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DYNAMIC MODEL ADAPTATION FOR MULTISCALE

SIMULATION OF HYPERBOLIC SYSTEMS WITH RELAXATION

H. MATHIS, C. CANCÈS, E. GODLEWSKI, N. SEGUIN

Abstract. In numerous industrial CFD applications, it is usual to use two

(or more) different codes to solve a physical phenomenon: where the flow is
a priori assumed to have a simple behavior, a code based on a coarse model
is applied, while a code based on a fine model is used elsewhere. This leads
to a complex coupling problem with fixed interfaces. The aim of the present
work is to provide a numerical indicator to optimize to position of these cou-
pling interfaces. In other words, thanks to this numerical indicator, one could
verify if the use of the coarser model and of the resulting coupling does not

introduce spurious effects. In order to validate this indicator, we use it in a
dynamical multiscale method with moving coupling interfaces. The principle

of this method is to use as much as possible a coarse model instead of the fine
model in the computational domain, in order to obtain an accuracy which is
comparable with the one provided by the fine model. We focus here on gen-
eral hyperbolic systems with stiff relaxation source terms together with the
corresponding hyperbolic equilibrium systems. Using a numerical Chapman-
Enskog expansion and the distance to the equilibrium manifold, we construct
the numerical indicator. Based on several works on the coupling of different
hyperbolic models, an original numerical method of dynamic model adapta-
tion is proposed. We prove that this multiscale method preserves invariant

domains and that the entropy of the numerical solution decreases with respect
to time. The reliability of the adaptation procedure is assessed on various 1D

and 2D test cases coming from two-phase flow modeling.

Key-words. Hyperbolic system, finite volume method, relaxation, multiscale
method, dynamic model adaptation, Chapman-Enskog expansion, two-phase flows.
Mathematics Subject Classification. 35L45, 65M08, 65M55, 35C20, 76T10

1. Introduction

Interface coupling of existing numerical codes. The problem we address en-
ters the framework of modeling of complex flows arising in industry. The phenom-
ena we consider imply that we have to handle different scales both in time and
space. It leads to the use of a hierarchy of models which differ according to these
scales. As an example, one may think about water circuits in pressurized water
reactors (PWR). It is clear that a complex model of phase transition has to be used
in the steam generator or in the condenser while simpler models are sufficient to
describe the flow in most parts of the pipes. Besides, in the case of loss-of-coolant
accident, only much more accurate models should be able to describe these highly
heterogeneous flows.

A direct consequence of the use of different models and numerical codes in disjoint
parts of the computational domain is the development of theoretical and numerical
techniques of multiscale coupling. The coupling has to be non intrusive because
of the complexity of the codes under study, leading to methods which only make
use of boundary conditions. This has been the subject of a series of works where
several methods of coupling have been proposed for hyperbolic systems of partial
differential equations [35, 33, 5, 4, 8, 17, 7, 6, 31, 13]. In all these works, the interface
of coupling which separates two different models is fixed. Since the models are
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different, there is not a consensual way of coupling, it depends on conservation and
continuity principles which may be in contradiction (see for instance the examples
in [7, 5]). As a consequence, the results vary according to the method of coupling
and the more the flux is disturbed at the coupling interface, the greater is the
sensibility to the coupling method. In order to avoid the dependence of the results
on the interface coupling, it is natural to locate the interface where its impact is
the most reduced.

This approach aims at reducing the complexity of the overall computation be-
cause solving the most accurate model is often out of reach or inappropriate. For
example, in the reactor vessel, 3D models of multiphase flows with phase transition
can be used, but, due to their complexity, such models might provide unexploitable
results in most regions of the primary loop, where the classical one-phase 1D Euler
equations with variable cross-section is more relevant. We are therefore concerned
by using as much as possible the coarser model. Thus, in some cases, this method
of model adaptation could lead to a decrease of the CPU cost, but it is not yet our
purpose here.

Optimization of the position of the coupling interfaces. Our goal is to
provide new tools to optimize the location of the interface, following the preliminary
work [54]. The context is the following: assume that the overall flow can be fully
described by an accurate model, the so-called fine model, which involves small scales.
We aim at detecting the regions of the computational domain where this fine model
can be replaced by a reduced one, the so-called coarse model, without deteriorating
the accuracy of the results. This model can be obtained by setting the small scales
to zero in the fine model. The whole procedure relies on the computation of a
(numerical) indicator, depending on time and space, that allows to perform the
parting of the computational domain into fine and coarse sub-domains. Such an
indicator has to measure the difference between the solutions of the fine model and
of the coarse one. Therefore, being given a threshold, it suffices to check whether
the indicator is less than this threshold or not. In the first case, this means that
replacing the fine model by the coarse model is possible, without introducing too
much error. In the latter case, we continue to use the fine model. This leads to a
multiscale method which dynamically selects the best model to use locally.

Of course, the development of such an indicator depends on the models under
investigation. As mentioned above, we want to apply our method to compressible
models of compressible two-phase flows. Due to the complexity of the underlying
PDE’s, see for instance [44, 28], we are not able to derive robust and guaranteed
criteria to position the interface, but the validation comes from the numerical ex-
periments.

Let us begin by introducing the general theoretical framework and the so-called
fine and coarse models.

Nonlinear systems of balance laws and hyperbolic relaxation. We focus in
this paper on hyperbolic systems with relaxation. The fine model basically takes
the form (more details are provided in Section 2.1)

(1) ∂tW +

d
∑

α=1

∂αF
α(W ) =

1

ε
R(W ),

with the initial conditionW (0, x) =W0(x), which governs the evolution of the state
vector W (x, t) : Rd × R

+ → Ω ⊂ R
n. Let us stress that ε is a positive constant

(independent of space, time and W ) which is assumed to be small (but it does not
tend to 0). Therefore, system (1) is said to be stiff. Following the pioneer works
on hyperbolic systems with stiff relaxation [53, 18, 62], we assume that there exists
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a linear operator P1 : R
n → R

k of rank k < n such that P1R(W ) = 0 for all
W ∈ Ω. In other words, if we denote u = P1W , system (1) includes k independent
conservation laws

∂tu+

d
∑

α=1

∂αP1F
α(W ) = 0.

We also assume that the equilibrium manifold {W ∈ Ω | R(W ) = 0} can be
parameterized in terms of u, that is to say there exists M : Rk → R

n such that for
all u we have R(M(u)) = 0. This leads to the definition of the equilibrium system

(2) ∂tu+

d
∑

α=1

∂αP1F
α(M(u)) = 0,

which is the so-called coarse model. Additional assumptions ensure that the solu-
tions of the fine model tend to solutions of the coarse model when ε → 0, see for
instance [53, 18, 62, 61], or in other words, that the leading order with respect to
ε of the solutions of the fine model (1) is governed by the coarse model (2).

As mentioned above, we aim at defining an indicator which measures the differ-
ence between the solution W of the fine model (1) and the solution u of the coarse
model (2). The main tool we use is based on the classical first-order Chapman–
Enskog expansion

(3) W =M(P1W ) + εW1 +O(ε
2)

which provides a representation formula of the first order term W1. As a result, for
some norm to be precised, ‖εW1‖ appears to be the right quantity for estimating
the difference between the fine model and the coarse model. At the numerical level,
the same method can be applied. On the basis of classical Finite Volume schemes
for the fine model (1), we perform a numerical Chapman–Enskog expansion which
provides the numerical counterpart of ‖εW1‖. Note that, since the source term
in (1) will be approximated in an implicit way, the computation of the numerical
indicator ‖εW1‖ should not require to solve (1). In practice, this indicator measures
the local smoothness of the solution and, in order to complete it, we also take into
account the distance to the equilibrium manifold. Other indicators could be derived
from error estimates of [61] between general balance laws and their equilibrium
counterparts; in [48], a more academic case is studied, but accounting for the error
due to the interface coupling.

Application to dynamic model adaptation. Let us now come back to our
original problem of coupling two models through a thin interface. If we have such
an indicator at our disposal, we may think that we are able to efficiently guess the
position of the interface. In order to assess the relevance of our indicator, we insert
it in a completely adaptive algorithm which automatically selects on-the-fly the
“right” model to use. More precisely, being given a threshold θ > 0, we compare in
each cell and at each time step our local indicator with θ: if it is greater than θ, we
conclude that the difference between the two models is large, then the fine model
is locally used; otherwise, we conclude that the coarse model can be used. Thus,
at each time step, the computational domain is divided in several parts where the
fine or the coarse model is used and at each interface, the two models are coupled.
This method can be too complex to hope any CPU time saving in the present form,
in particular when the dimensions of the fine and the coarse models are not very
different. However, this numerical indicator and the adaptive algorithm allow to
optimize the position of the coupling interfaces.
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Comparisons with related methods. Many numerical methods exist to address
model adaptation and multiscale methods. However, our motivations prevent us
from applying standard techniques to our problem since we are in a situation where
the numerical methods are already implemented in existing codes and cannot be
modified.

In particular, asymptotic preserving schemes (let us only refer to the pioneer
works [46, 50, 39] and the reviews [47, 38]) are designed to provide a numerical
scheme valid for both the fine model (1) and the coarse model (2) in such a way
that consistency, stability (thus convergence) and accuracy of this numerical scheme
are achieved independently of ε. Other similar techniques belong to the class of
heterogeneous multiscale methods and micro–macro decompositions. See for in-
stance [1, 49, 52, 22, 51] and also [29, 10, 14, 55, 36, 25, 11, 48] for related works
on coupling models with different scales. In particular, let us mention the work
by Degond, Dimarco and Mieussens [24] (and references therein, in particular [23])
where similar ideas are used to design adaptive methods in a kinetic–fluid context.

Moreover, the authors with Frédéric Coquel propose in [16] a complete analysis
for a simpler model to understand how to balance the errors due to the coupling
of models with the errors due to the dynamic and local replacement of the fine
model by the coarse model. This analysis enables to design a multiscale method
with model adaptation.

Outline of the paper. In Section 2 we present the hyperbolic model with re-
laxation we consider. Starting from the theory of Chen, Levermore and Liu [18],
we depict the general framework of hyperbolic systems with stiff relaxation. Per-
forming a Chapman–Enskog expansion, we show that the smooth solutions of the
relaxation system solve the associated equilibrium model up to second order terms.
Thus we obtain an explicit formula of the first order term of the expansion, which
is an element of the indicator we use thereafter to perform the adaptive method.
The remaining part of this section is dedicated to the numerical schemes for the
fine model and for the coarse model.

In Section 3 is presented the algorithm of model adaptation. The first step con-
cerns the construction of the numerical indicator. It is obtained, on the one hand,
by performing the same Chapman–Enskog expansion as in the previous section,
but on the numerical scheme. On the other hand, we take into account the dis-
tance to the equilibrium manifold. As the coarse model is the hyperbolic limit of
the fine relaxation model, we assume that the numerical scheme we use preserves
this asymptotic property, at least for the algorithm we provide in this section (see
Remark 1.1 for more details). This section ends with a thorough description of our
multiscale method based on a dynamic selection of the model. We also prove that
this method preserves admissible states and is entropy decreasing.

Section 4 is dedicated to numerical illustrations of model adaptation. We present
two different applications, where we compare the numerical solutions obtained us-
ing the fine model, the coarse model and the result of model adaptation. The first
example is a direct application of the previous sections. The systems are conserva-
tive and the entropy is strictly convex and satisfies the assumptions of [18]. The
compatibility of the numerical scheme (asymptotic preserving property) allows us
to perform exactly the adaptive method presented in Section 3. The second ex-
ample models flow with phase transition. The entropy of the model is not strictly
convex which leads to a degeneracy of the indicator for pure phases. In Section 5,
we present the last example which concerns compressible two-phase flows described
by the Baer–Nunziato model [9]. This test case does not enter the frame of the
previous sections since the fine model is not strictly hyperbolic and non conserva-
tive. It also involves a nonlinear source term. The coarse model is the so-called
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homogeneous two-fluid model, which is composed by four conservation laws (the
Euler equations endowed with a transport equation on the fraction of volume of
one phase). Here, we choose to drop the compatibility between the two numerical
schemes. Thus we provide a numerical scheme for the coarse model that is not
derived from the fine one. This implies that the numerical indicator cannot be
deduced from a Chapman–Enskog expansion on the fine scheme, we thus modify
our strategy by providing a classical discretization of the first order term obtained
in the continuous Chapman–Enskog expansion.

Remark 1.1. For the sake of conciseness, the models and methods are presented
in the standard relaxation framework defined in reference works, such as in [18].
But our approach easily extends to the applications we have in mind, which come
from nuclear thermohydraulics, leading to quite complex systems (non conservative,
non convex entropy. . . ). These models do not fulfill the assumptions we make in
Section 2. However, we will see that an adaptation procedure can be implemented
and provides interesting results.

2. Hyperbolic system with relaxation

2.1. Algebraic structure of relaxation. We consider the system of hyperbolic
equations with relaxation terms

(4) ∂tW +

d
∑

α=1

∂αF
α(W ) =

1

ε
R(W ),

with the initial conditionW (0, x) =W0(x). The state vectorW (t, x) : R+×Rd → Ω
belongs to the convex set Ω ⊂ R

n of admissible states. The flux and the source
term Fα, R : Rn → R

n, α = 1, . . . , d are supposed to be smooth. System (4) will
be referred to in the sequel as the fine model.

The chosen framework is that of Chen, Levermore and Liu [18] and we briefly
list the different assumptions, referring to [18] for their justification. There exists
a linear operator P1 : Rn → R

k of rank k, 1 ≤ k < n, such that

P1R(W ) = 0, ∀W ∈ Ω.

The operator P1 defines k conserved quantities u = P1W that satisfy

∂tu+

d
∑

α=1

∂αP1F
α(W ) = 0.

There also exists another linear operator P2 : Rn → R
n−k of rank n− k such that

the operator P =

(

P1

P2

)

is invertible in R
n. Defining for all W ∈ Ω, α = 1, . . . , d,

fα1 (P1W,P2W ) = P1F
α(W ), fα2 (P1W,P2W ) = P2F

α(W ),

r(P1W,P2W ) = P2R(W ),

and setting v = P2W we can rewrite the system (4) as

∂tu+

d
∑

α=1

∂αf
α
1 (u, v) = 0,(5)

∂tv +
d

∑

α=1

∂αf
α
2 (u, v) =

1

ε
r(u, v).(6)

The states W satisfying R(W ) = 0 are called equilibrium states or Maxwellians.
The equilibrium manifold M = {W ∈ Ω | R(W ) = 0} is parameterized in terms
of the k conserved quantities u = P1W and we can define a one-to-one mapping
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M : P1Ω → M such that u uniquely determines a local equilibrium value Weq =
M(u) ∈M and P1M(u) = u for all u ∈ R

k. Let us also introduce the smooth map
veq : P1Ω→ P2Ω defined by

(7) veq(u) = P2M(u)

and the operator P from R
n to R

n, satisfying

(8) P : Z = (u, v)T 7→ PM(u) = (u, veq(u))
T .

Then r(u, veq(u)) = 0, for all u ∈ P1Ω. Furthermore we assume that the mapping

(9) v 7−→ r(u, v)

is a C1-diffeomorphism on a neighborhood of veq(u).
When ε is small with respect to the characteristic quantities of the system (4),

the solutions of (4) are near equilibrium and we may consider the reduced system

∂tP1W +
d

∑

α=1

∂αP1F
α(M(P1W )) = 0,

that can also be written

(10) ∂tu+

d
∑

α=1

∂αf
α
1 (u, veq(u)) = 0.

System (10) is referred to in the sequel as the coarse model.
Assume now that the relaxation system (4) is endowed with a convex entropy

Φ : Ω→ R satisfying:

(i) ∇2Φ(W )∇F (W ) · ξ is symmetric for all W ∈ Ω and ξ ∈ R
d,

(ii) ∇Φ(W )TR(W )≤0, ∀W ∈ Ω.

The condition (i) is the classical Lax condition for hyperbolic conservation laws (see
e.g. [34]). It ensures the existence of an entropy flux Ψ : Ω→ R

d such that

(11) ∇Φ(W )T∇F (W ) = ∇Ψ(W )T , ∀W ∈ Ω.

Every classical solution of (4) satisfies

(12) ∂tΦ(W ) +
d

∑

α=1

∂αΨ
α(W ) =

1

ε
∇Φ(W )TR(W ),

and the second condition (ii) implies that the relaxation system is entropy dissipa-
tive since the right-hand side of (12) is non-positive. Besides the restriction of the
entropy pair (Φ,Ψ) on the equilibrium manifoldM

φ(u) := Φ(M(u)), ψ(u) := Ψ(M(u)),

gives an entropy pair (φ, ψ) for the system (10), so that the equilibrium system is
hyperbolic (see [18] for a detailed proof).

2.2. Chapman–Enskog expansion and dissipation. We now focus on the re-
laxation system (5–6). Let us recall the classical result based on the Chapman–
Enskog expansion.

Proposition 2.1. Up to terms of order ε2, the smooth solutions of the relaxation
system (5–6) satisfy (at least formally)

∂tu+

d
∑

α=1

∂αf
α
1 (u, veq(u)) = −ε

d
∑

α=1

∂α (∇vf
α
1 (u, veq(u))v1) ,(13)

v = veq(u) + εv1,(14)
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where

(15)

v1 =
(

∇vr(u, veq(u))
)−1

[ d
∑

α=1

∂αf
α
2 (u, veq(u))

−∇veq(u)
T

d
∑

α=1

∂αf
α
1 (u, veq(u))

]

.

Proof. Let us consider the Chapman–Enskog expansion

vε = veq(u) + εv1 +O(ε
2).

Plugging it into (5–6) leads to

∂tu+
d

∑

α=1

∂αf
α
1 (u, veq(u)) = −ε

d
∑

α=1

∂α (∇vf
α
1 (u, veq(u))v1) +O(ε

2),

∂tveq(u) +

d
∑

α=1

∂αf
α
2 (u, veq(u)) = −∇vr(u, veq(u))v1 +O(ε).

The first system of equations is exactly (13) up to ε2 terms. If we multiply it
by ∇veq(u)

T and combine it with the second system of equations, we obtain the
expression of the first order correction term v1 (15). �

Note that the first order term v1 is merely an explicit function of u.
The system (13–15) is a closed system of order 2 which can be seen as an in-

termediate model between the fine model (5–6) and the equilibrium model (10):
formally, smooth solutions of (13–15) solve (5–6) up to terms of order ε2 and, on
the other hand, when ε tends to 0 one recovers the equilibrium model (10).

For stability reasons, one may expect that the second order term in (13–15) is
dissipative. Note that this hypothesis is not verified without further assumptions,
but following [12] and [18], the existence of a uniformly convex entropy satisfying
(i) and (ii) implies that the second order correction term of (13–15) is dissipative
(this is the so-called sub-characteristic condition).

Remark 2.1. Let us recall that the Chapman–Enskog expansion is not valid near
discontinuities, the above calculus requires the solution to be smooth.

2.3. Numerical schemes. We now detail the scheme associated with the fine
model (5–6).

Let us consider a mesh Th of the computational domain D ⊂ R
d made of cells

K, that are polygonal disjoint open subsets. If K and L are two neighboring
cells (in the sequel we will use the notation L ∈ N (K)) their common face is
denoted eKL = K ∩ L and nKL is the outgoing unit normal to K. The notations
|K| and |eKL| refer to the volume of the cell K and the surface of the edge eKL

respectively. We denote ∆t the time step and the sequence of time steps (tn)n such
that tn+1 = tn +∆t, for all n ∈ N. We define the approximation of the initial data
by

W 0
K =

1

|K|

∫

K

W0(x)dx.

The finite volume formulation is obtained by integrating the system (5–6) on the
space-time domain [tn, tn+1] × K and we introduce the two numerical fluxes F1

and F2, respectively consistent with the fluxes f1 and f2 in (5–6). The relaxation
system is approximated using a splitting strategy between the convective part and
the source term. Suppose the approximation Wn

K , for all K ∈ Th, is known at time
tn and let us introduce the notation

Zn
K = (unK , v

n
K)T = PWn

K .



8 H. MATHIS, C. CANCÈS, E. GODLEWSKI, N. SEGUIN

For simplicity, the numerical schemes are expressed in terms of Zn
K instead of Wn

K .
In a first step, from tn to an intermediate time tn+1,−, the convective part is
approximated by

un+1,−
K = unK −

∆t

|K|

∑

L∈N (K)

|eKL|F1(Z
n
K , Z

n
L, nKL),(16)

vn+1,−
K = vnK −

∆t

|K|

∑

L∈N (K)

|eKL|F2(Z
n
K , Z

n
L, nKL).(17)

Then the value Zn+1,−
K is taken as the initial data for solving the source term:

un+1
K = un+1,−

K ,(18)

vn+1
K = vn+1,−

K +
∆t

ε
r(un+1

K , vn+1
K ).(19)

The classical implicit Euler scheme is chosen in order to ensure the unconditional
stability of the second step.

Remark 2.2. Somehow formally, we assume that the drawback of this method is
due to the resolution of the source term, so that the underlying resolution may be
costly and complex. For instance, alternative methods can be found in [30], and
in [27] for high order time discretizations.

One may easily deduce a numerical scheme for the coarse model (10). The first
step remains unchanged. The second step reduces to take v at equilibrium. The
resulting numerical scheme is simply

un+1
K = unK −

∆t

|K|

∑

L∈N (K)

|eKL|F1(Z
n
K , Z

n
L, nKL),(20)

vn+1
K = veq(u

n+1
K ).(21)

The use of this numerical scheme avoids any computation of v: (17) is not used
and the discretization of the stiff source term (19) is replaced by (21).

In practice, the numerical scheme for the coarse model (10) can be different
(see Section 4). Nonetheless, requiring the above compatibility between the two
numerical schemes enables us to define the adaptive method in a simpler way.

3. Model adaptation

As mentioned previously the problematic we are interested in is to guess where
the fine model can be replaced by the coarse model.

The decomposition of the computational domain into a fine and a coarse sub-
domain relies on the use of an indicator, the computation of which we now describe.
This indicator relies both on a discretization of the first order correction term v1
resulting from the Chapman–Enskog expansion (see Section 2.2, proposition 2.1),
and on the distance to the equilibrium manifold, which is more precisely v−veq(u).
This indicator allows us to realize the dynamic decomposition of the space and time
computational domain.

At the end of this section, we precise the adaptive method based on the coupling
of the relaxation model and of the equilibrium one at each sub-domain interfaces.

3.1. General ideas. At each time step, the strategy is to detect a sub-domain
(non necessarily connected) where the fine model can be replaced by the coarse
one. Let Df (t) (resp. Dc(t)) be the sub-domain where the fine model (resp. the
coarse model) has to be solved. We impose that the sub-domains do not intersect:

Df (t) ∪ Dc(t) = D, Df (t) ∩ Dc(t) = ∅.
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At the interfaces between the sub-domains Df (t)∩Dc(t) a coupling strategy has to
be applied.

The first part of the indicator is based on the Chapman–Enskog expansion de-
scribed in Proposition 2.1. We make the assumption that the difference between
the solution of the fine model (5–6) and the solution of the coarse model (10) can
be measured by some norm of εv1, defined by (14–15). Therefore, if ‖εv1‖ is less
than a given threshold, then the coarse model is solved and if ‖εv1‖ is larger, the
fine model is solved.

It is well-known that the Chapman–Enskog expansion is only valid for smooth
solutions and in the neighborhood of the equilibrium manifold M. The quantity
‖εv1‖ measures the local smoothness of the solution. Since it vanishes for constant
in space solutions, we have to consider also the distance to the equilibrium manifold
M, by simply computing ‖v−veq(u)‖, which in some sense measures the error with
respect to time (see Appendix A for more details). The resulting indicator formally
writes E = max(ε‖v1‖, ‖v − veq(u)‖), and depends on t and x.

A tolerance θ being given, the parting procedure reads as follows:

• The region where E ≤ θ is chosen to be Dc(t). In that domain the error
between the equilibrium model and the relaxation one is assumed to be
negligible, so that the coarse model (10) is applied.

• The domain Df (t) corresponds to the region where E > θ and the relaxation
model (5–6) is solved inside.
• At the interfaces separating the sub-domains Dc(t) and Df (t), a numerical
coupling method, like the ones developed in [7, 15], is used.

3.2. Numerical indicator. Let us now build the numerical indicator. To do so,
we first use the Chapman–Enskog expansion at the discrete level on the numerical
scheme (16–19).

Proposition 3.1. Let us consider the numerical scheme (16–19). Then, up to
terms of order ε2, one has

(22) vn+1
K = veq(u

n+1
K ) + εvn+1

1,K ,

where

(23)
vn+1
1,K =

(

∇vr(u
n+1
K , veq(u

n+1
K ))

)−1

|K|

∑

L∈N (K)

|eKL|
[

F2(P(Z
n
K),P(Zn

L), nKL)

+∇veq(u)
TF1(P(Z

n
K),P(Zn

L), nKL)
]

,

where P is defined in (8) and u satisfies

∇veq(u)
T (un+1 − un) = veq(u

n+1)− veq(u
n).

The term vn+1
1,K is a first order approximation of v1 at time tn+1 in cell K.

Proof. We plug the ansatz (22) in the numerical scheme (16–19) and, noting Zn
1,K =

(0Rk , vn1,K)T for all K ∈ Th, we obtain

(24)

un+1
K = unK +

∆t

|K|

∑

L∈N (K)

|eKL|

[

F1(P(Z
n
K),P(Zn

L), nKL)

+ ε
(

∇1F1(P(Z
n
K),P(Zn

L), nKL)
)T
Zn
1,K

+ ε
(

∇2F1(P(Z
n
K),P(Zn

L), nKL)
)T
Zn
1,L

]

+O(ε2),
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where ∇βF1(Z1, Z2, n), β = 1, 2, is the partial derivative of F1 with respect to Zβ .
We also obtain

(25)

veq(u
n+1
K ) = veq(u

n
K) +

∆t

|K|

∑

L∈N (K)

|eKL|F2(P(Z
n
K),P(Zn

L), nKL)

+ ∆t
(

∇vr(u
n+1
K , veq(u

n+1
K ))

)T
vn+1
1,K +O(ε).

Since veq is smooth, there exists u(., .) such that:

∀u1, u2 ∈ P1Ω, veq(u2)− veq(u1) = [∇veq (u(u1, u2))]
T
(u2 − u1).

Multiplying (24) by
[

∇veq(u(u
n
K , u

n+1
K ))

]T
and dropping terms of order ε leads to

veq(u
n+1
K ) = veq(u

n
K)−

∆t

|K|
∇veq(u)

T
∑

L∈N (K)

|eKL|F1(P(Z
n
K),P(Zn

L), nKL).

Combining with (25) and dropping terms of order ε provides (23). Using the con-
sistency of the numerical fluxes, it is easy to check that (23) is a consistent approx-
imation of the continuous formula (15). �

Note that replacing the terms vn1,K and vn1,L into (24) using the expression (23)

could allow us to determine the discrete counterpart of the parabolic system (13).
Moreover, one can check that the zeroth order part of (24) coincides with the coarse
scheme (20–21), which is consistent with what holds at the continuous level.

In practice, the terms ∇veq(u(u
n
K , u

n+1
K )) and (∇vr(u

n+1
K , veq(u

n+1
K )))−1 are re-

spectively approximated by ∇veq(u
n
K) and (∇vr(u

n
K , veq(u

n
K)))−1 to make the com-

putation of the indicator fully explicit. This leads to the following modified expres-
sion of vn+1

1,K :

(26)
v̄n+1
1,K =

(∇vr(u
n
K , veq(u

n
K)))

−1

|K|

∑

L∈N (K)

|eKL| [F2(P(Z
n
K),P(Zn

L), nKL)

+∇veq(u
n
K)TF1(P(Z

n
K),P(Zn

L), nKL)
]

.

Moreover, we include in the numerical indicator the distance to the equilibrium
at time tn, which writes ‖vnK − veq(u

n
K)‖. We deduce the following numerical

indicator :

(27) En+1
K := max(ε‖v̄n+1

1,K ‖, ‖v
n
K − veq(u

n
K)‖).

This provides an estimate of the difference of the solutions given by the two schemes
at time tn+1, as an explicit function of the discrete solution (unK , v

n
K), for allK ∈ Th,

(at time tn) that is known within the whole computational domain. The first
argument in the right-hand side (27) measures the local smoothness due to the
relaxation source term. Even if εv̄n+1

1,K provides an estimate of the error at time tn+1,
it is not sufficient: in the case of constant in space solutions away from equilibrium,
this quantity vanishes. However, in such a case, the second argument is positive
and therefore the numerical indicator En+1

K remains relevant (see Appendix A for
more details).

3.3. Model adaptation and coupling. The model adaptive method is performed
at each time step tn. Assume that the subdivision of the computational domain
into Df (t

n)× (tn, tn+1) and Dc(t
n)× (tn, tn+1) is known. The adaptive method we

propose consists in solving the following spatially coupled problem for all n ∈ N:










(4) is solved in Df (t
n)× (tn, tn+1),

(10) is solved in Dc(t
n)× (tn, tn+1),

+ coupling conditions in Df (tn) ∩ Dc(tn)× (tn, tn+1).
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Several coupling conditions can be considered. In the following we favor state
coupling, as presented for instance in [15, 7]. Let K be a cell belonging to the fine
domain Df (t

n) and L its neighbor belonging to the coarse domain Dc(t
n). Then at

the edge eKL, we impose (unL, veq(u
n
L)) as Dirichlet boundary condition for the fine

model and unK as Dirichlet boundary condition for the coarse model: if K ∈ Df (t
n)

and L ∈ Dc(t
n), the numerical fluxes are

(C1)
(

F1(Z
n
K ,P(Z

n
L, )nKL), F2(Z

n
K ,P(Z

n
L, )nKL)

)

for the computation of Zn+1,−
K by

the fine scheme (16–17),
(C2) F1(P(Z

n
L, )Z

n
K , nLK) for the computation of Zn+1

L by the coarse scheme (20),
written on cell L.

This amounts to impose in a weak sense the continuity of u and v = veq(u) through
the coupling interface (see [35, 33]).

Remark 3.1. One may impose other coupling conditions. For instance the equation
on u being solved everywhere, one may impose the continuity of the flux f1 through
the interface eKL. This strategy of flux coupling is not tested here but may have
special interest in some cases (see for instance Section 4). The algorithm will put
the interfaces so that, in their neighborhood, the fine and the coarse models are
mostly equivalent, the fine model being close to equilibrium, thus all the coupling
strategies may be supposed to provide similar results.

3.4. Adaptive method. We now detail the general algorithm of the dynamic
coupling between the fine and the coarse models. Let Zn

K be the solution in the cell
K known at time tn to be updated to time tn+1. The algorithm reads as follows
(recall that θ is a given threshold for defining the partition):

A) For all cell K ∈ Th, compute the numerical indicator En+1
K given by (27)

B) For all cell K ∈ Th, if [|E
n+1
K | > θ] then

- K ∈ Df (t
n)

Else
- K ∈ Dc(t

n)

C) At this stage, Df (tn) ∪ Dc(tn) = D.
For all cell K ∈ Th:

- If [K ∈ Df (t
n) and for all L ∈ N (K), L ∈ Df (t

n)]

- Compute Zn+1
K using the numerical scheme (16–19).

- If [K ∈ Dc(t
n) and for all L ∈ N (K), L ∈ Dc(t

n)]
- Compute Zn+1

K using the numerical scheme (20–21).
- Else

- Compute Zn+1
K using the state coupling method (C1-C2).

This adaptive method satisfies some basic properties:

Proposition 3.2. (i) The adaptive method (A–B–C) is conservative with respect
to u.

(ii) If the initial condition W0 is a constant equilibrium (i.e. W0 ∈ M), then for
all K ∈ Th and n ≥ 0, Zn

K = PW0. In other words, the adaptive method
exactly provides the constant solution of the original relaxation system (1).

These properties (also discussed in [23] for instance) can be easily proved. The
first one directly follows from the conservation assumption F1(Z

n
K ,P(Z

n
L), nKL) =

−F1(P(Z
n
L), Z

n
K , nLK) which is verified by the coupling conditions (C1-C2). The

second one is deduced by the consistency of the numerical fluxes and by the use of
the state coupling (C1-C2).

In order to investigate the nonlinear stability of the adaptive method, let us
focus on an equivalent formulation.
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3.5. Alternative formulation and properties. Using notations f = (f1, f2)
T

and S = (0, r)T , system (5–6) can be written as

(28) ∂tZ +

d
∑

α=1

∂αf
α(Z) =

1

ε
S(Z).

Following [37] and denoting by Z(tn+) the right-value of t 7→ Z(t) at t = tn, the
classical time-splitting discretization of (28) can be written

(29) ∂tZ +

d
∑

α=1

∂αf
α(Z) =

∆t

ε

∞
∑

n=1

S(Z(tn+))δ(t− tn),

where δ stands for the classical Dirac measure. System (29) is the continuous-in-
space version of the fine numerical scheme (16–19). Indeed, writing the Rankine–
Hugoniot jump relations for (29) through {t = tn} yields

Z(tn+)− Z(tn−) =
∆t

ε
S(Z(tn+))

where Z(tn−) is the left-value of t 7→ Z(t) at t = tn, which is exactly the implicit
Euler method for ∂tZ = 1

εS(Z).
On the other hand, since the coarse numerical scheme (16–17) and (20–21) fits

the relaxation process discretized in (16–19), the coarse scheme can be interpreted
as

(30) ∂tZ +

d
∑

α=1

∂αf
α(Z) =

∞
∑

n=0

(

P(Z(tn−))− Z(tn−)
)

δ(t− tn),

where P is defined in (8). Indeed, (30) yields

Z(tn+)− Z(tn−) = P(Z(tn−))− Z(tn−) =⇒ Z(tn+) = P(Z(tn−)).

Now, let us recall that the decomposition of the computational domain is per-
formed according to the sign of [E(Z(tn−)) − θ]. Hence the semi-discrete method
of model selection can be formally written as
(31)

∂tZ +

d
∑

α=1

∂αf
α(Z) =

∆t

ε

∞
∑

n=1

S(Z(tn+))δ(t− tn)1{E(Z(tn−))>θ}(x)

+

∞
∑

n=0

(

P(Z(tn−))− Z(tn−)
)

δ(t− tn)1{E(Z(tn−))≤θ}(x),

the system (31) being complemented with the initial data Z(t0−) = Z0.
At this stage, in order to describe thoroughly the adaptive method, it remains

to:

(i) define the coupling at each interface between the two sub-domains,
(ii) introduce the space discretization (for instance, in the context of the Godunov

scheme, it suffices to use the L2-projection on the set of constant-by-cell func-
tions).

As far as the definition of the coupling is concerned, the use of the classical state
coupling deeply simplifies the adaptive method since, as mentioned before, the same
numerical flux F1 is used in the coupling conditions (C1-C2) for both cells at the
coupling interface, with the result that the whole computation of u is conservative.
Assuming that Z(tn, ·), Df (t

n) and Dc(t
n) are defined (which is the case after

steps A and B), step C can be split in the following way:
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C’.a) Project onto the equilibrium manifold in the coarse sub-domain:

(32) Za(tn, x) =

{

P(Z(tn, x)) if x ∈ Dc(t
n),

Z(tn, x) if x ∈ Df (t
n).

C’.b) Solve the Cauchy problem of the homogeneous part of (31):

(33)







∂tZ
b +

d
∑

α=1
∂αf(Z

b) = 0, t ∈ (tn, tn+1), x ∈ R
d,

Zb(tn, x) = Za(tn, x), x ∈ R
d,

and obtain Zb(tn+1, ·).
C’.c) Solve the source terms of (31):

• In Df (t
n), solve the Cauchy problem

(34)

{

∂tZ
c = ∆t

ε S(Z
c), t ∈ (tn, tn+1), x ∈ Df (t

n),

Zc(tn, x) = Zb(tn+1, x), x ∈ Df (t
n).

• In Dc(t
n), compute

(35) Zc(tn+1, x) = P
(

Zb(tn+1, x)
)

, x ∈ Dc(t
n).

C’.d) Update the value of Z:

(36) Z(tn+1, x) = Zc(tn+1, x), x ∈ R
d.

If the homogeneous system (33) is solved by the fine numerical scheme (16–19) and
if the system of ODE’s (34) is solved by the implicit Euler scheme (18–19), then
the steps (C’.a–C’.d) are equivalent to step C. This decomposition of the adaptive
method enables us to state the following fundamental stability property:

Proposition 3.3. The continuous-in-space version of adaptive method (A–B–C’)
is entropy decreasing, which means that its solution W = PZ satisfies

(37)

∫ d

R

Φ(W (tn+1, x))dx ≤

∫ d

R

Φ(W (tn, x))dx.

Moreover, if the fine numerical scheme (16–19) is entropy satisfying in the sense
of Harten, Lax and van Leer [41], then the fully discrete adaptive method (A–B–C)
is entropy decreasing, that is to say

(38)
∑

K∈Th

Φ(Wn+1
K ) ≤

∑

K∈Th

Φ(Wn
K)

where Wn
K = PZn

K .

The proof is straightforward since each step C’.a and C’.c makes the entropy de-
crease pointwise, that is to say for almost every x ∈, Φ(PZa(tn, x)) ≤ Φ(PZ(tn, x))
and Φ(PZc(tn+1, x)) ≤ Φ(PZc(tn, x)).

A similar proposition holds if one assumes that Ω is a convex invariant domain,
that is to say: if W0(x) ∈ Ω for all x ∈ R

d, then the solution W of (4) satisfies
W (t, x) ∈ Ω for all (t, x) ∈ R

+ × R
d.

Proposition 3.4. Assume that Ω is a convex invariant domain. The continuous-
in-space version of adaptive method (A–B–C’) preserves the invariant domain Ω.
Moreover, if the fine numerical scheme (16–19) preserves the invariant domain Ω,
then the fully discrete adaptive method (A–B–C) preserves the invariant domain Ω.

The proof is also straightforward since one may easily check that each step of
the adaptive methods preserves the invariant domain.
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4. Numerical applications

We provide in this section some numerical examples to illustrate the reliability
of the indicator (27) and the relevance of its use for dynamic model adaptation.
In particular, we do not restrict ourselves to models which strictly fulfill the as-
sumptions we made in Section 2, extending our method to more complex systems,
of great interest for the applications we have in mind (which come from thermo-
hydraulics in the context of nuclear reactors). In what follows, only the Chaplygin
gas model presented in Section 4.1 falls in this theoretical framework.

First we consider the Chaplygin gas model, that consists in the barotropic Euler
equations with relaxation, corresponding to rate-type fluids of Suliciu [60]. The
simple form of the source term allows us to exhibit a dissipative convex entropy.
We present one test case, inspired by [24] (we also provide another test case for
this system in Appendix A which concerns the study of the different parts of the
numerical indicator).

Secondly, we consider a phase transition model. In that case the entropy is no
longer strictly convex and the Chapman–Enskog expansion may not be valid. In
particular, the Chapman–Enskog part of the indicator (27) vanishes in pure phases.

We will address in the last section the approximation of the solutions of the
compressible seven-equation two-phase flow model. Although this model does not
enter the frame of the section 2 (non convex entropy, non-strictly hyperbolic and
non conservative model, incompatible numerical schemes for the fine and coarse
models. . . ), the adaptation process is carried out, leading to a slightly different
adaptive method.

In all the following tests, we compare the results provided by the numerical
scheme (16–19) for the fine model (5–6), which corresponds to the reference solution,
with the results provided by the adaptive method developed in Section 3. We also
show the results obtained by the numerical scheme (20–21) for the coarse model (10)
in order to verify that they are very different from those of the reference solution
and that model adaptation is really needed.

4.1. Chaplygin gas model. We first consider a relaxation model which describes
Chaplygin gas [59]. The one-dimensional problem we address corresponds to a fluid
flow governed by the relaxation system

(39)

∂tτ − ∂xu = 0,

∂tu+ ∂xΠ(τ, T ) = 0,

∂tT =
1

ε
(Teq(τ)− T ),

where Teq(τ) = τ . This model is also derived from the works of Suliciu [60] on
rate-type fluids. The state variable τ and u stand for the specific volume and the
velocity while T is a perturbed specific volume. The extended pressure law Π is
defined by

Π(τ, T ) = p(T ) + a2(T − τ),

where p follows a perfect gas law p(T ) = T −γ , with γ = 1.4 and a = 1.5 in the
tests hereafter.

The associated equilibrium system is obtained setting T = Teq(τ) and corre-
sponds to the barotropic Euler equations in Lagrangian coordinates:

(40)
∂tτ − ∂xu = 0,

∂tu+ ∂xp(τ) = 0.
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An admissible entropy for the Suliciu system is (see [20])

Φ(τ, u, T ) =
1

2
|u|2 +

1

1− γ
T 1−γ +

a2

2
(T 2 − τ2) + (T −γ + a2T )(τ − T ).

This entropy is strictly convex and dissipative with respect to the source term under
the so-called Whitham’s condition

a2 > max
s

(−p′(s)).

This condition also implies that the Chapman–Enskog expansion is dissipative, see
for instance [12]. We consider Rusanov numerical fluxes [56] and, using the previous
computations (27), we obtain

v̄n+1
1,K =−

1

2∆x
(p(τnK+1) + p(τnK)− aK+1/2(u

n
K+1 − u

n
K)

− p(τnK)− p(τnK−1) + aK−1/2(u
n
K − u

n
K−1))

and the numerical indicator is defined by (27).

4.1.1. Shock tube test case. We are focusing on a shock tube for the model (39) with
ε = 2.10−2, with classical homogeneous Neumann conditions at the boundaries of
the domain [−1, 1]. The initial data is

(τ, u, T )(0, x) =

{

(1, 0, 1) if x < 0,

(0.8, 0, 0.8) else.

For the numerical simulations, the mesh is composed by 200 cells and the thresh-
old θ for the selection of the appropriate model is equal to 5.10−5 as in the previous
case. The numerical results are gathered in Figures 1 and 2. The solution is com-
posed by two fronts which start from the center of the domain, one going to the
left and the other to the right. The solution of the coarse model (40) is composed
by a shock wave which moves to the left and by a rarefaction wave which moves to
the right.

Numerical results at T1 = 0.2. The reference solution provided by the fine model
corresponds to the red curve (which is actually hidden by the blue points). One
can see the formation of the two fronts, with an intermediate state. The difference
between the profiles of τ and T shows that the fronts are far from the equilibrium
T = Teq(τ). In particular, the coarse model provides sharper fronts.

The results of the adaptive method are superposed with the results of the fine
model. In particular, the diffused fronts are very well approximated for all the
variables. The numerical indicator is plotted in Figure 2–right and we can see that
the variations are localized at the fronts. It is very interesting to note that the
numerical indicator detects the equilibrium region in the neighborhood of x = 0
and that the coarse model is used there while the fine model is used at the fronts.

Numerical results at T2 = 0.4. The two fronts continue to propagate and the dif-
ference between the results for the fine model and for the coarse model are similar
to those at the previous time and are located at the extremities of the front. The
intermediate part is expending and is composed to a constant equilibrium state.

The regions where the numerical indicator varies still correspond to the fronts
and the profiles provided by the adaptive method are very similar to the reference
profiles. The fine model is only used by the adaptive method near the fronts and
one can check that the the intermediate state is solved using the coarse model, see
Figure 2–right.



16 H. MATHIS, C. CANCÈS, E. GODLEWSKI, N. SEGUIN
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Figure 1. Shock tube: specific volume τ (left), perturbed specific
volume T (right).
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Numerical results at T3 = 0.6. At this time, the two fronts begin to exit from the
domain. Let us recall that we impose free boundary conditions. They do not affect
the solutions, no reflection is detected.

Since the numerical indicator is local, any boundary condition which is imposed
by a “ghost cell” method can be handled without any difficulty. Indeed, the results
provided by the adaptive method are very close to those of the fine model and one
can check that no spurious effect appears at the boundaries.

Numerical results at T4 = 0.8. Here, the two fronts are almost out of the domain.
The solution is composed by the end parts of the fronts and a large constant equi-
librium state.

The partition obtained by the adaptive method is once again in agreement with
the solution. The fine model is only used at the boundaries, where the fronts are
still present. The domain where the coarse model is used now represents 70% of
the whole domain and corresponds to the intermediate constant state.

4.1.2. Shock tube test case: convergence with respect to the threshold. We now il-
lustrate the convergence of the solution of the adaptation algorithm towards the
solution provided by the fine model. To do so, we compute the L1 difference be-
tween the perturbed specific volume T obtained by the adaptation algorithm and
the one obtained by the fine model, for several values of the threshold θ.

In Fig. 3, we plot in a Log–Log scale this difference with respect to θ. We can
observe a monotone decrease of the error, of order 1. Moreover, the error is bounded
by the difference between the fine and the coarse model (blue curve in Fig. 3), as
expected.

4.2. Phase transition model. We now address the numerical approximation of
a liquid–vapor compressible flow (see [7]). Each phase, denoted β = 1 or 2, is
described by its own Equation of State (EoS) and thermodynamical quantities: ρβ
denotes the density, τβ = 1/ρβ the specific volume, eβ the internal energy. We
assume that both phases are described by a perfect gas law, such that the pressure
pβ , the temperature Tβ and the entropy of each phase are classically given by:

pβ(ρβ , eβ) = (γβ − 1)ρβeβ ,

Tβ = eβ ,

sβ = ln
(

eβρ
γβ−1
β

)

,

where γβ > 1 stands for the polytropic exponent. We also introduce the chemical

potential gβ =
pβ
ρβ
− Tβsβ + eβ .

The density of the fluid is related to those of both phases by the following
relations

ρ = αρ1 + (1− α)ρ2,

(ρ−1 =) τ = ϕτ1 + (1− ϕ)τ2,

where α and ϕ denote respectively the volume fraction and the mass fraction of
the gaseous phase. The thermodynamical equilibrium between both phases corre-
sponds to the equality of pressures, temperatures and chemical potentials. It is
characterized by the following fractions at equilibrium:

ϕeq(ρ) =
τ − τ∗2
τ∗1 − τ

∗
2

, αeq(ρ) =
ρ− ρ∗2
ρ∗1 − ρ

∗
2

, τ∗1 =
1

ρ∗1
, τ∗2 =

1

ρ∗2
,

together with

ρ∗1 = exp(−1)

(

γ2 − 1

γ1 − 1

)

γ2
γ2 − γ1 , ρ∗2 = exp(−1)

(

γ2 − 1

γ1 − 1

)

γ1
γ2 − γ1 .
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Solutions at time T1 = 0.2
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Solutions at time T2 = 0.4
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Solutions at time T3 = 0.6
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Figure 2. Shock tube: velocity u (left), characteristic function of
the fine model and numerical indicator (right).
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Figure 3. Shock tube: L1 error (in Log–Log scale) between the
fine model and the adaptation algorithm w.r.t. θ: perturbed spe-
cific volume T .

These two constant densities define the saturation states. The fine model we con-
sider corresponds to the Euler equations coupled with a transport equation of the
mass fraction:

(41)

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = 0,

∂t(ρE) + div((ρE + p)u) = 0,

∂t(ρϕ) + div(ρuϕ) =
1

ε
(ϕeq(ρ)− ϕ),

where E = e + |u|2/2 stands for the total energy of the fluid and the complete
equilibrium mass fraction is defined by

ϕeq(ρ) =











1 if ρ ≤ ρ∗1,

ϕe(ρ) if ρ∗1 ≤ ρ ≤ ρ
∗
2,

0 if ρ∗2 ≤ ρ.

To close the system, we consider the EoS

p = p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe,

where γ(ϕ) = γ1ϕ+ γ2(1− ϕ).

Remark 4.1. The entropy of the system is not strictly convex, as shown in [45,
43, 2, 42]. Moreover, the source term in (41) vanishes when ρ 6∈ [ρ∗1, ρ

∗
2]. As

a consequence, the map (9) is not invertible and the Chapman–Enskog expansion
does not provide a dissipative system in the whole domain. Nonetheless, we still
use the same numerical indicator in order to see the influence of this degeneracy.

Let us now present the equilibrium model. If α = 0 (resp. α = 1) then ϕ = 0
(resp. ϕ = 1) and we directly recover the Euler equations for the pure phase. If
0 < α < 1, the limit ε → 0 leads to g1 = g2: the thermodynamical equilibrium is
reached. This asymptotic defines the coarse model:

(42)

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = 0,

∂t(ρE) + div((ρE + p)u) = 0,
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Fine model (4) Coarse model (10)

Adaptation with θ = 10−2 Adaptation with θ = 1

Figure 4. Shock bubble interactions. Solution after the first in-
teraction: mass fraction ϕ

where p = p(ρ, e, ϕeq(ρ)) that is

(43) p = p(ρ, e) =











(γ1 − 1)ρe if ρ ≤ ρ∗1,

(γ1 − 1)ρ∗1e if ρ∗1 ≤ ρ ≤ ρ
∗
2,

(γ2 − 1)ρe if ρ∗2 ≤ ρ.

Remark 4.2. The fine model (41) can be expected to be well-posed, when the two
phases co-exist, following [40, 63]. On the other hand, the result of ill-posedness
by Chiodaroli, De Lellis and Kreml [19] could be applied to the coarse model (42),
in space dimension greater that 1. These results are not in contradiction since
the solutions of relaxation models are smooth while the ill-posedness result for the
system of barotropic gas dynamics is related to discontinuous solutions.

The numerical schemes we use are based on the HLLC scheme [34] and the nu-
merical indicator is given by (27). Note that the indicator v̄n+1

1,K is not a continuous

function since ϕ′
eq admits discontinuities at ρ∗1 and ρ∗2.

Shock bubble interactions test case. The adaptive method is tested on a 2D weak
interaction of a bubble with a planar shock wave. The domain is [−0.5, 0.5]2 and
the pressure laws are perfect gas equations of state with γ1 = 1.6 and γ2 = 1.5.
Wall boundary conditions are set at the top, right and bottom, while at the left
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Fine model (4) Coarse model (10)

Adaptation with θ = 10−2 Adaptation with θ = 1

Figure 5. Shock bubble interactions. Solution after the first in-
teraction: density ρ

boundary, a Dirichlet condition is prescribed with

(ρ, u, v, p, ϕ)(t, x = −0.5, y) = (ρ∗2, 0.1, 0, 1, 0).

The initial data is

(ρ, u, v, p, ϕ)(0, x, y) =

{

(ρ∗2, 0, 0, 1, 0) if x2 + y2 < 10−2,

(ρ∗1, 0, 0, 1, 1) else,

which corresponds to a bubble of vapor surrounded by the liquid phase. The relax-
ation time ε is equal to 1. The solution is composed by a shock wave which impacts
the bubble, rebounds on the right boundary and impacts once again the bubble.
The solution is plotted after the first interaction at t1 = 0.6 and during the second
interaction at t2 = 1.26. The mesh is composed of 5906 triangular cells and 3054
vertices. The mass fraction ϕ is depicted in Figures 4 and 6 while the density ρ
is depicted in Figures 5 and 7. In all these figures, we compare the approximate
solutions associated with

• the fine model (41),
• the coarse model (42),
• the adaptive method with a threshold θ = 1 and
• the adaptive method with a threshold θ = 10−2.
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Fine model (4) Coarse model (10)

Adaptation with θ = 10−2 Adaptation with θ = 1

Figure 6. Shock bubble interactions. Solution during the second
interaction: mass fraction ϕ

The coarse model provides solutions very different from those of the fine model;
in particular, the bubble fully liquefies during the second shock–bubble interaction,
see the mass fraction in Fig. 6 (top right).

The results with θ = 10−2 are very accurate compared to the solution provided
by the fine model. Only a qualitative difference can be seen in Fig. 6 (bottom left),
where the interface between the two phases provided by the adaptive method is
slightly sharper. On the contrary, the adaptive method with θ = 1 gives results
much closer to those of the coarse model. In particular, in Fig. 6 (bottom right),
the bubble has almost disappeared. We present in Fig. 8 the characteristic function
of the coarse domain. For θ = 10−2, the fine domain is restricted to the bubble and
one can see that for θ = 1, it only remains four cells in the fine domain at time t2,
located at the center of the (former) bubble. This clearly explains the discrepancies
between the results of the adaptive method with θ = 1 and those of the fine model.

Shock bubble interactions test case: convergence with respect to the threshold. We
now present the convergence of the solution of the adaptation algorithm towards
the solution provided by the fine model. As in the previous test case, we compute
the difference between the mass fraction ϕ given by the adaptation algorithm and
the one obtained by the fine model.

Once again, one can see in Fig. 9 that this difference tends to 0 when θ tends
to 0 (actually, for θ < 10−10, the difference is exactly 0, which explains the vertical
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Fine model (4) Coarse model (10)

Adaptation with θ = 10−2 Adaptation with θ = 1

Figure 7. Shock bubble interactions. Solution during the second
interaction: density ρ

segment at the end of the curve). Besides, the error between the fine and the coarse
model still bounds the error of the adaptation algorithm.

5. Extension to a compressible two-phase flow model

We now consider the computation of a one-dimensional compressible two-fluid
flow: each phase is considered as a single phase separated from the other. The two
phases have their own thermodynamics and distinct velocities. Thus the balance
equations can be given for both phases adding exchange terms between the two
phases through the interfaces. This model was first proposed by Baer and Nunziato
[9] and then widely studied, see for instance, in a non exhaustive way, Abgrall and
Saurel [58], Gallouët et al [32], Ambroso et al [3], Saleh [57].

Considering our adaptation procedure for such a model is a very challenging
benchmark test because this two-fluid flow model does not enter the frame of the
previous sections. Indeed we will see that:

• The fine model is non-strictly hyperbolic and non-conservative.
• The source term is non-zero over 3 equations.
• The entropy is not strictly convex.
• The Chapman–Enskog expansion is rather complicated and requires adding
some assumptions to the system (in particular on the thermodynamics of
the two phases).
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Adaptation with θ = 10−2 Adaptation with θ = 1

Adaptation with θ = 10−2 Adaptation with θ = 1

Figure 8. Partition of the domain between the coarse domain
(red) and the fine domain (blue) after the first interaction (up)
and during the second interaction (down)
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Figure 9. Shock bubble interactions: L1 error (in Log–Log scale)
between the fine model and the adaptation algorithm w.r.t. θ:
mass fraction ϕ.
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• The numerical scheme used for the coarse model is not derived from the
one of the fine model. Thus v̄n+1

1,K is not deduced from a Chapman–Enskog
expansion applied to the numerical scheme but from a direct discretization
of the continuous expression of the first order term v1.
• The adaptive method has to be modified in order to take into account the
non-compatibility of the numerical schemes.

5.1. Fine and coarse models. Following [26] for instance, the governing set of
equations reads in 1D

(44)











































































∂tα1 + uI∂xα1 = λp(p1 − p2),

∂t(α1ρ1) + ∂x(α1ρ1u1) = 0,

∂t(α1ρ1u1) + ∂x(α1ρ1u
2
1 + α1p1)− pI∂xα1 = −λu(u1 − u2),

∂t(α1ρ1E1) + ∂x((α1ρ1E1 + α1p1)u1)− pIuI∂xα1

= −λT (T1 − T2)− uIλu(u1 − u2)− pIλp(p1 − p2),

∂t(α2ρ2) + ∂x(α2ρ2u2) = 0,

∂t(α2ρ2u2) + ∂x(α2ρ2u
2
2 + α2p2)− pI∂xα2 = λu(u1 − u2),

∂t(α2ρ2E2) + ∂x((α2ρ2E2 + α2p2)u2)− pIuI∂xα2

= λT (T1 − T2) + uIλu(u1 − u2) + pIλp(p1 − p2).

Here ρk, uk, pk, Ek = ek +
1

2
u2k and Tk denote respectively the density, the velocity,

the pressure, the total energy (ek being the internal energy) and the temperature
of each phase with k = 1, 2. The volume fractions αk satisfy

α1 + α2 = 1,

so that the two phases are immiscible. Each phase is characterized by its own EoS.
We assume for simplicity that both phases are described by perfect gas laws

pk = πk(ek, ρk) = (γk − 1)ρkek,

where γk > 1 denotes the polytropic exponent. In that case the temperatures
satisfy (after normalization Cv = 1)

Tk = Tk(ek, ρk) = ek.

The interaction between phases is described with both differential terms and re-
laxation terms arising in the mass, momentum and total energy equations, where
positive relaxation coefficients λp, λu and λT appear. The differential terms are
non-conservative products that involve an interfacial pressure pI and an interfacial
velocity uI . These terms depict the coupled evolution of the phases: if ∂xαk = 0 and
the source terms are neglected then the two phases are totally decoupled and each
one follows the classical gas dynamics equations. A usual choice for the interfacial
pressure and velocity is

uI = u1, pI = p2.

Other interfacial closure relations can be chosen, we refer to [32] for detailed expla-
nations.

Let us rewrite the seven-equation model under a form similar to (5–6):

(45)

{

∂tU + ∂xf1(U, V ) = 0,

∂tV + ∂xf2(U, V ) + g(U, V )∂xα1 = r(U, V ),
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where

U = (α1ρ1, ρ, ρu, ρE)T ,

V = (α1, α1ρ1u1, α1ρ1E1)
T ,

r(U, V ) =





λp(p1 − p2)
−λu(u1 − u2)

−λT (T1 − T2)− uIλu(u1 − u2)− pIλp(p1 − p2)



 ,

f1(U, V ) =













α1ρ1u1
ρu

ρu2 + p+
α1ρ1α2ρ2

ρ
(u1 − u2)

2

(ρE + p)u+
α1ρ1α2ρ2

ρ
(u1 − u2)

(

E1 +
p1

ρ1

− E2 −
p2

ρ2

)













,

f2(U, V ) =





0
α1ρ1u

2
1 + α1p1

(α1ρ1E1 + α1p1)u1



 ,

g(U, V ) =





u1
−p2
−p2u1



 ,

and

(46)

ρ = α1ρ1 + α2ρ2,

ρu = α1ρ1u1 + α2ρ2u2,

ρE = α1ρ1E1 + α2ρ2E2,

p = α1p1 + α2p2.

The relaxation terms reflect the fact that the phases are not at mechanical,
kinematic and thermodynamical equilibrium. When the relaxation times go to 0
(i.e. when the time-scales λp, λT and λu go to +∞), the source term r(U, V )
vanishes and the system reaches the equilibrium characterized by

(47)

p1 = p2 = p,

u1 = u2 = u,

T1 = T2 = T.

Because we consider a perfect gas mixture, the equilibrium of temperatures is equiv-
alent to

(48) e1 = e2 = e.

Thus the map Veq (such that r(U, V ) = 0 ⇔ V = Veq(U)) can be written as an
explicit function of U :

(49) Veq(U) =















(γ1 − 1)α1ρ1
(γ2 − 1)(ρ− α1ρ1) + (γ1 − 1)α1ρ1

(α1ρ1)
ρu

ρ

(α1ρ1)
ρE

ρ















.

This asymptotic limit defines the coarse model

(50)



















∂t(α1ρ1) + ∂x(α1ρ1u) = 0,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,
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which corresponds to the classical Euler equations coupled with the evolution equa-
tion of the volume fraction α1.

Combining (47) and (48), we deduce that the equilibrium pressure can also be
written as a γ-gas law p = (γ(U)− 1)ρe with

(51) γ(U)− 1 = (γ2 − 1)
ρ− α1ρ1

ρ
+ (γ1 − 1)

α1ρ1
ρ

.

5.2. Discretization of each model. We now address the approximation of the
fine model (44). The approximation of the seven-equation model has been the
subject of many contributions. The numerical scheme we use is adapted from
[32, 3]. It consists in treating the convective terms by the Rusanov scheme [56]
that handles the non-conservative terms and the relaxation terms by a fractional
step approach. Let Zn

K = (Un
K , V

n
K) be the one dimensional solution in the cell K

at time tn which we want to update, until time tn,1. The non-conservative Rusanov
scheme writes

(52)
∆x

(

(Z)n,1K − (Z)nK

)

+∆t
(

(Ff )
n
K+1/2 − (Ff )

n
K−1/2

)

−∆t(φ)nK

(

(α1)
n
K+1/2 − (α1)

n
K−1/2

)

= 0,

where Ff =

(

f1
f2

)

, f1 and f2 being defined in (45), and

φ = (0, 0, 0, 0, u1, p2, p2u1)
T ,

2(Ff )
n
K+1/2 = (Ff )

n
K + (Ff )

n
K+1 − rK+1/2((Z)

n
K+1 − (Z)nK),

rK+1/2 = max(rK , rK+1),

rK = max(|(u1)
n
K |, |(u1)

n
K |+ (c1)

n
K , |(u2)

n
K |+ (c2)

n
K),

2(α1)
n
K+1/2 = (α1)

n
K + (α1)

n
K+1.

Here ck, k = 1, 2, denotes the speed of sound of the phase k, which reads

ck =

√

γk
pk
ρk
,

the phase k following a perfect gas law.
The second step consists in computing the source terms, separating the velocity,

the pressure and the temperature relaxations and thus introducing three interme-
diate times tn,1, tn,u and tn,p between tn and tn+1. We recall the main ideas, the
whole procedure being widely depicted in [32, 3]. Let Zn,u be the approximation of
the solution after the velocity relaxation with Zn,1 as initial condition. The velocity
relaxation only acts on the velocities uk and the total energies Ek, k = 1, 2:

∂t(α1ρ1) = ∂tρ = ∂t(ρu) = ∂t(ρE) = 0,

∂t(α1ρ1u1) = −λu(u1 − u2),

∂t(α1ρ1E1) = −λu(u1 − u2),

which is equivalent, for k = 1, 2, to

αkρk∂tuk = (−1)kλu(u1 − u2),

αkρk
∂ek
∂pk

∂pk
∂t

= (−1)kλuu1(u1 − u2).

Applying the implicit Euler method to approximate the previous ordinary dif-
ferential equations leads to the following approximation of the state vector in the
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cell K between time tn,1 and tn,u

(αk)
n,u
K = (αk)

n,1
K ,

(αkρk)
n,u
K = (αkρk)

n,1
K ,

(uk)
n,u
K =

((αlρl)
n,1
K + λu∆t)(αkρkuk)

n,1
K + λu∆t(αlρlul)

n,1
K

(α1ρ1)
n,1
K (α2ρ2)

n,1
K + ρn,1K λu∆t

(p1)
n,u
K = (p1)

n,1
K ,

(p2)
n,u
K = (p2)

n,1
K +

λu∆t

(γ2 − 1)(α2)
n,1
K

((u1)
n,u
K − (u2)

n,u
K )2.

The pressure relaxation term is now taken into account. From time tn,u to time
tn,p the solution is computed by solving the following ODE system

∂t(α1ρ1) = ∂t(α1ρ1u1) = 0,

∂tρ = ∂t(ρu) = ∂t(ρE) = 0,

∂tα1 = λp(p1 − p2),

α1ρ1∂tE1 = −p2λp(p1 − p2).

Following [32, 3] we use an explicit form of λp

λp =
1

λ̄p

α1α2

p1 + p2
,

where λ̄p is constant.
Integrating the equations on the total energies gives

(pk − pl)(t) = (pk − pl)
n,u exp

(

−λp

∫ t

0

(Ak −Al) (τ)dτ

)

,

(p1p2)(t) = (p1p2)
n,u exp

(

−λp

∫ t

0

(

A1

p1
(p1 − p2) +

A2

p2
(p2 − p1)

)

(τ)dτ

)

with Ak =
∂pk
∂ρk

ρk
αk
−
∂pk
∂ek

p2
αkρk

. Then multiplying the mass fraction equation by

1
α1α2

and integrating leads to

(

α1

1− α1

)

(t) =

(

α1

1− α1

)n,u

exp

(

1

λ̄p

∫ t

0

(

p1 − p2
p1 + p2

)

(τ)dτ

)

.

Finally we address the relaxation in temperature and solve the ODE system
below between tn,p and tn+1

∂tα1 = ∂t(α1ρ1) = ∂t(α1ρ1u1) = 0,

∂tρ = ∂t(ρu) = ∂t(ρE) = 0,

α1ρ1∂tE1 = −λT (T1 − T2).

The two phases follow a perfect gas law so that Tk = ek, k = 1, 2. Thus the
previous equations are equivalent to

αkρk∂tek = (−1)kλT (ek − el), k 6= l.

These ordinary differential equations are approximated by

(ek)
n+1
K =

((αlρl)
n,p
K + λT∆t)(αkρkek)

n,p
K + λT∆t(αlρlel)

n,p
K

(α1ρ1)
n,p
K (α2ρ2)

n,p
K + λT∆tρ

n,p
K

,

for k 6= l.
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Remark 5.1. Note that this strategy preserves the positivity of the pressure pk, the
temperature Tk and the maximum principle on the mass fraction αk ∈ [0, 1] (see
[32]).

In Section 3 the numerical scheme of the coarse model was deduced from the one
of the fine model using the asymptotic preserving property of the fine scheme. In the
present case the coarse model has only four equations and is conservative contrary
to the fine model. The idea is to use a different numerical scheme to approximate
the coarse model (50). In the following we consider the classical Rusanov [56]
scheme for the approximation of the coarse model. Let Un

K be the one dimensional
solution in the cell K at time tn to be advanced at time tn+1. The finite volume
scheme for the coarse model (49) is

(53) ∆x
(

(U)n+1
K − (U)nK

)

+∆t
(

(Fc)
n
K+1/2 − (Fc)

n
K−1/2

)

= 0,

together with

Fc =









α1ρ1u1
ρu

ρu2 + p
(ρE + p)u









,

and

(54)

2(Fc)
n
K+1/2 = (Fc)

n
K + (Fc)

n
K+1 − sK+1/2((U)nK+1 − (U)nK),

sK+1/2 = max(sK , sK+1),

sK = max(|(u)nK |, |(u)
n
K |+ (c)nK),

where c =
√

γp/ρ denotes the speed of sound of the fluid.

5.3. Indicator and adaptive method. Up to now, the adaptive method relied
on a numerical indicator which is partly deduced from a discrete Chapman–Enskog
expansion. Here the complexity of the fine scheme prevents such computations. To
overcome the problem we propose to use a direct discretization of the calculations of
[26]. The author performs the Chapman–Enskog expansion on a two-phase model
close to (44). Let us recall the result, detailed calculations are given in [26].

Proposition 5.1. Assume that the relaxation process has only one time scale:
λu = λp = λT = 1

ε , ε > 0 fixed. Up to terms of order ε2, the smooth solutions of
(44) satisfy

(55)

∂t(α1ρ1) + ∂x(α1ρ1u) = ε∂xA,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p) = ε∂xB,

∂t(ρE) + ∂x ((ρE + p)u) = ε∂xC,

where, defining Yk =
αkρk
ρ

,

(56)

A = ρ(Y1)
2Y2

(

ρ

ρ1
− 1

)

∂xp,

B = e(Y1 − Y2)
2∂xu,

C = ρeY1Y2∂xp

(

γ1Y1

(

ρ

ρ1
− 1

)

+ γ2Y2

(

ρ

ρ2
− 1

))

+ uB.

Note that the non-conservative terms p2∂xαk, p2u1∂xαk and the temperature
relaxation term are mandatory to compute the Chapman–Enskog expansion. More-
over the first order terms in ε are explicit functions of U .
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Then we propose to directly use the L1-norm of a discrete approximation of the
corrector of first order in ε (56) as the numerical indicator (without using the fine
numerical scheme as it is done in Section 3). The numerical indicator thus reads

(57) v̄n+1
1,K := |An

K |+ |B
n
k |+ |C

n
K |,

together with

An
K = ρnK((Y1)

n
K)2(Y2)

n
K

(

(α1)
n
K

(Y1)nK
− 1

)

pnK+1 − p
n
K

∆x
,

Bn
K = enK

unK+1 − u
n
K

∆x
((Y1)

n
K − (Y2)

n
K)2,

Cn
K = ρnKe

n
K(Y1)

n
K(Y2)

n
K

pnK+1 − p
n
K

∆x
Γn
K + unKB

n
K ,

where

Γn
K = γ1(Y1)

n
K

(

(α1)
n
K

(Y1)nK
− 1

)

+ γ2(Y2)
n
K

(

(α2)
n
K

(Y2)nK
− 1

)

.

We now address the adaptive method. Because the coarse scheme is not derived
from the fine scheme, the adaptive method has to be modified.

We recall that P1 is the linear operator such that P1Z = U and M is the map
such that M(U) belongs to the equilibrium manifold M (see Section 2.1). Let
Zn
K = (Un

K , V
n
K) be the solution in the cell K known at time tn which we want to

update, until time tn+1. Let BnK be the balance of fluxes in the cell K at time tn,

i.e. BnK = (∆x/∆t)(Zn+1
K − Zn

K). The 1D adaptive method reads as follows:

A) For all cell K, compute the numerical error En+1
K using (27) with (57)

B) For all cell K, if [En+1
K > θ] then

- K ∈ Df (t
n)

Else
- K ∈ Dc(t

n).

C) At this stage, Df (tn) ∪ Dc(tn) = D (= R).
For all interface K + 1/2

- If [K ∈ Dc(t
n) and for all L ∈ N (K), L ∈ Dc(t

n)]
- Compute (Fc)

n
K+1/2 using the numerical scheme (54).

Update the balance

BnK ← B
n
K + (Fc)

n
K+1/2

BnK+1 ← B
n
K+1 − (Fc)

n
K+1/2

- Else
- Compute (Ff )

n
K+1/2 using the numerical scheme (52).

Update the balance

BnK ← B
n
K + (Ff )

n
K+1/2

BnK+1 ← B
n
K+1 − (Ff )

n
K+1/2

D) For all cell K
• If K ∈ Df

– Zn+1
K = Zn

K −
∆t

∆x
BnK

– Solve the source term
• else

– Zn+1
K =M

(

P1

(

Zn
K −

∆t

∆x
BnK

))
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5.4. Relaxation test case. We apply this algorithm in the case of the evolution
of a two-phase flow in a duct of uniform section and 7m length. The simulation
is performed on 1000 cells. The two phases are depicted by a perfect gas law
with γ1 = γ2 = 1.4. The flow is initially at equilibrium, the initial conditions
are α1 = 0.9, u1 = u2 = 5, p1 = p2 = 105, ρ1 = ρ2 = 1. An inlet Dirichlet
boundary condition is applied on the left side using the initial condition except that
p1 = 1.005×105 and the relaxation parameters are λu = λp = λT = ε−1 = 104. An
outlet Neumann boundary condition is applied on the right side. These boundary
conditions are taken into account using the classical ghost cell method. Finally, the
adaptation parameter is θ = 10−1.

This test case allows us to study the asymptotic behavior of the two-phase model.
Due to the relaxation terms in the fine model, the relative quantities tend to zero
as x increases, leading to a relaxation boundary layer on the left. It is worth noting
that only the boundary relative pressure is non-zero but the boundary layer also
appears for the relative velocity and for the relative temperature.

On the other hand, when considering this test case with the coarse model, all
the relative quantities are null, by definition of the equilibrium manifold (47).

We present the results obtained for four successive times: t = 0.05, 0.1, 0.15,and
0.2. The relative pressure |p1 − p2|/max(p1, p2) and the relative temperature |T1 −
T2|/max(T1, T2) are plotted in Fig. 10. The relative velocity |u1−u2|/max(|u1|, |u2|),
and the characteristic function of the fine domain with the numerical indicator are
plotted in Fig. 11. Due to the remark here-above, the results given by the coarse
model are always constant in space and equal to 0.

Once again, the results provided by the adaptation algorithm are very close
to those of the fine model. However, one can observe a small overshoot on the
relative pressure at time 0.05, see Fig. 10 (top left). Note that the results for the
relative temperature are zoomed in space since the associated boundary layer is
very small, see Fig. 10 (right). When considering the decomposition of the domain
in Fig. 11 (right), one can see that the fine model is only solved at the left part of
the computational domain, which corresponds to the boundary layer.

5.5. Relaxation test case: convergence with respect to the threshold.

As for the previous test cases, we study the convergence of the solutions of the
adaptation algorithm towards those of the fine model. Contrary to the previous
cases, the full convergence is not reached. Indeed, one can see in Fig. 12 that for
θ < 10−7, the error does not decrease anymore. This means that the numerical
indicator is not fully relevant in this case, which is not totally surprising since it is
based on a direct discretization of the first order term v1 of the Chapman–Enskog
expansion. Therefore, it is not completely compatible with the numerical schemes
we use for the fine and the coarse models.

6. Conclusion

We propose an original indicator which can be used to place in an optimal way
coupling interfaces between asymptotically compatible models. Due to the applica-
tions under investigation, we are not allowed to modify the numerical schemes for
computing both models, which prevents us from using either classical asymptotic
preserving schemes on the whole domain or sophisticated micro–macro decompo-
sitions. Our method relies on a numerical Chapman–Enskog expansion and with
an estimate of the distance to the equilibrium manifold. We then develop an adap-
tive method which dynamically and locally selects the right model to solve. Using
an appropriate coupling method at the interface between the different models, we
are able to prove that our method exactly maintains constant equilibrium states,
but also provides numerical solutions in the set of admissible states and is entropy
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Figure 10. Relaxation test case: relative pressure (left), relative
temperature, zoom on [0, 0.3] (right).
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Figure 11. Relaxation test case: relative velocity (left), charac-
teristic function of the fine model and numerical indicator (right).
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Figure 12. Relaxation test case. L1 error (in Log–Log scale)
between the fine model and the adaptation algorithm w.r.t. θ:
‖V − Veq(U)‖.

decreasing (as soon as the underlying numerical schemes possess these features).
On the basis of these properties, one may hope to prove convergence results, for
instance in the simplified framework of [21].

Mainly three test cases are presented in order to assess the relevance of the
indicator, in the context of dynamic model adaptation. When the model completely
fits the classical assumptions on hyperbolic systems with relaxation, our strategy
provides very satisfying results. The use of the fine model only coincides with
the strong variations of the solution. The two other test cases are much more
challenging since they do not fully enter the initial framework. But here again,
the indicator allows an accurate dynamic partition of the domain and the adaptive
method provides in most cases very close results to the reference solution of the
fine model. However, let us recall that our foremost interest in this work concerns
the development of an indicator to determine when and where a fine model can
be replaced by an associated coarse model, and not yet to construct a multiscale
method to save CPU time. In order to hope any decrease of the computational
cost, the gap between the fine and the coarse must be important, with complex or
tabulated laws to be solved by iterative methods, for the fine model.

The main direction of improvement of our adaptive algorithm concerns the de-
velopment of error estimates. Indeed, we do not take into account the error due
to the coupling and do not really compare the error of model adaptation with the
numerical error. Secondly, the final goal of adaptation is to be able to control the
threshold in order to obtain a final accumulated error which is a priori given by
the user. This would necessitate a posteriori estimates, which are very difficult
to have for hyperbolic systems of balance laws. Several works on these topics are
under investigation. In particular, a similar adaptive method in the scalar setting
is studied, for which rigorous convergence results can be obtained, see [16].

Appendix A. Comparison of different indicators

In this appendix, we provide a numerical comparison of the different components
of the numerical indicator (27),

(27) En+1
K := max(ε‖v̄n+1

1,K ‖, ‖v
n
K − veq(u

n
K)‖).
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To do so, we compare on a simple test case the numerical solutions provided by
the adaptation algorithm with different indicators. We compare the indicator (27)
with

(58) En+1
CE,K := ε‖v̄n+1

1,K ‖,

and

(59) En+1
dv,K := ‖vnK − veq(u

n
K)‖.

On the one hand, for data which do not belong to the equilibrium manifoldM
and are constant (w.r.t. space), the indicator En+1

CE,K is not sufficient, since:

(60) ∀K, Wn
K =W0 6∈ M =⇒ ∀K, En+1

CE,K = 0,

where W0 is a constant state which is not at equilibrium. In such case, if the
adaptation algorithm is only based on the indicator En+1

CE,K , then only the coarse
model will be used, on the whole computational domain. Therefore, at the next
time step, the solution will directly be at equilibrium: Wn+1

K = M(unK), which is
of course not consistent with the true solution.

On the other hand, for data which belong to the equilibrium manifold M, the
indicator En+1

dv,K is not relevant, since:

(61) ∀K, Wn
K ∈M =⇒ ∀K, En+1

dv,K = 0.

As a consequence, the adaptation algorithm based on the indicator En+1
dv,K would only

use the coarse model, whatever the smoothness of the solution is, and then would
allow shock formation. Since in many cases relaxation terms have a dissipative effect
[40, 63], such discontinuous solutions are impossible. Therefore, the indicator (59)
is not relevant either.

In order to illustrate this discussion, we provide here some numerical tests with
these different indicators. Moreover, we compare different values of ε, since the
adaptive method is a priori more useful when ε is large (i.e. when the solutions
provided by the fine and the coarse models are very different).

We consider the Suliciu model with Chaplygin gas, which is presented in Sec-
tion 4.1. The domain is [−1, 1] with homogeneous Neumann conditions and the
results are plotted at t = 0.2. The initial data is composed by two constant states:

(τ, u, T )(0, x) =

{

(1, 0, 2) if x < 0,

(1, 0, 1) else.

Note that only the state at the right-hand side is at equilibrium. We present three
results, associated with three values of ε: 1, 10−2 and 10−4. We plot the results
obtained with the adaptive method with the different indicators. The threshold θ is
set to a value for which the solution of the adaptive method is close to the solution
of the fine model (respectively 0.2, 10−3 and 5.10−6).

We plot in Fig. 13 the variable T obtained by the fine model and the adaptive
methods with each indicator. We also present at the right-hand side the indicators
(58) and (59) (the full indicator (27) can be deduced by taking the max). First of
all, one can check that for the smallest value of ε, all the numerical indicators lead
to similar results. This is not surprising since, in this case, the solution provided
by the fine model and the one provided by the coarse model are very close. For the
intermediate value of ε (= 10−2), Even if the shape of the solutions are comparable,
the indicator (58) leads to underestimated results, while the indicator (59) gives
greater results that those of the full indicator and of the fine model. One can
also see that the indicators are very similar in Fig. 13 (middle right). In the last
case with ε = 1, one recover the behaviors described by the two examples (60)
and (61). Indeed, the indicator based on the Chapman–Enskog expansion is able
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Figure 13. Solutions with the indicators (27), (58) and (59), for
different values of ε: perturbed specific volume T (left) and the
indicators (58) and (59) (right).

to detect the different waves, but it vanishes in the left part of the domain. The
main consequence is that the results are very similar to those with smaller ε and are
far from the expected solution. On the contrary, the indicator (59) works well at
the left of the domain where the solution is constant but far from the equilibrium,
but poorly resolves the front at the center of the domain, see Fig. 13 (top left).
Clearly, the adaptive method with the full indicator (27) takes advantage of both
parts, to produce results which are very similar to those of the fine model.
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