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Abstract: This research report is devoted to the study of the conservation and the dissipation
properties of the mechanical energy of several time–integration methods dedicated to the elasto–
dynamics with unilateral contact. Given that the direct application of the standard schemes as the
Newmark schemes or the generalized–α schemes leads to energy blow-up, we study two schemes
dedicated to the time–integration of nonsmooth systems with contact: the Moreau–Jean scheme
and the nonsmooth generalized–α scheme. The energy conservation and dissipation properties
of the Moreau–Jean is firstly shown. In a second step, the nonsmooth generalized–α scheme is
studied by adapting the previous works of Krenk and Høgsberg in the context of unilateral contact.
Finally, the known properties of the Newmark and the Hilber–Hughes–Taylor (HHT) scheme in
the unconstrained case are extended without any further assumptions to the case with contact.
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Conservation d’énergie et propriétés de dissipation de

méthodes d’intégration en temps pour la dynamique

élastique non–régulière avec contact

Résumé : Ce rapport de recherche propose une étude des propriétés de conservation et de
dissipation de l’énergie mécanique pour différents schémas d’intégration en temps de la dynamique
élastique avec du contact unilatéral. Sachant que l’application directe des schémas standards de
type Newmark et des schémas α–généralisés conduisent à des explosions de l’énergie mécanique,
on étudie deux schémas dédiés à l’intégration en temps des systèmes non réguliers avec contact :
le schéma de Moreau–Jean et le schéma α–généralisé non–régulier. La conservation de l’énergie
et les propriétés de dissipation du schéma de Moreau–Jean sont d’abord démontrées. Dans un
second temps, le schéma α–généralisé non–régulier est étudié en adaptant les travaux précurseurs
de Krenk et Høgsberg dans le contexte du contact unilatéral. Finalement, les propriétés connues
du schéma de Newmark et du schéma Hilber–Hughes–Taylor (HHT) dans le cas régulier sont
étendues dans le cas avec contact sans hypothèses supplémentaires.

Mots-clés : Dynamique du contact, impact, mécanique numérique du contact, intégration
numérique en temps, conservation d’énergie, propriétés de dissipation.
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1 Introduction and motivations

The numerical time integration of mechanical systems with unilateral contact is known to be a
difficult task, mainly due to the nonsmoothness of the dynamic response when a contact occurs.
For two recent reviews of the existing methods in the literature and the associated issues, we refer
to [Doyen et al., 2011, Krause and Walloth, 2012] and the standard textbooks [Laursen, 2003,
Wriggers, 2006]. One of the main conclusions is that standard schemes widely used in computa-
tional contact Mechanics, such as the Newmark scheme, the Hilber–Hughes–Taylor scheme (HHT)
or the generalized–α scheme cannot be directly applied to the simulation of systems with unilateral
contact and impact.

In the most favorable cases, these schemes exhibit artificial oscillations of the contact velocities
and forces, that blur the whole stresses in the structure. The source of these artificial oscillations
is the nonsmoothness of the contact conditions that yields a jump in the velocities when a contact
is closing. In finite–freedom Mechanics, when one deals with space–discretized structures after
a semi–discretization, the velocity jump of a finite mass is associated with an impact. Hence,
an impact law has to be specified to close the equations of the system. The low regularity of
the velocity and the distributional character of the reaction prevents the use of schemes with an
high order of accuracy. A partial remedy for theses problems is to use a fully implicit first–order
approximation of the contact forces as it was suggested in [Jean and Moreau, 1987, Moreau, 1988a,
Carpenter et al., 1992, Kane et al., 1999] and/or a treatment of the constraints at the velocity level
together with an (possibly perfectly inelastic or implicitly defined) impact law [Moreau, 1988a,
Laursen and Chawla, 1997]. This work has been extended to nonlinear elastodynamics by [Hauret
and Le Tallec, 2006]. In [Ayyad et al., 2009], the nonlinear elastodynamics with a constraint at the
position level is also considered. This yields a similar numerical scheme for the energetic properties
but a additional step, in the same vein as in [Laursen and Love, 2002], is added to correct the
constraint at the position level.

In the worst cases, the standard schemes exhibit numerical instabilities, and possibly, energy
blow-ups. An alternative solution is to design numerical schemes that conserve or dissipate energy.
In [Laursen and Chawla, 1997], the energy–conserving scheme based on the pioneering works Simo
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4 Acary

and co-workers [Simo and Tarnow, 1992, Simo et al., 1995] for nonlinear elastodynamics is extended
to the elasto–dynamical with unilateral contact. This work results in the use of the mid–point
rule together with a velocity–level constraints and an implicit treatment of the contact forces.

The velocity–level formulation has two main advantages: it controls the dissipation of energy
at contacts and it stabilizes the contact velocity. One of the main drawback is the violation of the
constraints on the position level which is proportional to the time–step. In [Laursen and Love,
2002], the authors propose to satisfy the constraints at the position level together the energy
conservation by introducing an artificial velocity variable at the price to have oscillations of the
contact velocity. In the latter case, the velocity–level constraints is not satisfied. Alternatively,
the constraints at the velocity level and at the position level can be both satisfied by adding an
artificial multiplier to perform a projection on the position constraint [Acary, 2013]. As remarked
in [Krause and Walloth, 2012], there exists no algorithm satisfying the constraints at both position
and velocity levels and ensuring the energy conservation simultaneously.

In the previous attempts to adapt the Newmark–based schemes in the context of computational
contact mechanics, very few results are available on the energy conservation or dissipation when
we deal with the unilateral contacts at the position level. In the unconstrained case, the classical
Newmark scheme, with the special choice of parameters γ = 2β = 1/2, leads to an algorithm
conserving the total energy of the system. With position based unilateral constraints, it is shown
in [Krause and Walloth, 2012] that the scheme cannot conserve the energy even if γ = 2β = 1/2.
In [Khenous, 2005], the author can only conclude to the energy dissipation of the Newmark scheme
is the special case of a very dissipative order one scheme with γ = 2β = 1. With a full implicit
treatment of the constraint as in [Kane et al., 1999], as far as we know there is no general study
of the energy properties for all admissible values of γ and β. When we consider the Newmark
scheme with a velocity–level formulation of the constraints, the only available results are those
in [Laursen and Chawla, 1997] that can be adapted to the special case of the Newmark scheme
with a fully implicit treatment of the Lagrange multiplier. Indeed, the midpoint rule together with
a velocity–level formulation is very similar to the Moreau–Jean scheme [Jean and Moreau, 1987,
Moreau, 1988a, 1999, Jean, 1999] based on the θ−method when θ is equal to 1/2. This latter
scheme is in turn equivalent to the Newmark scheme with γ = 2β = 1/2. Besides these special
cases, the general case of the HHT scheme and generalized–α scheme are not treated from the
energy properties point of view. This report attempts to bridge this gap.

Very recently, a new class of schemes has been proposed in [Chen et al., 2012, 2013] which
takes advantage of the Moreau–Jean scheme in terms of robustness and stability while adding
some key properties of the Newmark–based schemes, that are the second–order approximation
of the smooth force terms and the controlled damping of the high–frequency dynamics. This
work yields the so–called nonsmooth Newmark, nonsmooth HHT and nonsmooth generalized–α
schemes that deal with the contact forces trough their associated impulses in a fully implicit way,
and treat the constraints at the velocity level together with Newton’s impact law. In this report,
the main goal is to show that the Moreau–Jean scheme and the nonsmooth schemes have the same
energetic behavior as their counterparts in the unconstrained case. To this aim, the detailed list
of the objectives is as follows:

• to show the energy conserving and decaying properties of the Moreau–Jean scheme.

• to provide results on the algorithmic energy conservation and dissipation of the nonsmooth
Newmark scheme.

• to apply and to extend the techniques developed in [Krenk and Høgsberg, 2005, Krenk, 2006]
to study the dissipation properties of the nonsmooth generalized–α schemes.

• to show by means of the previous method that the nonsmooth HHT scheme dissipates a
kind of algorithmic energy.

• to propose an alternative α–scheme as in [Krenk and Høgsberg, 2005, Krenk, 2006] that
dissipates a kind of algorithmic energy.

Inria
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The report is organized as follows. Section 2 recalls the basic ingredients of the nonsmooth
modeling of finite–dimensional mechanical systems subjected to unilateral contact and impact. In
Section 3, the energy balance of a mechanical system with jumps in the velocity is formulated. The
main schemes, studied in this report, are detailed in Section 4. The energy analysis of the Moreau–
Jean scheme is done in Section 5. Section 6 starts by the presentation of the Krenk–Høgsberg
method for the analysis of the discrete energy balance over a time–step for the α–schemes. After
a first general result on the nonsmooth generalized–α schemes and the alternative nonsmooth
Krenk–Høsberg generalized–α scheme, the nonsmooth HHT case and the nonsmooth Newmark
case are fully developed. Section 7 concludes the report.

Notation The following notation is used throughout the paper. The Euclidean norm for a
vector x ∈ IRn is denoted by ‖x‖. For positive definite (respectively positive semi–definite) matrix
M ∈ IRn×n, ‖x‖M denotes the norm (respectively the semi–norm) in the metric defined by M . Let
I denote a real time interval of any sort. For a function f : I → IRn of Bounded Variation (BV),
we denote the right–limit function by f+(t) = lims→t,s>t f(s), and respectively the left–limit by
f−(t) = lims→t,s<t f(s). We denote by 0 = t0 < t1 < . . . < tk < . . . < tN = T a finite partition
(or a subdivision) of the time interval [0, T ] (T > 0). The integer N stands for the number of
time intervals in the subdivision. The length of a time step is denoted by hk = tk+1 − tk. For
simplicity’s sake, the schemes are presented in the sequel with a time step denoted by h for short.
The value of a real function x(t) at the time tk, is approximated by xk. In the same way, the
notation xk+θ = (1 − θ)xk + θxk+1 is used for θ ∈ [0, 1]. The following notation is introduced to
analyze the energetic behavior of the nonsmooth generalized-α scheme

xk,γ = γxk+1 + (1− γ)xk, xk−1,γ = γxk + (1− γ)xk−1. (1)

This notation generalizes the previous notation xk+θ = (1− θ)xk + θxk+1 to avoid the ambiguity
when a multi–step method is studied. For a function f : IR → IRn and h > 0, one writes
f(h) = O(h) if and only if there exist positive numbers δ and M such that ‖f(h)‖ 6 Mh for
h < δ. The notation dt defines the Lebesgue measure on IR.

2 Nonsmooth mechanical systems with unilateral contact

Let us consider the equations of motion of a mechanical system subjected to unilateral constraints
in the linear case:























q(t0) = q0, v(t0) = v0, (2a)

q̇(t) = v(t), (2b)

Mv̇(t) +Kq(t) + Cv(t) = Gλ(t), (2c)

g(q(t)) = G⊤q(t) + w > 0, λ(t) > 0, g⊤(q(t))λ(t) = 0, (2d)

where

• q(t) ∈ IRn is the vector of generalized coordinates and v(t) = q̇(t) the associated vector of
generalized velocities,

• the initial conditions are q0 ∈ IRn and v0 ∈ IRn,

• M ∈ IRn×n is the symmetric inertia matrix, K ∈ IRn×n and C ∈ IRn×n are respectively the
stiffness and the damping matrices,

• the function g(q(t)) ∈ IRm, called the gap function is used to define the unilateral constraints;
with a slight abuse of notation we will also write the gap function as g(t),

• the Jacobian matrix of g with respect to q is G⊤ = ∇⊤
q g(q(t)) and is assumed to be constant

in the linear setting, w ∈ IRm is a constant vector,
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6 Acary

• λ(t) ∈ IRm is the Lagrange multiplier vector associated with the constraints.

The constitutive law (2d) for the perfect unilateral constraints is also termed the Signorini
condition and can be written equivalently as

0 6 g(t) ⊥ λ(t) > 0, (3)

where the inequalities involving vectors are understood to hold component-wise and the ⊥ symbol
means that y⊤λ = 0. Finally, let us define the following variables relative to the constraints, called
local variables: the local velocity U(t) and the (local) Lagrange multiplier λ(t) which is associated
with the generalized reaction forces r(t) such that

U(t) = ġ(q(t)) = G⊤ v(t), r(t) = Gλ(t). (4)

For finite-freedom mechanical systems with unilateral constraints as in (2), it is well–known that
impacts may occur if the relative velocity at contact U(t) is not compatible with the constraints.
In other terms, if the contact indexed by α is closing with a negative relative velocity at t⋆, that is
Uα,−(t⋆) < 0, the velocity has to jump in order to satisfy the constraints after the time of impact.
However, the right velocity at the impact Uα,+(t⋆) is not determined by the system (2d). This is
the reason why an impact law must be added to close the system of equations. In particle or rigid
body dynamics, the most simple impact law is Newton’s impact law

Uα,+(t) = −eα Uα,−(t), if gα(t) = 0 and Uα,−(t) 6 0, α ∈ I (5)

where eα is the coefficient of restitution at contact α and I = {1 . . .m} is the set of indices of
constraints.

Usually, the condition in (5) only involves the condition gα(t) = 0. Indeed, if the condition
gα(t) > 0 is always satisfied on the time interval of study, the relative pre-impact velocity Uα,−(t)
cannot be positive when gα(t) = 0, except at the initial time. We will see further that this is not
the case when the condition (5) is only prescribed at discrete time instants. We will have therefore
to adapt the condition (5) in a suitable way in Section 4 when a time–discretization is performed.

The fact that the velocity v(t) may encounter jumps yields some difficulties to define the ac-
celeration everywhere in time. It is usual to assume that the velocity is a function of bounded
variation that admits a right and left limit everywhere and which can be associated with a dif-
ferential measure dv (see [Moreau, 1988b] for details). Almost everywhere with respect to the
Lebesgue measure dt, the velocity is differentiable in the classical way with respect to time and

we get
dv

dt
= q̈(t). When a jump occurs, the standard differentiation cannot be applied since the

acceleration is given by a Dirac distribution. Let us write the equation of motion in terms of
differential measure in the linear case































Mdv +Kq(t) dt+ Cv(t) dt = F (t) dt+G dI,

q̇(t) = v+(t),

U(t) = G⊤v(t),

g(t) = G⊤q(t) + w,

if gα(t) 6 0 and U−(t) < 0, then 0 6 U+(t) + eU−(t) ⊥ dI > 0,

(6)

where di is the impulse reaction measure. Its local variant is defined by di = G dI. When the
evolution is smooth, r(t) is considered as the density of di with respect to the Lebesgue measure,
that is

r(t) =
di

dt
(t), or equivalently λ(t) =

dI

dt
(t). (7)

The last line of (6) defines the second–order Moreau sweeping process [Moreau, 1988a]. It can be
interpreted as a reformulation of the unilateral constraint (3) at the velocity level together with an
impact law. It can also be equivalently viewed as an index–reduction technique, standard in the

Inria
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Differential Algebraic Equations (DAE) Theory when a constraint is differentiated to decrease the
index of the DAE. It also contains to the so-called persistency conditions, defined in [Laursen and
Chawla, 1997] when the contact is closed, but adds the Newton impact law when a new contact
occurs.

It can also be shown that the system (6) contains in a single formulation the nonimpulsive
dynamics and the impact dynamics. If we omit the singular part in the decomposition of the
measure, we can split the measure dv and di as follows splitting of measures

dv = q̈(t) dt+
∑

i(v
+(ti)− v−(ti))δti ,

dI = λ dt+
∑

i Piδti .
(8)

Inserting this decomposition in the measure differential system (6), we get the standard non–
impulsive equation of motion (2) almost everywhere and the impact equations at the time of
impacts:



















M(v+(ti)− v−(ti)) = GPi,

U±(ti) = G⊤v±(ti),

g(t) = G⊤q(t) + w,

if U−(ti) < 0, then 0 6 U+(ti) + eU−(ti) ⊥ Pi > 0.

(9)

For more details on the modeling of multibody systems with unilateral constraints, we refer
to [Acary and Brogliato, 2008, Pfeiffer and Glocker, 1996, Moreau, 1988a] and for the mathematical
analysis, we refer to [Schatzman, 1978, Monteiro Marques, 1993, Stewart, 2000, Ballard, 2000].

3 Energy balance analysis

In the case on nonsmooth motion with impact, we recall that the equation of motion in terms of
measures are given by

{

M dv + (Kq(t) + Cv(t)) dt = F dt+ di,

dq = v(t)dt.
(10)

A detailed analysis of the energy balance for nonsmooth systems can be found in [Brogliato et al.,
2007] and [Leine and van de Wouw, 2008]. Let us recall in this paper the basic formulae. The
energy balance can be obtained by multiplying the equation of motion by v+ + v−

(v+ + v−)⊤M dv + (v+ + v−)⊤(Kq + Cv) dt = (v+ + v−)⊤F dt+ (v+ + v−)⊤ di, (11)

that is equivalently

d(v⊤Mv) + (v+ + v−)(Kq + Cv) dt = (v+ + v−)F dt+ (v+ + v−) di. (12)

With the standard definition of the total mechanical energy of the system,

E :=
1

2
v⊤Mv +

1

2
q⊤Kq, (13)

we get the following energy balance

2dE := d(v⊤Mv) + 2q⊤Kdq = 2v⊤F dt− 2v⊤Cv dt+ (v+ + v−)⊤ di. (14)

If we split the differential measure in di = r(t) dt+
∑

i piδti , we get

2dE := d(v⊤Mv) + 2q⊤Kdq = 2v⊤(F + r) dt− 2v⊤Cv dt+
∑

i

(v+ + v−)⊤piδti . (15)
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By integration over a time interval [t0, t0] such that ti ∈ (t0, t1), we obtain an energy balance
equation (also named the dissipation equality [Brogliato et al., 2007]) as

∆E = E(t1)− E(t0) =

∫ t1

t0

v⊤(F + r) dt −

∫ t1

t0

v⊤Cv dt+
∑

i

1

2
(v+(ti) + v−(ti))

⊤pi. (16)

The right hand side of the energy balance equation represents the work done in the time interval
[t0, t1] that can be decomposed as follows:

• the term

W ext =

∫ t1

t0

v⊤F dt, (17)

is the work done by the external forces,

• the term

W damping = −

∫ t1

t0

v⊤Cv dt, (18)

is the work done by the damping internal forces. If the damping matrix C is a positive
semi–definite matrix, we then conclude on the sign of the work, W damping 6 0.

• the term

W contact =

∫ t1

t0

v⊤r dt, (19)

is the work done by the contact forces. If we consider perfect unilateral constraints, we have

v⊤r = v⊤Gλ = U⊤λ = 0 (20)

and then W contact = 0,

• the term

W impact =
1

2
(v+(ti) + v−(ti))

⊤p, (21)

represents the work done by the contact impulse at the time of impact ti. Since p = GP
and U = G⊤v , using the Newton impact law, we get

W impact =
1

2
(v+(ti) + v−(ti))

⊤p =
1

2
(v+(ti) + v−(ti))

⊤GP

=
1

2
(U+(ti) + U−(ti))

⊤P

=
1

2
((1− e)U−(ti))

⊤P 6 0 for 0 6 e 6 1.

(22)

The formula (21) of the work done by the impulse during an impact is also known as Thomson
and Tait’s formula [Brogliato, 1999, Section 4.2.12]. The fact that the work has to be negative
such that an impact dissipates some energy is also related the Clausius–Duhem inequality
applied to an impulse motion [Frémond, 2002].

4 Background on the time–integration methods

Leaving aside the time–integration methods based on an accurate event detection procedure
(event–tracking schemes or event–driven schemes [Acary and Brogliato, 2008, Chap. 8]), the
time–integration of nonsmooth mechanical systems is performed by means of event-capturing
time–stepping schemes. In these schemes, the impact are not accurately located but captured by
the refinement of the time-step size. One of the most well-proven method is the Moreau–Jean
scheme [Jean and Moreau, 1987, Moreau, 1988a, Jean, 1999]. This method which is sound from

Inria
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the mathematical analysis point of view (convergence analysis can be found in [Monteiro Mar-
ques, 1993, Dzonou and Monteiro Marques, 2007, Dzonou et al., 2009]) and which takes advantage
of a strong practical experience, is of low order of accuracy, but very robust in many practical
applications. Very recently, an attempt has been made in [Chen et al., 2012, 2013] to improve
its accuracy at least on the smooth terms of the equations of motion. This work has led to the
nonsmooth Newmark and generalized-α scheme as it extends the standard schemes for computa-
tional mechanics to the nonsmooth dynamical case. Both schemes will be briefly presented in the
following sections.

4.1 Moreau–Jean’s scheme

The Moreau–Jean scheme [Jean and Moreau, 1987, Moreau, 1988a, Jean, 1999] is based on the
Moreau sweeping process (6). The numerical time integration of (6) is performed on an interval
(tk, tk+1] of length h as follows



































M(vk+1 − vk) + hKqk+θ + hCvk+θ − hFk+θ = pk+1 = GPk+1, (23a)

qk+1 = qk + hvk+θ, (23b)

Uk+1 = G⊤ vk+1, (23c)

0 6 Uα
k+1

+ eUα
k ⊥ Pα

k+1
> 0, α ∈ I1,

Pα
k+1

= 0, α ∈ I \ I1,
(23d)

with θ ∈ [0, 1]. The following approximations are considered:

vk+1 ≈ v+(tk+1); Uk+1 ≈ U+(tk+1); pk+1 ≈ di(]tk, tk+1]), Pk+1 ≈ dI(]tk, tk+1]). (24)

Note that the unknown variable Pk+1 is equivalent to an impulse. This characteristic feature of
the Moreau–Jean scheme renders the numerical integration consistent when an impact occurs.
Indeed, when the time–step vanishes, a choice of a variable equivalent to a contact force would
lead to some unbounded values.

The index set I1 results from the time–discretization of the conditional statement in (6)

if gα(t) 6 0 and U−(t) < 0 (25)

that allows us to apply the Signorini condition at the velocity level. In the numerical practice, we
choose to define this set by

I1 = {α ∈ I | G⊤(qk + hvk) + w 6 0 and Uk 6 0}. (26)

Other strategies for defining I1 can be found in [Acary, 2013]. The numerical scheme which
solves (6) enforces in discrete time the Newton law at each time step. Conversely, the constraints
g(t) > 0 are not satisfied. A violation of the constraints, proportional to the time–step, can
occur at the activation of the contact, that is, when the contact is closing. The violation may be
corrected by a projection technique onto the constraints extending the Gear–Gupta–Leimkuhler
approach for DAEs as it has recently been done in [Acary, 2013].

4.2 Nonsmooth Newmark and generalized-α scheme

In [Chen et al., 2012, 2013], a new family of time–integration schemes has been developed that
keep the advantages of the Moreau–Jean in terms of robustness and efficiency while adding the
some key properties of the Newmark [Newmark, 1959], the Hilber–Hughes–Taylor (HHT) [Hughes,
1987] and the generalized-α [Chung and Hulbert, 1993] schemes. The most well–known property
of the latter schemes is the controlled damping of the high–frequency contents of the dynamics.
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In the linear time invariant dynamics with unilateral constraints, the new scheme can be written
as follows















































































































M ˙̃vk+1 +Kqk+1 + Cvk+1 = Fk+1, (27a)

Mwk+1 = GPk+1, (27b)

Uk+1 = G⊤vk+1, (27c)

0 6 Uα
k+1

+ eUα
k ⊥ Pα

k+1
> 0, α ∈ I1,

Pα
k+1

= 0, α ∈ I \ I1,
(27d)

with

(1− αm)ak+1 + αmak = (1− αf ) ˙̃vk+1 + αf
˙̃vk, (27e)

q̃k+1 = qk + hvk + h2 (1/2− β) ak + h2βak+1, (27f)

ṽk+1 = vk + h(1− γ)ak + hγak+1, (27g)

vk+1 = ṽk+1 + wk+1, (27h)

qk+1 = q̃k+1 +
h

2
wk+1. (27i)

The numerical scheme (27) has been designed such that it deals, as the Moreau–Jean scheme
with the contact forces and impact through their associated impulses Pk+1 in a fully implicit way.
In this manner, we ensure that the scheme will be consistent when the time–step vanishes if an
impact occurs. Furthermore, it also includes a treatment of the unilateral constraint together
with the Newton–impact law at the velocity level. This aspect is crucial for the conservation
and dissipation properties as we will see in Section 6. Finally, the last important property is the
second order approximation of the smooth terms given by the generalized–α schemes that allows
us to take advantage of the controlled damping of the high-frequency dynamics. It is indeed well–
known that one of the main advantages of the α–scheme with respect to the Newmark scheme is
the possibility to introduce some damping of the high–frequency dynamics without altering the
order. In the smooth case when the contact is not taken into account, the condition of second
order accuracy reads as

γ =
1

2
+ αf − αm. (28)

The optimal parameters are usually chosen according to the spectral radius at infinity ρ∞ ∈ [0, 1]
such that

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, β =
1

4
(γ +

1

2
)2. (29)

The nonsmooth Newmark algorithm is obtained with αm = αf = 0 and the nonsmooth HHT
scheme in the form published in [Hughes, 1987] is obtained with αm = 0 and αf ∈ [0, 1/3].

Variant of the Moreau–Jean scheme for 2β = γ = θ. Let us remark that the nonsmooth
Newmark algorithm can be reformulated as







M(vk+1 − vk) = h(Fk+γ −Kqk+γ − Cvk+γ) +GPk+1 (30a)

qk+1 = qk + hvk +
1

2
hM−1[h(Fk+2β −Kqk+2β − Cvk+2β) +GPk+1)] (30b)

with (27d). With straightforward manipulations, one obtains if 2β = γ = θ



































M(vk+1 − vk) + hKqk+θ + hCvk+θ − hFk+θ = pk+1 = GPk+1, (31a)

qk+1 = qk + hvk+1/2, (31b)

Uk+1 = G⊤ vk+1, (31c)

0 6 Uα
k+1

+ eUα
k ⊥ Pα

k+1
> 0, α ∈ I1,

Pα
k+1

= 0, α ∈ I \ I1.
(31d)Inria



Energy conservation and dissipation properties for the nonsmooth elastodynamics with contact 11

This scheme appears as a variant of the Moreau–Jean scheme. We will see in Section 6.4 that these
scheme has better dissipation properties than the original one. Note that the original Moreau–Jean
scheme cannot be viewed as a special case of the nonsmooth Newmark scheme when θ 6= 1/2.

4.3 Nonsmooth Krenk–Høgsberg (KH) generalized–α scheme

In [Krenk and Høgsberg, 2005] and [Krenk, 2006], an alternative collocation method is proposed
for the generalized–α scheme

(1− αm)[Mak+1 + Cvk+1 − Fk+1] + αm[Mak + Cvk + Fk] = (1− αf )[−Kqk+1] + αf [−Kqk].
(32)

This scheme, that will be termed in the sequel as the Krenk–Høgsberg (KH) generalized–α scheme,
differs only from the original generalized–α scheme by the fact that the damping terms and the
load terms have the same weight as the inertial term. In the original generalized–α scheme as it
is given in (61), the weighting of the damping and the load terms follow the stiffness term. The
nonsmooth KH generalized–α scheme is obtained by replacing (27d) by (32) in (27). Although
the order of the method decreases, we will see in the sequel that this scheme has better dissipation
properties than the standard generalized–α scheme.

The analysis of the KH scheme in [Krenk and Høgsberg, 2005] shows that the scheme introduces
a slight increase of the frequency response of the mechanical system. In other terms, the original
generalized–α scheme has a slightly improved frequency response. This is mainly related to the
alternative choice of weighting of the structural damping term. On the contrary, the choice of
weighting of the load term in the KH scheme is superior.

Most of the original α–schemes are contained in the KH generalized–α scheme. Note that in
the original paper on the HHT scheme [Hilber et al., 1977], the weighting of the load term follows
the inertial term. This is the reason why the original HHT scheme in [Hilber et al., 1977] can be
obtained from (32) with αm = 0 and αf = α. In the same manner, the α–method of [Wood et al.,
1981] can be obtained from (56) by choosing αf = 0.

5 Energy conservation and dissipation properties of Moreau–

Jean scheme

In this section, we give a first result on the energy conservation and dissipation of the Moreau–
Jean scheme. This result gives a criteria on the parameter θ which depends on the coefficient
of restitution. Let us define the discrete approximation of the work done by the external forces
within the step by

W ext
k+1 = hv⊤k+θFk+θ ≈

∫ tk+1

tk

Fv dt, (33)

and the discrete approximation of the work done by the damping term by

W damping
k+1

= −hv⊤k+θCvk+θ ≈ −

∫ tk+1

tk

vTCv dt. (34)

We have the following estimate for the variation of the total mechanical energy.

Lemma 1 The discrete–time dissipation equality of the Moreau–Jean scheme (23) over a time–
step [tk, tk+1] is given by

∆E −W ext
k+1

−W damping
k+1

= (
1

2
− θ)

[

‖vk+1 − vk‖
2
M + ‖(qk+1 − qk)‖

2
K

]

+ U⊤
k+θPk+1. (35)
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Proof Let us first compute the variation of the energy E over the time–step

∆E = E(qk+1, vk+1)− E(qk, vk)

=
1

2

[

(vk+1 + vk)
⊤M(vk+1 − vk) + (qk+1 + qk)

⊤K(qk+1 − qk)
]

,
(36)

since we assume that M = M⊤ and K = K⊤. Let us also remark that for the θ-method, we have

1

2
(vk+1 + vk) =

1

h
(qk+1 − qk) + (

1

2
− θ)(vk+1 − vk), (37)

and

vk+θ =
1

2
(vk+1 + vk)− (

1

2
− θ)(vk+1 − vk). (38)

Using (37) and then (23a), the energy balance (36) becomes

∆E = (
1

2
− θ)(vk+1 − vk)

⊤M(vk+1 − vk) +
1

h
(qk+1 − qk)M(vk+1 − vk)

+
1

2

[

(qk+1 + qk)
⊤K(qk+1 − qk)

]

= (
1

2
− θ)(vk+1 − vk)

⊤M(vk+1 − vk) +
1

h
(qk+1 − qk) [−hKqk+θ − hCvk+θ + hFk+θ +GPk+1]

+
1

2

[

(qk+1 + qk)
⊤K(qk+1 − qk)

]

= (
1

2
− θ)(vk+1 − vk)

⊤M(vk+1 − vk) + (
1

2
− θ)(qk+1 − qk)

⊤K(qk+1 − qk)

−hv⊤k+θCvk+θ + hv⊤k+θFk+θ + v⊤k+θGPk+1.
(39)

Using the expression of the norms ‖ · ‖M and the semi–norm ‖ · ‖K , the expression (39) can be
easily simplified in

∆E = (
1

2
− θ)

[

‖vk+1 − vk‖
2
M + ‖(qk+1 − qk)‖

2
K

]

+ hv⊤k+θFk+θ − hv⊤k+θCvk+θ + v⊤k+θGPk+1.

(40)
Using the definition of the discrete works in (33) and (34) and the fact that v⊤k+θGPk+1 = U⊤

k+θPk+1

yields the result. �

Remark 1 The previous result may be specified at the order h. Using the following approximation
for function of bounded variations [Acary, 2012]

hv⊤k+θFk+θ −

∫ tk+1

tk

F (t)v(t) dt = O(h), (41)

and

hv⊤k+θCvk+θ −

∫ tk+1

tk

v⊤(t)Cv(t) dt = O(h), (42)

we get for h small enough

∆E −

∫ tk+1

tk

Fv dt+

∫ tk+1

tk

Cv dt =

(
1

2
− θ)

[

‖vk+1 − vk‖
2
M + ‖(qk+1 − qk)‖

2
K

]

+ U⊤
k+θPk+1 +O(h).

(43)

Let us give now a first result concerning the dissipation of the Moreau–Jean scheme

Proposition 1 The Moreau–Jean scheme dissipates energy in the sense that

E(tk+1)− E(tk) 6 W ext
k+1 +W damping

k+1
, (44)

Inria
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if
1

2
6 θ 6

1

1 + e
6 1. (45)

where e = max eα, α ∈ I. In particular, for e = 0, we get
1

2
6 θ 6 1 and for e = 1, we get θ =

1

2
.

In other words, providing that (45) is satisfied, the variation of the total mechanical energy of the
system is always less than the energy supplied by the external and damping forces.

Proof Obviously, we have

(
1

2
− θ)

[

‖vk+1 − vk‖
2
M + ‖(qk+1 − qk)‖

2
K

]

6 0, if and only if θ > 1/2. (46)

I remains to prove that U⊤
k+θPk+1 6 0. Let us define the following index set of contacts

I0
1 = {α ∈ I1 | Pα

k+1
= 0}, (47)

and its complement in I1 is denoted by I0
1 = I1 \ I

0
1 . We can therefore develop U⊤

k+θPk+1 as

U⊤
k+θPk+1 =

∑

α∈I

Uα
k+θP

α
k+1 =

∑

α∈I1

Uα
k+θP

α
k+1 since for α 6∈ I1, Pα

k+1 = 0

=
∑

α∈I0
1

(1− θ(1 + e))Uα
k P

α
k+1

(48)

since for α ∈ I0
1 , P

α
k+1

= 0 and α ∈ I0
1 , U

α
k+1

= −eUα
k . Since we have Pα

k+1
> 0 and Uα

k 6 0 for all
α ∈ I1, the constraint on θ is therefore

θ 6
1

1 + eα
6 1, for all α ∈ I. (49)

By combining the constraints on θ in (46) and (49), the result is proved. �

The following comments can be made on Proposition 1:

1. The variation of energy (35) may be formulated in another form as

∆E − W̄ ext
k+1

−W damping
k+1

= (
1

2
− θ)

[

‖vk+1 − vk)‖
2
M + ‖qk+1 − qk‖

2
K

]

+
1

2
(vk+1 + vk)

⊤GPk+1 − (
1

2
− θ)(vk+1 − vk)

⊤GPk+1

= (
1

2
− θ)

[

‖vk+1 − vk)‖
2
M + ‖qk+1 − qk‖

2
K − P⊤

k+1
(Uk+1 − Uk)

]

+P⊤
k+1

Uk+1/2.
(50)

The term P⊤
k+1

Uk+1/2 appears as the discrete dissipated energy at impact. We have also

−P⊤
k+1

(Uk+1 − Uk) =
∑

α∈I1
(1 + e)Pα

k+1
Uα
k 6 0. (51)

This alternative form (50) shows that the scheme is always dissipative for θ = 1

2
.

2. The bounds (45) are not sharp since a part of the energy potentially generated at impact

(1− θ(1 + e))U⊤
k Pk+1 is dissipated by the inertial term (

1

2
− θ)

[

‖vk+1 − vk)‖
2
M

]

.

3. For e = 0, the scheme is dissipative for the whole range θ ∈ [ 1
2
, 1]. We can also observe that

the trend is somehow opposed the standard property of the θ–method. If the system is more
dissipative at contact when eα = 1, we have to use the most conservative case with θ = 1/2.
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6 Dissipation properties of nonsmooth generalized-α scheme

In this section, the behavior of the nonsmooth generalized-α scheme concerning the energy-
conserving or dissipating properties is studied. The proposed method of study is an extension
of the pioneering works of Krenk and Høgsberg [Krenk and Høgsberg, 2005, Krenk, 2006] on the
α–schemes.

6.1 Principle of the Krenk–Høgsberg method and its extension

One of the fundamental properties of the generalized-α scheme is the introduction of a controllable
damping of the high–frequency dynamics without altering the second–order accuracy. In [Krenk
and Høgsberg, 2005, Krenk, 2006], this property is studied by explicitly exhibiting and adding
a first–order filter and an associated additional state variable in the time–continuous dynamics.
Once the augmented time–continuous dynamics is defined, it is shown that the generalized–α
scheme applied to the original dynamics is equivalent to the application of the standard Newmark
scheme to the augmented dynamics over two consecutive time–steps and performing a weighting
procedure. Hence, the study that have been done for the Newmark scheme in the previous section
can be adapted to the generalized-α scheme.

The original Krenk–Høgsberg method in [Krenk and Høgsberg, 2005, Krenk, 2006] is based on
the introduction one additional filter and one additional variable to the original dynamics. The
augmented dynamics

Ma(t) + Cv(t) +Kq(t) = F (t) +
η

ν
[Kz(t)], (52)

is introduced, together with the following auxiliary dynamics that filter the previous one

νhż(t) + z(t) = νhq̇(t), (53)

where the time scale of the filter is given by νh. The parameter η is a non–dimensional parameter
that permits to tune the effect of the filter on the original dynamics. The dynamics of the first
order filter in (53) is discretized by means of a mid–point rule:

ν(zk+1 − zk) +
1

2
(zk+1 + zk) = ν(qk+1 − qk), (54)

Rearranging the terms, we equivalently write (54) as

(
1

2
+ ν)zk+1 + (

1

2
− ν)zk = ν(qk+1 − qk). (55)

Let us consider now a linear combination of the augmented equation of motion (52) with the
weight (1/2 + ν) at time tk+1 and the weight (1/2− ν) at time tk:

(
1

2
+ ν)[Mak+1 + Cvk+1 − Fk+1] + (

1

2
− ν)[Mak + Cvk − Fk]

= (
1

2
+ ν − η)[−Kqk+1] + (

1

2
− ν + η)[−Kqk].

(56)

By choosing the values of ν and η such that

ν =
1

2
− αm

η = ν −
1

2
+ αf = αf − αm,

(57)

we obtain the KH generalized–α scheme as in (32). The standard energetic analysis of the Newmark
scheme can be then extended to the KH generalized-α scheme by adding the following damping
force in the energetic analysis of the Newmark scheme

fA =
η

ν
[Kz] (58)

Inria
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as it has been shown in [Krenk, 2006]. This result will be extended to the nonsmooth case in
Section 6.2.

Unfortunately, the previous approach does not longer directly apply to the study of the stan-
dard generalized–α scheme since the weighting of the damping and the load terms follow the
stiffness term in the method presented by Chung and Hulbert [1993]. In the following, we use
three additional filters and three associated variables x, y, z to the original dynamics. Let us
introduce the augmented dynamics

Ma(t) + Cv(t) +Kq(t) = F (t) +
η

ν
[Kz(t) + Cx(t)− y(t)], (59)

and the following auxiliary dynamics that filter the previous one

νh ż(t) + z(t) = νh q̇(t),
νh ẋ(t) + x(t) = νh v̇(t),

νh ẏ(t) + y(t) = νh Ḟ (t).
(60)

As previously, let us consider now a linear combination of the augmented equation of motion (59)
with the weight (1/2+ν) at time tk+1 and the weight (1/2−ν) at time tk. By choosing the values
of ν and η as in ( 57), the following discretization is obtained

(1− αm)Mak+1 + αmMak = (1− αf )[−Kqk+1 − Cvk+1 + Fk+1] + αf [−Kqk − Cvk + Fk].
(61)

The relation (61) is the characteristic relation that defines the generalized-α scheme. Contrary
to the work in [Krenk, 2006], the physical meaning of the filters are more difficult to justify, but
it enables to retrieve the second order accurate generalized–α scheme developed in [Chung and
Hulbert, 1993].

Remark 2 In the sequel, we will assume the ratio η/ν is finite which is not necessarily the case
if ν = 0. For instance, if ρ∞ = 1, we get from (29)

αm =
1

2
, αf =

1

2
, (62)

that yields
ν = 0 and η = 0. (63)

We known that the case ρ∞ = 1 corresponds to the case with the minimal damping. The filters
whose time-scale vanishes do not act as a filter since we get from (60) that z(t) = 0. However,
from (29), we obtain also

η

ν
=

1/2− αm

αf − αm
=

1

2
−

2ρ∞ − 1

ρ∞ + 1
ρ∞

ρ∞ + 1
−

2ρ∞ − 1

ρ∞ + 1

=
2

3
, (64)

so that the subsequent analysis remains valid.

The standard energetic analysis of the Newmark scheme can be then extended to the generalized-
α scheme by adding the following damping force in the energetic analysis of the Newmark scheme

fA =
η

ν
[Kz + Cx− y]. (65)

Let us define a discrete “algorithmic energy” of the form

H(q, v, a, z) = E(q, v) +
h2

4
(2β − γ)a⊤Ma+

η

2ν2
(ν − (γ −

1

2
))z⊤Kz. (66)
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Let us define the discrete approximation of the work done by the external forces within the step
by

W ext
k+1 = (qk+1 − qk)

⊤Fk,γ ≈

∫ tk+1

tk

Fv dt (67)

and the discrete approximation of the work done by the damping term by

W damping
k+1

= −(qk+1 − qk)
⊤Cvk,γ ≈ −

∫ tk+1

tk

vTCv dt. (68)

The following result can be obtained.

Lemma 2 The variation of the “algorithmic” energy ∆H over a time–step performed by the non-
smooth generalized-α scheme (27) is

∆H−W ext
k+1

−W damping
k+1

+ (qk+1 − qk)
⊤
η

ν
[yk+γ − Cxk+γ ]

= U⊤
k+1/2Pk+1 +

1

2
h2(

1

2
− γ)(2β − γ)‖(ak+1 − ak)‖

2
M

+(η +
1

2
− γ)‖qk+1 − qk‖

2
K +

η

ν
(γ − ν −

1

2
)‖zk+1 − zk‖

2
K .

(69)

The proof of this Lemma is given in Appendix A.

Let us remark that the analysis of the dissipation properties of the nonsmooth generalized–α
scheme only differs from the non–impulsive case by the term U⊤

k+1/2Pk+1. This is mainly the result
of the design of the nonsmooth generalized–α scheme which deals with the nonsmooth terms with
a low–order approximation scheme. By the way, a direct analysis of the nonsmooth Newmark
scheme can be carried out by directly extending the work of Hughes [1987]. For the sake of space,
the nonsmooth Newmark scheme will be treated as a special case in Section 6.4. Let us give a
result of the sign of U⊤

k+1/2Pk+1 that appears as the additional term due to the nonsmooth terms
in the dynamics.

Lemma 3 Let us consider that the local velocities Uk+1 and impulses Pk+1 satisfies (27d). Then
the discrete work of the contact forces is negative

U⊤
k+1/2Pk+1 6 0 (70)

Proof By introducing the sets of indices as in (47), we have

U⊤
k+1/2Pk+1 =

∑

α∈I

Uα
k+1/2P

α
k+1 =

∑

α∈I1

Uα
k+1/2P

α
k+1 since for α 6∈ I1, Pα

k+1 = 0

=
∑

α∈I0
1

1

2
(1− e)Uα

k P
α
k+1

(71)

since for α ∈ I0
1 , P

α
k+1

= 0 and α ∈ I0
1 , U

α
k+1

= −eUα
k . We conclude that U⊤

k+1/2Pk+1 6 0 since
Pα
k+1

> 0 and Uα
k 6 0 for all α ∈ I1. �

Lemma 2 and Lemma 3 do not permit to conclude in the general case to the dissipation of the
scheme. This is mainly due to the presence of the terms related to yk+γ and xk+γ in the left–hand
side of (69). Although these terms are only related to the external forces and the damping terms,
it seems difficult to expressed them in terms of the original dynamical system. One can only
conclude on special cases when the external forces are constant and the damping matrix vanishes.
In the next sections, we prefer to focus our effort on the nonsmooth KH generalized-α scheme
in Section 6.2, on the HHT scheme in Section 6.3 and on the nonsmooth Newmark scheme in
Section 6.4.
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6.2 The nonsmooth KH generalized–α scheme case.

The following proposition is a direct application of Lemma 2 and Lemma 3

Proposition 2 The variation of the “algorithmic” energy ∆H over a time–step performed by the
nonsmooth KH generalized–α scheme (32) is

∆H−W ext
k+1

−W damping
k+1

= U⊤
k+1/2Pk+1 −

1

2
h2(γ −

1

2
)(2β − γ)‖(ak+1 − ak)‖

2
M

−(γ −
1

2
− η)‖qk+1 − qk‖

2
K −

η

ν
(ν − γ +

1

2
)‖zk+1 − zk‖

2
K .

(72)

Moreover, the nonsmooth KH generalized α–scheme is stable in the following sense

∆H−W ext
k+1 −W damping

k+1
6 0, (73)

if

2β > γ >
1

2
and 0 6 η 6 γ −

1

2
6 ν. (74)

In terms of αm and αf , the condition (74) is equivalent to

2β > γ >
1

2
and 0 6 αf − αm 6 γ −

1

2
6

1

2
− αm. (75)

Proof: The proof of the equation (72) follows exactly the same lines as the proof of Lemma 2 by
cancelling the term yk+γ and xk+γ . The inequality (73) is directly obtained with the conditions (74)
and the fact that U⊤

k+1/2Pk+1 6 0 comes from Lemma 3. The equivalent form of the condition

in (75) is obtained with the help of (57). �

Note that with the second order accuracy condition (28) γ = 1/2+αf −αm, the condition (75)
simplifies in

2β > γ >
1

2
and 0 6 αf − αm 6

1

2
− αm. (76)

The nonsmooth KH generalized–α scheme appears as an interesting alternative for the computation
of the linear elastodynamics of mechanical system with unilateral contact and impact.

6.3 The nonsmooth HHT case

With the special choice αm = 0, the generalized-α scheme reduces to the HHT scheme in the form
presented in [Hughes, 1987]. The equivalent filter parameters are ν = 1/2 and η = αf for the
HHT scheme. For the sake of simplicity, the parameter αf will be denoted as α := αf . The HHT
scheme is given by

Mak+1 + (1− α)[Kqk+1 + Cvk+1] + α[Kqk + Cvk] = (1− α)Fk+1 + αFk. (77)

The application of Lemma 2 in this context leads to the following definition of the approximation
of works as follows:

W ext
k+1 = (qk+1 − qk)

⊤ [(1− α)Fk,γ + αFk−1,γ ] ≈

∫ tk+1

tk

Fv dt (78)

and

W damping
k+1

= −(qk+1 − qk)
⊤C [(1− α)vk,γ + αvk−1,γ ] ≈ −

∫ tk+1

tk

vTCv dt. (79)

The following result is straightforwardly derived as a consequence of Lemma 2.
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Proposition 3 The variation of the “algorithmic” energy ∆H over a time–step performed by the
nonsmooth HHT scheme (scheme (27) with αm = 0 and αf = α) is

∆H−W ext
k+1

−W damping
k+1

= U⊤
k+1/2Pk+1 −

1

2
h2(γ −

1

2
)(2β − γ)‖(ak+1 − ak)‖

2
M

−(γ −
1

2
− α)‖qk+1 − qk‖

2
K − 2α(1− γ)‖zk+1 − zk‖

2
K .

(80)

Moreover, the nonsmooth HHT scheme dissipates the “algorithmic” energy H in the following sense

∆H−W ext
k+1 −W damping

k+1
6 0, (81)

if

2β > γ >
1

2
and 0 6 α 6 γ −

1

2
6

1

2
. (82)

Proof: The right–hand side of (80) is directly obtained from Lemma 2 by writing ν = 1/2 and
η = α. We have still to simplify the term related to the external and damping forces. With
ν = 1/2, the discretization of the filters amounts to solving

1

2
(xk+1 − xk) +

1

2
(xk+1 + xk) = 1

2
(vk+1 − vk),

1

2
(yk+1 − yk) +

1

2
(yk+1 + yk) = 1

2
(Fk+1 − Fk).

(83)

Simplification yields

2xk+1 = vk+1 − vk,
2yk+1 = Fk+1 − Fk.

(84)

Therefore, we obtained for the additional terms

Fk,γ −
η

ν
yk,γ = Fk,γ − 2αyk,γ

= γFk+1 − (1− γ)Fk − α [γ(Fk+1 − Fk) + (1− γ)(Fk − Fk−1)]
= (1− α) [γFk+1 + (1− γ)Fk] + α [γFk + (1− γ)Fk−1]
= (1− α)Fk,γ + αFk−1,γ .

(85)

By applying the same manipulations to the term involving Cxk+γ the result is obtained.

The inequality (81) is straightforwardly obtained thanks to the positiveness of the quadratic
terms when the conditions (82) are applied to (80). Since the remaining term U⊤

k+1/2Pk+1 from
Lemma 3, the proof is completed. �

Note that with the second order accuracy condition (28) γ = 1/2 + α, the condition simplifies
in

2β > γ >
1

2
and 0 6 α 6

1

2
. (86)

6.4 The nonsmooth Newmark case

With the Newmark scheme (αm = αf = 0), the value of the parameters are ν = 0, η = 1/2. The
algorithmic energy reduces to

H(q, v, a) = E(q, v) +
h2

4
(2β − γ)a⊤Ma. (87)

Although there is no direct mechanical interpretation of this quantity, it allows one to conclude
on the dissipation property of the scheme since K is a semi–norm for 2β > γ. Let us remark
that we retrieve the algorithmic energy introduced by Hughes [1977]. The following result can be
obtained.
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Proposition 4 The variation of the “algorithmic” energy ∆H over a time–step performed by the
nonsmooth Newmark scheme (30) is

∆H−W ext
k+1

−W damping
k+1

= (
1

2
− γ)

[

‖qk+1 − qk‖
2
K +

h

2
(2β − γ)‖(ak+1 − ak)‖

2
M

]

+ U⊤
k+1/2Pk+1.

(88)
Moreover, the nonsmooth Newmark scheme dissipates the “algorithmic” energy H in the following
sense

∆H−W ext
k+1

−W damping
k+1

6 0, (89)

for

2β > γ >
1

2
. (90)

Proof: The relation (88) is direct application of Lemma 2 with ν = 0, η = 1/2. The inequality

(89) is straightforward to obtain. For 2β > γ >
1

2
, the first of the right-hand side of (88) is non

positive and the fact that U⊤
k+1/2Pk+1 6 0 comes from Lemma 3. �

The very interesting fact in the nonsmooth Newmark scheme is that the standard dissipation
properties of the original Newmark scheme are conserved when unilateral contacts and impacts
are included. It is well-known that considering the unilateral contact at the position level and a
semi-implicit rule for the reaction forces leads to blow-up in energy [Chawla and Laursen, 1998]
and an ad-hoc restitution rule at contact (see Figure 4 in [Chen et al., 2013]). With the nonsmooth
Newmark scheme, the energy balance is equivalent to the unconstrained case. The following result
is a corollary of Proposition 4 that specifies the properties of the nonsmooth Newmark scheme for
some particular choices of the parameters γ and β.

Corollary 1 For the following specific values of the parameters γ and β, the variation of the
“algorithmic” energy ∆H over a time–step performed by the nonsmooth Newmark scheme (30) can
be specified as follows

• For γ =
1

2
, we get

∆H−W ext
k+1 −W damping

k+1
= U⊤

k+1/2Pk+1. (91)

The algorithmic energy K only changes at each time–step by the amount of work that is done
by the dissipative effects in the system and the work supplied by the external forces.

• For γ = 2β > 1/2, E(q, v) = H(q, v, a) and we have

∆E −W ext
k+1

−W damping
k+1

= (
1

2
− γ)‖(qk+1 − qk)‖

2
K + P⊤

k+1
Uk+1/2 (92)

Since P⊤
k+1

Uk+1/2 6 0, the scheme always dissipates the mechanical energy of the system.

• For γ = 2β =
1

2
, we get

∆E −W ext
k+1

−W damping
k+1

= P⊤
k+1

Uk+1/2 (93)

The total mechanical energy E only changes at each time–step by the amount of work that is
done by the dissipative effects in the system and the work supplied by the external forces.

The results stated in (92) and (93) are better than for the standard Moreau–Jean scheme with
the θ-method since there is no condition on γ. The results apply to the variant of the Moreau-Jean
scheme (31).
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7 Conclusion

The main results of this paper and some perspectives may be summarized now:

• A study of the energy conservation and dissipation of the Moreau–Jean scheme has been
carried out. Under suitable assumptions on the numerical parameter θ with respect to
the coefficients of restitution, we show that the Moreau–Jean scheme dissipates the total
mechanical energy. For θ = 1/2, the dissipated energy is only due to the discrete works of
the damping, external forces and the impact impulses. Moreover, a simple variant of the
Moreau–Jean scheme that always dissipates energy has been proposed. This latter method
removes the condition on θ with respect to the coefficients of restitution.

• As we said in the introduction, there is a lot of difficulties to establish energy conservation
or dissipation results in the context of Newmark schemes with unilateral constraints on the
generalized coordinates. One of the difficulties raises from the fact that for discrete (or space–
discretized) mechanical systems, we have to introduce the notion of coefficient of restitution,
or at least to give a law that defines the velocity after the impact. The second difficulty
is related to higher order approximation of nonsmooth terms like impulses. With the new
schemes developed in [Chen et al., 2012, 2013], these two difficulties are overcome. This
allows us to extend the known results on the energy conservation and dissipation properties
to the nonsmooth case with unilateral contacts and impacts. In particular, we prove that
the Newmark scheme is able to conserve or dissipates an algorithmic energy H(q, v, a) that
depends on the coordinates, the velocities and the acceleration. For HHT scheme, we are
also to prove the same kind of results with an extended algorithmic energy H(q, v, a, z)
based on the introduction of additional filters. For the generalized–α scheme, we obtain
equivalent results as in the smooth case. However, this cannot allow to easily conclude.
Nevertheless, the contribution of the contact terms in the discrete energy balance (69), that
is U⊤

k+1/2Pk+1, is identical for the Newmark and the HHT scheme. We can infer that this

result combined with the classical result of Arnold and Brüls [2007], Jay and Negrut [2007],
Lunk and Simeon [2006] on stability of the generalized-α when unilateral constraints remain
closed should imply the stability of the scheme in practice. Nevertheless, we extend a variant
of the generalized-α scheme due to Krenk and Høgsberg [2005] to the contact case. For this
latter case, we obtain the same results as in the smoooth case.

• The dissipation properties of the schemes studied in this paper allows us to conclude to
the boundedness of the total mechanical energy of the system E(q, v) for the Moreau–Jean
scheme and to the boundedness the algorithmic energy H(q, v, a, z) for the Newmark and
the α–schemes by adding some standard assumption on the works of the external forces. Let
us remark that the total mechanical energy E(q, v) and the algorithmic energy H(q, v, a, z)
are positive semi–definite functions if we assume that M is positive definite, K is positive
semi-definite and the conditions of dissipation of the schemes are satisfied. The boundedness
of theses energies implies the boundedness of the discrete velocities vk and acceleration ak
which in some sense guarantee the stability of the scheme in the numerical practice. The
boundedness of the discrete generalized coordinates can also easily conclude if the stiffness
matrix is positive definite, or by simply inspecting the relations that relate the discrete
generalized coordinates to the discrete generalized velocities and accelerations. In the smooth
case (Lipschitz ordinary differential equation), boundedness properties are equivalent to the
stability of the linear multi–step time integration method thanks to the theory developed by
Dalhquist, Lax and Richtmyer [Dahlquist, 1985, Lax and Richtmyer, 1956, Richtmyer and
Morton, 1967]. Classical approaches to study the stability of numerical scheme for ordinary
differential equations trough its amplification matrix or the roots of the stability function
were also extended with success to the case of differential algebraic equations [Cardona and
Géradin, 1989, Ascher and Petzold, 1998, Hairer and Wanner, 1996]. Unfortunately, in our
case, we cannot directly conclude to the stability of the schemes by any of these methods since
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we are in a nonsmooth case and the numerical scheme does not reduce to a linear–multistep
formula. Nevertheless, it can be a first step to prove the convergence of the scheme.

• The first perspective that can be drawn for this work is the possible adaptation of the
results to the case with Coulomb’s friction. One of the main difficulties is that even in
the continuous time–case the modeling of Coulomb’s friction at the impulse level together
with an impact law does not lead necessarily to a dissipative system (see [Leine and van de
Wouw, 2008] for details). The second difficulty should be to prove that the numerical scheme
correctly discretize the friction such that it still dissipates energy. The second perspective
is the extension towards to the nonlinear case as it has been done some special case of the
mid-point rule in [Hauret and Le Tallec, 2006, Ayyad et al., 2009].
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A Proof of Lemma 2

To prove the result, we start from the dissipation analysis of the Newmark scheme. Following
the method introduced in [Hughes, 1977] and fully developed in [Krenk, 2006], we define an
intermediate discrete “algorithmic energy” of the form

K(q, v, a) = E(q, v) +
h2

4
(2β − γ)a⊤Ma. (94)

Although there is no direct mechanical interpretation of this quantity, it allows one to conclude
on the dissipation property of the scheme since K is a semi–norm for 2β > γ. From the definition
of the nonsmooth Newmark scheme, we get

qk+1 − qk =
h

2
(vk+1 + vk) +

h2

2
(2β − γ)(ak+1 − ak). (95)

and

vk+1 − vk =
h

2
(ak+1 + ak) + h(γ −

1

2
)(ak+1 − ak) + wk+1. (96)

Using (95) and (96), another formulation of ∆E in (36) is given by

2∆E = (vk+1 + vk)
⊤M

[

h

2
(ak+1 + ak) + h(γ −

1

2
)(ak+1 − ak) + wk+1

]

+(qk+1 + qk)
⊤K

[

h

2
(vk+1 + vk) +

h2

2
(2β − γ)(ak+1 − ak)

] (97)

Inria

http://opac.inria.fr/record=b1079402
http://dx.doi.org/10.1002/nme.1620380903


Energy conservation and dissipation properties for the nonsmooth elastodynamics with contact 25

Using the definition of the nonsmooth Newmark scheme, the relation (97) can be developed as in

2∆E = (vk+1 + vk)
⊤

[

h

2

(

−K(qk+1 + qk)− C(vk+1 + vk) + Fk+1 + Fk

)

+ hM(γ −
1

2
)(ak+1 − ak)

]

+ 2U⊤
k+1/2Pk+1 + (qk+1 + qk)

⊤K

[

h

2
(vk+1 + vk) +

h2

2
(2β − γ)(ak+1 − ak)

]

= (vk+1 + vk)
⊤

[

h

2
(Fk+1 + Fk)−

h

2
C(vk+1 + vk) + hM(γ −

1

2
)(ak+1 − ak)

]

+ 2U⊤
k+1/2Pk+1

+
h2

2
(2β − γ)(qk+1 + qk)

⊤K(ak+1 − ak).

(98)
Using again (96) in (98), we get with some manipulations

2∆E = (Fk+1 + Fk − C(vk+1 + vk))
⊤

[

qk+1 − qk −
h2

2
(2β − γ)(ak+1 − ak)

]

+ 2U⊤
k+1/2Pk+1

+(vk+1 + vk)
⊤M

[

h(γ −
1

2
)(ak+1 − ak)

]

+
h2

2
(2β − γ)(qk+1 + qk)

⊤K(ak+1 − ak)

= (Fk+1 + Fk − C(vk+1 + vk))
⊤(qk+1 − qk) + 2U⊤

k+1/2Pk+1

+
h2

2
(2β − γ)(ak+1 − ak)

⊤ [Fk+1 + Fk −K(qk+1 + qk)− C(vk+1 + vk)]

+h(γ −
1

2
)(vk+1 + vk)

⊤M(ak+1 − ak)

= (Fk+1 + Fk − C(vk+1 + vk))
⊤(qk+1 − qk) + 2U⊤

k+1/2Pk+1

+
h2

2
(2β − γ)(ak+1 − ak)

⊤M(ak+1 + ak) + h(γ −
1

2
)(vk+1 + vk)

⊤M(ak+1 − ak).

(99)
Since the term (ak+1− ak)

⊤M(ak+1+ ak) appears in the last line of (99), the computation of ∆K
can be developed as follows

2∆K = (Fk+1 + Fk − C(vk+1 + vk))
⊤(qk+1 − qk) + 2U⊤

k+1/2Pk+1

+h(γ −
1

2
)(vk+1 + vk)

⊤M(ak+1 − ak)

= (Fk+1 + Fk − C(vk+1 + vk))
⊤(qk+1 − qk) + 2U⊤

k+1/2Pk+1

+(γ −
1

2
)(ak+1 − ak)

⊤M
[

2(qk+1 − qk)− h2(2β − γ)(ak+1 − ak)
]

= (Fk+1 + Fk − C(vk+1 + vk))
⊤(qk+1 − qk) + 2U⊤

k+1/2Pk+1

−(γ −
1

2
)
[

h2(2β − γ)(ak+1 − ak)
⊤M(ak+1 − ak)

]

+2(γ −
1

2
)(qk+1 − qk)

⊤ [−K(qk+1 − qk)− C(vk+1 − vk) + Fk+1 − Fk]

= 2(qk+1 − qk)
⊤Fk+γ − 2(qk+1 − qk)

⊤Cvk+γ + 2U⊤
k+1/2Pk+1

−h2(γ −
1

2
)(2β − γ)‖(ak+1 − ak)‖

2
M

−2(γ −
1

2
)‖qk+1 − qk‖

2
K

(100)

Substituting the definition of W ext
k+1

and W damping
k+1

in (100) yields

∆K −W ext
k+1

−W damping
k+1

= (
1

2
− γ)

[

‖qk+1 − qk‖
2
K +

h

2
(2β − γ)‖(ak+1 − ak)‖

2
M

]

+ U⊤
k+1/2Pk+1.

(101)
From (67), the additional damping force (65) generates an additional term in (101) given by

(qk+1 − qk)
⊤fA

k+γ =
η

ν
(qk+1 − qk)

⊤[Kzk+γ + Cxk+γ − yk+γ ] (102)
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For the sake of simplicity, we consider for a moment that C = 0. The damping term will be
discussed later. Developing the additional term (102) using the rule

zk+γ =
1

2
(zk+1 + zk) + (γ −

1

2
)(zk+1 − zk), (103)

we obtain

(qk+1 − qk)
⊤fA

k+γ =
η

ν
(qk+1 − qk)

⊤K[
1

2
(zk+1 + zk) + (γ −

1

2
)(zk+1 − zk)]

−
η

ν
(qk+1 − qk)

⊤yk+γ

=
η

ν
(qk+1 − qk)

⊤K[ν(qk+1 − qk) + (γ −
1

2
− ν)(zk+1 − zk)]

−
η

ν
(qk+1 − qk)

⊤yk+γ

= η‖qk+1 − qk‖
2
K +

η

ν
(γ −

1

2
− ν)(qk+1 − qk)

⊤K(zk+1 − zk)

−
η

ν
(qk+1 − qk)

⊤yk+γ .

(104)

Let us now focus on the second term in the right hand side of (104). Using

qk+1 − qk = zk+1 − zk +
1

2ν
(zk+1 + zk), (105)

we obtain

η

ν
(γ −

1

2
− ν)(qk+1 − qk)

⊤K(zk+1 − zk) =
η

ν
(γ −

1

2
− ν)(zk+1 − zk +

1

2ν
(zk+1 + zk))

⊤K(zk+1 − zk)

=
η

ν
(γ −

1

2
− ν)‖zk+1 − zk‖

2
K

+
η

2ν2
(γ −

1

2
− ν)(zk+1 + zk)

⊤K(zk+1 − zk).

(106)
Let us restart from (100) with the additional term (qk+1 − qk)

⊤fA
k+γ , we get

2∆K = 2F⊤
k+γ(qk+1 − qk)− 2

η

ν
(qk+1 − qk)

⊤yk+γ + 2U⊤
k+1/2Pk+1

−h2(γ −
1

2
)(2β − γ)‖(ak+1 − ak)‖

2
M

−2(γ −
1

2
− η)‖qk+1 − qk‖

2
K + 2

η

ν
(γ −

1

2
− ν)‖zk+1 − zk‖

2
K

+
η

ν2
(γ −

1

2
− ν)(zk+1 + zk)

⊤K(zk+1 − zk).

(107)

With the definition of H in (66), we can simplify (107) in

2∆H = 2(qk+1 − qk)
⊤[Fk+γ −

η

ν
yk+γ ] + 2U⊤

k+1/2Pk+1

−h2(γ −
1

2
)(2β − γ)‖(ak+1 − ak)‖

2
M

−2(γ −
1

2
− η)‖qk+1 − qk‖

2
K

−2
η

ν
(ν − γ +

1

2
)‖zk+1 − zk‖

2
K

(108)

The term depending the damping matrix can be included by adding to the external forces a
damping force −Cv and the additional term η

νxk+γ . Using the definition of the discrete works
in (67) and (68) the result is obtained.
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