaces. Other numbers of classes 

were tested in order to assess a variety of clustering. 

Conclusions: We present an approach using statistical factor and cluster analyses techniques 

which seem overlooked to assess cumulative exposure in complex environmental settings. 

Although it cannot be applied directly for risk or health effect assessment, the resulting index 
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can help to identify hot spots of cumulative exposure, to prioritize urban policies or to 

compare the environmental burden across study areas in an epidemiological framework. 

KEYWORDS 

Cumulative exposure; Environmental index; Multiple Factor Analysis; Hierarchical 

Clustering 
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INTRODUCTION 

At each moment, everyone is subject to a mixture of environmental exposures in one’s place 

of residence. Of these, air pollution (1,2), water and soil contamination (3), noise (4,5) and 

proximity to garbage dumps or hazardous industrial facilities (3) are separately recognized to 

have adverse health effects such as respiratory and heart diseases, cancer, adverse pregnancy 

outcomes or mental health impairment (1–5). Conversely, other environmental exposures, 

such as proximity to green spaces, have demonstrated positive health effects (6,7). 

The majority of epidemiological studies have considered only one single environmental 

exposure when assessing its possible health impact. Recently, there has been a call for more 

‘realistic’ approaches that would take into account complex exposure situations, and strive to 

measure the ‘environmental burden’ experienced by populations (8–15). New tools to assess 

cumulative exposures would be useful in a wide range of applications, from public policy and 

urban planning to environmental epidemiology or environmental justice studies. 

One reason making it difficult to consider cumulative exposures is that several 

methodological issues arise in dealing with them. Exposure variables are often correlated 

since they can share the same sources of pollution (such as road traffic for instance), which 

can imply multicollinearity issues. Also, the different types of variables used to characterize 

the quality of the environmental media, having both qualitative (presence/absence indicators 

for instance) and quantitative (pollution levels) indicators, as well as the various units of 

measurement (µg/m
3
, decibel, g/m², m², percentage of population exposed above a certain 

level, etc.), constitute additional difficulties in constructing an index of cumulative 

environmental exposure. Finally, determining the weighting of the different exposure 
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variables included in a composite index is also complex - particularly when each exposure is 

associated with different health outcomes. 

To our knowledge, the few studies that took into account cumulative exposures often included 

pollutants of the same family (mostly air pollution) and/or used simple methods such as 

weighted sum or product, or arbitrarily defined scores (9,16–19). 

One solution to these methodological limitations is to use data analysis techniques which can 

include various types or scales of variables from large data sets, and which are 

underemployed in this particular context. Moreover, these techniques are data driven, in the 

sense that they allow the data to organize itself without a priori knowledge or model, and 

their analysis may highlight the underlying relations and correlations between variables. 

In this context, the aim of the present work is to construct an index of complex cumulative 

environmental exposure that allows to assess the ‘environmental burden’ experienced by the 

population in a French metropolitan area. To do so, we chose to explore the usefulness of a 

data driven approach with no a priori model and to create this index independently of any 

outcome variable, in view to highlight the underlying structure of our environmental data. 

This work is a part of the Equit’Area research project (www.equitarea.org), whose main 

objective is to study the combined impact of multiple environmental exposures and of the 

contextual socio-economic status on the risk of infant and neonatal mortality. 

MATERIAL AND METHODS 

Study setting and small area level 

The study was carried out in the Lyon Metropolitan Area (LMA) known as the ‘Grand Lyon’, 

which is one of the biggest such areas in France and is located in the Rhône-Alpes region 

(central and eastern France). The LMA is subdivided into 56 municipalities and 499 census 

http://www.equitarea.org/
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Block Groups (BG), for a total population of approximately 1.2 million inhabitants in an area 

of 527 km². 

The statistical units are the sub-municipal French BGs (called IRIS), defined by the National 

Institute of Statistics and Economic Studies (INSEE(20)). In the whole of France, these units 

have an average of 2,000 inhabitants and are constructed so as to be as homogeneous as 

possible in terms of socio-demographic characteristics and land use. They also take account of 

physical obstacles that may break up urban landscapes, such as arterial roads, green spaces, 

bodies of water. In the LMA, BGs ranged from 0 to 7,232 inhabitants, with an average 2,465 

inhabitants in 2007.Their area varied from 0.01 to 11.15km² (1.00 km² on average). 

Environmental variables  

The selection of environmental exposures was based on their known or suspected links 

(positive or negative) with the study health outcome, from the literature, as well as on the 

availability of databases needed to construct the environmental indicators at the BG level at 

the time of the study. Others exposure factors that may be relevant in the LMA, such as 

particulate matter or ozone, could not be obtained at the BG level at the time of the study. In 

other settings, such factors might be added in the cumulative exposure index construction 

whenever available.  

For each of the following exposure types, several indicators were available and are described 

below. Descriptive statistics of these indicators at the BG level are given only for those 

chosen by the procedure (see below: “Methodological Procedure, Selection of variables”). 

The Pearson correlations between these indicators are presented in Table 1. Indicators of the 

same exposure domain are unsurprisingly strongly correlated, as well as indicators of different 

exposure domains sharing a common source (such as traffic exhausts and noise). 

Nitrogen dioxide 
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Annual averages of nitrogen dioxide (NO2) concentrations (expressed in μg/m
3
) were 

modelled at a 10 x 10m resolution and then aggregated at the census Block Group (BG) level 

throughout the entire study period (2002-2009) by the local air monitoring association (Air 

Rhône-Alpes) using the SIRANE modelling system (21,22). More details about estimated 

NO2 data are available elsewhere(23). 

Across the LMA, the mean annual average of NO2 concentration was respectively 40.31 and 

42.44 µg/m
3 

in 2003 and 2006 (table 2), which were in both cases above the exposure 

threshold set in the European Union for yearly values (40µg/m
3
)(24).  

Noise  

Exposure to residential noise combined noise nuisances related to road and aircraft traffic, 

industries and railway. Noise nuisances were measured in 2007 and the acoustic modelling 

estimations of noise levels, with a spatial resolution of 10×10 meters at 4 metres above ground level, 

across the LMA were performed by the Grand Lyon Urban Community (the political 

institution regrouping the municipalities of the LMA) in line with the European 

Environmental Noise Directive (25). 

The metric used to characterize noise in each census block was the European standard Lden 

indicator (day-evening-night Level, measured in decibels, dB), an assessment of daily 

exposure over a 24-hour period taking into account residents’ increased sensitivity to noise 

during the evening (6 pm to 10 pm) and night (10 pm to 6 am) (5). Combining the Lden with 

the estimated population living in each residential building, the Scientific and Technical 

Centre for Building (CSTB) calculated several indicators to compute a (weighted or not) 

population average noise exposure at the BG level. More details about how the indicators 

were constructed can be found elsewhere (26). 

Noise levels had a median BG arithmetic mean of 63.85 dB(A) without taking the buildings’ 

population into account, and 65.58 dB(A) when it is (table 2). In France, the regulatory LDEN 
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threshold fixed in application of the European Environmental Noise Directive (25) is 68 

dB(A). This threshold was exceeded in 43 BGs (8.7%) for the arithmetic mean, and 126 BGs 

(25.6%) when weighing on the population size. 

Proximity to industrial plants and polluted sites 

Proximity to industrial plants was determined using data from the European Pollutant 

Emission Register (EPER register)(27) which routinely collects data from industries emitting 

pollutants above a fixed emission threshold for about 50 different pollutants. Proximity to 

polluted sites were determined using data from the BASIAS database (28) -a French register 

of all former industrial plants and service activities where polluted installations or polluted 

soils might remain. 

Twenty six industrial plants registered in the EPER database and located in the metropolitan 

area were included in this study, as well as 474 polluted sites in the area registered in 

BASIAS database. The geographical coordinates for each of the selected plants were checked 

and corrected (where necessary) using Google Maps.  

Several indicators were created at the BG level using the ArcGIS software (29) to assess 

proximity to industrial plants or polluted sites.  

For industrial plants: presence/absence of a pollutant industry within the BG; number of 

industries emitting pollutants within the BG; presence/absence of a buffer with a 500m or 

1km radius around an industrial plant intersecting with the BG; number of buffers with a 

500m or 1km radius around an industrial plant intersecting with the BG. 

For polluted sites: number of sites within the BG; number of buffers with a 500m, 1km or 

1.5km radius around a polluted site intersecting with the BG. 

Due to the low number of industrial plants in the area, indicators related to this exposure were 

all considered qualitative, whereas indicators related to the polluted sites were considered 

quantitative since there are enough polluted sites in each BG to do so. 
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More than 70% of BG in the metropolitan area are more than 1km away from industrial 

plants. However, 21 BG (4.2%) were within 500m of at least 2 industrial plants (table 2). 

There was also an average of 7 buffers of 500m radius around polluted sites intersecting with 

a BG (table 2). 

Traffic exposure 

Road traffic was assessed using the Grand Lyon Urban Community and Air Rhône-Alpes 

traffic model. ‘High-traffic’ road sections were defined as those having more than 5,000 

vehicles per day. Using the estimated traffic for each road section, combined with information 

about buildings and population, the proportion of the population within a given distance of a 

‘high-traffic’ section was computed for each BG. 

We constructed and tested these indicators with several strip widths (from 100m to 300m, in 

50m steps). 

An average of 77% of the BG population was within 200m of a ‘high-traffic’ road. However, 

since the entire range 0-100% was covered, there were extremely broad variations between 

BGs (table 2). 

Green Spaces 

Spatial land cover data sets from the French National Geographic Institute (IGN) were sought 

and processed using ArcGIS software for the production of a green spaces index. Our 

definition of green space (30) included natural areas (e.g., parks, forest…). This green spaces 

index was defined as the proportion of the geographic area occupied by green spaces within 

the total area of a census block. The total green space area for each BG is also included. 

Green spaces presented wide ranges of variations in the LMA, with BGs having 0 to 57% of 

their area occupied by green spaces (table 2). 

Spatial patterns of the environmental indicators 
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From a spatial point of view, both NO2 levels (Figure 1, panel a.) and road traffic proximity 

(Figure 1, panel b.) were greater in the city of Lyon itself and around north-south highway 

crossing the city (the “Autoroute du soleil”, connecting Paris to the French Mediterranean 

coast), whereas noise levels (Figure 1, panel c.) were more mixed across the metropolitan 

area, with no clear spatial pattern. 

Both polluting industries (Figure 1, panel d.) and polluted sites (Figure 1, panel e.) were 

mainly located in the east, south-east and south of the city of Lyon and the greenest BGs (in 

absolute value) in the metropolitan area were on the outskirts, in contrast with the city centre 

BGs. However, looking at green space as a proportion of the BG area (Figure 1, panel f.), a 

clear heterogeneity appears between the north-western and the south-eastern BGs the latter 

having a lower percentage of green spaces. 

 

Methodological Procedure 

Selection of variables 

In total, we had 31 environmental indicators divided into the six environmental groups 

previously described: air pollution, noise, industrial proximity, traffic, polluted sites, and 

green spaces. With the notable exception of the industrial proximity group which is 

qualitative, each of these is composed of quantitative variables. Since there are correlations 

within the groups we wanted to select a subset of indicators for each group in order to limit 

the number of indicators while keeping enough information. To do so, we used principal 

component analysis (PCA) for each group of quantitative variables or multiple 

correspondence analysis (MCA)(31) for the industrial proximity group (results not shown), 

keeping only the 1 or 2 indicators most correlated with the first and second components 

(similar, in a way, to the first step of the procedure of creation of a composite socio-economic 

index developed by our team and published elsewhere(32)). The tested but eventually dropped 
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indicators were: (1) 2002, 2004, 2005 and 2007-2008 NO2 annual concentration average; (2) 

Noise levels energetic mean and noise levels median taking into account the buildings 

population; (3) Presence of at least one pollutant industry and number of 1km radius buffers 

around an industrial plant intersecting with the BGs; (4) Proportion of the BG population 

within 100m, 150m or 300m of a high traffic road; and (5) Number of 1500m radius buffers 

around a polluted site intersecting with the BGs. We then obtained a selection of 17 

environmental indicators (see tables2 and 3). 

Data analysis techniques 

In this study, our purpose was to create cumulative exposure index based on the underlying 

structure of the data with a data driven approach and without any a priori model. Since we 

had several groups of both quantitative and qualitative environmental indicators (air pollution, 

noise, industrial proximity, traffic, polluted sites, green spaces) and because we wanted to 

give an equal weight to each, regardless of the number of indicators in it, we used multiple 

factor analysis (MFA)(33) which is a well-suited technique for this situation: 

Consider a data set composed of observations among the same units of several groups of 

variables. This dataset can be divided in subsets representing the groups of variables.  

The first step of the MFA is, for each subset, to perform a principal component analysis 

(PCA) if the group is composed of quantitative variable or a multiple correspondence analysis 

(MCA) if the group is composed of qualitative (dummy) variables. This first step allows to 

determine a particular metric (i.e. the way to compute distance between units by giving a 

particular weight to each variable), based on the use of the highest eigenvalue of the PCA or 

the MCA of each group, which will allow to give in some sense the same weight to each 

group even if they are of very different sizes. 
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The second step of the MFA is to perform a PCA on the whole data set, using the previously 

obtained metric. This allows the comparison of groups of different types of variables. 

The interpretation of the MFA is then similar to a PCA: new variables, uncorrelated and of 

maximal variance, are created as linear combinations of the original variables (without any 

factors rotation) and can be interpreted using correlations with original variables or 

contributions of variables and groups together with a set of graphical outputs which facilitate 

interpretation. 

Following the MFA, we applied Hierarchical Clustering (HC) to create meaningful categories 

of BGs. HC is a unsupervised method of clustering which creates a hierarchy of classes (i.e. 

clusters), frequently used after a PCA or others data analysis techniques such as MFA.  

Given a set of variables (here, these variables are those created by the MFA) the HC 

algorithm creates a hierarchy of categories step by step, at each step merging the two 

categories which are closest, according to a given distance between categories. When it is a 

particular distance (the Ward distance), this algorithm aims to obtain categories that are 

homogeneous within and heterogeneous between one another with respect to an inertia-based 

criterion.  

The most appropriate partition is then selected from the hierarchy of categories, using both 

mathematical criterion (such as the dendrogram) and knowledge (in order to keep a 

reasonable number of meaningful categories). Each category can then be interpreted 

according to the average values of the quantitative variables for the BG and/or to the 

proportions of the different modalities of the qualitative variables in this category, as well as 

according to the BGs which compose it. More information about PCA, MFA and HC is 

available in the supplementary Text S1. 
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This method allows to create a categorical index of cumulative exposure with a data driven 

approach and simple data analysis techniques (see Figure 2). Note that due to the data driven 

nature of the techniques used here, this process should be repeated entirely in each new 

setting. A main advantage is that even if one has not the same variables characterising the 

environmental exposures, the same procedure can still be applied. All statistical and data 

analysis computation has been conducted using the R software (34) and the package 

FactoMineR (35). 

RESULTS 

Multiple Factor Analysis 

The MFA was applied on the 17 selected variables covering the 6 exposure groups described 

above. The four first components explain 30%, 14%, 11% and 9% respectively of the total 

variance (supplementary Table S1). These components can be interpreted using both the 

groups and the variables contributions (see Table 4 and supplementary Table S2) to the 

components or their graphical representations (supplementary Figures S1 and S2): 

(1) The first component can be expressed as an air pollution and traffic proximity component, 

which were two groups of strongly correlated families of indicators (Table 1). BGs with high 

values in this component are mainly located in the centre of the LMA (supplementary Figure 

S3). (2) The second component is mainly explained by industrial proximity and is clearly 

based on the opposition between the presence and the absence of industries or buffers in BGs. 

BGs with high values in this component are mostly in the south-eastern part of the LMA but 

no clear pattern appears. (3) The third component relates to noise and green spaces, which is 

more surprising according to the small two-by-two correlations between the indicators. It is 

positively correlated both with green spaces indicators and with noise variables (particularly 

those which do not take into account exposed population sizes); most BGs with high values in 

this component are in the north-western part of the LMA. (4) Finally, the fourth component 
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relates to noise and polluted sites, which was also not expected in view of the correlations. 

Noise indicators which take into account the buildings’ population have a strong negative 

correlation with this component. No clear geographical pattern appears for this component. 

 

Hierarchical Clustering 

Following the MFA, we performed an HC on the first five components of the MFA and, 

according to both the dendrogram and the number of categories expected, we chose a 5-

category partition. Using the characteristics of each category according to the variables 

(Tables 5 and 6), different exposure profiles can be identified in the LMA (Figure 1). 

The major characteristic of Category 1 (in red in Figure 1, panel g.) is that all its BGs have a 

value of 0 for noise variables, taking into account buildings’ population. An in-depth 

examination of the BGs comprising this category revealed that these are wide, sparsely 

populated areas made of parks, forests, industrial estates or business districts- and present no 

spatial pattern. 

Category 2 (dark green) is the greenest category, with green spaces covering an area ten times 

the size of the LMA average. BGs in this category also present lower noise levels and NO2 

concentrations, as well as traffic proximity and polluted sites indicators that are well below 

the study area average. BGs included in this category appear to be residential areas with 

individual houses and gardens, or rural areas with detached houses and fields. This category is 

located mainly on the outskirts, especially in the north-west area, of the LMA. 

Category 3 (light green) has, on average, lower values of NO2 and noise levels, of number of 

polluted soils and of traffic proximity. Although their absolute green space area is smaller 

than on average in the study area, BGs in this category are proportionally greener than 

average for their size. BGs in this category also appear to be residential areas with individual 

houses and gardens, though closer to city centres and smaller than those in Category 2. These 
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are mainly located on the south-east and midway between the metropolitan area’s centre and 

outskirts. 

Category 4 (blue) is characterized by its proximity to pollutants-emitting industries. All BGs 

in this category are within 500m of an emitting industry and this category contains almost all 

BGs having a non-0 modality for any industrial proximity variable. This category of BGs near 

industries is mainly located on the mid-distance outskirts of the LMA. 

Finally, Category 5 (orange) BGs have higher noise and NO2 levels, higher traffic and 

polluted soils indicators and below-average areas of green space. This category essentially 

comprises the Lyon municipality itself and neighbouring towns. 

Although the construction of the index aims to create a qualitative and nominal index, we can 

see in its application that a hierarchy emerges between the categories. Category 2 seems to be 

greener and less exposed to air, noise and traffic pollution, whereas Category 5 carries a 

significant environmental burden comprising air, noise and traffic pollution as well as close 

proximity to polluted sites, and a very small relative surface of green spaces.   

Examples: links with SES and with infant mortality  

In order to illustrate the utility of our index, we present two examples exploring social and 

spatial inequalities in exposure (36) (i.e. different socio-economic groups bearing an unequal 

environmental burden).Then, we compare the infant mortality rate and the Socio-Economic 

Status (SES) of LMA BGs according to their exposure category. To do this, we used a SES 

index defined elsewhere (32) by our team, which synthesizes around 20 socio-economic 

variables into a single indicator, using successive principal component analyses (the higher 

the SES index, the more deprived the BG). The infant mortality rate was calculated using 

2002-2009 infant mortality cases gathered in the death registries of the LMA municipalities 

and the number of living births from the French National Institute of Statistical Studies 

(INSEE). 
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Comparing average SES index values by exposure category, we can see (Figure 3) that 

environmental inequalities are present in the LMA. For instance, Category 2 (green BGs with 

low air and noise pollution) has, on average, fewer deprived BGs (average SES index: -1.3) 

whereas Category 4 (BGs closed to pollutant industries) has more deprived BGs (average SES 

index: 0.7). More generally, BGs in categories with the lowest exposures to NO2, noise or 

traffic (categories 1 to 3) are less deprived than those more exposed to NO2 or pollutant 

industries (categories 4 and 5). A Kruskal-Wallis test performed on this data confirms a 

statistically significant difference in SES index distributions between cumulative exposure 

categories (p<10
-6

). 

Comparing infant mortality rates distributions across cumulative exposure categories, we 

observed a significant link (p<10
-15 

using a Kruskal-Wallis test). Although the very small 

average rate in category 1 (2.10‰) cannot be interpreted because both of the small number of 

BGs in this category and of their small population size, one observes that category 2 (the least 

exposed) presents smaller infant mortality rates than categories 3, 4 and 5. Associations 

between infant mortality rates and specific exposures split into quintiles (Table 7) showed not 

significant (NO2, p=0.18; noise, p=0.65) or were less significant (green spaces, p<10
-2

).  

DISCUSSION 

In this article, we present a cumulative exposure index aimed to assess the ‘environmental 

burden’ among a population. We used statistical data analysis techniques - Multiple Factor 

Analysis and Hierarchical Clustering in particular - to create this index in a data-driven 

manner. We give an example of its application in the Lyon Metropolitan area and synthesize 

exposures such as air pollution, noise, industrial, polluted sites and traffic proximity and green 

spaces, allowing to obtain a classification of the census Block Groups in 5 easily-interpretable 

categories representing the diversity of exposure profiles across the metropolitan area. 
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Studies considering exposures of different types and natures (defined as a ‘coincidental 

mixture’ by Sexton and Hattis(37)) in order to measure an ‘environmental burden’ and 

particularly using this type of data analysis techniques, appear to be thin on the ground.  It is 

therefore difficult to compare ours to the literature. 

Among the few articles mentioning statistical data analysis techniques for this purpose, 

Menzie et al (38) cite Principal Component Analysis (PCA) and Cluster Analysis as some of 

the many statistical methods capable of addressing the health impact of multiple exposures 

within a general context. Similarly, Billionnet et al (39) also listed PCA, Supervised PCA and 

Hierarchical Clustering as interesting methods for assessment of the health impact of multiple 

air pollutants (indoor or outdoor). 

When studying the links between polychlorinated biphenyls (PCBs) and hypertension, 

Christensen and White (18) used Cluster Analysis and Discriminant Analysis in order to 

identify clusters of similar PCBs and PCA to construct new variables without multi-

collinearity for inclusion in regression models. However, this study focuses only on exposures 

from the same (broad) chemical family measured at individual level and does not consider a 

neighbourhood environmental burden. 

In 2013, Benmarhnia et al (40) proposed a Spatial Environment Index including the 

quantitative environmental data that is routinely collected at French departmental level (air 

pollution, water pollution, industrial risks, noise and housing conditions) using a series of 

PCAs. Moreover, they used certain data, not available at the BG level, which is incapable of 

assessing environmental particularities at a fine geographic level such as BGs. Therefore, 

once the departments have been placed in order of priority, there is still a need for more 

refined detail, which can be obtained using an approach like the one we propose here. Indeed, 
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the BG level appears to be better, both when studying environmental inequities and for 

reducing the ecological bias(41). 

In the United Kingdom and New Zealand, Richardson et al (17) and Shortt et al (9,42) have 

developed the MEDIxand the NZ-MEDIx, which are multiple environmental deprivation 

indices based on scores at small-area levels for environmental exposures such as air pollution, 

climate (average temperature), proximity to polluting industries, UV radiation and green 

spaces. The same team also developed the MEDClass and the NZ-MEDClass qualitative 

indices which “characterize areas according to their shared physical environmental 

features”(42) with the same exposures as MEDIx and NZ-MEDIx. To do so, they used 

statistical data analysis techniques both for reducing correlations between UV exposition and 

temperature, followed by a two-step clustering in order to categorize the different 

environmental profiles. Associations between both MEDIx and MEDClass (and their New-

Zealand equivalents) and health events, such as all-cause mortality, cardiovascular or 

respiratory diseases, have been shown. For instance, Pearce et al (9) show a statistically 

significant difference in the all-cause mortality SMR between different environmental 

categories, the lowest SMR being in the least environmentally deprived areas.  

Our approach shares many similarities with the MEDClass construction. However, we 

perform the MFA on the whole set of data rather restricting it to certain categories, giving the 

same weight to each group of exposures, and applying the HC directly to the MFA 

components. Using MFA also allows to include qualitative variables in the analysis, and to 

extend the set of variables which can be taken into account in assessing the environmental 

exposure profiles in a given area. 

The main thrust of our study lies in usage of data analysis techniques with a data-driven 

approach, which have been underemployed in environmental health in general and in the 

cumulative exposure assessment field in particular. After inclusion of the available variables 
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and definition of the groups in the MFA, this approach allows to obtain information about the 

most distinguishing dimensions between BGs without modelling or additional hypothesis. 

The underlying structures in the data that explain the most extreme variation between BGs 

can therefore be revealed in an easily-implemented and interpretable way, and our results 

show that the MFA components could not be obtained in an intuitive way just “looking” at the 

correlation matrix.  

Another advantage of these techniques is the possibility, at every step on the way in 

constituting the classification (that is, post-MFA or post-HC) of returning to the variables in 

order to gain a clearer interpretation of the results (knowing the correlation or contribution of 

each variable to the components, or having the variables’ distributions in each category) and 

to identify which of them could be a leverage or priority target for public action.  

Use of the classification, especially when displayed on a map, makes it possible to quickly 

discern the exposure profile of a BG and then to obtain more details about its particularities. 

This type of process could be especially useful for screening purposes, to locate ‘hotspots’ of 

strong environmental pressure. Standing alone, it can help policymakers or stakeholders gain 

insight into cumulative exposure in a given area and adapt their urban planning accordingly. If 

the data is periodically made available and updated, this approach could also help assess the 

temporal evolution of exposure profiles, either looking at which category the BG belongs to, 

or at changes in the profiles themselves.  

In addition, the different exposure profiles created following this approach can provide useful 

information where researchers plan to select a population sample for research on various 

environmental health issues. Epidemiologists or sociologists, for instance, might wish to 

investigate in areas having different patterns of environmental exposure, and could then use 

this approach to easily locate these areas. 
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There are certain noteworthy precautions to be used with this approach. Firstly, both MFA 

and HC organize BGs in relation to one another rather than in an absolute way. Therefore, if 

the same technique is used separately on two different areas, the results are not comparable 

between these areas, but only within them. This also implies that to use this procedure in a 

new location or time, it must be entirely repeated on this new particular setting. However, we 

believe that this approach allows local actors to gain insight into the actual profile of a 

specific area. 

A second limitation (specific to our example though not to the technique) is the relatively 

small number of environmental exposures included in our analysis, mainly due to the 

practical, including financial reasons that limited the number of data that could be obtained at 

the BG scale in the study area. Other air pollutants (particulate matter or ozone, for example), 

surface or one-off sources (waste disposal or water pollutant industries, for example) could 

add information and complete assessment of a neighbourhood environmental burden. 

Obtaining high-quality environmental data at a small geographic scale is an important issue in 

which there is still room for improvement. Also relative to our examples, the study of the 

links between the cumulative exposure index and SES or infant mortality require more 

complex models which take into account confounders and the spatial structure of our data 

(43). 

Finally, this approach could be extended to the wider purpose of assessing populations’ living 

environment by including several other variables, such as accessibility of public transport, 

primary goods stores, health centres, health professionals, and so on. 

Conclusions 

Statistical data analysis techniques such as Multiple Factor Analysis and Hierarchical 

Clustering allow data-driven exploration and classification of the census Block Groups across 



22 
 

different cumulative exposure profiles. Although it cannot be easily used for a formal risk 

assessment, this approach is able to simultaneously take into account different types of 

variables and gain insight into the various exposure profiles in an area, in order to reveal 

where a higher environmental burden exists. Researchers can then investigate more precisely 

areas with different cumulative exposure profiles. 

In order to assess more thoroughly the performance and the value of this approach, 

particularly as a screening tool for stakeholders, we recommend to test it on  areas of different 

sizes (e.g. municipality, region, state ...) and natures (e.g. cities with other environmental 

characteristics than the ones explored in the present study or in rural areas). It might also be 

extended to other ”at risk” exposures (e.g. ambient air particulate matter, pesticides, heavy 

metals) or to “healthy”  exposures, although this could be difficult according. One limitation 

in this extended assessment is the availability of environmental databases at an appropriate 

spatial scale. . 

 

Supplementary information is available at Journal of Exposure Science and Environmental 

Epidemiology’s website. 
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FIGURES LEGEND 

Figure 1.Spatialdistribution of several environmental exposures and of the cumulative 

exposure categories for the Grand Lyon area (France). 

Figure 2.Overview of the methodological procedure used to create the cumulative exposure 

categories. 

Figure 3.Distribution of the contextual socio-economic index by cumulative exposure 

categories. 

SUPPLEMENTARY FIGURES LEGEND 

Figure S1. Circle of correlations of the Multiple Factor Analysis (quantitative variables). 

Figure S2. Projection of the qualitative variables’ modalities on the 2 first axes of the Multiple 

Factor Analysis. 

Figure S3. Spatial distribution of the fourth first factors of the MFA (categories in quintiles). 
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Table 1. Pearson Correlations Between the Selected Quantitative Environmental Exposures 
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NO2_2003 1             
NO2_2006 1.00 1            
Noise_arithmetic  0.23 0.24 1           
Noise_median  0.32 0.32 0.92 1          
Noise_pop_energetic  0.18 0.18 0.20 0.21 1         
Noise_pop_arithmetic  0.17 0.17 0.26 0.27 0.99 1        
Traffic_200m 0.58 0.58 0.17 0.24 0.27 0.26 1       
Traffic_250m 0.53 0.53 0.17 0.22 0.29 0.29 0.97 1      
Soil_count 0.23 0.23 0.18 0.21 0.11 0.11 0.17 0.17 1     
Soil_500m 0.49 0.49 0.13 0.28 0.14 0.13 0.37 0.34 0.64 1    
Soil_1000m 0.57 0.57 0.11 0.28 0.12 0.12 0.40 0.35 0.52 0.94 1   
Greenspaces_area -0.41 -0.41 -0.08 -0.12 -0.16 -0.18 -0.45 -0.47 -0.09 -0.21 -0.25 1  
Greenspaces_index  -0.28 -0.27 0.02 -0.05 -0.08 -0.10 -0.38 -0.38 -0.20 -0.28 -0.28 0.61 1 
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Table 2. Descriptive Statistics of the Selected Quantitative Environmental Variables in the LMA 
 

Type Variables Min Median Mean Max 

Air pollution (NO2) 
2003 average (µg/m3) 29.1 40.2 40.3 59.7 
2006 average (µg/m3) 32.7 42.2 42.4 60.7 

Noise (LDEN) 

Arithmetic mean (dB(A)) 53.0 63.9 63.9 74.3 
Median (dB(A)) 51.3 64.2 64.2 76.8 

Energetic mean with population (dB(A)) 0.0 68.6 67.1 79.6 
Arithmetic mean with population (dB(A)) 0.0 65.9 64.2 76.9 

Polluted sites 
Number 0 0 0.9 12 

Number of 500m buffers 0 3 7.1 38 
Number of 1000m buffers 0 9 17.8 74 

Traffic proximity 
Population within 200m (%) 0.0 89.9 77.5 100 

Population within 250m (%) 0.0 98.9 83.4 100 

Green spaces 
Green spaces area (km²) 0 0.02 0.19 3.89 

Green spaces proportion (%) 0 7.4 11.9 57.0 

 

Table 3. Descriptive Statistics of the Selected Qualitative Environmental Variables in the LMA 
 

Type Variables 01 11 2 or 2+1 

Industrial proximity 

Number 480 (96.2%) 13 (2.6%) 6 (1.2%) 
Presence of 500m buffer 422 (84.6%) 77 (15.4%) - 
Number of 500m buffers 422 (84.6%) 56(11.2%) 21 (4.2%) 
Presence of 1km buffer 356 (71.3%) 143 (28.7%) - 

1number of BGs with the modality (% of BG with the modality) 
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Table 4. Contributions of Environmental Groups to the Four First Components of the MFA 
 

Groups Component 1  Component 2  Component 3  Component 4 
Air Pollution 27.4  3.1  0.7  2.1 

Noise 10.3  14.5  45.6  52.8 
Industrial Proximity 0.1  76.8  2.7  8.5 
Traffic Proximity 26.1  0.7  3.9  4.7 
Polluted sites 18.8  3.7  6.6  29.4 
Green Spaces 17.4  1.2  40.6  2.5 

Contribution of the group to the component (in %) 
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Table 5. Average Values of the Quantitative Variables per Category of Cumulative Exposure Created with HC  

Variables 
Category 1 

(n=13) 

Category 2 
(n=36) 

Category 3 
(n=186) 

Category 4 
(n=70) 

Category 5 
(n=194) 

Total 
(n=499) 

NO2_2003 (µg/m3) 39.9 32.5 36.9 39.6 45.3 40.3 
NO2_2006 (µg/m3) 42.0 35.1 39.2 41.8 47.2 42.4 
Noise_arithmetic (dB(A)) 63.0 62.7 63.2 65.7 64.2 63.9 
Noise_median (dB(A)) 63.0 62.5 63.0 65.8 65.2 64.2 

Noise_pop_energetic (dB(A)) 0.0 67.8 66.9 69.5 70.9 67.1 
Noise_pop_arithmetic (dB(A)) 0.0 63.9 64.1 67.4 67.5 64.2 

Traffic_200m (%) 52.8 35.6 65.9 83.0 96.1 77.5 
Traffic_250m (%) 53.8 43.4 75.3 89.3 98.6 83.4 
Soil_count 0.5 0.5 0.3 1.0 1.7 1.0 

Soil_500m 5.2 1.7 1.8 5.5 13.9 7.1 
Soil_1000m 16.4 3.2 5.3 12.1 34.7 17.8 
Greenspaces_area (km²) 0.61 1.42 0.11 0.13 0.03 0.19 

Greenspaces_index (%) 16.5 34.1 13.0 8.5 7.6 11.9 

n: number of census blocks groups in the category 
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Table 6. Distribution of the  Modalities of the Qualitative Variables per Cumulative Exposure Category Created with HC    

Variables Modalities 
Category 1 

(n=13) 

 Category 2 
(n=36) 

 Category 3 
(n=186) 

 Category 4 
(n=70) 

 Category 5 
(n=194) 

 Total 
(n=499) 

Industries_count 

0 
12 (2.5%)  35 (7.3%)  186 (38.8%)  53 (11.0%)  194 (40.4%)  480 
92.3%  97.2%  100%  75.7%  100%  96.2% 

1 
0 (0%)  1 (7.7%)  0 (0%)  12 (92.3%)  0 (0%)  13 
0%  2.8%  0%  17.1%  0%  2.6% 

2 
1 (16.7%)  0 (0%)  0 (0%)  5 (83.3%)  0 (0%)  6 
7.7%  0%  0%  7.1%  0%  1.2% 

Industries_500m_presence 

0 
10 (2.4%)  33 (7.8%)  185 (43.8%)  0 (0%)  194 (46.0%)  422 
76.9%  91.7%  99.5%  0%  100%  84.6% 

1 
3 (3.9%)  3 (3.9%)  1 (1.3%)  70 (91.0%)  0 (0%)  77 
23.1%  8.3%  0.5%  100%  0%  15.4% 

Industries_500m_count 

0 
10 (2.4%)  33 (7.8%)  185 (43.8%)  0 (0%)  194 (46.0%)  422 
76.9%  91.7%  99.5%  0%  100%  84.6% 

1 
2 (3.6%)  2 (3.6%)  0 (0%)  52 (92.8%)  0 (0%)  56 
15.4%  5.6%  0%  74.3%  0%  11.2% 

2+ 
1 (4.8%)  1 (4.8%)  1 (4.8%)  18 (85.7%)  0 (0%)  21 
7.7%  2.8%  0.5%  25.7%  0%  4.2% 

Industries_1km_presence 

0 
10 (2.8%)  29 (8.2%)  146 (41.0%)  0 (0%)  171 (48.0%)  356 

76.9%  80.6%  78.5%  0%  88.1%  71.3% 

1 
3 (2.1%)  7 (4.9%)  40 (28.0%)  70 (49.0%)  23 (16.1%)  143 

23.1%  19.4%  21.5%  100%  11.9%  28.7% 

n (x%) : n is the number of BGs with the modality. x% is the percentage of BGs in the category among all the BGs with the modality.  
y% is the percentage of BGs with the modality among the BGs of the category y%  
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Table 7. Average infant mortality rates (in ‰) at the BG level, 
according to several environmental categorization  

  Average infant 
mortality rate (‰) 

p-value4 

Cumulative 
exposure 

categories 

Category 1 2.10 

<10-15 
Category 2 2.97 
Category 3 4.78 
Category 4 4.18 
Category 5 3.96 

Quintiles of NO2 
concentration 

levels1 

NO2_1  3.59 

0.18 
NO2_2 4.52 
NO2_3 4.31 
NO2_4 5.15 
NO2_5 3.38 

Quintiles of noise 
levels2 

Noise_1 4.34 

0.65 
Noise_2 4.52 
Noise_3 4.41 
Noise_4 3.98 
Noise_5 3.75 

Quintiles of green 
spaces areas3 

Greenspaces_1 4.54 

<10-2 
Greenspaces_2 4.93 
Greenspaces_3 4.37 
Greenspaces_4 3.83 
Greenspaces_5 3.35 

NB : due to the different compositions of the categories, comparisons between 
exposures are impossible 
1
 Using NO2_2006 

2
 Using Noise_pop_energetic 

3
 Using Greenspaces_index 

4
 p-value for the Kruskal-Wallis test 
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Table S1. Variance Explained by the Five First 
Components of the MFA on the Selected Variables 

 % of variance 
explained 

Cumulative % 
of variance 

Component 1 29.7 29.7 
Component 2 13.7 43.4 
Component 3 10.7 54.1 
Component 4 9.4 63.5 
Component 5 7.2 70.7 
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Table S2. Correlations and Contributions of Variables to the Four First Components of the MFA 
 

Variables 
Component 1  Component 2  Component 3  Component 4 

Coord 1 Ctr 2  Coord 1 Ctr 2  Coord 1 Ctr 2  Coord 1 Ctr 2 

NO2_2003 0.82 13.76  -0.19 1.54  0.07 0.30  0.13 1.06 
NO2_2006 0.82 13.65  -0.19 1.58  0.08 0.38  0.12 1.00 

Noise_arithmetic 0.34 1.93  0.43 6.92  0.59 16.02  0.05 0.12 
Noise_median 0.44 3.32  0.35 4.54  0.58 15.96  0.10 0.53 

Noise_pop_energetic 0.38 2.46  0.18 1.14  0.37 6.53  -0.71 26.52 
Noise_pop_arithmetic 0.39 2.54  0.23 1.87  0.39 7.03  -0.70 25.61 

Traffic_200m 0.80 13.39  0.07 0.20  -0.18 1.80  -0.16 1.77 
Traffic_250m 0.78 12.67  0.10 0.45  -0.19 2.08  -0.21 2.96 

Soil_count 0.42 2.98  -0.03 0.03  0.25 2.86  0.42 9.44 
Soil_500m 0.67 7.56  -0.19 1.33  0.21 2.16  0.45 10.73 
Soil_1000m 0.70 8.24  -0.25 2.38  0.18 1.57  0.42 9.21 

Greenspaces_area -0.63 9.92  -0.05 0.16  0.49 17.17  0.18 2.51 
Greenspaces_index -0.54 7.43  -0.14 1.04  0.58 23.39  -0.02 0.03 

Industries_count 
0 0.02 0.00  -0.11 0.35  0.00 0.00  -0.04 0.08 
1 -0.70 0.07  2.72 5.32  -0.10 0.01  0.61 0.56 
2 0.23 0.00  3.27 3.55  -0.01 0.00  1.66 1.92 

Industries_500m_presence 
0 0.02 0.00  -0.40 3.76  0.05 0.10  -0.09 0.37 
1 -0.11 0.01  2.20 20.61  -0.28 0.54  0.48 2.03 

Industries_500m_count 
 

0 0.02 0.00  -0.40 3.76  0.05 0.10  -0.09 0.37 
1 -0.07 0.00  2.07 13.25  -0.45 1.05  0.34 0.74 
2+ -0.21 0.01  2.55 7.55  0.19 0.07  0.85 1.77 

Industries_1km_presence 
0 0.04 0.01  -0.52 5.35  0.09 0.25  -0.07 0.19 

1 -0.10 0.02  1.30 13.33  -0.22 0.62  0.17 0.48 
1 Coordinate of the variable on the axis, i.e correlation coefficient with the component for quantitative variables 
2 Contribution of the variable or modality to the component (in %) 
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Text S1: Principal component analysis, Multiple factor analysis and Hierarchical 

clustering 

Principal component analysis
1–3

 

Principal component analysis (PCA) is a data analysis technique which aims to describe 

(highlight the similarity and dissimilarity between the statistical units and the correlations 

between the variables), summarize (determine a small number of new variables, uncorrelated 

linear combinations of the originals with maximal variance) and visualize the information 

contained in a data set. 

Let X be a dataset with n rows representing the statistical units and p columns representing the 

variables (with the mean of each variable to zero).  will then be the value of the variable j 

for the unit i. Let s
j
 be the standard deviation of the j

th
 variable. Let D be a diagonal matrix for 

the weights of the statistical units (frequently all the weights are equal to 1/n). 

PCA first studies the statistical units in the space of variables’ with the purpose to find a 

viewable graphical representation of these units, such as units with similar values will be 

represented by close points and units with very different values will be represented by distant 

points. To do so, a mathematical distance must be chosen. A very commonly used distance 

between the points i and i’ is  (in the case of normed PCA), 

but other distances can be used according to the purpose. The distance d is equivalent to set as 

metric on the space of the statistical units the diagonal matrix M such as . 

Then, the aim of CA is to visualize these points. Since the space’s dimension (i.e. the number 

of variables) is in general high, it is necessary to project the points on an optimal subspace of 

lower dimension, in order to have the most precise and faithful representation of the initial 
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scatter plot. Hence, PCA determines a subspace Fr (with dimension r) which maximizes the 

inertia of the projected points on Fr with respect to the barycenter G (i.e. the weighted sum of 

the squared distances between G and the projections on Fr). To do so, an iterative process is 

used and leads to determine a set of orthonormal vectors  which constitute a 

base of Fr, where  is the eigenvector of the matrix X
T
DXM corresponding to the k

th 
largest 

eigenvalue, . The axis  is called the k
th 

principal axis and you can get up to p 

principal axes, i.e the number of original variables. At this step, it is already possible to obtain 

the quality of representation and the contribution of each point on each principal axis. 

Statistically, a principal axis represents a linear combination of the original variables called 

principal component and can be interpreted as a linear combination with maximal variance 

(equal to  for the k
th

 principal component) given the constraint to be uncorrelated with the 

previous components. The ratio  can be statistically interpreted as the percentage of 

the total variance explained by the k
th

 component. By construction, components are ordered 

from the one which explains the higher proportion of total variance to the one which explains 

the lower. 

The interpretation of the PCA follows different steps. First, the number of axes to keep must 

be chosen. Secondly, thanks to the correlation circle created by the PCA, it is possible to 

analyze the correlations between the variables and to interpret the principal components by 

studying their correlations with the variables. The last step is the interpretation of the position 

of the points representing the units using their projections on the principal planes. 

 

Multiple factor analysis
4
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When the set of variables consists of several groups, each with a different number of 

variables, PCA can be inappropriate since a group with a lot of variables can dominate groups 

with fewer variables. Then, a solution is to give in some sense an equal weight to each group 

(rather than to each variable as in the case of normed PCA) regardless to the number of 

variables in it. This is the purpose of the multiple factor analysis (MFA). Another advantage 

of MFA is its ability to take into account at the same time groups of quantitative variables and 

groups of qualitative variables. 

Let  be a data set composed of observations among the same units of q 

groups of variables, and denote  the number of variables in the subset .  

The first step of the MFA is, for each subset , to perform a PCA if the group 

is composed of quantitative variable or a multiple correspondence analysis (MCA) if the 

group is composed of qualitative (dummy) variables (MCA is a very similar technique to 

PCA but for qualitative variables). For , let  be the metric for analysis of 

group k, i.e. the matrix used to compute distances between units (in the case of a group of 

quantitative variables, where data is mean-centred and standardized, this metric is the identity 

matrix for a normed PCA), and let  be the highest eigenvalue of the analysis on group k. 

The second step of the MFA is to perform a PCA on the dataset X with the metric M, where M 

is the block-diagonal matrix . This allows in some sense the same 

weight to be given to each group, even if they are of very different sizes, and comparison of 

groups of different types of variables. 
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The interpretation of the MFA is then similar to a PCA: new variables are created as linear 

combinations of the original variables (without any factors rotation) and can be interpreted 

using correlations or contributions together with a set of graphical outputs which facilitate 

interpretation. 

 

Hierarchical clustering
3,5

 

Hierarchical clustering (HC) is an unsupervised method of clustering which creates a 

hierarchy of classes (i.e. clusters), frequently used after a PCA or other data analysis 

techniques such as MFA.  

Let I be a set of n elements ( ) represented by points in and d a distance 

between points. The purpose is to find a partition in r classes which maximizes the between-

classes inertia or, which is equivalent, which minimizes the within-classes inertia. This 

clustering criterion based on inertia allows creating classes homogeneous in their composition 

and heterogeneous between them. In practice, the search for a direct optimal solution requires 

generally too many computations and an approximation must be used. To do so, we use the 

algorithm of hierarchical clustering with a particular distance ∆ between classes (based on d). 

This distance, called Ward’s distance, is defined as follows: let I1 and I2 be two classes, p1 and 

p2 their respective weights, and G1 and G2 their respective barycenters, then the Ward’s 

distance between classes I1 and I2 is . 

The algorithm of hierarchical (ascending) clustering is then: 

- Step1: from the partition containing all the singletons  the 

distance  is computed for all the pairs of singletons. Classes {l} and {m} with 

minimum distance ∆ are merged and then the partition with (n-1) elements obtained is 
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. In other words, the two closest elements of I are merged in 

a single class while all the others remain singletons. 

- … 

- Step r: from the partition  with (n-(r-1)) elements, the distance ∆ is computed 

between all the elements of the partition. Minimal distance classes are merged and the 

partition with (n-r) elements, , is then created. The merging of these two classes is, 

by definition of the Ward’s distance, the one which minimizes the loss of between-

classes inertia among all the other possible mergings at this step. 

- … 

- Step n-1: the partition created is  

The HC presents as results a dendrogram (illustrating for each step of the algorithm the loss of 

between-classes inertia). The first step in the interpretation of the results is to choose the 

number of classes to keep. Generally, the partition that is chosen is the one preceding a strong 

decrease in the between classes inertia. However, other partitions can be chosen according to 

the purpose of the clustering. Once the number of classes determined, it is possible to interpret 

each class thanks to the comparison of the descriptive statistics of the variables between the 

class and the whole set. 
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