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Recognition of C4-free and 1/2-hyperbolic graphs∗

David Coudert†‡ Guillaume Ducoffe†‡§

October 2, 2014

Abstract

The shortest-path metric d of a connected graph G is 1/2-hyperbolic if, and only if, it satisfies
d(u, v) + d(x, y) ≤ max{d(u, x) + d(v, y), d(u, y) + d(v, x)} + 1, for every 4-tuple u, x, v, y of G.
We show that the problem of deciding whether an unweighted graph is 1/2-hyperbolic is subcubic

equivalent to the problem of determining whether there is a chordless cycle of length 4 in a graph.
An improved algorithm is also given for both problems, taking advantage of fast rectangular matrix
multiplication. In the worst case it runs in O(n3.26)-time.

keywords: Hyperbolicity, discrete metric space, graph algorithms, C4-free graphs, rectangular
matrix multiplication.

1 Introduction

The primary aim of our work is to study hyperbolicity of simple unweighted graphs. This is a metric
parameter, that was first introduced by Gromov in the context of automatic groups (see [23]), then
extended to more general metric spaces [5]. Roughly, the hyperbolicity of a connected graph is a measure
of how far is the shortest-path metric of the graph from a tree metric. One can deduce from this
parameter tight bounds for the (worst) additive distortion of the distances in the graph when its vertices
are embedded into a weighted tree [10]. Practical applications of hyperbolicity were proposed in the
domains of routing [6], network security [27], bioinformatics [18], and in the spread of information in
social networks [4].

So far, the best known algorithm for determining the hyperbolicity of a graph has an O(n3.69)-time
complexity [21]. This is however prohibitive for graphs with tens of thousands of nodes such as the
graph of the Autonomous Systems of the Internet, road maps, etc. An algorithm with good practical
performances has been proposed in [11]. It improves the worst-case running time on certain graph classes,
but it cannot be used on graphs with hyperbolicity less than one.

Related work Our work focuses on a decision version of the problem, namely the recognition of
graphs with hyperbolicity (at most) 1/2. Graphs with small hyperbolicity value have already received
some attention, as a first characterization of 1/2-hyperbolic graphs was proposed in [1]. However, to
the best of our knowledge, there was no known algorithmic application to it prior to this work. We are
more interested in a reduction such as the recent one in [21], where the authors proved an equivalence
between the problems of finding a 2-approximation for the hyperbolicity and the (max,min)-matrix
multiplication. A recent work [19] further exploits the relation between both problems, yielding constant-
factor approximations for the hyperbolicity in subcubic-time. We point out that a similar line of research
was followed in [34, 39], where they determined the subcubic equivalence between various combinatorial
problems.
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Our contribution We relate the recognition of graphs with hyperbolicity (at most) 1/2 to the search
of (induced) cycles of length 4, e.g. C4, in a graph. It actually follows from our work that either both
problems are solvable in subcubic-time, or none of them is. We first present a linear-time reduction from
the C4-free graph recognition problem to the recognition of 1/2-hyperbolic graphs (§3.1). Then we prove
a new characterization of 1/2-hyperbolic graphs, which is based on graph powers [30], and from which
it follows that, conversely, deciding whether a graph is 1/2-hyperbolic can be reduced in subcubic-time
to the C4-free graph recognition problem (§3.2). In §4, we finally reduce both problems to the problem
of the rectangular matrix product that was defined in [31]. This allows us to solve both of them in
O(n3.26)-time, which beats the previous records established in [21, 37].

We give the notations used in this paper in §2, along with definitions for graph hyperbolicity and
C4-free graphs.

2 Definitions and Notations

A graph G is a pair (V,E), whose n vertices are the elements of the set V , and whose m edges are the
elements of E; every edge is a set of two distinct vertices of G. The neighborhood N(u) of a vertex u ∈ V ,
is the (possibly empty) set of vertices v ∈ V such that {u, v} is an edge. Alternatively, we say that the
elements ofN(u) are adjacent to u. A clique is a set of pairwise adjacent vertices. Note that the adjacency
relation is clearly symmetric; we also define the (symmetric) adjacency matrix A = (I{u∈N(v)})u,v∈V ,
where I denotes the Kronecker delta1.

Finally, an induced subgraph of G is a graph G[X] = (X,F ) such that X ⊆ V and F = {{u, v} ∈ E :
u, v ∈ X}. In particular if X is a clique, then it is called a complete subgraph. The induced subgraph
is a path of length l ≥ 0 if |X| = l + 1 and the vertices of X can be linearly ordered into a sequence
(v0, v1, . . . , vl) such that for every 0 ≤ i, j ≤ l, the vertex vi is adjacent to vj if, and only if, |j − i| = 1.
In such a case, the vertices v0 and vl are called the endpoints of the path, and the path is a v0vl-path.
The graph G is connected if, for every pair u, v ∈ V , there exists a uv-path. Also, a cycle is a graph such
that the deletion of any edge {v0, vl} ∈ F yields a v0vl-path, and a tree is a connected graph which does
not contain any cycle as a subgraph.

Further standard graph terminology can be found in [7, 14].

2.1 1/2-hyperbolic graphs

Given a connected graph G = (V,E), we define the distance dG(u, v) between two vertices u, v ∈ V as
the minimum length of a uv-path in the graph. This yields a (discrete) metric space (V, dG). For a
survey of metric graph theory, the reader may refer to [2]. We define in the space (V, dG) an interval
[u, v] between any two vertices u, v ∈ V , as the set of vertices “in between” u and v, e.g. [u, v] = {x ∈
V : dG(u, v) = dG(u, x) + dG(x, v)}.

In the sequel, we will call a uv-path of minimum length a uv-shortest path, and we will denote the
distance function by d instead of dG whenever G is clear from the context. The graph hyperbolicity of
G can now be defined as follows:

Definition 1 (4-points Condition, [23]). Let G be a connected graph. For every 4-tuple u, x, v, y of
G, we define δ(u, v, x, y) as half of the difference between the two largest sums amongst

S1 = d(u, v) + d(x, y),
S2 = d(u, x) + d(v, y), and
S3 = d(u, y) + d(v, x).
The graph hyperbolicity, denoted by δ(G), is equal to maxu,x,v,y δ(u, v, x, y).
Moreover, we say that G is δ-hyperbolic, for every δ ≥ δ(G).

Unlike many well-known graph properties, it is very important to note that the hyperbolicity of an
induced subgraph of G does not yield any information in general about the hyperbolicity of G. For
example, the wheel Wn is 1-hyperbolic, whereas it contains as an induced subgraph the cycle Cn whose
hyperbolicity grows linearly with n [11]. A way to deal with this difficulty is to constrain ourselves to

1We use the symbol I instead of the classical symbol δ for the Kronecker delta in order to prevent confusion with
hyperbolicity.
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Figure 1: The six forbidden isometric subgraphs.

distance-preserving, or isometric subgraphs. Formally, an induced subgraph H of G is isometric if, and
only if, it is connected and for every pair of vertices u, v ∈ H, we have that dH(u, v) = dG(u, v). We also
say that a subgraph which is not isometric is a bridged subgraph.

Lower and upper bounds on the hyperbolicity can be deduced from classical parameters such as the
girth [33], the circumference [8], the domination number [35], and the chordality [29, 40]. In particular,
we have that δ(G) ≤ ⌊diam(G)/2⌋, where diam(G) = maxu,v∈V dG(u, v) is the diameter of the graph [11,
40].

We inform the reader that Definition 1 is not a universal definition for the hyperbolicity of a graph.
Some authors actually proposed and studied other definitions (see, for instance [13, 23]). Though the
value of δ(G) may vary depending on the choice of the definition, any δ-hyperbolic graph with respect
to (w.r.t.) any of the definitions is f(δ)-hyperbolic w.r.t. any other definition of the hyperbolicity. The
function f is linear in δ in most cases. Moreover, the class of trees is always contained into the class of
0-hyperbolic graphs, which makes the graph hyperbolicity a tree-likeness parameter.

We here restrict our study to Definition 1, as it has algorithmic applications. Indeed, it is straightfor-
ward by using Definition 1 to compute the graph hyperbolicity δ(G) in Θ(n4)-time (see [11] and [21] for
practical and theoretical improvements of the complexity). Also, note that δ(G) is always a half-integer
(w.r.t. Definition 1). Our work focuses on graphs with small hyperbolicity, that is hyperbolicity at most
1/2. Those graphs thus satisfy either δ(G) = 0 or δ(G) = 1/2. We address the problem of recognizing
those graphs, that we formulate as follows.

Problem 2. Given a connected graph G, is G a 1/2-hyperbolic graph ?

In [1], Bandelt and Chepoi characterized the 1/2-hyperbolic graphs as the connected graphs that
simultaneously satisfy the three following conditions:

Condition 3. Every cycle of length at least 6 in G is bridged.

Condition 4. For every pair u, v ∈ G, N(u) ∩ [u, v] is a clique.

Condition 5. No graph in Figure 1 is an isometric subgraph of G.

A simpler characterization was previously given for 0-hyperbolic graphs [3, 24]. In fact, 0-hyperbolic
graphs are block-graphs, that are graphs in which every biconnected component (block) is a clique (possi-
bly reduced to a single vertex). This class includes cliques and trees, and a block-graph can be recognized
in O(n+m)-time.
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2.2 C4-free graphs

The C4-free graph recognition problem asks whether a given graph G contains an induced cycle of length
4. In the sequel, such a cycle, if any, is called a C4, or a quadrangle. A graph G which does not contain
any C4 as an induced subgraph is a C4-free graph. Let us define our decision problem in the following
way.

Problem 6. Given a graph G, does G contain a C4 as an induced subgraph ?

We now remind a well-known, local characterization of those graphs:

Fact 7. A graph G = (V,E) is C4-free if, and only if, for every pair of non-adjacent vertices u, v, the
set N(u) ∩N(v) is a (possibly empty) clique.

To see the relation between Problem 6 and Problem 2, one can observe that the condition of Fact 7
is equivalent to Condition 4 when considering vertices u, v at distance 2. As a consequence, every 1/2-
hyperbolic graph is also C4-free. In fact, a more direct way to see this is to note that every induced
subgraph which is a quadrangle is isometric (this comes from the fact that a C4 is connected and it has
diameter 2). Since one can easily check that δ(C4) = 1, then it indeed follows that a 1/2-hyperbolic
graph cannot contain a quadrangle as an induced subgraph.

So far, the best-known algorithm we are aware of to detect an induced C4 in a graph has O(nω(1)+1) =
O(n3.3727)-time complexity [37], with O(nω(1)) being the complexity of multiplying two n × n matrices
(see §4.1 for details). We will improve this result in §4.

3 The subcubic equivalence

It is straightforward by the definitions that both the 1/2-hyperbolic graph recognition problem (Prob-
lem 2), and the C4-free graph recognition problem (Problem 6), are polynomial-time solvable [21, 37].
On the other hand, the best-known upper-bound on their time complexity is strictly more than cubic.
Thus it motivates the search for subcubic reductions between these problems, as they are defined in [39].
Formally, a subcubic reduction from a problem A to a problem B is a subcubic-time Turing reduction,
which verifies the following additional properties on the oracle access to problem B. For every positive
real µ, there has to exist a positive real ε such that:

1. the reduction runs in Õ(n3−ε)-time2, where n denotes the size of the input;

2. and given an instance of size n of problem A,
∑

i Õ(n3−µ
i ) = Õ(n3−ε), where ni denotes the size

of the ith oracle call to problem B in the reduction.

In particular, a linear-time reduction is a subcubic reduction. More generally, any subcubic-time
reduction which satisfies

∑

i ni = Õ(n) is also a subcubic reduction. We will only consider subcubic
reductions of this kind in the sequel.

Subcubic reductions are of specific interest in the study of subcubic-time algorithms, because if there
exists a subcubic reduction from problem A to problem B, and there is a subcubic-time algorithm which
solves problem B, then there also exists a subcubic-time algorithm which solves problem A. In particular,
if problems A and B are subcubic equivalent, then either both of them are solvable in subcubic-time, or
none of them is. In this section, we will show that Problem 2 and Problem 6 are subcubic equivalent.
We first present a linear-time reduction from Problem 6 to Problem 2 in §3.1 (Proposition 8). Then we
present a subcubic reduction from Problem 2 to Problem 6 in §3.2 (Theorem 20).

2The notation Õ(f(n)) is for a complexity f(n) · logO(1) n.
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Figure 2: An illustration of the linear-time reduction of Proposition 8.

3.1 Reducing the detection of a C4 to the recognition of a 1/2-hyperbolic
graph

Proposition 8. There is a linear-time reduction from the C4-free graph recognition problem to the
problem of deciding whether a graph is 1/2-hyperbolic.

Proof. Let G = (V,E) be an instance of the C4-free graph recognition problem. Let u /∈ V , and let
G′ = (V ∪ {u}, E ∪ {{u, v} : v ∈ V }). By construction, G′ is connected, and it has diameter at most 2.
Thus, we have that δ(G′) ≤ 1 (e.g. see [11]), and all of its isometric subgraphs also have diameter at most
2. Moreover we remind that a cycle of length l has diameter ⌊l/2⌋. In particular, every cycle of length at
least 6 is a graph of diameter at least 3 and as such, it cannot be an isometric cycle of G′. Consequently,
G′ always satisfies Condition 3. We can prove that it always satisfies Condition 5 in the same way.
Finally, since Condition 4 is satisfied for every pair u, v ∈ V of adjacent vertices, then G′ satisfies
Condition 4 if, and only if, for every pair u, v ∈ V of non-adjacent vertices, we have that NG′(u) ∩ [u, v]
is a clique; since dG′(u, v) = 2 in such a case, then it is equivalent to have that NG′(u) ∩ NG′(v) is a
clique, e.g. the graph G′ is C4-free by Fact 7. Furthermore, we have by construction that any induced
C4 in G′ is an induced quadrangle in G, and vice-versa. Consequently, G is C4-free if, and only if, the
graph G′ is 1/2-hyperbolic.

We want to highlight that our reduction from Problem 6 to Problem 2 here is linear-time, whereas
the converse reduction from Problem 2 to Problem 6, presented in §3.2, is super-linear. It might be of
interest to determine whether a linear-time reduction from Problem 2 to Problem 6 exists.

3.2 Finding quadrangles to recognize non-1/2-hyperbolic graphs

Our aim is now to prove that there exists a subcubic reduction from Problem 2 to Problem 6 (Theo-
rem 20). Ideally, we would ask for a subcubic-time routine for checking whether Conditions 3, 4 and 5
are satisfied. Our reduction is however more complex, as we actually introduce and verify different con-
ditions in subsequent sections. Thus we have to prove that these conditions imply Conditions 3, 4 and 5,
and also that they are satisfied by 1/2-hyperbolic graphs.

3.2.1 Quickly excluding long isometric cycles

Let us first deal for our reduction with a tool that we will use later to verify whether Condition 3 is
satisfied. We recall that Condition 3 requires that every cycle of length at least 6 in G is a bridged
subgraph. A first naive approach to deal with this condition is to compute the length of a longest
isometric cycle of G. This can be done in polynomial-time, but the best-known algorithm runs in
O(n2ω(1) log n) = O(n4.752 log n)-time, which is super-cubic [32]. Instead, we propose in this section a
way to weaken Condition 3, by only having to consider isometric cycles of polylogarithmically-bounded
length.

Given a connected graph G, we recall that a c-factor approximation of the hyperbolicity of G is a half-
integer δc(G) such that δ(G) ≤ δc(G) ≤ c.δ(G). In this section, we will assume we have a subcubic-time

algorithm computing a c-factor approximation of the hyperbolicity, for some fixed choice of c = logO(1) n.
Below, we remind possible ways to achieve such a result:
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Lemma 9 ( [9, 19, 21]). Let G = (V,E) be a connected graph.

1. There exists an algorithm computing a 2-factor approximation of the hyperbolicity in O(n3−ω(1)/2) =
O(n2.69)-time [21].

2. For every ε > 0, there exists an algorithm computing a (2 + ε)-factor approximation of the hyper-
bolicity in Õ(ε−1nω(1)) = Õ(ε−1n2.3727)-time [19].

3. There exists an algorithm computing a 1569-factor approximation of the hyperbolicity in time3

O(min{nm, nω(1) log n}+ n2) = Õ(n2.3727) [9].

Combining results from [10, 15, 21], there also exists a θ(log n)-factor approximation algorithm of the
hyperbolicity in Õ(n2)-time4. In addition, one can deduce from the results from [16, 17, 22] an algorithm
which computes a θ(log2 n)-factor approximation of the hyperbolicity in O(m log n)-time.

It is well-known that the hyperbolicity of the cycle Cn grows linearly with n. Formally:

Lemma 10 ([11, 40]). Cycles of order 4p+ε ≥ 3, with p ≥ 0 and ε ∈ {0, 1, 2, 3}, are (p−1/2)-hyperbolic
when ε = 1, and p-hyperbolic otherwise.

As a result, it follows from Lemma 10 that a (polylogarithmic) upper-bound on the hyperbolicity of G
yields a (polylogarithmic) upper-bound on the length of a longest isometric cycle of G; more accurately:

Corollary 11. Let G = (V,E) be a connected graph. Then all the isometric cycles of G have length
upper-bounded by 4δ(G) + 3.

Proof. First assume δ(G) is an integer. By Lemma 10, the longest δ(G)-hyperbolic cycle has length at
most 4δ(G)+3. Otherwise, δ(G) is a half-integer by Definition 1 and so, again by Lemma 10, the longest
δ(G)-hyperbolic cycle has length at most 4(δ(G) + 1/2) + 1 = 4δ(G) + 3.

Since we are interested in 1/2-hyperbolic graphs, then Corollary 11 implies that every isometric cycle
must have length upper-bounded by 5 i.e., Condition 3. We introduce in the next section a second tool
so that we can detect isometric cycles of polylogarithmically-bounded length.

3.2.2 Using graph powers

Let us now present the main tool for our reduction, namely graph powers.

Definition 12. Given a connected graph G = (V,E), let i be a positive integer. The ith-power of G,
denoted by Gi = (V,Ei), is a graph whose set of vertices is the same as for G; two vertices u, v ∈ V are
adjacent in Gi if, and only if, there exists a uv-path of length at most i in G. Formally, Ei = {{u, v} :
0 < dG(u, v) ≤ i}.

In particular, the graph power G1 is G, and the graph power Gdiam(G) is the complete graph Kn,
where diam(G) = maxu,v∈V d(u, v) is the diameter of G. It is folklore that the graph power Gi can be
computed in O(nω(1) log i)-time, using fast square matrix multiplication [36].

Recall that we said in §2.2 that every 1/2-hyperbolic graph G is C4-free. Roughly, most of our
reduction will consist in checking whether a polylogarithmic number of graph powers of G are C4-free as
well. This is a necessary condition so that G is 1/2-hyperbolic, as stated below.

Lemma 13. If G is a 1/2-hyperbolic graph, then for every positive integer i, the graph Gi is C4-free.

Proof. By contradiction, let u, v, x, y be the vertices of an induced quadrangle in Gi, for some positive
integer i ≥ 1. Without loss of generality, assume that x, y ∈ NGi(u)∩NGi(v). It follows by Definition 12
that:

max{dG(u, x), dG(u, y), dG(v, x), dG(v, y)} ≤ i;

and min{dG(u, v), dG(x, y)} ≥ i+ 1.

3The term min{nm,nω(1) logn} in the complexity comes from the computation of the all-pairs shortest-paths in the
graph (see [36] for an algorithm in Õ(nω(1))-time for the problem).

4The authors in [21] actually claim a O(n2)-time complexity for their algorithm, but it takes as inputs discrete metric
spaces and so, it does not apply to graphs directly. To apply their results on graphs, we can use a θ(logn)-additive
approximation of the all-pairs shortest-paths, which can be computed in Õ(n2)-time (see [15]).
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Figure 3: Shrinking long isometric cycles into quadrangles.

As a consequence, we have by Definition 1 that:

δ(u, v, x, y) =
1

2
[(dG(u, v) + dG(x, y))

−max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)}]

≥
1

2
[2(i+ 1)− 2i]

≥ 1

which contradicts the fact that G is 1/2-hyperbolic.

Intuitively, the existence of isometric cycles of length l in G yields the existence of induced quadrangles
in some graph power Gθ(l); this shrinking effect is illustrated with Figure 3. As a result, it may be more
efficient to search for induced cycles of length 4 in the graph powers rather than computing the length
of a longest isometric cycle of G directly.

We emphasize that the converse does not hold: not all the induced quadrangles in Gi yield an
isometric cycle in the original graph G. For instance, the square graph H2

1 of the graph H1 in Figure 1a
contains a quadrangle as an induced subgraph (the vertices of which are u, x, v, y), yet H1 does not
contain an isometric cycle of length more than 3. However, we remind that every graph power has to be
C4-free by Lemma 13 and so, any induced quadrangle that we detect in some graph power is a certificate
to prove that the graph is not 1/2-hyperbolic.

We formalize it as follows.

Lemma 14. Let G = (V,E) be a connected graph, and let Cl be an isometric cycle of length l = 4p+ ε,
p ≥ 1, ε ∈ {0, 1, 2, 3} and l 6= 5. There is an integer i ∈ [p, 2p] such that the graph power Gi contains a
C4 as an induced subgraph.

Proof. Let us fix an arbitrary orientation for Cl, and choose a 4-tuple u, x, v, y (in clockwise order) such
that:

1. if ε = 0: dG(u, x) = dG(u, y) = dG(v, x) = dG(u, y) = p;

2. if ε = 1: dG(u, x) = dG(u, y) = dG(v, x) = p, and dG(v, y) = p+ 1;

3. if ε = 2: dG(u, x) = dG(v, y) = p, and dG(u, y) = dG(v, x) = p+ 1;

4. if ε = 3: dG(u, x) = dG(u, y) = dG(v, x) = p+ 1, and dG(v, y) = p.

An example of such a choice is given in Figure 3. Note that all the above distances are upper-bounded
by p+ ⌈ε/4⌉. Furthermore, recall that Cl is an isometric cycle by the hypothesis. So, we have:

dG(u, v) = dG(x, y) =

{

2p when ε ∈ {0, 1}

2p+ 1 when ε ∈ {2, 3}

Equivalently, we have dG(u, v) = dG(x, y) = 2p + ⌊ε/2⌋. As a consequence, by Definition 12, we have
that Gi[{u, x, v, y}] is an induced C4, for every p + ⌈ε/4⌉ ≤ i ≤ 2p + ⌊ε/2⌋ − 1. To prove that such a
value of i always exists, it now remains to prove that:

p+
⌈ε

4

⌉

≤ 2p+
⌊ε

2

⌋

− 1,
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Figure 4: The construction of the graph G[2].

that is:
(

2p+
⌊ε

2

⌋

− 1
)

−
(

p+
⌈ε

4

⌉)

= p+
(⌊ε

2

⌋

−
⌈ε

4

⌉)

− 1 ≥ 0.

A straightforward calculation shows that:

⌊ε

2

⌋

−
⌈ε

4

⌉

=

{

−1 if ε = 1

0 otherwise

As a consequence, if ε 6= 1 then we are done. Otherwise, since l = 4p + 1 > 5 by the hypothesis, then
p ≥ 2 and so:

p+
(⌊ε

2

⌋

−
⌈ε

4

⌉)

− 1 ≥ 2− 1− 1 ≥ 0.

Note that the only two possible lengths for an isometric cycle of the graph that Lemma 14 does not
take into account are 3 and 5. This is not a coincidence, as C3 and C5 are the only cycles that are
1/2-hyperbolic by Lemma 10.

3.2.3 Transforming some obstructions into quadrangles

One of the most fundamental step for our reduction was to prove with Lemma 13 that every graph power
Gi, i ≥ 1, has to be C4-free so that a connected graph G is 1/2-hyperbolic. An interesting question on
its own is whether it is also a sufficient condition.

We give a negative answer to this conjecture, using the graph H in Figure 5. The graph H is the
union of a C5 and a C3 that both share a single edge; using the 4-tuple in bold in Figure 5, one can
verify that δ(H) ≥ 1. Clearly, H does not contain a quadrangle as an induced subgraph. Moreover,
diam(H) = 3 and so, for every i ≥ 3, the graph power Hi is a complete graph. Finally, as there is only
one couple x, y of H such that dH(x, y) = 3, it follows that the square graph H2 of H only lacks a single
edge to be complete; as a result, H2 is C4-free as well.

The primary aim of this section is now to show that in order to complete our reduction, we solely
need to decide whether only one additional graph is C4-free:

Definition 15. Let G = (V,E) be a connected graph. The graph G[2] = (V [2], E[2]) is defined as follows:

1. V [2] ≃ V × {0, 1};

2. G[2][V × {0}] ≃ G;

3. G[2][V × {1}] ≃ G3;

4. ∀u, v ∈ V , the vertices (u, 0) and (v, 1) are adjacent in G[2] if, and only if, dG(u, v) ≤ 2.

In particular, ∀u ∈ V , there is an edge {(u, 0), (u, 1)} ∈ E[2].

8



H H2 H3 H [2]

Figure 5: A 1-hyperbolic graph whose powers are C4-free. A quadrangle in H [2] is drawn in bold.

An illustration of the construction of G[2] is presented in Figure 4. It might help to observe that for
every edge of G2 i.e., for every two distinct vertices u, v such that dG(u, v) ≤ 2, there are exactly two
corresponding edges in G[2], denoted by {(u, 0), (v, 1)} and {(u, 1), (v, 0)}, that connect the sets V ×{0}
and V ×{1}. Every other connecting edge of G[2] is a pseudo-loop {(u, 0), (u, 1)}, for some vertex u ∈ V .

We interpret the role of G[2] as the role of an ”intermediate power” between the square graph G2

and the cube graph G3. First, let us prove that it is necessary for G[2] to be C4-free so that G is
1/2-hyperbolic.

Lemma 16. If G is a 1/2-hyperbolic graph, then the graph G[2] is C4-free.

Proof. By contradiction, let a, b, c, d be the vertices of an induced quadrangle in G[2]. Without loss of
generality, we assume that dG[2](a, b) = dG[2](c, d) = 2. Several cases have to be considered, that we
illustrate with Figure 6.

If a, b, c, d ∈ V ×{0}, then there is an induced C4 in G by Definition 15. Similarly, if a, b, c, d ∈ V ×{1},
then there is an induced C4 in G3 by Definition 15. In both cases, this implies that G is not 1/2-
hyperbolic, by Lemma 13.

For all the remaining cases, we claim that there is no vertex u ∈ V such that {(u, 0), (u, 1)} ⊆
{a, b, c, d}. It easily follows from the fact that NG[2]((u, 0)) ∪ {(u, 0)}
⊆ NG[2]((u, 1))∪{(u, 1)}. Thus we can write (a, b, c, d) = ((u, k), (v, k′), (x, j), (y, j′)), with {k, k′, j, j′} =
{0, 1} and vertices u, v, x, y are pairwise distinct.

Case 1: k = 0, k′ = j = j′ = 1. Here it comes that:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ 2 + 3 = 5,

whereas dG(u, v) + dG(x, y) ≥ 3 + 4 = 7.

In other words, δ(G) ≥ δ(u, v, x, y) ≥ 1.

Case 2: k = 1, k′ = j = j′ = 0. In such a case:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ 2 + 1 = 3,

whereas dG(u, v) + dG(x, y) ≥ 3 + 2 = 5.

So, δ(G) ≥ δ(u, v, x, y) ≥ 1.

Case 3: k = k′ = 0, j = j′ = 1. It follows that:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ 2 + 2 = 4,

whereas dG(u, v) + dG(x, y) ≥ 2 + 4 = 6.

In other words, δ(G) ≥ δ(u, v, x, y) ≥ 1.

Case 4: k = j = 0, k′ = j′ = 1. Then we have:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ max{1 + 3, 2 + 2} = 4,

whereas dG(u, v) + dG(x, y) ≥ 3 + 3 = 6.

So, we again conclude that δ(G) ≥ δ(u, v, x, y) ≥ 1.
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2 1
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2

2
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3 3

33

(d)

21

1 2

(e)

2

3

2

1

(f)

Figure 6: Possible quadrangles in G[2]. Edge weights represent distances in G.

Recall that in order to decide whether a graph is 1/2-hyperbolic, our aim is to check whether all of
the three Conditions 3, 4 and 5 of [1] are satisfied, using stronger necessary conditions. So far, we only
dealt with Condition 3, developing tools in §3.2.1 and 3.2.2 in order to determine if every cycle of length
at least 6 in the graph is bridged. The following two lemmas will show a way to combine the graph G[2]

of Definition 15 with the graph powers of Definition 12, in order to ensure that both Conditions 4 and 5
are satisfied as well.

Let us start with Condition 4:

Lemma 17. Let G = (V,E) be a δ-hyperbolic graph, for some δ ≥ 1/2. Suppose G does not satisfy
Condition 4. Then G[2] is not C4-free, or there exists some positive integer i ≤ 2δ such that Gi is not
C4-free.

Proof. Let u, v ∈ V be such that N(u)∩ [u, v] is not a clique, and d(u, v) is minimum w.r.t. this property.
Let x1, y1 ∈ N(u) ∩ [u, v] such that x1 and y1 are not adjacent in G.

• Note that if d(u, v) = 2, then we are done as u, v, x1, y1 are the vertices of an induced C4 in G.

• Similarly, if d(u, v) = 3, then we have:

1. d(u, x1) = d(u, y1) = 1;

2. d(x1, y1) = d(v, x1) = d(v, y1) = 2;

as a consequence, (u, 0), (x1, 0), (y1, 0), (v, 1) are the vertices of an induced quadrangle in the graph
G[2].

In the sequel, we will assume d(u, v) ≥ 4. Let us define the two uv-shortest paths:

P1 = u, x1, x2, x3, . . . , xd(u,v)−1, v

and P2 = u, y1, y2, y3, . . . , yd(u,v)−1, v

Note that for every i ≤ j we have d(xi, yj) ≥ d(yi, yj) = j−i, and in the same way d(xj , yi) ≥ d(xj , xi) =
j− i. We now claim that for every i ≤ j, the inequalities above are strict, or equivalently d(xi, yj) > j− i
and d(xj , yi) > j − i. By contradiction, suppose that there is some i ≤ j satisfying d(xi, yj) = j − i.
Then in such a case we have x1, y1 ∈ N(u) ∩ [u, yj ], contradicting the minimality of d(u, v). The case
when d(xj , yi) = j − i is dealt with similarly. To sum up, by the minimality of d(u, v) we have that for
any i ≤ j:

d(xi, yj) > d(yi, yj) = j − i and d(xj , yi) > d(xj , xi) = j − i.

In particular, for all i, j this yields that xi and yj are pairwise distinct.
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Also, note that for all i, δ(u, v, xi, yi) = d(xi, yi)/2 and so, we have that for every i:

d(xi, yi) ≤ 2δ.

Let l ≥ 3 be the least index greater than 2 such that d(xl, yl) ≤ l − 1. One has to observe that since
for all i, d(xi, yi) ≤ 2δ, it holds that l ≤ min{2δ + 1, d(u, v)− 1}. In such a case:

1. d(x1, xl) = d(y1, yl) = l − 1;

2. d(x1, y1), d(xl, yl) ≤ l − 1;

3. d(x1, yl), d(xl, y1) > l − 1.

Consequently, x1, y1, xl, yl are the vertices of an induced quadrangle in Gl−1.

Let us finally prove with Lemma 18 that we can verify whether Condition 5 is satisfied in the same
way as we verified Condition 4 in Lemma 17.

Lemma 18. Let G = (V,E) be a connected graph that does not satisfy Condition 5. Then there is an
induced C4 in the graph G[2], or there is an induced C4 in the square graph G2.

Proof. We proceed by contradiction. Let us assume that one of the graphs of Figure 1 is an isometric
subgraph of G. For each of the forbidden graphs of Condition 5, we will only consider the 4-tuple of
vertices that are drawn in bold in Figure 1, denoted by u, y, v, x.

Cases 1a and 1b One can easily check that in both cases, the four vertices in bold are the vertices of
an induced quadrangle in the square graph G2.

Case 1c Observe that d(u, x) = 1, d(u, y) = d(v, x) = 2, d(u, v) = d(x, y) = d(v, y) = 3. So,
(u, 0), (y, 1), (v, 1), (x, 0) are the vertices of an induced quadrangle in G[2]. A contradiction.

Case 1d We have that all distances but d(u, v) equal 2, and that d(u, v) = 4. Therefore, (u, 1), (y, 0),
(v, 1), (x, 0) are the vertices of an induced C4 in G[2]. Again, this is not possible.

Case 1e Observe that d(u, x) = d(u, y) = 2, d(x, y) = 4, and all the remaining distances are equal to 3.
As a consequence, (u, 0), (y, 1), (v, 1), (x, 1) are the vertices of an induced quadrangle in G[2], which
contradicts the fact that G[2] is C4-free.

Case 1f The vertices (u, 1), (y, 1), (v, 1), (x, 1) induce a C4 in G3, hence in G[2], that is once more a
contradiction.

To sum up, we obtain as a byproduct of our reduction, and especially of Lemmas 13, 14, 16, 17
and 18, the following new characterization of 1/2-hyperbolic graphs:

Characterization 19. A connected graph G is 1/2-hyperbolic if, and only if, every graph power Gi,
i ≥ 1, is C4-free, and the graph G[2] is C4-free.

The condition is necessary by Lemmas 13 and 16, and it is sufficient by Lemmas 14, 17 and 18.

3.2.4 The reduction

Theorem 20. There is a subcubic reduction from the 1/2-hyperbolic graph recognition problem to the
problem of detecting an induced quadrangle in a graph.

Proof. Let G = (V,E) be a connected graph. Since there exists a linear-time algorithm to recognize
0-hyperbolic graphs5, we will assume for the proof δ(G) > 0, or equivalently δ(G) ≥ 1/2. Let us fix

any c = logO(1) n, c ≥ 1, such that we can compute a c-factor approximation of the hyperbolicity in
subcubic-time. Three possible choices for c are given in Lemma 9, and two others ones are discussed in

5Recall that a graph is 0-hyperbolic if, and only if, it is a block-graph i.e., a graph whose biconnected components are
complete subgraphs [3, 24].
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§3.2.1.6. In the sequel, let δc(G) be a c-factor approximation of the hyperbolicity. Recall that we have
δ(G) ≤ δc(G) ≤ c.δ(G) by the hypothesis. So, if δc(G) > c/2, then we are done as the graph G is not
1/2-hyperbolic. Let us now assume that δ(G) ≤ δc(G) ≤ c/2. By Corollary 11, every isometric cycle of
G has length upper-bounded by 4δc(G) + 3 ≤ 2c+ 3, which is polylogarithmically upper-bounded.

We then compute all the graph powers Gi, for 1 ≤ i ≤ 2δc(G) + 1. This can be done in subcubic-
time, by first computing the distance-matrix of G in O(nω(1) log n)-time (see [36]). Moreover every Gi

has to be C4-free by Lemma 13. If so, then by Lemma 14, there is no isometric cycle Cl of length
6 ≤ l ≤ 4δc(G) + 3. Consequently, the graph G satisfies Condition 3. Finally, let us build G[2], which
can also be done in subcubic-time using the distance-matrix of G. By Lemma 16, the graph G[2] has to
be C4-free so that G is 1/2-hyperbolic. If it is indeed the case, then we have:

1. G[2] and all of Gi, 1 ≤ i ≤ 2δc(G) are C4-free, hence G satisfies Condition 4 by Lemma 17;

2. G[2] and the square graph G2 are both C4-free and so, G satisfies Condition 5 by Lemma 18.

Thus we can conclude by [1] that G is a 1/2-hyperbolic graph.

Corollary 21. There is a subcubic equivalence between the 1/2-hyperbolic graph recognition problem and
the C4-free graph recognition problem.

4 Finding a quadrangle

We will conclude this paper with an improved algorithm for the C4-free graph recognition problem, that
hence improves the best-known upper-bound on the time complexity of both Problem 2 and Problem 6
by the subcubic equivalence of Corollary 21. While the algorithm proposed in [37] relies on transitive
orientation, our algorithm merely reduces the whole Problem 6 to a fast rectangular matrix multiplication.

A quick reminding of the problem of matrix multiplication is given in §4.1, before we present our
algorithm to detect an induced quadrangle in §4.2.

4.1 Fast rectangular matrix multiplication

The study of fast matrix multiplication mainly focuses on the O(nω(1)) time complexity of multiplying
two n × n matrices, also known as the square matrix product. Currently, ω(1) is known to be less
than 2.3727 [38]. The rectangular matrix multiplication problem has received less attention, maybe
because the product of an n×m matrix with an m× p matrix is known to be reducible to square matrix
multiplications, yielding an O(qω(1)−2.max{mn,mp, np})-time complexity, for q = min{m,n, p} [25].

On the other hand, there is evidence that faster methods for the rectangular matrix multiplication
which do not rely on the square matrix product may exist. This is known to be the case even for truly
practical improvements of the matrix multiplication such as the Strassen algorithm and its variations [26,
28]. As stated below, the conjecture is (numerically) true w.r.t. the best known algorithms for square
and rectangular matrix multiplications.

Lemma 22 ([12, 25, 31, 38]). Let r ≥ 1 be a rational number. There exists a non-decreasing function
ω : [1; +∞[→ [2.3727;+∞[ such that multiplying an n× nr matrix with an nr × n matrix can be done in
O(nω(r))-time.

Furthermore, ω(2) ≤ 3.26, and for every r ≥ 1 we have ω(r) ≤ r + ω(1)− 1.

Note that reducing the rectangular matrix product to square matrix multiplications would have only
yielded ω(2) ≤ 3.3727.

A more efficient method is known for sparse matrices (e.g. see [41]).

6A careful reader will remark that the choice of c determines the maximum number of calls in the reduction to the
algorithm for detecting an induced quadrangle. There is a trade-off between this number and the running-time of the
c-factor approximation algorithm.
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4.2 An algorithm to count quadrangles in a graph

In this section, we essentially apply the local characterization of Fact 7. There are two main steps of
computation in our algorithm, that are described below.

Fact 23 ([36]). Given a graph G = (V,E), let A = (Au,v)u,v∈V be the adjacency matrix of G.
For every pair u, v ∈ V , we have A2

u,v = |N(u) ∩N(v)|.
Hence, d(u, v) = 2 if, and only if, u 6= v, Au,v = 0 and A2

u,v 6= 0.

Proof. By the definition of matrix multiplication, we have for every pair u, v ∈ V that:

A2
u,v =

∑

x∈V

Au,xAx,v =
∑

x∈V

I{{x,u}∈E}I{{x,v}∈E}

=
∑

x∈V

I{x∈N(u)}I{x∈N(v)} =
∑

x∈V

I{x∈N(u)∩N(v)}

= |N(u) ∩N(v)|.

Moreover, d(u, v) = 2 if, and only if, u 6= v, u and v are not adjacent in G (e.g. Au,v = 0), and
N(u) ∩N(v) 6= ∅. Clearly, we have that N(u) ∩N(v) 6= ∅ if, and only if, A2

u,v 6= 0.

Lemma 24. Given a graph G = (V,E), let T = (Tu,e)u∈V,e∈E be such that Tu,e = I{e⊆N(u)} for every
u ∈ V, e ∈ E.

For every pair u, v ∈ V , we have TT⊤
u,v = |{e ∈ E : e ⊆ N(u) ∩N(v)}|.

Proof. Similarly to the proof of Fact 23, we have by the definition of matrix multiplication that for every
pair u, v ∈ V :

TT⊤
u,v =

∑

e∈E

Tu,eT
⊤
e,v =

∑

e∈E

Tu,eTv,e =
∑

e∈E

I{e⊆N(u)}I{e⊆N(v)}

=
∑

e∈E

I{e⊆N(u)∩N(v)} = |{e ∈ E : e ⊆ N(u) ∩N(v)}|.

Combining Fact 23 and Lemma 24, we can now rely on Fact 7 in order to detect, to count and to
output induced quadrangles in the graph as follows.

Proposition 25. Counting the number of induced quadrangles in a a graph G, and returning an induced
C4 of G if any, can be done in O(nω(log

n
m)) = O(n3.26)-time.

Proof. First, it is straightforward that we can compute the adjacency matrix A of G in quadratic-time.
Using A, we can compute the matrix T = (I{e⊆N(u)})u∈V,e∈E , hence the transpose matrix T⊤ as well,
as they are defined in Lemma 24, in O(nm)-time.

Let us now compute A2 and TT⊤. This can be done, respectively, in O(nω(1)) = O(n2.3727)-time and
in O(nω(log

n
m)) = O(nω(2)) = O(n3.26)-time by Lemma 22.

By Fact 7, G is C4-free if, and only if, for every pair u, v ∈ V of non-adjacent vertices, we have that
N(u) ∩N(v) is a clique, e.g. that:

|{e ∈ E : e ⊆ N(u) ∩N(v)}| =
|N(u) ∩N(v)|(|N(u) ∩N(v)| − 1)

2
.

This is equivalent to have that TT⊤
u,v = A2

u,v(A
2
u,v − 1)/2 by Fact 23 and Lemma 24. Hence, it can be

checked with an enumeration of all the possible pairs u, v ∈ V , in quadratic-time.
We actually note that if there is some pair u, v ∈ V of non-adjacent vertices such that TT⊤

u,v <

A2
u,v(A

2
u,v − 1)/2, then there are exactly A2

u,v(A
2
u,v − 1)/2 − TT⊤

u,v induced quadrangles of G which
contain this pair of vertices (that is one quadrangle for each of the missing edges in G[N(u) ∩ N(v)]).
Consequently, there are exactly 1/4

∑

u,v∈V (1 − Au,v)(A
2
u,v(A

2
u,v − 1)/2 − TT⊤

u,v) induced quadrangles
in the graph, which can also be computed in quadratic-time, by an enumeration of all the possible pairs
u, v ∈ V .

To conclude, observe that if TT⊤
u,v 6= A2

u,v(A
2
u,v − 1)/2 for some pair u, v ∈ V of non-adjacent vertices,

then it is straightforward to compute an induced quadrangle of G containing u, v in quadratic-time.
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We remind the reader that there is only evidence that a fast rectangular matrix product can be
computed faster than up to the reduction to fast square matrix multiplications. However, we want to
highlight that, from a theoretical point of view, our algorithm for detecting an induced quadrangle is never
slower than the algorithm of [37]. The dominant term for the complexity of our algorithm is indeed the
fast rectangular matrix multiplication TT⊤ (e.g. Lemma 24), which can be computed in O(mnω(1)−1)-
time in the worst-case, using the reduction to fast square matrix products that we described earlier in
§4.1. In comparison, the time complexity of the algorithm of [37] is O(nω(1)+1).

Also, we emphasize that for graphs with few C3’s, a speed-up for the computation of TT⊤ can be
achieved using the results from [41] for sparse matrix multiplication. Indeed, the number of non-zero
elements in the matrix T is exactly 3.t(G), where t(G) denotes the number of C3 in the graph.

5 Conclusion

In this work, we proved an interesting equivalence between the complexity of the purelymetric problem of
recognizing 1/2-hyperbolic graphs, and the purely structural problem of detecting an induced quadrangle
in a graph. This shows a surprising gap in the complexity for recognizing graphs with small hyperbolicity,
as in comparison there is a linear-time algorithm to decide whether a graph is 0-hyperbolic.

Our reduction being subcubic, it remains open whether 1/2-hyperbolic graphs can be recognized in
linear-time, for some classes of graphs for which detecting an induced quadrangle is easy, like for instance
planar graphs [20]. Also, it would be nice to extend our results to find a better upper-bound on the
complexity of the problem of deciding if a graph is 1-hyperbolic. Note that this latter problem might be
easier than the recognition of 1/2-hyperbolic graphs, as the true difficulty may only lie in the distinction
between graphs with hyperbolicity exactly 1 and exactly 1/2. Any recognition algorithm in O(f(n))-time
for 1-hyperbolic graphs would furthermore yield a 4-factor approximation algorithm for the hyperbolicity
that runs in Õ(f(n) + nω(1))-time.

Acknowledgments

We wish to thank the referees for their reading of the first version of this manuscript, and their useful
comments. We would also like to thank Frédéric Havet and Fatima Zahra Moataz for helpful comments
on this work.

References

[1] Hans-Jürgen Bandelt and Victor Chepoi, 1-hyperbolic graphs, SIAM Journal on Discrete
Mathematics, 16 (2003), pp. 323–334.

[2] , Metric graph theory and geometry: a survey, Contemporary Mathematics, 453 (2008), pp. 49–
86.

[3] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, Journal of Combinatorial Theory,
Series B, 41 (1986), pp. 182–208.

[4] J. Baras, Hyperbolic embedding to the rescue in communication and social networks, in Bell Labs-
NIST Workshop on Large-Scale Networks, 2013.
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