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Safety and Operational Impacts of 
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Introduction  
 As the degradation of service at some 
conventional intersections increases, there becomes 
a need for alternative solutions other than expensive 
interchanges.  Many alternative intersections have 
been proposed in the past. Under certain traffic and 
local conditions some solutions are more promising 
than other. In some cases, the conventional 
intersection may still be the optimal choice. 
 The presented research focused on 
developing guidelines that would help planners and 

designers identify the most promising solutions for 
further analysis. This objective has been addresses 
in two ways. Firstly, the existing knowledge on 
alternative intersections has been identified. 
Secondly, the performance of conventional and 
alternative intersections under a range of Indiana 
traffic conditions has been evaluated using micro-
simulation model - VISSIM. 

Findings  

Although a large number of sources could be 
found on the research subject, the existing 
knowledge about performance of alternative 
intersection design is incomplete. Only a few 
designs proposed in the past have been applied at 
a considerable number of locations including 
roundabouts, median U-turns, and jag-handle 
intersections. Other types still await 
implementation. The available sources are not 
comprehensive and deal with conditions that 
might be different from Indiana. The knowledge 
of the safety impact of these intersections is very 
limited.  

A large number of more than 1,300 
scenarios were simulated runs performed with 
VISSIM calibrated to Indiana conditions. The 
simulated types of intersections included: 
conventional, roundabouts, jag-handle near-sided 
and far-sided, median U-turns, and continuous-
flow intersection. Except roundabouts, all other 
intersections were signalized to test their capacity 
limits and delay-based performance. Although the 
roundabouts were the lowest delays at low 
volumes they also reached the capacity before 
other did. The most promising solutions for heavy 
volumes are median U-turns and continuous-flow 
intersections. 

Implementation  

The presented research developed 
guidelines for using alternative intersection 
designs. The guidelines compile the existing 
knowledge found in existing publications and 
research reports with the simulation experiments 
performed with VISSIM. The guidelines are ready 

to use and will help planners and designers 
determine which intersection types are the most 
promising under considered conditions  and should 
be considered in a detailed way. The simulation 
results have been summarized in an easy to use 
format of graphs. 
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CHAPTER 1 INTRODUCTION 
 
 
 
An alternative intersection often involves displacement of the left-turn movement from 

the primary intersection, which could result in additional surrounding minor intersections. 

The need for alternative intersections has developed in response to an increase in the 

degradation of service at conventional intersections under specific traffic conditions and 

roadway limitations. Left-turn movements at alternative intersections may not need to be 

displaced but rather have some treatment other than a direct left-turn. 

 

The left-turn movement is the primary focus in alternative intersections because it is 

often one of the major contributors to delays at conventional intersections.  From an 

operational standpoint, if an intersection is signalized, left-turn movements may require a 

separate traffic signal phase.  The addition of these separate phases results in an increased 

cycle-length.  As a result of these considerations, alternative treatments of the left-turn 

movement are found in almost every alternative intersection. 

 

Many alternative intersections have been proposed.  Each alternative intersection has 

advantageous and disadvantages.  No single alternative intersection is a superior 

alternative under all traffic circumstancess.  Choosing the appropriate alternative 

intersection depends upon the conditions of the intersection under consideration.  In some 

cases, a conventional intersection will  be the preferred alternative. Not all alternative 

intersections have been implemented in the field; some have only been assessed on the 

conceptual level and their operations evaluated using microscopic simulation.
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At the present time evaluating alternative intersections is a problem because most of them 

are fairly new and have been implemented for a short period of time, if at all.  

Furthermore, some alternative intersection installations are only partial implementations. 

From an operational standpoint, the lack of an implemented alternative intersection can 

be overcome to a certain degree through the use of microsimulation. 

  

The alternative intersections reviewed and considered in this study are at-grade 

intersections and include: continuous flow intersections, jughandles, median u-turns, 

roundabouts, superstreet median crossovers, bowties, continuous green T-intersections, 

double-wide intersections, paired intersections, quadrant roadway intersections, split 

intersections, and upstream signalized crossover intersections.  

 

The effects of different VISSIM model parameters (PTV_Vision, 2007) on the saturation 

flow rate were investigated and a single headway (CC1) parameter was used to adjust the 

saturation flow rate to Indiana field-measured values. Investigating different speed limits 

indicated that different values of headway parameter need to be used for different speed 

limits to obtain a targeted saturation flow rate value. 

 

For a roundabout, data were collected at a carefully chosen site in Carmel, Indiana with 

continuous queuing present a majority of the time on at least one approach during data 

recording. With queuing on a roundabout approach, it is possible to extract drivers’ 

accepted gaps, rejected lags, and rejected gaps. Driver accepted gaps are particularly 

important when estimating the critical gap. It was determined in this research that using 

gaps as opposed to gaps and legs in the critical gap estimation procedure more accurately 

predicts a driver’s critical gap. 

 

The most promising network files were constructed in Synchro and VISSIM and 

calibrated for Indiana conditions. These files are the starting points of the evaluation 

procedure. In the evaluation procedure, measures of effectiveness such as average delay 
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and average number of stops were collected in VISSIM simulation by a defined travel 

section and were aggregated based on a one-hour simulation run for each movement.  

VISSIM user-defined travel sections allowed flexibility in defining and collecting 

measures for unconventional movements along their paths.  
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CHAPTER 2 LITERATURE REVIEW 
 
 

2.1 Conventional intersection 
 
A conventional intersection is generally defined as an intersection where all movements 

are direct.  This can be a two-way or four-way stop controlled intersection, or it may be 

signalized.  It may have as little as one lane on each leg or more; and finally, the 

intersection may be in a rural, suburban, or urban setting. 

 
Conventional intersections with direct left turns can serve only a limited number of 

vehicles with strong conflicting through-movements.  Signalized intersections with 

protected left-turn movements will require long left turn phases with heavy left turns, 

thus increasing cycle length and delay for conflicting through-movements. Increasing the 

number of approach lanes on a given leg of an intersection increases the width of the 

crossing roadway for perpendicular approaches, thus increasing the red clearance 

intervals for vehicles and the pedestrian clearance intervals for pedestrians.  At 

unsignalized intersections, strong left turns do not allow for the near simultaneous 

crossing of vehicles through an intersection from opposing directions like opposing 

through movements do; thus, with high left turn volumes, less vehicles can be served. 

Increasing demand at conventional intersections slowly degrades their performance. 

 
In terms of arterial progression, good coordination for conventional intersections with 

protected turn bays can only be achieved in both directions for even intersection spacing. 

With uneven intersection spacing, progression can usually be accommodated only in one 

direction (Figure 2-1). 
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Figure 2-1 Effect of Intersection Spacing on Progression (Nichols and Bullock, 2001) 

 

2.2 Continuous Flow Intersections 
 
 
A continuous-flow intersection (CFI), sometimes called the crossover-displaced left-

turn (XDL) intersection, provides ramps left to the arterial and cross street upstream of 

the main intersection to handle left turning movements from the arterial and cross-street, 

respectively. Figure 2-2 demonstrates how left and right-turning vehicles from Street A 

(a) and Street B (b) would traverse the intersection. 
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Figure 2-2 Vehicle Movement at a Full Continuous-flow Intersection (Tarko et al., 2008) 
 

Partial continuous-flow intersections (CFI) have also been implemented. A partial CFI 

only has two ramps on the major roadway, which typically is the arterial. 

 

The major advantage with this design is that through traffic and traffic using the left-turn 

ramp can move during the same signal phase without conflicting. The signals at the 

ramps should be coordinated with the primary intersection signal so through arterial 

traffic does not stop more than once. A single signal controller which operates the 

primary intersection and left-turn ramp/minor street intersection (Figure 2-3) helps to 

achieve this coordination. The left-turn ramp should cross the opposing traffic at a point 

which prevents spill-back from the primary intersection and blockage of the crossover 

signal. 
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Figure 2-3 Signal Phasing of Continuous-flow Intersection (USDOT, 2004) 

 

Full or partial implementations of a continuous-flow intersection can provide significant 

savings in delay, can reduce queue length and the average number of stops, and may add 

additional capacity when compared with a conventional intersection design with left-turn 

pockets (Hummer and Reid, 2000). Additionally, the benefits of a CFI grow as traffic 

volumes increase. Locations with high demand balanced throughout the day therefore 

will experience greater benefits compared to a location that experiences high volumes for 

only a relatively short period of time, such as a peak period, with declining volumes 

thereafter. 

 

Under balanced volumes, the advantages of a continuous-flow intersection with respect to 

a conventional intersection are greatest with high left turn volumes and overcapacity 

conditions (Goldblatt et al., 1994). As left turn volumes increase, protected left turn 

phases for a conventional intersection increase, extending the cycle length and increasing 

delay for the intersection as a whole. Short cycle lengths are not possible for this 
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conventional intersection because left turning bays may spillback. For a CFI intersection, 

on the other hand, left turns can proceed simultaneously with the through movement.  

Hence, delay is reduced with heavy left-turn and through movements for a continuous-

flow intersection. 

 

In terms of pedestrian operations, service time for any pedestrian at a continuous-flow 

intersection can be accommodated within two cycle lengths (Jagannathan and Bared, 

2005).  A continuous-flow intersection may increase the maximum average delay per 

stop and maximum average delay for a pedestrian crossing in a diagonal across two legs 

of an intersection when compared with a conventional intersection.  These findings 

should be considered when heavy pedestrian volumes are present.  

 

A continuous-flow intersection has characteristics summarized as follows:  
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Table 2-1 Characteristics of CFI (Tabernero and Sayed, 2006; Hummer and Reid, 2000) 

Advantages Disadvantages When to Consider When not to 
Consider 

-Reduced delay 
for through 
arterial traffic 
 
-Reduced stops 
for through traffic 
 
-Easier 
progression for 
through arterial 
traffic 
 
-Applicable to all 
median cases 
including roads 
with no and 
narrow median 
 
-Reduced and 
more separated 
conflict points 
 

-Driver and 
pedestrian confusion 
 
-Increased stops for 
left turns from the 
arterial 
 
-Restricted U-turn 
possibilities 
 
-Pedestrians must 
cross ramps and the 
main intersection 
(and pedestrians 
must cross the four-
quadrant design in a 
slow two-stage 
maneuver) 
 
-Additional right-of-
way for ramps 
 
-Additional 
construction and 
maintenance costs 
for ramps 
 
-Lack of access to 
arterial for parcels 
next to ramps 
 
-There may be costs 
associated with 
obtaining the rights 
to use the design 

-High through 
volumes with 
little demand for 
U-turns 
 
-Sufficient 
intersection 
spacing to 
outweigh the 
savings elsewhere 
 
-Restricted access 
to the arterial for 
parcels near 
intersection 

-Narrow right 
of way at the 
intersection and 
no possibility 
for obtaining 
extra right of 
way at the 
intersection 
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Table 2-2 Summary of CFI Intersection (USDOT, 2004) 

Characteristics Potential Benefits Potential Liabilities 

Safety Left turns removed from 
main intersection 

None identified 

 
Operations 

 
More green for through 

 
More stops and delay for 
left turns 

 
Multimodal 

 
No conflicts during 
pedestrian crossing 

 
Two-stage pedestrian 
crossing 
 
Layout may not be 
immediately apparent, 
especially for visually 
impaired persons 

 
Physical 

 
Similar footprint than 
interchange alternative 

 
Right-of-way needed 
 
Larger footprint than 
conventional intersection 
 
Access management 

 
Socioeconomic 

 
Air quality 

 
Construction cost 
 
Access management 

 
Enforcement, Education, 
and Maintenance 

 
None identified 

 
Public information 
campaign may be needed 

 
 

When considering pedestrian/vehicle interactions, the continuous-flow intersection might 

be confusing to pedestrians due to more complex geometry. Compared with other 

alternatives, the total number of roadways and the number of free-flowing roadways that 

need to be crossed by a pedestrian is relatively high (Jagannathan and Bared, 2005). 

Furthermore, the more complex intersection geometry might cause driver confusion, thus 

compromising pedestrian and vehicle safety. 
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2.3 Jughandle intersection 
 
 
The jughandle intersection uses ramps diverging to the right side of the arterial to 

accommodate the left and right turns from the arterial.  For example, in Figure 2-4, the 

jughandle on the top of the figure was designed to remove left and right turns from traffic 

traveling towards the left of the figure.  Therefore, the left and right turning movements 

exit onto the jughandle ramp, to the right of the arterial, and then make either a left or 

right turn onto the minor street, as shown in part (a) of Figure 2-4.  The minor street 

turning movements proceed as normal, as shown in part (b). 

 

 
Figure 2-4 Turning Movements for a Forward-forward Jughandle (Tarko et al., 2008) 

 

Figure 2-5 and Figure 2-6 show how turning vehicles proceed at reverse-reverse and 

forward-reverse jughandle intersections. 
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Figure 2-5 Turning Movements for a Reverse-reverse Jughandle (Tarko et al., 2008) 

 

 
Figure 2-6 Turning Movements for a Forward-reverse (Tarko et al., 2008) 

 

There are two types of jughandle ramps, combinations of which can form the intersection 

configurations shown in Figure 2-4 through Figure 2-6.  The first type is a forward ramp 

(also called a near-sided ramp), as shown in Figure 2-4; and the second is a reverse ramp 

(also called a far-sided ramp), as shown in Figure 2-5.  There is no back-tracking on a 

forward ramp.  Left and right turn movements for a forward-forward jughandle ramp 
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configuration are shown in Figure 2-4.  A reverse ramp, on the other hand, requires the 

user to first proceed through the intersection then exit on the reverse ramp.  The user is 

redirected back onto the minor roadway via the reverse ramp.  The user then proceeds 

through the primary intersection for a second time (i.e., backtracking) to complete a left-

hand turn.  The left and right turn movements for a reverse-reverse jughandle ramp are 

shown in Figure 2-5.  Additionally, the implementation of a combination of forward and 

reverse jughandle ramps can be used to accommodate right-of-way restrictions.  A 

conceptual configuration and left and right turn movements are shown in Figure 2-6 for 

the combination. 

 

The New Jersey Department of Transportation (NJDOT) developed a design manual for 

jughandle intersections.  Design features like ramp speed, desirable exit curve, ramp right 

turn radius at a cross-street and guidance regarding ramp length, ramp placement, length 

of deceleration lane and signage are found in this manual (Robinson et al., 2000).  The 

NJDOT manual identifies three types of jughandles: Type A, Type B, and Type C.  Type 

A is most similar to a forward jughandle, as described previously.  Type B resembles the 

median U-turn alternative intersection design, as discussed in Section 5, although there 

are some differences.  There are implications that this type of jughandle has been 

infrequently implemented.  Type C resembles the forward-reverse jughandle 

configuration previously described. 

 

The control at the primary intersection of a jughandle is signalized.  The settings for the 

signal at the primary intersection should be set so that queues on the minor street do not 

spill back to block the termini of the jughandle ramps.  Additionally, the primary 

intersection signal may have two or three phases.  A three-phase signal will be utilized if 

the left-turning movement from the minor street needs to be protected.  These alternatives 

are shown in Figure 2-7. 
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Figure 2-7 Signal Phasing for a Jughandle (USDOT, 2004) 

 

Depending on the volume of traffic using the jughandle intersection, the control at the 

secondary intersections created by the jughandle can be a combination of stop and yield 

control or can be signalized.  If the secondary intersection is not signalized, the left-turn 

movements at the secondary intersection are typically stop controlled, and the right-turn 

movements are typically yield controlled. 

 

The forward jughandle can accommodate light to moderate left turn movements on the 

major road.  This configuration might experience potential problems with large through 

movements if the queue from the primary intersection extends back to block the 

jughandle. 

 

The Type B jughandle is used to provide a u-turn possibility for heavy vehicles on 

roadway sections with a narrow median.  It can also be used as a directional crossover for 

left turns. 

 

The reverse jughandle can be used to accommodate heavier left turns than experienced 

with a forward jughandle. The length of the reverse ramp should be designed to 

accommodate the queue that could build up during one cycle length.  Designing the 

reverse ramp in this manner will prevent spillback which subsequently blocks through 

movements. An important consideration associated with the reverse jughandle is the 
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provision of an additional lane for motorists exiting the reverse jughandle onto the minor 

street.  A potential drawback associated with this design is that greater right-of-way is 

needed. 

 

Jughandles require left-turning vehicles to drive a longer distance through the 

intersection, which may lead to longer delay and travel distance. Under heavy volumes, 

on a forward jughandle, the queue spillback from the primary intersection might block 

the termini of the jughandle ramps, which would result in an additional delay for  

left-turning movements. Additionally, if a forward jughandle ramp is controlled with a 

stop sign, the number of stops that a left-turning vehicle might encounter when traversing 

a jughandle increases. It is extremely important to evaluate the advantages and 

disadvantages to through movements versus left turn movements for this design. 

However, even with an increase in travel distance for left turns, the intersection might 

operate at a lower average delay than experienced at a conventional solution (USDOT, 

2004). 

 

Table 2-3 shows the characteristics of a forward jughandle intersection.  
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Table 2-3 Characteristics of a Forward Jughandle (Tabernero and Sayed, 2006; Hummer 

and Reid, 2000) 

Advantages Disadvantages When to 
Consider 

When not to Consider 

-Reduced 
delay for 
through 
arterial 
traffic 
 
-Reduced 
stops for 
through 
traffic 
 
-Easier 
progression 
for through 
arterial 
traffic 
 
-Narrower 
right-of-way 
needed along 
the arterial 
 
-Fewer and 
more 
separated 
conflict 
points 
 

-Driver confusion 
 
-Driver disregard for 
left-turn prohibitions at 
the main intersection 
 
-Increased travel 
distances for left turns 
from the arterial 
 
-Increased delay for left 
turns from the arterial, 
especially if queues of 
cross-street vehicles 
block the ramp terminal 
 
-Increased stops for left 
turns form the arterial 
 
-Additional 
construction and 
maintenance costs for 
ramps 
 
-Lack of access to 
arterial for parcels next 
to ramps 
 
-Pedestrians must cross 
ramps and the main 
intersection 

-High arterial 
through volumes 
with low and 
moderate cross 
street left-turn 
volumes 
 
-Narrow right of 
way 
  

-Sufficient spacing 
between intersections 
so right-of-way and 
ramp costs do not 
overwhelm the savings 
elsewhere 
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Table 2-4 Summary of Jughandle (USDOT, 2004) 

Characteristics Potential Benefits Potential Liabilities 

Safety Potential reduction in left-
turn collisions 

None identified 

 
Operations 

 
Potential reduction in 
overall travel time and stops 

 
Longer travel time and 
more stops for left-turning 
vehicles using the jughandle

 
Multimodal 

 
Pedestrian crossing distance 
may be less due to lack of 
left-turn lanes on the major 
street 
 
Pedestrian delay may be 
reduced due to potentially 
shorter cycle lengths 

 
Increased exposure for 
pedestrians crossing the 
ramp terminal 
 
Ramp diverges may create 
higher speed conflicts 
between bicyclists and 
motor vehicles 
 
Transit stops may need to 
be relocated outside the 
influence area of the 
intersection 

 
Physical 

 
None identified 

 
Additional right-of-way 
may be required 
 
Access management 

 
Socioeconomic 

 
None identified 

 
None identified 

 
Enforcement, 
Education, and 
Maintenance 

 
None identified 

 
Education may be needed 
unless good visual cues are 
provided 
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2.4 Median U-turn intersection (MUT) 
 
The Median U-turn (MUT) intersection requires a motorist that wants to turn left to use 

a directional crossover in the median located downstream of the primary intersection 

(Figure 2-8). Left turns proceed through the intersection, make a u-turn at the median 

crossover, and then turn right once entering the primary intersection for the second time. 

Direct left turns are prohibited at the primary intersection.  Right turns proceed as usual. 

 

 
Figure 2-8 Median U-turn Turning Movements (Tarko et al., 2008) 

 

A true median u-turn intersection does not allow bi-directional crossovers. Bi-directional 

crossovers are not considered, as they have the possibility of interlocking (Jagannathan, 

2007). 

 

Median u-turns can be implemented on the major road, the secondary road, or both.  The 

road on which a median u-turn is implemented is often restricted by the width of the 

median.  The median width of a median u-turn intersection depends on the design 

vehicle’s turning radius and the number of opposing lanes (Jagannathan, 2007). 
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A median u-turn intersection can be stop-controlled at both the primary and secondary 

intersections, signalized at the primary intersection and stop-controlled at the secondary 

intersections created by the median u-turns, or signalized at both the primary and 

secondary intersections.  If the primary intersection is signalized, it will have two phases.  

If both the primary and secondary intersections are signalized, the primary and secondary 

intersections should be coordinated.  Coordinating the signals requires through vehicles 

to stop only once. 

 

A median u-turn with a crossover controlled by a signal would only work in states which 

allow a left turn on a red signal on one-way facilities. 

 

Michigan DOT has used median u-turns for many years and presently operates over 

1,000 miles of them.  

 

The location of the crossovers downstream of the primary intersection should be carefully 

considered. Agencies provide varying recommendations for the location, which range 

from 400 to 760 feet beyond the primary intersection (Hummer, 1998; AASHTO, 2004; 

Jagannathan, 2007). The location of a crossover is a tradeoff between the travel time for 

left turns and the storage capacity for left-turning vehicles. As the placement of a 

crossover from the primary intersection increases, the travel time for left turns will 

increase; however, with heavy left turns, increasing the distance of the crossover from the 

primary intersection will prevent spillback and blockage of through movements. 

 

Implementing loons in the median u-turn design can help reduce the required median 

width. 

 

Using the scheme proposed by (Jagannathan, 2007), tapering the median width when 

approaching the primary intersection can reduce the minimum green time for the cross 

street.  From a safety standpoint, this would result in a reduction in the time during which 
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the pedestrian is exposed to vehicular traffic because their path is shorter.  From an 

operational standpoint, this would result in a reduced cycle length, which results in a 

reduction in delay.  No indication was given that this concept was implemented, or if so, 

the effects quantified. 

 

Special attention should also be considered to address key design elements such as the 

deceleration length, storage, location and spacing of the crossovers on the arterial. The 

design guide developed by the Michigan Department of Transportation can assist in 

addressing these design issues (Michigan DOT, n.d.). 

 
The introduction of crossovers in the median u-turn design allows for the removal of left 

turn phases from the primary intersection, thus reducing the cycle length and delay for 

through movements and at the same time providing the possibility for better coordination.  

 

Signage is an important feature in median u-turn design for efficient operations. The 

Michigan DOT has developed signage plans based on past experience (Michigan DOT, 

n.d.). Existing alternative intersections, like the median u-turn, have shown that agencies 

can mitigate confusion when rerouting certain movements through proper understandable 

traffic control devices and signing (Hummer and Reid, 2000). 

 

When comparing the median u-turn design with conventional intersection, considerable 

savings in delay occur when left turn volumes are small (Bared and Kaisar, 2002). As the 

volume of left turns increases, the benefits decrease. Additionally, at larger through 

volumes, the median u-turn design substantially outperforms a conventional intersection; 

at low to median through volumes, the median u-turn will perform similarly to a 

comparable conventional intersection (Bared and Kaisar, 2002; Ourston and Hall, 2003). 

 

Table 2-5 shows the general characteristics of the median u-turn design and can be used 

for initial screening. 
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Table 2-5 Characteristics of a Median U-turn (Jagannathan, 2007; Tabernero and Sayed, 

2006; Hummer and Reid, 2000) 

Advantages Disadvantages When to 
Consider 

When not to 
Consider 

-Reduced delay 
for through 
arterial traffic 
 
-Easier 
progression for 
through arterial. 
 
-Fewer stops for 
through traffic, 
particularly on 
approaches 
without 
signalized 
directional 
crossover 
 
-Fewer threats to 
crossing 
pedestrians 
 
-Fewer and more 
separated 
conflict points 
-increase 
capacity at 
primary 
intersection 
 
-Allows to 
operate signal at 
shorter cycle 
lengths 

-Driver confusion 
 
-Driver disregard of 
the left-turn 
prohibition at main 
intersection 
 
-Increased delay for 
left turning traffic 
 
-Increased travel 
distance for left 
turning traffic 
 
-Increased stops for 
left turning traffic 
 
-Higher operation cost 
if for extra signals 
 
- Longer cross street 
minimum green times 
or two cycle 
pedestrian crossing 
 
-Larger right of way 
to accommodate 
required median width 

-High arterial 
through volumes 
with low and 
moderate left 
turn volumes and 
any cross street 
volumes 
 

-Arterials with 
narrow median 
with no prospect 
for obtaining extra 
right of way are 
poor candidates 
except where 
agencies can build 
wide median and 
crossovers on the 
cross street 
 
-With high left 
turn volumes, 
extra delay and 
travel distance 
with spillback 
potential will 
outweigh the 
savings for 
through traffic 

 

The median u-turn design allows for a faster mean vehicle speed throughout the day 

compared to a conventional design.  Additionally, the median u-turn has improved 

operations in terms of total system time during the peak period. During the off-peak 
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period, the median u-turn will perform roughly the same as a conventional intersection in 

terms of total system time (Hummer and Reid, 2000). 

 

A considerable gain in capacity can be achieved for median u-turn design compared to 

conventional design with dual left turns (Levinson et al., 2000). 

 

2.4.1 Median u-turn in an arterial corridor 
 
A median u-turn corridor with uneven spacing can improve system travel time by 17 

percent and average speed by 25 percent compared to conventional design during peak 

periods (Reid et al., 1999). During off-peak periods, a median u-turn corridor will operate 

with similar efficiency when compared to a corridor composed of conventional 

intersections (Reid et al., 1999). 

 

When analyzing the median u-turn design as a corridor, a higher margin of benefits are 

achieved with higher left to through ratios than at lower ratios when compared to a 

conventional intersection (Reid et al., 1999). For the majority of cases tested, the authors 

have found that a median u-turn corridor increases the number of stops. 

 

Table 2-6 summarizes the advantages and the disadvantages of a median u-turn corridor 

as compared to a conventional two-way left-turn lane (TWLTL) corridor. 

 

Table 2-6 MUT Corridor Relative to a TWLTL Corridor (Reid et al., 1999) 

Advantages Disadvantages 
• Two-phase signal operation by 

removal of left turns from main 
intersection 

• Progression Strengthened 
• Potential reduction for through 

movements delay 
• Reduced conflict points 
• Better visual aesthetics 

• Increases in VMT due to 
increased travel distance for left 
turns and delays for low volumes 

• Driver confusion  
• Greater right-of-way 

requirements (25 – 50 feet) 
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The MUT may be applied as a corridor treatment or at isolated intersections 

(Jagannathan, 2007). Implementing a MUT intersection in a coordinated arterial 

composed of conventional intersections is not encouraged. 

 
Table 2-7 Summary of Median U-turn Intersection (USDOT, 2004) 

Characteristics Potential Benefits Potential Liabilities 

Safety Potential reduction in left-
turn collisions 
 
Potential minor reduction in 
merging/diverging 
collisions 

None identified 

Operations Potential reduction in 
overall travel time. 
 
Reduction in stops for 
mainline through 
movements 
 
Mixed findings with respect 
to overall stops 

Mixed findings with 
respect to overall stops 

Multimodal Number of conflicting 
movements at intersections 
is reduced 
 

Increased crossing 
distance for pedestrians. 
 
Turning paths of the 
median U-turn may 
encroach in bike lanes 

Physical None identified May be additional right-
of-way needs depending 
on width of existing 
median 

Socioeconomic None identified Access may need to be 
restricted within the 
influence of the median U-
turn locations 

Enforcement, Education, 
and Maintenance 

None identified Enforcement and 
education may be 
necessary to prevent 
illegal left turns at the 
main intersection 
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2.5 Roundabout Intersection 
 
 
Roundabout intersections allow multiple vehicles to enter the intersection simultaneously 

from any approach when no conflicting vehicle is present in the circulatory roadway. The 

entry onto a roundabout is controlled by a yield sign. Roundabouts are characterized by 

the number of circulatory lanes, the number of entry lanes, the central island diameter, 

the deflection of approaches, flared entries, and splitter islands. The Federal Highway 

Administration (FHWA) Roundabout Guide (Robinson et al., 2000) can help classify and 

determine roundabout geometrical dimensions based on the desired operational 

characteristics. This guide was developed based on research from Europe and Australia 

and is currently being updated with U.S. roundabout data.  Figure 2-9 provides an 

example of how a vehicle approaching from the major (a) and minor (b) streets would 

traverse a roundabout.  Note that the figure only demonstrates the movement from one 

direction for each street, although entry from both directions for both the minor and 

major street are permitted. 

 

 

 
Figure 2-9 Roundabout Turning Movements-Example (Tarko et al., 2008) 
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It is important to distinguish roundabouts from the old traffic circles or rotaries.  The 

different is that entering traffic must yield to circulating traffic in a roundabout, while in a 

rotary, circulating traffic must yield to entering traffic.  Furthermore, roundabouts have 

deflection on the approach legs so that the speed of the vehicle entering the roundabout is 

sufficiently reduced to minimize the speed differential between the vehicle in the 

circulatory roadway and the vehicle on the approach. 

 

Prior to construction of roundabouts in communities not accustomed to them, designers 

and planners might experience opposition mainly due to unfamiliarity with the design 

(Retting et al., 2002). Opposition to roundabout intersections can also be attributed to 

people confusing a roundabout with traffic circles, rotaries, or traffic calming islands 

(Russell et al., 2002). Agencies should consider providing educational classes and 

informational sessions regarding roundabouts when implementing them within 

communities unfamiliar with this design. After implementation of well designed 

roundabouts, agencies can expect a sufficient decline in the opposition to roundabouts.  

Once people experience roundabouts, they tend to favor the design (Retting et al., 2002; 

Russell, 2006). 

 
Roundabouts have the potential to provide improved traffic flow operations at locations 

with high left-turn volumes, skewed approaches, and conditions with limited queue 

storage. In general, roundabouts require a shorter sight distance than conventional 

intersections due to lower speeds on approaches compared to conventional intersections 

and right turn merge on entry. Traffic leaving roundabouts tends to be more random than 

at intersections with other types of control.  Furthermore, the gaps downstream tend to be 

shorter but more random and frequent compared to signalized intersections.  Thus, 

roundabouts have the potential to provide more opportunities for side street traffic 

downstream of the roundabout to enter the major street. Important factors in roundabout 

design include overall size; entry angles; entry widths; flare length; speed; presence of 

trucks; pedestrians and bicycles; proper signing; and markings (Johnson and Hange, n.d.). 
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For multilane roundabouts, special attention to design details such as vehicle path 

alignment, especially the shortest path, lane widths, and positive guidance to drivers 

through the use of lane markings, should be carefully considered to achieve a successful 

roundabout design (rodegerdts et al., 2007).  

 

The two most important driver behavior parameters considered during roundabout design 

are critical gap and follow-up time. For cities with no prior roundabout experience, these 

parameters can be assumed to be more conservative than for cities with prior installations 

of roundabouts. Therefore, when using the guidelines provided by FHWA, longer critical 

gaps and follow-up times should be assumed than those provided because the FHWA 

guidelines are based on international research. The critical gaps and follow-up times are 

longer due to the more conservative nature of U.S. driver behavior on roundabouts 

compared to driver behavior in other countries (Rodegerdts et al., 2007; Eisenman and 

List). 

 

The level of service (LOS) for roundabouts should be determined based on the HCM 

LOS criteria for unsignalized intersections. Control delay should be estimated for each 

approach separately, not for the intersection as a whole, since it may mask movements 

with a severe delay. The procedure for determining roundabout LOS can be found in 

Appendix M (Draft Highway Capacity Manual Chapter 17) of (Rodegerdts, 2007). 

Roundabouts with heavy traffic are expected to have a higher capacity than roundabouts 

with light traffic due to drivers accepting shorter gaps in the circulatory flow (Polus et al., 

2003). 

 

Microsimulation packages (i.e., VISSIM, Paramics, and others) or macroscopic methods 

(i.e., RODEL, aaSIDRA, and FHWA methodology) are two other approaches that can be 

used to determine roundabout capacity (Bared and Edara, 2005; Flannery et al., 1998; 

Stanek and Milam, 2005). A discussion of these approaches can be found in Appendix A. 
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To determine roundabout feasibility for a given site, data on the vehicle and pedestrian 

volumes, and the horizontal and vertical alignment should be considered (Chapman and 

Benekohal, 2002). Factors that favor roundabout construction include (Chapman and 

Benekohal, 2002): 

 Geometric realignment of the approaches  

 Current alignment is not conducive to the installation of a traffic signal system 

without geometric improvements 

 More than four approaches to an intersection exist at a single unsignalized 

location 

 
Factors that discourage roundabout consideration include (Chapman and Benekohal, 

2002; Retting et al., 2002):  

 Grades through the intersection are greater than four percent 

 Crest vertical curves with steep approaches are present 

 Vertical profile cannot be adjusted without a significant expense 

 Intersection cannot be relocated 

 Highly unbalanced volumes 

 Locations where the terrain or right-of-way limit appropriate geometry  

 Close proximity to persistent bottlenecks 

 
Volumes that favor conversion of a signalized intersection to a roundabout can be found 

in (Chapman and Benekohal, 2002). Also, there are cases where certain geometric and 

site characteristics may favor roundabouts over signals. Specific case studies where 

roundabouts proved to be more efficient than signals can be found in (Johnson and 

Hange, n.d.). Placing roundabouts within a signalized arterial requires careful analysis, 

including the possibility of a queue spillback from signalized intersections to the 

roundabout, and generally is discouraged above low volumes (Chapman and Benekohal, 

2002). Placing roundabouts on arterials with light traffic are easier to justify. 
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When converting stop-controlled intersections to roundabouts for low and moderate 

volumes (up to 20,000 veh/day), control delay will be reduced or distributed more fairly 

between approaches (Flannery et al., 1998). Fair distribution of delay becomes a factor on 

two-way stop-controlled intersections where the stop-controlled legs experience rapid 

increases in volume and excessive approach delay even when the average delay for the 

intersection does not indicate any problems. 

 

Construction of roundabouts at signalized interchanges with high left turn volumes can in 

some cases reduce costly structure widening and increase capacity (Robinson et al., 2000; 

Johnson and Hange, n.d.). Roundabouts can also prove to be the most cost-effective 

solution at the ends of tunnels and bridges, where storage and turning lanes required by a 

traffic signal would be expensive (Robinson et al., 2000). 

 

Converting stop-controlled intersections to roundabouts reduces delays and vehicle stops.  

Reduction of the average intersection delay can range from relatively low to significant 

when converting stop-controlled intersections to roundabouts (Retting et al., 2002; 

Russell, 2006). 

 

Where an actuated signalized crossing for pedestrians at a roundabout is required, the 

alternative solution is to locate the crossing downstream of the exit lane. This placement 

reduces the chance of a queue spilling back to block the circulatory roadway, which is 

preferred to placing the actuated signalized crosswalk at a splitter island. Placing the 

crosswalk at a downstream location primarily only affects the exiting vehicles on that 

particular leg (Rouphail, et al., 2005). The above consideration applies only to signalized 

pedestrian crossings.  
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2.6 Superstreet median (SSM) crossover intersection 
 
 
The Superstreet median (SSM) crossover intersection requires cross-street through 

movements and left turns to and from the arterial to use the directional crossover (Figure 

2-10). This geometric layout allows each direction of the arterial to have its own signal 

pattern, including different cycle lengths for achieving good progression. The cross street 

through movement is required to make a right turn at the main intersection, make use of 

the directional crossover located in the median downstream of the primary signal, and 

then turn right when coming back to the primary intersection (Figure 2-11). Left turns at 

the main intersection are direct and protected. There is an alternative SSM design which 

removes the direct left turns from the major roadway and allows this movement through a 

directional crossover similar to the median u-turn design. 

 

 
Figure 2-10 Diagram of SSM (Tarko et al., 2008) 
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Figure 2-11 Super-street Traffic Movement (Tarko et al., 2008) 

 
The superstreet median crossover utilizes a two-phased signal which is shown in Figure 

2-10. Prohibition of direct through and left turning movements for the cross street allows 

the two phase signals to function independently. Thus, different cycle lengths can be used 

for each direction (Figure 2-12). This concept can be used to achieve good coordination 

with uneven intersection spacing.  A conventional intersection, on the other hand, can be 

coordinated for one direction of an arterial, with uneven intersection spacing since the 

other direction would be compromised.  

 

 

 
Figure 2-12 Typical Phasing for the Super-street Intersection (USDOT, 2004) 
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The SSM intersection compromises travel time and delay for the minor street through and 

left turn traffic to achieve an improvement in major road through and left turn 

movements. When the streets crossing are of equal importance, this intersection solution 

is not desirable. 

 

Table 2-8 shows the general characteristics of the SSM design and can be used for initial 

screening for applicable designs. 



  

 

  32
 
 
 

Table 2-8 Characteristics of SSM Design (Hummer, 1998; Hummer and Reid, 2000) 

Advantages Disadvantages When to Consider When not to 
Consider 

-Reduced delay 
for through 
arterial traffic 
and for one pair 
of left turns 
 
-“Perfect” two-
way progression 
with any signal 
spacing 
 
-Fewer stops for 
through traffic 
 
-Fewer threats to 
crossing 
pedestrians 
 
-Fewer and more 
separated conflict 
points 
 

-Driver confusion 
 
-Driver disregard of 
the left-turn 
prohibition at main 
intersection 
 
-Increased delay for 
one pair of left 
turning traffic and 
cross street through 
traffic 
 
-Increased travel 
distance for left 
turning traffic and 
cross street through 
traffic 
 
-Increased stops for 
cross street through 
traffic and one pair 
of left turning 
traffic 
 
-Slow two stage 
crossing for 
pedestrians on the 
arterial 

-High arterial 
through volumes 
with low and 
moderate cross 
street through 
volumes. Usually 
in suburban 
arterials where 
roadside 
development 
generates most of 
the traffic 
 
-50/50 arterial 
through traffic split 
exists for most of 
the day with 
uneven street 
spacing 
 

-Arterials with 
narrow medians 
and no prospect for 
obtaining extra 
right of way for 
widening 

 

2.6.1 SSM in an arterial corridor 
 

With uneven intersection spacing, a SSM corridor provides slight improvements in 

system travel time and average speed as compared to a conventional design during peak 

periods (Reid et al., 1999).  The benefits of a conventional intersection corridor converted 

to a SSM corridor may be less significant than a conventional corridor converted to a 
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median u-turn corridor. During off-peak periods, a SSM corridor will operate with similar 

efficiency as a corridor composed of conventional intersections (Reid et al., 1999). 

 

Analyzing the SSM design as a corridor, a higher margin of benefits is achieved, 

compared with a conventional intersection corridor with higher left to through ratios 

(Reid et al., 1999). Overall, a SSM corridor seems to be associated with an increased 

number of stops compared to a conventional intersection corridor. 

 

Table 2-9 summarizes the advantages and disadvantages of a SSM corridors compared to 

a conventional two-way left-turn lane (TWLTL) corridor. 

 

Table 2-9 SSM Corridor Relative to a TWLTLC (Reid et al., 1999) 

Advantage Disadvantage 
• Two-phase signal operation by 

removal of direct left and 
through from the cross street 

• Perfect progression in both 
directions of arterial  

• Each direction of arterial can 
operate on different cycle length 

• Increase in VMT due to 
increased travel distance for 
through cross street movements 

• Driver confusion due to 
discontinuity of cross street  

• Implementation difficult for high 
cross street through volumes 

• Greater right-of-way 
requirements (25 – 50 feet) 
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Table 2-10 Summary of SSM Intersection Adapted from (USDOT, 2004) 

Characteristics Potential Benefits Potential Liabilities 

Safety Fewer conflict points None identified 

 
Operations 

 
Reduced delay for major 
street movements 

 
Longer travel distance 
and time for minor street 
movements 

 
Multimodal 

 
None identified 
 

 
Two-stage pedestrian 
crossing 
 
Potential way-finding 
challenges 
 

 
Physical 

 
None identified 

 
Wide median needed 

 
Socioeconomic 

 
None identified 

 
May result in restrictions 
to access 

 
Enforcement, Education, 
and Maintenance 

 
None identified 

 
Potential for driver and 
pedestrian confusion 
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2.7 Bowtie intersection 
 
 
The bowtie intersection is an alternative intersection which uses roundabouts on the cross 

street to accommodate left turns (Figure 2-13). The concept of the bowtie is similar to an 

interchange with roundabouts without grade separation. All left turns are prohibited at the 

primary intersection. The distance from the primary intersection to each roundabout, 

varies from 200 to 600 feet, which allows a tradeoff between limiting the extra distance 

to cover by left turning vehicles and the required storage for vehicle queues. An essential 

feature to this design is the provision of u-turns on a crossing road through roundabouts 

to facilitate indirect left turns.  

 

 
Figure 2-13 Bowtie Intersection Diagram (Tarko et al., 2008) 
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Table 2-11 shows the general characteristics of bowtie design, which and can be used for 

initial screening for applicable designs. 

 

Table 2-11 Characteristics of a Bowtie Intersection (Hummer, 1998; Hummer and Reid, 

2000) 

Advantages Disadvantages When to Consider When not to 
Consider 

-Reduced delay 
for through 
arterial traffic 
 
-Easier 
progression for 
through arterial 
 
-Fewer stops for 
through traffic 
 
-Fewer threats to 
crossing 
pedestrians 
 
-Fewer and more 
separated conflict 
points 
 
-Increased 
capacity at the 
main intersection 

-Driver confusion 
-Driver disregard of 
the left-turn 
prohibition at main 
intersection 
 
-Increased stops for 
left turning traffic 
and cross street 
through traffic 
 
-Increased travel 
distance for left 
turning traffic 
 
-Difficult U-turn 

-High arterial 
through volumes 
with low and 
moderate left turn 
volumes and low 
and moderate cross 
street volumes 
 
-Arterials with 
narrow or 
nonexistent 
medians 

-High left turn 
volumes with 
spillback potential 
 
-Close spacing 
between adjacent 
intersections 

 
    For more information regarding simulation results of bowtie intersections see Boone and 
Hummer; Boone and Hummer, 1995; and Hummer and Boone. 
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2.8 Continuous Green-T Intersection (CGT) 
 
 
The continuous green t-intersection (CGT) can only be applied to  

t-intersections (3-legged intersections). A three-phase signal controls left turns to and 

from the major road. The outside lane receives a green signal display during all phases. 

 

An important aspect of this design is the clear separation between the inside lane from the 

lane with the continuous green signal. This separation can be achieved by using raised 

reflectors or rumble strips (Tabernero and Sayed, 2006). Traffic turning left onto the 

major road inside lane should be guided by pavement markings. The separation between 

the inside lane and the lane with  the continuous green signal indication should extend 

several hundred feet upstream and downstream from the intersection to minimize 

weaving. There should be a raised median between the through lanes during their 

separation to prevent vehicles from crossing the separation (Tabernero and Sayed, 2006). 

A limitation of the continuous green T-intersection is that it does not provide a phase for 

pedestrian crossing (Tabernero and Sayed, 2006). This aspect of the design limits its use 

with heavy pedestrian volumes unless the warrants of an alternative crossing can be met. 

 

 
Figure 2-14 Diagram of a Continuous Green T-Intersection (Tarko et al., 2008) 

 

The benefits achieved with the continuous green T-intersection (CGT) design are highly 

dependent on the percentage of drivers choosing the continuous green movement. For a 
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four-lane arterial, you might expect approximately 75% of drivers to choose the 

continuous green lane.  Only a slight increase may be observed on a six-lane arterial 

(Boone and Hummer, pp. 184-192). 

 

Table 2-12 shows the general characteristics of CGT design, which and can be used for 

initial screening for applicable designs. 

 

Table 2-12 Characteristics of Continuous Green-T (Tabernero and Sayed, 2006) 

Advantages Disadvantages When to Consider 
-Reduced delay for through 
arterial traffic in one 
direction 
 
- Reduced stops for through 
arterial traffic in one 
direction 

-Driver and pedestrian 
confusion 
 
-Driver disregard of the 
separation between the 
through lanes 
 
-No signal protection for 
pedestrians to cross the 
arterial 
 
-Increased lane changing 
conflicts before and after 
the separation of through 
lanes 
 
-Restricted access to 
parcels adjacent to the 
continuous green through 
lanes 

-At signalized three 
approach intersections 
with moderate to low 
left-turn volumes from 
the minor-street and high 
arterial through volumes, 
where there are no 
crossing pedestrians and 
few driveways along the 
top of the T 
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2.9 Double-Wide (DW) Intersection 
 
 
The concept of a double wide (DW) intersection design is to move as many through 

vehicles as possible past the primary intersection, then reincorporate those vehicles back 

into the break between platoons. Figure 2-15 provides a schematic of a double-wide 

intersection. In this intersection design, all of the geometric changes take place on the 

major street. A low, but narrow, forgiving and highly visible barrier separates the through 

lane prior to the intersection. Some distance downstream of the intersection, a second 

signal is present.  The second signal would be a simple two-phase signal, most likely 

coordinated with the signal at the primary intersection to allow some progression. The 

second signal eliminates the expenses associated with long extra lanes beyond the 

intersection. The lengths of the extra lanes prior to the intersection and beyond the 

intersection in a double-wide design are a function of the signal timing at the primary 

intersection and should be able to store the through traffic waiting to be served on a 

single green phase (Hummer, 2000). 
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Figure 2-15 Diagram of Double-Wide intersection (Tarko et al., 2008) 

 

The double-wide intersection design performs more efficiently than an intersection with 

dual left-turn and through lanes and one right-turn lane (LLTTR1), dual left-turn and 

through lanes where the right most through lane also accommodates right-turns (LLTTS1) 

and dual left-turn, three through lanes, and one right-turn lane (LLTTTR1) when the 

major street has higher arterial through volumes relative to the turning volumes. The 

benefit of this design is that you can always add an additional turning bay to the double-

wide design.  Other designs cannot realistically be expanded any further (Hummer, 

2000). 

                                                 
1 letter designates lane in specific direction L-left, T-through, S-shared through and right and R right only 
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A double-wide intersection is applicable at isolated arterial intersections with no 

possibility for progression (Hummer, 2000). The capacity of a double-wide intersection 

design is the same as a LLTTTR intersection, somewhat greater than a LLTTS 

intersection, and significantly greater than a LLTTR intersection. 

 
2.10 Paired intersection  

 
 
Paired intersections use directional crossovers for left turns from the major street at one 

intersection of the pair and directional crossovers for left turns to the major street at the 

second intersection of the pair. Complete circulation throughout the corridor requires that 

continuous two-way collector roads are parallel to the arterial.  The collector roads must 

be set back at least several hundred feet from the arterial to avoid spillback and provide 

developable parcels fronting the arterial (Tabernero and Sayed, 2006). The intersections 

between the cross streets and the parallel collector roads may be stop-controlled or 

signalized depending on the traffic volumes and site factors (Tabernero and Sayed, 2006). 

Figure 2-16 provides a schematic of the split intersection. 
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Figure 2-16 Traffic Flows for a Paired Intersection (Tarko et al., 2008) 

Table 2-13 shows the general characteristics of a paired intersection design and can be 

used for initial screening for applicable designs. 
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Table 2-13 Characteristics of Paired Intersection (Tabernero and Sayed, 2006) 

Advantages Disadvantages When to Consider When not to 
Consider 

-Reduced delay 
for through 
arterial traffic. 
-Fewer stops for 
through traffic 
 
-Easier 
progression for 
through arterial 
traffic, and with 
the left merge 
variation 
“perfect” two-
way progression 
 
-Fewer threats to 
crossing 
pedestrians 
 
-Fewer and more 
separated conflict 
points 
 

-Driver and 
pedestrian 
confusion 
 
-Increased travel 
distances for cross-
street through traffic 
and for some left-
turning traffic 
 
-Increased delay for 
cross street through 
traffic and for some 
left turn traffic 
 
-Increased stops for 
cross street through 
traffic and for some 
left turning traffic 
 
-Slow two-stage 
crossing for 
pedestrians on the 
arterial 

-High arterial 
through volumes 
with low cross 
street through 
volumes 
 
-Means to build 
and operate the 
parallel collector 
road are available 
  

-existing parallel 
streets are not 
capable of carrying 
additional traffic 
 
-there is no means 
to build and operate 
parallel collector 
roads 
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2.11 Quadrant roadway intersection (QRI) 
 
 
The quadrant roadway (QRT) intersection eliminates left turns at the main intersection 

by providing a three-lane roadway which can be located in any of the four quadrants.  

Like the jughandle alternatives, the flexibility associated with which the three-way 

roadway can be applied, makes this alternative appealing when existing developments 

may otherwise eliminate the possibility of applying alternative intersections. In Figure 

2-17 the three-lane roadway is located in the south-west quadrant. The minor two t-

intersections allow for direct left turns and may be stop-controlled or signalized. Instead 

of making a left turn at the primary intersection, drivers will have to make appropriate 

turning maneuvers on the minor t-intersections to direct them on the desired route (Figure 

2-18). Turning maneuvers carried out by drivers on the minor t-intersections will depend 

on the quadrant in which the three-lane roadway is located. 

 

 
Figure 2-17 Diagram of QRI Intersection (Reid and Hummer, 2001) 
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Figure 2-18 Example QRI Traffic Pattern (Tarko et al., 2008) 

 
 

 
Figure 2-19 Phasing Plan for QRI Intersection (Hummer and Reid, 1999) 

 

A quadrant roadway intersection (QRI) operated by a single controller can bring slight 

reductions in travel time and more significant reductions in queuing compared to a 

conventional intersection (Reid, 2000). The reduction in travel time for the through 

movement will be slight, while the delay at the primary intersection and maximum queue 

length will be substantially reduced (Reid, 2000). Such a large reduction of delay and 

maximum queue length at the primary intersection is due to the fact that the delay for the 

QRI is distributed between the primary intersection and the two secondary t-intersections. 

As the through and left-turn volumes increase, the QRI design will outperform the 

conventional design by a higher margin (Reid, 2000).  The secondary intersection on the 

major road should be coordinated with the primary intersection so that the through 

movement does not require more than one. 
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The quadrant roadway intersection reduces stopped delay and system travel time without 

adding lanes on the major road. 

 
Table 2-14 Characteristics of QRI Intersection Based on (Reid, 2000) 

Advantages Disadvantages 
• Greater progression possibility 
• Reduced total intersection delay 
• Reduced queuing under heavy 

volumes 
• Fewer vehicular conflict points 
• Narrower intersection width 

• Increased travel distance for left 
turns  

• Increased stops per vehicle for 
left turns 

• Driver confusion 
• Additional right-of-way for the 

quadrant roadway 
• Additional signing   

 
 

2.12 Split intersection 
 
 
The split intersection separates the primary intersection into two one-way streets 

resembling an at-grade diamond (Figure 2-20).  As such, the split intersection can be used 

as an intermediate phase to the creation of an interchange (Bared and Kaisar, 2000; Polus 

and Cohen, 1997). Both signals at the separated intersections run on a three-phase cycle 

operation. It is recommended that a single controller operate both intersections.  Using a 

single controller eliminates the possibility of a poor offset setting, which can occur when 

two separate controllers are used.  A potential consequence of poor offsets is a failure in 

the function of the intersection under heavy volumes. 
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Figure 2-20 Diagram of Split Intersection (Polus and Cohen, 1997) 

 
 

A split intersection has the potential to carry higher traffic volumes and reduce the delay 

for each vehicle with appropriate timing in the signal controller (Bared and Kaisar, 2000). 

The timing plan for a split intersection, when operated by a single controller, should not 

be obtained from Synchro by optimization because Synchro does not provide good signal 

timing in this case. With an increase in approach volumes and proportion of left turns, the 

benefits in reducing delays at a split intersection, compared to a conventional 

intersection, increase (Bared and Kaisar, 2000).  
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2.13 Upstream Signalized Crossover  
 
 
The upstream signalized crossover (USC) intersection is an alternative intersection 

which eliminates left turn opposing conflicts by crossing left turns with the through 

traffic to the left side of the roadway prior to the primary intersection on all four 

approaches (Figure 2-21). Crossing of the through movements and left turns prior to the 

primary intersection is accomplished through secondary signals coordinated with the 

primary signal. Traffic is allowed to cross back to the right side of the road after the 

primary intersection at a second secondary signal. The optimum location of the secondary 

intersection is a function of the operating speed and the desired green-band widths 

(Tabernero et al.). 

 

 

Figure 2-21 Diagram of USC Intersection (Tabernero et al.) 
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To prevent drivers from entering the wrong side of the road, a central median should be 

extended towards the intersection to properly channel traffic at the secondary intersection 

where the approaches meet (Tarek et al., 2006). 

 

The upstream signalized crossover (USC) intersection has a higher capacity for left turns 

and can serve greater volumes before reaching saturation compared to a conventional 

intersection, assuming balanced approach volumes (Tabernero et al.). The operational 

performance of through vehicles is not compromised in this design.  The USC performs 

with at least the same efficiency as a conventional intersection, again assuming balanced 

volume conditions. It should be noted that the delay for left turns does not decrease; 

however, split intersection operations are less affected by an increase in left turn volumes 

than at conventional intersections (Tabernero et al.). 

 

A shorter distance between the primary and secondary intersections for a USC will 

perform better for lower traffic volumes and reduce the average delay compared to longer 

spacing between the primary and secondary intersections (Tarek et al., 2006). However, 

shorter spacing between primary and secondary intersections reduces capacity (Tarek et 

al., 2006). 

 

For unbalanced volumes, the USC intersection will perform worse than conventional 

intersections unless the conventional intersection is near its capacity. For mildly 

unbalanced volumes, the impact will not be as severe, and the USC will perform similarly 

to a conventional solution, even for volumes below the capacity of the conventional 

intersection (Tarek et al., 2006). An optimized signal timing of a USC intersection based 

on design volumes will perform better than setting signal timings based on simple 

progression between primary and secondary intersections which are separated by a 

specific distance (Tarek et al., 2006). 
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Table 2-15 USC Intersection Characteristic (Tabernero et al.; Tarek et al., 2006) 

When to Consider Disadvantages 

• Balanced high volumes near 

capacity of conventional 

intersection design 

• Somewhat unbalanced volumes 

which are over capacity of 

conventional design 

• Heavy left turn volumes with 

excessive delays 

• Driver confusion 

• Additional right-of-way 

• Limited access to/from adjacent 

corner properties to right-

in/right-out and restricted exiting 

vehicles to a right turn only 
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CHAPTER 3 ROUNDABOUT CALIBRATION 
 
 
 
For roundabouts, the minimum gap and follow-up time are the most important driver 

behavior parameters that affect capacity (Rodegerdts et al., 2007). These two parameters 

were estimated and adjusted in a simulation experiment to Indiana conditions based on 

field collected data. In the simulation experiment, the calibrated follow-up times ensured 

that the proper vehicle discharged from a stopped position in a queue for vehicles using 

the same available time headway in the circulatory roadway. The estimated critical gaps 

determined appropriate vehicle throughput (capacity) in conjunction with the known 

conflicting flows.  Knowing these two parameters and the magnitude of the conflicting 

flow, it was possible to determine roundabout capacity for single and multilane sites 

based on Equations A.2 and A.3 respectively (Appendix A).  In this research, the critical 

gap was estimated with four different approaches and two distinct assumptions about a 

driver’s consistency when accepting gaps/lags. The estimated critical gaps were 

evaluated in a simulation experiment based on service time at the first position in the 

queue (time at yield line) to determine the most accurate critical gap estimation method.  

 

3.1 Data Collection 
 
 
A roundabout in Carmel, Indiana (Hazel Dell Parkway and East 131st Street) was 

videotaped during a period of 2.45 hours, which included the afternoon peak hour, using 

two directional cameras mounted on a 35 feet high mast on a traffic van. For the critical 

gap and average followup time estimation for a roundabout, each approach lane and 

circulatory roadway crossing area is a separate data collection area since it encounters an 

entering event and a conflicting event. The video cameras were positioned in such a way 
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that all four approaches of the roundabout could be simultaneously captured by the two 

cameras and used for data extraction. Out of the four approaches recorded, the queue 

length could be seen only on two approaches. Six approach lanes comprised 15 hours of 

data for extraction (Figure 3-1). 

 

 
Figure 3-1 Hazel Dell Pkwy & E 131st Street Roundabout 

 

Hazel Dell Parkway and East 131st Street roundabout was selected for data collection 

due to its specific geometry and expected heavy volumes. Data on the expected traffic 

volume levels were provided to us by the Carmel City Engineer involved in the design 

and implementation of the roundabouts.  
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Only a small number of roundabouts experience heavy or even medium volumes in the 

U.S. since the majority of roundabout have been built in low volume locations due to the 

unfamiliarity of agencies with this design since early 2000, thus the data for such sites 

were limited. Data collected at low volumes sites without continuous queuing present for 

a majority of the time on at least one approach lane would have a limited number of 

observations for drivers rejected gaps/lags and accepted gaps, thereby limiting the 

number of observations for critical gap estimation.  

 

Installation of roundabouts in Carmel began in the early 1990s so drivers in the Carmel 

area are familiar with this intersection type. Interviewing several Carmel residents 

revealed a positive attitude towards this intersection type. 

 
3.2 Data Extraction 

 
 
Data from the Hazel Dell Parkway and East 131st Street roundabout were extracted in 

two steps. The first step involved watching 15 hours of video and collecting simple 

events at the merging areas of the circulatory lane(s) and the approach lanes.  To extract 

critical gaps and follow-up times, five simple events where used. These events included: 

 Event 0: vehicle on roundabout approach stops near the stop bar and the 

driver is looking for a gap (time) 

 Event 2: vehicle on roundabout approach enters the conflict area by crossing 

the stop bar (time) 

 Event 3: vehicle approaching the stop bar  was in queue (flag that the first 

vehicle in queue is followed by another vehicle in queue in the same lane) 

 Event 1: circulatory vehicle crosses conflict marker on circulatory roadway 

outside lane (time) 

 Event 4: circulatory vehicle crosses conflict marker on circulatory roadway 

inside lane (time)  
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Figure 3-2 Events Collected During Video Extraction 

 

Collecting these simple events from video was accomplished by using an event log tool, 

which was developed by Jorge Ramos at Purdue University. The event log tool allows 

storing simple events while the tool is running in the background during video playback.  

After recording each individual conflicting area, data were saved in an Excel file (Figure 

3-3).  
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Figure 3-3 Sample of Recorded Data by Event Log Tool 

 
The second step of data extraction involved determining the rejected gaps/lags and the 

accepted gaps/lags based on the collected event data at each approach lane conflict area. 

A specific sequence of events determined if a gap or lag occurred. Since this step 

involved investigating thousands of sequences of events, a computer macro tool (RGS) 

was written in Visual Basic to extract gaps and legs based on the event Excel file 

obtained during video playback. The simple sequences of events which define an 

accepted gap (Figure 3-4), a rejected gap (Figure 3-5), a rejected lag (Figure 3-6), an 

accepted lag (Figure 3-7) and follow-up time (Figure 3-8) are explained below. 
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An accepted gap occurs when a vehicle stopped at a yield bar enters the circulatory 

roadway and a conflicting vehicle passes the conflict point of a given roundabout 

approach lane. The time that elapses when the yielding vehicle starts entering the 

roundabout and the circulatory vehicle passes the conflict point defines the accepted gap 

event.  

 

1. NB black vehicle is stopped at the 
yield line 

2. NB vehicle start entering roundabout 
after conflicting white vehicle has 
passed 

3. Another conflicting white vehicle crosses conflict area of NB inside approach 
lane and determines the length of accepted gap for the black vehicle after the black 
NB approach black vehicle has entered the roundabout 

 
Figure 3-4 Simple Accepted Gap Event Sequence 
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A rejected gap event occurs when a vehicle stops at a yield bar and determines not to 

enter the roundabout during passage of the next two consecutive conflicting vehicles on 

the circulatory roadway. The time which elapsed between conflicting vehicles passing the 

conflict marker (green bar) define the rejected gap event. 

 

1. NB white vehicle stops at yield line 2. Conflicting red vehicle passes conflict 
marker while NB inside lane white 
vehicle is still stopped at the yield bar 

 
3. Consecutive conflicting green vehicle crosses conflict marker of NB inside 
approach lane and determines the length of the rejected gap for the white vehicle, 
which is still stopped at the yield bar 

 
Figure 3-5 Simple Rejected Gap Event Sequence 
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A rejected lag event occurs when a vehicle approaching a yield bar determines that the 

available time between this vehicle and the conflicting vehicle is too short to safely enter 

the roundabout and therefore stops. Time that elapses when an entering vehicle stops at 

the yield line and the conflicting vehicle crosses the conflict marker defines the rejected 

lag event.  

 

1. NB white vehicle approaches the 
yield line and notices the 
conflicting black vehicle 

2. NB white vehicle determines that it 
is not safe to enter the roundabout and 
stops at the yield line 

 

3. Conflicting black vehicle crosses the conflict marker while NB white 
vehicle is still at the yield line. Time between NB white vehicle stopping at 
the yield bar and the conflicting black vehicle crossing the conflict marker 
defines the rejected lag event by the NB white vehicle 

 
Figure 3-6 Rejected Lag Event Sequence 
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An accepted lag event occurs when a vehicle approaching a yield bar determines that it is 

safe for him to enter the roundabout and crosses the yield bar without stopping. Time that 

elapses when an entering vehicle passes the yield bar and the conflicting vehicle crosses 

the conflict marker defines the accepted lag event. 

  

1. NB green vehicle approaches the yield 
bar  

2. NB green vehicle passes the yield 
bar without stopping 

 
3. Conflicting white vehicle crosses the conflict marker after the green vehicle has 
entered the roundabout 

 
Figure 3-7 Accepted Lag Event Sequence 

 

A follow-up event occurs when a vehicle stopped at the yield bar enters the roundabout 

and a vehicle(s) is stopped behind in the same lane (also stopped in queue). When either 

vehicle (or any subsequent number of vehicles in a queue in the same lane) enters the 
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roundabout prior to a conflicting vehicle crossing the conflict marker, the time between 

each consecutive vehicle crossing the yield bar defines the follow-up time. 

 

 
 1. White and red NB vehicles are 
stopped at the roundabout entry 

 2. White NB vehicle enters the 
roundabout 

 
 3. Red NB vehicle enters the 
roundabout prior to any conflicting 
vehicle crossing the conflict marker; 
time between white vehicle crossing the 
yield line and the red vehicle crossing 
the yield line defines the follow-up time

 4. Conflicting vehicle crosses the 
conflict marker and defines the 
accepted gap for the white vehicle and 
the accepted lag for the red vehicle. 

 
Figure 3-8 Follow-up Time Event Sequence 

 

Having collected event data from video for all six roundabout approach lanes, the 

developed Roundabout Gap Sequence (RGS) macro tool was used to extract the rejected 

gaps, the accepted gaps, the rejected lags, the accepted gaps, and the follow-up times 

(Figure 3-10). As can be seen from Figure 3-10, the developed RGS macro calculates all 
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of the required sequences of events for critical gap estimation. The time at the yield bar 

extracted by the RGS was used to determine the most accurate method for critical gap 

estimation based on the service time of the vehicle at the first position in the queue (yield 

line).   

 

Figure 3-11 aggregates the sample data based on each individual vehicle as follows. 

Vehicle 1 rejected a lag of 0.9 seconds, was stopped at the yield bar for 2.0 seconds, and 

accepted a gap of 8.6 seconds. Vehicle 2 entered the roundabout 2.5 seconds after 

Vehicle 1 (follow-up time) and accepted a lag of 6.1 seconds. It should be noticed that the 

same conflicting vehicle determines the gap time for the first vehicle and the lag time for 

the second vehicle.   

 

The extracted data from the RGS macro tool were prepared for critical gap estimation 

using another macro, Roundabout Gap Sequence Extract (RGSE), which prepares data 

for direct use in the Maximum Likely Method and the Tarko Method for estimating 

critical gap  

 

 
 

Figure 3-9 Post Processing Data with RGSE 
 
 



 

 

 

 

 
Figure 3-10 RGS Software Sample Output I 

Extracted time of each 
individual sequence of events  

Type of each individual 
sequence of events (gap/lag) and 
(rejected/accepted) 

Follow-up time if this sequence 
of events occurred 

Time of vehicle stopped in 
the first position  

Raw data collected using 
Time Log tool 
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Figure 3-11 RGS Software Sample Output I 

 
                

1  

3  

5  

7  

9  

2  

4 

6 

8 

10 

During this time period events for ten vehicles where recorded

Conflicting vehicle determining gap time and lag time for vehicle 1 & 2
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It should be mentioned that a single vehicle entering a roundabout which stops at the 

yield line will have a rejected lag; can have none, one or multiple rejected gaps; and will 

have one accepted gap. A vehicle that enters a roundabout without stopping will have one 

accepted lag.  This distinction is important when the critical gap is estimated using 

different driver behavior assumptions.  

 
3.3 Critical Gap Estimation 

 
 
Extracted gaps and lags were used to determine the critical gap representative for drivers 

in Indiana accustomed to a roundabout intersection. Two major assumptions about 

drivers were tested using two distinct critical gap estimation procedures. For each 

procedure, two different methods were used; one method included using only gap event 

in the critical gap estimation procedure, and the other included using gaps and lags in the 

critical gap estimation procedure. This combination gives a total of four estimates for the 

critical gap. The follow-up time was obtained by averaging all of the follow-up events 

extracted during the data collection period 

 

The two procedures tested were the Maximum Likelihood Method and the Tarko 

Method. The Maximum Likelihood Method has been proven to be one of the best 

methods for critical gap estimation (Brilon et al., 1999). The Maximum Likelihood 

Method assumes that drivers are consistent and, if subjected to the same sequence of 

events, will behave in an identical fashion i.e., that is drivers will always reject gaps/lags 

smaller than their critical gap and accept gaps/lags larger than their critical gap. This 

assumption about the Maximum Likelihood Method implies that each driver is 

represented in the data set by the largest rejected gap and accepted gap. For those drivers 

that do not stop at the yield line, the largest rejected gap is zero. 

 

The Tarko method assumes that drivers are not always consistent and will sometimes 

reject longer gaps/lags then their accepted gap. With this assumption, each vehicle 

contributes to the data set with all of its rejected gaps/lags and accepted gap. 
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These two procedures represent two distinct assumptions about a driver’s gap acceptance 

behavior. The Maximum Likelihood Method assumes consistent drivers while the Tarko 

Method assumes drivers are not always consistent with their gap acceptance behavior. 

The Tarko Method emerged as data were extracted and was noticed that for some drivers 

their largest rejected gap, were higher than their accepted gaps so those observations had 

to be removed from the Maximum Likelihood Method but not from the Tarko Method.  

 

The procedure for estimating critical gap using the Maximum Likelihood Method: 

 
1. For each driver estimate, the longest gap rejected is gr and the gap accepted is ga. 

The critical gap gc of the driver is between gr and ga. If the first gap (lag) is 

accepted then gr = 0 sec (in this case critical gap gc is between 0 and ga).  

2. Assume a specific gap distribution for the critical gap (lognormal). Thus f(gc) is 

the probability density function and F(gc) is the cumulative distribution function.  

3. The probability that gc is between gr and ga is equal to F(ga) - F(gr) and the 

likelihood for multiple drivers is  
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The procedure for estimating critical gap using Tarko Method: 

In this method we assume gc varies across drivers and across the decisions of the same 

driver (implies drivers are not consistent). 

 

1. Estimate each gap rejected gr and each gap accepted ga for each driver. 

2. The likelihood of gc higher then gr is 1-F(gr).  

      The likelihood of gc shorter then ga is F(ga). 

3. The likelihood for all drivers in the population is 
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 and cσ  are parameters of distribution f(gc) 

 

To maximize the likelihood for each method, the Excel solver feature was used. Four 

different estimates for critical gap were determined and included the Maximum 

Likelihood Method using only gap events, the Maximum Likelihood Method using gap 

and lag events, the Tarko Method using gap events, and the Tarko Method using gap and 

lag events. Four different estimates were obtained (Table 3-1, Table 3-2). 

 

Table 3-1 Tarko Method Critical Gap Estimates 

Tarko Method     
  Gaps&Lags Gaps 

 
 -2425.5165 -1209.01 

Critical gap  (sec) 2.4           3.5 
Standard deviation (sec) 1.7  1.7 
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Table 3-2 Maximum Likelihood Method Critical Gap Estimates 

Maximum Likelihood Method     
  Gaps&Lags Gaps 

 
 -1675.5571 - 829.049 

Critical gap  (sec) 1.9           3.1 
Standard deviation  (sec) 1.7 1.5 

 

Table 3-3 Follow-up Time Estimate from Field Data 

Average Follow-up time (sec) 
Number of 
observations 

2.42 1076 
 

To evaluate which critical gap estimate most accurately reflects the field data, a 

simulation experiment, replicating field conditions, was conducted using the counts 

collected at roundabout conflicting areas. The procedure for estimating roundabout 

turning movements based on the counts collected at the conflicting areas, data collection 

points, is explained. By applying this procedure to estimate turning movements, tracking 

individual vehicles was not required and saved a lot of time.  

 

3.4 Evaluation of critical gap estimation methods based  on service time 
 
 
The critical gaps were evaluated based on service time in the queue first position, which 

is equivalent to the time spent at the yield bar (column 4 in Figure 3-10, Figure 3-11). 

Vehicles that did not stop at the yield line when entering the roundabout had a time in the 

first position equal to zero. Prior to running the simulation experiment, the follow-up 

time was calibrated within VISSIM by modifying the headway parameter (CC1) of the 

Wiedemann 1999 model since the default values, follow-up time was below the targeted 

field extracted value of 2.42 sec (Table 3-3).  By calibrating the follow-up time to the 

field collected value in the simulation, the only parameter having an impact on 

roundabout operation with the entering volumes on the approaches and the turning 

movements replicating the field data was the critical gap. By adjusting the critical gap in 
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the calibrated simulation from 1.9 sec to 3.5 sec and conducting this simulation for a 

period of 1.25 hours of replicated field traffic conditions, the average service time on all 

approaches was measured and compared to the field measured values, thus the best 

estimate for critical gap could be found. Field-measured service time in the first position 

was obtained by the RGS macro tool explained in the previous section.  

 

3.4.1 Determining roundabout turning movements  
 
 
Turning movements at the roundabout were determined based on counts collected at data 

collection points at each approach lane and the circulatory lane conflict area. Counts are 

simply the 1, 2, and 4 events which were used for estimating the critical gap (for 

definitions of these events, see Section 3.2).  

 

Figure 3-12 shows the data collection points for the videotaped roundabout. Each blue 

dot represents a data collection point and the black lines track the movements of entering 

vehicles from a particular approach. Each movement of the roundabout passes through a 

particular number of data collection points; for example, the NBL movement passes 

thorough data collection points 1, 10, and 12, which implies that for each data collection 

point, there are a particular number of movements passing through it.  This is the basis 

for constructing the movement matrix which maps all movements passing a particular 

data collection point (Figure 3-14). 
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Figure 3-12 Data Collection Points at Roundabout 

 
As can be seen from Figure 3-14 and Figure 3-12, Data Collection Point 1 has a north 

bound left turn movement passing through it and a north bound trough inside lane 

movement passing through it. 



 

 

 

 

 

 
Figure 3-13 Counts at Data Collection Points Extracted from Field Data 

 
 
 
 

 
Figure 3-14 Movement Matrix
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Since these movements pass through Data Collection Point 1, we put a “1” in the 

movement matrix (Figure 3-14) in (row 1; column3) and (row1; column 4), which 

represent in the matrix the intersection of Data Collection Point 1 with column 3 (NT4 

Inside) and Data Collection Point 1 with column 4 (NL). NT4 Inside and NL represent 

the north bound through inside lane movement and the north bound left turn movement 

respectively. The first row in Figure 3-14 gives us this equation: 

NT4 + NL = count at Data Collection Point 1 

 

An alternative approach is to track each movement separately and put a “1” in every data 

collection point this movement passes through; for example, let us look at the north 

bound left turn movement (NL). This movement passes through Data Collection Points 1, 

10, and 12, thus we would put “1” in column 3 and rows 1, 10, and 12 (Figure 3-14).  

 

Following this process for all data collection points, we fill in the matrix with “1” 

everywhere a movement passes through a particular data collection point. This implies 

that a data collection point can have multiple movements passing through it and will have 

a “1” in the matrix in the appropriate row and column entries.  

 

The counts at each data collection point have been obtained from field data for a 

consecutive period of 1.25 hours in 15-minute intervals, giving a total of five intervals 

with counts collected for each data collection point during each interval (Figure 3-13). 

 

Following this process yields a total of 12 equations since the field count at each data 

collection point were known. However, we end up with 14 unknowns (14 entering 

movements) due to a 4X2-lanes roundabout geometry and 12 equations. Thus, two 

additional equations were needed. Those two additional equations were obtained by 

making an assumption about left turns and right turns (based on watching the video) with 

the smallest entering counts, thereby minimizing error.  The assumptions made were 

Southbound Left (SL) is equal to 15 percent and Westbound Right is equal to 10 percent, 



  

 

  73
 
 
 
which gave us the required two additional equations (data collection point 13 and 14 

Figure 3-14). 

 

WR=count at Data Collection Point 13 (assumed to be 10 percent of Data Collection 

Point 6) 

SL=count at Data Collection Point 14 (assumed to be 15 percent of Data Collection  

Point 4) 

 

It should be noted that Data Collection Points 1 through 12 are actual measurements 

taken in the field, whereas Data Collection Points 13 and 14 were obtained by 

assumptions. If Westbound Right turns and Southbound Left turns were measured in the 

field. These assumptions therefore would not have to be made. An alternative would have 

been to measure the exiting movements. 

 

Solving 14 simultaneous equations constructed based on the movement matrix (Figure 

3-14) using Excel (solver feature, exact solution) for five different 15-minute intervals 

gives the turning movement counts for each roundabout approach. 

 

The turning movements were entered to the VISSIM microsimulation package with the 

exact volumes and the same interval duration, thus exactly replicating entering traffic 

conditions at the roundabout. The roundabout in VISSIM was constructed in such a way 

that vehicles were not allowed to change lanes directly on the roundabout. This enforced 

the exact counts at the data collection points in the simulated network, replicating the 

counts at the data collection points in the field.  
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Figure 3-15 Estimated Turning Movements Using Matrix Method 
Interval 1 2 3 4 5
NR 35 43 46 34 36
NT1(outside) 151 150 182 186 152
NT4(Inside) 70 87 108 100 83
NL 46 55 63 70 46
SR 29 31 20 32 26
ST1(outside) 64 56 58 65 61
ST4(inside) 28 39 25 25 32
SL 5 6 4 4 6
ER 18 12 26 19 7
ET 72 86 91 95 85
EL 72 38 50 39 42
WR 6 5 4 7 5
WT 24 22 30 29 24
WL 26 25 5 30 19

 

3.4.2 Simulation Experiment  
 
 
In VISSIM 4.3, unsignalized intersections can be coded in two ways. The first way is to 

use priority rules which consist of the stop line and one or more conflict markers. A 

conflict marker checks the minimum headway (feet) and the minimum gap (sec) 

upstream of their location to ensure if it is safe for the minor street vehicle to enter the 

priority stream without conflicting with a vehicle on the priority stream. The use of 

“conflict areas” is a new alternative to “priority rules” and requires less coding time. 

However, the parameters used for conflict areas slightly differ from priority rules. 

Crossing yield/right-of-way conflict areas require a front gap and a rear gap, assuming a 

constant visibility parameter. The front gap is the minimum gap (sec) between the rear 

end of a vehicle on the main road and the front end of a vehicle on the minor road i.e., the 

time that a yielding vehicle waits before entering the conflict area after the vehicle with 

the right of way has left it. The rear gap is the minimum gap (sec) between the rear end of 

a vehicle on the minor road and the front end of a vehicle on the main road i.e., the time 

that a yielding vehicle must provide after it has left the conflict area before a vehicle with 

the right of way enters the conflict area. Calibrating the conflict areas would require 

collecting an additional parameter and would add complexity to the data extraction 
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process by requiring more events. Thus, priority rules were used for unsignalized 

intersections, which directly use the minimum gap (sec) between the conflict marker and 

the front bumper of the vehicle in the priority stream. 

 

In VISSIM, traffic conditions as encountered in the field during data collection were 

replicated by entering the appropriate vehicle inputs and volumes in routes (turning 

movements). The turning movements obtained in the previous section were used to 

determine the loading volumes (in VISSIM, for each time interval, you enter hourly 

counts) (Figure 3-16). 

 

loading volumes 
point 

 
interval 

 
1 2 3 4 5

1 464 568 684 680 516
2 744 772 912 880 752
3 224 208 156 264 192
4 132 180 116 116 152
5 372 348 312 388 348
6 648 544 668 612 536

 

 
 

Figure 3-16 Loading Volumes for Simulation Experiment 
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3.4.2.1 Follow-up time calibration 
 
To calibrate follow-up time, data collection point measurements were placed in the 

VISSIM network, replicating the roundabout where the data were collected. For each 

approach lane, two data collection point were used. Each data collection point recorded 

the time in the queue of the vehicle as it crossed a given data collection point and the time 

when the vehicle crossed that particular data collection point.  

 

Consider the Northbound Inside roundabout approach lane (one data collection point is 

placed at the yield bar and the other 20 feet upstream) (Figure 3-17).  

 

 
Figure 3-17 Follow-up Calibration Data Collection Setup 

 
During the simulation, a follow-up event occurred for the Northbound Inside lane vehicle 

when it entered the Data Collection Point 1, with the same time in the queue as when 

entering Data Collection Point 101 (this implies that vehicle has not stopped in the first 
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position). The time between the previous vehicle crossing Data Collection Point 1 and the 

considered vehicle crossing Data Collection Point 1 reflected the follow-up time of the 

considered vehicle.  

 

During the simulation experiment, different values of the headway (CC1) parameter in 

VISSIM were investigated. For each headway parameter, one hour of simulation time 

was performed. The average follow-up time for each simulation hour of different 

headway parameter was recorded.  Headway time influences how closely vehicles follow 

each other in simulation and the resulting follow-up time. The default VISSIM values 

resulted in a follow-up time equal to 2.27 seconds, which was lower than the field-

measured value of 2.42 seconds; thus, calibration was performed. The headway time 

parameter (CC1) set to 1.16 seconds yields a simulation follow-up time equal to the field-

measured follow-up time (Figure 3-18). 

 

 
Figure 3-18 Follow-up Time Based on Headway Parameter 
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In addition to the headway time (CC1) parameter, the standstill acceleration (CC8) 

parameter and the speed on the roundabout approach was also investigated in VISSIM to 

determine their effect on follow-up time in the simulation. 

3.4.2.2 Effect of headway time, acceleration from stopped position, and speed 
on follow-up time in VISSIM simulation. 

 
Two different headway times (CC1=1.2 sec and CC1=1.5 sec) were investigated in 

VISSIM with different values of acceleration from the standstill acceleration parameter 

(CC8). It was found that lower values of the CC8 parameter have an effect on the follow-

up time; but at higher values, this parameter is overwritten by the VISSIM base data 

maximum acceleration curve for a given vehicle type and has no effect.  It was also found 

that the effect of the headway parameter (CC1) is more profound than the standstill 

acceleration (CC8) parameter (Figure 3-19).  
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Figure 3-19 Effect of CC8 on Roundabout Follow-up Time for Different CC1 Values 

 
The speed of the vehicle during the simulation on a roundabout approach had no effect on 

the follow-up time. We can see this by comparing combinations of the default parameter 

values for CC1 and CC8 with different speeds (Figure 3-20).  
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Figure 3-20 Summary of Tested Combination of Parameters on Follow-up Time 

 

With the calibrated follow-up time through adjustments in the driving behavior, 

parameter CC1, and the appropriate turning volumes entered in VISSIM at the 

roundabout approaches, a simulation experiment comparing the service time of vehicles 

in the first position in the queue was performed to determine which critical gap estimates 

replicate most accurately the field conditions.  

 

One hour and fifteen minutes of simulation was performed for each critical gap value 

tested. The critical gap tested during simulation ranged from 1.9 seconds to 3.5 seconds 

(Figure 3-22), which is the range for the critical gap obtained in the applied critical gap 

estimation methods. For each critical gap, the service times of vehicles in the first 

position in the queue (time at yield bar) were recorded and averaged for all approaches 

during the simulation run. Vehicles that did not stop at the yield bar had a service time of 

zero. Since the follow-up time was already calibrated, the average service time in the first 

position in the queue for the entire roundabout would show which critical gap estimate 

best replicates the field data and thus represent the critical gap of Indiana drivers in the 

study area. The average service time in the first position in the queue was computed as 

the difference between time in the queue between the data collection point at the yield bar 

and the data collection point located 20 feet upstream of the yield bar on the same 

approach.  Vehicles which stopped in the first position in the queue, or severely slowed 

down, had different times in the queue between the two measuring data collection points 
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for a given approach lane, thus, the difference between those measurements yielded the 

service time at the yield bar. For the Northbound Inside lane vehicle, which stopped at 

the first position in the queue, the service time was computed by subtracting the time in 

the queue of Data Collection Point 1 from the time in the queue of Data Collection Point 

101 (Figure 3-21).  

 

 
Figure 3-21 Data Collection Points in Simulation 

 
Through a simulation experiment, it was found that the Maximum Likelihood Method 

using gaps only estimated the critical gap most accurately (Figure 3-22). 
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Figure 3-22 Service Time Simulation Experiment 

 
3.5 Conclusion 

 
 
The Tarko and Lyles Matrix Method turning movement estimation procedure works for 

2X2 single-lane roundabouts and 4x2 roundabouts, where the number of unknowns is 

less than the number of equations (data collection points with known counts). This 

turning movement estimation process is efficient since it does not require tracking 

individual vehicles on the roundabout approaches.  

 

The CC1 parameter has a greater impact on the follow-up at roundabouts than standstill 

acceleration. Standstill acceleration can serve as a secondary tuner to match the field-

collected follow-up. The roundabout approach speed had no effect with small changes in 

speed. 

 

By comparing both critical gap estimation methods and their extreme assumptions about 

consistent drivers and inconsistent drivers, it was found that the Maximum Likelihood 

Method using gaps only gives a more accurate critical gap estimate than the Tarko 
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method for use in VISSIM simulation. This does not necessary imply that the Tarko 

method gives a wrong estimate of critical gap. It should be noted that VISSIM does not 

allow the user to enter the standard deviation for the driver’s accepted gap. The 

variability of accepted gaps between drivers in VISSIM comes indirectly from the 

different speed profiles, acceleration and deceleration profiles, and safety distances 

maintained between vehicles.  If future VISSIM versions allow for entering the 

distribution of minimum gap time (mean, standard deviation) for the stop bars of priority 

rules, even more insight could be gained from experiments about the level of a driver’s 

consistency when accepting gaps at roundabouts.  
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CHAPTER 4 SIGNALIZED INTERSECTIONS CALIBRATION 
 
 
 
For signalized intersections, the single most important quantity to calibrate is the 

saturation flow rate. Expressed in units of vehphpl, the saturation flow rate represents the 

capacity of each approach lane at a signalized intersection, which is the maximum 

number of vehicle that can pass during a green signal per unit of time (assumed one 

hour). To replicate an Indiana driver in simulation, calibration of the saturation flow rate 

is necessary since it determines how many vehicles will be served during the green phase 

regardless of the intersection type. Calibration of signalized intersections will be 

performed by adjusting the VISSIM driver behavior parameters in such a way that the 

saturation flow rates measured during simulation are the same as the field-measured 

saturation flow rates for Indiana drivers. The effects of all VISSIM parameters which 

have an impact on the capacity of a roadway segment will be evaluated to determine their 

effect on the saturation flow rate.  Two types of saturation flow rates were assumed for 

Indiana drivers, one for a rural setting and the other for an urban setting.  

 

4.1 Effect of VISSIM driver behavior parameters on saturation flow rate 
 

 

In VISSIM, four major driving conditions are recognized: free driving, approaching, 

following, and breaking. Vehicles change their driving condition when they reach a 

specific threshold based on the speed difference and distance. The 1999 Wiedemann car 

following model uses ten driver behavior parameters, which are labeled as CC0 through 

CC9, to model vehicle interactions.  
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Out of these ten parameters, six were proven to impact the capacity of roadway segments 

(Lownes and Machemehl, 2006). Among these parameters are: standstill distance (CCO), 

headway time (CC1), following variation (CC2), following thresholds (CC4 and CC5) 

and stopped condition acceleration (CC8).  

 

In addition, there is an interaction between the CC0 and CC8 parameters and the CC1 and 

CC4/CC5 parameters considering the impact on capacity (Lownes and Machemehl, 

2006). With respect to CC0 and CC1, as the value of the stopped condition distance 

(CCO) increases, the impact on capacity due to an increase in the stopped condition 

acceleration (CC8) decreases (Lownes and Machemehl, 2006). With respect to CC1 and 

CC4/CC5, as the time headway the driver wishes to maintain increases, the impact on 

capacity by reducing sensitivity to acceleration/deceleration  

CC4/CC5 decreases. 

 
 
Table 4-1  below provides the parameters that have an impact on the capacity of roadway 

segments, along with their description, direction of impact, and units. 

  

To determine which parameters have an impact on saturation flow rate, a series of 

simulation runs was performed modifying the default values for the above mentioned 

parameters and collecting headway times between the discharging vehicles at the stop 

bar. Two data collection points were used to collect the discharge rate at the Eastbound 

Through lanes of a 4X2 conventional intersection (Figure 4-1). 

 

 
Figure 4-1 Determination of Saturation Flow Rate in Simulation Experiment



 

 

 

 

Table 4-1 VISSIM Parameters Effecting Roadway Segment Capacity (Lownes and Machemehl., 2006) 

Parameter Description Remarks Impact on capacity 
[C] 

Default 
value 

Unit
s 

CC0 
(Standstill 
distance) 

Defines the desired distance between stopped cars. 
It has no variation. 

 As CCO ↑  

capacity ↓ 
4.92 [ft] 

CC1 
(Headway 
time) 

Time (in sec) that a driver wants to keep; the higher 
the value, the more cautious the driver is. Thus, at a 
given speed v , the safety distance dx_safe is 
computed to: dx_safe = CC0 + CC1 * v. 

The safety distance is defined 
in the model as the minimum 
distance a driver will maintain 
while following another car. 
In the case of high volumes, 
this distance becomes the 
value with the strongest 
influence on capacity. 

As CC1 ↑  

capacity ↓ 
0.9 [sec]

CC2 
(‘Following’ 
variation)  

Restricts the longitudinal oscillation or how much 
more distance than the desired safety distance a 
driver allows before he intentionally moves closer to 
the car in front.  

If this value is set to 10 ft, the 
following process results in 
distances between dx_safe 
and dx_safe + 10 ft. The 
default results in a quite stable 
following process. 

As CC2 ↑  

capacity ↓ 
13.12 [ft] 

CC4 and 
CC5 
(‘Following’ 
thresholds) 

Control the speed differences during the 
“Following” state. Smaller values result in a more 
sensitive reaction of drivers to accelerations or 
decelerations of the preceding car i.e., the vehicles 
are more tightly coupled. CC4 is used for negative 
and CC5 for positive speed differences.  

The default values result in a 
fairly tight restriction of the 
following process. As |CC4| & CC5 ↑

 capacity ↓ 

-0.35; 
0.35  

CC8 
(Standstill 
acceleration)  

Desired acceleration when starting from standstill 
(limited by maximum acceleration defined within 
the acceleration curves). 

 As CC8 ↑  

capacity ↑ 
11.48 [ft/se

c2] 
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The headway time between consecutive discharging vehicles was obtained by directly 

inputting into a network file a special evaluation code for the discharge rate. The 

Eastbound Approach has been loaded with over-capacity volumes; thus, the saturation 

flow rate could have been obtained for each green phase cycle for the EBT through 

movements. All other approaches have not been loaded with vehicles; however, their 

signal phases turned green, which allowed the queue to move up to the stop bar; thus, all 

vehicles discharging during green at the EBT movements were stopped in the queue. The 

cycle used for the discharge rate evaluation was 60 seconds long with 30 seconds for the 

EBT movements and 30 seconds for conflicting movements. Special evaluation features 

allowed for extraction of the headway time between the front bumpers of vehicles at the 

stop bar (Figure 4-2). 

 

 
Figure 4-2 Discharge Rate Evaluation Output 

 

Last three rows of Figure 4-2 contain, from top to bottom, the vehicle number in queue, 

the average discharge headway for all vehicles that were 6th in the queue during a single 

simulation run, and the number of cycles during a simulation run that had a 6th vehicles 

discharge during a particular green phase. The rows above represent the beginning of the 

EBT green phase and the discharge headway for each consecutive vehicle crossing the 

stop bar during a given cycle. 
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For the saturation flow rate calculation, the first four vehicles discharging during the 

green signal were not considered. Vehicles passing on amber or red were taken into 

account only if their discharge headway was not smaller or larger than the considered 

headways collected during the green signal display. The discharge headway of vehicles 

passing on amber or red had to pass a check to be included in the saturation flow rate 

calculation because vehicles passing on amber/red will sometimes decelerate and later 

accelerate causing them to have discharge headway not reflecting the vehicle interaction 

and driver behavioral parameters entered, but rather communication between the VISSIM 

traffic flow model and the VISSIM controller.   

 

Simulation runs were performed for three different speed limits of 30, 45, and 60 mph. 

For a 30 mph speed, the effect of different VISSIM driver behavior parameters on the 

saturation flow rate was investigated. For each simulation setting, a series of three 30-

minute runs was performed with a different seed number, and the collected discharge 

headways at the EBT stopbars were averaged to obtain the saturation flow rate  

(Figure 4-3). For a speed of 60 mph, the effect of heavy vehicles on the saturation flow 

rate was evaluated by using two different truck percentages (2 percent and 5 percent). In 

VISSIM, the default vehicle model distribution was modified to represent U.S. vehicles 

rather than the European fleet. The difference between the created U.S. vehicle 

distribution and the default European distribution is in the average length of the 

passenger car and heavy vehicles.   
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EB upstream view (red signal display) EB upstream view (green signal 
display) 

EB downstream view (red signal display) EB downstream view  
(green signal display) 

 
Figure 4-3 Three Dimension View of Simulation Experiment 

 

The performed simulation experiment involved determining the effect of different driver 

behavior parameters on the saturation flow rate. Each parameter which proved to have an 

impact on the capacity of a roadway segment (Lownes and Machemehl, 2006) was 

modified, keeping other parameter constant to determine its effect on the saturation flow 

rate. The effect of the VISSIM driver behavior parameters on the saturation flow rate was 

performed with a speed of 30 mph. 

 

Standstill Distance (CC0) 

The standstill distance parameter defines the desired distance between stopped cars in the 

queue. An increase in this parameter reduces the capacity while a decrease in this 

parameter increases the capacity (Figure 4-4). This result is as expected since the closer 
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packing of vehicles, assuming all other parameters constant, will allow more vehicles to 

discharge during the unit time.  
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Figure 4-4 Effect of Standstill Distance (CC0) Parameter on Saturation Flow Rate 

 

 

Standstill Acceleration (CC8) 

The standstill acceleration parameter defines the desired acceleration of a vehicle when 

starting from the stopped position. Two different values of headway time (CC1) of 1.5 

sec and 2.0 sec were simulated with varying standstill acceleration (CC8) parameters. At 

a lower CC1 value (1.5 sec), the CC8 parameter had a greater effect on saturation flow 

rate then at higher CC1 value (2.0). For the same value of headway time (CC1), the 

standstill acceleration (CC8) parameter had a greater effect at lower values than at higher 

values. This is caused by the fact that in VISSIM, the CC8 parameter will be overwritten 

by a maximum acceleration curve in the base data functions for a given vehicle if the 
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standstill acceleration exceeds the value entered in the VISSIM maximum acceleration 

function. It can be stated that for the same value of headway time (CC1), an increase in 

the standstill acceleration will increase the saturation flow rate; however, as the standstill 

acceleration (CC8) increases, a unit increase in this parameter will have a decreasing 

effect on the saturation flow rate. At high values of headway time, the standstill 

acceleration CC8 parameter will have a minimal effect on the saturation flow rate (Figure 

4-5).  
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Figure 4-5 Effect of Standstill Acceleration on Saturation Flow Rate 

 
 
CC4 and CC5 Following threshold 

These parameters control the difference in speed during the following process. 

Smaller values result in a more sensitive reaction of drivers to accelerations or 

decelerations of the preceding car, which causes vehicles to be more tightly coupled.  
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For the saturation flow rate, both parameters have no effect (Figure 4-6). During vehicle 

discharge at the stop bar, for low speeds, vehicles do not reach their desired speed and are 

not in the full following process, but rather are adjusting their position to the following 

process. Thus, this parameter affects segment capacity but not the saturation flow rate. 
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Figure 4-6 Effect of |CC4| & CC5 on Saturation Flow Rate 

 
Following variation (CC2) 

This parameter defines how much more distance then the desired safety distance a driver 

will allow before starting to move closer to a preceding vehicle. Safety distance is 

computed as dx_safe=CC0+CC1*v, where v is the speed of the vehicle. With an increase 

in the following variation, the saturation flow rate will decrease (Figure 4-7). This result 

is intuitive because the less responsive the driver, the lower the saturation flow rate. 
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Figure 4-7 Effect of Following Variation (CC2) on the Saturation Flow Rate 

 
 

 
Figure 4-8 Illustration of Safety Distance in VISSIM 
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CC1 Headway time parameter 

Headway time defines the distance a driver wants to maintain from a proceeding vehicle. 

While following another vehicle, a driver will maintain a minimum distance equal to 

headway time (CC1) converted to distance at a given speed plus standstill distance 

(CC1). An increase in headway time (CC1) reduces capacity since drivers are more 

cautious (Figure 4-9).  
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Figure 4-9 Effect of Headway Time (CC1) on Saturation Flow Rate 

 
 
Effect of trucks on saturation flow rate in VISSIM 

Two different truck percentages (2 percent and 5 percent) were investigated at a 60 mph 

speed limit to determine the effect on the saturation flow rate (Figure 4-10). Two 

considered truck percentages were representative of urban (2% trucks) and rural (5% 

trucks) setting. It has been found that a higher truck percentage decreases the saturation 

flow rate. For the values investigated, the difference is not substantial; but with higher 
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margins of difference between the truck percentages, there will be a greater difference in 

the saturation flow rate.   
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Figure 4-10 Effect of Trucks on Saturation Flow Rate 

 
4.2 Calibration of saturation flow rate to Indiana conditions 

 
 
This research found that the single parameter with the greatest influence on the saturation 

flow rate is headway time. This parameter was therefore chosen to calibrate the saturation 

flow rate in the simulation to Indiana conditions. For Indiana drivers, two values of 

saturation flow rate were assumed, 1900 vehphpl for a urban setting and 1700 vehphpl 

for a rural setting. These values are based on previous research which determined the 

saturation flow rates in Indiana towns based on the population size near the intersection 

(Table 4-2).  
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For calibration of signalized intersections, two settings of intersections were assumed, 

rural and urban. In the urban setting, two speed limits were used. A speed of 30 mph was 

used for two-lane roadways and 45 mph was used for four-lane roadways.  In the rural 

setting, a speed of 60 mph was assumed (Table 4-3).  

 

Table 4-2 Recommended Saturation Flow Rates for Indiana (Perez-Cartagena and Tarko, 

2004) 

 
 

Table 4-3 Assumed Values for Urban and Rural Setting 

Setting Urban Rural 

Speed (mph) 30, 45 60  

Saturation flow rate (vehphpl) 1900 1700 

Percentage of trucks (%) 2 5 

 
 

As can be seen from Table 4-3  the headway time parameter (CC1), which replicated in 

simulation a field measured saturation flow rate value of 1900 vehphpl for a speed of 30 

mph, is CC130mph=1.8 sec. 

 

A simulation experiment varying the headway time (CC1) parameter for a speed of 45 

mph was repeated to determine what value of headway time gives the targeted capacity of 

1900 vehphpl. It was found that a headway time (CC1) parameter of 2.1 sec gives the 

targeted saturation flow rate of 1900 vehphpl (Figure 4-11). Different speed limits require 

different headway parameters. This is caused by the fact that at low speed (30 mph), 
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drivers discharging almost reach their desired speed at the stop bar and are beginning the 

following process. For a higher speed (45mph), drivers are still in the accelerating stage 

and the following process does not occur so drivers are still adjusting themselves to the 

desired safety distance defined by headway time and standstill distance.  
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Figure 4-11 Calibration of Saturation Flow Rate for 45 mph Speed Roadway 

 

Another simulation experiment with varying headway time for a speed of 60 mph 

revealed that a headway time of 2.52 sec gives the targeted value of saturation flow rate 

for a rural setting of 1700 vehphpl (Figure 4-12). 
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Table 4-4 Summary of Saturation Flow Rate Calibration 

Speed (mph) 30 45 60 
Field measured saturation flow rate 
(vehphpl) 

1900 1900 1700 

Simulated saturation flow rate 
(vehphpl) [output] 

1902 1906 1697 

Headway time (sec) [input] 1.8 2.1 2.52 
Saturation flow rate based on assumed 
headway time neglecting CC0, CC2 
and vehicle length effect 

2000 1714 1428 
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Figure 4-12 Calibration of Saturation Flow Rate for 60mph Speed 

 

Comparing the saturation flow rate based on an assumed headway time in simulation and 

the actual measured saturation flow rate, we can see that these values are not the same. 

This is caused by the fact that, at higher speeds, vehicles discharging from the queue are 

adjusting themselves to the following process but are not in it so they will not comply 
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with the minimum safety distance defined by CC1 and CC0. For high speeds, the 

saturation flow rate calculated based on an assumed headway time parameter value will 

underestimate the actual saturation flow rate in simulation.  
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CHAPTER 5 EVALUATION PROCEDURE 
 
 
 
To evaluate alternative intersections, three measures were used for each movement on the 

approaches. The measures used include stop delay, delay (different between actual travel 

time and ideal travel time for each movement), and average number of stops per vehicle. 

All measures are aggregated per 15-minute intervals during a one-hour simulation run. 

All measures are collected after the loading period. The extracted measures after 

simulation are compared for different alternatives.  

 

The evaluation procedure was complemented with a series of VISSIM networks and 

SYNCHRO files for signalized intersections. The VISSIM network includes median u-

turn, roundabout, conventional intersection, near-sided jughandle, far-sided jughandle, 

quadrant roadway, and continuous flow intersection. Each intersection has been 

calibrated to Indiana conditions by modifying the VISSIM driver behavior parameters. 

For signalized intersections, different driver behavior parameters sets were created and 

assigned to roadway links based on speed to reach a targeted saturation flow rate for 

Indiana drivers.  

 

VISSIM network files were developed for two intersection settings, urban and rural. For 

each setting, three geometric configurations of each intersection were built, depending on 

the number of crossing lanes (4x4, 4x2 and 2x2). A median u-turn intersection has 

additional network files for an urban setting with narrow and wide medians. A total of 44 

VISSIM network files were constructed (Table 5-1). Examples of each intersection type 

are shown in  Figure 5-1 through Figure 5-3. 
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Table 5-1 VISSIM Network Files 

Intersection type Urban Rural 

Conventional 4x4, 4x2, 2x2 4x4, 4x2, 2x2 

Median u-turn Narrow median: 4x4, 4x2, 2x2 

Wide median: 4x4, 4x2 

4x4, 4x2, 2x2 

Roundabout 4x4, 4x2, 2x2 4x4, 4x2, 2x2 

Near sided jughandle 4x4, 4x2, 2x2 4x4, 4x2, 2x2 

Far sided jughandle 4x4, 4x2, 2x2 4x4, 4x2, 2x2 

Quadrant roadway 4x4, 4x2, 2x2 4x4, 4x2, 2x2 

Continuous Flow  4x4, 4x2, 2x2 4x4, 4x2, 2x2 

 

5.1 Procedure description 
 
 
The developed VISSIM and SYNCHRO files (signalized intersections) are the starting 

point of the analysis.  The user enters the desired volumes on the approaches with turning 

movement splits, and a simulation is performed using the provided files. For a signalized 

intersection, SYNCHRO files should be used to optimize signal timings. A conventional 

intersection and alternative intersections were coded as pretimed NEMA controllers so an 

optimization step is required for each volume scenario tested. The reason all of the 

signalized intersections were coded as pretimed is to use a uniform procedure for a fair 

comparison of all solution for specific traffic conditions. It should be noted that the signal 

timings obtained in SYNCHRO are not optimal. Free operations on an alternative 

intersection with loop detection have not been researched well, while for a conventional 

intersection, it has been well researched so the pretimed signals give a fairer comparison. 
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Optimization of the signal timing for each traffic condition was carried out in 

SYNCHRO. The obtained signal settings are entered in VISSIM’s interface for NEMA 

controllers and the simulation is run. 

Conventional Intersection VISSIM Conventional Intersection SYNCHRO 

Median U-turn Intersection VISSIM Median U-turn Intersection SYNCHRO 
 

Figure 5-1 Evaluation Network Files I 
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Continuous Flow Intersection VISSIM Continuous Flow Intersection 
SYNCHRO 

 
Quadrant Intersection VISSIM Quadrant Intersection SYNCHRO 

 
Figure 5-2 Evaluation Network Files II 

 

For each movement, the measures are collected between data collection points located 

3,000 feet upstream of the major intersection and depend on the speed downstream of the 

major intersection where all the movements are completed and vehicles from all upstream 

movements reach their desired speed. To determine the distance where vehicles reach 

their desired speed downstream from the stop bar, for each speed, a simple simulation 
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experiment was performed, measuring the speed of vehicles at different locations 

downstream.  

 
Near Sided Jughandle Intersection 
VISSIM 

Near sided Jughandle SYNCHRO 

Far Sided Jughandle Intersection 
VISSIM 

Far sided Jughandle SYNCHRO 
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NA 

Roundabout Intersection VISSIM  
 

Figure 5-3 Evaluation Network Files III 

 
Table 5-2 Distance at Which Vehicles Reach their Desired Speed 

Speed (mph) Distance downstream of 
stop bar (feet) CAR 

Distance downstream of 
stop bar(feet) HGV 

30 600 750 
45 860 1300 
60 1200 2100 

 

5.2 Illustrative example 
 
 
In this example, we will evaluate a 2x2 signalized intersection and a 2x2 roundabout 

under the same traffic conditions in an urban setting. The traffic conditions evaluated will 

be a 2,470 total hourly entering volume with a 55/45 roadway split, a 55/45 directional 

split, 10-percent left turns, and 5-percent right turns on all approaches (Figure 5-4).   
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Figure 5-4 Traffic Conditions for Analyzed Case 

 

We will start with the conventional intersection. The turning movements for a 

conventional intersection were entered in SYNCHRO. This is done within the volume 

window . 

 
Figure 5-5 Entering Volumes in SYNCHRO 

 

Since a conventional intersection is represented in SYNCHRO as a single node, only 

intersection splits and cycle lengths will be optimized (Figure 5-6). By running features 

the boxed in Figure 5-6 we obtained the signal timing plan shown in Figure 5-7. 
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Figure 5-6 Optimizing Signal Timing in SYNCHRO 

 

 
Figure 5-7 Optimized signal timing plans in SYNCHRO 

 

When recording signal timing plans from SYNCHRO, we were only concerned with the 

total splits because the controller we were running is pretimed. The next step was to enter 

the approach volumes, the turning volumes, and the optimized signal settings to the 

NEMA controller in VISSIM. This was done by opening the VISSIM file for a 2x2 

conventional intersection.  

The approach volumes were entered first, which was done by pressing the vehicle input 

icon , and specifying the appropriate approach volumes (Figure 5-8).  
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Figure 5-8 Entering Approach Volumes in VISSIM 

 

Next, the turning movements were entered in VISSIM. Notice this additional step in 

VISSIM compared to SYNCHRO; you cannot simply enter turning movements, you must 

specify approach volumes in VISSIM also.  To enter the turning movements, press the 

routes icon . VISSIM can take turning movements as a percentage of the approach 

volume or as direct counts. If percentages are used, VISSIM will convert the approach 

volumes to counts using specified percentages. The percentages of approach volumes 

were entered (Figure 5-9). Modification should be made for all approaches. 

 

 
Figure 5-9 Specifying Turning Movements in VISSIM 

Approaches 
Turning percentages 
for highlighted 
approach (NB) 
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The optimized signal settings obtained through SYNCHRO were then entered in 

VISSIM. This is done by selecting in VISSIM Signal Control Edit Controllers… and 

pressing the Edit Parameters button. Notice there is only one signal controller. For some 

alternative intersections, multiple controllers will be displayed and the signal setting 

should be changed for each controller by pressing the Edit Parameters button for each 

active signal controller and inputting the appropriate signal timings obtained through 

SYNCHRO. 

 

 
Figure 5-10 Signal Control Window 

 
A NEMA controller signal timing window then should appear (Figure 5-11). In this 

window the SYNCHRO signal timings obtained earlier were entered. 

 

Signal Controller 
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Figure 5-11Entered Signal Settings into NEMA Controller 

 

The simulation to extract the measures of effectiveness was run. To obtain more reliable 

results, several simulation runs with different seed numbers should be performed for the 

same traffic conditions. Four simulation runs with different seed numbers were run. To 

run several simulation runs automatically choose in VISSIM Simulation Multirun…  

 

The desired number of runs was conducted and the location for the output files selected 

(Figure 5-12). The measures of effectiveness required for comparison were then 

generated.  
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Figure 5-12  Multirun Window 

 

To extract the measures for comparison, go to the folder specified in the Evaluation files 

directory (Figure 5-12). You should see for each simulation run (total of 4) two 

evaluation files, one containing the travel time measurements 

(filename_seednumber.rsz file) and the other the delay measurements 

(filename_seednumber.vlz file). All travel time measurements were imported to one 

sheet in Excel, and all of the delay measurements into another sheet in Excel. 

 

The travel time measurements file contain the one-hour aggregated travel times for each 

movement and the number of vehicles for which the aggregation was performed (Figure 

5-13, Figure 5-14). Notice our data is at the bottom of the output file, and the top of the 

file contains information regarding the definition of the measuring sections. All of the 

measuring section were predefined in the network file.  
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Figure 5-13 Sample Travel Time Measurement Output File 

 

When exported to Excel, the data should resemble Figure 5-14. The data should be 

exported with the text import wizard as delimited with “;” The measuring sections are 

numbered as their respective phases at the main signal controller so the southbound left 

turn measuring section therefore will be numbered 1. Right turns are numbered as their 

respective phase plus 100, thus, the southbound right turn will be numbered 104.  

 

 
Figure 5-14 Partial View of Travel Time Data 

 

Number of vehicles

Average travel time (Sec) 

Measuring section number and respective movement
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The travel time measurements should be converted to total delay measurements by 

subtracting from the actual travel time on each section the ideal travel time calculated 

based on the section length and the driver’s speed. 

 

The delay time measurement file contains the average total delay, the average stop delay 

per vehicle, the average number of stops per vehicle, the vehicle throughput,  the average 

delay per person, and the person throughput. The measures of effectiveness used for 

comparison and evaluation of alternative intersections are the average stop delay and the 

average number of stops. The total delay computed can be used for a conventional 

intersection; however, for unconventional movements, it will be the delay along a 

specified route, rather then the delay incorporating the geometric delay due to an unusual 

geometry. This value then will be calculated based on the travel time measurements and 

the ideal travel time based on drivers’ desired speed and the shortest distance, which is 

the direct path. To illustrate the procedure, the measures of effectiveness will also be 

collected on user-defined travel time sections defined at a conventional intersection.  

 

 
Figure 5-15 Delay Time Data 
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When exported to Excel, the data should resemble Figure 5-16. The data should be 

exported with the text import wizard as delimited with “;”. As previously noted, the 

measuring sections are numbered as their respective phases at the main signal controller, 

and the southbound left turn measuring section will be numbered 1. Right turns are 

numbered as their respective phase plus 100 thus the southbound right turn will be 

numbered 104. 

 

 
Figure 5-16 Partial View of Delay Data 

 

The total delay measurements, the average number of stops measurements, and the 

average stop delay should be aggregated across all of the simulation runs (Table 5-3, 

Table 5-4). 

 

Up to this step, a conventional signalized intersection was evaluated to determine the 

analyzed MOEs. For a roundabout, the same procedure should be followed as for a 

conventional intersection with the exception of using SYNCHRO to optimize the signal 

plans. Roundabouts have no signal controller so this optimization step is not required. 

Running a simulation for a roundabout you will obtain results shown in Table 5-5 and 

Table 5-6. 

 

 

Average number of stops

Average stop delay (sec)



  

 

  114
 
 
 

Table 5-3 Conventional Intersection Total Delay 

travel time section 
ideal travel 
time (sec) 

actual travel time 
(sec) 

Total delay 
(sec) # veh 

1 87.0 158.5 71.5 191
2 85.3 113.4 28.1 2035
3 87.4 139.9 52.5 468
4 85.0 125.2 40.2 4780
5 85.1 145.8 60.7 242
6 85.0 111.8 26.8 1670
7 87.0 229.2 142.2 279
8 83.3 113.0 29.7 4110

102 83.3 97.5 14.2 135
104 83.0 99.9 17.0 298
106 80.8 100.4 19.5 83
108 83.4 98.0 14.6 105

   36.1  
 

 
Table 5-4 Extracted Measures for a Conventional Intersection 

travel time 
section 

Stop 
delay 
(sec) # stops # veh 

1.00 58.08 1.44 191.00 
2.00 15.35 1.03 2035.00 
3.00 41.59 1.28 468.00 
4.00 21.80 1.58 4780.00 
5.00 46.62 1.36 242.00 
6.00 15.28 1.03 1670.00 
7.00 117.93 3.09 279.00 
8.00 14.94 1.04 4110.00 

102.00 3.16 0.85 135.00 
104.00 3.53 1.08 298.00 
106.00 4.79 0.98 83.00 
108.00 2.89 0.82 105.00 

 20.79 1.27  
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Table 5-5 Roundabout Total Delay 

travel time section 
ideal travel 
time (sec) 

actual travel time 
(sec) 

Total delay 
(sec) # veh 

1 87.0 113.4 26.4 199
2 85.3 232.4 147.1 1960
3 87.4 105.1 17.7 224
4 85.0 134.6 49.5 4950
5 85.1 215.0 129.9 251
6 85.0 110.1 25.2 1716
7 87.0 136.0 49.0 264
8 83.3 106.8 23.5 2121

102 83.3 219.9 136.6 107
104 83.0 130.3 47.3 318
106 80.8 106.9 26.0 86
108 83.4 95.6 12.1 126

   58.0  
 
 
 

Table 5-6 Extracted Measures for a Roundabout 

travel time 
section 

Stop 
delay 
(sec) # stops # veh 

1.00 4.76 1.43 199.00 
2.00 26.20 8.61 1960.00 
3.00 2.46 0.80 224.00 
4.00 4.57 2.06 4950.00 
5.00 21.87 7.33 251.00 
6.00 3.81 1.25 1716.00 
7.00 3.77 2.08 264.00 
8.00 2.48 0.98 2121.00 

102.00 23.34 8.21 107.00 
104.00 4.15 1.97 318.00 
106.00 4.05 1.31 86.00 
108.00 2.06 0.65 126.00 

 7.97 2.91  
 

Comparing both intersections, we can determine that the overall performance of a 

conventional intersection is better (lower total delay). It should be noted that the stop 
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delay is much higher for a conventional intersection vs. a roundabout, so the perceived 

delay by drivers might be lower at a roundabout under the tested traffic conditions. 
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CHAPTER 6 SIMULATION EXPERIMENT DESIGN 
 

 

This chapter presents detail of the simulation experiments performed to generate 

information useful in comparing several alternative intersection designs. Six intersection 

types are evaluated under the same traffic conditions in 72 simulation scenarios. Each 

simulation scenario lasts one hour preceded with a short warm-up time. Simulation runs 

are repeated four times for each scenario and the results averaged to reduce the effect of 

the simulation pseudo randomness. 

 

Among the evaluated intersections are (terms in parenthesis are labels used in the results 

presentation):  

1. Conventional intersection (CONV), 

2. Continuous flow intersection (CFLW), 

3. Jug handle far-sided (JHFS), 

4. Jug handle near-sided (JHNS), 

5. Median U-turns intersection (MUT), 

6. Roundabout (RNDB). 

 

The layout of the intersections in presented in Figures: conventional intersection (Figure 

6-1 ), jughandle nearsided intersection (Figure 6-2), jug handle far-sided intersection 

(Figure 6-3), median U-turn intersection (Figure 6-4), roundabout intersection (Figure 

6-5) and continuous-flow intersection (Figure 6-6). The simulation scenarios are defined 

based on alternative number of lanes, urban vs. rural location, traffic load, and other 

major local characteristics. The following chapters provide the description of these 

characteristics and their combination for simulation.  
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Figure 6-1 Conventional intersection 4X2 

 

 
Figure 6-2 Jughandle nearsided intersection 4x2 
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Figure 6-3 Jug handle far-sided intersection 4x2 

 

 
Figure 6-4 Median U-turn intersection 4x2 
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Figure 6-5  Roundabout intersection 

 

 
Figure 6-6 Continuous-flow intersection 
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6.1 Intersection Size and Location 
 

Each intersection was evaluated under two settings which represented the urban and rural 

conditions. For each setting three geometric configurations of each intersection where 

evaluated (Table 6-1): 

1. four lane roadway crossing a four lane roadway (4x4),  

2. four lane roadway crossing a two lane roadway (4x2), and  

3. two lane roadway crossing a two lane roadway (2x2).  

Number which describes intersection geometry indicates the total number of lanes in 

both directions of an approach roadway.  The most important dimensions of the 

intersections are shown in Figure 6-1 through Figure 6-6. 

 

Table 6-1 Intersection types, intersection geometric configuration and intersection 

settings evaluated 

Intersection type Urban Rural 

Conventional 4x4, 4x2, 2x2 4x4, 4x2, 2x2 

Near sided jughandle 4x4, 4x2, 2x2  4x4, 4x2, 2x2 

Far sided jughandle 4x4, 4x2, 2x2 4x4, 4x2, 2x2 

Median u-turn 4x4, 4x2, 2x2 4x4, 4x2, 2x2 

Roundabout 4x4, 4x2, 2x2 4x4, 4x2, 2x2 

Continuous Flow  4x4, 4x2, 2x2 4x4, 4x2, 2x2 

 

Urban setting conditions were represented in the simulation with a saturation flow rate of 

1900 vphpl, two percent of heavy vehicles, and a speed limit of 30 mph for two lane 

approach roadways (both directions) and 45 mph for four lane approach roadways (both 

directions).  Rural setting conditions were represented in the simulation with a  saturation 

flow rate of 1700 vphpl, five percent of heavy vehicles, and a speed limit of 55 mph for 

two lane approach roadways (both directions) and 60 mph for four lane approach 

roadways (both directions). See Table 6-2. 
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Table 6-2 Characteristics of Urban and Rural settings 

 
Setting Urban Rural 

Speed (mph) 30 for 2-lane roads  

45 for 4-lane roads 

55 for 2-lane roads 

60 for 4-lane roads 

Saturation flow rate (vphpl) 1900 1700 

Percentage of trucks (%) 2 5 

 

For each intersection geometry three percentages of left turns were evaluated: ten percent 

on major and ten percent on minor (1010), ten percent on major and twenty percent on 

minor (2010), and twenty percent on major and twenty percent on minor (2020).  

Each intersection geometry with specific left turn percentage was evaluated under twelve 

loading volume cases thus by combining six intersection types, each with two settings 

and three geometric configuration and three left turn percentages and twelve volume 

cases gives a total of 1296 scenarios. For each simulation scenario four simulation runs 

where performed giving a total of 5184 simulation runs. Output from each simulation run 

was stored in two text files (travel time file filename.rsv and delay file filename.vlz). 

For each scenario the random seed number stared at one and had a increment of one.  

The reason for choosing such an increment for random seed number is that VISSIM 

attaches the seed number next to the results text files name so it is easier to keep track of 

the results. 

6.2 Volume load and turning percentages 
 

 
Fore each intersection geometry three load factors, two traffic intersection splits, and two 

traffic directional splits where used thus giving a combination of twelve loading cases. 

Load factor is a number between 0 and 1 which is the ratio of the entering traffic volume 

per lane on the busier (critical) approach of the road and the saturation flow rate. The 

major road is oriented EB-WB and the EB approach carries busier traffic (critical 
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approach). The minor road is oriented NB-SB and the NB approach carries busier traffic 

(critical approach).  

 

A traffic intersection split tells the percent of the total intersection traffic on the 

busier/other intersection road. Two values are used: 55/45 intersection split (balanced) 

and 70/30 intersection split (imbalanced).  

 

A traffic directional split tells the percent of the total road traffic flowing in the 

busier/other direction. Two values are used: 55/45 directional split (balanced) and 70/30 

directional split (imbalanced). The directional splits are the same on both the intersection 

roads.  

 

Knowing the load factor (0.5, 0.65, 0.9, 1.0), saturation flow rate, number of lanes, and 

intersection and directional splits allows calculate directional traffic volume on each of 

the roads. Example calculation is provide below for a 4x2 intersection in rural setting 

with 0.65 load factor, 55/45 roadway split and 70/30 directional split. To obtain specific 

loading volume case three steps are performed: 

1.  Determine volume in critical lanes of critical approaches. Multiply saturation 

flow rate of rural setting by a load factor of 0.65, thus we have 110565.01700 =⋅ . 

This is the volume in critical lanes of critical approaches. 

2. Determine the volume in each critical lane of critical approaches by using the 

roadway split and adjust for number of lanes. EB is the major critical approach 

thus its critical lane gets 55 percent of 1105 vphpl while 45 percent of 1105 vphpl 

goes to NB critical lane, which is the minor critical approach. 

vphpl49745.01105
vphpl60855.01105

=⋅=
=⋅=

CL

CL

NB
EB

 

Now this number is adjusted for the number of lanes in the critical approach. 

Since the intersection is a 4x2 thus adjustments needs only to be made to the EB-

WB direction which has four lanes (two in each direction). 



  

 

  124
 
 
 

veh/h4971497

veh/h12162608

=⋅=

=⋅=

volumeapproach

volumeapproach

NB

EB
 

3. Determine the volume in non critical approaches using the directional split. Since 

we are using the 70/30 directional split thus critical approaches are 70 percent of 

volume and non critical approaches are 30 percent of given volume. Calculations 

are as follows: 

veh/h213
70
30497

veh/h521
70
301216

=⋅=

=⋅=

volumeapproach

volumeapproach

SB

WB
 

 

 
Figure 6-7 Results of the example calculations of directional traffic 

 

The calculated directional traffic (approach traffic) is then split between turning volumes. 

A single value of the right turn percent was used in all simulations: 5 %. The left turn 

traffic percents has been assumed equal on the opposing approaches of the same road but 

may be different for different roads at the same intersection. Three left-turning scenarios 

has been assumed in three different turning patterns:  
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1. 10% on major and minor roads, 

2. 10% on major road and 20% on minor road, 

3. 20% on major and minor roads. 

Knowing the turning traffic percentages and the approach volumes calculated in the 

previous step allows calculating all 12 turning volumes at the simulated intersection.  

 

6.3 Signal timing 
 

Synchro software was used to determine signal timing setting for the assumed geometry 

and traffic conditions. Example turning traffic scenario displayed by Synchro is shown in 

Figure 6-8.  

 

 
Figure 6-8 Conventional intersection 4x2 Synchro file 

 
For all intersection SB through (SBT) and right (SBR) movements proceed on phase 6 

and SB left (SBL) movement proceeds on phase 1. The traffic phases are numbered as 

shown in Figure 6-9.   

 

 
Figure 6-9 Jug handle far-sided intersection 4x2 Synchro file 

 

3

3
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For near-sided intersection NBR and SBR movements were eliminated since they are 

accommodated through ramps and bypass the signals at the main intersection.  There are 

no protected left turn movement phases for EBL and WBL since these movements are 

accommodated through a ramp and added to minor through movements. EBL volume 

was added to NBT movement volume and WBL movement volume was added to SBT 

movement volume (Figure 6-2 Jughandle nearsided intersection 4x2Figure 6-10). 

 
Figure 6-10 Jughandle nearsided intersection 4x2 Synchro file 

 
 
For jug handle near-sided intersection five nodes where required to build this intersection 

in Synchro (Figure 6-10). At the main intersection (node #3) left turn protected phases for 

EBL and WBL were removed and EBR and WBR turn movements have also been 

removed since all these movements are accommodated through the ramps. It should be 

noted that numbering of nodes in Figure 6-8 through Figure 6-12 is not what you would 

see when in Synchro when you click the node labels but is numbered according to signal 

controller labeling in VISSIM.  EBL movement makes a right at node #14, proceeds on 

phase 4 of node #11 and phase 2 of node #3. WBL movement makes a right at node #12, 

314

13

12

11
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proceeds on phase 8 of node #11 and phase 6 of node #3. Entire NB approach volume 

proceeds on phase 2 of node 11 and entire SB approach volume proceeds on phase # 6 of 

node 13. Volume balance on the entire network is checked to make sure that entering 

volumes on the outside nodes (11, 12, 13, and 14) in each direction have been properly 

added to the respective movements on each individual node they pass through. 

 

 
Figure 6-11 Median U-turn intersection 4x2 Synchro file 

 
Median U-turn intersection is represented in Synchro with a three node network. 

EBL and WBL protected left turn phases have been removed at the main intersection 

since these movements are accommodated through crossovers. EBL turn movement 

proceeds on phase # 4 through node 14 and on phase # 4 through node 3 and makes a turn 

on phase # 7 of node 12 and completes its movement by making a right turn on node # 3.  

WBL turn movement proceeds on phase # 8 through node 12 and on phase # 8 through 

node 3 and makes a turn on phase # 3 of node 14 and completes its movement by making 

a right turn on node # 3. Entire EB approach volume proceeds on phase # 4 of node 14 

and entire WB approach volume proceeds on phase # of node 12. Volume balance on the 

entire network is checked to make sure that entering volumes on the outside nodes (12 

314 12
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and 14) in each direction have been properly added to the respective movements on each 

individual node they pass through. 

 

 
       Figure 6-12 Continuous-flow intersection 4x2 Synchro file 
 
Continuous flow intersection is represented in Synchro with a 3 node network. EBL and 

WBL turn movements use ramps prior to the main intersection and proceed 

simultaneously with EBT (phase # 4) and WBT (phase #8) movements at node 3. EBL 

movement cuts through opposing direction on phase #7 of node 14, while WBL 

movement cuts through opposing direction on phase #3 of node 12. Due to limitation in 

Synchro coding the left turn bays are not connected to North-South roadway but this is 

not required for correct signal timing setting since for percentage of left turns simulated 

through movements will always determine the length of phase # 4 and phase # 8 at node 

3 where the left turns proceed simultaneously with respective through movements. EBL 

movement proceeds on phase # 8 of node 3 while WBL proceeds on phase # 4 of node 3. 

NBR and SBR movements have been removed from node 3 since these movements are 

accommodated through ramps which bypass the signals. 

 

All signal controllers at the nodes (intersections) in Synchro networks have been coded as 

fixed time NEMA controllers. Intersections which required additional node to be entered 

have been coded as closely spaced intersections each one operated by a fixed time 

314 12 
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NEMA controllers and coordinated with the main intersection (node3) through the 

offsets. The direction of coordination was dependent on the type of intersection. Median 

U-turn and continuous flow intersection was coordinated to phase # 4 and # 8 of node 3. 

Jughandle nearsided was coordinated with reference to phase # 2 and # 6 of node 3. 

 

Signal timing where obtain in Synchro by using the optimization feature. Splits and cycle 

lengths where optimized for each node and in case of multiple nodes representing an 

alternative intersection in Synchro network, each node had splits and cycle length 

optimized individually then network cycle lengths and network offsets where optimized. 

Node 3 (major intersection) has always offset equal to zero.  

 

6.4 Running Simulation with VISSIM 
 

Procedure for running a simulation run is as follows (Figure 6-13): 

1. Import loading volumes to Synchro for appropriate volume case 

2. Optimize signal timings for the Synchro network (one or multiple nodes) 

3. Enter signal timing in VISSIM controller window (one or multiple node) 

4. Enter approach loading volumes in VISSIM through vehicle input 

5. Enter turning percentage in VISSIM through routes. 

6. Run multiple simulations for same simulation scenario in VISSIM. 

 

When running simulation run in VISSIM travel time and delay evaluation file option 

should be checked. This will record the results in two text files with the name of the 

VISSIM network file (.inp) random seed number and file extension (.rsz or .vlz). 

The detailed procedure of the entire process is explained in ChapterCHAPTER 5.  
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Figure 6-13 Flowchart for running a simulation scenario 

 
The collected measures of effectiveness are total delay, stop delay and average number of 

stops per vehicle. 

 

Total delay (sec): measures the delay caused by the physical presence of the intersection, 

other vehicles and geometric delay. Total delay is obtained by subtracting the ideal travel 

time from the actual travel time on specific movement paths. Ideal travel time is direct 

movement where vehicle does not need to slow down but proceeds from point A to point 

B with desired speed (conventional intersection with no interaction between vehicles). 

Low speeds caused by geometry and additional distance caused by indirect movements 

such surface loops or median U-turns add to this delay. The movement delays are 

averaged for the entire intersection. 
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Stop delay (sec) measures the average time a vehicle spends in a standstill position on a 

specific movement path. This variable is recorded for each movement and then averaged 

for the entire intersection. 

 

Average Number of Stops (stops/veh): measures number of stops made by a vehicle on 

specific movement path. This variable is recorded for each movement and then averaged 

for the entire intersection.  

 

All performance measures are recorded along a movement path which starts 3000 feet 

upstream of the intersection and ends where the vehicle reaches its desired speed. 

Distance downstream of intersection where travel time section end depends on the speed 

of the roadway on which the travel time section ends (see chapter 5). Travel time section 

are labeled according to phase labeling on a conventional intersection with right turn 

movements having a designator of a 100 (Figure 6-14), for example EBR travel time 

section would be 104. 

 

 
Figure 6-14 Travel time sections definition in VISSIM 
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Once results are recorded they have to be extracted and averaged based on four 

simulation runs for each simulation scenario. Excel was used to extract the results. Since 

text files had predefined format they could be pasted to Excel in a predefined sheet which 

averaged the MOE’s and weighted them for each movement with the number of vehicles. 

Intersection average are also computed based on movement averages and weighted with 

individual movement volumes.  

 

Table 6-3 Sample results for total delay  

travel time 
section 

ideal 
travel 
time 

actual 
travel 
time 

Total 
delay # veh 

1 75.5 130.8 55.2 103 
2 85.1 103.4 18.3 1394 
3 71.1 86.0 14.9 364 
4 60.3 73.8 13.4 3391 
5 75.4 130.0 54.6 169 
6 85.1 103.8 18.7 1122 
7 70.6 78.9 8.4 435 
8 60.5 75.1 14.6 2921 

102 84.2 105.3 21.1 102 
104 69.6 72.4 2.7 202 
106 84.2 105.9 21.7 54 
108 70.0 73.4 3.4 168 

  Average 15.7  
 

Table 6-4 Sample results for stop delay and number of stops 
travel time 
section 

stop 
delay stops # veh 

1.00 26.88 1.80 110.00 
2.00 8.47 0.64 1427.00 
3.00 7.53 0.91 340.00 
4.00 4.00 0.41 3445.00 
5.00 27.58 1.34 168.00 
6.00 9.22 0.66 1156.00 
7.00 7.17 0.55 413.00 
8.00 4.02 0.38 2900.00 

102.00 0.11 0.01 99.00 
104.00 1.29 0.78 207.00 
106.00 0.00 0.00 74.00 
108.00 1.58 0.84 156.00 

Average 5.89 0.52  
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CHAPTER 7 PRESENTATION OF THE SIMULATION RESULTS 
 

The number of simulation scenarios was determined by the number of alternative designs 

(6), locations types (2), lane alternatives (3), intersection splits (2), directional splits (2), 

left-turn patterns (3), and traffic loads (3). The number of simulation was 6x2x3x2x2x3x3 

= 1,296. Additional runs were needed for the continuous flow intersections with the 

traffic load increased to 1.0. These additional runs were performed only for urban 

locations which generated additional 36 simulation scenarios. Thus, the total number of 

scenarios was 1,332. It is worth to note that given one-hour simulation periods repeated 

four times for each scenario, the total number of simulated hours is 1,332x4 = 5,328 

hours. 

 

It was extremely important to find a proper way of presenting the simulation results that 

was practical and did not lose the information obtained. The initial idea was to aggregate 

the results through statistical modeling to let users predict the expected delays, number of 

stops, and the likelihood of the capacity failure. Finally, we have decided to present the 

results in the least aggregated way and with a reasonable interpolation between the 

obtained simulated “data” points.  The important details have not been lost. 

 

The following three measures of effectiveness are presented to the user: 

1. Average delay on the busiest intersection approach. This delay includes the effect 

of the control, traffic queues, and the additional distance covered by indirect left-

turning movements. Based on the HCM recommendations, the average delay 

larger than 80 seconds indicates Level of Service F and the shortage of capacity.   

2. Average delay at the intersection represents an overall level of service at the 

intersection and can be used to compare different design alternatives. 

3. Average number of stops can be used as an additional measure of performance 

following the notion that drivers’ perception of traffic quality is affected not only 

by the delay but also by the number of stops. 
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The examples of the results presented in the Guidelines (Volume 2) are shown in 

Figure 7-1 through Figure 7-2. 

 

 
Figure 7-1 Example presentation of the delay at the busiest approach (urban 

intersection, lanes 2x2, intersection split 55/45, directional split 55/45, left turns on 

both roads 10%) 
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Figure 7-2 Example presentation of the intersection delay (urban intersection, lanes 
2x2, intersection split 55/45, directional split 55/45, left turns on both roads 10%) 

 
 

Table 7-1 Example presentation of the number of stops per vehicle (urban intersection, 
lanes 2x2, intersection split 55/45, directional split 55/45, left turns on both roads 10%) 

 

DESIGN Total Intersection Volume (veh/h) 
1730 2250 3110 

CONV 0.90 0.80 2.36 
CFLW 0.58 0.74 0.94 
JHFS 0.63 0.68 1.12 
JHNS 0.70 0.79 1.21 
MUT 0.76 0.81 1.25 

RNDB 0.29 0.73 11.88 
 

The volume-delay relationships shown in Figure 7-1 and Figure 7-2 are exponential 

interpolation between three of four point results obtained from the simulation. The curves 

of the form:  

delay = exp(par1·volume + par2) 

have been fitted by minimizing the sum of square errors. The four-hour simulation period 

for each point result reduces the pseudo random error and allows viewing this fitting 

more as interpolation then statistical modeling. Most of the times, the fitting error was 
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negligible for the purpose. The conventional linear interpolation would be highly 

insufficient given the strongly non-linear character of the relationship and a limited 

number of points.  

 

To help the users navigate through the results, each page with a set of the results has a 

header summarizing the simulation scenario as shown in Table 7-2. 

 

Table 7-2 Example simulation results header 
 

The user is supposed to find the simulation scenario that is the closest to his/her design 

case. Entering the first graphs with the total volume at the design intersection allows 

checking which alternative intersections are likely to operate below capacity. Then, 

entering with the total volume the second graph allows identify the intersections with the 

lowest overall delay. The table with stops per vehicle gives additional guidance regarding 

the number of stops.      

 

 

 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 10 %
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CHAPTER 8 CONCLUSIONS 
 
 
A systematic overview of the alternative intersection designs is provided in the first part 

of the Guidelines – a companion volume to this research report. This part presents an 

extensive study of the existing literature including manuals, research reports, and 

research publications 12 proposed new intersection designs.  The Guidelines summarizes 

these designs’ operational and safety advantages and disadvantages.  

 

The second part of the Guidelines present six most frequently considered alternative 

designs in 72 local conditions, geometry, and traffic pattern scenarios. Each scenario 

compares side by side the six alternatives from the point of view capacity, delays, and 

stops. 

 

The remainder of this chapter summarizes the most important research accomplishments 

and findings.  

 

The critical gap for Indiana drivers at roundabouts was estimated at four different 

approaches. Two distinct assumptions were made when estimating drivers’ critical gap. 

First, we assumed that drivers are consistent and will always accept a gap longer than 

their largest rejected gap. The other assumption investigated was that drivers are not 

always consistent and will sometimes accept gaps shorter then their largest rejected gap 

so all gaps rejected by drivers therefore were used to estimate critical gap.  

 

The method for estimation of roundabout turning movements was presented based on 

counts at the conflict points of each approach lane.  

 

Using field data, a simulation experiment was performed with the calibrated roundabout 

operational performance to determine the service time of vehicles in the first position in 
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the queue. Different critical gaps were tested to determine which critical gap estimate 

replicates the field-measured service time in the first position. 

 

The effect of different driver behavior parameters of the VISSIM Wiedemann 1999 

model was then investigated on follow-up time at a roundabout and the saturation flow 

rate at signalized intersections. These findings were used to calibrate a roundabout and 

alternative intersections for Indiana conditions by matching the field-measured follow-up 

time and the saturation flow rates to the follow-up times and saturation flow rates 

recorded during simulation. 

 

SYNCHRO and VISSIM network files were built for each signalized intersection and the 

VISSIM network file for each configuration of a roundabout. All network files were 

calibrated to Indiana conditions. A uniform procedure across alternatives was developed 

to aid in the analysis of alternative solutions under any traffic condition and the selection 

of prospective solutions for future consideration. Impacts other than those to operations 

were not evaluated, but they should be investigated prior to the implementation of a 

specific solution. 

 

8.1 Summary of Findings 
 
 
It has been found, based on the roundabout service time simulation that the critical gap 

estimated with the Maximum Likelihood Method using only gaps gives a reliable 

replication of field conditions when used in VISSIM simulation. The critical gap 

estimated for Indiana drivers with the Maximum Likelihood Method using only gaps 

yielded a critical gap of 3.1 seconds. The average follow-up time for Indiana drivers was 

estimated at 2.42 seconds. The critical gap and follow-up time for Indiana drivers are 

shorter than the national values. As drivers in the U.S. become more accustomed to 

roundabouts their critical gap and follow-up time will converge to the lower values of 

drivers in Europe, where drivers are accustomed to this intersection solution. Field data 
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were collected in a location where the roundabout design has been used for many years 

so the drivers are familiar with it. The estimated critical gap and follow-up time values 

are expected to represent therefore the results when this design is implemented and 

drivers are accustomed to a roundabout, rather than the values right after construction of 

a roundabout in locations where drivers are not familiar with this design. 

 

A simple matrix method to determine the turning movements at a 2x2 or 4x2 

roundabouts, based on conflict areas vehicle counts, was presented. This method is much 

more efficient than determining the turning movements from tracking individual vehicles 

at a  roundabout. 

 

For signalized intersections, two values of the saturation flow were used to represent 

Indiana drivers in a rural or urban setting. For an urban setting, 1700 vehphpl were 

assumed and 1900 vehphpl for a rural setting. The assumed values have been taken from 

field data based on previous research in Indiana. Three different sets of driver behavior 

parameters were used in VISSIM to obtain the target saturation flow rates for each speed. 

 

The uniform evaluation procedure for evaluating alternative intersections in Indiana was 

presented and complemented with an example. This procedure provides a fair comparison 

of all solutions across the board. For each traffic pattern, signal timing was first 

optimized in SYNCHRO and then entered to VISSIM for evaluation of the intersection. 

The total delay, the average number of stops per vehicle, and the average stop delay per 

vehicle serve as performance measures when evaluating different solutions under 

specified traffic conditions.  

 

8.2 Conclusions and Recommendations 
 
 
The critical gap estimated with observed gaps using the Maximum Likelihood Method 

yields the most reliable estimate to be used in VISSIM simulation. 
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The matrix method is an efficient estimation technique for roundabout turning 

movements without the need for tracking individual vehicles on the roundabout entry and 

exit approaches. 

 

The procedure for evaluating alternative intersections for Indiana conditions was 

presented and complemented with simulation networks calibrated to Indiana conditions. 

Calibration to Indiana conditions was performed based on the follow-up time and critical 

gaps for roundabouts and based on the saturation flow rate for signalized intersections. 

This procedure should serve as the basis for evaluating alternative intersections under any 

traffic conditions and for comparison across different analyzed solutions.  

The measures used to determine which solution works or does not work are the average 

intersection delay, the average intersection stop delay, and the average number of stops 

per vehicle. The average intersection delay yields the overall performance of the 

intersection while the stop delay generally reflects the perception of drivers.  The above 

measures were also collected for each movement to determine if any movement does not 

experience excessive delays. If all movements meet the desired maximum delay criteria, 

then the overall intersection delay determines which intersection is the preferred solution. 

The maximum delay criterion is based on the engineer’s judgment and depends on the 

intersection location and a driver’s maximum delay expectation at that location.  

 

The use of VISSIM when determining MOEs for the evaluation of alternative solutions 

was critical since unconventional movements require custom defined paths for which 

measures were collected to fully and fairly compare them to a conventional solution.  

The measures for each provided network file were collected along each movement to a 

point downstream of the intersection where vehicles reach their desired speed. 

 

Sample simulation runs of a roundabout and a conventional intersection revealed that at 

low entering volumes (up to 1,600 veh/h), roundabouts will outperform conventional 
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intersections in terms of all of the used MOEs. As the entering volume increases (2,450 

veh/h), a conventional intersection will still serve this demand while a roundabout might 

fail. At high volumes (2,450 veh/h), roundabouts are sensitive to left turns while at low 

volumes (1,600 veh/h) left turns have no impact on roundabout performance.  

 

8.3 Future Research Needs 
 
 
Most of the presented alternative intersections were tested in simulation with fixed time 

controllers optimized for a particular traffic pattern. While a great deal of research has 

been conducted for conventional intersections with free operation, not much is known 

about the actuation of alternative intersections. Investigation of alternative intersections 

under actuation could result in different procedures for each intersection while still 

providing a fair comparison across all solutions.  

 

The median u-turn and superstreet intersections, were simulated in an arterial corridor 

using field-collected data while other solutions were not. Simulation testing of alternative 

intersections in arterial corridors requires more investigation.  

 

If future versions of VISSIM allow the user to enter the distribution of the minimum time 

headway (critical gap) at the yield bar. Additional research is needed to determine if the 

inconsistency would affect the results when comparing between the Maximum 

Likelihood Method and the Tarko Method.   

 

All VISSIM network files developed for this research were implemented with NEMA 

controllers so investigation of signal actuated operation could be performed by switching 

the controllers from pre-timed to free operation mode. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LIST OF REFERENCES 



 

 

CHAPTER 9 LIST OF REFERENCES 
 
 
 

American Association of State Highway and Transportation Officials (AASHTO). 
(1999). Guide for the Development of Bicycle Facilities. Washington, D.C.: American 
Association of State Highway and Transportation Officials. 

Bared, J.G. & Edara. (2005). Simulated Capacity of Roundabouts and Impact of 
Roundabouts within progressed signalized road. In Transportation Research Circular E-
C083: National Roundabout Conference Proceedings, Vail, CO, May 22-25, 2005. 
Washington, DC: TRB, NRC. 

Bared, J. G., & Kaisar, E. I. (2000). Benefits of the Split Intersection. CD-ROM 
Compendium of Papers, 79th Annual Meeting. Transportation Research Board (TRB), 
National Research Council, Washington D.C. 

Bared, J. G., & Kaisar, E. I. (2002). Median U-turn design as an alternative treatment for 
left turns at signalized intersection. ITE Journal, 72(2), 50-54. 

Boone, J.L., & Hummer, J.L. (1995). Calibrating and Validating Traffic Simulation 
Models for Unconventional Arterial Intersection Designs. In Transportation Research 
Record 1500. Transportation Research Board, National Research Council, Washington 
D.C., pp. 184-192. 

Boone, J.L., & Hummer, J.L. (1995). Unconventional Design and Operation Strategies 
for Over-Saturated Major Suburban Arterials. FHWA/NC/94-009, North Carolina 
Department of Transportation and Federal Highway Administration, Raleigh, North 
Carolina. 



  

 

  144
 
 
 

Brilon, W., Koenig, R., Troutbeck, R. (1999). Useful estimation procedure for critical 
gaps. Transportation Research Part A: Policy and Practice, Volume 33, Number 3, April 
1999, pp. 161-186. 

Chapman, J. and Benekohal, R. (2002). Roundabouts Warrants a Proposed Framework 
for Future Development. In Transportation Research Record 1801. Transportation 
Research Board, National Research Council, Washington D.C., pp.39-45. 

Eisenman, S., & List, G. (2004). A Comparison of Operational Data and Performance 
Model Predictions for Several US Roundabouts. CD-ROM Compendium of Papers, 83rd 
Annual Meeting. Transportation Research Board (TRB), National Research Council, 
Washington D.C.  

Flannery, A., Elefteriadou, L., Koza, P., & McFadden, J. (1998). Safety, Delay and 
Capacity of Single Lane Roundabouts in the United States. In Transportation Research 
Record 1646. Transportation Research Board, National Research Council, Washington 
D.C., pp.63-70.  

Goldblatt, R., Mier, F., & Friedman, J. (1994). Continuous Flow Intersections. ITE 
Journal, 64, 35-42. 

Hummer, J.E. (1998). Unconventional Left-Turn Alternatives for Urban and Suburban 
Arterials. Part One. ITE Journal, 68(9), 26-29. 

Hummer, J.E. (2000). Operational Effects of New “Double Wide” Intersection Design on 
Suburban Arterials. CD-ROM Compendium of Papers, 79th Annual Meeting. 
Transportation Research Board (TRB), National Research Council, Washington D.C. 

Hummer, J.E., & Reid, J.D. (2000). Unconventional Left-Turn Alternatives for Urban 
and Suburban Arterials: An Update. In Transportation Research Circular E-C019: 
Urban Street Symposium Conference Proceedings, Dallas, TX, June 28-30, 1999. 
Washington, DC: TRB, NRC. 



  

 

  145
 
 
 

Jagannathan, R. (2007). Synthesis of the Median U-Turn Intersection Treatment, Safety, 
and Operational Benefits. McLean, VA U.S. Department of Transportation, Federal 
Highway Administration, TechBrief, FHWA-HR-08-033. 

Jagannathan, R., & Bared, J.G. (2004). Design and Operational Performance of the 
Crossover Displaced Left-Turn (XDL) Intersection (Also Called Continuous Flow 
Intersection (CFI)). Presented at the 2004 TRB Annual Meeting, Washington, DC. 

Jagannathan, R., & Bared, J.G. (2005). Design and Performance Analysis of Pedestrian 
Crossing Facilities for Continuous Flow Intersections (CFI). CD-ROM Compendium of 
Papers, 84th Annual Meeting. Transportation Research Board (TRB), National Research 
Council, Washington D.C. 

Johnson, M. & Hange, W. (n.d). Modern Roundabouts intersections: When to use them? 
A comparison with signalized intersections. Retrieved December 2007 from Web Site: 
http://www.k-state.edu/roundabouts/news/ITEPaper.pdf 

Levinson, H. S., Koepke, F. J., Geiger, D., Allyn, D., & Palumbo, C. (2000). Indirect Left 
Turns—The Michigan Experience. Access Management Conference, Portland, Oregon. 

Lindgren, R.V., & Tantiyanugulchai, S. (2003). Microscopic simulation of traffic at a 
suburban interchange. Institute of Transportation Engineers 2003 Annual Meeting, 
Seattle, Washington. 

Lownes, N., & Machemehl, R. (2006). VISSIM: A multi-parameter sensitivity analysis. 
Winter Simulation Conference, Vol. 3, pp.1406-1413. 

Mereszczak, Y., Dixon, M., Kyte, M., Rodegerdts, L., & Blogg, M. (2006). Including 
Exiting Vehicles in Capacity Estimation at Single-Lane U.S. Roundabouts. In 
Transportation Research Record 1998, TRB, National Research Council, Washington 
D.C., pp.23-30. 



  

 

  146
 
 
 

Michigan Department of Transportation. (n.d.). Bureau of Highways Design Guide for 
Crossovers. Retrieved December 2007 from Web Site: 
http://www.mdot.state.mi.us/tands/plans.cfm 

Nichols, A. & Bullock, D. (2001). Design Guidelines for Deploying Closed Loop 
Systems. Joint Transportation Research Program (JTRP), SPR 2390. 

Ourston, L., & Hall, G. (2003). Roundabouts increase interchange capacity. In 
Transportation Research Record 1858, TRB, National Research Council, Washington 
D.C., pp.112-117. 

Perez-Cartagena, R., & Tarko, A. (2004). Predicting Traffic Conditions at Indiana 
Signalized Intersections, SPR-2796, Report No. FHWA/IN/JTRP-2004/29, September 
2004. 

Polus, A. & Cohen, R. (1997). Operational Impact of Split Intersections. In 
Transportation Research Record 1579. TRB, National Research Council, Washington 
D.C. 

Polus, J., Lazar, S., & Livneh, M. (2003). Critical Gap as a Function of Waiting Time in 
Determining Roundabout Capacity. Journal of Transportation Engineering, 129, 504-
509. 

PTV_Vision. (2007). VISSIM User's Manual, Version 4.30, 2007. 

Reid, J. (2000). Using Quadrant Roadways to Improve Arterial Intersection Operations. 
ITE Journal, 70(6), 34-45. 

Reid, J.D., & Hummer, J.E. (2001). Travel Time Comparisons between Seven 
Unconventional Arterial Intersection Designs. In Transportation Research Record 1751. 
TRB, National Research Council, Washington D.C. 



  

 

  147
 
 
 

Reid J.D., Brinckerhoff, P., & Hummer, J.E. (1999). Analyzing System Travel Time in 
Arterial Corridors with Unconventional Design Using Microscopic Simulation. In 
Transportation Research Record 1678, TRB, National Research Council, Washington 
D.C., pp.208-215. 

Retting, R.A., Lutterell, G., & Russell, E.R. (2002). Public Opinion and Traffic Flow 
Impacts of Newly Installed Modern Roundabouts in the United States. ITE Journal 72(9). 

Robinson, B.W., Rodegerdts, L., Scarbrough, W., Kittelson, W., Troutbeck, R., Brilon, 
W., Bondzio, L., Courage, K., Kyte, M., Mason, J., Flannery, A., Myers, E., Bunker, J., 
& Jacquemart, G. (2000). Roundabouts: An Informational Guide. Report No. FHWA-
RD-00-067. Washington, DC: United States Department of Transportation, Federal 
Highway Administration. 

Rodegerdts, L.A., Blogg, M., Wemple, E., Myers, E., et al. (2007). Roundabouts in the 
United States. Washington D.C., National Cooperative Highway Research Program 
(NCHRP), Transportation Research Board, Report 572. 

Rouphail, N., Hughes, R., & Chae, K. (2005). Exploratory Simulation of pedestrian 
Crossings at Roundabouts. Journal of Transportation Engineering, 131, 211-218. 

Russell, E., Retting, R.A., McCartt, A.T., & Srinivas, M. (2006). Traffic Flow and Public 
Opinion: Newly Installed Roundabouts in New Hampshire, New York, and Washington. 
CD-ROM Compendium of Papers, 85th Annual Meeting. Transportation Research Board 
(TRB), National Research Council, Washington D.C. 

Russell, E., Rys, M., & Luttrell, G. (2002). Kansas Roundabout Reluctance. Submitted to 
the 81st Annual Meeting of the Transportation Research Board. Transportation Research 
Board, National Research Council, Washington, D.C. 

Stanek, D., & Milam, R. (2005). High-Capacity Roundabout Intersection Analysis: Going 
Around in Circles - Draft. National Roundabout Conference, Vail, CO.  



  

 

  148
 
 
 

Tabernero, V., & Sayed, T. (2006). Upstream Signalized Crossover Intersection: An 
Unconventional Intersection Scheme. Journal of Transportation Engineering. 132(11), 
907-911. 

Tabernero, V., Sayed, T., & Kosicka, D. (2008). Introduction and Analysis of a New 
Unconventional Intersection Scheme, the Upstream Signalized Crossover (USC) 
Intersection. CD-ROM Compendium of Papers, 87th Annual Meeting. Transportation 
Research Board (TRB), National Research Council, Washington D.C. 

Tarek, S., Paul, S., & Godwin, W. (2006). Upstream Signalized Crossover Intersection: 
Optimization and Performance Issues. In Transportation Research Record 1961. TRB, 
National Research Council, Washington D.C, pp.44-54. 

U.S. Departament of Transportation. (2004). Federal Highway Administration. 
“Signalized Intersections: Informational Guide.” Chapter 10. 

 

 

RELATED LITERATURE 

American Association of State Highway and Transportation Officials (AASHTO). 
(1999). Guide for the Development of Bicycle Facilities. Washington, D.C.: American 
Association of State Highway and Transportation Officials. 

Dobbour, E. & Easa, S. (2006). Proposed geometric improvements to safety of modern 
roundabouts. CD-ROM Compendium of Papers, 85th Annual Meeting. Transportation 
Research Board (TRB), National Research Council, Washington D.C. 



  

 

  149
 
 
 

Dorothy, P., Maleck, W., & Nolf, S. (1997). Operational Aspects of Michigan design for 
Divided Highways. In Transportation Research Record 1579. Transportation Research 
Board, National Research Council, Washington, D.C., pp. 18-26.  

Harkey, D.L., & Carter, D.L. (2006). Observational analysis of bicyclist and motorist 
behavior at roundabouts in the United States. In Transportation Research Record 1982. 
Transportation Research Board, National Research Council, Washington D.C., pp.155-
165. 

Hildebrand, T. (2007). Unconventional intersection design for improving through traffic 
along the arterial road. Master thesis FSU, Dec 2007. 

Hummer, J.E. (1998). Unconventional Left-Turn Alternatives for Urban and Suburban 
Arterials. Part Two. ITE Journal, 68(11). 

Hummer, J.E., & J. Boone. (1995). Travel Efficiency of Unconventional Arterial 
Intersection Design. In Transportation Research Record 1500. Transportation Research 
Board, National Research Council, Washington D.C., pp. 153-161. 

Kim, T., Edara, P., Bared, J. (2007). Operational and Safety Performance of a Non-
Traditional Intersection Design: The Superstreet. CD-ROM Compendium of Papers, 86th 
Annual Meeting. Transportation Research Board (TRB), National Research Council, 
Washington D.C. 

New Jersey Department of Transportation. (n.d.). Roadway Design Manual. Retrieved 
September 20, 2007 from Web Site: 
http://www.state.nj.us/transportation/eng/documents/RDME/sect6E2001.shtm#JUGHAN
DLES 

Thompson, C.D. & Hummer, J.E. (2001). Guidance on the Safe Implementation of 
Unconventional Arterial Designs: Draft Final Report. North Carolina State University. 



  

 

  150
 
 
 

 
 
 
 
 
 
 

APPENDICES



  

 

  129
 
 
 

 
 
 

APPENDIX 
 
 
 

This section is a summary based on previous research tools available to analyze 

roundabouts. 

APPENDIX A: 
CAPACITY 

 

VV
LWClearanced

*47.1
Re +

=   

W-Width of crossing roadway (feet) 
L- Length of vehicle (feet) 
VV-Speed of vehicle (mph) 

PV
WClearancePed =      

W-Width of crossing roadway (feet) 
VP-Assumed speed of crossing pedestrian (feet/sec) 
 
ROUNDABOUTS 
 
To determine roundabout capacity for single lane sites, Equation A.1 can be used [0]: 
          
           

c=1130·exp(−0.0010·vc ) , where                                                Equation A.1 
   

c = entry capacity (passenger car units [pcu]/h)       
vc = conflicting flow (pcu/h) 
 

Knowing the local values of critical headway and follow-up headway, engineers can 

predict capacity more accurately by substituting these values into Equation A.2, which is 

exactly the same as the equation above but calibrated to local conditions (Rodegerdts et 

al., 2007). 
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c=A·exp(-B·vc ), where           Equation A.2  
 c = entry capacity (pcu/h) 

A = 3600/tf 
B = (tc – tf /2)/3600 
vc = conflicting flow (pcu/h) 
tf = follow-up headway (s) 
tc = critical headway (s) 

 

To determine roundabout capacity for a critical lane of multilane roundabouts entering 

into two circulatory roadways can be estimated using Equation A.3 (Rodegerdts et al., 

2007): 
           

c=1130·exp(−0.007·vc ) , where           Equation A.3 
 

c = entry capacity of critical lane (passenger car units [pcu]/h) 
vc = conflicting flow (pcu/h) 

 
If field data for control delay is not available, delay can be estimated.  

Equation A.4 
 
 
 
  
 

 
 
d = average control delay (s/veh) 
c = capacity of subject lane (veh/h) 
T = time period (h: T = 1 for 1-h analysis, T = 0.25 for 15-min analysis) 
v = flow in subject lane (veh/h) 

 
The FHWA methodology and RODEL employ the U.K. empirical regression equations, 

rather than the gap acceptance factors or lane configuration. RODEL uses six geometric 

parameters: entry width, length of flare, upstream roadway width, diameter, curb return 

radius, and entry angle. aaSIDRA uses gap acceptance to estimate capacity. VISSIM and 
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Paramics are microsimulation packages which allow the user to calibrate the results 

through network coding and adjustment of gap time and space headway. 

 
The VISSIM microsimulation tool can model U.S. roundabouts more accurately then 

European data based on tools like RODEL an aaSIDRA for high volume conditions 

(Bared and Edara, 2005; Flannery et al., 1998). When comparing these tools (VISSIM, 

RODEL, aaSIDRA) in terms of capacity predictions, all models behave in a similar 

manner; and if graphed plots run parallel to each other, the only difference is that 

VISSIM predictions are lower than the other two models and replicate U.S. conditions 

better. This indicates that by reducing the predictions of RODEL and aaSIDRA by the 

appropriate amount, we would obtain more reasonable capacity predictions for U.S. 

roundabouts. For dual-lane roundabouts, this value is about 500vph (Bared and Edara, 

2005). However, it should be noted that European drivers are more accustomed to 

roundabouts and over time drivers in the U.S. might change their gap acceptance 

behavior and higher capacity predictions as exist for drivers in Europe. It should also be 

noted that aaSIDRA predictions are close to U.S. data for low volume sites (Flannery et 

al., 1998). Since aaSIDRA is based on gap acceptance at low volume sites, this parameter 

does not have the same influence on results as for high volume locations where aaSIDRA 

underestimates delay. 

 

Macroscopic methods (FHWA, RODEL and aaSIDRA) can be used to analyze high-

capacity roundabouts for unsaturated conditions or isolated locations with standard 

geometry (Stanek and Milam, 2005).  On the other hand, microsimulation provides more 

accurate results but requires detailed calibration to accurately analyze the system effects. 

Situations which warrant the use of microsimulation tools include closely spaced 

intersections, freeway ramps, and skewed approaches which are caused by constrained 

geometry. These factors would have been ignored when using FHWA methodology, 

RODEL or aaSIDRA (Stanek and Milam, 2005). 
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VISSIM has been proven to provide accurate results when simulating roundabouts 

located at the off-ramps of a diamond interchange. Delay and travel time will be 

consistent with the HCM 2000 methodology (Lindgren and Tantiyanugulchai, 2003). 

 

When utilizing the HCM 2000 procedure for estimating roundabout capacity, 100 percent 

of the exiting vehicles should be included in the conflicting flow (Mereszczak et al., 

2006), unless a high proportion of exiting vehicles occur on a particular approach so that 

lower proportion of exiting vehicles can be included. 

 

The procedure for estimating entry speed (V1p), through movement circulating speed 

(V2p), through-movement exit speed (V3p), and left-turn-movement circulating speed 

(V4p) on a roundabout can be found in Chapter 5 of (Rodegerdts et al., 2007). These 

predictions will allow designers to estimate what speeds should be expected on a 

roundabout and the consistency of all elements of a design. 
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1 General overview 
 

The need for alternative intersections has developed as a result of a gradual degradation 

of service and safety at some road intersections where undesirable installation of traffic 

signals or costly interchanges seem to be the only modernization alternatives if a 

conventional engineering approach is applied.  Alternative intersections, a relatively new 

concept, are a promising means of reaching for other solutions.  

 

The capacity and safety improvement at alternative intersections comes from a special 

treatment of the left-turn movements – the frequent source of poor operational and safety 

conditions at conventional intersections.  Signalized intersections may serve as an 

appealing example. Strong left-turn movements require a separate signal phase to provide 

sufficient capacity to these movements. This provision inherently takes away 

considerable capacity from the primary through movements and leads to a considerable 

deterioration of operations of the whole intersection with associated safety implications. 

 

 Many different alternative intersections have been proposed in the literature and some of 

them implemented on a limited scale.  Each alternative intersection design has 

advantageous and disadvantages.  Performance of an alternative intersection strongly 

depends upon the traffic pattern and other local conditions.  Therefore, not a single 

alternative intersection is  superior over all other options and in all cases.  In some 

conditions, even a conventional intersection may be the preferred alternative. 

 

Not all alternative intersections identified in this guideline have been implemented.  

Some have only been assessed on the conceptual level and their operations evaluated 

using microscopic simulation. 

 

A problem with evaluating alternative intersections at present is that most of them are 

fairly new and have been implemented for a short period of time, if at all.  Furthermore, 
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some installations of the alternative intersections have been only partial implementations. 

From an operational standpoint, the lack of implemented alternative intersections can be 

overcome to a certain degree through the use of microsimulation. Safety analyses, on the 

other hand, are limited as a result of short and infrequent implementations.  No current 

method exists to predict safety without using historical crash data, although there have 

been some recent attempts to use microsimulation to perform safety analyses.  As such, 

safety is often analyzed using potential conflict point diagrams.  Although safety analyses 

have been performed at some implemented alternative intersections, these analyses are 

few in number, small in data sets, and often limited to one region or one state. 

 

The purpose of these guidelines is to help Indiana road designers and planners identify 

alternative intersections that have a potential to improve traffic operations and safety 

under given conditions. This document includes an overall description of alternative 

intersection designs along with operational and safety implications of the alternative 

design. Alternative intersections evaluated in this study are at-grade intersections and 

include: continuous flow intersections, jughandles, median u-turns, roundabouts, 

superstreet median crossovers, bowties, continuous green T-intersections, double wide 

intersections, paired intersections, quadrant roadway intersections, split intersections, and 

upstream signalized crossover intersections. Solutions that have not been implemented in 

the field (to knowledge of authors) and have been evaluated only at the conceptual level 

are placed in the chapter titled “Other solutions.” 

 

In this guideline you will find specific conditions which might favor some alternative 

intersections over other. This document also contains a comparison of alternative 

intersections with a conventional intersection from the operational and safety 

perspectives.  The user should not treat any solution(s) identified with the guidelines as 

final. Detail analysis of implications of local conditions supported with micro-simulation 

and supplemented with good engineering judgment is advised.  
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2 Conventional intersections 
 

A conventional at-grade intersection can be defined as an intersection where all 

movements are allowed and direct.  The conventional intersection can be a two or four-

way stop controlled intersection, or it may be signalized.  It may have three or four legs 

with as few as one traffic lane on each leg or may have many more lanes.  Finally, the 

intersection may be in a rural, suburban, or urban setting. 

 

2.1 Operational issues 
 

Conventional unsignalized intersections with strong through movements can serve only a 

limited number of left turning vehicles as these vehicles have to cross in front of through 

vehicles coming from the opposite direction. Increasing the number of traffic lanes is 

typically not an option due to the limited capacity benefit and the adverse effect on safety. 

Signalized intersections, on the other hand, may require protection of left-turn 

movements via exclusive left turn phases, thus reducing capacity and increasing delays of 

primary through movements. Increasing the number of turning lanes at signalized 

intersections is possible but it is limited to the number of lanes available on the 

intersection leg which the vehicles desire to enter. Increasing the number of through lanes 

in the intersection vicinity is possible but not recommended.     

 

In terms of arterial progression, good coordination for conventional intersections with 

protected turn bays can only be achieved in both directions for even intersection spacing. 

With uneven intersection spacing, progression can usually be accommodated only in one 

direction (Figure 2-1). Furthermore, capacity shortage at intersections with coordinated 

signals dramatically reduces the effectiveness of coordination due to additional stops 

caused by long vehicle queues.   
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Figure 2-1 Effect of intersection spacing on progression (Nichols and Bullock, 2001) 

 

 

 

2.2 Safety issues 
 

Knowledge of safety at alternative intersections is limited due to a short, if any, 

implementation period of the alternative solutions.  Safety at most alternative 

intersections can be evaluated only qualitatively by comparing potential conflict point 

diagrams (PCPD) of alternative and conventional intersections. Figure 2-2 shows the 

potential vehicle-to-vehicle conflict points for a four-legged signalized intersection with 

one traffic lane approaching from every direction.  Figure 2-3 shows the potential 

vehicle-to-vehicle conflict points for a three-legged signalized intersection with one 

traffic lane approaching from each direction.  To simplify these and other PCPDs, each 

traffic movement is represented with a single line regardless of the number of traffic 

lanes used by the movements.  Therefore, as lanes are added, the number of potential 

conflict points will also increase. 

 

Conflict point diagrams provided previously typically separated the conflict points into 

three categories: crossing, diverging, and merging.  The PCPDs that follow further 

subdivide these categories into whether or not the potential conflict point is expected to 

lead to a more or less severe collision.  In general, diverging and merging conflict points 
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tend to be more severe if the merge or diverge occurred between two streams that were 

close to originating from perpendicular streams.  Similarly, crossing conflict points are 

considered to be more severe when one of the streams of traffic crossed was a through 

stream.  Therefore, when two turning movements cross each other, the crossing potential 

conflict point is categorized as possibly leading to more severe crashes. 

 

 

 
Figure 2-2 A four-legged intersection PCPD, assuming signalization 

 

Figure 2-2 identifies 16 crossing conflict points, 12 of which may lead to more severe 

collisions.  Notice, that as described previously, when two turning movements cross, the 

potential conflict point is categorized as less severe.  There are 8 diverging and merging 

conflict points, respectively, all which may lead to severe collisions.  Again, as described 

previously, since the merges and diverges are between traffic streams that are 

perpendicular with each other, the conflict points are expected to cause potentially more 

severe collisions.  Of the three types of potential conflict points, the crossing conflict 

points may lead to the most severe collisions; therefore, eliminating these types of 

conflict points or reducing the expected severity is desirable. 
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Figure 2-3 A T-intersection PCPD, assuming signalization or stop control on the discontinuous leg 

 

Figure 2-3 identifies 3 crossing potential conflict points, 2 of which may lead to more 

severe collisions.  There are 3 diverging potential conflict points, 2 of which may lead to 

severe collisions.  There are 3 merging potential conflict points, again 2 of which may 

lead to severe collisions. 

 

PEDESTRIANS 

 

Another aspect that must also be considered when comparing conventional solutions to 

alternative intersections on the basis of safety is vehicle to pedestrian conflicts.  Figure 

2-4 below shows the pedestrian/vehicle conflict points for a four-legged, signalized 

intersection with one approach lane from each direction.  As can be seen from the figure, 

there are 4 potential conflict points for each leg of the intersection, for a total of 16 

pedestrian/vehicle potential conflict points. 
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Figure 2-4 Pedestrian/vehicle conflict points for a four-legged intersection 

 

 

BICYCLES 

 

Bicycle traffic is another important consideration at intersections.  If a bicyclist travels to 

the right of the through travel lane, rather than as a vehicle, they pass more potential 

crossing conflict points than a through vehicle does.  For example, Figure 2-5 shows the 

crossing conflict points that a bicycle encounters when completing a left-turn and through 

movement.  The bicycle movements are identified by the thicker lines.  As shown in the 

figure, some of the additional crossing conflict points are the result of crossings between 

the bicycle and turning vehicle paths.  Furthermore, when a bicyclist turns left, a bicyclist 

typically crosses the through traffic to remain to the outside of the traveled way.  

Therefore, the bicyclist is exposed to additional crossing conflicts.   
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Figure 2-5 Bicycle/vehicle potential conflict points for a four-legged intersection 
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3 Continuous-flow intersection  
 

A continuous-flow intersection (CFI), sometimes called the crossover-displaced left-

turn (XDL) intersection, provides left-turn connectors between the arterial and cross 

streets placed upstream of the intersection and to the left of the street. Figure 3-1 

demonstrates how left and right-turning vehicles from Major Street (a) and Minor Street 

(b) would traverse the intersection. 

 

Figure 3-1 Vehicle movement at a full continuous-flow intersection 

 

Partial continuous-flow intersections have been implemented. A partial CFI has left-turn 

connectors on the major roadway and no connectors on the minor roadway.  

 

The major advantage with this design is that through traffic and traffic using the left-turn 

connector can move during the same signal phase without conflict. The signals at the 

connectors should be coordinated with the primary intersection signal so through arterial 

traffic does not stop more than once. A single signal controller which operates the 

primary intersection and left-turn connector/minor street intersection (Figure 3-2) helps to 

achieve this coordination. The left-turn connector should cross the opposing traffic at a 

point which prevents spill back from the primary intersection which would result in 

blockage of the crossover signal. 
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Figure 3-2 Signal phasing of continuous flow intersection (USDOT, 2004) 

 

 

3.1 Operational aspects of the CFI 
 

Full or partial implementations of a continuous-flow intersection can provide significant 

savings in delay, queue length and the average number of stops and may add additional 

capacity when compared with a conventional intersection design with left-turn pockets 

(Hummer and Reid, 2000). The benefits of a CFI grow as traffic volumes increase. Thus, 

locations with high demand throughout the day experience greater benefits than locations 

with high demand for short peak periods. 

 

Advantages of a continuous-flow intersection over conventional intersections are greatest 

where left turn volumes are high and intersection capacity is exceeded (Goldblatt et al., 

1994). As left turn volumes increase, protected left turn phases at a conventional 

intersection increase, extending the cycle length and increasing delays for all traffic 

movements. The CFI design, on the other hand, allows left turn movements to proceed 
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simultaneously with the through movements.  Hence, delays at continuous-flow 

intersections with heavy left-turn and through movements are considerably reduced. 

 

Pedestrian travel through a continuous-flow intersection is accommodated within two 

cycle lengths (Jagannathan and Bared, 2005), which may be considered disadvantageous.  

Pedestrians crossing a continuous-flow intersection may experience additional delay 

when compared to a conventional intersection.  The larger delay that a continuous-flow 

intersection creates for a pedestrian should be considered where heavy pedestrian 

volumes are present. 

 

A continuous-flow intersection has characteristics summarized in Table 3-1.  

 

 Table 3-1 Characteristics of a continuous-flow intersection (Hummer, 1998; Hummer and Reid, 
2000) 

Advantages Disadvantages When to 
consider 

When not to 
consider 

• Reduced delay 
for through arterial 
traffic 
• Reduced stops 
for through traffic 
• Easier 
progression for 
through arterial 
traffic 
• Applicable to all 
median widths 
including roads 
with no median or 
with a narrow 
median 
• Reduced and 
more separated 
conflict points 

• Driver and pedestrian confusion 
• Increased stops for left-turns 
from the arterial 
• Restricted U-turn possibilities 
• Pedestrians must cross 
connectors and the main 
intersection (and pedestrians must 
cross the four-quadrant design in 
a slow two-stage process) 
• Additional right-of-way for 
connectors 
• Additional construction and 
maintenance costs for connectors 
• Lack of access to arterial for 
parcels next to connectors 
• There may be costs associated 
with obtaining the rights to use 
the design 

• High through 
volumes with 
little demand 
for U-turns 
• Sufficient 
intersection 
spacing to 
outweigh the 
savings 
elsewhere 
• Restricted 
access to the 
arterial for 
parcels near 
intersection 

• Narrow 
right of way 
at the 
intersection 
and no 
possibility 
for 
obtaining 
extra right-
of-way at 
the 
intersection 
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Table 3-2 Summary of continuous-flow intersection (USDOT, 2004) 

Characteristics Potential Benefits Potential Liabilities 

Safety Left turns removed from 
main intersection. 

None identified. 

Operations More green for through. More stops and delay for 
left turns. 

Multimodal No conflicts during 
pedestrian crossing. 

Two-stage pedestrian 
crossing. 

Layout may not be 
immediately apparent, 
especially for visually 
impaired persons. 

Physical Similar footprint than 
interchange alternative. 

Right-of-way needed. 

Larger footprint than 
conventional intersection. 

Access management. 

Socioeconomic Air quality. Construction cost. 

Access management. 

Enforcement, Education, 
and Maintenance 

None identified. Public information 
campaign may be needed. 

 

 

3.2 Safety Impacts of the Continuous-Flow Intersection 
 

The safety impacts of a continuous-flow intersection are assessed on the basis of potential 

conflict points.  Figure 3-3 and Figure 3-4 show the potential conflict points for a half 

and full continuous-flow intersection, respectively.  When either the half or full CFI are 

compared with the conventional intersection found in Figure 2-2, one possible benefit 

that a continuous-flow intersection provides is further separation of potential conflict 

points. 
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Figure 3-3: A half continuous-flow intersection potential conflict point diagram 

 

 
Figure 3-4: A full continuous-flow intersection potential conflict point diagram 

 

 

Table 3-3 presents the number of potential conflict points for a half and full continuous-

flow intersection contrasted with a comparable conventional intersection. 
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Table 3-3 Potential conflict points for a conventional intersection, half continuous-flow 
intersection and full continuous-flow intersection 

 
Crossing Diverging Merging Total 

Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 

Conventional, 
signalized        
4-legged 

4 12 0 8 0 8 4 28 32 

Half-CFI 2 12 0 8 0 8 0 30 30 

Full CFI 0 12 0 8 0 8 0 28 28 

 

 

As exemplified in the table, the half-CFI may bring some safety benefits, as there is a 

reduction in the total number of potential conflict points.  The reduction of potential 

conflict points occurs in the less severe category for the crossing conflict type.  A full 

CFI further reduces the number of potential conflict points when compared with a half 

CFI.  Again, the reduction is in the number of less severe crossing potential conflict 

points. The implications of a reduction in potential conflict points should be carefully 

considered, as a link between the number of potential conflict points and frequency or 

severity of crashes has not yet been established. 

 

When considering pedestrian/vehicle interactions, the continuous-flow intersection might 

be confusing to pedestrians as a result of the more complex geometry. As compared with 

other alternatives, the total number of roadways and the number of free-flowing 

roadways that need to be crossed by a pedestrian is relatively high (Thompson and 

Hummer, 2001). Furthermore, the more complex intersection geometry might cause 

driver confusion, thus compromising pedestrian and vehicle safety. 
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4 Jughandle intersection 
 

The jughandle intersection uses connectors diverging to the right side of the arterial to 

accommodate the left and right turns from the arterial.  For example, in Figure 4-1, the 

upper forward jughandle removes left and right turns from traffic traveling to the left.  

Therefore, the left and right turning movements exit onto the jughandle connector, to the 

right of the arterial, and then make either a left or right turn onto the minor street, as 

shown in Figure 4-1a.  The minor street turning movements proceed as normal, as is 

shown in Figure 4-1b, as the minor street does not have a connector. 

 

 

Figure 4-1 Turning movements for a forward-forward jughandle 

 

There are two types of jughandle connectors, combinations of which can form three 

distinct intersection configurations shown in Figure 4-1, Figure 4-2 and Figure 4-3.  Left 

and right turn movements at a forward-forward jughandle intersection are shown in 

Figure 4-1. A reverse-reverse junghandle intersection is presented in Figure 4-2. Figure 

4-3 shows how turning vehicles proceed at a forward-reverse jughandle intersection. A 

forward jughandle connector is also called a near-sided connector while a reverse 

jughandle connector is also called a far-sided connector.  
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Figure 4-2 Turning movements for a reverse-reverse jughandle 

 

 

 

Figure 4-3 Turning movements for a forward-reverse jughandle 

 

A reverse connector requires the user to first proceed through the intersection then exit on 

the reverse connector.  The user is redirected back onto the minor roadway via the reverse 

connector.  The user then proceeds through the primary intersection for a second time (i.e. 

backtracking) to complete a left-hand turn.  There is no back-tracking in a forward 
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connector. The implementation of a combination of forward and reverse jughandle 

connectors can be used to accommodate right-of-way restrictions.   

 

Design guidelines for jughandle intersections can be found in (New Jersey DOT, n.d.).  

They include design recommendations regarding connector speeds, exit curves, connector 

right turn radius at a cross-street, connector length and placement, length of a 

deceleration lane and signage. The guidelines identify three types of jughandles: Type A, 

Type B, Type C.  Type A resembles the previously described forward-forward jughandle 

intersection.  Type B resembles the median U-turn alternative intersection discussed in 

Section 5, although there are some differences.  Type C resembles the previously 

described forward-reverse jughandle intersection. 

 

The primary road crossing at a jughandle intersection is signalized.  The signals at the 

primary crossing area should be set so that vehicle queues on the minor street do not 

block the termini of the jughandle connectors.  The signals may have two or three phases.  

A three-phase signal setting is applied if the left-turning movements from the minor street 

need to be protected.  The two-phase and three-phase alternatives are shown in Figure 4-4. 

 

 
Figure 4-4 Signal phasing for a jughandle (USDOT, 2004) 

 

The traffic control at the secondary crossing areas formed by the jughandle connectors 

and the minor street depends on the volume of traffic using the jughandle connectors. The 
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traffic control at the secondary crossing areas may be a combination of stop signs, yield 

signs, and traffic signals.  If the secondary crossing area is not signalized then the left-

turn movements at the secondary crossing area are typically stop-controlled while the 

right-turn movements are yield-controlled. 

 

4.1 Operational aspects of a Jughandle 
 

The forward jughandle intersections can accommodate light to moderate left turn 

movements on the major road.  This configuration may experience operational problems 

if vehicle queues on the minor road extend back from the primary crossing and block the 

jughandle termini. 

 

The Type B jughandle is used to provide a U-turn possibility for heavy vehicles on 

roadway sections with a narrow median.  It can also be used as a directional crossover for 

left turns. 

 

The reverse jughandle design can be used to accommodate left turns heavier than allowed 

at the forward jughandle design. The reverse connector should be sufficiently long to 

accommodate the queue that can build up during one signal cycle.  An important 

consideration associated with the reverse jughandle is the provision of an additional lane 

for motorists exiting the reverse jughandle onto the minor street.  The reverse jungle 

connector requires greater right of way than the forward jughandle connector. 

 

Jughandle connectors require left-turning vehicles to drive a longer distance through the 

intersection, which leads to longer travel times. Under heavy traffic at a forward 

jughandle intersection, the queue spillback from the primary crossing area may block the 

termini of the jughandle connectors, which would result in an additional delay for left 

turning movements. Additionally, if traffic on a forward jughandle connector is 
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controlled with a stop sign, the number of stops experienced by that traffic increases. 

Even so, the intersection may operate at a lower average delay than experienced at a 

conventional solution (USDOT, 2004). It is recommended that the tradeoff between the 

advantages to through movements and the disadvantages to left-turn movements is 

evaluated for this design. Table 4-1 shows characteristics of a forward jughandle 

intersection.  

 

Table 4-1 Characteristics of a forward jughandle (Hummer, 1998; Hummer and Reid, 2000) 

Advantages Disadvantages When to Consider When not to 
Consider 

• Reduced delay 
for through arterial 
traffic 

• Reduced stops 
for through traffic 

• Easier 
progression for 
through arterial 
traffic 

• Fewer and more 
separated conflict 
points 

 

• Driver confusion 

• Driver disregard for 
left-turn prohibitions at 
the main intersection 

• Increased travel 
distances for left turns 
from the arterial 

• Increased delay for left 
turns from the arterial, 
especially if queues of 
cross-street vehicles 
block the connector 
terminal 

• Increased stops for left 
turns from the arterial 

• Additional costs for 
construction and 
maintenance of 
connectors 

• Lack of access to 
arterial for parcels next to 
connectors 

• Pedestrians must cross 
connectors and the main 
intersection 

• High arterial 
through volumes 
with low or 
moderate cross 
street left-turn 
volumes 

 

 

• Limited 
right-of-way at 
the intersection 
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Table 4-2 Summary of the jughandle (USDOT, 2004) 

Characteristics Potential Benefits Potential Liabilities 

Safety Potential reduction in left-
turn collisions. 

None identified. 

Operations Potential reduction in 
overall travel time and 
stops. 

Longer travel time and 
more stops for left-turning 
vehicles using the 
jughandle.  

Potential for high-speed 
conflicts near connector 
diverges  

Multimodal Pedestrian crossing distance 
may be shorter due to lack 
of left-turn lanes on the 
major street. 

Pedestrian delay may be 
reduced due to potentially 
shorter cycle lengths. 

Increased exposure for 
pedestrians crossing the 
connector terminal. 

Transit stops may need to 
be relocated outside the 
influence area of the 
intersection. 

Physical None identified. Additional right-of-way 
may be required. 

Access management. 

Socioeconomic None identified. None identified. 

 

 

4.2 Safety Impacts of the Jughandle 
 

4.2.1 Research results 
 

Jughandle intersections may substantially reduce the frequency of head-on and left-turn 

collisions as compared to conventional intersections with the same traffic volume 

(Jagannathan et al., 2006). The drawback of a jughandle design, from the safety 

perspective, is that jughandles are associated with a slight increase in the annual 

frequency of rear-end collisions as compared to a conventional intersection (Jagannathan 

et al., 2006). Even so, rear-end collisions tend to be much less severe than head-on and 
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left-turn collisions.  Therefore, the reduction in head-on and left-turn collisions has the 

possibility of outweighing the costs associated with a slight increase in rear-end 

collisions. 

 

With respect to pedestrian safety, jughandles have the possibility of halving the 

frequency of pedestrian-vehicle crashes (Jagannathan et al., 2006).  This result should be 

carefully considered because exposure was not incorporated into the analysis as a result 

of unavailable data.  

 

Special considerations should be taken when considering pedestrian presence at a 

jughandle intersection on cross-streets near the connector terminal (Rodegerdts et al., 

2007). Adequate design will improve not only pedestrian safety, but vehicle safety and 

operations as well. 

 

Comparing the total crash rate (per million vehicle miles) between the three jughandle 

intersection designs, the forward-forward jughandle design was found to have the highest 

total crash rate (Jagannathan et al., 2006).  The total crash rate for the other two 

jughandle designs, the forward-reverse and reverse-reverse jughandle, were comparable, 

although there were some indications that the reverse-reverse jughandle is associated 

with a slightly lower total crash rate. 

 

4.2.2 Potential conflict point diagrams for jughandle intersections 
 

The safety of jughandle intersections can also be evaluated on the basis of potential 

conflict points. Figure 4-5, Figure 4-6, Figure 4-7 show the conflict points for the 

forward-forward, reverse-reverse, and forward-reverse jughandle intersections. 
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Figure 4-5 Forward-forward jughandle potential conflict point diagram 

 

 
Figure 4-6 Reverse-reverse juhandle potential conflict point diagram 
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Figure 4-7 Forward-reverse jughandle potential conflict point diagram 

 

Table 4-3 provides a summary of the number of diverging, merging, and crossing 

potential conflict points that can be expected with each jughandle intersection design.  

Information about a conventional intersection design is also provided for comparison. 

 
Table 4-3 Potential conflict points for jughandle alternatives compared to a conventional intersection 

Intersection Type 
Crossing Diverging Merging Total 

Overall 
Total Less 

Severe
More 

Severe 
Less 

Severe
More 

Severe 
Less 

Severe
More 

Severe
Less 

Severe 
More 

Severe 

Conventional, signalized, 4-legs 4 12 0 8 0 8 4 28 32 

Forward-Forward Jughandle 0 10 4 4 0 8 4 22 26 

Reverse-Reverse Jughandle 0 8 2 6 2 6 4 20 24 

Forward-Reverse Jughandle 0 9 3 5 1 7 4 21 25 

 

 

Table 4-3 shows that when comparing any jughandle alternative to a conventional 

intersection, the total number of potential conflict points is reduced. The reduction in 

potential conflict points could mean an increase in safety.  Additionally, the jughandle 
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designs also provide further separation of the potential conflict points, which may 

provide some safety benefit. 

 

The forward-forward design has the highest number of potential conflict points among 

the three jughandle intersections; therefore, the safety benefits of the forward-forward 

design is expected to be less than the other jughandle alternatives.  A research study of 

the three types of jughandle intersections found results consistent with the above 

observations (Jagannathan et al., 2007). The reverse-reverse design provides the highest 

level of safety, followed by the forward-reverse design and then the forward-forward 

design.   
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5 Median U-turn intersection (MUT) 
 

Motorists who want to turn left at the median U-turn intersection must use a directional 

crossover in the median, the median U-turn, which is located downstream of the primary 

intersection.  Direct left turns are prohibited at the intersection while right turns proceed 

as usual.  To make a left-turn, motorists on the road with the U-turn proceed through the 

intersection, make a U-turn at the directional median crossover, and then turn right at the 

intersection (Figure 5-1) (Jagannathan, 2007). 

 
Figure 5-1 Median U-turn turning movements 

 

Median U-turns can be implemented on the major road, the secondary road, or both.  

Implementation of a median U-turn is restricted to roads with sufficiently wide medians. 

The minimum median width that allows a median U-turn depends on the design vehicle’s 

turning radius and the number of opposing lanes (Jagannathan, 2007). Implementing 

loons in the median U-turn design can help reduce the required median width. 

 

The median U-turns create two secondary intersections. There are several ways that these 

two intersections can be controlled.  First, vehicles approaching the major intersection on 

the minor road and those making U-turns may be controlled by stop signs. Second, traffic 
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signals can be implemented at both the primary and secondary intersections.  If both the 

primary and secondary intersections are signalized, they should be coordinated.  Proper 

coordination of signals reduces the number of stops of through vehicles considerably. 

This solution performs well if a left turn maneuver is allowed on a red signal on one-way 

facilities.  Third, only the primary intersection is signalized while the median U-turn 

movements are controlled by stop signs at the secondary intersections. Traffic signals at 

the primary intersection will have two phases.   

 

The location of the median U-turn downstream of the primary intersection should be 

carefully considered. Agencies provide varying recommendations for the location, which 

range from 400 to 760 feet beyond the primary intersection (Hummer, 1998; AASHTO, 

2004; Jagannathan, 2007). The location of the median U-turn is a tradeoff between travel 

time for left turns and storage capacity for left turning vehicles. As the distance between 

the median U-turn and the primary intersection increases, the travel time for left turns 

will increase; however, with heavy left turns, increasing the distance between the median 

U-turn and the primary intersection will prevent spillback and blockage of through 

movements. 

 

Tapering the median width when approaching the primary intersection can reduce the 

minimum green time for the cross street (Jagannathan, 2007).  From a safety standpoint, 

this would result in a reduction in the time during which the pedestrian is exposed to 

vehicular traffic because their path is shorter.  From an operational standpoint, this would 

result in a reduced cycle length, which results in a reduction in delay.  No indication was 

given that this concept was implemented, or if so, the effects quantified. 

 

Special attention should also be considered to address key design elements including 

deceleration length, storage, location and spacing of the crossovers on the arterial. The 

Michigan Department of Transportation successfully operates over a large number of 

intersections with median U-turns. The design guide developed by the Michigan 



 31

Department of Transportation can assist in addressing the design issues (Michigan DOT, 

n.d.). 

 

5.1 Operational aspects of Median U-turn 
 

The removal of the left-turning movements from the major intersection has allowed 

elimination of the left-turn phases thus reducing the cycle length and delay for through 

movements and at the same time providing better conditions for coordination of the street 

with the median U-turns.  

 

Proper signage is important for efficient operation of a median U-turns facility. The 

Michigan Department of Transportation has developed signage plans based on past 

experience (Thompson and Hummer, 2001; Michigan DOT, n.d.). Operations at the 

existing median U-turns in Michigan have shown that understandable traffic control 

devices and signing can mitigate confusion among drivers of rerouted movements 

(Hummer and Reid, 2000). Table 5-1 shows general characteristics of the MUT design 

and can be used for initial screening. 

 

When compared to the conventional intersection, the median U-turn design brings 

considerable savings for though movements while increasing delays of the left-turning 

movements. The benefits exceed the costs if left-turn volumes are small (Bared and 

Kaisar, 2002), particularly, if the through volumes are large. With the increase in the 

volume of left turns, the net benefit decreases. At low to medium through volumes, the 

median U-turn will perform similarly to a comparable conventional intersection (Bared 

and Kaisar, 2002; Dorothy). Urban arterials with median U-turns have reduced travel 

times during peak periods (Hummer and Ried, 2000).  

 

A considerable gain in capacity can be achieved for the median U-turn design as 

compared to a conventional design with dual left turns (Levinson et al., 2000).  
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Table 5-1 Characteristics of a median U-turn intersection (Jagannathan, 2007; Hummer, 1998; 
Hummer and Ried, 2000) 

Advantages Disadvantages When to 
Consider 

When not to 
Consider 

• Reduced delay of 
through arterial traffic 

• Improved 
progression along 
through arterial. 

• Fewer stops for 
through traffic, 
particularly at 
intersections with 
stop-controlled U-
turns  

• Fewer threats to 
crossing pedestrians 

• Fewer and better 
separated conflict 
points 

• Increased capacity at 
primary intersection 

• Allows to operate 
signal at shorter cycle 
lengths 

• Potential of driver 
confusion 

• Some drivers 
disregard of the left-
turn prohibition at 
primary intersection 

• Reduced 
performance of left-
turning traffic 
(increased delays, 
travelled distance, 
and stops) 

• Additional cost of 
extra signals 

• Longer cross street 
minimum green times 
or two cycle 
pedestrian crossing 

• Larger right of way 
to accommodate 
required median 
width 

• High arterial 
through 
volumes with 
low or moderate 
arterial left turn 
volumes  

• Arterials with 
narrow median 
and no prospect 
for obtaining extra 
right of way, 
except where wide 
median and 
crossovers can be 
built on the cross 
street 

• High left turn 
volumes on 
arterial; extra 
delays with 
spillback may 
outweigh the 
savings for 
through traffic 

 

5.1.1 Median U-turn in an arterial corridor 
 

During peak periods, a median U-turn corridor can improve system travel time by twenty 

percent and average speed by twenty five percent as compared to a conventional design. 

During off-peak periods, a median U-turn corridor will operate as efficient as a corridor 

with conventional intersections (Reid et al., 1999). 

 

The benefit of converting conventional intersections to the median U-turn design on 

arterial streets grows with the growing ratio of arterial left-turn volumes to arterial 

through volumes (Reid et al., 1999).  In the majority of cases tested in (Reid et al., 1999), 
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the arterial street with median U-turns experienced a higher number of stops than the 

arterial with conventional intersections.  Table 5-2 summarizes advantages and 

disadvantages of a MUT corridor as compared to a conventional two-way left-turn lane 

(TWLTL) corridor. 

 

The median U-turn may be applied as a corridor treatment or at isolated intersections 

(Jagannathan, 2007). Insertion of a isolated median U-turn into a coordinated arterial 

composed of conventional intersections is not recommended. 

 

5.2 Safety Impacts of the Median U-turn 
 

5.2.1 Research results 
 

Median U-turn designs may reduce the total number of crashes and injury crashes by 

more than half when compared to a conventional design (Jagannathan, 2007). A 

reduction in the number of rear-end, angle, and sideswipe crashes can be expected 

(Jagannathan, 2007). This safety benefit is probably produced by the decreased number 

and increased separation in conflict points and the elimination of left turns from the 

primary intersection. 

 

Table 5-2 A median U-turn corridor relative to a TWLTL corridor. (Based on findings in Reid et al., 
1999) 

Advantages Disadvantages 

• Two phase signal operation justified by 
removal of left turns from main 
intersection 

• Improved progression 

• Potential delay reduction for through 
movements  

• Reduced number of conflict points 

• Better visual aesthetics 

• Increase in left turns VMT due to 
increased travel distance  

• Higher delay than at conventional 
intersections if volumes are low 

• Increased potential of driver confusion  

• Greater right of way requirements  
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Table 5-3 Summary of the median U-turn intersection (USDOT, 2004) 

Characteristics Potential Benefits Potential Liabilities 

Safety Potential reduction in left-
turn collisions. 

Potential minor reduction in 
merging/diverging collisions. 

None identified. 

Operations Potential reduction in overall 
travel time. 

Reduction in number of stops 
for arterial through 
movements. 

Mixed findings with respect 
to overall stops. 

Mixed findings with respect to 
overall stops. 

Multimodal Number of conflicting 
movements at intersections is 
reduced. 

 

Increased crossing distance for 
pedestrians. 

Turning paths of the median U-turn 
may encroach in bike lanes. 

Physical None identified. May be additional right-of-way 
needs depending on width of 
existing median. 

Socioeconomic None identified. Access may need to be restricted 
within the influence of the median 
U-turn locations. 

Enforcement, 
Education, and 
Maintenance 

None identified. Enforcement and education may be 
necessary to prevent illegal left turns 
at the main intersection. 
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5.2.2 Conflict diagram for the median U-turn 
 

 
Figure 5-2 Median U-turn intersection potential conflict point diagram  

 
Table 5-4 Potential conflict points for a median U-turn and a conventional intersection 

 
Crossing Diverging Merging Total 

Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 

Conventional, 
signalized 
4-legged 

4 12 0 8 0 8 4 28 32 

Median U-turn 0 4 2 4 2 4 4 12 16 

 

 

Comparing Figure 5-2 with Figure 2-2 and analyzing Table 5-4  reveal a reduction in the 

number and severity of potential conflict points at median U-turns. One of the most 

significant reductions is in the number of crossing potential conflict points.  The total 

number of crossing potential conflict points is reduced from 16 to 4.  Additionally, the 

median U-turn intersection brings two benefits when considering diverging and merging 

potential conflict points: the total number is reduced, and the severity of two of the 

remaining six, respectively, is expected to be less severe. The positive safety impact of 

the median U-turn design has been confirmed with research (Jagannathan, 2007).  
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6 Roundabout intersection 
 

Roundabout intersections allow multiple vehicles to enter the intersection simultaneously 

from any approach when no conflicting vehicle is present in the circulatory roadway. The 

entry onto a roundabout is controlled by a yield sign. Roundabouts are characterized by 

the number of circulatory lanes, the number of entry lanes, the central island diameter, 

the approach deflection, the entry flare, and the splitter islands. The Federal Highway 

Administration (FHWA) Roundabout Guide (Robinson et al., 2000) can be helpful to 

classify and determine roundabout geometrical dimensions based on desired operational 

characteristics. The reader, however, should be cognizant of the fact that the mentioned 

FHWA Roundabout Guide was developed based on research from Europe and Australia 

and that a version updated with US roundabout data may be available at the time of 

reading these guidelines.  Figure 6-1, below, provides an example of how a vehicle 

approaching from the major (a) and minor (b) streets would traverse a roundabout.  Note 

that the figure demonstrates the movement from one approach at a time, while 

simultaneous entries from all approaches are permitted. 

 

 

Figure 6-1 Example turning movements for major and minor street approaches 
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It is important to distinguish between modern roundabouts – a subject of these guidelines 

- and conventional traffic circles or rotaries.  Roundabouts are different from the latter 

two because entering traffic must yield to circulating traffic.  In a rotary, circulating 

traffic must yield to entering traffic.  Furthermore, roundabouts have deflection on the 

approach legs so that the speed of vehicle entering the roundabout is sufficiently reduced 

to minimize the speed differential between the vehicle in the circulatory roadway and the 

vehicle on the approach. 

 

Prior to construction of roundabouts in communities not accustomed to them, designers 

and planners might experience opposition mainly due to unfamiliarity with the design 

(Retting et al., 2002). Opposition to roundabout intersections can also be attributed to 

confusing roundabouts with traffic circles, rotaries, or traffic calming islands (Russell et 

al., 2002). Agencies should consider providing educational classes and informational 

sessions regarding roundabouts when implementing them within communities unfamiliar 

with this design. After implementation of well designed roundabouts, a considerable 

improvement in public perception of roundabouts is expected (Retting et al., 2002; 

Traffic Flow and Public Opinion).  

 

6.1 Operational aspects of Roundabouts 
 

Roundabouts have the potential to provide improved operations at locations with high left 

turn volumes, skewed approaches, more than four legs, or limited queue storage. In 

general, roundabouts require shorter sight distance than conventional intersections due to 

lower speeds on approaches as compared to conventional intersections and right turn 

merge on entry. Traffic leaving roundabouts tends to be more random than at 

intersections with other types of control.  Furthermore, gaps downstream tend to be 

shorter but more frequent as compared to signals.  Thus, roundabouts have the potential 

to provide more opportunities for side street traffic downstream of the roundabout to 

enter the major street. When designing a roundabout, designers should consider factors 
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such as overall size, entry angles, entry widths, flare length, speed, trucks, pedestrians 

and bikes, proper signing and markings (Johnson and Hange, n.d.). For multilane 

roundabouts, special attention to design details like vehicle path alignment, especially the 

shortest path; lane widths; and positive guidance to drivers through the use of lane 

markings should be carefully considered to achieve a successful roundabout design 

(Rodegerdts, 2007).  

 

From an operational perspective, the two most important driver behavior parameters 

considered during roundabout capacity analysis are critical gap and follow up time. For 

cities with no prior roundabout experience these parameters can be assumed to be more 

conservative than for cities with prior installations of roundabouts (Rodegerdts et al., 

2007; Eisenman and List, 2004). 

 

To determine roundabout feasibility for a given site, data on vehicle and pedestrian 

volumes, and horizontal and vertical alignment should be considered (Chapman and 

Benekohal, 2002). Factors that favor roundabout construction include (Chapman and 

Benekohal, 2002): 

 Geometric realignment of the approaches is cost prohibitive 

 Current alignment is not conducive to the installation of a traffic signal system 
without geometric improvements 

 There are more than four approaches to an intersection at a single unsignalized 
location. 

 

Factors that discourage roundabout consideration include (Chapman and Benekohal, 

2002; Retting et al., 2002):  

 Grades through the intersection are greater than four percent 

 Crest vertical curves with steep approaches are present 

 Vertical profile cannot be adjusted without a significant expense 

 Intersection cannot be relocated 

 Highly unbalanced volumes 
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 Locations where terrain or right-of-way limit appropriate geometry  

 Close proximity to persistent bottlenecks 

 

Also, there are cases where certain geometric and site characteristics may favor 

roundabout construction over signals. Specific case studies where roundabouts proved to 

be more efficient than signals can be found in (Johnson and Hange, n.d.). Placing 

roundabouts on a signalized arterial requires careful analysis including the possibility of a 

queue spillback from signalized intersections to the roundabout and generally is 

discouraged for medium and heavy arterial traffic (Chapman and Benekohal, 2002). 

Planning roundabouts on arterials with light traffic are easier to justify. 

 

Converting a stop-controlled intersection with low or moderate traffic (up to 20,000 

veh/day) to a roundabout reduces the intersection control delay and distributes it more 

evenly across approaches (Flannery et al., 1998). Fair distribution of delay becomes a 

factor on two-way stop controlled intersections where the stop controlled legs may 

experience excessive delays even when the average delay for the intersection does not 

indicate any problems. 

 

Construction of roundabouts at signalized interchanges with high left turns can in some 

cases reduce construction costs and increase capacity (Robinson et al., 2000; Johnson and 

Hange, n.d.). Roundabouts have been found to be the most cost-effective solution at the 

end of tunnels and bridges where adding additional storage and turning lanes required at 

traffic signals are expensive (Robinson et al., 2000). 

 

Converting stop controlled intersections to roundabouts reduces delay and vehicle stops.  

Reduction of average intersection delay can range from relatively low to significant 

(Retting et al., 2002; Russell et al., 2006). 
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Pedestrian crossings placed at splitter islands close to the roundabout reduce pedestrian 

walking distance. When pedestrian-actuated signals are considered for these crossings, 

from an operational standpoint, it is preferred if the crosswalk is further offset from the 

circulatory roadway. Placing the signalized crosswalks at a distance from the roundabout 

reduces the risk of a queue of exiting vehicles spilling back towards the roundabout and 

blocking the circulatory roadway.  The crosswalk only affects the exiting vehicles on the 

leg on which it is installed (Rouphail et al., 2005). The above consideration applies to 

signalized pedestrian crossings and should not be applied to unsignalized crossings.  

 

6.2 Safety Impacts of the Roundabout 
 

The past safety research of signalized and two-way stop controlled intersections 

converted to roundabouts indicates substantial and statistically significant reduction in the 

number of crashes and particularly injury crashes (Rodegerdts et al., 2007).  All-way-

stop-controlled intersections converted to roundabouts, on the other hand, seem to have 

no safety effect (Rodegerdts et al., 2007; Tyra et al., 2007). The latter results can be 

explained with already good safety records of all-way-stop-controlled intersections. 

Furthermore, the safety benefits at rural locations are greater than in urban and suburban 

settings (Rodegerdts et al., 2007). This difference can be explained by the difference in 

operating speeds in rural versus urban and suburban areas.  Rural areas tend to have 

higher operating speeds.  Thus the speed reduction caused by the roundabout is more 

significant in rural than in urban or suburban conditions. Due to the lower volumes, 

roundabouts in rural locations are single-lane installations.  

 

To ensure safe bicycle operations at roundabouts, emphasis should be placed on the 

junction of exit lanes to the circulatory roadway (Harkey and Carter, 2006). For low 

traffic volume sites, bicycles may share the circulatory roadway with vehicles. When 

designing a roundabout for low traffic volumes, the designer should assume that bicycles 

fully utilize the circulatory lanes. For heavier volume conditions, separate cycle paths or 

other solutions may be more suitable (Harkey and Carter, 2006). Special design 
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provisions for bicycles can be found in the FHWA Roundabout Guide (Robinson et al., 

2000) and in the ASSHTO Development of Bicycle Facilities (AASHTO, 1999). 

Implementing a bicycle bypass at roundabouts can enhance bicycle safety and reduce the 

total delay and travel time (Dobbour and Easa).  

 

Figure 6-2 and Figure 6-3 exemplify the safety benefit of a roundabout – elimination of 

potential crossing conflict points.  No other alternative intersection eliminates crossing 

potential conflict points completely.  Because crossing potential conflicts are generally 

associated with the highest level of severity, eliminating crossing potential conflict points 

reduces the severity of crashes. As a matter of fact, none of the conflict points at 

roundabouts are severe (see Table 6-1 and Table 6-2), which makes this solution superior 

to a four-legged conventional intersection. The total number of potential conflict points at 

four-legged roundabouts are one-fourth that of a comparable signalized conventional 

intersection (Table 6-1). There is a two-third reduction in the number of conflict points 

for a three-legged roundabout compared to a T-intersection. 

 

 

 
Figure 6-2 Four-legged roundabout potential conflict point diagram 

 



 42

 
Table 6-1 Frequency of total crashes for a roundabout intersection 

 
Crossing Diverging Merging Total 

Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 

Signalized, 
Conventional 
4-legged 

4 12 0 8 0 8 4 28 32 

4-legged 
Roundabout 0 0 4 0 4 0 8 0 8 

 

 

 
Figure 6-3 Three-legged roundabout potential conflict point diagram 

 

 

 
Table 6-2 Frequency of Total Crashes for a Roundabout Intersection 

 
Crossing Diverging Merging Total 

Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 

Conventional, 
signalized 
3-legged 

1 2 1 2 1 2 3 6 9 

3-legged 
Roundabout 0 0 3 0 3 0 6 0 6 
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7 Superstreet median (SSM) crossover intersection 
 

 

The superstreet median (SSM) crossover intersection requires cross-street through 

movements and left turns to and from the arterial to use the directional crossover (Figure 

7-1).  This geometric layout allows each direction of the arterial to have its own 

independent signal timing including different cycle lengths. The lack of interaction 

between the two arterial directions converts a two-way arterial into two one-way arterials 

allowing  good signal progression in each direction. The cross street through movement is 

required to make a right turn at the main intersection, then make use of the median U-turn 

located in the median downstream of the primary signal, and turn right when coming 

back to the primary intersection (Figure 7-1). Left turns at the main intersection are direct 

and protected. There is an alternative superstreet median design which removes the direct 

left turns from the major roadway and allows this movement through a median as found 

at median u-turn intersections. 

 

 

 

Figure 7-1 Super-street traffic movement  

 

 



 44

The superstreet median u-turns shown in Figure 7-1 utilize a two-phase signal. 

Prohibition of direct through and left turning movements for the cross street allows the 

two phase signals to function independently. Thus, different cycle lengths can be used for 

each direction (Figure 7-2). This characteristic can be used to achieve good coordination 

with uneven intersection spacing.  An arterial street with unevenly spaced conventional 

intersections can be efficiently coordinated only in one direction while the other direction 

is typically compromised.  

 

 

 
Figure 7-2 Typical phasing for the superstreet median primary intersection (USDOT, 2004) 

 

 

 

7.1 Operational aspects of the superstreet median 
 

The superstreet median improves performance of the arterial through and left turn 

movements at the expense of the minor street through and left turn movements that 

become indirect with longer distances to travel. Therefore, this solution is not desirable 

for intersections where the cross street carries considerable traffic.  

 

Table 7-1 shows general characteristics of the SSM design and can be used for initial 

screening for applicable designs. 
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Table 7-1 Characteristics of the superstreet median design (Hummer, 1998; Hummer and Reid, 
2000) 

Advantages Disadvantages When to Consider When not to 
Consider 

• Reduced delay for 
through arterial 
traffic and for 
arterial left turns 

• Efficient 
progression in both 
directions regardless 
of signal spacing 

• Fewer stops for 
arterial through 
traffic 

• Fewer threats to 
crossing pedestrians 

• Fewer and more 
separated conflict 
points 

 

• Driver confusion 

• Increased stops, 
delay, and travel 
distance for cross 
street both left turns 
and through traffic 

• Longer two-stage 
crossing for 
pedestrians across 
the arterial street 

• High arterial 
through volumes 
with low and 
moderate cross 
street through 
volumes. Usually in 
suburban arterials 
where roadside 
development 
generates most of 
the traffic 

• 50/50 arterial 
through traffic split 
exists for most of 
the day with uneven 
street spacing 

 

• Arterials with 
narrow medians 
and no prospect 
for obtaining extra 
right of way for 
widening 

 

7.1.1 Superstreet median in an arterial corridor 
 

With uneven intersection spacing and during peak periods, a superstreet median corridor 

may provide improvements in overall travel time and average speed as compared to a 

conventional design (Reid et al., 1999).  It should be noted that this benefit may be less 

significant than the benefit of median u-turn intersections. During off-peak periods, a 

superstreet median road will operate with similar efficiency as a conventional road (Reid 

et al., 1999). On the other hand, the superstreet median design becomes more beneficial 

with the growing ratio of left-turn and through traffic volumes on the major street. 
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Table 7-2 summarizes the advantages and disadvantages of a superstreet median as 

compared to a conventional street with two-way left-turn lanes (TWLTL) at signalized 

intersections (Reid et al., 1999). 

 

Table 7-2 Superstreet median road compared to a two-way left-turn lane road (based on Reid et al., 
1999) 

Advantage Disadvantage 

• Two-phase signal operation by removal 
of direct left and through from the cross 
street 

• Perfect progression in both directions 
of arterial  

 

• Increased VMT for cross street 
movements 

• Driver confusion due to discontinued 
cross street  

• Not beneficial if the cross street 
through volumes is considerable 

• Greater right of way requirements (25 – 
50 feet)  

 

 
Table 7-3 Summary of the superstreet median intersection (adapted from USDOT, 2004) 

Characteristics Potential Benefits Potential Liabilities 

Safety Fewer conflict points. None identified. 

Operations Reduced delay for major 
street movements. 

Longer travel distance and 
time for minor street 
movements. 

Multimodal None identified. Two-stage pedestrian 
crossing. 

Physical None identified. Wide median needed. 

Socioeconomic None identified. Restricted access from the 
cross street. 

Enforcement, Education, 
and Maintenance 

None identified. Potential for driver and 
pedestrian confusion. 
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7.2 Safety Impacts of the Superstreet Median 
 

No crash-based studies of the safety impact of a superstreet median were available at the 

time of writing these guidelines. A simulation-based safety evaluation has yielded mixed 

results (Kim et al., 2007).  The analysis was performed for two cases: a superstreet design 

with one and two median u-turn lanes.  The findings indicated that when compared with a 

similar conventional intersection, the superstreet with one median u-turn lane is safer 

(Kim et al., 2007).  A superstreet with two median u-turn lanes, on the other hand, was 

found to be less safe than a comparable conventional intersection (Kim et al., 2007). 

These results have to be considered with caution because this method of analysis has not 

been validated.  

 

The potential safety impacts of the superstreet median can also be evaluated through a 

potential conflict point diagram.  Figure 7-3 is a potential conflict point diagram for a 

superstreet. 

 

 

 
Figure 7-3 Superstreet potential conflict point diagram  
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Table 7-4 Comparison of potential conflict points for a superstreet median and a conventional 
intersection 

 Crossing Diverging Merging Total 
Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 

Conventional, 
signalized 
4-legged 

4 12 0 8 0 8 4 28 32 

Superstreet 0 2 2 4 4 2 6 8 14 

 

As is shown in Figure 7-3, the superstreet median crossover may bring potential safety 

benefits through the reduction and separation of potential conflict points. 

 

One of the most significant reductions is in the number of crossing potential conflict 

points from 16, for a conventional intersection, to 2 for the superstreet median crossover.  

Additionally, the number of diverging potential conflict points is reduced and some of the 

remaining diverging potential conflict points are possibly converted to less severe 

potential conflict points.  A similar reduction in the number of merge potential conflict 

points is evident, with an additional benefit of more merge potential conflict points 

considered to be less severe.  Table 7-4 shows that the reduction in the number of 

potential conflict points for a superstreet median compared to a conventional intersection 

is more than half. 
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8 Other solutions 
 

This chapter includes solutions that have only been evaluated on the conceptual level or 

are suitable only under specific roadway geometric conditions. Alternative intersections 

discussed in this chapter are the bowtie, continuous green T-intersection (CGT), quadrant 

roadway intersection (QRI), and upstream signalized crossover (USC). 

 

8.1 Bowtie intersection 
 

The bowtie intersection accommodates indirect left turns by the use of roundabouts on 

the cross street (Figure 8-1). All left turns are prohibited at the primary intersection. The 

left turning vehicles on the main road turn right at the primary intersection and proceed to 

make a u-turn at the roundabout. The left turning vehicles on the cross street pass the 

primary intersection, then make a u-turn and finally turn right at the primary intersection.   

The concept of the bowtie is similar to an interchange with roundabouts without grade 

separation. The distance from the primary intersection to each roundabout varies from 

200 to 600 feet which is a tradeoff between limiting the extra distance traveled by left 

turning vehicles and required storage for vehicle queues.  
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Figure 8-1 Bowtie intersection diagram 

 

 

Table 8-1 shows general characteristics of bowtie design and can be used for initial 

screening for applicable designs. 

 

 

Table 8-1 Characteristics of a bowtie intersection (Hummer, 1998; Hummer and Reid,  2000)  

Advantages Disadvantages When to 
Consider 

When not to 
Consider 

• Reduced delay for 
through arterial traffic. 

• Easier progression for 
through arterial. 

• Fewer stops for 
through traffic 

• Fewer threats to 
crossing pedestrians 

• Fewer and better 

• Driver confusion 

• Driver disregard of 
the left-turn 
prohibition at main 
intersection 

• Increased stops for 
left turning traffic 
and cross street 
through traffic 

• Increased travel 

• High arterial 
through volumes 
with low and 
moderate left 
turn volumes and 
low and 
moderate cross 
street volumes 

• Arterials with 
narrow or 
nonexistent 

• High left turn 
volumes with 
spillback 
potential 

• Close spacing 
between 
adjacent 
intersections on 
the cross road 
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separated conflict 
points 

• Increased capacity at 
the main intersection 

distance for left 
turning traffic 

• Difficult U-turns 

medians 

 

For more information regarding simulation results of bowtie intersections see Boone and 
Hummer, 1995; Boone and Hummer, 1995; and Hummer and Boone, 1995. 

 

8.1.1 Safety Impacts of the Bowtie Intersection  
 

Figure 8-2 shows the potential conflict points at a bowtie intersection.  When compared 

with Figure 2-2, a potential safety benefit that the bowtie intersection may provide is 

separation of the conflict points. 

 

Table 8-2 shows that a primary benefit that the bowtie intersection provides is a reduction 

in the total number of conflict points.  This reduction is entirely in the crossing potential 

conflict point category.  Additionally, although the bowtie and conventional intersection 

have the same number of diverging and merging potential conflict points, half of the 

respective potential conflict points are expected to be less severe for the bowtie intersection. 
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Figure 8-2 Potential conflict diagram for a bowtie Intersection 

 

 

 

 

 
Table 8-2 Comparison of potential conflict points for a bowtie and a conventional intersection 

 Crossing Diverging Merging Total 
Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 

Conventional, 
Signalized 
4-legged 

4 12 0 8 0 8 4 28 32 

Bowtie 0 4 4 4 4 4 8 12 20 
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8.2 Continuous Green-T intersection (CGT) 
 

The continuous green T-intersection is applicable only to T-intersections (3-legged 

intersections). Three-phase traffic signals control left turns to and from the major road. 

The outside lane receives a green signal display during all phases (Figure 8-3). The 

separation between the inside lane from the lane with the continuous green signal is an 

important aspect of this design. The separation should extend several hundred feet 

upstream and downstream from the intersection to minimize weaving. This separation 

can be achieved by using raised reflectors or rumble strips (Hummer, 1998). A raised 

median prevents vehicles from crossing the separation. A limitation of the continuous 

green T-intersection is that it does not provide a phase for pedestrian crossing (Hummer, 

1998). This aspect of the design limits its use with heavy pedestrian volumes unless a 

pedestrian overpass or underpass can be justified. 

 

 

Figure 8-3 Diagram of a continuous green T-intersection  

 

 

8.2.1 Operational Impacts of the Continuous Green T-Intersection  
 

Benefits achieved with the continuous green T-intersection (CGT) design are highly 

dependent on the percent of drivers choosing the continuous green movement. For a four 
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lane arterial, you might expect approximately three-fourths of drivers to choose the 

continuous green lane.  Only a slight increase may be observed on a six lane arterial 

(Boone and Hummer, 1995). 

 

Table 8-3 shows general characteristics of a continuous green T-intersection design and it 

can be used for initial screening for applicable designs. 

 

Table 8-3  Characteristics of a continuous green T-intersection (Hummer, 1998) 

Advantages Disadvantages When to Consider 

• Reduced delay for 
through arterial traffic in 
one direction 

•  Reduced stops for 
through arterial traffic in 
one direction 

• Driver and pedestrian 
confusion 

• Driver disregard of the 
separation between the through 
lanes 

• No signal protection for 
pedestrians to cross the arterial 

• Increased lane changing 
conflicts before and after the 
separation of through lanes 

• Restricted access to parcels 
adjacent to the continuous green 
through lanes 

• At signalized three 
approach intersections 
with moderate to low 
left-turn volumes from 
the minor-street and high 
arterial through volumes, 
where there are no 
crossing pedestrians and 
few driveways along the 
top of T 

  

 

 

 

8.2.2 Safety Impacts of the Continuous Green T-Intersection  
 

No research on the safety impacts of the continuous green T-intersection is available. 

 

Figure 8-4 below shows the potential conflict point diagram for the continuous green T-

intersection. 
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Figure 8-4 Potential conflict point diagram for a continuous green T-intersection 

 

A continuous green T-intersection provides no reduction in the number of conflict points.  

Therefore, this design appears to only provide capacity benefits. 

 
Table 8-4 Comparison of potential conflict points for a continuous green T-intersection and a 
conventional intersection 

 Crossing Diverging Merging Total 
Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 

Conventional 
3-legged 1 2 1 2 1 2 3 6 9 

Continuous 
Green-T 1 2 1 2 1 2 3 6 9 

 

 

8.3 Paired intersection  
 

Paired Intersections are formed by two consecutive intersections where direct left turns 

from the major road is allowed at one intersection and a pair of direct left turns to the 

major road is allowed at the second intersection. Other left turns at these two 

intersections are forbidden and they are replaced by indirect left turns performed on an 

adjacent network of streets. Convenient traffic circulation throughout the corridor can be 
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provided through continuous two-way collector roads parallel to the arterial.  The 

collector roads must be set back at least several hundred feet from the arterial to avoid 

queue spillback (Hummer, 1998). The intersections between the cross streets and the 

parallel collector roads may be stop controlled or signalized depending on the traffic 

volumes and other factors (Hummer, 1998). Figure 8-5 provides a schematic of the split 

intersection. 

 

 
Figure 8-5 Traffic flows for a paired intersection 

 

Table 8-7 shows general characteristics of a paired intersection design and can be used 

for initial screening for applicable designs. 
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Table 8-5 Characteristics of a paired intersection (Hummer, 1998)  

Advantages Disadvantages When to 
Consider 

When not to 
Consider 

• Reduced delay for 
through arterial 
traffic. 

• Fewer stops for 
through traffic 

• Easier progression 
for through arterial 
traffic, and with the 
left merge variation 
“perfect” two-way 
progression 

• Fewer threats to 
crossing pedestrians 

• Fewer and more 
separated conflict 
points 

 

• Driver and pedestrian 
confusion 

• Increased travel 
distances for cross-street 
through traffic and for 
some left-turning traffic 

• Increased delay for cross 
street through traffic and 
for some left turn traffic 

• Increased stops for cross 
street through traffic and 
for some left turning 
traffic 

• Slow two-stage crossing 
for pedestrians on the 
arterial 

• High arterial 
through 
volumes with 
low cross street 
through 
volumes 

• Means to build 
and operate the 
parallel 
collector road 
are available 

  

• Existing 
parallel streets 
are not capable 
of carrying 
additional 
traffic 

• There is no 
means to build 
and operate 
parallel 
collector roads 

 

 

8.3.1 Safety Impacts of the Paired Intersection 
 

Research on the safety benefits of paired intersections had not been conducted by the 

time of writing these guidelines. Qualitative analysis of the safety benefits indicates a 

reduction in the number of potential conflict points and increased separation between 

these points.  Figure 8-6 illustrates these findings. 
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Figure 8-6 Potential conflict points for a paired intersection 

 
Table 8-6 Comparison of potential conflict points for a paired intersection and a conventional 
intersection 

 Crossing Diverging Merging Total 
Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 

Conventional, 
Signalized, 
4-legged 

4 12 0 8 0 8 4 28 32 

Paired 
Intersection 0 4 0 8 0 8 0 20 20 

 

Table 8-6 provides a comparison between the potential conflict points for a paired 

intersection with that of a comparable conventional intersection.  Table 8-6 shows that 

the paired intersection brings some potential safety benefits because of a reduction in the 

total number of potential conflict points.  The reduction in potential conflict points is only 

in the crossing category.  As aforementioned, reducing the number of crossing potential 

conflict points is particularly beneficial because crossing conflicts tend to be the most 

severe conflict type at an intersection. 
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8.4 Quadrant roadway intersection (QRI) 
 

The quadrant roadway intersection eliminates left turns at the main intersection with a 

two-way connector which can be located in any of the four quadrants.  In Figure 8-7 the 

connector roadway is located in the bottom left quadrant. The minor two T-intersections 

allow for direct left turns and may be stop controlled or signalized. Instead of making left 

turns at the primary intersection, drivers will have to make appropriate turning maneuvers 

on the minor T-intersections to direct them on the desired route (Figure 8-8). Turning 

maneuvers carried out by drivers on the minor T-intersections will be dependent upon 

which quadrant the connector roadway is located. Like the jughandle alternatives, the 

flexibility associated with the location of the connector roadway makes this alternative 

appealing when the existing land development eliminates the possibility of applying other 

alternative intersections. 

 

 
Figure 8-7 Diagram of a quadrant roadway intersection [adapted from Reid and Hummer, 2001] 
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Figure 8-8 Quadrant roadway intersection traffic patterns with the quadrant located in the bottom 
left corner 

 

 

 
Figure 8-9 Phasing plan for the quadrant roadway intersection (Hummer and Reid, 2000) 

 

 

A quadrant roadway intersection operated by a single controller can bring slight 

reductions in travel time and more significant reductions in queuing when compared with 

a conventional intersection (Reid, 2000). The reduction in travel time for the through 

movement will be slight, while the delay at the primary intersection and maximum queue 

length will be substantially reduced (Reid, 2000). Such a large reduction of delay and 

maximum queue length at the primary intersection is due to the fact that the delay for the 

quadrant roadway intersection is distributed between the primary intersection and the two 

secondary T-intersections. As the through and left-turn volumes increase, the quadrant 

roadway intersection design outperforms the conventional design by a higher margin 

(Reid, 2000).  The secondary intersection on the major road should be coordinated with 
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the primary intersection so that the through movement does not have to stop more than 

once. 

 

The quadrant roadway intersection reduces stopped delay and system travel time without 

adding lanes on the major road. 

 
Table 8-7 Characteristics of the quadrant roadway intersection based on (Reid, 2000) 

Advantages Disadvantages 

• Reduced total intersection delay 

• Reduced queuing under heavy volumes 

• Fewer vehicular conflict points 

• Narrower intersection width 

• Increased travel distance for left turns  

• Increased stops per vehicle for left turns 

• Driver confusion 

• Additional right-of-way for the quadrant 
roadway 

• Additional signing   

 

 

8.4.1 Safety Impacts of the Quadrant Roadway 
 

Research on the safety benefits of the quadrant roadway intersection had not been 

conducted by the time of writing these guidelines.  

 

Figure 8-10 provides a visual of the potential conflict points for a quadrant roadway 

intersection.  As can be seen when comparing Figure 8-10 with Figure 2-2, the quadrant 

roadway intersection separates the conflict points to a greater degree than a comparable 

conventional intersection, which could produce some safety benefits. 
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Figure 8-10 Quadrant roadway intersection potential conflict point diagram 

 

 
Table 8-8 Comparison of potential conflict points for a quadrant roadway intersection and a 
conventional intersection 

 Crossing Diverging Merging Total 
Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 

Conventional, 
signalized, 
4-legged 

4 12 0 8 0 8 4 28 32 

Quadrant 
Roadway 
Intersection 

2 8 2 8 2 8 6 24 30 

 

 

Table 8-8 summarizes the potential conflict points of a quadrant roadway intersection in 

comparison to potential conflict points for a conventional, signalized, four-legged 

intersection. The quadrant roadway intersection provides little reduction in the total 

number of potential conflict points.  It does, however, sufficiently reduce the number of 

crossing potential conflict points, particularly those considered to be more severe in 

nature.  In general, the quadrant roadway intersection seems to transfer some of the 
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crossing potential conflict points found in a conventional intersection to diverging and 

merging conflict types.  The number of diverging and merging potential conflict points 

both increase by two, respectively, in the less severe category.  Therefore, the overall 

potential safety benefits brought by the quadrant roadway intersection are a reduction in 

the number of crossing potential conflict points and further separation of potential 

conflict points. 

 

8.5 Split intersection 
 

The split intersection separates the primary two-way street segment in the vicinity of the 

intersection into two one-way streets resembling an at-grade diamond (Figure 8-11).  As 

such, the split intersection can be used as an intermediate phase to the creation of an 

interchange (Bared and Kaisar, 2000; Polus and Cohen, 1997). Traffic signals at the two 

separated intersections run a three phase cycle operation. It is recommended that a single 

controller operates both intersections.  Using a single controller eliminates the risk of 

poor offset, which can occur when two separate controllers loose coordination.  A 

potential consequence of poor offsets is an operational failure of the intersection under 

heavy volumes. 

 

 

8.5.1 Operational Impacts of the Split Intersection 
 

A split intersection has the potential to carry higher traffic volumes and reduce the delay 

for each vehicle with appropriate signal timing. With an increase in approach volumes 

and proportion of left turns, benefits in reducing delay at a split intersection, as compared 

to a conventional intersection, increase (Bared and Kaisar, 2000).  
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Figure 8-11 Diagram of a split intersection (adapted from Bared and Kaisar, 2000) 

 

8.5.2 Safety Impacts of the Split Intersection 
 

Research on the safety benefits of the split intersection had not been conducted by the 

time of writing these guidelines. As shown in Figure 8-12, a potential safety benefit of a 

split intersection as compared to a conventional intersection is further separation in 

potential conflict points. 
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Figure 8-12 Split intersection potential conflict points 

 

Table 8-9 provides a comparison of the number of potential conflict points for a split 

intersection with a comparable conventional intersection. Overall, the split intersection 

provides a reduction in the total number of potential conflict points.  The reduction in the 

number of potential conflict points is only in the crossing conflict point category.  The 

split intersection reduces the number of crossing conflict points in both the less and more 

severe categories.  There is a greater reduction in the more severe category which is 

especially desirable. 

 
Table 8-9 Comparison of potential conflict points for a split intersection and a conventional 
intersection 

 Crossing Diverging Merging Total Overall 
Total 

Less 
Severe 

More 
Severe 

Less 
Severe 

More 
Severe 

Less 
Severe 

More 
Severe 

Less 
Severe 

More 
Severe 

Conventional, 
signalized, 
4-legged 

4 12 0 8 0 8 4 28 32 

Split 
Intersection 2 8 0 8 0 8 2 24 26 
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8.6 Upstream Signalized Crossover  
 

The upstream signalized crossover (USC) intersection is an alternative intersection 

which eliminates left turn opposing conflicts by crossing left turns with the through 

traffic to the left side of the roadway prior to the primary intersection on all four 

approaches (Figure 8-13). Crossing of the through movements and left turns prior to the 

primary intersection is accomplished through secondary signals coordinated with the 

primary signal. Traffic is allowed to cross back to the right side of the road after the 

primary intersection at a second, secondary signal. The optimum location of the 

secondary intersection is a function of the operating speed and the desired green-band 

widths (Tabernero et al., 2008). 

 

 
Figure 8-13 Diagram of an upstream signalized crossover intersection [adapted from Tabernero et al., 

2008] 
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To prevent drivers from entering the wrong side of the road, a central median should be 

extended towards the intersection to properly channel traffic at the secondary intersection 

where the approaches meet (Tarek et al., 2006). 

 

 

 

8.6.1 Operational Impacts of the Upstream Signalized Crossover 
 

The upstream signalized crossover intersection has a higher capacity for left turns and 

can serve greater volumes before reaching saturation when compared with a conventional 

intersection, assuming balanced approach volumes (Tabernero et al., 2008). The 

operational performance of through vehicles is not compromised in this design.  The 

upstream signalized crossover performs with at least the same efficiency as a 

conventional intersection, again assuming balanced volume conditions. It should be noted 

that the delay for left turns does not decrease; however, split intersection operations are 

less affected by an increase in left turn volumes than at conventional intersections 

(Tabernero et al., 2008). 

 

A shorter distance between the primary and secondary intersections for an upstream 

signalized crossover will perform better for lower traffic volumes and reduce average 

delay as compared to longer spacing between the primary and secondary intersections 

(Tarek et al., 2006). However, shorter spacing between primary and secondary 

intersections reduces capacity (Tarek et al., 2006). 

 

For unbalanced volumes, the upstream signalized crossover intersection will perform 

worse than conventional intersections unless the conventional intersection is near its 

capacity. For mildly unbalanced volumes, the impact will not be as severe, and the 

upstream signalized crossover intersection will perform similar to a conventional solution, 

even for volumes below the capacity of the conventional intersection (Tarek et al., 2006). 

An optimized signal timing of an upstream signalized crossover intersection based on 



 68

design volumes will perform better than setting signal timings based on simple 

progression between primary and secondary intersections which are separated by a 

specific distance (Tarek et al., 2006). 

 

Table 8-10 An upstream signalized crossover intersection based on (Tabernero et al., 2008; Tarek et 
al., 2006) 

When to consider Disadvantages 

• Balanced high volumes near capacity of 
conventional intersection design 

• Somewhat unbalanced volumes which are 
over capacity of conventional design 

• Heavy left turn volumes with excessive 
delays 

• Driver confusion 

• Additional right of way needed 

• Limited access to/from adjacent corner 
properties to right-in/right-out and 
restricted exiting vehicles to a right turn 
only 

 

 

8.6.2 Safety Impacts of the Upstream Signalized Crossover 
 

Research on the safety benefits of the upstream signalized crossover intersection had not 

been conducted by the time of writing these guidelines. It may be anticipated that the 

upstream signalized crossover design may cause pedestrian confusion because the 

direction from which traffic approaches may be unexpected. 

 

Figure 8-14 presents the potential conflict diagram for an upstream signalized crossover 

intersection.  As is shown in the figure, the potential conflict points are further separated 

when compared with a conventional intersection (Figure 2-2). Table 8-11 provides a 

comparison of the number of potential conflict points for an upstream signalized 

crossover intersection compared to a conventional intersection.  As the table shows, there 

is a reduction in the total number of potential conflict points.  The reduction occurs in the 

more severe crossing category.  This is particularly beneficial because the crossing 

conflict is typically the most severe.  Additionally, the upstream signalized crossover 



 69

intersection also converts half of the merging and diverging conflict points from more 

severe to less severe conflict types, respectively. 

 

 
Figure 8-14 Upstream signalized crossover intersection potential conflict point diagram 

 

 

 

Table 8-11 Comparison of potential conflict points for an upstream signalized crossover intersection 
and a conventional intersection 

 Crossing Diverging Merging Total 
Overall 
Total Less 

Severe 
More 

Severe 
Less 

Severe 
More 

Severe 
Less 

Severe
More 

Severe 
Less 

Severe 
More 

Severe 

Conventional, 
signalized 4-legged 4 12 0 8 0 8 4 28 32 

Upstream Signalized 
Crossover 4 4 4 4 4 4 12 12 24 

 



 70

 

9 Evaluation of alternative designs 
 

This chapter provides guidance for evaluating six types of intersections to help select the 

most promising ones for given local geometry and traffic conditions.  

1. Conventional intersection (CONV), 

2. Continuous flow intersection (CFLW), 

3. Jug handle far-sided (JHFS), 

4. Jug handle near-sided (JHNS), 

5. Median U-turns intersection (MUT), 

6. Roundabout (RNDB). 

 

The method has been developed based on extensive simulation experiments with VISSIM 

calibrated to Indiana conditions. Details of the method development can be found in 

Volume I of this report. The following section explains the method and details needed to 

properly use the tool.  

 

9.1 Evaluation Method 
 

Seventy two various scenarios are identified based on the following criteria: 

1. Intersection location: rural or urban, 

2. Number of through lanes or the major and minor roads: 2x2, 4x2, 4x4, 

3. Traffic intersection split 55/45 and 70/30, 

4. Traffic directional split (same on both the roads): 55/45 and 70/30, 

5. Percent of left-turn movements on the major and minor roads (same on opposing 
approaches): 10/10, 10/20, 20/20. 

 

Each scenario is described by a table (example shown in Table 9-1) placed on the top of a 
page with exhibits for the scenario: 
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Table 9-1 Example description of a scenario 

 

 

The rural conditions are characterized with the following traffic characteristics: 

1. Saturation flow rate = 1,700 veh/h/lane, 

2. Speed on two-lane roads = 55 mi/h, 

3. Speed on four-lane roads = 60 mi/h, 

4. Percent of trucks = 5 %, 

5. Percent of right-turning vehicles = 5 %. 

 

The urban conditions are characterized with the following traffic characteristics: 

1. Saturation flow rate = 1,900 veh/h/lane, 

2. Speed on two-lane roads = 30 mi/h, 

3. Speed on four-lane roads = 45 mi/h, 

4. Percent of trucks = 2 %, 

5. Percent of right-turning vehicles = 5 %. 

 

The major geometry dimensions are presented for the six design alternatives in Figure 

9-1 through Figure 9-6. All the primary and secondary intersection areas are controlled 

by pre-timed traffic signals optimized with SYNCHRO each time to traffic and speed 

conditions.  The yellow and all-red periods are SYNCHRO defaults.  

 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 10 %
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Figure 9-1 Conventional intersection 4x2 (dimensions in feet) 

 

 

 

Figure 9-2 Jughandle nearsided intersection 4x2 (dimensions in feet) 
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Figure 9-3 Jug handle far-sided intersection 4x2 (dimensions in feet) 

 

 

 

Figure 9-4 Median U-turn intersection 4x2 (dimensions in feet) 
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Figure 9-5  Roundabout intersection (dimensions in feet) 

 

 

 

Figure 9-6 Continuous-flow intersection (dimensions in feet) 
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The following three measures of effectiveness are presented for each scenario: 

1. Average delay on the busiest intersection approach. This delay includes the effect 

of the control, traffic queues, and the additional distance covered by indirect left-

turning movements. Based on the HCM recommendations, the average delay 

larger than 80 seconds indicates Level of Service F and the shortage of capacity.   

2. Average delay at the intersection represents an overall level of service at the 

intersection and can be used to compare different design alternatives. 

3. Average number of stops can be used as an additional measure of performance 

following the notion that drivers’ perception of traffic quality is affected not only 

by the delay but also by the number of stops. 

 

The user is supposed to find the simulation scenario that is the closest to his/her design 

case. Entering the first graphs with the total volume at the design intersection allows 

checking which alternative intersections are likely to operate below capacity. Then, 

entering with the total volume the second graph allows identify the intersections with the 

lowest overall delay. The table with stops per vehicle gives additional guidance regarding 

the number of stops.      

 

9.2 Exhibits for evaluating alternative intersection designs 
 

 

Seventy two following pages include graphs and tables – one page per scenario. To help 

identify the needed scenario, the following table includes all the scenarios and the 

corresponding page numbers. 
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Urban Scenarios  
Saturation flow rate = 1,900 veh/h/lane 

Percent of trucks = 2% 
Percent of right turns = 5% 

 

Sc
en

ar
io

 Lanes 
on 

major 
road 

Lanes 
on 

minor 
road 

Speed 
on 

major 
road 

Speed 
on 

minor 
road 

Percent of 
traffic on 

major road 

Percent of 
traffic in 

busier 
direction 

Percent 
of left 

turns on 
major 
road 

Percent 
of left 

turns on 
minor 
road 

Page 

1 2 2 30 30 55 55 10 10 78 
2 2 2 30 30 55 55 10 20 79 
3 2 2 30 30 55 55 20 20 80 
4 2 2 30 30 55 70 10 10 81 
5 2 2 30 30 55 70 10 20 82 
6 2 2 30 30 55 70 20 20 83 
7 2 2 30 30 70 55 10 10 84 
8 2 2 30 30 70 55 10 20 85 
9 2 2 30 30 70 55 20 20 86 

10 2 2 30 30 70 70 10 10 87 
11 2 2 30 30 70 70 10 20 88 
12 2 2 30 30 70 70 20 20 89 
13 4 2 45 30 55 55 10 10 90 
14 4 2 45 30 55 55 10 20 91 
15 4 2 45 30 55 55 20 20 92 
16 4 2 45 30 55 70 10 10 93 
17 4 2 45 30 55 70 10 20 94 
18 4 2 45 30 55 70 20 20 95 
19 4 2 45 30 70 55 10 10 96 
20 4 2 45 30 70 55 10 20 97 
21 4 2 45 30 70 55 20 20 98 
22 4 2 45 30 70 70 10 10 99 
23 4 2 45 30 70 70 10 20 100 
24 4 2 45 30 70 70 20 20 101 
25 4 4 45 45 55 55 10 10 102 
26 4 4 45 45 55 55 10 20 103 
27 4 4 45 45 55 55 20 20 104 
28 4 4 45 45 55 70 10 10 105 
29 4 4 45 45 55 70 10 20 106 
30 4 4 45 45 55 70 20 20 107 
31 4 4 45 45 70 55 10 10 108 
32 4 4 45 45 70 55 10 20 109 
33 4 4 45 45 70 55 20 20 110 
34 4 4 45 45 70 70 10 10 111 
35 4 4 45 45 70 70 10 20 112 
36 4 4 45 45 70 70 20 20 113 
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Rural Scenarios  
Saturation flow rate = 1,700 veh/h/lane 

Percent of trucks = 5% 
Percent of right turns = 5% 

 

Sc
en

ar
io

 Lanes 
on 

major 
road 

Lanes 
on 

minor 
road 

Speed 
on 

major 
road 

Speed 
on 

minor 
road 

Percent 
of traffic 
on major 

road 

Percent of 
traffic in 

busier 
direction 

Percent of 
left turns 
on major 

road 

Percent of 
left turns 
on minor 

road 

Page 

37 2 2 55 55 55 55 10 10 114 
38 2 2 55 55 55 55 10 20 115 
39 2 2 55 55 55 55 20 20 116 
40 2 2 55 55 55 70 10 10 117 
41 2 2 55 55 55 70 10 20 118 
42 2 2 55 55 55 70 20 20 119 
43 2 2 55 55 70 55 10 10 120 
44 2 2 55 55 70 55 10 20 121 
45 2 2 55 55 70 55 20 20 122 
46 2 2 55 55 70 70 10 10 123 
47 2 2 55 55 70 70 10 20 124 
48 2 2 55 55 70 70 20 20 125 
49 4 2 60 55 55 55 10 10 126 
50 4 2 60 55 55 55 10 20 127 
51 4 2 60 55 55 55 20 20 128 
52 4 2 60 55 55 70 10 10 129 
53 4 2 60 55 55 70 10 20 130 
54 4 2 60 55 55 70 20 20 131 
55 4 2 60 55 70 55 10 10 132 
56 4 2 60 55 70 55 10 20 133 
57 4 2 60 55 70 55 20 20 134 
58 4 2 60 55 70 70 10 10 135 
59 4 2 60 55 70 70 10 20 136 
60 4 2 60 55 70 70 20 20 137 
61 4 4 60 60 55 55 10 10 138 
62 4 4 60 60 55 55 10 20 139 
63 4 4 60 60 55 55 20 20 140 
64 4 4 60 60 55 70 10 10 141 
65 4 4 60 60 55 70 10 20 142 
66 4 4 60 60 55 70 20 20 143 
67 4 4 60 60 70 55 10 10 144 
68 4 4 60 60 70 55 10 20 145 
69 4 4 60 60 70 55 20 20 146 
70 4 4 60 60 70 70 10 10 147 
71 4 4 60 60 70 70 10 20 148 
72 4 4 60 60 70 70 20 20 149 
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1730 2250 3110 

CONV 0.90 0.80 2.36 
CFLW 0.58 0.74 0.94 
JHFS 0.63 0.68 1.12 
JHNS 0.70 0.79 1.21 
MUT 0.76 0.81 1.25 

RNDB 0.29 0.73 11.88 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1730 2250 3110 

CONV 0.73 0.82 1.81 
CFLW 0.69 0.74 1.02 
JHFS 0.64 0.73 1.35 
JHNS 0.76 0.84 1.25 
MUT 0.77 0.82 1.20 

RNDB 0.33 0.86 13.07 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1730 2250 3110 

CONV 0.76 0.86 2.10 
CFLW 0.71 0.74 0.99 
JHFS 0.68 0.78 1.50 
JHNS 0.80 0.88 1.39 
MUT 0.85 0.92 1.32 

RNDB 0.37 1.17 14.87 

Location Urban Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1360 1760 2450 

CONV 0.86 1.02 2.05 
CFLW 0.57 0.61 0.90 
JHFS 0.60 0.67 1.09 
JHNS 0.70 0.76 1.11 
MUT 0.67 0.78 1.23 

RNDB 0.20 0.43 7.32 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1360 1760 2450 

CONV 0.71 0.77 1.17 
CFLW 0.66 0.72 0.88 
JHFS 0.62 0.68 0.94 
JHNS 0.73 0.79 1.07 
MUT 0.71 0.76 1.10 

RNDB 0.22 0.51 7.90 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1360 1760 2450 

CONV 0.72 0.79 1.01 
CFLW 0.68 0.74 0.79 
JHFS 0.66 0.74 1.01 
JHNS 0.79 0.84 1.18 
MUT 0.77 0.85 1.22 

RNDB 0.24 0.55 7.92 

Location Urban Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1730 2250 3110 

CONV 0.93 0.77 2.14 
CFLW 0.52 0.54 0.84 
JHFS 0.62 0.66 1.29 
JHNS 0.68 0.73 1.14 
MUT 0.74 0.81 1.00 

RNDB 0.24 0.59 9.58 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1730 2250 3110 

CONV 0.73 0.80 1.97 
CFLW 0.61 0.62 0.85 
JHFS 0.63 0.68 1.36 
JHNS 0.69 0.76 1.25 
MUT 0.76 0.85 0.92 

RNDB 0.26 0.63 10.19 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1730 2250 3110 

CONV 0.80 0.85 2.36 
CFLW 0.63 0.65 0.86 
JHFS 0.67 0.74 1.30 
JHNS 0.77 0.85 1.25 
MUT 0.87 0.93 1.09 

RNDB 0.32 1.00 11.23 

Location Urban Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1360 1760 2450 

CONV 0.87 1.36 1.68 
CFLW 0.52 0.56 0.79 
JHFS 0.60 0.64 1.36 
JHNS 0.67 0.72 1.14 
MUT 0.70 0.70 0.96 

RNDB 0.18 0.41 6.51 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1360 1760 2450 

CONV 0.70 0.72 1.23 
CFLW 0.59 0.64 0.80 
JHFS 0.61 0.62 1.23 
JHNS 0.69 0.73 1.07 
MUT 0.72 0.65 0.86 

RNDB 0.19 0.45 6.85 
 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1360 1765 2445 

CONV 0.79 0.79 1.04 
CFLW 0.61 0.66 0.83 
JHFS 0.66 0.71 1.20 
JHNS 0.76 0.82 1.12 
MUT 0.82 0.76 0.91 

RNDB 0.21 0.51 7.69 

Location Urban Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2385 3100 4290 

CONV 0.69 1.05 3.85 
CFLW 0.52 0.68 0.91 
JHFS 0.60 0.74 1.19 
JHNS 0.68 0.75 1.47 
MUT 0.93 1.23 1.74 

RNDB 0.54 2.69 14.17 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2385 3100 4290 

CONV 0.76 0.82 3.19 
CFLW 0.60 0.65 0.97 
JHFS 0.64 0.76 1.61 
JHNS 0.69 0.77 1.41 
MUT 0.88 1.18 1.80 

RNDB 0.61 3.38 13.52 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2385 3100 4290 

CONV 0.88 1.36 4.60 
CFLW 0.62 0.66 1.03 
JHFS 0.67 0.88 1.42 
JHNS 0.78 0.92 2.73 
MUT 0.82 1.07 2.65 

RNDB 0.68 5.53 18.21 

Location Urban Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1880 2440 3370 

CONV 0.65 0.73 1.45 
CFLW 0.54 0.62 0.90 
JHFS 0.59 0.71 1.23 
JHNS 0.68 0.73 1.51 
MUT 0.93 1.16 1.20 

RNDB 0.46 4.90 6.02 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1880 2440 3370 

CONV 0.67 0.72 1.11 
CFLW 0.60 0.64 0.86 
JHFS 0.61 0.71 1.32 
JHNS 0.68 0.74 1.09 
MUT 1.11 1.16 1.12 

RNDB 0.53 5.29 5.29 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1880 2440 3370 

CONV 1.06 0.85 1.47 
CFLW 0.61 0.70 0.81 
JHFS 0.65 0.83 1.19 
JHNS 0.76 0.88 1.88 
MUT 1.05 1.36 2.58 

RNDB 0.51 4.71 9.78 

Location Urban Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2660 3455 4785 

CONV 0.72 0.84 3.97 
CFLW 0.49 0.50 0.83 
JHFS 0.57 0.66 1.39 
JHNS 0.63 0.70 1.30 
MUT 1.26 1.32 2.18 

RNDB 0.39 1.59 11.22 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2660 3455 4785 

CONV 0.72 0.82 2.97 
CFLW 0.55 0.55 0.82 
JHFS 0.58 0.66 1.48 
JHNS 0.61 0.70 1.19 
MUT 1.19 1.32 3.81 

RNDB 0.40 1.84 11.30 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2660 3455 4785 

CONV 1.06 2.25 4.15 
CFLW 0.55 0.61 0.93 
JHFS 0.65 0.77 1.95 
JHNS 0.75 0.92 2.05 
MUT 1.41 2.38 7.18 

RNDB 0.63 8.67 8.67 

Location Urban Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2090 2715 3760 

CONV 0.66 0.72 1.34 
CFLW 0.49 0.54 0.79 
JHFS 0.55 0.63 1.20 
JHNS 0.62 0.69 1.62 
MUT 1.17 1.04 1.88 

RNDB 0.32 2.93 6.41 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2090 2715 3760 

CONV 0.66 0.74 1.12 
CFLW 0.54 0.59 0.77 
JHFS 0.55 0.63 1.18 
JHNS 0.61 0.68 1.23 
MUT 1.15 0.94 1.39 

RNDB 0.35 3.46 6.64 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2090 2715 3760 

CONV 0.81 0.89 1.88 
CFLW 0.57 0.66 0.84 
JHFS 0.63 0.75 1.30 
JHNS 0.74 0.90 2.17 
MUT 1.34 1.17 2.49 

RNDB 0.39 2.52 7.98 

Location Urban Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3455 4495 6220 

CONV 0.63 0.75 2.11 
CFLW 0.55 0.67 1.10 
JHFS 0.52 0.67 1.40 
JHNS 0.62 0.70 1.14 
MUT 0.62 0.96 2.06 

RNDB 0.69 3.31 16.74 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3455 4495 6220 

CONV 0.68 0.84 3.83 
CFLW 0.68 0.77 1.49 
JHFS 0.61 0.79 1.27 
JHNS 0.71 0.85 3.90 
MUT 0.63 0.72 1.97 

RNDB 1.10 6.79 17.14 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3455 4495 6220 

CONV 0.73 0.86 3.71 
CFLW 0.72 0.82 1.42 
JHFS 0.65 0.88 3.55 
JHNS 0.75 0.85 3.63 
MUT 0.69 0.91 2.97 

RNDB 1.18 10.78 21.48 

Location Urban Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2715 3530 4890 

CONV 0.61 0.67 1.20 
CFLW 0.60 0.67 0.95 
JHFS 0.55 0.64 0.96 
JHNS 0.61 0.67 0.96 
MUT 0.58 0.63 1.29 

RNDB 0.60 5.19 11.01 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2715 3530 4890 

CONV 0.67 0.71 1.35 
CFLW 0.68 0.76 1.02 
JHFS 0.58 0.66 1.27 
JHNS 0.68 0.74 1.21 
MUT 0.60 0.65 1.24 

RNDB 0.96 6.99 11.45 

Location Urban Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2715 3530 4890 

CONV 0.71 0.75 1.06 
CFLW 0.70 0.81 0.83 
JHFS 0.62 0.75 1.26 
JHNS 0.71 0.77 1.24 
MUT 0.66 0.75 1.67 

RNDB 0.90 7.11 13.29 

Location Urban Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3455 4495 6220 

CONV 0.64 0.72 1.28 
CFLW 0.54 0.58 0.87 
JHFS 0.55 0.62 1.11 
JHNS 0.61 0.65 1.00 
MUT 0.62 0.71 1.13 

RNDB 0.61 3.93 11.35 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3455 4495 6220 

CONV 0.67 0.80 2.18 
CFLW 0.61 0.71 1.02 
JHFS 0.60 0.66 1.39 
JHNS 0.66 0.73 1.55 
MUT 0.63 0.69 1.65 

RNDB 0.74 4.46 14.34 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3455 4495 6220 

CONV 0.71 0.79 2.32 
CFLW 0.63 0.70 0.98 
JHFS 0.66 0.78 2.08 
JHNS 0.73 0.82 1.53 
MUT 0.72 0.85 7.57 

RNDB 1.15 11.07 14.74 

Location Urban Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2715 3530 4890 

CONV 0.61 0.65 1.03 
CFLW 0.53 0.60 0.88 
JHFS 0.53 0.62 1.02 
JHNS 0.59 0.64 0.95 
MUT 0.60 0.63 0.90 

RNDB 0.52 3.62 9.32 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 10 %



 112

 
 

Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2715 3530 4890 

CONV 0.65 0.69 1.07 
CFLW 0.63 0.71 0.83 
JHFS 0.57 0.60 0.98 
JHNS 0.63 0.69 0.92 
MUT 0.61 0.62 0.93 

RNDB 0.66 4.24 4.24 

Location Urban Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2715 3530 4890 

CONV 0.67 0.71 1.01 
CFLW 0.65 0.72 0.82 
JHFS 0.63 0.72 1.22 
JHNS 0.70 0.76 1.06 
MUT 0.70 0.78 1.41 

RNDB 0.68 3.93 10.91 

Location Urban Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1550 2010 2785 

CONV 0.81 1.04 1.43 
CFLW 0.58 0.68 1.03 
JHFS 0.55 0.66 1.64 
JHNS 0.62 0.74 2.98 
MUT 0.63 0.70 1.17 

RNDB 0.20 0.45 6.72 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1550 2010 2785 

CONV 0.71 0.82 1.67 
CFLW 0.66 0.72 1.13 
JHFS 0.60 0.69 1.67 
JHNS 0.67 0.81 1.55 
MUT 0.65 0.73 1.26 

RNDB 0.23 0.46 7.72 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1550 2010 2785 

CONV 0.71 0.87 1.84 
CFLW 0.69 0.76 1.16 
JHFS 0.64 0.87 2.34 
JHNS 0.71 0.82 1.55 
MUT 0.74 0.83 1.30 

RNDB 0.26 0.60 9.21 

Location Rural Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1215 1580 2190 

CONV 0.78 0.95 1.17 
CFLW 0.63 0.71 0.92 
JHFS 0.54 0.63 1.11 
JHNS 0.64 0.73 1.72 
MUT 0.67 0.67 1.06 

RNDB 0.12 0.24 3.76 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1215 1580 2190 

CONV 0.69 0.73 1.06 
CFLW 0.65 0.72 0.94 
JHFS 0.57 0.62 1.10 
JHNS 0.65 0.74 1.03 
MUT 0.61 0.67 0.99 

RNDB 0.13 0.27 5.18 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1215 1580 2190 

CONV 0.69 0.74 1.03 
CFLW 0.71 0.79 0.82 
JHFS 0.62 0.76 1.81 
JHNS 0.69 0.78 1.10 
MUT 0.73 0.78 1.09 

RNDB 0.15 0.29 4.78 

Location Rural Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 20 %



 120

 
 

Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1550 2010 2785 

CONV 0.84 0.93 1.12 
CFLW 0.55 0.63 0.87 
JHFS 0.51 0.62 0.91 
JHNS 0.58 0.70 1.37 
MUT 0.60 0.72 1.01 

RNDB 0.17 0.41 7.03 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1550 2010 2785 

CONV 0.68 0.74 1.27 
CFLW 0.61 0.62 0.87 
JHFS 0.53 0.61 1.17 
JHNS 0.61 0.70 1.16 
MUT 0.59 0.68 1.03 

RNDB 0.19 0.42 7.31 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1550 2010 2785 

CONV 0.75 0.81 1.57 
CFLW 0.64 0.66 0.93 
JHFS 0.62 0.80 1.18 
JHNS 0.67 0.76 1.22 
MUT 0.67 0.80 1.64 

RNDB 0.23 0.55 8.83 

Location Rural Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 2x2 Directional Split 55/45 Minor Road Left Turns 20 %



 123

 
 

Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1215 1580 2190 

CONV 0.81 0.86 0.95 
CFLW 0.55 0.62 0.85 
JHFS 0.51 0.46 0.87 
JHNS 0.62 0.67 1.44 
MUT 0.57 0.59 0.87 

RNDB 0.11 0.24 1.95 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1215 1580 2190 

CONV 0.66 0.69 0.90 
CFLW 0.64 0.64 0.84 
JHFS 0.52 0.44 0.88 
JHNS 0.64 0.67 0.96 
MUT 0.56 0.59 0.79 

RNDB 0.12 0.24 3.10 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 20 %



 125

 
 

Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1215 1580 2190 

CONV 0.71 0.72 0.91 
CFLW 0.64 0.69 0.74 
JHFS 0.62 0.47 1.01 
JHNS 0.69 0.75 1.37 
MUT 0.67 0.67 0.89 

RNDB 0.13 0.27 3.09 

Location Rural Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 2x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2135 2275 3840 

CONV 0.69 0.88 3.03 
CFLW 0.52 0.63 1.00 
JHFS 0.57 0.70 1.27 
JHNS 0.63 0.73 1.28 
MUT 0.52 0.58 1.03 

RNDB 0.33 1.11 9.40 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2135 2275 3840 

CONV 0.70 0.84 2.51 
CFLW 0.58 0.66 1.01 
JHFS 0.55 0.70 1.27 
JHNS 0.62 0.76 1.50 
MUT 0.54 0.58 1.07 

RNDB 0.37 1.43 9.71 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2135 2275 3840 

CONV 0.79 1.60 2.51 
CFLW 0.64 0.73 1.00 
JHFS 0.68 0.93 1.95 
JHNS 0.70 0.88 2.26 
MUT 0.58 0.66 1.06 

RNDB 0.44 1.55 15.13 

Location Rural Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1675 2180 3015 

CONV 0.65 0.74 1.75 
CFLW 0.64 0.59 0.95 
JHFS 0.56 0.68 1.14 
JHNS 0.62 0.72 1.40 
MUT 0.56 0.58 1.02 

RNDB 0.28 1.50 5.71 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1675 2180 3015 

CONV 0.68 0.72 1.18 
CFLW 0.55 0.63 0.82 
JHFS 0.56 0.64 0.97 
JHNS 0.64 0.71 1.22 
MUT 0.50 0.56 0.84 

RNDB 0.29 1.94 5.86 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 20 %



 131

 
 

Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1675 2180 3015 

CONV 0.72 0.81 0.81 
CFLW 0.64 0.69 0.84 
JHFS 0.63 0.83 1.52 
JHNS 0.72 0.86 1.69 
MUT 0.58 0.60 0.85 

RNDB 0.34 1.89 5.99 

Location Rural Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2380 3095 4280 

CONV 0.72 0.98 3.18 
CFLW 0.45 0.50 0.85 
JHFS 0.52 0.64 1.39 
JHNS 0.61 0.90 1.21 
MUT 0.49 0.52 0.85 

RNDB 0.32 0.93 9.46 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2380 3095 4280 

CONV 0.69 0.79 2.51 
CFLW 0.49 0.53 0.77 
JHFS 0.51 0.63 1.22 
JHNS 0.58 0.69 1.21 
MUT 0.48 0.51 0.82 

RNDB 0.33 0.98 9.93 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2380 3095 4280 

CONV 0.83 1.77 2.51 
CFLW 0.57 0.60 1.10 
JHFS 0.74 0.93 2.55 
JHNS 0.68 1.01 1.94 
MUT 0.53 0.59 3.36 

RNDB    

Location Rural Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 4x2 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1870 2430 3365 

CONV 0.62 0.78 1.43 
CFLW 0.45 0.52 0.82 
JHFS 0.51 0.61 1.13 
JHNS 0.61 0.78 1.21 
MUT 0.48 0.63 0.77 

RNDB 0.25 1.11 5.75 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1870 2430 3365 

CONV 0.62 0.68 1.05 
CFLW 0.53 0.54 0.77 
JHFS 0.50 0.60 1.10 
JHNS 0.59 0.81 1.04 
MUT 0.50 0.60 0.60 

RNDB 0.25 1.49 6.12 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
1870 2430 3365 

CONV 0.78 0.88 1.05 
CFLW 0.60 0.68 0.70 
JHFS 0.72 0.92 1.89 
JHNS 0.73 0.89 1.64 
MUT 0.57 0.71 0.84 

RNDB 0.30 0.97 6.77 

Location Rural Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 4x2 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3095 4020 5565 

CONV 0.64 0.75 2.00 
CFLW 0.63 0.77 1.36 
JHFS 0.51 0.71 1.11 
JHNS 0.66 0.73 1.27 
MUT 0.65 0.88 1.48 

RNDB 0.55 1.53 13.06 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3095 4020 5565 

CONV 0.70 0.87 3.64 
CFLW 0.70 0.80 2.36 
JHFS 0.60 0.74 2.29 
JHNS 0.77 0.87 3.50 
MUT 0.68 1.04 2.71 

RNDB 0.67 4.43 14.17 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3095 4020 5565 

CONV 0.73 0.91 3.48 
CFLW 0.75 0.85 1.53 
JHFS 0.66 0.89 2.80 
JHNS 0.78 0.97 3.59 
MUT 0.75 1.24 4.38 

RNDB 0.78 5.91 18.30 

Location Rural Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2430 3160 4375 

CONV 0.61 0.71 1.27 
CFLW 0.61 0.70 1.07 
JHFS 0.53 0.63 0.91 
JHNS 0.63 0.73 1.08 
MUT 0.64 0.70 1.08 

RNDB 0.44 2.46 8.88 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2430 3160 4375 

CONV 0.67 0.75 1.56 
CFLW 0.71 0.75 1.22 
JHFS 0.56 0.66 1.00 
JHNS 0.70 0.76 1.35 
MUT 0.74 0.75 1.29 

RNDB 0.54 5.33 9.04 

Location Rural Intersection Split 55/45 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2430 3160 4375 

CONV 0.69 0.76 1.20 
CFLW 0.76 0.81 0.93 
JHFS 0.61 0.78 1.15 
JHNS 0.74 0.84 1.39 
MUT 0.88 0.83 1.44 

RNDB 0.55 4.88 11.78 

Location Rural Intersection Split 55/45 Major Road Left Turns  20 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3095 4020 5565 

CONV 0.62 0.69 1.27 
CFLW 0.56 0.62 1.31 
JHFS 0.51 0.62 0.99 
JHNS 0.65 0.70 1.06 
MUT 0.60 0.63 1.16 

RNDB 0.50 1.59 9.51 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3095 4020 5565 

CONV 0.69 0.77 1.76 
CFLW 0.65 0.71 1.11 
JHFS 0.56 0.67 1.24 
JHNS 0.71 0.78 1.62 
MUT 0.61 0.68 1.79 

RNDB 0.59 2.00 11.68 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
3095 4020 5565 

CONV 0.73 0.84 1.89 
CFLW 0.71 0.75 1.04 
JHFS 0.63 0.87 1.76 
JHNS 0.75 0.89 1.66 
MUT 0.69 0.93 4.66 

RNDB 0.78 7.87 13.15 

Location Rural Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 4x4 Directional Split 55/45 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2430 3160 4375 

CONV 0.61 0.65 0.95 
CFLW 0.60 0.63 0.91 
JHFS 0.50 0.60 0.93 
JHNS 0.63 0.68 0.95 
MUT 0.59 0.72 0.94 

RNDB 0.44 1.81 7.48 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 10 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2430 3160 4375 

CONV 0.67 0.69 0.98 
CFLW 0.62 0.67 0.91 
JHFS 0.54 0.61 0.92 
JHNS 0.69 0.73 1.11 
MUT 0.61 0.74 0.98 

RNDB 0.47 3.03 8.29 

Location Rural Intersection Split 70/30 Major Road Left Turns  10 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 20 %
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Busiest Approach Delay 

 
 

Intersection Delay  

 
 

Stops Per Vehicle 

DESIGN 
Total Intersection Volume (veh/h) 
2430 3160 4375 

CONV 0.68 0.73 1.02 
CFLW 0.71 0.63 0.88 
JHFS 0.62 0.74 1.22 
JHNS 0.73 0.82 1.34 
MUT 0.72 0.82 2.60 

RNDB 0.51 2.09 8.86 

Location Rural Intersection Split 70/30 Major Road Left Turns  20 %
Through Lanes 4x4 Directional Split 70/30 Minor Road Left Turns 20 %



 150

 
10 References 
 
American Association of State Highway and Transportation Officials (AASHTO). (1999). Guide 
for the Development of Bicycle Facilities. Washington, D.C.: American Association of State 
Highway and Transportation Officials. 

American Association of State and Highway Transportation Officials (AASHTO). (2004). A 
Policy on Geometric Design of Highways and Streets. Washington, D.C.: American Association 
of State and Highway Transportation Officials. 

Bared, J. G., & Kaisar, E. I. (2000). Benefits of the Split Intersection. CD-ROM Compendium of 
Papers, 79th Annual Meeting. Transportation Research Board (TRB), National Research Council, 
Washington D.C. 

Bared, J. G., & Kaisar, E. I. (2002). Median U-turn design as an alternative treatment for left 
turns at signalized intersection. ITE Journal, 72(2), 50-54. 

Boone, J.L., & Hummer, J.L. (1995). Calibrating and Validating Traffic Simulation Models for 
Unconventional Arterial Intersection Designs. In Transportation Research Record 1500. 
Transportation Research Board, National Research Council, Washington D.C., pp. 184-192. 

Boone, J.L., & Hummer, J.L. (1995). Unconventional Design and Operation Strategies for Over-
Saturated Major Suburban Arterials. FHWA/NC/94-009, North Carolina Department of 
Transportation and Federal Highway Administration, Raleigh, North Carolina. 

Chapman, J. and Benekohal, R. (2002). Roundabouts Warrants a Proposed Framework for 
Future Development. In Transportation Research Record 1801. Transportation Research Board, 
National Research Council, Washington D.C., pp.39-45. 

Dobbour, E. & Easa, S. (2006). Proposed geometric improvements to safety of modern 
roundabouts. CD-ROM Compendium of Papers, 85th Annual Meeting. Transportation Research 
Board (TRB), National Research Council, Washington D.C. 

Eisenman, S., & List, G. (2004). A Comparison of Operational Data and Performance Model 
Predictions for Several US Roundabouts. CD-ROM Compendium of Papers, 83rd Annual 
Meeting. Transportation Research Board (TRB), National Research Council, Washington D.C.  

Flannery, A., Elefteriadou, L., Koza, P., & McFadden, J. (1998). Safety, Delay and Capacity of 
Single Lane Roundabouts in the United States. In Transportation Research Record 1646. 
Transportation Research Board, National Research Council, Washington D.C., pp.63-70.  

Goldblatt, R., Mier, F., & Friedman, J. (1994). Continuous Flow Intersections. ITE Journal, 64, 
35-42. 

Harkey, D.L., & Carter, D.L. (2006). Observational analysis of bicyclist and motorist behavior at 
roundabouts in the United States. In Transportation Research Record 1982. Transportation 
Research Board, National Research Council, Washington D.C., pp.155-165. 



 151

Hummer, J.E. (1998). Unconventional Left-Turn Alternatives for Urban and Suburban Arterials. 
Part One. ITE Journal, 68(9), 26-29. 

Hummer, J.E. (1998). Unconventional Left-Turn Alternatives for Urban and Suburban Arterials. 
Part Two. ITE Journal, 68(11). 

Hummer, J.E., & J. Boone. (1995). Travel Efficiency of Unconventional Arterial Intersection 
Design. In Transportation Research Record 1500. Transportation Research Board, National 
Research Council, Washington D.C., pp. 153-161. 

Hummer, J.E., & Reid, J.D. (2000). Unconventional Left-Turn Alternatives for Urban and 
Suburban Arterials: An Update. In Transportation Research Circular E-C019: Urban Street 
Symposium Conference Proceedings, Dallas, TX, June 28-30, 1999. Washington, DC: TRB, 
NRC. 

Jagannathan, R. (2007). Synthesis of the Median U-Turn Intersection Treatment, Safety, and 
Operational Benefits. McLean, VA U.S. Department of Transportation, Federal Highway 
Administration, TechBrief, FHWA-HR-08-033. 

Jagannathan, R., Gimbel, J., Bared, J., Hughes, W. E., Persaud, B., & Lyon, C. (2006). Safety 
Comparison of New Jersey Jug Handle Intersections and Conventional Intersections. In 
Transportation Research Record 1953, Transportation Research Board, National Research 
Council, Washington D.C., pp. 187-200. 

Johnson, M. & Hange, W. (n.d). Modern Roundabouts intersections: When to use them? A 
comparison with signalized intersections. Retrieved December 2007 from Web Site: 
http://www.k-state.edu/roundabouts/news/ITEPaper.pdf 

Kim, T., Edara, P., Bared, J. (2007). Operational and Safety Performance of a Non-Traditional 
Intersection Design: The Superstreet. CD-ROM Compendium of Papers, 86th Annual Meeting. 
Transportation Research Board (TRB), National Research Council, Washington D.C. 

Levinson, H. S., Koepke, F. J., Geiger, D., Allyn, D., & Palumbo, C. (2000). Indirect Left 
Turns—The Michigan Experience. Access Management Conference, Portland, Oregon. 

Michigan Department of Transportation. (n.d.). Bureau of Highways Design Guide for 
Crossovers. Retrieved December 2007 from Web Site: 
http://www.mdot.state.mi.us/tands/plans.cfm 

New Jersey Department of Transportation. (n.d.). Roadway Design Manual. Retrieved 
September 20, 2007 from Web Site: 
http://www.state.nj.us/transportation/eng/documents/RDME/sect6E2001.shtm#JUGHANDLES 

New Jersey Department of Transportation. (n.d.). Highway Design Manual. Retrieved December 
2007 from Web Site: http://www.state.nj.us/transportation/cpm/RDMEnglish/. 

 



 152

Nichols, A. & Bullock, D. (2001). Design Guidelines for Deploying Closed Loop Systems. Joint 
Transportation Research Program (JTRP), SPR 2390. 

Polus, A. & Cohen, R. (1997). Operational Impact of Split Intersections. In Transportation 
Research Record 1579. TRB, National Research Council, Washington D.C. 

Reid, J. (2000). Using Quadrant Roadways to Improve Arterial Intersection Operations. ITE 
Journal, 70(6), 34-45. 

Reid J.D., Brinckerhoff, P., & Hummer, J.E. (1999). Analyzing System Travel Time in Arterial 
Corridors with Unconventional Design Using Microscopic Simulation. In Transportation 
Research Record 1678, TRB, National Research Council, Washington D.C., pp.208-215. 

Reid, J.D., & Hummer, J.E. (2001). Travel Time Comparisons between Seven Unconventional 
Arterial Intersection Designs. In Transportation Research Record 1751. TRB, National Research 
Council, Washington D.C. 

Retting, R.A., Lutterell, G., & Russell, E.R. (2002). Public Opinion and Traffic Flow Impacts of 
Newly Installed Modern Roundabouts in the United States. ITE Journal 72(9). 

Robinson, B.W., Rodegerdts, L., Scarbrough, W., Kittelson, W., Troutbeck, R., Brilon, W., 
Bondzio, L., Courage, K., Kyte, M., Mason, J., Flannery, A., Myers, E., Bunker, J., & 
Jacquemart, G. (2000). Roundabouts: An Informational Guide. Report No. FHWA-RD-00-067. 
Washington, DC: United States Department of Transportation, Federal Highway Administration. 

Rodegerdts, L.A., Blogg, M., Wemple, E., Myers, E., et al. (2007). Roundabouts in the United 
States. Washington D.C., National Cooperative Highway Research Program (NCHRP), 
Transportation Research Board, Report 572. 

Rouphail, N., Hughes, R., & Chae, K. (2005). Exploratory Simulation of pedestrian Crossings at 
Roundabouts. Journal of Transportation Engineering, 131, 211-218. 

Russell, E., Retting, R.A., McCartt, A.T., & Srinivas, M. (2006). Traffic Flow and Public 
Opinion: Newly Installed Roundabouts in New Hampshire, New York, and Washington. CD-
ROM Compendium of Papers, 85th Annual Meeting. Transportation Research Board (TRB), 
National Research Council, Washington D.C. 

Russell, E., Rys, M., & Luttrell, G. (2002). Kansas Roundabout Reluctance. Submitted to the 81st 
Annual Meeting of the Transportation Research Board. Transportation Research Board, National 
Research Council, Washington, D.C. 

Tabernero, V., Sayed, T., & Kosicka, D. (2008). Introduction and Analysis of a New 
Unconventional Intersection Scheme, the Upstream Signalized Crossover (USC) Intersection. 
CD-ROM Compendium of Papers, 87th Annual Meeting. Transportation Research Board (TRB), 
National Research Council, Washington D.C. 



 153

Tarek, S., Paul, S., & Godwin, W. (2006). Upstream Signalized Crossover Intersection: 
Optimization and Performance Issues. In Transportation Research Record 1961. TRB, National 
Research Council, Washington D.C, pp.44-54. 

Thompson, C.D. & Hummer, J.E. (2001). Guidance on the Safe Implementation of 
Unconventional Arterial Designs: Draft Final Report. North Carolina State University. 

Tyra, A., Villwock, N.M., Tarko, A.P. (2007). Safety Impacts of Roundabouts in Indiana. 
Unpublished manuscript. 

U.S. Departament of Transportation. (2004). Federal Highway Administration. “Signalized 
Intersections: Informational Guide.” Chapter 10. 

 

RELATED LITERATURE 

 

Bared, J.G. & Edara. (2005). Simulated Capacity of Roundabouts and Impact of Roundabouts 
within progressed signalized road. In Transportation Research Circular E-C083: National 
Roundabout Conference Proceedings, Vail, CO, May 22-25, 2005. Washington, DC: TRB, NRC. 

Dorothy, P., Maleck, W., & Nolf, S. (1997). Operational Aspects of Michigan design for Divided 
Highways. In Transportation Research Record 1579. Transportation Research Board, National 
Research Council, Washington, D.C., pp. 18-26.  

Hummer, J.E. (2000). Operational Effects of New “Double Wide” Intersection Design on 
Suburban Arterials. CD-ROM Compendium of Papers, 79th Annual Meeting. Transportation 
Research Board (TRB), National Research Council, Washington D.C. 

Jagannathan, R., & Bared, J.G. (2004). Design and Operational Performance of the Crossover 
Displaced Left-Turn (XDL) Intersection (Also Called Continuous Flow Intersection (CFI)). 
Presented at the 2004 TRB Annual Meeting, Washington, DC. 

Jagannathan, R., & Bared, J.G. (2005). Design and Performance Analysis of Pedestrian Crossing 
Facilities for Continuous Flow Intersections (CFI). CD-ROM Compendium of Papers, 84th 
Annual Meeting. Transportation Research Board (TRB), National Research Council, Washington 
D.C. 

Lindgren, R.V., & Tantiyanugulchai, S. (2003). Microscopic simulation of traffic at a suburban 
interchange. Institute of Transportation Engineers 2003 Annual Meeting, Seattle, Washington. 

Mereszczak, Y., Dixon, M., Kyte, M., Rodegerdts, L., & Blogg, M. (2006). Including Exiting 
Vehicles in Capacity Estimation at Single-Lane U.S. Roundabouts. In Transportation Research 
Record 1998, TRB, National Research Council, Washington D.C., pp.23-30. 

Ourston, L., & Hall, G. (2003). Roundabouts increase interchange capacity. In Transportation 
Research Record 1858, TRB, National Research Council, Washington D.C., pp.112-117. 



 154

Potts, I. B., Harwood, D.W., Torbic, D.J., Richard, K.R., et al. (2004). Safety of U-Turns at 
Unsignalized Median Openings. Washington D.C., National Cooperative Highway Research 
Program (NCHRP), Transportation Research Board, Report 524. 

Rodegerdts, L. A., Nevers, B., Robinson, B., et al. (2004). Signalized Intersections: 
Informational Guide. Publication FHWA-HRT-04-091. Federal Highway Administration, U.S. 
Department of Transportation. 

Stanek, D., & Milam, R. (2005). High-Capacity Roundabout Intersection Analysis: Going 
Around in Circles - Draft. National Roundabout Conference, Vail, CO.  

Tabernero, V., & Sayed, T. (2006). Upstream Signalized Crossover Intersection: An 
Unconventional Intersection Scheme. Journal of Transportation Engineering. 132(11), 907-911. 

 

 


	Purdue University
	Purdue e-Pubs
	2008

	Safety and Operational Impacts of Alternative Intersections
	Andrew P. Tarko
	Mike Inerowicz
	Brandon Lang
	Recommended Citation





