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Abstract—This paper presents a novel algorithm for au-
tomatic detection of Glottal Closure Instants (GCI) from the
speech signal. Our approach is based on a novel multiscale
method that relies on precise estimation of a multiscale
parameter at each time instant in the signal domain. This
parameter quantifies the degree of signal singularity at each
sample from a multi-scale point of view and thus its value
can be used to classify signal samples accordingly. We use
this property to develop a simple algorithm for detection
of GCIs and we show that for the case of clean speech,
our algorithm performs almost as well as a recent state-
of-the-art method. Next, by performing a comprehensive
comparison in presence of 14 different types of noises, we
show that our method is more accurate (particularly for
very low SNRs). Our method has lower computational times
compared to others and does not rely on an estimate of pitch
period or any critical choice of parameters.

Index Terms—Detection of Glottal Closure Instant, non-
linear speech analysis, multiscale signal processing.

I. INTRODUCTION

ACcording to the aerodynamic theory of voicing,
during the production of a voiced sound, a stream of

breath flows through the glottis and creates a push-pull ef-
fect on the vocal fold tissues that results in self-sustained
oscillation of the vocal cords [1]. The push occurs during
glottal opening when the glottis is convergent, whereas
the pull occurs during glottal closing when the glottis is
divergent. During glottal closure, the air flow is cut off
until breath pressure pushes the folds apart and the flow
starts up again, causing the cycles to repeat [1]. As such,
the steady flow of air from the lower respiratory system
is converted into a periodic train of flow pulses [2].
These glottal pulses form the actual excitation source
of the vocal tract. However, to a first approximation,
the significant excitations of the vocal tract systems
can be considered to occur at discrete instants of time
(epochs) [3]. There can be more than one epoch during
a pitch period, but the major excitation usually coincides
with the Glottal Closure Instants (GCIs) [4]. Indeed, once

the vocal folds became sufficiently close, the Bernoulli
force causes an abrupt closure, which in turn results in
an abrupt excitation of the vocal tract system [5].

Precise detection of GCIs has found many applications
in speech technology: closed phase Linear Prediction
(LP) analysis [4], [6], [7], [8], pitch synchronous speech
processing for converting the pitch and duration of
speech [9], prosody modification [10], synthesis [11],
[12], dereverbertion [13], casual-anticasual deconvolu-
tion [14], [15] and glottal flow estimation [16].

GCIs can be reliably detected using a simultaneously
recorded Electro-Glotto-Graph (EGG) signal, which pro-
vides a non-invasive measurement of the vibratory motion
of the vocal folds. Positive peaks of the differentiated
EGG (dEGG) in each pitch period can be taken as
GCI [17]. However, as an EGG device is not always
available, there is a great interest in extracting them
directly from the speech signal.

In this paper we present a novel GCI detection algo-
rithm based on a novel multiscale formalism that we have
been recently adapting for speech analysis [18], [19].
The formalism is called the Microcanonical Multiscale
Formalism (MMF) and is centered on precise estimation
of local quantities at each time instant in the signal
domain that are called Singularity Exponents (SE). SEs
provide a quantitative evaluation of singular behavior at
different scales and as such, their values can be used
to identify the geometrical structures (subset of signal
samples) that share the same singular behavior (how the
signal values vary w.r.t to their neighboring samples at
different time resolutions, scales).

Of the highest interest is the subset of samples whose
values of SEs indicates the existence of a consistent
[highly] singular behavior across different scales. This
set is called the Most Singular Manifold and is shown
in some applications that it highlights the most infor-
mative subset of signal samples, in the sense that the
whole image can be reconstructed using exclusively the
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information carried by these samples [20]. For detection
of GCIs from the speech signal, we argue that the
impulsive excitation at GCIs produces consistent patterns
of singularities at different scales of the speech waveform
and hence, one can expect the MSM to give access to
these time instants. We thus use the concept of MSM to
develop a simple and efficient GCI detection algorithm.

The particularity of the algorithm is that it extracts
GCIs directly from the speech signal without any lim-
iting assumption (like the known polarity of the speech
waveform) and does not require any information about
the pitch period. We compare our algorithm with a
recent method called SEDREAMS [21] that extracts
GCIs by detection of discontinuities in residuals of LP
analysis. SEDREAMS is recently shown to have the
best of performances compared to several state-of-the-art
methods, while being among the fastest methods [22]. We
first show that in the case of clean speech, our method
has very close performance to SEDREAMS and then,
we perform an extensive comparison in the presence of
fourteen different types of noises and we particularly
report the results for very low values of SNR to compare
the robustness of the two algorithms against these noises.
The results show that our method is as reliable as
SEDREAMS while it is more accurate in low SNR noisy
situations.

This paper is organized as follows: section II provides a
review on available GCI detection methods. In Section III
we present the basic concepts of MMF and introduce
the procedures for computation of SEs and formation of
the MSM. In section IV, we introduce the details of our
GCI detection algorithm. The experimental results are
presented in section VI and finally in section VII, we
draw our conclusion and perspectives.

II. REVIEW OF GCI DETECTION METHODS

Several algorithms have been developed to extract
GCIs directly from the speech waveform that use differ-
ent criteria for localization of these events. A common
criterion is the occurrence of large values in the residual
signal of Linear Prediction (LP) analysis [23], [4], [22].
LP residuals indeed show clear and strong peaks around
GCIs, but they are vulnerable to noise (and reverbera-
tion [13], [8]). Moreover, it is known that LP residuals
may contain peaks of random polarities [3]. There are
however several other criteria that have been employed
for GCI detection: the amount of frequency deviation of
the zero-frequency filtered speech signal from the central
frequency [3], Lines of Maximum Amplitudes (LoMA)
of the wavelet transform [24], [25], discontinuities in an
estimate of the voice source signal [5] and zero crossings

of the slope function of phase spectrum (the unwrapped
phase function of the short time Fourier transform) of LP
residuals [26], [8] are some examples of these criteria.

All these criteria can be used to detect the GCIs.
However, there is always the risk of false alarms or
missed GCIs. The rate of false alarms and misses vary
depending on the choice of algorithmic parameters like
thresholds or the size of the analysis windows. The
challenge is thus to design an algorithm that makes one
and only one detection for each glottal cycle that is close
enough to the actual GCI. For instance, the effect of
the choice of window-size for using of zero crossings
of phase spectrum slope is addressed in [8]: Ideally,
the window should span exactly one pitch period. A
large window covers more than one GCI and hence the
zero crossing occurs in mid-way between two GCIs. A
small window increases the number of false alarms, as
spurious zero-crossings would occur in a window that
does not contain any GCI. Consequently, for the DYPSA
method [8], a moderately small window is employed
to minimize the risk of having two GCIs in a single
window. All the zero-crossings (each taken from one of
these small analysis windows) are taken as candidates
(plus some additional candidates taken from a phase-
slope projection technique). The true GCIs are then found
from the list of candidates, using an N-best Dynamic
Programming. The cost function is defined in a way that
its minimization maintains several desired properties in
the final output sequence of the algorithm. For instance,
based on the assumption of smooth variations of pitch
over short segments, major pitch deviations are penalized
heavily in the cost function (although the method does not
require a supplemental pitch estimator). So in effect, for
each pitch period, only one of the candidates is picked,
which is the one providing the maximum consistency in
terms of pitch-period variation. The same idea of DP is
employed in YAGA to refine candidates which are taken
by detection of discontinuities in an estimate of the voice
source signal [5].

In [24] for the use of LoMA criterion, a coarse
estimation of the fundamental frequency (F0) is made
to select the largest scale containing the F0 and then, a
local DP technique uses the pitch information to select
only one LoMA per pitch period as the GCI. Finally, two
heuristics are applied to reduce the errors corresponding
to detection of more than one GCI per pitch period.

A simpler solution for controlling the GCI detection
rate is employed in [3], [22] by the use of a smoothed
mean-based signal that oscillates with the pitch period
and assists in keeping the rate of detection to one de-
tection per pitch period. The SEDREAMS method [22],
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[21] uses the mean-based signal to localize a small
interval in each pitch period that contains the GCI.
This smoothing procedure provides robustness against
noise but may compromise the accuracy. That is why
in SEDREAMS [21] LP residuals are used for final
localization of GCIs in each interval (which is found
using the noise-robust mean-based signal). As for the use
of LP residuals, SEDREAMs requires an estimation of
their polarity to decide about the sign of peaks it takes
as GCIs.

So in conclusion, the performance of a GCI detection
method depends on two factors: the accuracy of the
criterion used for localization of GCIs and the way of
refining true GCIs from spurious candidates (especially in
noisy scenarios) to control the number of detections per
pitch period. Some algorithms use estimates of the pitch
period so as to restrict their search-space to one pulse per
period. This adds up to complexity of the algorithm while
risking the accuracy. We take all these considerations
into account to develop a simple and efficient algorithm
that does not require any additional information (pitch
or polarity) using a novel non-linear formalism that is
introduced in the next section.

III. THE MICROCANONICAL MULTISCALE
FORMALISM

Our GCI detection algorithm is based on a novel
framework called the Microcanonical Multiscale For-
malism (MMF) [27]. MMF allows the study of local
geometrico-statistical properties of complex signals from
a multiscale perspective. It is based on precise computa-
tion of local parameters called the Singularity Exponents
(SE) at every time instant in the signal domain. SEs are
local quantities that quantify the degree of regularity of
the signal at each time instant. When correctly defined
and estimated, these exponents alone can provide valu-
able information about local dynamics of complex signals
and have recently proven their strength in many signal
processing applications ranging from signal compression
to inference and prediction in a quite diverse set of scien-
tific disciplines such as satellite imaging [28], [29], [30],
[31], adaptive optics [32], [33], computer graphics [34]
and natural image processing [20], [35].

The singularity exponent h(t) of a given d-dimensional
signal s(t) can be estimated by evaluating the power-law
scaling behavior of a scale-dependent functional Γr over
a set of fine scales r:

Γr (s(t)) = α(t) rd+h(t) + o
(
rd+h(t)

)
r → 0 (1)

where Γr (·) can be any multiscale functional comply-
ing with this power-law, whose choice is discussed in
section III-A. The term α(t) is a factor that does not
depend on the scale r and o

(
rd+h(t)

)
means that for

small scales the additive terms are negligible compared
to the factor and thus h(t) dominantly quantifies the
multiscale behavior of the signal at the time instant
t. Indeed, the value of h(t) can be used to recognize
geometrical superstructures (subsets of signal samples)
inside the signal that share common multiscale properties.
The most important among these sets is called the Most
Singular Manifold (MSM), which is defined as the set
of signal samples having the smallest SE values. Indeed
for a given signal sample, the smaller the value of SE
is, the higher unpredictability is at this time instant [27]
(in the sense that the signal value at this point can not
be predicted using its neighboring signal samples). It has
been established that the critical transitions of the un-
derlying physical system occur at these instants of time,
and this fact has been used in many signal processing
applications [30], [36]. It is shown that in case of natural
images, the MSM contains the most informative subset
of signal samples in the sense that the whole image
can be reconstructed using only the information carried
by the MSM [20]. MSM highlights a small subset of
signal samples, from which the original image can be
reconstructed by application of a reconstruction kernel.
In this paper we will use the concept of MSM to access
some of the important dynamical events in the speech
signal (GCIs). We first discuss practical considerations
in estimation of SEs for the case of speech signal and
for the particular application of GCI detection.

A. The choice of Γr (·)
An important aspect in the MMF is the choice of

Γr (·) such that the inter-scale power-law correlations of
the form presented in Eq. (1) are revealed. This multiscale
measure can be simple linear increments (Hölder expo-
nents), wavelet transform of the signal [37], the gradient-
modulus measure or several other measures introduced
in [27]. Depending on how any one of these Γr (·)
cope with particularities of real world signals such as
discretization, noise and long-range correlations, they
may have their own benefits and disadvantages [37].

For the case of speech signals, we initially followed a
similar path that is taken for natural images [27]. With
the goal of achieving the most compact MSM from which
the whole image can be reconstructed, a new Γr (·) was
defined in [27] that is based on the local evaluation
of a reconstruction kernel. In fact, Γr (·) is defined in
a way that it penalizes predictability: the samples that
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cannot be reconstructed from the information carried by
their neighbors (i.e. they are less predictable) attain lower
values of SE and thus they belong to the MSM. As
such, the concept of MSM is linked to a local notion of
predictability and, indeed, the resulting MSM is shown
to be the most compact subset of image samples from
which the whole image can be reconstructed. However,
For the case of speech signals, the direct 1-D adaptation
of the same procedure reduces the resulting Γr (·) to
simple directional finite differences. In [38], we followed
a similar path and searched for a Γr (·) that results in
a relatively more compact MSM from which the whole
speech signal can be reconstructed; we used a classical
method for reconstruction of a given signal from a subset
of its irregularly spaced samples (MSM in our case) and
compared various definition of Γr (·) to find the one
that results in a more compact MSM from which the
signal can be reconstructed with good perceptual quality
(evaluated using the PESQ measure of signal quality).
As such, the multi-scale integral of the following scale-
dependent functional was defined:

Γri(s(t)) = | 2s(t)− s(t− ri)− s(t+ ri) | (2)

We discussed in [38] that such definition reduces the
effect of inter-sample correlations of the speech signal
in estimation of SEs and we showed that it effectively
results in a compact representation of the speech signal.
On the other hand, the GCI detection application that
we are considering in this paper allows us to provide an
intuitive justification for this multiscale measure. Indeed,
Γr (·) of Eq. (2) can be seen as a multiscale measure of
the magnitude of an impulse. Assuming an ideal impulse
of amplitude A at time t (Aδ(t)), this measure constantly
returns the value of 2A at this time instant and for all
different scales ri. Considering the analogy between scale
and frequency, this conforms with the frequency response
of an impulse which is a discontinuity reflected over the
whole spectral band (a fact that is exploited in [3] for GCI
detection by zero-frequency filtering of speech). Note that
for the GCI detection algorithm we look for a synergy
of these measurements at different scales and hence, it
is important that for different scales r the peak values of
Γr (·) measurements of Aδ(t) happen simultaneously at
time n (or with exactly the same amount of delay) and
the use of a directional (non-symmetric) measurement or
a wavelet transform that has different group delays at
different scales can not fulfill this requirement.

Of course we do not observe such ideal impulses at
GCIs in the speech waveform and we only observe a fil-
tered (smoothened) version of the hypothesized impulsive

excitation. In other words, a portion of full-band spectral
presence of excitation impulses are filtered out by the
time varying vocal tract filter. However, since we evaluate
several scales simultaneously, we can fairly expect the
remaining spectral energy of the filtered impulses to be
sufficient to exhibit a distinguishable singular behavior
compared to other non-GCI signal samples where no
impulse is present in the excitation.

B. Estimation of the singularity exponents

Once Γr is specified, h(t) can be estimated
from Eq. (1) by a log − log regression of Γr versus
the scales r. However, for the specific application of
GCI detection we opted for the estimation method that is
theoretically motivated in [36] by assuming the existence
of a particular geometric multiplicative cascading behav-
ior (implying that the measurements Γr(·) at different
scales are directly related by a multiplicative factor that
is independent of the scale r). The final estimation is
performed as the sum of a set of partial SEs:

h(t) =

I∑
i=1

hi(t) (3)

where I is the number of scales that we use and hi(t)
are the partial SEs which are computed by evaluation
of Eq. (1) at each scale (assuming that α(t) is a factor
that does not depend on scale):

hi(t) =
log(Γi(s(t)))

log(ri)
(4)

This method of computation of SEs is particularly suited
for GCI detection application. Indeed, the summation of
partial singularities superimposes the amount of singular
behaviors at different scales and as such, can reveal
significant impulsive excitations that simultaneously ap-
pear over several scales. As mentioned earlier, we expect
the excitation impulses at GCIs to produce strong local
singularities at different scales of the speech waveform.
This leads to simultaneous occurrence of highly negative
partial SEs (Eq. (4)) at different scales around GCIs. The
summation of these partial SEs (Eq. (3)) would thus result
in significantly lower negative values and hence, those
samples would belong to the MSM (defined as the subset
of samples having the lowest values of SEs).

In practice, the finest accessible scales are dictated by
the sampling frequency fs of the discrete time signal
s[n] = s( n

fs
). Consequently, Eq. (2) can only be

evaluated at discrete instants of time n
fs

with the scales
ri being

ri = i/fs , i ∈ [1 · · · I] (5)
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Fig. 1: top: A voiced segment of the speech signal
“arctic a0001” from CMU ARCTIC database [39] and
bottom: the singularity exponents h[n]. Reference pitch
marks are shown by red lines.

where I defines the largest scale that we use for compu-
tation of SEs. As such, the SEs are being estimated as a
discrete time signal h[n] = h( n

fs
).

IV. THE RELEVANCE OF MSM TO THE GCIS

In this section we study the significance of the MSM
w.r.t. to identification of GCIs. We start our study by
a simple observation on the correspondence of the ref-
erence GCIs extracted from differentiated EGG signal
with the negative peaks of h[n]. Fig. 1 shows a part of a
voiced sound (top panel) and the corresponding SE values
(bottom panel). The reference GCIs that are extracted
from the differentiated EGG signal are also shown. It can
be seen that h[n] shows a sudden negative peak around
GCIs.

Fig. 2 shows another example that confirms the intu-
ition about the correspondence of the MSM with GCIs.
The top panel shows another segment of a voiced sound
along with its corresponding GCIs. The bottom panel
shows the SE value of the samples belonging to the
MSM. The MSM is formed as the 5% of samples having
the lowest value of SE. It can be seen that MSM signal
samples are indeed located around the reference GCI.
Note also that around every single GCI, the MSM point
with the lowest SE value is the closest one to the GCI
mark. This example shows that MSM can indeed be
considered as a criterion for localization of GCIs and can
be used for development of an automatic GCI detection
algorithm as presented in the following section.

Fig. 2: top: A voiced segment of the speech signal
“arctic a0001” of the male speaker BLD from the “CMU
ARCTIC” database [39]. bottom: MSM samples and
their corresponding SE values. Reference pitch marks are
shown by vertical red lines.

V. A MSM-BASED GCI DETECTION ALGORITHM

The preliminary observations presented in section IV
showed that MSM effectively points to GCIs. However,
care must be taken for development of an automatic
GCI detection algorithm so that the detection rate is
maximized while false alarms are minimized. Indeed,
practical formation of the MSM requires the specification
of a threshold to be applied to singularity exponent values
(h[n]). A global specification of the threshold would not
be the best choice. Indeed, it may happen that a GCI
point does attain a small h[n] compared to its surrounding
signal samples in one pitch period, but in a larger
neighborhood, it may have higher value even compared
to non-GCI samples. In practice, this may especially
occur for the starting and ending segments of a voiced
sound, where the energy of the signal is lower compared
to the central segments. This case can be observed in
Fig. 1 where, for the last two GCI marks, SE is actually
smaller than the immediate neighbors but it is larger than
many other non-GCI samples in a larger neighborhood
that covers the whole segment. Hence, the application of
a global threshold for the whole segment cannot refine
GCIs from non-GCI samples. Another practical issue is
that the presence of noise may cause the location of the
samples having the smallest SE values to be shifted from
the desired GCI locations.

To overcome these issues, we first mention that GCIs
can be identified using two properties of SEs that can be
observed in Fig. 1:

1) correspondence of the MSM to GCIs: in each
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glottal cycle, h[n] has the smallest value at the
GCI. Particularly for the case of clean speech, the
location of alocal minimum usually coincides with
the the GCI.

2) regularity-drop: there is a sudden fall in SE values
right before each GCI. As such the local averages
of SEs before and after each GCI are significantly
different.

Our experiments showed that the first property indeed
provides highly precise GCI localization in high-energy
segments of clean speech, within a single pitch period.
However as mentioned before, in a larger window, the
GCIs at low-energy parts of speech may attain relatively
higher values compared to the non-GCIs belonging to the
high-energy parts. Also, the presence of noise may cause
a GCI point to attain slightly higher values compared
to its immediate neighbors. The second property on the
other hand is not much affected by the local energy as
the change in local averages (regularity-drop) is a relative
quantity. Hence, this property seems more suitable for
GCI detection in segments with lower energy. Also, even
the presence of noise would not drastically affect this
property as it is related to the average of SEs rather
than their individual values. In order to make explicit
and easy use of this property, we define the regularity-
drop functional DL[n] that measures the change in local
average of SEs before and after any time instant n, on
two windows of length TL:

DL[n] =

n−1∑
k=n−TL

h[k]−
n+TL∑
k=n

h[k] (6)

Fig. 3 illustrates the resulting functional for a segment of
voiced speech along with the reference GCIs. It can be
seen that DL[n] oscillates with the pitch period. In that
sense, this is similar to the mean-based signal in [21] and
can be similarly used to limit the search space for GCIs
at each glottal cycle (to reduce false alarms). Indeed, the
reason is that the regularity-drop of h[n] occurs once
per pitch period, and since it happens at GCI, DL[n]
displays a peak at this point. Also, each peak is preceded
by a positive-going zero-crossing and is followed by a
negative-going zero-cross. As these zero-crossings can be
easily detected without ambiguity, they can be used for
limiting the search space to positive half-periods of DL[n]
and consequently to reduce false alarms. Moreover, as
the definition of DL[n] involves time-domain averaging,
it provides robustness against uncorrelated noise like
white noise. Another advantage of the regularity-drop
functional is due to its differential form that provides
robustness against low-frequency correlated noises (such

as car noise) that cause low-frequency shifts in SE values.
We use all these properties to develop an efficient GCI

detection algorithm. We use the MSM as the primary
criterion pointing to the GCI and we use DL[n] to limit
the search space while its peaks are also used as a
secondary criterion for localization of GCIs. The final
implementation is provided in Algorithm 11.

Algorithm 1 : GCI detection

1: Calculate h[n] and DL[n].
2: In DL[n], for any positive-going zero-cross time

instant npos, find the next negative-going zero-cross
nneg .

3: npeak ← argmax
n

DL[n], n ∈ [npos, nneg].

4: MSM formation: take n1, n2, n3 having the lowest
values of h[n] in n ∈ {npos, nneg}.

5: nmsm ← argmin
ni

|ni − npeak|

6: ngci ← [(npeak + nmsm)/2]

Note that in step 4 of the algorithm, we take three
samples with the lowest value of singularity exponent so
as to cope with noisy scenarios where h[n] at GCI may be
slightly higher than one or two of immediate neighbors.
That is why the criterion of closeness to the peak of
DL[n] is used in step 5, to make the final decision.
Using three out of eighty samples in each frame indeed
conforms with the definition of the MSM: a small subset
of samples having lowest SE values, while the size of the
subset is chosen experimentally.

Indeed, DL[n] is not simply used for constraining
the detection to one detection per period, but rather, as
its peak is expected to be located on GCI it is also
contributing to an increase of accuracy.

VI. EXPERIMENTAL RESULTS

We compare our algorithm against a recent method
called SEDREAMS [21], which is shown in [22] to
provide the best of performances compared to several
state-of-the-art methods, for both clean and noisy speech
signals. We use the implementation that is made available
on-line by its author [40]. We are basing our experimental
protocol on [21] to compare the performance of our
algorithm in clean and noisy situations. However, to make
a more comprehensive evaluation, we use 14 different
types of noises rather than four noises as in [21]. We
test our algorithm on the CMU ARCTIC databases,
which consist of 3 sets of 1150 phonetically balanced

1A Matlab implementation of this algorithm is made publicly avail-
able in http://geostat.bordeaux.inria.fr/
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Fig. 3: top: A voiced segment of the speech signal taken
from KED database. middle: the differenced EGG signal
which serves for extraction of reference GCIs. The peaks
are marked with yellow circles as the reference GCIs.
bottom: singularity exponents are shown by black color
and the regularity-drop functional DL[n] is shown by
green color.

sentences, each uttered by a single speaker: BDL (US
male), JMK (US male) and SLT (US female) [41]. We
also test on the KED Timit database, which contains
453 utterances spoken by a US male speaker. All these
freely available [41] datasets are chosen because they
contain contemporaneous EGG recordings that can be
used to extract reference GCIs. Note that the EGG
signal is synchronized to the speech recordings such that
SEDREAMS performance is maximized.

SE values are estimated using Eq. (3) with I = 7
and DL[n] is computed with TL = 2.5ms. Indeed, TL
must be smaller than the local pitch period for different
speakers so as to avoid merging of two GCIs. On the
other hand, the larger it is, the higher the robustness
would be against uncorrelated noises like white noise.
TL = 2.5ms is a reasonable choice that is smaller than
the pitch periods of the speakers with pitch frequencies
as high as 400 Hz. The outputs are only evaluated for
the voiced parts of the speech signals. We use a separate
Voiced/UnVoiced detector to compare and evaluate the
different algorithms during the voiced parts of the speech
signal.

A. Performance measures

We use the set of performance measures defined
in [8] to evaluate the performance of our method. If
the k-th reference GCI occurs at nk, the corresponding

Fig. 4: Graphical representation of 4 different outcomes
of the algorithm for any given larynx cycle. Identification
accuracy is measured by ζ (the graphical representation
is taken from [8]).

larynx cycle can be defined as the range of samples
n ∈ (nk+nk−1

2 , nk+nk+1

2 ). Consequently, two sets of
performance measures are defined using the graphical
representation in Fig. 4. The first set includes three
measures of the reliability of the algorithms:

• Hit Rate (HR): the percentage of larynx cycles for
which exactly one GCI is detected.

• Miss Rate (MR): the percentage of larynx cycles for
which no GCI is detected.

• False Alarm Rate (FAR): the percentage of larynx
cycles for which more than one GCI is detected.

The second set defines two measures of the accuracy of
the algorithms:

• Accuracy to ±0.25 ms (A25 ms): the percentage of
larynx cycles for which exactly one GCI is detected
and the identification error ζ is within ±0.25 ms.

• Identification Accuracy (IDA): the standard devi-
ation of identification error ζ (the timing error
between the reference GCIs and the detected GCIs
in larynx cycles for which exactly one GCI has been
detected).

B. Clean speech

Table I compares the performance of the two GCI
detection methods for clean speech signals. Overall, it
can be seen that SEDREAMS is more reliable, but the
accuracy of the two methods are the same. Fig. 5 shows
histograms of GCI detection timing error ζ for the two
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Fig. 5: Histogram of GCI detection timing error ζ. A
reference GCI is considered to be correctly detected when
exactly one detection has happened for the corresponding
larynx cycle.

algorithms (over the whole four datasets). It can be seen
that the distribution of timing error in identification of
GCIs is almost the same.

C. Noisy speech

To assess the performance of our algorithm in more
realistic scenarios, we evaluate its robustness against 14
different types of noises taken from the NOISEX-92
database [42]. Fig. 6 shows the results in the presence
of different types of noises. To make the comparison
easier, we only show two performance measures: the Hit
Rate (HR) as a measure of reliability and the Accuracy
to ±0.25 ms as a measure of accuracy. It can be seen
that in terms of reliability (Hit Rate), SEDREAMS over-
performs in cases of white noise, Babble noise and
destroyer engine noise. However, the MSM based method
is more reliable in the presence of car interior noise,
factory floor noise, Leopard military car noise and tank
noise. For the remaining 7 types of noises, the reliability
of the two methods is quite close, while SEDREAMS
shows slightly better results, especially for higher SNRs.
However, in terms of accuracy, the MSM based method
is showing significantly higher performance for all the
14 types of noises. The higher accuracy of our method
can be seen in Fig. 7, which shows the averaged results
over all 14 types of noises.

SEDREAMS reliability can be explained by the adap-
tive control of the window length with a rough estimation
of the average pitch period. This permits the algorithms
to smoothen the signal as much as possible. That is
why SEDREAMS shows much more reliable results in
presence of an uncorrelated noise like white noise. We
have however avoided assuming any prior knowledge
about the average pitch period and instead chosen a
reasonable fixed value of 2.5ms for TL.

Fig. 7: Comparison of performances averaged over all the
14 types of noises taken from NOISEX database [42].

The more accurate result of our MSM-based algorithm
compared to SEDREAMS can be explained by the differ-
ence between the regularity-drop function in our method
and the mean-based signal used in SEDREAMS (both
of them are used to constrain the number of detections
in each pitch period to one). Apparently both of these
functionals serve a similar goal to increase the reliability
of the algorithms. However, the regularity-drop functional
DL[n] has two distinctive features that contribute not only
to improve the reliability of our algorithm but also serve
to improve the accuracy of it: first, its peak is located on
the GCI and hence, it is a smooth (noise-robust) pointer to
the GCI. The second difference is that DL[n] is a relative
quantity that results in its lower sensitivity to long-range
correlations due to low-frequency noises like car-noise.
It must be noted, however, that the high accuracy of the
algorithm in localization of GCIs is mainly attributed to
the high accuracy of SEs in localization of highly singular
events in the signal domain

D. Analysis of algorithm parameters

In this section, the effect of change in algorithmic
parameters is studied. Namely, we study the variation
of window length (TL) of the regularity drop functional
(DL[n]) and the number of scales (I) that are used for
computation of SEs using Eq. (3). The experiments are
performed on 350 clean speech files randomly selected
from the above databases. To study the case of noisy
speech, for each selected clean speech file, we randomly
select one of four different types of noises (white, babble,
Volvo and factory) and add it to the clean file with the
SNR of 0 dB.

Fig. 8 shows how the change in TL affects the perfor-
mance of the algorithm. As expected, the performance
is significantly reduced for small window lengths but
for TL > 2msec the algorithm almost performs in a
consistent way for both noisy and clean scenarios (note
that, especially for the noisy case there is an improvement
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Fig. 6: Performance comparison in the presence of 14 different types of noises taken from the NOISEX database [42].
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TABLE I: The comparative table of GCI detection performances for clean speech signals.

BDL dataset:
HR(%) MR (%) FAR (%) IDA (ms) A25 ms (%)

MSM-based 94.7 2.7 2.5 0.54 79.5
SEDREAMS 97.4 0.85 1.7 0.38 85.43

JMK dataset:
HR(%) MR (%) FAR (%) IDA (ms) A25 ms (%)

MSM-based 94.9 1.38 3.6 0.55 85.5
SEDREAMS 97.8 0.52 1.6 0.53 78.9

SLT dataset:
HR(%) MR (%) FAR (%) IDA (ms) A25 ms (%)

MSM-based 94.1 4.42 1.4 0.39 80.91
SEDREAMS 98.3 0.02 1.6 0.31 80.25

KED dataset:
HR(%) MR (%) FAR (%) IDA (ms) A25 ms (%)

MSM-based 97.4 1.07 1.5 0.39 96.24
SEDREAMS 98.8 0.05 1.14 0.34 94.33

Overall results for four speakers:
HR(%) MR (%) FAR (%) IDA (ms) A25 ms (%)

MSM-based 95.5 2.3 2.2 0.48 82.3
SEDREAMS 98.0 0.4 1.6 0.39 82.5

in False Alarm Rate for larger values of TL but the
improvement comes with the cost of increasing Miss
Rates. The Hit Rate however, is almost constant in those
regions, which means that the amount of useful GCI
detections is almost the same). The results presented
in sections VI-B and VI-E were obtained using the
fixed value of 2.5ms which is smaller than the pitch
period of most of ordinary speakers and as such, the two
summations in Eq. (6) will only depend on SE values in
a single pitch period.

Next, Fig. 9 shows the effect of change in number of
scales (I) that are used in Eq. (3) to compute SEs. It
is interesting to note how the performance is effectively
improved by incorporation of more scales in computation
of SEs (both for noisy and clean speech). At GCIs, where
a glottal pulse appears across all scales, the co-existence
of singular behavior at different scales (simultaneous
occurrence of small partial SEs hi of Eq. (4)) makes
the final SE calculated by Eq. (3) to attain a very small
value and hence, the sample will belong to the MSM and
be detected as a GCI. However, at the non-GCI samples,
even if for any reason a singular value appears at one of
the scales (one small hi) it will be canceled out by the
larger hi values at other scales, where the singularity does
not appear (because there is no impulsive behavior to
produce a consistent singular behavior across all scales).
As such, the higher the number of scales are, the more
amplification of true singular behavior will happen, while
there will be more chance of canceling out the occasional

Fig. 8: The effect of variation of window length (TL) of
the regularity drop functional (DL[n]) on GCI detection
performance (for I = 7).

appearance of small his at one of the scales for the non-
GCI samples. The results presented in sections VI-B and
VI-E, we use only the seven smallest scales (I = 7) to
avoid excessive computations.

E. Computational complexity

We compare the computational complexity of our
algorithm with that of SEDREAMS [22], which is shown
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Fig. 9: The effect of variation of total number of scale
used for computation of SEs, on GCI detection perfor-
mance (for TL = 2.5msec).

to be the most efficient algorithm compared to other
state-of-the-art algorithms [22], [15]. The computational
complexity of a GCI detection algorithm is indeed highly
data-dependent and it is not easy to provide order of
computation details as mentioned in [22], [15]. The
computations of SEDREAMS can be divided into two
major parts: computation of linear prediction residuals
with computational complexity of O(N2) (N being the
total number of samples) and the formation of a so-called
mean-based signal by averaging the windowed speech
signal of length 1.75T0,mean, where T0,mean denotes
the average pitch period of each speaker. As such for
computation of the mean-based signal, the SEDREAMS
requires 1.75T0,mean ·Fs additions and the same number
of multiplications (overall 3.5T0,meanFs operations) at
each time instant.

Our MSM based method is similarly composed of two
stages: the computation of singularity exponents with
computational complexity of O(N) and the formation
of the regularity-drop functional DL[n] which requires
2TL · Fs operations per sample. Considering that we
are using TL = 2.5msec and assuming a speaker with
T0,mean = 4msec we can see that the computation of
DL[n] requires 5FS/1000 operations per sample whereas
computation of the mean-based signal for SEDREAMS
method requires 14Fs/1000 operations per sample. If
we also consider the lower computational complexity
of the first stage (O(N) versus O(N2)), we can fairly
conclude that our method is faster than SEDREAMS. We
can also use an empirical metric called Relative Com-

putation Time (RCT) as used in [22], [15] to compare
the efficiency of these two algorithms in practice when
applied to speakers with different average fundamental
frequencies. The RCT is defined as:

RCT (%) = 100.
CPU time (s)

Sound duration (s)
(7)

We compare the RCT of our mehtod with that of
SEDREAMS. As for the SEDREAMS, we use the MAT-
LAB codes that are made publicly available by its author
in [40], where the original implementation is provided
along with a faster implementation that uses a more
efficient approach for computation of the mean-based
signal. The computation times for these two different
implementations of SEDREAMS (including the time
for computation of residuals and detection of GCIs)
are averaged over the whole database and reported in
Table II, along with the RCT of our MSM based method.
It can be seen that our method is almost 20 times faster
than SEDREAMS. Also, if we compare with the fast
implementation of SEDREAMS [22], [15], the MSM
based method is 10 times faster. We underline however,
that the results of sections VI-B and VI-E are obtained
using the original implementation and not the fast one.

Finally, it is noteworthy that the overall processing
delay of our GCI detection algorithm is about 3msec
(a negligible delay for SE estimation plus 3msec for
formation of DL[n] and reaching of its negative-going
zero-cross). This is much less than other methods which
rely on dynamic programing techniques, the methods
which use quantities like T0,mean whose computation
require higher group delays or even from those who rely
on the LP residual signal which is usually computed over
a window of 25msec length. Together with the com-
putational efficiency, this makes our method particularly
suitable for real-time applications.

TABLE II: Comparison between the Relative Computa-
tion Time (RCT).

Method RCT (%)
MSM-based 2.2

SEDREAMS [22] 43.8
fastSEDREAMS [22] 25.1

VII. CONCLUSION

In this paper we used a novel multiscale formalism
called the MMF for development of a simple and efficient
GCI detection algorithm. The MMF relies on precise es-
timation of local parameters called Singulrity Exponents
(SE). We introduced the detailed procedure for estimation
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of SEs for the case of speech signal and for the particular
application of GCI detection. We showed that the subset
of samples with lowest SE values (the MSM) indeed
points towards the GCIs. We then used this property
to develop an automatic GCI detection algorithm that
compared to other methods, is more efficient and has less
processing delay. The latter property makes the method
appropriate for real-time implementations as it does not
involve any type of batch processing. We showed that for
clean speech signals our algorithm is almost as accurate
and reliable as a recent stat-of-the-art method. But in
presence of 14 different types of noises, and for very
low SNRs, our method is more accurate. Moreover, this
method does not rely on any model for speech production
and does not require any estimate of the pitch period.
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