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USING IMAGING TECHNOLOGY TO EVALUATE 
HIGHWAY SAFETY

Introduction  
Crash-based safety analysis is set back by several 
shortcomings such as randomness and rarity of 
crash occurrences, lack of timeliness, and 
inconsistency in crash reporting. Safety analysis 
based on observable traffic characteristics more 
frequent than crashes is one promising alternative. 
Traditional approach to alternative safety analysis 
relies on the assumption of constant risk across 
locations. In addition, the current practice of 
collecting surrogate data often suffers from 
inherent subjectivity of humans involved in the 
task. In this research, we proposed a novel 
statistical approach to safety estimation based on 
observable traffic characteristics. We evaluated 
the proposed method by applying to right-angle 
collisions at signalized intersections. 8-hour 

traffic movements at selected intersections were 
recorded using a Purdue University mobile 
traffic lab. A traffic characteristic so-called post-
encroachment time (PET) was observed as a 
surrogate safety measure to evaluate the risk of 
collisions. In addition, traditional approach to 
safety estimation using regression analyses was 
examined as well. The feasibility of facilitating 
the measurement of PET with digital video and 
image processing technology is also examined. 
Measurement alternatives considered in this 
study are image detection system 1 (commercial 
video detection system), image detection system 
2 (proprietary developed software), and manual 
measurement. 

Findings  
Based upon the results of the measurement 
evaluation, both image detection systems were not 
sufficiently accurate for the purpose of our 
research. However, system 2 was found to 
perform better than system 1 if all of the 
following conditions are satisfied: (a) no camera 
vibration, (b) no obstacles in the field of view, 
and (c) no more than one through lane per 
approach. Post-detection of digitized video clips 
using the manual frame-by-frame analysis was 
therefore chosen for a collection of the evaluation 
data.  
 
Poisson and negative binomial regression 
analyses indicate a significant relationship 
between PET counts and observed crash counts. 
A novel safety estimation approach alternative to 
regression analyses applies the extreme value 
theory to describe the behavior of PETs. The 
proposed method allows (a) estimation of risk and 

crash frequency, (b) model calibration using data 
from individual location, and (c) model 
calibration without historical crash data. The 
evaluation of the proposed method indicates a 
promising relationship between safety estimates 
and observed crash counts. The current problem 
of the proposed approach is a large variance of 
estimates due to insufficient observation period. A 
simulation experiment was conducted to examine 
this issue. It was found that the proposed method 
requires a few weeks of PET observation to 
obtain crash frequency estimates with confidence 
intervals comparable to those being obtained from 
3-year observed crash counts. Once a reliable 
automated measurement method is available in 
the future, the proposed safety estimation method 
will immediately offer a new possibility for 
unprecedented rapid highway safety evaluation. 
The proposed method can be applied to other 
types of collisions and locations as well. 
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Implementation 
 

Based upon the results in this study, a simple 
method to evaluate the risk of right-angle 
collisions at signalized intersections was provided. 
Using a count of short PETs at a studied 
intersection or individual conflict zone within an 

intersection, the corresponding annual frequency 
of right-angle collisions can be estimated. Also 
given is a guideline to help evaluate whether there 
is excessive risk of right-angle collisions. 
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IMPLEMENTATION REPORT 

Based upon the results in this study, a simple method for an evaluation of risk of right-
angle collisions at signalized intersections was provided in the Appendix B. This method 
estimates annual frequency of right-angle crashes based on a count of short PETs at 
individual conflict zone or the entire intersection depending on the study objective. Two 
methods for PET count were described – PET count from a video clip and on-site 
observation. The first method requires only one observer provided that desirable 
equipment specification is met. Short PETs can be counted accurately using the first 
method. The second method requires no special equipment other than stop watches and 
can be carried out on-site. However, more human observers are required and the method 
is prone to error if it is applied to an intersection that has (a) more than one through lane 
per approach and (b) heavy traffic volume. 

If short PETs are counted for individual conflict zone, annual frequency of right-angle 
collisions can be estimated for that conflict zone using the given equation. This allows 
safety engineers to evaluate a location of safety concern within the intersection. In 
addition, the method can also estimate the right-angle crash frequency for the entire 
intersection using PET counts from all conflict zones. Based on 61 conflict zones 
observed in this study, we established a cumulative distribution of estimated right-angle 
crash frequency which can be used as a guideline to determine the risk level of the 
estimated right-angle crash frequency.   
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CHAPTER 1 INTRODUCTION 

1.1 MOTIVATION 

The occurrence of traffic crashes is among the top-priority transportation problems in the United 

States. The National Highway Traffic Safety Administration reported that the economic cost of 

motor vehicle crashes that occurred in 2000 totaled $230.6 billion (NHTSA, 2002). The 

importance of transportation safety has long been emphasized in U.S. transportation policies; in 

fact, enhancing safety is first among the five strategic goals of the U.S. Department of 

Transportation (US DOT, 1998).  

This leads to one of the most important questions among traffic safety researchers; “How do we 

measure safety or unsafety to be precise in the traffic system?” We can gain better insight into 

this issue from the viewpoint of traffic interactions. The traffic system is the interaction among 

three major entities – road users, vehicles, and the environment. There is an interaction between 

road users and vehicles, road users and the environment, vehicles and the environment, and also 

among road users themselves. A flawless traffic system would require perfect interactions among 

these three entities. Such a flawless system can never be realized when there is involvement with 

human behavior, which is known to be sometimes erratic and oftentimes unpredictable. As a 

quality of these interactions deteriorates, the likelihood of a breakdown in the traffic system 

escalates. There is no question that traffic crashes indicate total breakdowns in these interactions 

and thus must be considered as being unsafe, but, the near total breakdown situations are 

relatively more frequent to observe as a result of these imperfect interactions. These near-

breakdown situations have crash potential and therefore must be considered to be unsafe as well. 

These near-breakdown situations are sometimes referred to as “surrogate measure of safety.” It is 

apparent that the level of unsafety can be measured differently from this notion. The next 

question emerges; “Is there any linkage between these two?” 

The traditional approach of measuring unsafety has mainly been focused on the occurrence of 

traffic crashes and their consequences. This approach implies that the analysis of traffic crashes is 
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a valid method for safety estimation. This implication is quite natural as we equate reported 

accidents with traffic unsafety. However, there are several well-known issues of using reported 

accident data for traffic safety analysis, which include: 

• The rarity and randomness of accident occurrences. The accidents are rare events and are 

therefore associated with the random variation inherent in a small number. It is not 

sufficient to gather the crash data for weeks or months. The typical period to be 

considered sufficient is as long as three years (Nicholson, 1985). 

• A traffic safety analysis using traffic accidents is not a proactive approach. This basically 

forces us to wait for accidents to take place before we can apply any corrective measures. 

This is particularly true for a new traffic infrastructure where historical crash data is 

unavailable.  

• Not all accidents are reported and the level of reporting is unevenly distributed with 

regard to crash participants, locations, severity of injuries, etc.  

• The accident data does not provide an insight into the pre-crash process. Pre-accident 

driver behaviors or situational aspects are often vaguely reported in the police crash 

reports, which make it difficult to understand the connection between the crashes and the 

causes of the safety problem. 

The problems stemming from the accident data analysis have prompted the need for an alternative 

method of safety analysis. The safety measures alternative to accident data should satisfy the 

following requirements (Svensson, 2000): 

• The events must be more frequent than accident data. 

• The events must be observable in the traffic system. 

• The events must have a causal relationship with accidents. 

• These events must be characterized as crashes at the extremes. 

An impressive amount of work has been done in the past to search and analyze the traffic 

characteristics that may complement the crash data. The most acknowledged ones include traffic 

conflicts (Chin et al., 1992; Chin and Quek, 1997; Glauz and Migletz, 1980; Parker and Zegeer, 

1989a), critical events, e.g., aggressive lane merging, speeding, and running on red (Kloeden et 

al., 1997; Porter et al., 1999); acceleration noise (Shoarian-Sattari and Powell, 1987); post-

encroachment time (Allen et al., 1978); and time-integrated time-to-collision (Minderhoud and 
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Bovy, 2001). Other proposed measures are volume, speed, delay, accepted gaps, headways, 

shock-waves, and deceleration-to-safety-time (FHWA, 1981). Although some of the latter 

measures are safety factors rather than surrogate measures, they are listed to adequately reflect 

the past work. The attempts to confirm the statistical linkage with accident data yielded mixed 

findings at best. In addition, not all the proposed indicators in the past research satisfy the 

desirable properties of surrogate measures. For example, a measure such as time-integrated time-

to-collision is so data-intensive that it is attainable only in the simulation environment and is 

therefore not observable in the field (Minderhoud and Bovy, 2001). The traditional approach to 

the analysis of a surrogate measure of safety shares several commom traits, which we can discuss 

from two aspects, measurement and evaluation.  

1.1.1 Measurement 

Two major issues frequently encountered in the measurement of surrogate data are accuracy and 

efficiency. The sources of an accuracy problem stem from the subjectivity inherent in human 

observers and the technical limitations of a measurement procedure. Let us consider a traffic 

conflict measurement for example. A traditional traffic conflict count requires the observation of 

evasive maneuvers, which can be very subjective. The revised measurement method, using time-

to-collision, still cannot do away with human intervention. Post-processing of a video recording 

of traffic movement was one possibility to help reduce inter-person, as well as intra-person, 

variations in the measurement, see Chin et al. (1992) for example. Efficiency is always an issue in 

the measurement of surrogate data. A video recording helps minimize the accuracy problem only 

at the expense of the data extraction effort. This was particularly true in the past where the digital 

video was not widely available and the cost of digital data storage plus a processing platform was 

prohibitive. The post-processing of VHS media with an analog video cassette recorder (VCR) is 

very cumbersome and impractical for a large-scale study. 

This technological barrier is no longer an issue nowadays. The advent of commercial video image 

processing (VIP) units, an affordable digital computing platform, and a cheaper unit cost for 

digital storage has renewed our interest in improving accuracy and efficiency in the measurement 

of surrogate data. Their potential on the measurement of surrogate data is yet to be explored. This 

feasibility study may also entail a refinement in a working definition of a surrogate measure of 

interest to overcome certain limitations of the technology being considered.  
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1.1.2 Evaluation 

The evaluation of surrogate measures of safety has been done in several respects in the past. 

Traffic conflict attracted the most research attention, among others.  One prominent issue, and 

probably the most critical, is the linkage between the surrogate data and the accident data. 

Inconsistent findings and a failure to establish a safety relationship can be attributed to three 

hypotheses: risk assumption, measurement error, and randomness of surrogate data. 

Safety researchers have typically evaluated the validity of surrogate data using a regressional 

relationship between these surrogates and crashes. The implicit assumption underlying this 

approach is a constant risk across locations being considered. By doing so, surrogate data are 

treated as traffic exposure while the risk is fixed. The increase in the observed exposure implies 

greater expected accident frequency. The important issue here is whether the risk should be the 

same across locations. There rarely exist two identical traffic systems and therefore why should it 

be for the risk. Researchers worked around this issue by restricting the analysis to a group of 

similar locations. In addition, similarity is a term subject to interpretation, i.e., the extent to which 

we must have similar entities in a traffic system and similar interactions among these entities 

before we can adequately justify this term is unknown. Therefore, there is a definite need for a 

new analytical framework that can relax this assumption. 

Subjectivity and reliability in the measurement of surrogate data have been a subject of 

controversy in both the practicality and validity of the approach. The impact of measurement 

errors on the evaluation results has never been fully understood because the precise measurement 

is not attainable in the field. The lack of standard definitions for either traffic conflicts or crashes 

in the past has been another factor in this inextricable relationship with safety (Williams, 1981). 

There is potential for improvement in the measurement aspects with the recent advancement in 

digital video and image processing technology. There is potential to gain more insight into the 

safety relationship between surrogate data and crashes when these measurement errors are 

adequately addressed.  

The repeatability of surrogate data depends on the randomness in its occurrences and this problem 

has been underserved by researchers’ interest. Repeatability refers to an acceptable level of 

variations in repeated observations under nominally identical conditions. The variance-to-mean 

ratio of crash counts is about 1 if Poisson assumption is appropriate and greater than 1 if the count 

process (particularly for a specific type of crashes) is more irregular and thus the negative 
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binomial assumption is more appropriate (Nicholson, 1985). For surrogate data, Glauz and 

Migletz (1980) reported the variance-to-mean ratio and the coefficient of variations (CV) of 15-

minute traffic conflict counts for various types of conflicts. The variance-to-mean ratio was found 

to range from 1.5 to 3.5, depending on the conflict types and the coefficient of variation ranged 

from 73% to 685%. All cross-traffic conflict types and opposing left-turn conflicts had CV’s of 

more than 200%. How long the observation period should be and how acceptable repeatability 

should be defined have not been well researched. This can be answered if there is a well-

established framework to link surrogate data with crashes. A new approach that allows 

conversion of surrogate data into crashes using site-specific data would be useful in determining 

the observation period needed to attain acceptable repeatability of the surrogate data. Better 

understanding of the impact of random variation of surrogate data may also offer a clue to 

inconsistent findings in the safety relationship between surrogate data and crashes. 

In addition to the issues described above, the traditional approach of surrogate data analysis is not 

a crash-free calibration process. The regression approach requires observed crash counts for 

model calibration and this somewhat contradicts the concept of proactive safety analysis, which 

aims to identify unsafe locations and appropriate preventive countermeasures before crashes will 

occur.   

1.1.3 Implications 

Difficulties in measuring and evaluating the unsafety of a traffic system bring about several 

consequential implications. The safety evaluation results are less convincing or even unreliable 

when the safety measurement can be questioned. The identification of hazardous locations cannot 

pinpoint the locations that actually have safety problems. These will in turn result in inefficient 

allocation of resources for safety improvements; thereby hampering the overall effectiveness of 

the safety management system.  

The frequency of crashes and their severity are the measures of road safety preferred by 

transportation agencies and by safety specialists for their unquestionable connection with safety. 

Unfortunately, due to the random and infrequent occurrence of crashes, collecting crash data at 

intersections and road segments can require several years of monitoring; and even then, the 

estimation precision of the crash frequency is far from ideal. This intricacy hampers safety 

modeling, evaluation, and enhancement. Identification of hazards and evaluation of safety 
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impacts do not necessarily yield timely and even correct answers, which may result in an 

inefficient allocation of resources.  

Modern technologies are increasingly being used in transportation systems. Technological 

innovations applied to transportation have a relatively short life compared to the traditional 

infrastructure; however, their effects on safety cannot be easily evaluated using crash-based 

methods. Fortunately, technological progress has also opened unprecedented opportunities for 

collecting traffic data that may carry safety information.  

These issues renew our interest in facilitating a measurement method and call for a better 

approach to safety estimation.  

1.2 OBJECTIVES 

The objectives of this research can be summarized as follows: 

• Develop a non-crash-based safety estimation method that allows (a) invidualization of a 

risk using observable traffic characteristics from specific time, location, and condition; 

(b) direct linkage between observed traffic characteristics and crashes; and (c) model 

calibration without historical crash data. 

• Evaluate the feasibility of digital video and image processing technology in facilitating 

the measurement of traffic characteristics. 

The successful development of the method will provide more insight into the inextricable linkage 

between surrogate measures of safety and crashes. A better understanding of this relationship may 

offer a new possibility for unprecedented rapid safety evaluation which may be a breakthrough in 

the area of highway safety science. Knowledge of the capability and limitations of the new 

technology will help identify important requirements and lay important ground work for 

development towards automation of the measurement of surrogate data in the future.  

1.3 RESEARCH SCOPE 

We will develop a framework to demonstrate the use of microscopic traffic data for a safety 

estimation task. A surrogate measure for detecting an excessive degree of hazard of collisions 
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will be proposed. Then, its usefulness for safety assessment will be evaluated at selected 

intersections. The proposed surrogate safety measure must be observable in the field and 

measurable objectively. In addition, it should be amenable for image-based detection.  

To illustrate the approach in this study, we will preliminarily focus on one particular type of 

traffic crashes – straight right-angle collisions – at signalized intersections. A straight right-angle 

collision is caused by a crossing conflict of two straight traffic flows. An area where a straight 

right-angle collision may be expected is relatively well-defined, static, and detached from the 

approach. Moreover, driver behaviors are more or less predictable at signalized intersections. 

These properties suit the need for the research starting point and increase the chance for 

successful development of detection and analysis of a surrogate safety measure. 

Primary methods to detect potential safety-related events will be based on digital video and image 

processing technology. A manual measurement method using digital video is expected to give 

attainable accuracy of 1/30 seconds and is likely to save post-processing time compared to a VCR 

because of the capability of instantaneous access to specific frames in the video.  

A commercial video image processing (VIP) unit, Autoscope, will be evaluated as to whether it 

can help detect and measure the surrogate data efficiently and reliably. The Autoscope is widely 

used across the country and has been found to be a mature and reliable tripwire system (Grenard 

et al., 2001).  

In addition, a safety relationship between proposed surrogates and crashes will be examined using 

a regression approach as traditionally implemented in the evaluation of surrogate data. A potential 

linkage between these measures and crashes would increase the chance for successful 

development of a new safety estimation method. 

1.4 REPORT ORGANIZATION 

In this research, the main part of the report is organized into nine chapters. Other relevant 

materials and the results of this study are documented in the appendices. 

Chapter 1 provides the research overview, the motivation for this study, the research objectives 

and the scope of study. 
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Chapter 2 summarizes the literature related to the current state of practices in crash-based and 

non-crash-based safety estimations. This chapter also discusses image processing technology, 

applications, and potential for safety analysis.  

Chapter 3 discusses the methodology pursued in this research. The limitations of the current 

approach to safety analysis, the requirements for the proposed surrogate measure of safety, and 

the desirable properties of a new method are examined in details. The research procedure is 

described in this chapter as well.  

Chapter 4 discusses the proposed surrogate measure of safety, the selection of studied sites, the 

evaluated measurement methods, and the evaluation results. The collected data and the data 

collection procedure conclude the chapter.  

Chapter 5 examines the collected traffic characteristics and observed crash counts. Safety 

relationships between these characteristics and crashes are examined using regression analyses. 

Chapter 6 proposes a new approach to analyze the surrogate measure of safety. This chapter 

provides an overview of the extreme value theory and important considerations for extreme value 

modeling of the surrogate data. Then, the selected extreme value modeling approach and the 

proposed safety estimation method are discussed.  

Chapter 7 discusses the general considerations in the model development process, using the 

selected extreme value models.  The final estimated models at selected sites, along with the safety 

estimates and their inferences, conclude the chapter. 

Chapter 8 describes the evaluation of the safety estimates derived from the proposed method. A 

simulation study was conducted to examine the effects of different model settings on the 

confidence of safety estimates. Using the proposed method, the repeatability of the surrogate 

measure is also examined in terms of the observation period required to obtain safety estimates 

with acceptable confidence intervals. 

Chapter 9 summarizes the research approach and important findings. The directions for further 

research are also discussed. 

  



 

 

9

 

CHAPTER 2 LITERATURE 

In general, measures of highway safety can be categorized into two groups: crash-based and non-

crash-based safety measures. Examples of crash-based safety measures are observed changes in 

the number, rate, and severity of traffic accidents resulting from the implementation of safety 

countermeasures. Non-crash-based safety measures are indirect ways to measure safety. Non-

crash-based measures are often needed when crash data are (a) not available, (b) insufficient for 

crash-based evaluation, or (c) when rapid evaluation of safety is desirable. Examples of non-

crash-based safety measures are traffic volume, speed, travel time and delay, intersection delay, 

traffic conflicts and erratic maneuver, gap acceptance, headway distribution (smaller headways 

are relatively unsafe), time-to-collision distribution (a change in distribution signifies a change in 

safety characteristics), the number and severity of shock waves, time-to-accident, post-

encroachment-time (PET), and deceleration-to-safety-time (FHWA, 1981; Minderhoud and 

Bovy, 2001). Nevertheless, non-crash-based measures are not intended to be a substitute for the 

ultimate safety measure (crash and severity reduction) since definitive quantitative relationships 

between crash experiences and many non-crash-based measures have not been well understood 

(FHWA, 1981). 

This chapter aims to provide an overview of the past research on non-crash-based safety 

measures. In addition, several methods proposed for crash-based safety evaluation are 

summarized for comparison. Research findings on the effects of traffic control and driver 

attitudes on the risk of right-angle crashes are also reviewed. 

2.1 NON-CRASH-BASED SAFETY EVALUATION 

Crash data is the most widely used and direct measure of safety at an intersection.  However, 

crash data alone is often not suitable for diagnosing safety problems at intersections or for 

evaluating the effectiveness of safety improvements. The use of crash data to evaluate safety 

exposes itself to several underlying problems, such as unreported crashes, randomness in crash 
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occurrences, and a considerably long waiting time for an adequate amount of crash data. In 

addition, crash data analysis is a reactive approach in that collisions have to occur before an 

improvement program can be applied. Therefore, at times, an indirect and proactive safety 

measurement to allow for a rapid and reliable safety evaluation is highly desirable. Non-crash-

based safety measures generally focus on the traffic operational behaviors at the site level. This 

section reviews past research attempts in order to define the current state of this research area. 

The technology aspects and simulation approaches for applications in safety evaluation are also 

discussed. 

2.1.1 Alternative Measures of Safety 

Traffic conflict has been one widely-used indirect safety measurement tool for more than three 

decades. One of its appealing aspects is that conflict data can be gathered within a much shorter 

period (Chin and Quek, 1997). Traffic conflict and its measurement technique have been 

modified and implemented by several researchers and practitioners over the years.  

The history of traffic conflict technique began as early as the 1960s. Perkin and Harris (1967) 

defined conflicts based on evasive actions taken by drivers. However, there are problems with 

evasive actions since (a) it is rather difficult to differentiate a precautionary action from a truly 

evasive one, particularly when a quick assessment is demanded on spot; and (b) sometimes 

evasive actions may be absent in critical situations. 

A number of research efforts have been undertaken in order to develop conflict measurements in 

such a manner that the results are objective and repeatable based on the fact that traditional 

observation of traffic conflict relies on trained human observers that are more or less subjective in 

nature. More objective definitions and measurements of traffic conflicts are of interest among 

traffic safety researchers. 

Hayward (1972) suggested the use of time-measured-to-collision, the time to collide with the 

leading vehicle if both vehicles continue in the same path without changing their speeds. 

The first agreeable and improved definition for conflicts is proposed by Amundsen and Hyden 

(1977). A conflict is “an observable situation in which two or more road users approach each 
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other in space and time to such an extent that there is a risk of collision if their movements remain 

unchanged.”  

Allen et al. (1978) measured several candidates for revised definitions of traffic conflicts which 

include gap time (GT), post-encroachment time (PET), encroachment time (ET), initial-attempted 

post-encroachment time (IAPE), proportion of stopping distance (PSD), and deceleration rate 

(DR). 

Gap time (GT) is the time difference between the arrival times of the involved vehicles at the 

point of crossing if no evasive actions are taken by either vehicle. A zero-value GT can be 

recorded when (a) there is a crash, and (b) precautionary actions are taken (Glauz and Migletz, 

1980). 

Post-encroachment time (PET) is the clearance interval between two vehicles with crossing paths; 

any value less than some threshold is defined to be a conflict. One problem about PET is that 

although it can be objectively measured, it is uncertain how to distinguish between the true 

conflict severity and the willingness of the drivers in accepting the risk (Chin and Quek, 1997). 

Proportion of stopping distance (PSD) is the ratio of the distance available for a driver to 

maneuver to the distance remaining to the projected collision point. A PSD value of at least 1 is 

required to stop safely. The ratio is given as  

 / ,PSD RD MSD=  (2-1) 

where RD is the remaining distance to the potential collision point and MSD is the acceptable 

minimum stopping distance. 

Deceleration rate (DR) is used as an indicator of the degree of hazard perceived by the second 

driver in response to the erratic maneuver of the first vehicle. Encroachment time (ET) is defined 

as time during which the first vehicle encroaches into the right-of-way of the second vehicle. The 

ET depends on the conflict type being considered; for example, a right-angle traffic conflict 

should have a mean ET less than the opposing left-turn traffic conflict. IAPE is the post-

encroachment time that is calculated based on the initial deceleration rate as a forecast of its 

value. 
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Based on the evaluation of proposed indicators, Allen et al. (1978) proposed a revised definition 

of cross-traffic conflict as whenever the two following conditions are satisfied: (a) the gap time is 

less than a threshold value while the two vehicles are not necessarily on a collision path; and (b) 

the post-encroachment time should be less than some threshold value to eliminate the confusion 

on the evasive maneuver and a maneuver due to an intersection control or turning movements. 

Time-to-intersection (TTIbr) is the time expected for a vehicle to enter the intersection at a 

constant instantaneous speed just at the onset of braking (van der Horst, 1990). This has been 

used for a single-vehicle interaction at unsignalized intersection. 
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Figure 2-1: Frequency Distribution of Traffic Events (Chin and Quek, 1997) 
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Figure 2-2: Proximity to Collision for Car-Following Situation (Allen et al., 1978) 
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Time proximity to collision, time to collision, and measure of nearness to collision were used by 

several researchers (Sayed et al., 1994; Glauz and Migletz, 1980). Frequency distribution (see 

Figure 2-1) and cumulative frequency distribution of proximity to collision can be used to help 

define traffic conflict severity (Chin and Quek, 1997). This curve could be generated for a 

specific location as an intersection characteristic. Proximity to collision for car-following 

situation is illustrated in Figure 2-2 where the proximity to collision is T3-T2. 

The traffic conflict technique (TCT) is a procedure of systematically observing traffic conflicts 

and employing some quantitative measures to deduce the accident potential of a location (Chin et 

al., 1991). TCT has been widely applied to safety evaluation at an intersection, but only to a 

limited extent in expressway merging (Chin et al., 1991). Conceptually, a conflict can be 

presented in the form of an ordinal severity scale, ranging from slight to very serious. The two 

extremes are non-conflict and crashes (Chin and Quek, 1997).  

Chin et al. (1992) suggested the use of a reciprocal of TTC instead of TTC itself. Variations of 

the reciprocal of TTC get larger as the conflict severity increases. A significant drop in severity 

was observed for short serious traffic conflicts. In addition, it was reported that the Weibull 

distribution gave the best fit to the empirical data. 

Chin et al. (1992) defined the magnitude of the average deceleration that the conflicted vehicle is 

required to take just to avoid a collision as deceleration-to-avoid-collision. However, this 

measurement requires an intensive post-processing task from the video taping data. 

Shoarian-Sattari and Powell (1987) considered acceleration noise and the mean velocity gradient 

as safety indicators. Acceleration noise is defined as the root mean square deviation of the 

acceleration of the vehicle and can be written as 

 [ ]22

0

1 ( ) ( ) ,
X

a x a x dx
X

σ = −∫  (2-2) 

where X is the total distance covered, )(xa is the acceleration at distance x, and )(xa is the 

average acceleration over distance X. Computationally, the distance was divided into small 

increments of distance, ∆x. The measurements of each small increment can be added up to 

determine the value of an entire link. 
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It was found that the acceleration noise decreases with speed. The mean velocity gradient (MVG) 

was proposed to account for this effect, which is expressed as 

 .
( )

MVG
V x
σ

=  (2-3) 

There are two variations of the indicators, depending on whether the origin (zero) or the mean is 

used in the calculation of acceleration noise. 

Minderhoud and Bovy (2001) proposed two indicators to consider the occurrences of the small 

TTC values of all traffic participants, at any moment, for a specified road length L and duration 

H. Time-exposed time-to-collision (TET) is defined as the duration of exposure to safety-critical 

TTC values over a specified duration H. In other words, it is a summation of all instants (over the 

analyzed duration) that a driver approaches a front vehicle with a TTC value below the threshold 

value. Since the TET indicator does not account for the difference from the threshold values, 

time-integrated TTC (TIT) indicator uses the integral of the time-to-collision profile of drivers to 

express the level of safety. Figure 2-3 shows the conceptual illustration of these two indicators. 

However, the methods are limited only to a microscopic simulation model. 

 

Figure 2-3: Concept of Time-Exposed TTC and Time-Integrated TTC 

It is clear that several alternative measures of safety have been proposed to date. One major 

problem for traffic conflicts is that there exists an inconsistency among the traffic conflict 
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definitions as well as their measurement. Currently, there is still no perfect definition or flawless 

measurement methods for traffic conflict techniques. The use of an evasive maneuver in the 

definition requires an exhaustive list of possible evasive actions. Another inherent problem in the 

definitions is the theoretical argument as to whether crash counts should be excluded from the 

conflicts if the conflicts are defined as events prior to crashes. In addition, research on how to 

measure the severity of traffic conflict are still ongoing. The threshold values to justify a conflict 

situation appear to be arbitrary.  

Other than the problem of inconsistencies, there are two additional major problems regarding the 

application of alternative measures of safety, reliability and validity of the techniques. These 

issues are discussed in the subsequent section. 

2.1.2 Past Practices of Traffic Conflict Technique 

The TCT has been primarily used as a tool for diagnosing the safety/operational problems of 

intersections that have previously been identified for attention. Typical sources of such attention 

are dominant crash frequencies, citizen complaints, serious or fatal crashes, or short-term rash of 

crashes at a particular intersection. In addition, TCT is often used in before/after evaluations of 

safety countermeasures. One caveat for this evaluation is that the collected conflict types must 

correlate to the type of implemented countermeasures. 

Although TCT was used by some researchers to identify hazardous locations (Katamine and 

Hamarneh, 1998), it should be noted that TCT is not cost-effective to be used for this purpose, 

particularly for a large-scale study (Glauz and Migletz, 1980). 

Traffic conflicts can be analyzed and interpreted in several different ways. One common use is 

the counts normalized by traffic volumes, i.e., conflict rates. The absolute counts itself as a safety 

indicator at present cannot be stated unequivocally. Based on the FHWA procedure detailed in 

Parker and Zegeer (1989a and 1989b), Salman and Al-Maita (1995) illustrated the determination 

of average and abnormal limits to be used to evaluate the level of safety among 18 three-leg, 

unsignalized intersections. The conflict frequency distribution also can be obtained to help 

identify the appropriate type of safety improvement. A risk index was developed based on various 

conflict types and related crashes to priority rank the intersections for adopting countermeasures. 

The linear regression analysis technique was used to model the relationships between traffic 
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conflicts and volumes, crashes and traffic volumes, and crashes and traffic conflicts. The hourly 

conflicts were compared with the sums and square root of the product of the concerned flows 

generating these conflicts for various intersection categories. Intersection categories included a 

two-lane intersection roadway, a four-lane intersection roadway, and all intersections. The 

relationship between crashes and total conflicts was found to be linear and statistically significant. 

Traffic conflict counts can be used in the before/after evaluation of safety countermeasures, 

provided the traffic volume remains more or less constant. The counts may be compared using the 

standard statistical tests, such as t-tests. High traffic conflict rates of specific types may suggest 

the need for intersection improvements. Suggested improvements for three types of intersections 

are proposed as shown in Table 2-1 through Table 2-3 (Glauz and Migletz, 1980). 

Table 2-1: Suggested Improvements for Signalized, 4-leg, 4-lane Intersections 
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Table 2-2: Suggested Improvements for Unsignalized, 4-leg, 2-lane Intersections 

 

Detailed analysis, such as the distribution of TTC, distribution of the reciprocal TTC, and 

variation of TTC can also be determined if the objective measurements of traffic conflicts are 

employed. Chin et al. (1991) and Chin et al. (1992) used video recordings to analyze the safety 

performance of expressway merging situations. In addition, the conflict probability can also be 

obtained. The risk of collision in an expressway merging process was determined using the traffic 

conflict technique. The conflict severity is quantified by the inverse of the time to collision. Data 

was collected from the Singapore Expressway over eight periods (approximately 45 minutes 

each), and the arrival times of vehicles at constantly-spaced intervals were subsequently extracted 

during video playback at slower speed. The systematic errors in the data set were adjusted. The 

computed measure from about 200 merging events in each observation period was best fitted by 

the Weibull distribution. Using the tail end of the distribution, the probability of a near-accident 

per merge in each period can then be established. 
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Table 2-3: Suggested Improvements for Unsignalized, 3-leg, 2-lane Intersections 

 

Traffic conflicts are also often used as indicators of safety performance for simulation models 

where objective measurements can be derived. Sayed et al. (1994) used time-to-collision with a 

threshold value of 1.5 seconds to define the conflict situation in the model. The conflicts detected 

in the model were also calibrated against the real data observation. The effects of the following 

factors versus traffic conflicts were studied in the simulation: volume, speed, intersection control, 

driver characteristics, and speed (versus conflict severity). Based on the TTC concepts, the time-

exposed TTC and time-integrated TTC were proposed and used by Minderhoud and Bovy (2001) 

to assess the potential safety impacts of the simulated vehicles with driver support systems.  

Sayed and Zein (1998) used the data collected from 94 conflict surveys to establish traffic 

conflict frequency and severity standards for signalized and unsignalized intersections. Using 

these standards, the relative comparison of the conflict risk at various intersections was achieved. 

An Intersection Conflict Index (ICI) was developed to summarize the conflict risk and provide an 

indicator regarding the relative risk of being involved in a conflict at an intersection. Sayed’s and 

Zein’s work is one of the recent attempts to standardize traffic conflict technique through a 



 

 

19

relatively well-defined concept of time-to-collision and risk-of-collision scores. However, the 

technique still relies on human observation and judgment. 

2.1.3 Reliability and Validity of Non-Crash-Based Safety Measures 

2.1.3.1 Validity Issues 

Non-crash-based safety measures are usually considered valid if they can accurately represent the 

true safety level of a transportation system. Although several researchers proposed alternative 

safety measures, relatively few have examined their validity. In addition, most of the validity 

checks were carried out only for traffic conflicts.  

Validity of safety measures relies heavily on the question of what the absolute measure of safety 

is. The most acceptable answer would still be the frequency and severity of crashes. Suppose that 

we have one intersection with a significant number of conflicts but no crash at all. Traffic conflict 

counts at such intersection would yield no more than a meaningless number since it by no means 

relates to crashes. Therefore, the validity of TCT is often judged by how good the TCT is in 

estimating the expected number of crashes (Hauer and Garder, 1986) or the adequacy of the 

correlation between the observed conflict counts and crash records (Chin and Quek, 1997). 

Although several researchers reported the successful use of TCT (Zegeer and Deen, 1978; Glauz 

et al., 1985; Salman and Al-Maita, 1995), some researchers questioned the TCT seriously. The 

evaluation of TCT by Williams (1981) failed to establish a relationship between crashes and 

conflicts. Traffic conflicts cannot well reflect a hazard in the road system. Major reasons for the 

inconsistency in research findings are a lack of standard operational definition for either traffic 

conflicts or crashes and an unsound conflict definition that appears to bear little relationship with 

crash occurrences (Williams, 1981). Glennon et al. (1977) also called for reassessment of the 

entire concept of TCT. 

Hauer and Garder (1986) addressed the issue of validity more fundamentally rather than merely 

seeking a good statistical correlation between conflicts and crashes. They argued that validation 

of the techniques based on their crash-predictive ability is unnecessary since the TCT should be 

used mainly as a diagnostic and evaluative tool rather than as a predictive one. The validity of the 
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techniques should be best judged by comparing the variance of the estimates. The most valid 

method is the one that produces an unbiased estimate with the smallest variance. 

Shoarian-Sattari and Powell (1987) demonstrated the relationship between behavioral-based 

traffic indicators and accident risks. The acceleration noise and mean velocity gradient were 

considered. The data collection and results were based on a 4.4-km route in East London which 

had experienced a total of 414 reported personal injury accidents for the three-year period 1979-

1981. The studied route represented a mixture of segments and junctions. The equipment used to 

collect field data was an onboard servo-accelerometer mounted horizontally and aligned in the 

longitudinal direction of the motion. The objective safety measures used were accident counts and 

accident risks. The accident risks were computed by dividing the three-year crash counts by the 

appropriate traffic volumes. The correlation coefficients were computed to investigate the 

statistical relationship between accidents and the proposed indicators. 

It was shown that both the acceleration noise and the mean velocity gradient offered useful 

correlations with the accident risk. The mean velocity gradient yielded the strongest correlation 

coefficient (R2 = 0.91). The traffic volume was tested as a comparative candidate for the predictor 

of accident counts. The traffic volume exhibited a good correlation with crash history as well (R2 

= 0.77), but it still was not as good as the proposed mean velocity gradient. However, the high R2 

obtained should be viewed with caution. There were only eight data points used in the correlation 

analysis and therefore the confidence level of the correlation can be questionable. 

2.1.3.2 Reliability of Measurement 

The aspects of unreliability in the measurement can be classified into two categories (Chin and 

Quek, 1997; Glauz and Migletz, 1980): 

• Intra-rater variation or consistency problem: inconsistency in a recording made by an 

individual observer 

• Inter-rater variation or repeatability problem: variability in the interpretations and 

recordings of a given situation between different observers 

Measurements for traffic conflicts, as well as other potential non-crash-based measures, are 

inherently subjective whenever it comes down to involvement with human observers.  
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Traffic conflicts can be measured by the direct on-site observers or post-processing observations 

from videotape. Other measures, such as PET, ET, and TTC, are more difficult to measure on-site 

precisely. On-site observations suffer from the disadvantage that they are difficult to verify. 

Video recordings, though capable of facilitating repeated viewings, are limited as a two-

dimensional, sequential view of video images. Human observers are more likely to make better 

judgment using simultaneous views of traffic events (Chin and Quek, 1997). Also, the post-

processing time required to extract the data from the video clips can be time-consuming. There is 

the potential, however, for automating some measurements due to the recent advancements in 

image processing technology, which would reduce the processing time. The required capability 

and current limitations of the technology and past applications for safety analysis are discussed 

next. 

2.1.4 Image Processing Technology and Safety 

Intelligent Transportation Systems (ITS) can use image processing for many application 

nowadays. Researchers are incrementally embedding machine vision into the existing system for 

various applications, which poses a challenge. There are three fundamental components for image 

processing (Masaki, 1998): 

• Image-acquisition hardware. Conventional television cameras allow an intensity contrast 

of 500:1 in the same image frame. Most ITS application requires a 10,000:1 dynamic 

range for each frame and 100,000:1 for a short string of frames. 

• Real-time image processors. The challenge for this component is to carry out real-time 

image processing with compact and inexpensive processors. 

• Algorithms. A key issue for ITS applications is how to obtain 3D information from a 

machine vision. 

The majority of practical applications of image processing for transportation systems can be 

classified into one of following three categories (Masaki, 1998; Ozawa, 1999): 

• Driving or cruise assistance. Machine vision is being used to detect lane markings, 

preceding vehicles, and obstacles. There has been significant research progress in 

highway driving assistance, however, the application has been found to be more difficult 
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for urban driving assistance as the driving conditions are complicated by stop-and-go 

situations and pedestrians. 

• Traffic and road monitoring. Vision-based traffic-monitoring systems involve three steps: 

(a) segmentation, (b) reasoning about traffic parameters such as vehicle counts, average 

speeds, and queue lengths, and (c) reasoning about area-wide traffic parameters such as 

link travel times and origin-destination counts. Vehicle identification from reading 

license plate numbers at the entrances and exits of roads is also becoming a popular 

method for travel time estimation. 

• Driver monitoring. Machine vision is being used to detect driver behaviors that could 

lead to unsafe driving such as fatigue and drowsiness. 

2.1.4.1 Vehicle Tracking 

The recent rapid advances in video imaging technology make it a potential means to detect 

certain operational traffic characteristics with minimal, or even without, human involvement. 

Video Image Processing Systems (VIPS) that employ machine vision technology can be used to 

interpret video material collected with video cameras. VIPS generally fall into three categories: 

(a) tripwire systems, (b) tracking systems, and (c) spatial analysis. Tripwire systems use a camera 

to emulate conventional detectors by using small-localized regions of the image as detector sites. 

Tracking systems follow individual vehicles through the camera field of view and provide a 

microscopic description of their movements. Spatial analysis is used in the Image Processing for 

Automatic Computer Traffic Surveillance (IMPACTS) system and concentrates on analyzing the 

two-dimensional information that video images provide. Some commercial VIPS are tripwire 

systems that do not track vehicles (e.g. Autoscope) while some other systems do tracking (PEEK, 

2001 and Nestor, 2001). Vehicle tracking poses the biggest challenge to researchers while it aims 

to provide the most complete information for the road monitoring task. Vehicle tracking has the 

biggest potential for safety measurement applications as information about individual vehicles in 

time and space is often needed. At present, vehicle-tracking strategies can be classified into four 

categories (Coifman et al., 1998): 

1. 3D model-based tracking. This strategy focuses on recovering trajectories and models 

with high accuracy for a small number of vehicles. However, the weakness of this 
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approach is its reliance on detailed geometric object models, which makes the method 

unfeasible for highway traffic with a variety of vehicle models and classes.  

2. Region-based tracking. The algorithm identifies a connected region in the image, a 

“blob” that is associated with each vehicle, and tracks it over time using a cross-

correlation measure. The process is typically initialized by the background subtraction 

technique. A Kalman-filter-based adaptive background model allows the background 

estimate to evolve as the weather and time of day affect lighting conditions. This 

approach works fairly well in free-flow condition, but it fails under congested conditions 

where vehicles partially occlude one another. 

3. Active contour-based tracking. Active contour models maintain a representation of the 

bounding contour of the object and dynamically update it. This method can address 

partial occlusion if the vehicles initially do not occlude each other; however, this 

condition is difficult to meet for congested traffic.  

4. Feature-based tracking. Instead of tracking an entire object, this approach tracks sub-

features such as distinguishable points or lines on the object. The approach was found to 

apply well, even in the presence of partial occlusion. The features are grouped together 

using a common motion constraint. It also works well in different lighting conditions, i.e., 

day, night, and twilight. 

Vehicle tracking has been employed in several ITS applications. The feature-based tracking 

approach used by Coifman et al. (1998) measures traffic parameters, i.e., generalized flow, 

occupancy, and velocity. This approach is considered to be an area-wide detector. By averaging 

trajectories over space and time, the traditional traffic parameters are more stable than 

corresponding measurements from point detectors, which can only average over time.  

Taktak et al. (1996) proposed a two-stage detection methodology to detect vehicles on highways, 

namely, an initialization phase and a detection phase. Malik et al. (1994) developed a prototype of 

automatic traffic scene analysis for IVHS (Intelligent Vehicle Highway Systems) applications 

that combined a vision-based traffic surveillance system with a dynamic belief network and 

symbolic reasoning.  An explicit occlusion reasoning algorithm was developed by Koller et al. 

(1994) to compensate for shifts in vehicle trajectories caused by vehicles overlapping. Pflugfelder 

and Bischof (2000) proposed a Kalman filter tracking approach to track cars traveling in a tunnel. 

The algorithm can detect only a pair of lights, which excludes bicycles and motorcycles and 

vehicles with broken lights. Kamoji et al. (2000) used a Spatio-Temporal Markov Random Field 
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(MRF) model to segment and track traffic images at an intersection. The Spatio-Temporal MRF 

was found to be robust against random occlusions. 

In summary, the primary challenges for a vehicle tracking strategy at present are: (a) real-time 

processing, (b) robust detection and tracking of various vehicles, (c) robustness against different 

lighting conditions and (d) partial occlusion (Pflugfelder and Bischof, 2000). 

2.1.4.2 VIPS for Safety Applications 

Limited research for safety application using image processing technology has been one mainly 

because the current capability of the technology still does not meet the exacting requirements for 

the safety applications. For example, there is still no vehicle tracking algorithm that can address 

all the issues described in the previous section effectively and efficiently. Certain research 

attempts in the past employed image processing units designed primarily for traffic control 

purposes to help detect certain traffic events. To the best of our knowledge, there is still no 

commercialized software and/or hardware developed specifically for safety analysis and/or the 

evaluation task to date. 

Tarko and Lakshmikanth (2001) checked the feasibility of using Autoscope-based video detection 

to monitor red light running. The concept of monitoring red light running with video detection 

systems and the evaluated prototype method were described. The evaluation methodology is 

given and the results are discussed. Out of 107 violations observed during five days, 55 were 

detected. Thirty-four false detections were also reported. No significant difference in performance 

was observed between daytime and nighttime periods. Monitoring of through lanes was 

considerably more effective than of left-turn lanes. The performance of a fully-automated 

approach was not satisfactory enough and therefore the semi-automated method was proposed. 

Human reviewers were required to check the Autoscope-based outputs manually. 

Mizun et al. (2002) investigated the image processing technique for the driver aid system. They 

recommended location of a CCD camera for the driver monitoring system inside a vehicle based 

on the calculated distribution result of driver's eyellipse and data collected through an actual 

driving test. Furthermore, a method to evaluate the driver's awareness level is explained. This 

experiment measured how long the drivers closed their eyes while driving by using an image 

processing technology to assess their awareness level. 
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Abbas and Bonneson (2003) provided some guidelines for VIP unit detection placement and 

configuration. The developed guidelines refer to four vendors of commercial VIP units: Vantage, 

Traficon, Peek, and Autoscope. Although the guidelines are meant primarily for traffic control 

applications, several rules are applicable for vehicle detections in general. These guidelines 

should be taken into account when VIP units are considered for vehicle detections in safety 

applications. The authors discussed and evaluated proposed guidelines for urban/suburban 

settings with design speeds of less than 60 mph. The proposed detection design was found to 

reduce both the max-out frequency and the vehicle waiting time based on six selected 

intersections in Texas. Some considerations and guidelines pertinent to the performance of the 

detection zone are briefly summarized as follows: 

Effect of Camera Perspective 

A major functional difference between VIP detectors and loop detectors is the effect of the 

camera perspective on the vehicle effective length. The low camera height, small pitch angle, and 

a long perpendicular distance from the camera to the vehicles can increase the effective vehicle 

length. 

Monitored Road Length and Camera Height 

When placing the detectors on the far side of the screen, the “1:10 rule” was suggested. This 

means one foot of camera height is required for each 10 feet of monitored road length. Therefore, 

for a height of 45 feet, the monitored road length should be within 450 feet for optimal detection 

where the speed and count are important. Otherwise, the “1:17 rule” was reported to be 

acceptable. 

Optimizing the Field of View 

The calibration of the field of view should include: (a) adjusting the camera zoom and focus such 

that the detected area is shown in the screen image, (b) adjusting the pitch angle of the camera 

such that the view excludes the horizon, and (c) the detection zones should not be placed over 



 

 

26

high contrast objects such as stop line, lane markers, crosswalks, span wires, street signs, 

commercial signs, etc. 

Detection Functions 

The VIP detectors can be joined to each other using logical functions. The general use of the 

AND function is to reduce false detection caused by vehicles (and their shadows) in the adjacent 

lanes. The OR function is commonly used to increase the sensitivity of the detection area by 

linking several detectors together. 

Detection Size 

The Autoscope manual recommends that the detection zones should be about three-quarters to 

one vehicle long and one and one-half times the width of the vehicle headlight. Smaller detection 

zones are recommended for smaller objects further upstream. However, the Autoscope manual 

also cautions against too small detection zones as they will limit the ability to compensate for 

visual distortions caused by shadows, video noise, reflections, and camera motion. 

The authors also provided a procedure to calculate the effective vehicle length and design stop 

bar and advance detections. The data was collected from the field for the before-and-after study. 

The measures of effectiveness are the frequency of max-out and the vehicle waiting time. 

The proposed guidelines were found to improve the operational performance of VIP based on the 

considered MOEs. The study revealed no significant difference in the improvement for two 

different VIP units considered, Vantage and Autoscope. Midday operation was found to improve 

more than the other periods. A different set of detector configurations was suggested for 

nighttime operation as the detectors are triggered by the headlight, not the object. The detectors 

tend to recognize the calls earlier than usual and drop the calls before the trailing edge of a 

vehicle left the detection zone.  
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2.1.5 Safety Evaluation Using Simulation 

As certain non-crash-based measures of safety are difficult to obtain in the field, some researchers 

employed simulation techniques in the hope that the parameters extracted from simulation would 

be able to replicate those of the field conditions.  

Sayed et al. (1994) extracted time-to-collision with a threshold value of 1.5 seconds to define the 

conflict situation in the simulation model. The conflicts detected in the model were also 

calibrated against the real data observation. The effects of the following factors versus traffic 

conflicts were studied in the simulation: volume, intersection control, driver characteristics, and 

speed (versus conflict severity). 

Minderhoud and Bovy (2001) extracted the time-exposed time-to-collision (TET) and time-

integrated time-to-collision (TIT) from a microscopic simulation model in order to assess the 

safety impacts of driver support systems, i.e., Autonomous Intelligent Cruise Control or AICC. 

These measurements were found to be sensitive to the specified threshold values. The benefits 

and interpretation of TET in relation to safety performance were not well understood. 

One recent project conducted by Gettman and Head (2003) was to evaluate the assessment of 

surrogate measures of safety for intersection traffic from existing, commercially-available traffic 

simulation models. The authors reviewed the capabilities of traffic simulation models for 

obtaining surrogate safety measures, the functional requirements for a surrogate safety assessment 

software tool, and a set of surrogate measures to collect from traffic simulation models to assess 

the safety of various intersection designs and timing strategies. The surrogate measures proposed 

in the report were: 

• Minimum time to collision during the conflict event 

• Minimum post-encroachment time during the conflict event  

• Initial deceleration rate of the reacting vehicle 

• Maximum speed of the two vehicles 

• Maximum speed difference of the two vehicles during the conflict event 

• Location of the starting and ending points of the conflict event. 

The first three measures were based on the work of Allen et al. (1978). The maximum speed and 

maximum speed difference were used to measure the severity of a conflict event. The possible 
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situations where the traffic conflict events can occur were presented. These situations were 

classified into three categories: 

• Conflict points: interacting vehicles cause a crossing conflict 

• Conflict lines: interacting vehicles cause a merging conflict 

• Rear-end conflict lines: one vehicle follows another (leading vehicle). 

Computational algorithms to calculate these measures were presented in the report. The 

algorithms for conflict lines and rear-end conflicts require successive computations to determine 

the worst cases. 

At the implementation level, the new software was written as an external module that would 

allow users to import the event file from the simulation software to perform surrogate safety 

analysis. The entire process of computing, extracting, and analyzing the surrogate measures from 

the traffic simulation models was dubbed “Surrogate Safety Assessment Methodology (SSAM).” 

The validation procedures to assess the connection between the surrogate measures and 

intersection safety were discussed in terms of hypothesis testing. The first hypothesis was to 

verify that different intersection designs can be discriminated by the distributions of surrogate 

measures from the simulation model. The second one was to assess the correlation between the 

traffic conflicts from the simulation and the field study. This by no means guarantees the 

relationship between simulated conflicts and actual crashes. The last hypothesis was that the 

surrogate measures produced by the simulation model would predict (be correlated with) the 

difference in traffic conflicts, as experienced in real-world condition, between “before” and 

“after” conditions of an intersection subject to safety improvements. 

Huang and Pant (1994) developed a simulation-neural network model to help evaluate the 

dilemma zone problems at low-volume, isolated, high-speed signalized intersections. The 

alternative evaluation approaches were briefly discussed together with their limitations. The 

neural network was used to predict driver behavior in terms of speeds at different zones. Key 

ANN model inputs consisted of current speed, vehicle type, traffic control devices (types and 

locations), signal status, vehicle movement, and intersection geometry. The output of the ANN 

model was the speed of the next zone. The ANN model was integrated with the simulation model 

which produced vehicle arrivals, controlled the traffic signals, and kept updating system activities 

and collecting relevant statistics. Several outputs were collected from the simulation. The safety-
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related measures of effectiveness (MOE) for evaluating dilemma zone problems were: (a) 

probability of being caught in dilemma zone (PBCDZ) and (b) vehicle conflict rates. The 

conflicts in this research were defined as: (a) abrupt stop, (b) acceleration on yellow, and (c) red 

light running. The conflict rate was the number of conflicts per 1,000 vehicles. The data was 

colleted from four signalized intersections for model calibration. The PBCDZ was obtained only 

from the model, however, by tracing individual vehicles and checking whether it was caught in 

the dilemma zone at the onset of yellow indication. PBCDZ was not observed from the field. The 

model was tested with one other intersection to evaluate its performance. The conflict rates were 

found to vary from 22% to 47%.  

The developed ANN model can be used as a non-crash-based safety evaluation procedure for 

high-speed signalized intersections. However, it needs more data collection to cover a wide range 

of existing conditions before its validity can be proved. PBCDZ estimation is still limited to only 

simulation. Field data is still needed to verify this information. 

It is obvious that the benefits of the simulation approach are: (a) it requires the least human 

involvement, which is the main source of subjective error; and (b) it can extract certain 

parameters that are difficult to obtain in the field. Nevertheless, the simulation approach is 

hampered by its reliance on the assumption that the simulation-based outputs would be 

representative of the field conditions. Often, this is proven to be unrealistic, which therefore 

lessens the utility of the simulation approach. 

2.2 CRASH-BASED SAFETY EVALUATION 

To supplement the non-crash-based safety evaluation, this section reviews past studies on crash-

based safety evaluation, particularly at signalized intersections. The techniques frequently used to 

model crash frequency can be classified into three major categories: (a) parametric regression, (b) 

non-parametric regression, and (c) the Bayesian approach.  

2.2.1 Parametric Regression 

Parametric regression using generalized linear models (GLM) is the most widely-used method in 

safety modeling. GLM allows flexible assumptions on the distributions of dependent variables. 
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When the response variable is normally distributed with an identity link to the mean parameter, 

the GLM approach is commonly known as a normal linear regression. A GLM with a Poisson-

distributed response variable is frequently used to model crash counts; this method is called 

Poisson regression. When we further allow the Poisson mean parameter to be a gamma-

distributed random variable, the model becomes a negative binomial regression.  

Turner and Nicholson (1998) reviewed models used in practice to relate accidents to traffic flows, 

with particular emphasis on the appropriateness of the model form and the statistical analysis 

technique employed for parameter estimation. The relationships between crashes and traffic flows 

can be developed either directly or indirectly. The direct approach involves the development of a 

relationship between crashes and traffic flows. The indirect method seeks to identify the 

relationship between a crash and its exposure, which in turn relates to traffic flow. The indirect 

method takes into account the mechanism of crash occurrence while the direct approach, which 

rests mainly on statistical correlations appears to have a logical fault (Hauer et al., 1989). 

The typical relationship used for the normal linear regression is of the form 

 0 1 1 2 2 ...Y X Xβ β β= + + +  (2-4) 

with a normal-distributed error structure having zero mean and constant variance. However, there 

are some problems with this type of model: (a) crash frequencies are discrete but normal 

distribution is continuous, (b) the variance of crash counts tends to increase with the flow and 

expected crash counts, and (c) crash counts are nonnegative. 

The Poisson or Negative Binomial error structure is found to be more appropriate (Maher and 

Summersgill, 1996). The choice of which depends on the variability of crash counts for a 

particular flow situation. If the variance is about the mean, the Poisson distribution is appropriate. 

If the variance is significantly greater than the mean, the negative binomial distribution should be 

used. For GLM, the Poisson and Negative Binomial error structures can be easily incorporated 

into a multiplicative model 

 1 2
0 1 2 ...Y X Xβ ββ=  (2-5) 

Turner and Nicholson (1998) tested for the appropriate functions of volumes in the crash models. 

They concluded that the model with conflicting crashes related to the product of the conflicting 
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traffic volumes appeared to be the most appropriate logically. However, it was found that this 

form did not outperform the other types in general. The nonlinear model forms were preferred 

over linear and quadratic types since it is consistent with the evidence that the rate of increase of 

crashes tends to decline as the flow rate increases. The drivers are likely to exercise more care 

while driving as the flows increase, thereby resulting in a lower chance for a crash. Crash rates 

tend to level off as the flow increases. The analysis on the role of the non-collision flows showed 

that some crashes involving particular movements are affected by the flows associated with other 

movements. The addition of non-collision flows into the model based on the mechanism of crash 

occurrences requires considerable care to avoid omitting important non-collision flows. The 

alternative approach is to include all flows initially and eliminate the statistically insignificant 

ones later. The collision flows, as logic dictates, cannot be removed even if they are not 

statistically significant. 

Affum and Ap Taylor (1996) developed regression models to help predict crash frequencies  by 

type based on different types of traffic flow movement, signal parameters, intersection geometry, 

and location factors. The data of 115 selected signalized intersections in metropolitan Adelaide 

were assembled for the analysis. For each intersection, the following information was gathered: 

(a) signal phasing diagram, (b) coordinated or not, (c) fixed time or actuated, (d) cycle length and 

timing plans, (e) intersection geometry, (f) number of intersection legs, and (g) number and width 

of lanes. The types of accidents considered in the model development were rear end, side swipe, 

right angle, and right turn. 

The exposure measure used was based on the total traffic flow contributing to each accident type. 

The sum of the flows was used for the traffic traveling in the same direction. The product of 

conflicting flows was used for right-angle and right-turn accidents.  Right-angle accidents were 

found to be poorly explained by exposure. This implied that some factors other than exposure 

may be present at a right-angle crash occurrence, such as red light violations, during certain 

periods of time. Drivers may be more likely to run on red during periods of low flows, thereby 

independent of traffic exposure. It was suggested that the actual traffic flow during the period of 

crash occurrence would be beneficial for the improvement of model efficiency. Some other traffic 

control factors, such as right turn prohibition during certain times of day, were also found to be 

statistically significant for right-angle crash prediction. 
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Poch and Mannering (1995) used negative binomial regression to estimate the frequency of 

accidents at intersection approaches. Seven-year accident histories from 63 intersections in 

Bellevue, Washington were used in the model estimation. One model with all types of accidents 

and three other models with specific types (rear-end, angle, and approach-turn) were estimated 

using geometric and traffic-related elements as explanatory factors. Abdel-Aty and Radwan 

(2000) used negative binomial regression to model the frequency of accident occurrence and 

involvement on a principal arterial in Central Florida. The model illustrated the significance of 

the AADT; the degree of horizontal curve; lane, shoulder, and median widths; whether urban or 

rural; and the segment length. Akaike’s information criterion (AIC) was used to decide which 

subset of independent variables should be included in the model. AIC identifies the best 

approximating model among a class of competing models with a different number of parameters. 

To measure the overall goodness-of-fit statistics, the deviance value, which is χ2-distributed, was 

used. The elasticity of each variable was computed to determine the relative significance of the 

variable on the dependent variable, which is crash frequency. Three categories of the model were 

developed: (a) overall model, (b) models by gender and (c) models by age group. The paper 

attempted to add human factors into the models by considering gender and age group. Female 

drivers were found to experience more crashes than male drivers in heavy traffic volume, reduced 

mean width, narrow lane width, and larger number of lanes. Male drivers had a greater tendency 

to be involved in traffic accidents while speeding. The models also indicated that young and older 

drivers experienced more accidents than middle-aged drivers in heavy traffic volume and when 

there were reduced shoulder and median widths. Younger drivers had a greater tendency to be 

involved in accidents on roadway curves and while speeding.  

Chin and Quddus (2003) used the random effect negative binomial (RENB) model to analyze 

traffic accident occurrence at signalized intersection in Singapore. The RENB model allows the 

data to be treated as a time-series cross-section panel, therefore addressing the spatial and 

temporal effects in the data. Although negative binomial regression relaxes the variance-to-mean 

unity assumption and allows between-site variations, it still suffers from the limitation that the 

temporal variations are not well considered. Consequently, the standard error in the model 

coefficients may be underestimated and the t-ratios may be inflated. Hence, the RENB model was 

used to address the possible serial correlation of crashes at each specific location. The model 

explanatory variables included traffic volumes, geometric elements, and traffic control data. The 

goodness-of-fit statistics of the model showed that the RENB model was appropriate. 
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2.2.2 Non-Parametric Regression 

In contrast to the parametric-based approach, there exists an alternative approach to model 

accident frequencies without the need to rely on the distributional assumptions of the models. 

Karlaftis and Golias (2002) used a non-parametric statistical methodology known as hierarchical 

tree-based regression (HTBR) to quantitatively assess the effects of geometric elements, 

pavement conditions and traffic volumes on the accident rates of rural roads. The HTBR was used 

separately for the data from two-lane and multilane roads in Indiana from 1991 to 1995. The key 

advantages of HTBR over the widely-used negative binomial regression are: (a) it allows for 

quantitative assessment of the effects of each factor on accident rates and quick prediction of 

accident rates given a set of factors; (b) it is non-parametric and does not require specification of 

a functional form; (c)  it does not require a pre-selected set of variables since it uses a stepwise 

method to determine optimal splitting rules; (d) it can handle data sets with a complex (non-

homogeneous) structure; (e) it is robust to the effects of outliers; and (f) it is not affected by 

multicollinearity between the independent variables. Example of a regression tree obtained from 

HTBR for rural two-lane roads is shown in Figure 2-4. 

 
Figure 2-4: Example of Regression Tree Using HTBR (Karlaftis and Golias, 2002) 

In Poisson or negative binomial regression, the relative significance of each variable can be 

measured by the elasticity. For HTBR, the importance scores can be calculated to determine the 

effect of each element on accident rates. Since HTBR uses an if-then structure in the regression 
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tree, the method has the potential for some specific application in SMS, such as a rule-based 

expert system. 

2.2.3 Empirical Bayesian Approach 

In an observational study, there is likely to be a link between the decision to treat a selected site 

and its crash history. This link causes a so-called “selection bias” or “regression-to-mean” bias. It 

makes K a biased estimate of κ  where K and κ  denote the actual and expected crash counts of 

the before period respectively. The “before” period ended when the treatment was applied. 

However, there is no fixed time when the period had begun. The empirical Bayesian (EB) method 

aims to address the regression-to-mean bias and improve the statistical precision of parametric-

based estimations. 

2.2.3.1 Regression-to-Mean Bias 

The regression-to-mean bias was often discussed in literature (Abbess et al., 1981; Hauer and 

Persaud, 1983; Hauer and Persaud, 1987). The phenomenon occurs when the entity is treated 

because its “before” crash counts (K) was abnormally high or unusually low such that K cannot 

be a good estimate of κ . The K cannot be a good estimate of what is normal and usual by using 

abnormal crash counts. If the entity has been selected because of a high number of crashes, K 

would tend to overestimate κ . 

2.2.3.2 Methodology 

The empirical Bayesian approach accounts for two types of information to estimate the safety of 

the entity: (a) safety traits such as the geometry of intersections, traffic, driver behavior, and the 

environment and (b) crash history. The use of both estimates results in mean safety towards 

which the individual estimates appear to regress (Hauer, 1997). 

The safety estimates for the first type of information can be derived using the reference 

population. The reference population is defined as the group of entities that share the same set of 

traits as the entity in the safety of which we are focusing. Safety traits are characteristics that can 
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influence safety. Traffic control type, traffic volume, and geometry can play a pivotal role in the 

safety estimates of the reference population. 

The estimation of safety using the empirical Bayesian approach has been investigated by several 

researchers (Abbess et al., 1981; Hauer and Persaud, 1983; Hauer, 1997; and Garder et al., 2001). 

The logic of the estimation is depicted in Figure 2-5. 

  
Figure 2-5: Logic of Estimation Using Empirical Bayesian Approach 

The estimate of κ  and its variance for the specific entity can be obtained by the following 

equations:  

 { | } { } (1 ) ,  where 0 1,E K E Kκ α κ α α= + − < <  (2-6) 
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 var{ | } (1 ) { | }.K E Kκ α κ= −  (2-8) 

It should be noted that if we evaluated the variance of κ using only K (α=0) and assuming K is 

Poisson distributed, the variance of the estimate would be E{κ|K}. When both clues of safety are 

used, the variance becomes smaller. 

Sometimes it is useful to model the entire probability distribution function of κ|K. It is often 

assumed that the expected “before” crash counts for a reference population (κ) follow Gamma 

distribution (Al-Masaeid and Sinha, 1994 and Hauer, 1997). If the crash count for an entity (K) is 

Poisson-distributed and the expected counts of reference population κ are gamma-distributed, the 
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distribution of crash counts in the population of entities obeys the negative binomial probability 

distribution. 

2.2.3.3 Applications 

Belanger (1994) applied the empirical Bayesian method to estimate the safety of four-legged 

unsignalized intersections. First, multivariate models were developed to estimate the number of 

accidents from various flow functions at these intersections. The best model was obtained from 

the product of major and minor flows, raised to a power. Attempts were made to develop models 

for specific patterns of collisions and to incorporate variables other than traffic flow functions to 

these models. The modeling results were then combined with the accident count of a four-legged 

unsignalized intersection to estimate its safety. Results were used to identify blackspot locations 

and to evaluate the effects of treatments more accurately. 

Persaud and Nguyen (1998) developed disaggregate safety performance models for three-legged 

and four-legged signalized intersections on Ontario provincial roads. Models were disaggregated 

by time period, accident severity, and environmental class. Two levels of models were calibrated 

for different levels of data availability and model requirements. For level 1, the crash frequency 

was estimated as a function of the sum of all entering flows. Separate estimates were obtained for 

three different types of crashes: rear-end, right angle, and turning movement. In level 2, specific 

patterns were defined by pre-accident vehicle movements and crashes were estimated as a 

function of flows relevant to each pattern.  

The models were calibrated based on the empirical Bayesian framework. The estimate obtained 

by combining the accident count (x) of a specific intersection in the most recent n years with an 

estimate of the expected annual number of accidents (P), based on the accident history of similar 

intersections. This estimate of m is: m = w1(x) + w2(P). w1 and w2 are estimated from the mean 

and variance of the regression estimate. The selected model form of a safety performance 

function is  

 1 2
1 2 ,P S Sβ βα=  (2-9) 

where S1 and S2 are relevant flows; α, β1, and β2 are parameters to be calibrated. In the level 2 

model, S2 and β2 are dropped out and S1 becomes the sum of all flows. Obviously, the model is of 
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a nonlinear functional form and the dependent variable is nonnormal. The calibration of this 

equation was done using a generalized linear model approach. The models in both levels can be 

used to provide estimates for identifying intersections for treatment or evaluating the safety 

effectiveness of countermeasures. 

2.3 SIGNAL TIMINGS, DRIVER ATTITUDES, AND RIGHT-ANGLE CRASHES 

Rear-end and right-angle collisions are the two most common types of accidents at signalized 

intersections. Rear-end collisions occur when a leading driver decides to stop and the follower 

does not anticipate the stop and fails to perform an evasive maneuver. Right-angle collisions, on 

the other hand, happen as vehicles from two conflicting approaches decide to enter the 

intersection at the same time. It is well known that one significant factor in right-angle crashes at 

signalized intersections is signal timing. This section provides overview of the effects of the 

signal timing and driver attitudes on the risk of right-angle crashes. 

Studies in the past revealed that the risk of right-angle collisions can be significantly reduced by 

up to 40% when all-red intervals are used (Benioff et al., 1980; Butler, 1983; Hagenauer et al., 

1982). An experiment in Virginia conducted by Retting et al. (2002) showed that a slight 

modification of signal timing (yellow and all-red intervals) can reduce a crash risk for overall 

crashes and pedestrian/bicyclist related crashes. However, the reductions were not statistically 

significant for specific types of crashes, i.e., right-angle and rear-end collisions. 

Hulscher (1984) concluded that the timing of three-second yellow was too short for the majority 

of intersections. The yellow interval was suggested to be varied according to the approach speed 

and road conditions. The approach grades were not taken into account in the timing design. The 

increase in yellow time was found to reduce the rate of red runners only at the beginning. The 

violation rate was not sustained and, in contrast, deteriorated again within two years. From the 

operational efficiency point of view, the slight increase in the effective lost time due to the 

increase in change interval had only a marginal effect upon intersection capacity or delay, 

provided that the intersection was not operating under saturated conditions. 

From the deterrence aspect, the risk of accident involvement or punishment under the law has no 

substantial effect on run-on-red behaviors. The only effective deterrent is the presence of police 

officers at intersections. Hulscher (1984) suggested that the most promising countermeasure 
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appears to lie in a change in societal attitude to traffic rule violations in general. One possible 

approach to change this is a sustained promotional activity combined with suitable restraints on 

advertising and entertainment. 

Mahalel et al. (1985) studied the effectiveness of a flashing green program prior to the yellow, 

leading to a red interval. The deleterious effects of flashing green program were dominant at low-

speed approaches and at urban intersections. A laboratory experiment was set up to investigate 

the rate of inappropriate decisions under various driving conditions. Inappropriate decisions were 

defined as a “go” decision after the red light and a “stop” decision when the drivers can actually 

proceed. The probability of stopping as a function of the potential time to reach the intersection 

was plotted. The potential time to reach the intersection is the time lapsed from the onset of 

yellow to the stop bar if drivers maintain the prevailing speed at that instant. The logit function 

was fitted to the data. It was found that the likelihood of stopping was very high even if the 

potential time was very short. This implies more rear-end conflicting drivers during a flashing 

green program. There also was no evidence that right-angle conflicts were reduced. 

Van der Horst and Wilmink (1986) discussed factors which may influence the driver’s decision-

making process during the yellow time, which are: 

• The driver’s attitude 

• The amount of predictability of the situation 

• An estimate of the consequences of not stopping, e.g., the risk of right-angle collisions, 

running on red and, getting a ticket 

• An estimate of the consequences of stopping, e.g., discomfort, delay, the risk of rear-end 

collisions 

• Driver’s estimates of the required decelerations based on the speed and the distance to the 

stop bar 

• The yellow and all-red periods 

• The influence from other road users, such as the leader’s stopping. 

In addition, van der Horst and Wilmink’s study also summarizes several findings of other 

researchers on the effects of the duration of yellow and all-red intervals on run-on-red disciplines. 

It was found that overlong all-red times decreased the red-light discipline. When the yellow 

period was extended from three to four seconds, the number of red phases with at least one 
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violation decreased from 7% to 2%. In addition to that, yellow duration of less than three seconds 

was also found to increase the number of red light violations significantly. 

It was also found that the extension of the yellow time in the urban areas from three to four 

seconds appears to reduce the number of red light violations by half (van der Horst and Wilmink, 

1986). Nevertheless, the adaptation of driver’s behavior was found to be minimal based on 

several plots of the stopping probability functions versus the time to the stop bar, the distance to 

the stop bar, and the required deceleration rate. No significant change was found between six-

month and twelve-month “after” periods.  

In another study by van der Horst (1988), he comparatively studied the driver decision-making 

process at signalized intersections (fixed time versus actuated controllers), signals for 

drawbridges, and signals for railroad grade crossing. 

At signalized intersections, he confirmed, based on the literature study, that a one-second increase 

of the yellow interval can diminish the number of run-on-red offenses by half due in large to 

reduced exposure. However, only a slight behavior adaptation of drivers was observed. There 

exists a one-second shift between the probability of stopping for fixed-time controllers and that of 

actuated ones. At actuated intersections, the drivers were found to decide to proceed in the early 

stage of the approach process, compared to fixed-timed intersections. The drivers expect to see 

green extension at actuated controllers and thereby counter their anticipations when the green 

time is maxed out. This also implies that drivers are more disciplined at fixed-time intersections. 

Comparative studies of driver decisions at drawbridges and railway grade crossings yielded some 

interesting findings. Yellow signals were absent for both types of locations. At drawbridges, it 

was found that driver willingness to stop seemed to be poor. One possible explanation is that the 

motorists are familiar with the system and know that the bridgekeeper can interrupt the 

procedure. This, however, can also be partially attributed to the operational deficiencies of the 

signal system itself. In contrast, the drivers were found to be more willing to stop at railway grade 

crossings than those at signalized intersections. The drivers appear to recognize the risk of 

running on red at this type of locations. Some emergency braking (more than 4 m/s2) was also 

observed. 
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CHAPTER 3 METHODOLOGY 

The research procedure utilized in this study will be described in this chapter. We will begin with 

a very important concept called the continuum of events. This concept is the crux of our argument 

about surrogate measures of safety. Then, we will highlight issues typically encountered in the 

measurement and validation of surrogate safety measures. The methodology used in this study 

aims to address these issues using a right-angle collision as a research starting point.  

3.1 CONTINUUM OF EVENTS 

It is interesting to note that the concept of safety may be linked to some events during crash-free 

operations. Let us refer to these events as crash-generating events. What events can be considered 

as crash-generating events? If we depict this notion as a pyramid representing the continuum of 

events (see Figure 3-1), safety alternatively might be recognized by some traffic events; some 

turn into accidents and others near misses. 

 
Figure 3-1: Continuum of Traffic Events 

The volume of each layer represents the frequency of the events. An accident is a very rare event; 

hence, there is a great challenge to define safety in terms of the frequency of dangerous traffic 

events instead of crashes. There is one important assumption underlying this pyramid in order to 

confirm a linkage between dangerous events and accidents. The crash-contributing factors present 
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during the time that we observed these dangerous events must be present at the time of crash 

occurrences as well. Past research attempts on non-crash-based safety measures were to search 

for the potentially dangerous events and then confirm their linkage with historical crash data. 

Without the underlying hypothesis of the continuum of traffic events, these research attempts in 

the past would have been invalid. 

3.2 CURRENT APPROACH TO NON-CRASH-BASED SAFETY ANALYSIS 

Currently, difficulties encountered in the analysis of non-crash-based safety measures can be 

classified into two major categories, measurement and evaluation. This section describes the 

limitations of current practice from these two aspects. Then, in the next section, we will propose 

the research methodology and describe how these issues can be addressed with the proposed 

analytical framework. 

3.2.1 Measurement Issues 

Two major measurement problems are accuracy and efficiency. The accuracy of non-crash-based 

safety measures is often compromised by the involvement of human observers. Traditional traffic 

conflict technique, for example, relies on the subjective judgment of humans as to whether the 

situation can be defined as a conflict. The introduction of the time-to-collision (TTC) concept can 

reduce the subjective nature only to a certain extent. The complexity of certain measures, such as 

time-integrated TTC, rendered themselves more difficult to be measured in the field. Some 

researchers therefore resolved this complication using a simulation approach. The obvious 

shortcoming of the measurements extracted from simulation is that it by no means assures that the 

actual field conditions are being replicated. The efficiency of the measurement methods is 

characterized by the amount of effort needed for the data collection task. In general, there exists 

an accuracy-efficiency tradeoff in the measurement process. A sophisticated safety measure may 

require an excessive amount of time and thus makes it impractical for a large-scale study. Let us 

consider TTC as an example. A precise measurement of TTC would require a computation of the 

time remaining to the collision point of the approaching vehicles for every instant over time. This 

would apply to all vehicles entering the intersection. This is practically impossible to implement 

in real-time as of today (a robust algorithm is also a challenge other than the computational 

complexity). 
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3.2.2 Evaluation Issues 

Safety researchers have attempted to examine the relationship between non-crash-based safety 

measures and actual crashes for more than four decades. Scores of research records yielded mixed 

findings at best. The validation failure may be attributed to several sources: (a) measurement 

errors, (b) arbitrary threshold specifications for certain measures, and (c) the assumption of 

constant risk across locations. 

The extent of the impact that measurement errors could have on evaluation results has not been 

fully understood to date. Frequently, researchers worked around this issue by either treating them 

as negligible or minimizing them with the help of technology such as digital video recording.  

In general, not all observed events are of interest. A wide spectrum of collision and non-collision 

events can be viewed as a pyramid shown in Figure 3-1. “Safer” and more frequent events occupy 

the pyramid’s lower part while more “dangerous” events are located above. The threshold must 

be specified as to which event should be treated as dangerous; for example, a TTC lower than 1.5 

seconds or a PET less than three seconds. Referring to past practices, a threshold is invariably 

chosen as a constant and usually arbitrarily. The consequence of an incorrect threshold 

specification can be severe because it can influence all components of the study, ranging from 

data collection to evaluation tasks. In addition, there is no basis to support the practice of a 

constant threshold other than simplicity. 

Past research attempted to demonstrate that the frequency of collisions (the top of the pyramid) 

and the frequency of other events are related in the form of the following expression  

 ,C k E= ⋅  (3-1) 

where C = crash frequency (crashes/year), k = coefficient (typically estimated with regression) 

and E = surrogate measure; here frequency of non-crash events (vehicle passages, traffic 

conflicts, and etc). E is sometimes called exposure, particularly when E is the number of vehicle 

passages. 

Hauer (1982) discussed the fundamental flaws in attempts to use conflict and exposure 

interchangeably. If the conflicts are being used to estimate safety, the risk of two systems being 

compared must be the same. However, if the conflicts are to be treated as exposure for the risk 

estimation, this would imply varying risks from system to system, thereby rendering the conflict 
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method invalid. This issue can be resolved by careful definitions of the risk and exposure for a 

system being studied. In this research, we will further extend this concept by illustrating how the 

risk and exposure can be defined and estimated simultaneously using the proposed method. 

The relationship (3-1) postulates that the frequency of crashes is proportional to the frequency of 

a specific class of events, e.g., dangerous events. The postulated relationship meets the intuitively 

acceptable boundary condition of zero crash frequency at a location with a zero frequency of 

dangerous events. This proportion is assumed to be unchanged across all similar locations. There 

is no basis for this claim. In reality, there rarely exist two locations that share identical traffic 

event behavior even if they are of the same type. Consequently, the relationship in equation (3-1) 

calibrated for some locations is not transferable to other locations without adding additional 

variability to the crash frequency estimates. This fact is already addressed in safety performance 

functions where the E variable is traffic volume and other covariates are typically present in 

equation (3-1) to reduce the variability of the estimate of C.  

In addition, the major limitation of current practice of non-crash-based safety evaluation is that it 

requires a crash-dependent calibration process. A safety evaluation of a new infrastructure system 

requires crash records of similar locations and the constant risk assumption. The dependence on 

crash data prevents the non-crash-based safety estimation from reaping its full benefits. 

3.3 RESEARCH PROCEDURE 

The research procedure proposed in this study aims to address the present limitations of the non-

crash-based safety evaluation. We studied one particular type of crashes, i.e., right-angle crashes, 

to evaluate the feasibility of the entire procedure. For the initial attempt, the right-angle crash was 

selected due to its relatively well-defined vehicle traveling paths prior to the collision and the 

collision spots are well detached from intersection approaches. The research procedure described 

herein, however, is not exclusively limited to right-angle crashes. With some modifications, the 

procedure can be generalized for other types of collisions, as well as other surrogate measures of 

safety.  
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3.3.1 Defining the Surrogate Measure of Safety 

A traffic crossing event is a crossing maneuver which may result in right-angle crashes. Each 

crossing event is associated with different degrees of hazard of a right-angle collision. To 

measure the degree of hazard, two potential candidates for the non-crash-based safety measure 

are considered: (a) time-to-collision (TTC) and (b) post-encroachment time (PET). The selected 

measure should consider the following: 

• The selected measure should correspond to the type of crashes being studied. For 

example, the rear-end traffic conflict is well-suited for rear-end collisions while the right-

angle traffic conflict is appropriate for right-angle collisions. 

• The objective measurement of the selected measure must be feasible and require minimal 

subjectivity. 

• The selected measure should be amenable for future automation of the measurement 

procedure. 

• The selected measure must possess the continuous characteristic, which can represent 

traffic events during normal traffic operations, as well as crash occurrences on the same 

scale. 

• The selected measure should have a crisp boundary between crash and non-crash events. 

Considering these requirements, the PET between straight vehicles from two adjacent approaches 

is chosen as a measure for the degree of hazard of right-angle collisions at intersections. PET is 

the time measured from the moment the first vehicle leaves the right-of-way of the second vehicle 

to the moment the second vehicle enters into the right-of-way of the first one. PET was first 

introduced by Allen et al. (1978) and the preliminary evaluation of PET revealed that it was a 

preferred alternative to TTC in several respects.   

PET is relatively simple to measure compared to TTC. It does not require the estimation of time 

remaining to the collision spot, which is rather complicated to obtain precisely. To measure PET, 

we need to know only two points in time: (a) when the first vehicle leaves the right-of-way 

infringement zone; and (b) when the second vehicle enters the right-of-way infringement zone. 

Due to its simplicity, PET is also relatively more amenable to automated measurement methods 

using techniques such as video image processing. TTC is estimated by the instantaneous speed at 

the moment when a driver initiates an evasive maneuver. To obtain precise TTCs, the exact 

positions and instantaneous speeds of all vehicles approaching the intersection are required to 
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determine the worst case. An algorithm to differentiate between straight and turning vehicles 

must be developed. A real-time automated measurement for TTC would be difficult to achieve 

given the current state of image processing technology. 

Another important property of PET is that it is continuous from crash-free operations to crash 

occurrences with a distinct boundary at zero.  The smaller value of PET implies a greater risk of 

right-angle collisions. A collision is defined when PET becomes zero or less. On the contrary, a 

single and low value of TTC may represent either a crash or a non-crash event, depending on the 

outcome of evasive maneuvers. Some evasive maneuvers initiated 0.5 second prior to the 

collision may be successful while some others may not. In some circumstances, the TTC may not 

exist if none of the involved drivers attempt to avoid the collision. A distinct boundary between 

crash and non-crash events does not exist for TTC. 

3.3.2 Data Collection and Measurement Evaluation 

Once we defined the surrogate measure of safety, the next task was to collect the data needed for 

the study. First, we had to select the sites to be studied. Occasionally, we may refer to 

“intersections” as “sites” throughout this report. The site selection process should be carried out 

without looking at the crash history to avoid the potential bias from the regression-to-the-mean 

effect (see Section 2.2.3.1). This phenomenon occurs when a site is selected because of 

abnormally high or unusually low crash counts.  

Two categories of data were acquired in this study: field data and crash data. For each 

intersection, field data consist of video recordings of traffic movements, traffic volumes, 

intersection control, and geometry. Traffic movements and volume data are used in the 

operational analysis while geometry data is used in the field of view calibration. Crash data are 

the objective measure of safety that is typically used in the evaluation of a surrogate safety 

measure. In the traditional regression analysis, the crash data is the response variable in which we 

attempt to find a group of covariates that can best describe its variability. Our scope of study 

focused on right-angle crashes. The exposure and condition associated with each crash 

occurrence will also be extracted and verified. 

For the field data collection, a Purdue University mobile traffic laboratory will be used to monitor 

and digitally archive traffic movements at selected signalized intersections around Lafayette, 
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Indiana. Detailed data, such as PETs and traffic volumes at certain periods of time, will be post-

processed later in the lab.   

Crash data will be first retrieved from the Indiana State Police (ISP) numerical database. Then, 

each crash will be verified manually with the police accident report archived in a microfiche 

format to ensure that the type of crashes and the conditions during the crash occurrence are 

accurately recorded and to determine the collision spot within the intersection. 

Traffic movements recorded at intersections will be post-processed to extract for PET data. Three 

alternatives are identified for the task: (a) manual measurement, (b) automated measurement, and 

(c) semi-automated measurement. 

The manual measurement method requires full human intervention in the procedure. The video 

clips will be digitized at 30 frames per second (fps) and reviewed frame-by-frame to measure the 

exact values of the PETs. The measurement results extracted from the manual method are 

considered as ground truth data.  

Autoscope is a tripwire image processing system primarily used for a traffic control purpose.  

Autoscope virtual detectors aim to emulate the functions of inductive loop detectors embedded in 

the pavement of intersection approaches at an actuated signal control. There is a possibility to 

automate the measurement procedure if the Autoscope detectors are configured properly and the 

Autoscope event files are carefully interpreted. From the practical viewpoint, the key benefit of a 

video image processing tool such as Autoscope is that we can configure and change the detector 

configurations at our own convenience without disrupting the traffic flows. However, Autoscope 

still suffers from technological limitations typically encountered in image processing systems 

commercially available in the market today. It is therefore important to evaluate whether a system 

such as Autoscope is applicable for this measurement task, which is different from its design 

purposes.  

We will consider proprietary image processing software specifically developed for the 

measurement task as another possibility for the automated measurement method. The video input 

required by the software will be in the same format as required by other alternatives. Reported 

outputs should be easily interpretable and compatible with other methods. The performance of the 

software will be evaluated in a similar manner with the other methods. 
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The semi-automated method will be considered if the performance of the automated measurement 

method is unsatisfactory. It is semi-automated in the sense that human intervention is required in 

order to obtain the final results. A trained observer may be required to select a portion of the 

video clips to review them manually, depending on the results from the automated method. The 

performance of this method is contingent upon the selection criteria and the reliability of results 

obtained from the automated method. 

The performance evaluation of measurement alternatives will depend on two important criteria: 

accuracy and efficiency. The measurement results from other alternatives can be compared 

against those from the manual method. The most appropriate method will be selected based upon 

evaluation results. The selected method will be used to extract the data from video materials 

collected from all the selected sites. 

3.3.3 Statistical Analysis 

Using regression analyses, we will first check the relationships between the proposed surrogate 

measure of safety and the crash counts as typically implemented in the traditional analysis of 

surrogate measures of safety. Any promising correlation between these measures and crashes 

would confirm the potential for successful development of a new method that can address our 

concerns in the traditional analysis.  

The regression analyses treat a surrogate measure of safety as exposure and assume a constant 

risk across a group of similar locations. In a new method, instead of assuming a constant ratio for 

frequencies in equation (3-1) or incorporating additional covariates to better explain the 

variability of the C estimates, we propose to estimate this ratio direct from data collected at a 

particular location. Equation (3-1) is therefore slightly modified to better incorporate the known 

statistical properties of crashes as 

 ,C R E= ⋅  (3-2) 

where C = crash frequency (crashes/year), R = likelihood of crash associated with unit exposure, 

and E = exposure (exposure units/year).  

In the proposed framework, estimation of crash frequency includes estimation of the exposure 

and estimation of the likelihood of crash associated with the unit exposure. For the sake of 
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brevity, the likelihood of a crash will be referred to as “risk.”  The risk is defined and estimated 

in relation to the exposure unit. The method of estimating the risk may require a specific 

definition of exposure unit. It can be a traffic event (event-based) or a time interval (time-based). 

In the latter case, the risk is the likelihood of a crash in a unit of time interval. If the time interval 

is sufficiently short, then the likelihood of two crashes in one interval is negligible. Risk R 

preserves its meaning as the proportion of the time intervals in a period of interest (one year for 

example) that experiences crashes. By this notion, the risk R in equation (3-2) becomes a time-

based risk and the estimation of a corresponding time-based exposure is straightforward. 

Based on the premise a PET satisfies the continuum-of-event assumption, we propose the 

approach to estimate the risk of right-angle collisions in the context of the extreme value theory 

(EVT), which enables the extrapolation of typically observed PET levels to a rarely observed 

crash occurrence level on a sound mathematical basis. The risk estimation in EVT is a crash-

independent estimation procedure. This implies that crash data are not required in the risk 

estimation. We can define the risk based on the mechanism of the PET occurrence. The risk of a 

right-angle collision is defined by the likelihood of the PET exceeding the boundary between 

non-crash and crash events. PET data can be treated as extremes by blocking a series of 

observations over time or specifying a threshold. In contrast to the conventional approach, we do 

not have to arbitrarily specify the threshold for extreme events. Different definitions of extremes 

can lead to different extreme value distributions. Temporal variation of extremes may be modeled 

by linking model parameters with time-varying covariates such as traffic volume. We can convert 

the estimated risk from the model to the estimated crash frequency by adjusting the estimated risk 

with appropriate exposure.  

In summary, this step comprises the following tasks: 

1. Analyze the safety relationships of the surrogate measure of safety, traffic data, and 

historical crash counts using regression analyses. 

2. Identify and evaluate extreme value modeling alternatives. The model considerations 

include sampling schemes, extreme value distributions, dependence of observations, and 

non-stationarity of the process. Select the modeling approach that is well-suited to the 

proposed surrogate measure of safety. 
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3. Develop the safety estimation method. The analytical, as well as numerical, solutions will 

be established for the selected approach. Note that there are several possibilities to 

interpret safety from the extreme value models.  

4. Quantify the uncertainty of the model estimates. Several alternatives are available, 

including the delta method, profile (concentrated) likelihood method, simulation, and 

bootstrapping. Certain methods may not approximate the confidence of the estimates as 

good as others due to some underlying assumptions. The approach suitable for the task 

will be examined. 

5. Select the best fitted models. The incorporation of non-stationary covariates, if necessary, 

made feasible a large catalogue of modeling possibilities. The model adequacy and 

goodness-of-fit signify how well the data can be described by the extreme value model. 

The additional decision factors may include the confidence of estimates and the 

computational complexity. The most appropriate approach can be determined based on 

these metrics.  

3.3.4 Method Evaluation 

The true level of safety of the intersection is unknown theoretically. However, the historical crash 

counts for a long period of time are widely accepted as the best objective measure of safety and 

there is no other credible alternative to date. The safety estimates derived from the extreme value 

models will be validated against historical crash counts. By doing so, we are considering the 

expected crash counts as an objective measure of safety that can best represent the level of the 

safety of the intersection.  

The validity of the proposed estimation method can be checked by examining the relationship 

between the safety estimates from the proposed models and crash counts. A strong correlation 

would confirm the validity of the method while a weak correlation would not necessarily indicate 

the method’s failure. In fact, there is a wide range of issues that may influence the estimation 

results and consequently the validity of the method. Certain issues cannot be studied from the 

field data alone due to the limited time and resources available. A simulation experiment is a 

viable alternative to address these issues, which include the effect of model settings and the 

optimal observation period.  
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A simulation routine to analyze the characteristics of extreme value models fitted to the surrogate 

measure of safety will be proposed. We will conduct a preliminary investigation on these issues 

in a simulated environment and provide directions for future research in accordance with our 

findings. 
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CHAPTER 4 DATA COLLECTION AND MEASUREMENT EVALUATION 

In this chapter, we will first describe the site selection procedure and crash data retrieval. 

Occasionally, we will refer to “intersections” as “sites” in this report. The measurement methods 

and evaluation results will be presented. Based on the measurement evaluation results, the most 

suitable measurement method will be selected to extract the surrogate data from the selected 

studied sites.  

This chapter documents our efforts to obtain data that are as accurate as possible. The amount of 

data we collected for measurement evaluation and subsequent analyses was limited by the time 

and resource available. All the collected data required human intervention at varying degrees to 

ensure the best quality. The detailed procedure to obtain each type of data and its limitations will 

be described.  

The three main sources of data required in this study are: 

• Historical crash data 

• Surrogate data 

• Traffic volume data 

As mentioned in the scope of this study, we will be focusing on right-angle collisions in 

particular. The required crash data are therefore the counts of right-angle crashes. We had the 

crash data available from 1997 to 2000. The surrogate data are the measured values of the 

proposed surrogate measure of safety. The traffic volume will be collected during the same period 

as the surrogate data are collected. In addition, general information about studied sites will also 

be collected which includes intersection geometry, traffic control, and weather conditions during 

the period of observation.  
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4.1 DEFINITION OF RIGHT-ANGLE CRASHES 

First, let us begin with the specific definition of the right-angle crashes considered in this study. 

We classified the right-angle crashes into two types in this study, which are (a) straight right-

angle crashes and (b) left-turn right-angle crashes. These two types of collisions are illustrated in 

Figure 4-1. Only the first type is considered in the scope of this study due to the time and resource 

constraints in the data collection and its relative ease in the measurement of the corresponding 

surrogate data. We will describe the measurement of surrogate data in detail later in this chapter. 

 
Figure 4-1: Straight versus Left-turn Right-Angle Collisions 

The straight right-angle crash refers to a right-angle crash caused by two vehicles traveling 

straight in a pre-accident direction. The left-turn right-angle crash is a collision caused by a 

vehicle traveling straight versus a vehicle turning left into the approach of the oncoming straight 

vehicle.  

These two types of right-angle crashes are not clearly distinguished in the numerical accident 

database. These two types also require separate measurement of PETs if both are to be studied. 

For the left-turn right-angle collision, it is interesting to observe that the first portion of the left-

turn traveling path is somewhat similar to a vehicle that is going straight. However, the speed of 

the vehicle could differ and the left-turn right-angle crashes are more likely to occur at 

intersections that have significant left-turn volumes.  

We will describe later in this chapter how we ensured that only straight right-angle collisions 

were counted in the retrieval of crash data for selected intersections. For simplicity, we will 

occasionally abbreviate “straight right-angle collisions” as “right-angle collisions” unless 

specifically noted otherwise. 
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4.2 SITE SELECTION 

Our first estimate of the number of intersections for which we were able to collect the field data 

and analyze within a reasonable amount of time was about 20 locations. Two major concerns that 

we recognized in the process of the selection of studied sites are: 

• Selected sites should represent a good balance between a number of safe and unsafe 

intersections. A lack of variability in the safety levels of the selected sites can lead to a 

problem in the regression analysis and the comparative examination of results from the 

proposed models. 

• The selection procedure should not identify unsafe locations on the basis of crash counts 

as it can lead to the problem of selectivity bias. Selecting studied sites based on crash 

counts may trigger certain safe locations to be identified as unsafe due to the randomness 

of crash occurrences. 

Sampling studied intersections by examining crash counts is prone to a problem of regression-to-

mean bias, which is attributed to the randomness of crash occurrences, resulting in the 

overrepresentation or underrepresentation of the number of crashes observed at certain locations 

with respect to the true mean value. One effective way to mitigate this problem is random 

sampling, which requires a number of sites to be selected in a random manner. However, this 

does not guarantee a satisfactory balance between the safe and unsafe intersections for a relatively 

small sample size in this study. Hence, the following selection procedure was conducted to 

determine a list of studied sites.  

Previous research by Tarko and DeSalle (2002) showed that motorist feedback can provide a 

good account of the locations of the safety concerns. In that study a web-based tool was used to 

collect the motorist feedback over a five-month trial period from road users in Tippecanoe 

County, Indiana in 2001 and the results were evaluated against the actual crash data. It was found 

that motorist feedback can be a very effective supplement to crash data and can guide highway 

agencies in the examination and identification of hazardous highway locations. This implies that 

we can still select unsafe intersections, without examining the crash counts, based on the volume 

of feedback from motorists.  

Inspection of the reported locations documented in Tarko and DeSalle (2002) gives a preliminary 

list of potentially unsafe locations based on motorist feedback. This procedure allows us to 
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include potentially unsafe locations in our small sample while avoiding selectivity bias from the 

examination of crash data. A preliminary list contains a total of 97 locations with 29 locations 

having at least two responses from the survey. 

For each reported location in a preliminary list, the following criteria were used to filter out the 

locations that can complicate the study or do not meet the scope of this research: 

• The location must be a four-legged intersection. 

• For the intersection layout, the N-S approaches should be approximately perpendicular to 

the E-W approaches. This criterion aims to avoid confusion regarding the vehicle 

traveling directions recorded in the crash database. 

• Non-unique intersections must be removed. Non-unique intersections refer to the case 

where two roads intersect more than once. Because intersections are identified in the 

crash database using local names of crossroads, these non-unique locations will be 

registered in the accident database as the same location despite the fact that they are not. 

Crash counts at these locations are overrepresented and unusable. 

• The intersection must be signalized and must have at least one available parking space at 

the corner for field data collection using a mobile traffic laboratory. 

All the 97 locations in a preliminary list were checked against the first three criteria using U.S. 

maps available from several sources (http://mappoint.msn.com, http://map.yahoo.com, and 

http://www.mapquest.com).  There were only 20 locations left usable after the verification. 

Hence, we added 19 intersections that meet the first three criteria by random selection from the 

Tippecanoe county map. At this step, we had a total of 39 intersections ready for the final 

criterion check. 

The last criterion was confirmed by site visits. The final set of selected sites that met all the 

criteria was reduced from 39 to 22 intersections. Table 4-1 shows the list of 39 sites visited and 

22 intersections usable in this study. The final list was reduced to 18 intersections because of the 

problems encountered during data collection. Four sites that were removed from the list are 

87904, 87934, 97913, and 97914. We could not obtain parking permission at some of these sites 

and some available parking spots are too close to a high-voltage power line. For safety purposes, 

a 10-foot clearance must be maintained between the van’s mast and the power line all the time. 
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Table 4-1: Preliminary List of Potential Studied Sites 

Date Checked

Total sites checked = 39
Number of sites possible for data collection = 22

Notes:
1) The landmark is noted as "Yes" if parking is available but no distinct landmark nearby
2) Street names are exactly the same as recorded in the ISP crash database

No. Assigned ID for 
Intersection Street Name 1 Street Name 2 Landmark A Landmark B Landmark C Landmark D

1 87904 KOSSUTH ST 18TH ST N/A N/A N/A William Corner
2 87905 CREASY LN SR 26 Car sales Don Pablos N/A Christina Salon
3 87906 SR 26 FARABEE DR Bank Pizza Hut N/A N/A
4 87907 CREASY LN MCCARTY LN Gas station N/A N/A Enterprise car rental
5 87909 EARL AV KOSSUTH ST N/A Pizazz N/A Open field
6 87915 US 231 BECK LN N/A Osco Drug McDonald N/A
7 87923 SR 43 CR 600 N N/A N/A McDonald N/A
8 87930 GREENBUSH ST SHENANDOAH DR N/A N/A N/A Yes
9 87932 CREASY LN UNION ST N/A Wagner N/A Temple lot
10 87933 UNION ST 14TH ST N/A N/A Laundry service Medical service
11 87934 SALEM ST 14TH ST Gas station Village Pantry N/A Bill Long medical
12 97901 SR 26 18TH ST N/A N/A Yes Walgreen
13 97903 US 52 MCCARTY LN N/A Factory Autozone Yes
14 97905 SR 26 EARL AV Mall lot N/A Jiffy gas N/A
15 97911 US 52 KOSSUTH ST N/A Car sales N/A N/A
16 97913 RUSSELL ST SR 26 N/A Curb parking N/A N/A
17 97914 4TH ST FERRY ST Permit parking N/A N/A N/A
18 97915 US 52 SR 26 Nirvana restaurant Steak 'n' Shake Osco Drug Subway
19 97918 US 52 DUNCAN RD N/A Lafayette Instrument Co. N/A MBAH Insurance
20 97920 SR 26 SR 526 Purdue West N/A N/A N/A
21 97922 GREENBUSH ST US 52 N/A N/A Plaza lot Yes
22 97940 US 52 CR 300 W N/A Furniture warehouse N/A N/A
23 87919 BRADY LN CONCORD RD
24 87920 18TH ST CENTRAL ST
25 87921 DEHART ST ROBINSON ST
26 87922 SR 25 BECK LN
27 87924 26TH ST KOSSUTH ST
28 87925 SR 26 CR 550 E
29 87926 US 52 CR 400 W
30 87927 CONCORD RD CR 350 S
31 87928 UNDERWOOD ST 20TH ST
32 87929 9TH ST BECK LN N/A N/A N/A N/A
33 87931 UNION ST 26TH ST N/A N/A N/A N/A
34 87935 CUMBERLAND AV SALISBURY ST N/A N/A N/A N/A
35 87936 GREENBUSH ST 18TH ST N/A N/A N/A N/A
36 97916 US 231 MCCORMICK RD
37 97917 SR 26 CR 900 E
38 97919 SR 25 9TH ST N/A N/A N/A N/A
39 97921 SR 25 18TH ST N/A N/A N/A N/A

Feb 28, 2003 - Mar 1, 2003

Summary of Site Visit

Unsignalized
Unsignalized
Unsignalized

Unsignalized
Unsignalized

Unsignalized
Unsignalized

Unsignalized
Unsignalized
Unsignalized
Unsignalized

The list above shows the landmark nearest to the corner of each intersection. The shaded rows 

indicate the intersections that are excluded from further consideration either because they are 

unsignalized or have no available parking spaces. The ID assigned to the intersection is a five-

digit unique number which is of the format XYYZZ. The X = 8 is assigned to intersections that 

have only one unique pair of crossing road names. The X = 9 is assigned to intersections having 

crossing roads with more than one local name. The YY = 79 is the ISP code for the Tippecanoe 

county. The ZZ is the intersection number running from 01 to 99. 
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4.3 CRASH DATA RETRIEVAL 

4.3.1 Database Extraction 

The Indiana State Police (ISP) crash database was available for 1997 to 2000. The crash data 

were imported into Microsoft Access, and the extraction codes were written in the Visual Basic 

environment using the data access and management capabilities of SQL and ActiveX Data Object 

(ADO). The straight right-angle crashes are obtainable from the database with better confidence 

than the left-turn right-angle crashes because when a left-turn vehicle is involved in a crash, the 

direction of travel recorded in the database is ambiguous as to whether it is a pre-crash, during-

crash, or post-crash direction. It is up to the police officer’s judgment at the scene. Each right-

angle collision has to be classified by the location of its occurrence within the intersection. 

Therefore, a procedure to retrieve right-angle crashes has to be supported by the manual 

verification of each crash occurrence using police accident reports. 

The accident master record consists of five categories: (a) environment record, (b) vehicle record, 

(c) driver record, (d) pedestrian record, and (e) injured record. In order to classify the type of 

collisions and the location of the occurrence within the intersection, the attributes of the 

environment and the vehicle records are the key identifiers.  

The environment record describes the circumstances, location, and surrounding conditions of the 

accident. Each accident has one unique environment record. The vehicle record describes the 

vehicle and the circumstances of the accident unique to each vehicle. Each vehicle involved in an 

accident will appear as one record. It was found during the crash extraction process that vehicle 

records could be missing for some accidents, although those accidents were recorded in the 

environment database. 

4.3.1.1 List of Local Names 

The intersections were identified in the database using a pair of pseudocodes. A pseudocode is 

unique to a road name. Therefore, if a road has more than one local name (e.g., SR-26, State 

Street, and South Street are the same street), the same intersection may appear in crash records as 

different intersections when different road names were recorded in the crash reports. To address 

this problem, all possible local names of the intersecting roads at selected sites were checked 
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manually from the maps. All the possible combinations of a pair of local names were put together 

in a MS Access table as shown in Table 4-2. 

Table 4-2: List of Possible Names of Intersecting Roads at Selected Intersections 

IntxID Pseudocode 1 N-S Road Name Pseudocode 2 E-W Road Name
87904 9104300 18TH ST 9048800 KOSSUTH ST
87905 9022300 CREASY LN 9026001 SR 26
87906 9030300 FARABEE DR 9026001 SR 26
87907 9022300 CREASY LN 9164300 MCCARTY LN
87909 9026100 EARL AV 9048800 KOSSUTH ST
87915 9231002 US 231 9004800 BECK LN
87923 9043001 SR 43 9115200 CR 600 N
87930 9033700 GREENBUSH ST 9078100 SHENANDOAH DR
87932 9094100 UNION ST 9022300 CREASY LN
87933 9094100 UNION ST 9103800 14TH ST
87934 9075100 SALEM ST 9103800 14TH ST
97901 9104300 18TH ST 9026001 SR 26
97901 9104300 18TH ST 9079900 SOUTH ST
97903 9025001 SR 25 9164300 MCCARTY LN
97903 9052002 US 52 9164300 MCCARTY LN
97903 9131500 SAGAMORE PKWY 9164300 MCCARTY LN
97905 9026100 EARL AV 9026001 SR 26
97905 9026100 EARL AV 9079900 SOUTH ST
97911 9052002 US 52 9048800 KOSSUTH ST
97911 9131500 SAGAMORE PKWY 9048800 KOSSUTH ST
97913 9074700 RUSSELL ST 9026001 SR 26
97913 9074700 RUSSELL ST 9087900 STATE ST
97914 9102700 4TH ST 9030500 FERRY ST
97914 9231002 US 231 9030500 FERRY ST
97915 9052002 US 52 9026001 SR 26
97915 9131500 SAGAMORE PKWY 9026001 SR 26
97918 9156800 DUNCAN RD 9052002 US 52
97918 9156800 DUNCAN RD 9131500 SAGAMORE PKWY
97920 9055500 MCCORMICK RD 9026001 SR 26
97920 9055500 MCCORMICK RD 9087900 STATE ST
97920 9526001 SR 526 9026001 SR 26
97920 9526001 SR 526 9087900 STATE ST
97922 9052002 US 52 9033700 GREENBUSH ST
97922 9131500 SAGAMORE PKWY 9033700 GREENBUSH ST
97940 9111500 CR 300 W 9052002 US 52
97940 9111500 CR 300 W 9231002 US 231  

4.3.1.2 Order of Pseudocodes 

Based on the list in Table 4-2, all the crashes at the listed intersections were queried from the 

database as to where the recorded location of the crash occurrence was at the intersection. The 

swapping of the order in which the pseudocodes were keyed into the crash database can cause the 

same intersection to be misidentified as a different one if it was not treated accordingly. Hence, 

this issue was addressed in the construction of queries to retrieve the crash data. 
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4.3.1.3 Classification of Types of Collision 

The collision diagram used by the Indiana State Police is shown in Figure 4-2. The straight and 

left-turn right-angle crashes considered in this study are Nos. 6 and 9 respectively. Note that the 

accident record does not include the specific collision spot within the intersection. It is possible in 

certain cases to identify a collision spot from vehicle records that include pre-accident maneuvers 

and vehicle traveling directions. However, the aforementioned traveling directions recorded in the 

accident database were subject to the judgment calls of police officers as to whether they are pre-

crash or post-crash directions. As such, the specific collision spots cannot always be confirmed 

using the numerical database alone. The verification of a collision spot from the collision diagram 

and accident description in the police crash report is necessary. 

 
Figure 4-2: Indiana State Police Collision Diagram 
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In order to help classify the locations of crash occurrences, the region inside the intersection was 

split into four quadrants as shown in Figure 4-3. Each quadrant represents the area where 

collisions may take place from two conflicting traffic streams. The “cz” stands for “collision 

zone” and “conflict zone” in the context of accident data and surrogate data respectively. For 

example, the collision zone of a right-angle collision between a northbound vehicle versus an 

eastbound vehicle was denoted as “czNBEB”. 

 
Figure 4-3: Collision/Conflict Zone Notation 

 

To facilitate the classification procedure, the possible conflicting directions of each type of 

collision were coded as shown from Figure 4-4 to Figure 4-6. The code numbers 901 to 904 

represent the straight right-angle crashes. The code numbers 905 to 908 represent the left-turn 

right-angle crashes. The opposing left-turn collisions are coded as 909 to 912. Although the scope 

of this study does not include the opposing left-turn collision, it was included in the classification 

procedure as it accounts for a significant proportion of all collisions recorded as right-angle at 

signalized intersections. The code number 931 refers to the rear-end collision. Any unverifiable 

crashes were coded as 998 and all other types of collisions were coded as 999. Only the primary 

accident was considered in the classification, i.e., only the first two participants involved in a 

crash were taken into account. The only way to confidently confirm the types of collision and 

conflicting directions is to manually examine accident reports. 
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Figure 4-4: Classification of Right-Angle Collisions 
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Figure 4-5: Classification of Opposing Left-Turn Collisions and Other Types 
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Figure 4-6: Other Collision Possibilities 
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4.3.2 Verification of Accident Records 

Based on the classification diagrams described in the previous section, each collision at selected 

intersections was verified with microfilm maintained at the Indiana Department of Transportation 

(INDOT). From the numerical database, there were a total of 654 crashes at 18 selected 

signalized intersections from 1997 to 2000 (this was reduced from the original list of 22 

intersection because of problems during the data collection).  

The recorded collision diagram in the database was used to screen out certain records that do not 

require manual verification. These records were either usually recorded correctly, e.g., rear-end, 

head-on, and side-swipe, or were unlikely to be confusing with the considered types of collisions, 

e.g., right-turn collisions. Hence, only crash records with an ISP collision diagram recorded for 

Nos. 6 to 13 were further verified with actual accident reports (see ISP collision diagrams in 

Figure 4-2). This reduced the number of collisions to be verified to 384. 

The numerical crash database contains a microfilm index uniquely assigned to the crash record. 

These microfilm indices are used to look up the accident reports of interest. The collision 

diagrams drawn by police officers and the narrative descriptions of the accident event in these 

reports are the main clues for identification of actual vehicle movements and collision zones. The 

examples of accident reports are shown in Figure 4-7 and Figure 4-8. 

4.3.3 Summary of Retrieved Crash Data 

The verification results are summarized in Table 4-3. There were a total of 654 crashes recorded 

at 18 selected signalized intersections. The number of verified crashes represents those crashes 

about which we are uncertain as to its type and the conflicting directions. Those crashes that are 

outside the scope of this study were excluded from the verification. 

From Table 4-3, there were 337 crashes to be verified. Three types of crashes were checked 

specifically: (a) straight right-angle crashes, (b) left-turn right-angle crashes and (c) opposing left-

turn crashes. About 6% of the verified crashes were unverifiable because of either missing 

microfilms or poor collision diagram/descriptions. About 20% of all crashes at these intersections 

were straight right-angle crashes. Opposing left-turn crashes account for a significant proportion 

of crash counts (18%) at selected intersections as well. 
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Figure 4-7: Example of Accident Report (1) 
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Figure 4-8: Example of Accident Report (2) 
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Table 4-3: Results of Manual Verification with Crash Reports 

Straight Right-
Angle Crashes

Left-Turn Right-
Angle Crashes

Opposing Left-
Turn Crashes Others Unverifiable

87905 74 26 2 0 14 9 1
87906 52 30 10 1 16 2 1
87907 49 27 5 1 11 8 2
87909 27 18 13 0 4 0 1
87915 28 13 5 0 4 1 3
87923 15 9 5 0 1 3 0
87930 4 1 0 0 1 0 0
87932 20 9 2 2 4 1 0
87933 25 15 1 0 1 11 2
97901 58 46 32 1 11 1 1
97903 67 37 14 0 16 2 5
97905 49 27 16 1 8 2 0
97911 37 20 6 0 11 3 0
97915 68 19 5 0 3 10 1
97918 21 2 1 0 0 1 0
97920 5 3 1 0 1 1 0
97922 40 23 5 0 9 7 2
97940 15 12 8 0 1 3 0
Total 654 337 131 6 116 65 19

Results of Manual Verification with Crash Reports (based on number of crashes verified)
Total Crashes of 

All Types

Number of 
Crashes Verified 

Manually
Site

 

The retrieved crash data represent all the crashes that took place during the four-year period 

regardless of the time of day, weather, season, etc. However, the data collection at the selected 

intersections may not cover a variety of conditions within a relatively short period. It was decided 

to restrict the field conditions to non-winter, weekday, and daytime only. This is to avoid the 

complexity that may arise from the crash contributing factors that are present only under certain 

circumstances.  Hence, the retrieved crash counts are filtered by the following set of criteria to 

reflect the expected field conditions:  

• Daytime period: the hours of daylight vary from month to month (based on 

http://www.weather.com). See Table 4-4 for details. The average daytime duration for the 

entire year is about 12.09 hours per day. 

• Non-winter months: April to November 

• Weekday: Monday to Friday 

• Normal weather: Difficult weather conditions are usually noted in the accident database 

The straight right-angle crash counts classified by intersections and by collision zones are 

summarized in Table 4-5 and Table 4-6 respectively.  
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Table 4-4: Monthly Daytime Period for Crash Data Extraction 

Month Daytime Period Duration (hours) 
January 0830 to 1730 9.0 

February 0745 to 1815 10.5 
March 0700 to 1900 12.0 
April 0600 to 1930 13.5 
May 0530 to 2000 14.5 
June 0530 to 2000 14.5 
July 0530 to 2000 14.5 

August 0600 to 1930 13.5 
September 0630 to 1900 12.5 

October 0700 to 1800 11.0 
November 0730 to 1730 10.0 
December 0800 to 1730 9.5  

 

 

Table 4-5: Summary of Right-Angle Crash Counts by Intersections (1997-2000) 

All 
Conditions Daytime Daytime and 

Non-winter

Daytime, non-
winter, and 

weekday

Daytime, non-
winter, weekday, 

and normal 
weather

87905 Creasy Ln @ SR-26 2 1 1 1 1
87906 SR-26 @ Farabee Dr 10 6 6 5 5
87907 Creasy Ln @ McCarty Ln 5 3 2 2 1
87909 Earl Av @ Kossuth St 13 7 4 3 3
87915 US-231 @ Beck Ln 5 3 2 2 2
87923 SR-43 @ CR-600 N 5 2 2 1 0
87930 Greenbush St @ Shenandoah Dr 0 0 0 0 0
87932 Creasy Ln @ Union St 2 2 2 2 2
87933 Union St @ 14th St 1 1 1 0 0
97901 SR-26 @ 18th St 32 18 12 10 5
97903 US-52 @ McCarty Ln 14 7 6 4 4
97905 SR-26 @ Earl Av 16 7 4 3 2
97911 US-52 @ Kossuth St 6 4 0 0 0
97915 US-52 @ SR-26 5 1 1 0 0
97918 US-52 @ Duncan Rd 1 0 0 0 0
97920 SR-26 @ SR-526 1 1 0 0 0
97922 Greenbush St @ US-52 5 3 2 1 1
97940 US-52 @ CR-300 W 8 7 6 4 4

Total 131 73 51 38 30

Conditions

ID Intersection
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Table 4-6: Summary of Right-Angle Crash Counts by Collision Zones (1997-2000) 

All 
Conditions Daytime Daytime and Non-

winter
Daytime, Non-winter, 

and Weekday

Daytime, Non-winter, 
Weekday, and 

Normal Weather

87905 czNBWB 0 0 0 0 0
87905 czSBWB 0 0 0 0 0
87905 czSBEB 1 0 0 0 0
87905 czNBEB 1 1 1 1 1
87906 czNBWB 3 0 0 0 0
87906 czSBWB 2 2 2 2 2
87906 czSBEB 4 3 3 2 2
87906 czNBEB 1 1 1 1 1
87907 czNBWB 2 1 1 1 0
87907 czSBWB 2 1 0 0 0
87907 czSBEB 0 0 0 0 0
87907 czNBEB 1 1 1 1 1
87909 czNBWB 4 1 0 0 0
87909 czSBWB 2 0 0 0 0
87909 czSBEB 1 0 0 0 0
87909 czNBEB 6 6 4 3 3
87915 czNBWB 0 0 0 0 0
87915 czSBWB 0 0 0 0 0
87915 czSBEB 4 3 2 2 2
87915 czNBEB 1 0 0 0 0
87923 czNBWB 1 0 0 0 0
87923 czSBWB 1 0 0 0 0
87923 czSBEB 3 2 2 1 0
87923 czNBEB 0 0 0 0 0
87930 czNBWB 0 0 0 0 0
87930 czSBWB 0 0 0 0 0
87930 czSBEB 0 0 0 0 0
87930 czNBEB 0 0 0 0 0
87932 czNBWB 1 1 1 1 1
87932 czSBWB 1 1 1 1 1
87932 czSBEB 0 0 0 0 0
87932 czNBEB 0 0 0 0 0
87933* czSBEB 1 1 1 0 0
87933* czNBEB 0 0 0 0 0
97901 czNBWB 9 7 4 3 2
97901 czSBWB 12 7 5 4 1
97901 czSBEB 7 1 1 1 1
97901 czNBEB 4 3 2 2 1
97903 czNBWB 2 1 1 0 0
97903 czSBWB 4 1 1 1 1
97903 czSBEB 4 4 3 2 2
97903 czNBEB 4 1 1 1 1
97905 czNBWB 2 0 0 0 0
97905 czSBWB 4 1 0 0 0
97905 czSBEB 7 5 4 3 2
97905 czNBEB 3 1 0 0 0
97911 czNBWB 2 1 0 0 0
97911 czSBWB 0 0 0 0 0
97911 czSBEB 2 1 0 0 0
97911 czNBEB 2 2 0 0 0
97915 czNBWB 3 1 1 0 0
97915 czSBWB** 1 0 0 0 0
97915 czSBEB** 0 0 0 0 0
97915 czNBEB 1 0 0 0 0
97918 czNBWB 0 0 0 0 0
97918 czSBWB 0 0 0 0 0
97918 czSBEB 0 0 0 0 0
97918 czNBEB 1 0 0 0 0
97920 czNBWB 1 1 0 0 0
97920 czSBWB 0 0 0 0 0
97920 czSBEB 0 0 0 0 0
97920 czNBEB 0 0 0 0 0
97922 czNBWB 0 0 0 0 0
97922 czSBWB** 2 2 2 1 1
97922 czSBEB 1 1 0 0 0
97922 czNBEB 2 0 0 0 0
97940 czNBWB 1 1 1 1 1
97940 czSBWB 6 5 4 3 3
97940 czSBEB 0 0 0 0 0
97940 czNBEB 1 1 1 0 0

Total 131 73 51 38 30
Notes:

Conditions

* Site 87933 is a one-way street intersecting with a two-way street
** Unobservable in the field of view during the data collection

Site ID Collision 
Zone
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4.4 MEASUREMENT METHODS AND EVALUATIONS 

4.4.1 Measurement Definitions 

A straight right-angle crash is caused by two vehicles traveling straight in perpendicular 

conflicting directions. Let us define a crash-generating event as a traffic event leading to a 

collision.  In this case, a crossing passage of two straight vehicles is a crash-generating event 

because it must take place before a collision. We will simply refer to a crossing passage of two 

straight vehicles as a crossing event. The smaller separation between these two crossing vehicles 

implies a greater risk of a collision. A traditional time-to-collision measurement based on an 

evasive maneuver has three key disadvantages: (a) it fails to include all the scenarios that can lead 

to a collision if the conflict observation is based on an evasive maneuver; (b) it is difficult to 

measure accurately; and (c) it requires the subjective judgment of human observers. A better 

approach to measure the separation in the crossing event should focus on the characteristics of a 

crossing event that can be measured accurately and requires minimal subjectivity. 

A conflict zone is an area defined as the intersection of two crossing traffic flows. One 

intersection may have up to four conflict zones. For example, a conflict zone between northbound 

versus westbound traffic flows is abbreviated as “czNBWB.” A graphical explanation was given 

in Figure 4-3.  

A conflict spot is an intersection area of two crossing vehicle paths in a conflict zone. For 

instance, a crossing of vehicles between a northbound approach with two through lanes and a 

westbound approach with one through lane will generate one conflict zone and two conflict spots. 

The lane number is assigned as an integer starting from 1 in increasing order from east to west for 

northbound and southbound approaches and from north to south for eastbound and westbound 

approaches. The lane number is appended to the traffic flow direction to designate a conflict spot 

(see the example in Figure 4-9). For an intersection where all approaches have only one through 

lane, a conflict zone is equivalent to a conflict spot. Additional conflict spots may be added to a 

conflict zone if a single vehicle path cannot properly describe actual traffic movements. This 

situation can occur, but infrequently, at an intersection approach with unusually wide lanes. This 

varying vehicle path is more common for a left-turn movement (excluded from the scope of this 

study).  
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Figure 4-9: Example of Conflict Spot Designation 

Gap time (GT) is defined as the time between the entry into the conflict spot of two vehicles, 

measured from the front bumper to the front bumper. The gap time can be degenerated into two 

components according to the terms coined by Allen et al. (1978): encroachment time (ET) and 

post-encroachment time (PET). ET is the time that the first vehicle entering the conflict spot 

infringes upon the right-of-way of the second vehicle, measured from the rear bumper to the front 

bumper. PET is the time it takes from the end of the right-of-way infringement of the first vehicle 

for the second vehicle to reach the conflict spot, measured from the rear bumper to the front 

bumper. These three components can be explained graphically as shown in Figure 4-10. 

As discussed by Allen et al. (1978), ET would be an accurate indicator of conflict severity only if 

the second vehicle enters the conflict spot at a uniform speed. Although the speed uniformity 

assumption is unlikely to hold true in reality, ET may be helpful in explaining its relationship 

with PET and GT. The ET is usually small for the last vehicle of the through lanes from the 

green-terminating approach. The ET is typically larger for the left-turn vehicle yielding to the 

through traffic. PET is a more obvious measurement of how nearly a crash has been avoided. A 

PET value of zero or less would indicate a crash occurrence. Allen et al. (1978) also concluded 
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that PET was the most promising indicator among others for its relative ease of measurement and 

safety implication. However, neither the standardized measurement method nor the relationship 

with crash likelihood was mentioned in the study of Allen et al. (1978). 

 
Figure 4-10: Illustration of GT, ET, and PET 

In brief, there are three measurable characteristics for a crossing event – ET, PET and GT. A 

right-angle crash occurrence is defined when a value of PET becomes zero or when the GT value 

becomes less than the ET (since GT is a summation of ET and PET). 

4.4.2 Overview of Measurement Methods and Limitations 

As mentioned in the previous section, there are three measurable event characteristics. Small 

values of GT and PET are potential indicators of safety concerns for right-angle collisions at 

signalized intersections. Three measurement methods are considered in this study: (a) manual 

method, (b) automated method, and (c) semi-automated method. 

For the manual method, a digitized video clip of traffic movement at the intersection was 

reviewed manually on a frame-by-frame basis. The measurement obtained from this method is 

considered ground truth data. The resolution of the measurement depends on the frame rate of the 

digitized video clips. Theoretically, the event characteristics can be measured up to the resolution 

of 1/30 second since the frame rate of a video signal is about 30 frames per second (fps). The 

virtual detectors drawn on the screen (by any VIP units) can be used to assist the reviewer in 

determining the precise positions of the conflict spots. This method is, however, time-consuming 

and labor intensive. 
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The automated method measures the event characteristics using the commercial VIP units. At 

Purdue University we have two VIP units, Autoscope and VideoTrak. The earlier study by 

Grenard et al. (2000) concluded that Autoscope is a more reliable system at present. The 

feasibility of automated measurement using Autoscope was therefore investigated in this study. 

This method is efficient if the detection reliability is excellent, however, is unlikely given the 

many challenges in the field condition. Therefore, the evaluation of this method is needed to 

determine if Autoscope can be used for the measurement of the surrogate data. 

Based on our preliminary evaluation, the PET measurement using Autoscope was hampered by 

the following problems: 

• The measurement of PET using Autoscope requires a presence detector to determine the 

departure from the conflict spot. The accuracy of the presence detector is far from 

satisfactory for this task. 

• The alternative method is to place additional count detectors with logical operands. In 

general, there are four conflict zones with at least four conflict spots. This would 

significantly increase the processing load of the Autoscope thus leading to an excessive 

number of missing detections.  

• An attempt to decrease the processing load by running the Autoscope zone by zone may 

be a viable idea, but the measurement procedure would no longer be efficient and still far 

less reliable than the manual method. 

To solve this issue, we decided to evaluate whether the GT can be measured automatically using 

the Autoscope. GT detection requires only the proper configuration of count detectors with speed 

traps. The processing load is not a major issue as in the case of PET. The PET can be obtained 

later by a manual review of video clips only at the reported occurrence times with sufficiently 

short GTs. If the Autoscope-based method is successful, we can still substantially reduce the 

amount of effort originally required in the manual measurement method. Therefore, the 

evaluation objective of the Autoscope-based method is to check whether the GT can be reliably 

measured. 

As a part of Joint Transportation Research Program project SPR-2663, proprietary image 

processing software was developed for the PET measurement task. This software development 
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aims to provide the automated measurement method alternative to the Autoscope-based approach. 

The algorithm and the performance of the software are documented in Appendix H. 

The semi-automated method is the combination of a manual method and an automated one. The 

VIP unit is used to process the video clip to extract possible events of interest. The human 

reviewer manually checks certain reported events and measures the characteristics of interest. 

This method is expected to cut down the extraction time of the manual method while still 

retaining a better accuracy than the fully-automated one. This method still inherits, to a certain 

degree, the detection problem of the VIP unit. 

4.4.3 Manual Measurement Method 

For the manual measurement method, the recorded video clips at the intersections were digitized 

at a resolution of 30 fps. Then, two computers were set up for the task. Computer 1 controlled the 

playback of the digital videos on a frame-by-frame basis and on computer 2 were configured the 

observed conflict spots that were overlaid on the video screen. Computer 2 was also used to 

record the data manually into the Excel worksheet. Examples of the configuration of the virtual 

conflict spots are shown in Figure 4-11 and Figure 4-12. 

 
Figure 4-11: Configuration of Conflict Spots at Intersection 87923  
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Figure 4-12: Configuration of Conflict Spots at Site 97905 

The requirements for the video viewing software and the graphic card on computer 1 were: (a) the 

capability to access the video clip at a particular frame; (b) the capability to playback the video 

frame-by-frame; and (c) the capability to convert the video output into analog signal. The last 

requirement is necessary because Autoscope was used to help configure the virtual conflict spots 

on computer 2 and Autoscope takes only analog signal input. 

For computer 2 we used the Autoscope virtual detectors to help configure conflict spots. The 

virtual conflict spots drawn on the screen were used to assist a human reviewer in determining the 

precise positions of the vehicles’ departures and entries for PET measurement. We conducted a 

two-hour test on the measurement accuracy by having two trained observers extract the PET data 

from the same video clip. Each person configured their own conflict spots using a given guideline 

for conflict spot configurations. It was found that the standard error from the inter-person 

variations was about 0.3 second. When two persons used the same pre-configured conflict spots, 

the variance of the measurement errors was reduced by approximately 40%. 
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For each crossing event, we can measure the PET, ET and GT in seconds. In the manual 

measurement method, it is impractical to measure all the values for a long period of time. In 

addition, large values of GT and PET indicate a low-risk situation. Therefore, an upper 

observation threshold can be specified to save the amount of time and labor needed in the manual 

method. This upper threshold is applied to the GT for the evaluation of automated and semi-

automated methods using Autoscope.  

We will describe the procedure and evaluation results of the automated and semi-automated in 

subsequent sections. As we will explain, the manual measurement method was still found to be 

the most desirable among all the evaluated methods. Therefore, the manual method was selected 

for the full-scale measurement task at all the selected sites. The eight-second upper observation 

threshold was applied in the manual method.    

4.4.4 Automated Measurement Method 

The Autoscope unit is a relatively mature tripwire image-processing unit designed primarily for 

traffic control. The Autoscope detectors aim to emulate the functions of inductive loop detectors 

usually embedded at intersection approaches. Since we can draw the Autoscope virtual detectors 

anywhere on the screen, this enables us to configure the detectors around the conflict spots of 

interest to obtain the time that a vehicle places a call on the detector. All the events detected by 

these virtual detectors will be recorded into a text file, called the Autoscope event data file. The 

post-processing of this event data file allows us to extract the gap time and its approximate time 

of occurrence. This method is referred to as the Autoscope-based or Autoscope-aided 

measurement method. The measurement results were subsequently evaluated against those 

obtained from the manual measurement.  

4.4.4.1 Detector Configuration 

For each conflict spot, a pair of Autoscope speed detectors is configured as shown in Figure 4-13. 

The event time recorded in the event data file is the time when a vehicle places a call on the count 

detector at the end of the speed detector (the Autoscope speed detector must always be coupled 

with a count detector). The Autoscope speed detectors are preferred to other detector types 

because the speed data obtained in addition to the event time can be used to filter out false calls. 
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Figure 4-13: Example of Autoscope Detector Configuration for One Conflict Spot 

The conflict spot is defined on the screen by two speed detectors. Therefore, the consistency in 

the configuration of these virtual detectors for various observation periods and locations is central 

to the accuracy of the measured data. The measurements can be very inaccurate if these virtual 

detectors are misplaced. To minimize this problem, the following procedure is a basic guideline 

to help configure the detectors consistently: 

1. Feed the video and calibrate the field of view. 

2. Trace the wheels of the vehicles that are involved in a conflict spot of interest. 

3. Draw a line using a presence detector for each traffic stream in a direction that follows 

the observed trails (where the wheels contact the pavement). 

4. Observe the traffic and check whether the majority of the vehicles follow the lines. 

Adjust the lines if necessary. This process will help uncover any unaccounted variations 

of vehicle paths, which may justify for additional conflict spots. 

5. Draw a pair of Autoscope speed traps (one detector for each vehicle direction). Adjust the 

count detector of the speed trap to keep it in line with the outlines drawn in the previous 

step. Make sure that the size of the speed trap is reasonable. Detectors that are too small 

may be insensitive to the traffic movement, thus creating excessive missed calls. 
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Oversized detectors may also trigger a number of false calls from many sources, such as 

adjacent-lane vehicles, opposing vehicles, truck shadows, etc. 

6. Once all the speed traps are configured, recheck the vehicle path and adjust the position 

and size if necessary. 

7. Assign and note the detector numbers of all the configured speed traps. 

8. Delete all the lines drawn using a presence detector in the earlier step. Then, feed the 

video into the Autoscope unit and start collecting the event data. 

4.4.4.2 Autoscope Event Data File 

All the events occurring at the speed detectors are collected and recorded into the Autoscope 

event data file. An example record is shown in Table 4-7.  

Table 4-7: Example of Autoscope Event Data File 

Time Detector On Time Speed Length Vehicle Class
15:37:36.148 107 434 -1 0 -1
15:37:35.981 109 701 21 18 0
15:37:36.716 114 733 21 17 0
15:37:47.193 145 767 -1 0 -1
15:37:47.626 138 1068 -1 0 -1
15:37:47.593 144 1101 -1 0 -1
15:37:49.295 107 233 -1 0 -1
15:37:49.094 109 468 31 17 0
15:37:49.628 114 534 27 16 0
15:37:50.796 127 467 -1 0 -1
15:37:50.763 132 634 30 19 0
15:37:51.397 138 400 32 16 0
15:37:51.363 145 467 -1 0 -1  

The file has six fields for each row of record. Each row represents the event occurring at a 

specific detector. Three important fields used further for extracting gap time are:  

• Time: the Autoscope time when the vehicle triggers the count detector located at the end 

of the speed trap. 

• Detector: the specific number assigned to the count detector (Autoscope records the count 

detector number instead of the speed detector number). 

• Speed: the speed of a vehicle is reported in mph. The reported speed is -1 if the measured 

speed is invalid. 
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4.4.4.3 Data Extraction 

The codes were written in the Visual Basic environment with a user-friendly interface to extract 

the data from the Autoscope event data file. The key steps of the procedure to extract the gap time 

from the Autoscope event file can be briefly summarized as follows: 

Data Preparation 

A MS Access database, “Detectors.mdb”, is set up under the subfolder “Files” of the directory in 

which the program was installed. The event data file must be imported into this database as a 

table. The table can be given any name as long as it does not violate the MS Access convention of 

table names. 

Compute Event Time 

The program modifies the Autoscope reported event time into two formats: (a) second index 

(SecIndex) and (b) reference time (refTime). The “secIndex” is basically an event time in units of 

seconds with reference to the time of the first event. The “refTime” is a second index converted 

into a conventional format, “hh:mm:ss.” The former format is computationally convenient while 

the latter is compatible with the time in the video viewing software (which is Adobe Premiere). 

Users must specify a table name in this step. 

Compute Gap Time 

Users must provide the two detector numbers that were configured for each conflict spot. The 

program then queries all the related events sorted by the event time. Ideally, the data should 

appear as an alternate series of event from two detectors where a switching point from one series 

to another indicates a gap time. In reality, false calls from any detector can interrupt a perfect 

series, thus creating a false gap time if not removed. Therefore, an algorithm to eliminate false 

calls is incorporated into this step (see details in Section 4.4.4.4). The gap time can be computed 

accordingly once the false calls are removed. The measured gap time will be recorded as a new 

table in the same database. The name of the output table is modified from the original data table 



 

 

79

name by appending the original name with a user-given extension. The example of an output file 

for a particular conflict spot is shown in Table 4-8.  

The gap time (gap) is reported in seconds as shown in Table 4-8. The gap type is determined from 

a sequence of vehicles entering into a conflict spot. The gap type is 1 if the main-street vehicle 

enters into the conflict spot first, and the gap type is 2 if the side-street vehicle enters first. The 

“refTime” reported in the same row is the time at the end of the crossing event. 

Table 4-8: Example of Output File with Gap Time 

Time Detector On Time Speed Length Vehicle Class SecIndex refTime Gap GapType
15:12:14.913 109 567 21 15 0 374.958 0: 6: 43.958
15:12:17.316 109 567 21 15 0 377.361 0: 6: 46.361
15:12:19.319 109 501 26 16 0 379.364 0: 6: 48.364
15:12:43.318 107 668 20 17 0 403.363 0: 7: 12.363 23.999 1
15:12:45.454 107 668 19 18 0 405.499 0: 7: 14.499
15:12:47.390 107 635 19 17 0 407.435 0: 7: 16.435
15:12:49.527 107 467 23 15 0 409.572 0: 7: 18.572
15:12:56.603 107 802 16 17 0 416.648 0: 7: 25.648
15:12:58.439 107 968 17 19 0 418.484 0: 7: 27.484
15:13:00.509 107 968 18 21 0 420.554 0: 7: 29.554
15:13:02.211 107 768 17 18 0 422.256 0: 7: 31.256
15:13:12.792 109 735 14 14 0 432.837 0: 7: 41.837 10.581 2
15:13:14.361 109 668 20 16 0 434.406 0: 7: 43.406
15:13:16.498 109 701 19 16 0 436.543 0: 7: 45.543
15:13:18.667 109 634 21 16 0 438.712 0: 7: 47.712
15:13:21.237 109 601 21 16 0 441.282 0: 7: 50.282  

4.4.4.4 Algorithm to Detect and Remove False Calls 

Let us define the switching time as the time between two calls from the same detector, say 

detector 1. The false calls are identified and removed by successive computation of the switching 

time and comparison with the threshold value. If the calls from the detector on the other approach 

(say detector 2) are between these two calls from detector 1 and the switching time is less than the 

threshold, then these calls are marked as false calls. One possible threshold is the interchange 

period plus the minimum green time. A lower threshold value may also be preferred in order to 

avoid losing the short gap time from red-light runners. 

The flowchart of the algorithm is shown in Figure 4-14. Once the data are queried for two 

specified detectors, the algorithm begins from the first row by reading the current detector 

number (curDet) and current event time (curTime). Then, the pointer moves forward to search for 

the next series of valid calls from the same detector utilizing the switching time criterion.  
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Read curDet, curTime

Set
beginDet = curDet

beginTime = curTime
endTime = curTime

Move Next

Read curDet, curTimeIf curDet = beginDet If curDet <> beginDet

Set endTime = curTime Bookmark at this call

Move Next

Read curDet, curTimeIf curDet <> beginDet

If curDet = beginDet

Compute
candidate = curTime - endTimeIf candidate < threshold

If candidate >= threshold

Mark all the calls between
beginTime and endTime that
det <> beginDet as false calls

Go back to the
bookmarked call

Begin

 
Figure 4-14: Detecting False Calls in the Autoscope Event File 
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Once the next series of valid calls are identified, all the false calls from another prior detector are 

then marked and removed. There are two important considerations in the details of this algorithm: 

(a) false call at the end of the phase and (b) the effect of the threshold specification. 

False Call at the End of the Phase 

The first valid call of the next phase will be marked as false if the false call from the previous 

phase takes place soon enough to pass the threshold. We can decrease the threshold, however, so 

that the false call is more likely to be addressed in the next phase consideration, instead of being 

treated as false. 

Effect of Threshold Specification 

A small threshold is a conservative specification because the smaller the threshold, the more gap 

times that will be reported because the chance to mistreat the false call as the starting vehicle of 

the next phase is increased when the vehicle headway is large (e.g., for the low-volume or off-

peak condition). This problem is minimal during the peak hour. However, the valid gaps are more 

likely to be detected.  

From a conservative viewpoint, a small threshold decreases the efficiency of the method but no 

valid calls will be removed except for the case discussed above. If the semi-automated method is 

to be considered, this will generate a number of candidate gap times for manual verification. 

4.4.4.5 Software Implementation 

The algorithm is coded using SQL and ActiveX Data Object (ADO) in the Visual Basic 

Development environment. The software interface is shown in Figure 4-15. 

Users can specify the name of the data table to be processed. The button “Get Time Index” is 

used to compute the event time. In the gap time calculation, users need to specify two specific 

detector numbers for a conflict spot and the extension to create the output table. The “Compute 

Gap” button is used to compute the gap time. 
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Figure 4-15: Interface for Processing of Autoscope Event File 

4.4.4.6 Alternative Software for Automated Measurement 

The software specifically designed to help automate the measurement of the GTs and PETs from 

digitized video clips was developed (see Appendix H). The method was found to perform better 

than the Autoscope-based method. However, the measurement accuracy is still insufficient for the 

evaluation purpose in this study. Evaluation results and usage instructions are also documented. 

4.4.5 Evaluation of Automated Measurement Method 

4.4.5.1 Autoscope Performance Evaluation: Monochrome versus Color Video 

As Autoscope is not the sole tool possible in our measurement, it was desirable to have 

intersection traffic recorded in a format suitable for other alternatives as well. Autoscope SoloPro 

and research-level image processing software are examples of the alternatives that require color 

video for the best performance. For this reason we are interested in evaluating the performance of 

the Autoscope for our application if color video is recorded instead of monochrome or black-and-

white (B/W) video. When the color video is fed into the Autoscope, only the B/W portion of the 

video signal will be processed. 
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We selected one intersection (SR 26 @ Farabee Dr) to record the traffic movements for about 1.5 

hours. Using a mobile traffic laboratory, we set up two cameras on the top of the mast to focus on 

the intersection area. Both cameras were adjusted to obtain approximately the same field of view 

(FOV). Since both cameras (Panasonic WV-CS854) are capable of switching between the B/W 

and color mode, one camera was set to the B/W mode and another was set to the color mode. The 

B/W video was recorded directly into a computer. The color video was recorded into a digital 

VCR (Panasonic AG-DTL1). The FOVs from both cameras are shown in Figure 4-16 and Figure 

4-17. 

On the main street (SR 26), the intersection has two through lanes, one right-turn lane, and one 

left-turn bay for both approaches. On the side street (Farabee Dr), the NB approach has only one 

lane with flare for right turns while the SB approach has one through lane and one left-turn lane. 

The intersection is fully actuated with protected-permitted leading left turns. The traffic was 

recorded on Tuesday, November 26, 2002 from 10:40 AM to 12:10 PM. The mobile traffic 

laboratory was parked at the corner between the SB and EB approaches. Note that the time 

stamps shown in the video captures are inaccurate because they were not properly adjusted.   

 
Figure 4-16: SR 26 @ Farabee Dr in Monochrome (B/W) mode 
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Figure 4-17: SR 26 @ Farabee Dr in Color Mode 

Both recorded videos were processed using Autoscope to collect the event data files. Twelve 

speed traps were used (or six conflict spots equivalently) in the detector configuration. The coded 

software was used to extract the gap time and the occurrence time from the event data files. Four 

conflict zones were selected for manual validation. 

For this evaluation, all the GTs of 10 seconds or less at the four selected conflict spots were 

measured by watching the video clip and playback frame-by-frame for gap measurement. Some 

gaps of slightly over 10 seconds were also included randomly to have an adequate sample size for 

the evaluation. The total observation period was nine spot-hours. 

Detector Layout 

The detectors with their corresponding IDs were configured as shown in Figure 4-18. Twelve 

speed traps were used to define six conflict zones. Four conflict zones were selected for manual 

validation as listed in Table 4-9. 
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Figure 4-18: Detector Configuration with Corresponding ID 

 

Table 4-9: List of Selected Conflict Spots for Validation 

Conflict Spot  Main St. Detector Side St. Detector Remarks 
1 121 125 Through vs. Left-turn 
2 119 113 Through vs. Left-turn 
3 153 158 Through vs. Through 

4 133 117 Through vs. Through, Far side of 
the intersection  

Evaluation Results 

The evaluation results consisted of three conditions of measured gap times: (a) Autoscope-

detected gap times using color video, (b) Autoscope-detected gap times using B/W video, and (c) 

measured gap times using a manual frame-by-frame review. Conflict zone No. 4 was excluded 

from the comparison because it was the far spot in the FOV and thus did not give a consistent 

performance with the other three selected zones. There were a total of 31 gaps manually 

measured in the validation process at conflict zones 1, 2 and 3 for the observed period. Most of 

the measured gaps are less than 10 seconds. The gap time differences between the color and B/W 

videos were computed only when the gap times were detected by both videos. The errors of both 

videos compared to actual values were also computed.  



 

 

86

The number of missed detections by both videos differed by less than 10 percent. The mean 

errors are somewhat different but this appears to be accounted for by a large standard error. The 

standard deviation (SD) of errors for the B/W video appears to be larger than that of the color 

video when all the data points were used. This is attributed to one large error (16.836 sec) in the 

B/W mode due to a missed call. The SD of the errors for both the B/W and color videos was very 

close when we removed this outlier. Table 4-10 summarizes the error comparison when the 

outlier is removed. 

Table 4-10: Comparison of Errors: Color versus B/W 
** Remove one outlier in BW case
Total counted gaps 31
Exposure 3.5 zone-hours * Exposure is computed by a sum of products between number of 

observed conflict zones and observation period at each zone
Color BW

Missed Gaps 10 13 * missed gaps = Autoscope reported no gaps comparing to actual gaps
Mean Error 0.469 -1.452
SD Error 2.999 3.035
N 21 18 * N = sample size, number of matched gaps between the actual 

and Autoscope-detected ones

Assuming the errors in both cases have equal variances, it is hypothesized that there is no 

difference between the mean errors of the B/W versus the color video (null hypothesis). The two-

sample t-test is used to test against the null hypothesis. The test results are summarized in Table 

4-11 for two scenarios: with and without removing an outlier. 

Table 4-11: Two-Sample t-tests of the Differences in Mean Errors: Color versus B/W 
Color B/W Color B/W

Mean 0.469 -0.489 0.469 -1.452
Variance 8.994 26.300 8.994 9.210
Observations 21 19 21 18
Pooled Variance 17.192 9.093
Hypothesized Mean Difference 0 0
df 38 37
t Stat 0.729 1.982
P(T<=t) two-tail 0.470 0.055
t Critical two-tail 2.024 2.026

*No outlier is removed *An outlier is removed

 

From Table 4-11, in the case where the outlier is not removed, the two-tailed p-value is 0.470, 

which is far greater than 0.05. When the outlier is removed, the p-value is reduced to 0.055 but 

still greater than 0.05. Therefore, we have no strong statistical evidence to reject the null 

hypothesis. This leads to the conclusion that the color and B/W videos yield a comparable 
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Autoscope performance in our application. This finding allows us to continue all the recording of 

traffic movement at selected intersections in the color mode. 

4.4.5.2 Evaluation of the Autoscope-based Automated Measurement 

In the previous section, we showed that the detection performance using color and B/W videos is 

comparable. In this section, we will evaluate the detection performance of the Autoscope-based 

measurement with respect to specific field conditions such as the lighting condition and the 

distance from the camera to the conflict spot. The procedure to configure the Autoscope detectors 

and extract the data was described earlier in Section 4.4.4.  

Evaluation Procedure 

The selected test intersection is SR 26 @ Earl Ave (Intersection 97905) in Lafayette, Indiana. The 

traffic movement was recorded for the entire intersection for about four hours on December 2, 

2002 from 9:21 AM to 12:21 PM and 12:34 PM to 13.35 PM. The intersection geometry was 

collected for the calibration of the field of view in Autoscope. The observed period includes the 

long-shadow condition for almost two hours. Figure 4-19 and Figure 4-20 show the field of view 

of the studied intersection from the camera without and with a long shadow respectively.  

The video clips were digitized and reviewed manually to collect all the gap times of 10 seconds 

or less. The 10-second observation threshold was chosen arbitrarily in this case in order to have 

an adequate sample size for comparison between the actual and the Autoscope-reported results.  

Two sets of detector configurations were used for (a) all through versus through conflicts and (b) 

all through versus left-turn conflicts (see Figure 4-21 and Figure 4-22). Left-turn movements 

were included in this evaluation to determine how the automated method would fare when 

dealing with non-through traffic. Two sets of detector configuration were run separately to avoid 

the excessive processing load on the Autoscope unit, which could have a negative impact on 

detection reliability. The Autoscope load depends on the number and type of detectors used. The 

detectors and conflict spots are summarized in Table 4-12. The northbound through versus 

westbound left-turn traffic requires two conflict spots because the left-turn traveling path varies 

significantly.  
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Figure 4-19: Field of View of SR-26 @ Earl Ave (No Shadow) 

 

 
Figure 4-20: Field of View of SR-26 @ Earl Ave (With Shadow) 
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Figure 4-21: Detector Configuration for TH-TH Conflicts 

 

 
Figure 4-22: Detector Configuration for TH-LT Conflicts 

To measure the gap time manually for comparison, the entry times of two vehicles at a conflict 

spot were recorded in an Excel spreadsheet. For each record, the entry time of the second vehicle 

were matched with the Autoscope-reported time (the end of the event) if both differed by no more 

than three seconds. 
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Table 4-12: Conflict Spots and Configured Detector Numbers 
Detector File 97905TH.TF Detector File 97905LT.TF

Conflict Spot Main st. Detector Side st. Detector Conflict Spot Main st. Detector Side st. Detector
NB1WB1 109 107 SBL1WB1 150 148
SB1WB1 114 117 SB1EBL1 162 117
SB1EB2 132 127 NBL1EB2 166 172
SB1EB1 130 125 NBL1EB1 167 173
NB1EB2 138 144 NB1WBL101* 183 185
NB1EB1 139 145 NB1WBL102* 155 153

* two conflict spots are used for the NB versus WBL

Measures of Effectiveness (MOEs) 

In the evaluation procedure, we manually measured all the gap times of 10 seconds or less and 

then compare them with the reported ones. The total number of measured gap times was 287. The 

following MOEs were used to evaluate the method: 

• Number of reported gap times: the number of reported gap times from the post-

processing of the Autoscope event data file. In this evaluation procedure, all the reported 

values of 10 seconds or less were counted. 

• Number of detected gap times: the number of actual gap times that can be detected, 

defined by the matching of the occurrence times between the actual and reported ones 

within +/– 3 seconds. 

• Number of false detections: the number of reported gap times that cannot be matched 

with the actual gap times. 

• Detection rate: a percentage of the gap times detectable by the Autoscope-based method. 

• False detection rate: a percentage of the gap times falsely reported by the Autoscope-

based method. 

• Mean error of measurement: the mean of the differences between the actual and detected 

gap times. 

• Standard error: the standard deviation of the differences between the actual and detected 

gap times. 

Factors Affecting the Performance of the Method 

The performance of the Autoscope-based method can be quantified as follows: 
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• Detection performance: relevant MOEs are the detection rate and the false detection rate. 

• Measurement accuracy: relevant MOEs are the mean error and the standard error. 

Several factors can influence the performance of the method. From our evaluation test, we can 

identify four factors that are likely to have impacts on the performance of the method:  

• Distance from the camera to the conflict spot. The distance factor is classified into three 

categories: near (D1), moderate (D2), and far (D3). The increasing occlusion, limited 

camera perspective, and smaller object size complicate detection as the distance from the 

camera to the conflict spot increases. 

• Crossing Movement. This factor considers the effect of the movements between through 

versus through and through versus left turn. Left-turn vehicles have relatively more 

varying travel paths compared to through vehicles.  

• Lighting. This factor indicates whether long shadows are present. Long shadows are 

expected to be the main source of false calls.  

• Number of lanes. This factor indicates the number of crossing lanes (one direction) at a 

conflict zone. 

The conditions of each observed conflict spot are summarized in Table 4-13. Note that the 

lighting condition is not listed because its presence is the same for all spots. 

Table 4-13: Conditions of Observed Conflict Spots 

Conflict Spot Crossing Movement  
(main st vs site st) Distance Number of Lanes 

(main st x side st)
NB1WB1 TH-TH Near 1x1
SB1WB1 TH-TH Moderate 1x1
SB1EB2 TH-TH Far 2x1
SB1EB1 TH-TH Far 2x1
NB1EB2 TH-TH Moderate 2x1
NB1EB1 TH-TH Moderate 2x1

SBL1WB1 TH-LT Near 1x1
SB1EBL1 LT-TH Moderate 1x1
NBL1EB2 TH-LT Far 2x1
NBL1EB1 TH-LT Far 2x1

NB1WBL101 LT-TH Moderate 1x1
NB1WBL102 LT-TH Moderate 1x1  
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Evaluation Results 

The MOEs for the automated method classified by different sets of conditions are tabulated in 

Table 4-14. Regarding a sample size, only the first two cases have the number of actual gaps of 

less than 10. When all the observations are included, the detection rate and the false rate are 86% 

and 69% respectively. Excluding the cases that involve far spots, the detection rates range from 

80% to 100% except for one case. The false detection rates are very high in all cases, thus 

dictating human intervention in the measurement procedure.  

Table 4-14: MOEs of Automated Method Classified by Conditions of Conflict Spots 
Distance Near Near Near Near Mod Mod Mod Mod Mod Mod Far Far Far Far

Crossing Movement 
(main st-side st) TH-TH TH-TH TH-LT TH-LT TH-TH TH-TH TH-TH TH-TH LT-TH LT-TH TH-TH TH-TH TH-LT TH-LT

Lighting (Yes: 
presence of shadow) No Yes No Yes No No Yes Yes No Yes No Yes No Yes

Number of Lanes 
(main st x side st) 1x1 1x1 1x1 1x1 1x1 2x1 1x1 2x1 1x1 1x1 2x1 2x1 2x1 2x1

1 Exposure (spot-hours) 2.22 1.08 2.22 1.08 2.22 4.44 1.8 3.6 6.66 5.4 4.44 3.6 4.44 3.6 46.80

2 No. of actual GTs ≤ 10s 9 5 51 40 25 17 17 10 17 23 36 14 12 11 287

3 No. of reported GTs ≤ 10 
s 27 39 55 39 33 45 68 38 32 64 163 63 17 15 698

4 No. of detected GTs ≤ 
10 s 6 4 47 33 25 16 14 10 9 15 28 7 3 1 218

5 No. of detected GTs > 
10 s 3 0 4 6 0 1 1 0 2 4 1 2 1 3 28

6
Total no. of detected 
GTs comparing to actual 
GTs ≤ 10 s

9 4 51 39 25 17 15 10 11 19 29 9 4 4 246

7
No. of false detections 
out of reported GTs ≤ 10 
s

21 35 8 6 8 29 54 28 23 49 135 56 14 14 480

8
Detection rate at 10 s 
max threshold (item 
6/item 2)

100.0% 80.0% 100.0% 97.5% 100.0% 100.0% 88.2% 100.0% 64.7% 82.6% 80.6% 64.3% 33.3% 36.4% 85.7%

9
False detection rate at 
10 s max threshold (item 
7/item 3)

77.8% 89.7% 14.5% 15.4% 24.2% 64.4% 79.4% 73.7% 71.9% 76.6% 82.8% 88.9% 82.4% 93.3% 68.8%

10 Mean error of 
measurement 0.155 -0.193 0.769 3.296 0.104 0.133 0.374 -1.580 2.655 3.128 -0.276 1.791 0.431 18.231 1.359

11 Standard error 1.117 0.715 3.441 9.177 0.792 0.771 2.996 3.372 7.865 8.894 1.386 7.729 0.247 23.993 6.392
Notes:

All 
ConditionsItem

Gap time is considered as detected if the occurrence times of the actual and reported ones differ within +/- 3 s 

The MOEs of the automated method when the observations are grouped by individual factors are 

presented in Table 4-15. From the aspect of detection performance, the detection rate decreases 

and the false detection rate increases as the distance to the observed conflict spot increases. A 

similar decreasing trend for the detection rate was found when the number of crossing lanes at the 

conflict zone increase from 1 by 1. The measurement accuracy deteriorates significantly as 

indicated by the increase in standard error when (a) there was the presence of a shadow and (b) a 

conflict spot involves LT movements. 

In summary, the findings based on the MOEs presented in Table 4-15 are: 
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• The mean errors of the measurement are positive in all cases. This bias indicates that the 

reported values were frequently longer than the actual ones. The manual review of the 

video clips revealed that the Autoscope frequently missed detection of the first vehicle 

from the approach. 

• The distance to the observed spot and the number of lanes are likely to impact detection 

performance. 

• The presence of a shadow and LT movements at a conflict spot tend to affect the 

measurement accuracy. 

 

Table 4-15: Automated Method MOEs Grouped by Specific Conditions 

Near Mod Far No Yes TH-TH TH-LT 1x1 1x2
1 Exposure (spot-hours) 6.6 24.12 16.08 26.64 20.16 23.4 23.4 22.68 24.12
2 No. of actual GTs ≤ 10s 105 109 73 167 120 133 154 187 100
3 No. of reported GTs ≤ 10 s 160 280 258 372 326 476 222 357 341
4 No. of detected GTs ≤ 10 s 92 89 39 134 86 112 108 155 65
5 No. of detected GTs > 10 s 11 8 7 12 14 6 20 18 8

6 Total no. of detected GTs 
comparing to actual GTs ≤ 10 s 103 97 46 146 100 118 128 173 73

7 No. of false detections out of 
reported gaps ≤ 10 s 68 191 219 238 240 364 114 202 276

8 Detection rate at 10 s max 
threshold (item 6/item 2) 98.1% 89.0% 63.0% 87.4% 83.3% 88.7% 83.1% 92.5% 73.0%

9 False detection rate at 10 s max 
threshold (item 7/item 3) 42.5% 68.2% 84.9% 64.0% 73.6% 76.5% 51.4% 56.6% 80.9%

10 Mean error of measurement 1.635 0.859 1.799 0.468 2.660 0.029 2.586 1.533 0.948
11 Standard error 6.248 5.118 8.783 3.083 9.181 2.703 8.302 6.052 7.161

Number of 
LanesItem Descriptions Distance Lighting (Yes: 

presence of shadow)
Crossing 

Movements

4.4.5.3 Quantifying the Factor Impacts 

It is useful to know how factors or some combination of factors influence measurement accuracy. 

A multiple regression modeling approach was used to quantify the effects of factors discussed in 

the previous section. The explanatory variables considered are defined as follows: 

• D1: 1 – close distance to the conflict spot, 0 – otherwise  

• D2: 1 – moderate distance to the conflict spot, 0 – otherwise 

• D3: 1 – far distance to the conflict spot, 0 – otherwise 

• M: 1 – conflict involves with left-turn vehicles, 0 – otherwise 

• L: 1 – presence of shadow, 0 – otherwise 

• N: 1 – 1x2 lanes, 0 – otherwise 
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Variability of Measurement Errors 

First, the histogram of errors was plotted to check the range and variability of the observations 

(see Figure 4-23). The errors range from -10 to 55 seconds based on a total of 246 observations. 

The errors are limited on the negative side because the observed actual gap values were cut off at 

10 seconds. There is no boundary on positive errors.  

From the histogram of errors, it can be observed that the range is discontinuous at 12 seconds or 

greater. These large errors are likely to be attributable to Autoscope glitches that happen every 

once in a while. For example, the detector may lock in the presence status even when the vehicle 

has left and thereby miss detection of the following vehicles. This could result in large reported 

gap values. It was decided to remove errors greater than 15 seconds to reduce the amount of 

unexplained variability in the measurement errors. These outliers account for 10 observations or 

about 4% of the total sample size. The final sample size used in the regression modeling was 236 

observations. In addition, the absolute measurement errors were used as a dependent variable in 

the regression model. 

 
Figure 4-23: Histogram of Measurement Errors Using All Observations 
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Model Selection Procedure 

Several variable selection procedures were considered in this problem, including forward 

selection, backward selection and stepwise regression. Given that the number of candidate 

variables is not large for today’s computer capability, an all-possible-regression procedure was 

adopted. The all-possible-regression procedure calls for considering all possible subsets of the 

pool of potential explanatory variables and identifying a few good subsets for detailed 

examination (Neter et al., 1996). The adjusted R2 was used to identify good subsets. The final 

selection of the model considers whether it offers a valid interpretation while using a minimal 

number of variables. 

In the selection procedure, it was found that the adjusted R2 improved when using the absolute 

errors as a dependent variable, instead of the actual errors. The intercept was found to be 

consistently statistically insignificant (p-value > 0.4); therefore, the intercept term was dropped 

out of the model in the subsequent fittings.  

Best Fitted Model 

The parameter estimates for both models, with and without interactions, are presented in Table 

4-16. The Durbin-Watson statistics for both models are close to 2.0 (1.95-1.96) and therefore 

indicate no presence of serial correlation problem. The fitted regression model can be used to 

predict the error for the specification of verification threshold in the semi-automated method.  

Table 4-16: Fitted Regression Model for Error Prediction 

D2 (1 if moderate distance to the 
conflict spot, 0 if otherwise) 0.5839 0.2149 2.72 0.0071

D3 (1 if far distance to the 
conflict spot, 0 if otherwise) 1.0571 0.2844 3.72 0.0003

M (1 if left-turn related, 0 if 
otherwise) 0.3960 0.1995 1.98 0.0483

L (1 if shadow is present, 0 if 
otherwise) 0.8750 0.2494 3.51 0.0005

Adjusted R2 = 0.2548

Y = Magnitude of Error

Variable Parameter 
Estimate

Standard 
Error t-ratio Pr > |t|
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The number of lanes and a near conflict spot were found to have no statistically significant impact 

on the error magnitude. The error magnitude was affected most by the far distance, followed by 

the presence of a shadow, moderate distance, and a left-turn movement. 

4.4.6 Semi-Automated Measurement Method 

The semi-automated method aims to address the problem of a high false detection rate in the 

automated approach. The false detection rate in the semi-automated method is reduced when the 

reported gap times are manually verified. The detection rate depends on the number of gap times 

that are verified, which can be controlled by specifying the verification threshold on reported 

values. The maximum detection rate of this method is equal to the detection rate of the automated 

method (by assuming that all the reported gap times are manually verified).  

4.4.6.1 Procedure 

The semi-automated method takes the reported outputs from the Autoscope-based method to 

verify manually using a frame-by-frame video playback. In each record of the output from the 

automated method, the reported time stamp at the end of the gap time event can be used to locate 

the portion of the video clip to be verified. A digitized video format allows us to access the video 

data at a particular frame. However, the number of reported gap times is excessively large, a 

majority of them being false. This brings about an efficiency problem to verify all of the reported 

values, which for this method is no different from the manual measurement. Hence, the upper 

control limit (UCL) and lower control limit (LCL) are specified for a set of reported values to 

save the time required in the manual verification.  

The UCL is specified from the knowledge of the prediction intervals computed from the fitted 

regression model (see Section 4.4.5.3). The LCL is optional and shoud be set at zero to ensure the 

best detection rate. In this evaluation, we set the LCL at 0.5 second only to favor efficient 

verification, which is still not really efficient as the results will explain later.  
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4.4.6.2 Specification of Verification Threshold 

The UCLs are derived from the fitted regression model in Section 4.4.5.3. The 1 α−  prediction 

interval of the error magnitude provides a range in which the true error magnitude will fall at 

significance level α . To compute the prediction interval of the magnitude of error for given 

values denoted by 1 , 1,...,h h pX X − , we define the vector hX  as 

 1

, 1

1

.h
h

h p

X
X

X −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
 (4-1) 

Note that the element “1” in the vector Xh is dropped out in the case of regression through origin. 

The estimated variance of a predicted error, defined as 2 ˆ{ }hs Y , is given by 

 2 2ˆ{ } { } .h h hs Y X s b X′=  (4-2) 

}{2 bs  is a covariance matrix of parameter estimates from the fitted regression model (see Table 

4-17). 

Hence, the 1 α−  prediction limits for a predicted ( )h newY  corresponding to hX , the specified 

values of the X variables, are 

 ˆ (1 , ). { }
2hY t n p s predα

± − −  (4-3) 

where 

 2 2 ˆ{ } { }.hs pred MSE s Y= +  (4-4) 
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Table 4-17: Covariance Matrix of Parameter Estimates of the Fitted Regression Model 

Variable D2 D3 M L
D2 0.04616 0.00544 -0.00104 -0.02110
D3 0.00544 0.08089 -0.00052 -0.01185
M -0.00104 -0.00052 0.03980 -0.02325
L -0.02110 -0.01185 -0.02325 0.06218

Y = β1×D2 + β2×D3 + β3×M + β4×L

 

However, the UCL can be computed using one-tailed t-value because the lower limit of error 

magnitude must be zero. The formula for the UCL at level α  is 

 ˆ (1 , ). { },obs hUCL GT Y t n p s predα= + + − −  (4-5) 

where obsGT  is the observation threshold for the gap times and ĥY  is the predicted error 

magnitude evaluated at a given set of variables. 

Table 4-18: Example of UCL Computation 
N = 236

Predicted Y = 1.4589
D2 1 0.5839 MSE = 3.4250
D3 0 1.0571 s{pred} = 1.8685
M 0 0.3960 alpha = 0.15
L 1 0.8750 GT threshold = 6.0000

UCL = 9.3998

Variable Xh
Parameter 
Estimates

* UCL is computed using one-tailed t-
value and GT observation threshold is 
assumed to be 6 seconds

 

The example of UCL computation for a moderate-distance conflict spot with the presence of a 

shadow is shown in Table 4-18. The α-value of 0.15 appears to be a good compromise between 

detection and efficiency rates. The computed UCL value should be considered as a guideline and 

therefore is flexible for adjustment if necessary.  

4.4.6.3 Measures of Effectiveness 

The following MOEs are used to evaluate the performance of the semi-automated method: 

• Number of verified gaps: the number of Autoscope-reported gap times within the 

specified limits, which are to be verified manually. 
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• Number of detected gaps: the number of actual gap times that can be detected by 

manually verifying the Autoscope-reported ones. 

• Number of missed detections or undetected gaps: the missed detections are classified into 

three types: (a) overreporting, (b) non-reporting and (c) underreporting. The first type can 

be reduced at the expense of the efficiency rate by increasing the UCL, while the third 

type can be eliminated if the LCL is set to zero. 

• Detection rate: the ratio of the number of detected gap times to the number of actual gap 

times. 

• Missed detection rate: the ratio of the number of undetected gap times to the actual gap 

times, classified into three types: (a) missed detection rate by overreporting, (b) missed 

detection rate by non-reporting, and (c) missed detection rate by underreporting. 

• Efficiency rate: the ratio of the number of detected gap times to the number of verified 

gap times. 

4.4.6.4 Evaluation Results 

We set the observation threshold of gap times at six seconds for this evaluation to reflect the 

probable working threshold if this method is to be used. Table 4-19 presents a summary of the 

MOEs of the semi-automated method classified by a set of conditions. The LCL was specified at 

0.5 second only to improve the efficiency rate. The UCLs were computed for each case using the 

procedure described earlier. The final selected UCLs were done by grouping the sets of 

conditions that have similar ranges of UCL and then assigning one common UCL for each group. 

The detection rate is almost 80%, which is comparable to the automated method. However, the 

efficiency rate is very low (9%), which is very undesirable. This basically implies that out of 

every 100 reported gap times verified, only about nine of them are correctly reported. The 

efficiency rate is extremely poor for the condition of far conflict spots. Thus, this case may be 

avoided, which leads to the performance summary in Table 4-20 in which the case of far conflict 

spots is excluded from the consideration. 
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Table 4-19: MOEs of Semi-Automated Method Classified by Conditions of Conflict Spots  
Distance Near Near Near Near Mod Mod Mod Mod Mod Mod Far Far Far Far

Crossing Movement (main st-
side st) TH-TH TH-TH TH-LT TH-LT TH-TH TH-TH TH-TH TH-TH LT-TH LT-TH TH-TH TH-TH TH-LT TH-LT

Lighting (Yes: presence of 
shadow) No Yes No Yes No No Yes Yes No Yes No Yes No Yes

Number of Lanes (main st x 
side st) 1x1 1x1 1x1 1x1 1x1 2x1 1x1 2x1 1x1 1x1 2x1 2x1 2x1 2x1

1 Selected UCL 7.922 8.454 8.454 8.454 8.454 8.454 8.454 9.400 9.400 9.400 9.400 9.400 10.282 10.282
2 Exposure (spot-hours) 2.22 1.08 2.22 1.08 2.22 4.44 1.8 3.6 6.66 5.4 4.44 3.6 4.44 3.6 46.8
3 No. of actual gap times ≤ 6 s 1 12 3 11 11 0 2 4 2 7 8 1 2 2 66

4 No. of verified gap times: range of 
reported values = (0.5,UCL) 18 46 27 34 28 34 28 46 27 60 148 15 61 14 586

5 No. of detected gap times 1 11 2 9 11 0 1 2 2 6 6 0 1 0 52
6 Number of overreported values 0 1 0 1 0 0 0 1 0 1 0 0 0 1 5
7 Number of non-reported values 0 0 1 1 0 0 1 0 0 0 2 0 1 1 7
8 Number of underreported values 0 0 0 0 0 0 0 1 0 0 0 1 0 0 2
9 Total no. of undetected gaps 0 1 1 2 0 0 1 2 0 1 2 1 1 2 14
10 Detection rate (item 5/item 3) 100.0% 91.7% 66.7% 81.8% 100.0% NA 50.0% 50.0% 100.0% 85.7% 75.0% 0.0% 50.0% 0.0% 78.8%
11 Efficiency rate (item 5/item 4) 5.6% 23.9% 7.4% 26.5% 39.3% 0.0% 3.6% 4.3% 7.4% 10.0% 4.1% 0.0% 1.6% 0.0% 8.9%

12 Missed detection rate by 
overreporting (item 6/item 3) 0.0% 8.3% 0.0% 9.1% 0.0% NA 0.0% 25.0% 0.0% 14.3% 0.0% 0.0% 0.0% 50.0% 7.6%

13 Missed detection rate by 
nonreporting (item 7/item 3) 0.0% 0.0% 33.3% 9.1% 0.0% NA 50.0% 0.0% 0.0% 0.0% 25.0% 0.0% 50.0% 50.0% 10.6%

14 Missed detection rate by 
underreporting (item 8/item 3) 0.0% 0.0% 0.0% 0.0% 0.0% NA 0.0% 25.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 3.0%

All 
ConditionsItem

 

Table 4-20: MOEs of Semi-Automated Method (Excluding Far Conflict Spots) 

No Yes Near Mod TH-TH TH-LT
2 Exposure (spot-hours) 30.72 11.76 18.96 6.6 24.12 21.36 9.36
3 No. of actual gap times ≤ 6 s 53 26 27 27 26 21 32

4 No. of verified gap times: range of 
reported values = (0.5,UCL) 348 154 194 125 223 180 168

5 No. of detected gap times 45 24 21 23 22 18 27
6 Number of overreported values 4 1 3 2 2 1 3
7 Number of non-reported values 3 1 2 2 1 1 2
8 Number of underreported values 1 0 1 0 1 1 0
9 Total no. of undetected gaps 8 2 6 4 4 3 5

10 Detection rate (item 5/item 3) 84.9% 92.3% 77.8% 85.2% 84.6% 85.7% 84.4%
11 Efficiency rate (item 5/item 4) 12.9% 15.6% 10.8% 18.4% 9.9% 10.0% 16.1%

12 Missed detection rate by overreporting 
(item 6/item 3) 7.5% 3.8% 11.1% 7.4% 7.7% 4.8% 9.4%

13 Missed detection rate by nonreporting 
(item 7/item 3) 5.7% 3.8% 7.4% 7.4% 3.8% 4.8% 6.3%

14 Missed detection rate by underreporting 
(item 8/item 3) 1.9% 0.0% 3.7% 0.0% 3.8% 4.8% 0.0%

Lighting (Yes: 
presence of 

shadow)

Crossing 
Movements

Distance from 
Camera to 

Conflict SpotItem Descriptions

Overall 
Performance 
without Far 

Conflict Spots

The overall performance of the semi-automated method slightly improves when the far conflict 

spots are excluded. From Table 4-20, the presence of a shadow appears to most affect the method 

performance both in terms of the detection rates and the efficiency rates. The detection rates are 

slightly affected by the distance and movement while the efficiency rates drop as the distances 

increase. The higher efficiency rate for the TH-LT movement may be attributable to the fact that 

the left-turn volumes are much less than the through volumes, thereby producing a lower number 

of false calls. 
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The efficiency rate of the semi-automated method is still far from desirable while the detection 

rate is comparable to the automated method. The automated method suffers from the high false 

detection rates. There appears to be no easy solution in order to continue the data collection using 

either the automated or semi-automated method. Therefore, the manual method is selected for the 

full-scale data collection needed in this study.  

4.5 DATA COLLECTION PROCEDURE AND COLLECTED DATA 

4.5.1 Selected Measurement Method 

The Autoscope-based automated method produced an excessive false detection rate and large 

measurement errors and thus was not a suitable approach. The semi-automated method addresses 

the problems of false detection and measurement accuracy in the automated method at the 

expense of the data collection time; which appears to have no advantage over the manual method. 

Furthermore, the detection performance in the Autoscope-based method also suffers from the 

following issues: 

• Poor detection performance at far conflict spots. 

• A high rate of false calls when a long shadow is present. 

• Occlusions of vehicles from adjacent lanes. 

• Limited processing load on the Autoscope unit. An unusually high processing load can 

seriously impair the detection capability.  

In addition, the PET cannot be measured reliably using the Autoscope as discussed earlier. The 

manual method, on the other hand, can accurately give the GT, PET, and ET for each crossing 

event without the restrictions encountered in the Autoscope-based method. The time savings 

gained from the semi-automated method compared to the manual method is marginal if at all. The 

detection rates of both automated and semi-automated methods still fall short of our expectations 

in this study. A critical event is rare and therefore we cannot afford to lose as much as 10% of the 

detections in the Autoscope-based method. The manual method appears to be the most reasonable 

method in this study thus far. Hence, the manual measurement method is chosen for extracting all 

the surrogate data collected from the digitized video clips. 



 

 

102

4.5.2 Data Collection Procedure 

Let us recall the important definitions frequently used in the data collection: 

• Conflict zone is an area defined by the intersection of two crossing traffic flows. One 

intersection may have up to four conflict zones (see Figure 4-3).  

• Conflict spot is an intersection area of two crossing vehicle paths in a conflict zone (see 

example in Figure 4-9).  

• Gap time (GT) is the time between the entries into the conflict spot of two vehicles, 

measured from the front bumper to the front bumper. The GT can be broken down into 

two components based on the terms coined by Allen et al. (1978): encroachment time 

(ET) and post-encroachment time (PET). GT is a summation of ET and PET. 

• Encroachment time (ET) is the time that the first vehicle entering the conflict spot 

infringes upon the right-of-way of the second vehicle, measured from the rear bumper to 

the front bumper.  

• Post-encroachment time (PET) is the time it takes from the end of the right-of-way 

infringement of the first vehicle for the second vehicle to reach the conflict spot, 

measured from the rear bumper to the front bumper. 

All of above were described graphically in Figure 4-10. GT would be a good measure of crash 

proximity only if the first vehicles occupy the conflict for the same amount of time. This 

assumption does not hold true in reality because vehicles vary in length and move at different 

speeds. PET is a better choice; its value of zero or less represents a crash occurrence. Allen et al. 

(1978) also concluded that PET was the most promising indicator for its relative ease of 

measurement and safety implication. PET has a specific value for any crossing event (consecutive 

two passages from conflicting directions). Unlike TTC, the PET measurement does not involve 

human judgment and is relatively easier for automation, which is an important factor of a 

method’s practicality. It was observed that a long ET is usually caused by the following 

situations: (a) a slow-speed vehicle, (b) a truck or semi-truck, and (c) a vehicle idling due to 

queue overflows. Allen et al. (1978) also noted that the ET is usually long for a left-turn related 

movement. 
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(a) During the data collection 

 
(b) Inside the van 

Figure 4-24: Purdue University Mobile Traffic Laboratory 

 

 
Figure 4-25: Configuration of Conflict Spots at Intersection 97901 
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To demonstrate the data collection procedure, we selected the suburban signalized intersection of 

SR-26 @ 18th St (intersection 97901) from a list of selected studied sites. This is a four-leg 

intersection with one through lane and one left-turn lane on each approach. All left-turns are 

permitted except the eastbound left-turn, which is protected-permitted. Traffic movement data 

were collected by videotaping the traffic at this intersection using the Purdue University mobile 

traffic laboratory (see Figure 4-24). The mobile traffic laboratory is equipped with a 42-foot 

pneumatic mast with two surveillance cameras. Eight hours of traffic (9:00 AM – 4:00 PM and 

4:30 PM – 5:30 PM) were recorded in a digital format on April 8, 2003. All four conflict zones 

were observable in the camera field of view. 

The PET values were measured by watching the video material frame by frame. The manual 

method was used to reduce the measurement error to a minimum. For the manual measurement 

method, the recorded video clips at the intersections were digitized at the resolution of 30 fps, 

which gives the attainable average precision of 1/30 s. Conflict spots were marked on the video 

monitor with Autoscope virtual detectors (Figure 4-25). The virtual conflict spots assisted a 

human reviewer in determining specific frames where vehicles entered and exited the conflict 

spots.  

In the process of data extraction, we recorded t1, t2, and t3 as shown in Figure 4-10 for each 

crossing event and then computed the GT, ET and PET. The PET values that were larger than 

eight seconds were not recorded since they were not useful for safety estimation purposes. The 

corresponding PET values were too long to believe that they are in close proximity with crashes. 

To summarize, the following data were collected at each site: 

• Historical crash data 

• Sketch of intersection layout 

• Archived detector layout 

• Eight hours of PET, ET, and GT data 

• Signal cycle data 

• Eight-hour 15-minute directional counts of traffic volume 
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4.5.3 Summary of Collected Data 

4.5.3.1 Historical Crash Data 

The right-angle crashes from 1997 to 2000 for all of the selected 18 sites were verified with the 

actual police accident report archived in the microfiche format. The collision zone was also 

recorded for each collision. The environment condition at the time of crash occurrence was also 

retrieved from the database, which includes the date, time, and weather condition if available. 

4.5.3.2 Sketch of Intersection Layout 

This is important for the calibration of Autoscope in the automated measurement method. 

Although the manual method does not require this information, it still provides a good reference 

for the intersection studied. Examples of the sketches of sites 89707 and 87933 are displayed in 

Figure 4-26 and Figure 4-27 respectively. There are a total of 18 intersection sketches in this 

study. The following information is included in the sketch: 

• Names of crossroads 

• Nearby landmarks 

• Date and weather conditions 

• Type of traffic control signal 

• Yellow and all-red intervals 

• Traffic signal phasing diagram 

• Lane assignment 

• Lane widths 

• Lane markings 

• Crosswalks 

• Stop bar 

• Van parking location 

• Conflict spot notation 
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Figure 4-26: Intersection 87907 Layout and Conflict Spots 
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Figure 4-27: Intersection 87933 Layout and Conflict Spots 
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4.5.3.3 Surrogate Data 

The PET, GT, and ET data were collected at each site for eight hours. The list of collection 

periods and observation dates for all sites is given in Table 4-21. We aimed to cover the morning, 

mid-day, and afternoon peak periods in the eight-hour duration. The observed duration at site 

97915 was less than eight hours due to the intermittent loss of the video signal. Sites 97915 and 

97918 have very few PETs shorter than eight seconds observed during the entire observation 

period. 

Table 4-21: Summary of Periods of Extracted Surrogate Data 
Site Date Periods of Extracted Gaps Total Duration
87905 Friday, June 13, 2003 0745-0845, 1000-1600, 1630-1730 08 hrs
87906 Monday, June 16, 2003 0730-0830, 1000-1600, 1630-1730 08 hrs
87907 Thursday, May 22, 2003 0900-1000, 1000-1600, 1630-1730 08 hrs
87909 Wednesday, June 25, 2003 0800-0900, 1000-1600, 1630-1730 08 hrs
87915 Friday, April 11, 2003 0800-0900, 1000-1600, 1630-1730 08 hrs
87923 Tuesday, May 27, 2003 0800-0900, 1000-1600, 1630-1730 08 hrs
87930 Wednesday, July 02, 2003 0730-0830, 1000-1600, 1630-1730 08 hrs
87932 Monday, July 14, 2003 0730-0830, 1000-1600, 1630-1730 08 hrs
87933 Wednesday, April 02, 2003 0900-1000, 1000-1600, 1630-1730 08 hrs
97901 Tuesday, April 08, 2003 0900-1000, 1000-1600, 1630-1730 08 hrs
97903 Tuesday, April 29, 2003 0815-0915, 1000-1600, 1630-1730 08 hrs
97905 Monday, April 21, 2003 0745-0845, 1000-1600, 1630-1730 08 hrs
97911 Wednesday, May 21, 2003 0830-0930, 1000-1600, 1630-1730 08 hrs
97915(1,2) Wednesday, April 09, 2003 0745-0945, 1000-1100, 1230-1500, 1615-1815 07 hrs 30 mins
97918(1) Wednesday, July 09, 2003 0730-0830, 1000-1600, 1600-1700 08 hrs
97920 Tuesday, April 01, 2003 0745-0845, 1000-1600, 1630-1730 08 hrs
97922 Wednesday, April 16, 2003 0800-0900, 1000-1600, 1630-1730 08 hrs
97940 Friday, April 18, 2003 0745-0845, 1000-1600, 1615-1715 08 hrs

Notes:

(2) Intermittent loss of video signal during the data collection.

(1) The number of PETs ≤ 8 s at sites 97915 and 97918 are 8 and 1 respectively for the entire period of 
observation.

 

To facilitate the manual measurement of the PET data, an Excel worksheet as shown in Figure 

4-28 was designed for data recording. To use the worksheet, the time events t1 (the front bumper 

of the first vehicle entering the conflict spot), t2 (the rear bumper of the first vehicle leaving the 

conflict spot), and t3 (the front bumper of the second vehicle entering the conflict spot) are 

recorded in the worksheet in which the corresponding PET and GT will be automatically 

calculated. The t1, t2 and t3 are respectively recorded as “mainEnt,” “mainExit,” and “sideEnt” if 

the first vehicle was coming from the main street. On the other hand, the t1, t2, and t3 was 

recorded in sequence as “sideEnt,” “sideExit,” and “mainEnt” if the first vehicle was coming 

from the side street. 
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 Site Code
Main St
Side St
Date
Time
Detector File
Observed Collision 
Zones
Number of Conflict 
Spots 16

GT Observation 
Threshold (sec) 8

Notes

hr mm ss fr hr mm ss fr hr mm ss fr hr mm ss fr
90011 czSBWB SB2WB2 0 1 6 3 0 1 6 14 0 1 13 1 6.933 6.567 1
91511 czSBEB SB1EB1 0 16 5 0 0 16 5 20 0 16 10 27 5.900 5.233 1
92935 czSBEB SB1EB1 0 30 28 17 0 30 29 1 0 30 33 4 4.567 4.100 1
94208 czSBEB SB1EB1 0 43 0 12 0 43 0 24 0 43 4 5 3.767 3.367 1 maj. ran red light

100415 czSBEB SB1EB1 0 5 9 3 0 5 9 26 0 5 15 13 6.333 5.567 1
101229 czSBEB SB1EB2 0 13 30 7 0 13 22 9 0 13 22 28 7.933 7.300 2
101720 czSBEB SB2EB1 0 18 13 13 0 18 14 15 0 18 19 21 6.267 5.200 1
102813 czNBEB NB1EB1 0 29 10 24 0 29 5 24 0 29 6 6 5.000 4.600 2
102813 czNBEB NB2EB1 0 29 10 29 0 29 6 0 0 29 6 13 4.967 4.533 2
103144 czSBEB SB2EB1 0 32 36 3 0 32 36 16 0 32 43 8 7.167 6.733 1
104525 czNBWB NB2WB1 0 46 16 14 0 46 17 2 0 46 23 28 7.467 6.867 1 van hidden by bus
104629 czSBEB SB2EB1 0 47 20 4 0 47 20 23 0 47 26 7 6.100 5.467 1
105347 czSBEB SB2EB1 0 54 38 7 0 54 38 22 0 54 45 19 7.400 6.900 1
105348 czSBEB SB1EB1 0 54 38 25 0 54 39 15 0 54 44 28 6.100 5.433 1
110538 czNBEB NB2EB1 0 6 22 25 0 6 23 8 0 6 29 22 6.900 6.467 1

: : : : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : : : :

PET Type RemarksMainExit SideEnt SideExit GTVdoTime (hhmmss) Czone Cspot MainEnt

0900-1000, 1000-1100, 1100-1300, 1300-1400, 1400-1500, 1500-1600, 1630-1730
87907A.TF

czNBEB, czNBWB, czSBEB, czSBWB

By Robert, Melanie, Heintze

87907
Creasy Lane
McCarty Lane
May 22, 2003

 
Figure 4-28: Excel Worksheet for Manual PET Measurement 

The PET data were extracted from the video clips digitized at 30 frames per second during May 

2003 to January 2004. Several undergraduate students at Purdue University were trained for about 

four to eight hours before participating in the data extraction. A trained observer needed 

approximately one to three hours to extract data from one hour of video material, depending on 

the complexity of the traffic operations. The final data set consists of a series of events as 

tabulated in Table 4-22. Each recorded event contains the following information: 

• Site ID (Site) 

• Video time stamp at the beginning of the recorded event (VdoTime) 

• Conflict zone of the event being observed (Czone) 

• Conflict spot of the event being observed (Cspot) 

• Gap time (GT) 

• Post-encroachment time (PET) 

• Encroachment time (ET), which is obtained by subtracting PET from GT 

• Sequence of the vehicle entering the conflict spot (GapType) – 1 if the main-street 

vehicle enters first and 0 if otherwise. 
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Table 4-22: Example of Recorded PET, GT, and ET Values 
Site VdoTime Czone Cspot GT PET ET GapType

87907 90011 czSBWB SB2WB2 6.933 6.567 0.367 1
87907 91511 czSBEB SB1EB1 5.900 5.233 0.667 1
87907 92935 czSBEB SB1EB1 4.567 4.100 0.467 1
87907 94208 czSBEB SB1EB1 3.767 3.367 0.400 1
87907 100415 czSBEB SB1EB1 6.333 5.567 0.767 1
87907 101229 czSBEB SB1EB2 7.933 7.300 0.633 2
87907 101720 czSBEB SB2EB1 6.267 5.200 1.067 1
87907 102813 czNBEB NB1EB1 5.000 4.600 0.400 2
87907 102813 czNBEB NB2EB1 4.967 4.533 0.433 2
87907 103144 czSBEB SB2EB1 7.167 6.733 0.433 1
87907 104525 czNBWB NB2WB1 7.467 6.867 0.600 1
87907 104629 czSBEB SB2EB1 6.100 5.467 0.633 1
87907 105347 czSBEB SB2EB1 7.400 6.900 0.500 1
87907 105348 czSBEB SB1EB1 6.100 5.433 0.667 1

: : : : : : : :
: : : : : : : :  

Examples of archived detector configurations at sites 87907 and 87933 for PET measurement are 

shown in Figure 4-29 and Figure 4-30 respectively.  

 
Figure 4-29: Autoscope Detector Configuration at Intersection 87907 
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Figure 4-30: Autoscope Detector Configuration at Intersection 87933 

 

Table 4-23: Summary of Periods of Traffic Counts 
Site Date Periods of Counted Traffic Volume Total Duration
87905 Friday, June 13, 2003 0745-0845, 1000-1730 08 hrs 30 mins
87906 Monday, June 16, 2003 0730-1730 10 hrs
87907 Thursday, May 22, 2003 0845-1730 08 hrs 45 mins
87909 Wednesday, June 25, 2003 0730-1730 10 hrs
87915 Friday, April 11, 2003 0800-1730 09 hrs 30 mins
87923 Tuesday, May 27, 2003 0800-0900, 1000-1730 08 hrs 30 mins
87930 Wednesday, July 02, 2003 0730-0900, 1000-1345, 1400-1730 08 hrs 45 mins
87932 Monday, July 14, 2003 0730-0900, 1000-1730 09 hrs
87933 Wednesday, April 02, 2003 0815-1730 09 hrs 15 mins
97901 Tuesday, April 08, 2003 0815-1730 09 hrs 15 mins
97903 Tuesday, April 29, 2003 0815-0915, 1000-1730 08 hrs 30 mins
97905 Monday, April 21, 2003 0745-0900, 1000-1730 08 hrs 45 mins
97911 Wednesday, May 21, 2003 0815-1730 09 hrs 15 mins
97915(1) Wednesday, April 09, 2003 0745-1100, 1215-1500, 1600-1815 08 hrs 15 mins
97918(2) Wednesday, July 09, 2003 0730-0900, 1000-1200, 1400-1700 06 hrs 30 mins
97920 Tuesday, April 01, 2003 0745-0900, 1000-1730 08 hrs 45 mins
97922 Wednesday, April 16, 2003 0800-0900, 1000-1730 08 hrs 30 mins
97940 Friday, April 18, 2003 0730-0900, 1000-1730 09 hrs

Notes:
(1) Intermittent loss of video signal during the observation period.
(2) The traffic volume data are incomplete at this location because of poor visibility of traffic 
movements caused by the rain interruption and limited field of view.  
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4.5.3.4 15-minute Directional Traffic Counts 

The 15-minute directional traffic counts were collected manually using the Jamar® traffic 

counter. About 50% of the counts were collected in the field and the remainder was completed 

later in the laboratory from the recorded video materials. The list of periods with traffic counted 

at each site is provided in Table 4-23. The periods of counted traffic volume coincide with those 

of the measured PETs.  

The characteristics of the collected data and the safety relationships will be examined in the next 

chapter. 
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CHAPTER 5 REGRESSION ANALYSES OF SAFETY RELATIONSHIPS 

The crash count and traffic characteristics collected are examined in this chapter prior to 

discussion of the development of the extreme value modeling approach in Chapter 6. The three 

traffic characteristics analyzed are post-encroachment times, encroachment times, and traffic 

volumes. We will check the relationships between these data and the crash counts as typically 

implemented in traditional analysis of surrogate measures of safety. Any correlation between 

these measure and crashes would confirm a chance for successful model building. Then, we will 

proceed from a standard regression for a group of locations to extreme value modeling of safety 

at individual sites. 

5.1 CRASH COUNTS 

Table 5-1 presents a summary of right-angle crash counts at the selected sites. The crash counts in 

this table reflect adjustment of the counts at the locations where the camera’s field of view could 

cover only a part of the intersection. Those crashes that occurred in the area where traffic 

movements were not observable from the videos were not counted (see Table 4-5 and Table 4-6 

for complete crash data). The right-angle crash counts in this table are also classified by a set of 

conditions during the crash occurrences. 

Sites 97915 and 97918 were not considered in the subsequent analysis because of incomplete data 

at both sites. The video material at site 97915 was incomplete because of the intermittent loss of 

video signal. Site 97918 had incomplete volume data due to a rain interruption and a restricted 

field of view from the recorded videos. It is interesting, however, to note that these two sites had 

very low counts of PETs during the entire observation period. Both of these sites have protected 

left-turn phases with heavy left-turn traffic volume. Short PETs between straight traffic flows are 

prevented from occurring by being separated in time with the leading left-turn phase in each 

cycle.  
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A good amount of dispersion of crash counts across the locations is important to ensure that the 

sample locations have varying levels of safety. This property is desirable for the validation 

process where we determine if the method is capable of discriminating various safety levels at the 

studied locations. The amount of dispersion can be estimated by the overdispersion parameter, 

which is 

 2

varˆ ,c a
a

α −
=  (5-1) 

where α̂  is estimated overdispersion parameter, var c  is a sample variance of crash counts from 

all sites, and a  is a sample mean of crash counts from all sites. 

Table 5-1: Summary of Right-Angle Crash Counts in 1997 – 2000 

All 
Conditions Daytime Daytime and 

Non-winter

Daytime, non-
winter, and 

weekday

Daytime, non-
winter, weekday, 

and normal 
weather (1)

87905 Creasy Ln @ SR-26 2 1 1 1 1
87906 SR-26 @ Farabee Dr 10 6 6 5 5
87907 Creasy Ln @ McCarty Ln 5 3 2 2 1
87909 Earl Av @ Kossuth St 13 7 4 3 3
87915 US-231 @ Beck Ln 5 3 2 2 2
87923 SR-43 @ CR-600 N 5 2 2 1 0
87930 Greenbush St @ Shenandoah Dr 0 0 0 0 0
87932 Creasy Ln @ Union St 2 2 2 2 2
87933 Union St @ 14th St 1 1 1 0 0
97901 SR-26 @ 18th St 32 18 12 10 5
97903 US-52 @ McCarty Ln 14 7 6 4 4
97905 SR-26 @ Earl Av 16 7 4 3 2
97911 US-52 @ Kossuth St 6 4 0 0 0
97915 (2) US-52 @ SR-26 4 1 1 0 0
97918 US-52 @ Duncan Rd 1 0 0 0 0
97920 SR-26 @ SR-526 1 1 0 0 0
97922 (3) Greenbush St @ US-52 3 1 0 0 0
97940 US-52 @ CR-300 W 8 7 6 4 4

Total 128 71 49 37 29
Mean 7.111 3.944 2.722 2.056 1.611
Variance 61.516 18.997 9.977 6.644 3.428
Overdispersion (α) 1.076 0.967 0.979 1.086 0.700

Site ID Intersection 

Conditions

(1) Normal weather is defined as no precipitation and good visibility for driving conditions.
Notes:

(3) czSBWB (conflict zone between southbound and westbound traffic) is not observable in the camera field of view 
during the data collection.

(2) czSBEB (conflict zone between southbound and eastbound traffic) and czSBWB (conflict zone between southbound 
and westbound traffic) are not observable in the camera field of view during the data collection.

 

The overdispersion parameter is non-negative and the zero value is equivalent to the undispersed 

data. The further the overdispersion parameter is from zero indicates an increasing amount of 
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dispersion. The overdispersion parameter shown in the table is close to 1 in all cases except for 

the last column, which is about 0.700. This implies that crash counts from the sample sites are 

overdispersed and therefore comprise varying levels of safety, which is desirable for our study. 

5.2 POST-ENCROACHMENT TIME 

The basic summary statistics of PET data are presented for all sites. PET data are the key 

surrogate measure of safety, which we later will use to build the models.  

5.2.1 PET Counts 

Counts of PETs shorter than the threshold values varied from one second to eight seconds for all 

16 sites, except the two with incomplete data are tabulated in Table 5-2. 

Table 5-2: Count Summary of Observed PETs 

8.0 s 7.5 s 7.0 s 6.5 s 6.0 s 5.5 s 5.0 s 4.5 s 4.0 s 3.5 s 3.0 s 2.5 s 2.0 s 1.5 s 1.0 s
87905 68 68 59 47 31 25 16 13 8 5 2 0 0 0 0
87906 190 186 162 129 98 66 42 26 15 7 3 2 1 0 0
87907 95 94 81 68 54 35 19 10 3 1 0 0 0 0 0
87909 538 537 457 357 268 184 121 72 38 14 7 2 2 0 0
87915 250 244 216 164 116 81 47 23 15 3 1 1 1 1 0
87923 70 69 56 40 24 15 11 4 2 1 0 0 0 0 0
87930 90 90 70 54 38 30 19 11 7 2 1 0 0 0 0
87932 60 59 45 39 27 20 8 4 1 0 0 0 0 0 0
87933 180 180 159 132 104 81 48 30 17 8 3 2 1 1 1
97901 573 571 508 413 311 219 149 79 35 14 9 4 0 0 0
97903 550 544 493 398 327 262 196 146 115 81 59 43 34 27 17
97905 182 180 153 135 106 78 47 30 16 7 4 0 0 0 0
97911 113 112 105 87 69 55 42 24 12 5 1 0 0 0 0
97920 164 162 134 113 79 56 42 24 10 3 0 0 0 0 0
97922 60 59 48 37 26 14 10 5 1 0 0 0 0 0 0
97940 28 27 23 19 15 10 5 1 1 1 0 0 0 0 0

Site 8-hour counts of PETs ≤

 

At the eight-second threshold, the eight-hour PET counts range from 28 to 538, which indicates a 

significant amount of variability in the PET data necessary for modeling as well as for validation 

purposes. Also, it should be noted that a PET of three seconds or less is very infrequent at most 

sites. Site 97903 is overwhelmed by a number of PETs shorter than three seconds and a review of 

the video clips at this intersection revealed that a number of extremely short PETs were caused by 

queue spillbacks during congested periods. 
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5.2.2 Summary Statistics of PET 

The summary statistics of the collected PETs between straight traffic flows are shown in Table 

5-3. The yellow, all-red, and intergreen periods measured from the field at each intersection are 

also presented. PETs of six seconds or shorter are used to calculate the summary statistics. The 

six-second threshold was selected as it gives a sample mean close to a sample median at most 

sites. In addition, decreasing trends of PETs are more consistent from six seconds to shorter 

values. The slight variations of the sample means and the sample medians from site to site do not 

constitute any distinct pattern. The intergreen periods range from five to six seconds for selected 

sites. The minimum observed PETs range from 0.1 second to 3.9 seconds for eight hours of 

observation. The value of 0.1 second at site 97903 was caused by queue spillbacks while the 

value of 0.867 at site 87933 was caused by a single event of red light violation.  

Table 5-3: Summary Statistics of Post-Encroachment Time and Signal Settings 

Yellow All-Red Intergreen
(Y) (AR) (Y+AR)

87905 31 2.633 4.050 4.900 4.646 5.300 5.967 4.0 NA NA
87906 98 1.633 4.442 5.167 4.951 5.667 6.000 NA NA NA
87907 54 3.367 4.600 5.350 5.136 5.592 6.000 4.0 2.0 6.0
87909 268 1.700 4.467 5.167 4.971 5.642 6.000 4.0 1.0 5.0
87915 116 1.400 4.592 5.300 5.060 5.633 6.000 3.0 2.0 5.0
87923 24 3.067 4.592 5.167 5.040 5.675 5.833 4.0 2.0 6.0
87930 38 2.700 4.375 4.983 4.846 5.433 5.967 3.5 1.5 5.0
87932 27 3.600 4.967 5.200 5.156 5.450 6.000 4.0 1.0 5.0
87933 104 0.867 4.392 5.100 4.846 5.467 6.000 3.0 2.0 5.0
97901 311 2.133 4.500 5.067 4.963 5.633 6.000 3.0 2.0 5.0
97903 327 0.100 3.617 4.700 4.277 5.400 6.000 3.0 2.0 5.0
97905 106 2.933 4.392 5.133 4.925 5.533 6.000 NA NA NA
97911 69 2.800 4.100 4.833 4.746 5.433 6.000 3.0 2.0 5.0
97920 79 3.267 4.317 5.000 4.908 5.600 6.000 NA NA NA
97922 26 3.933 4.800 5.467 5.174 5.700 5.867 3.0 2.0 5.0
97940 15 3.300 4.750 5.300 5.116 5.633 5.967 3.0 2.0 5.0

1st 
QuartileMin8-hr 

Counts

Note: NA = Data is not available

Summary Statistics based on PET ≤ 6 seconds Signal Settings (sec)
Site 
ID Max3rd 

QuartileMeanMedian

 

5.2.3 PET Variations over Time 

The PETs were plotted over time for the entire site as well as for each conflict zone (see Figure 

C-1 to Figure C-32). Preliminary examination of these plots reveals that the PET values were 

more likely to be shorter in the afternoon period, particularly for the sites with frequent PET 

occurrences. This may be the result of increasing volumes during the afternoon period. The 

declining trends of PETs are less distinct for the sites with low PET counts. A few short PETs 
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were observed randomly at many sites. These short PETs may significantly influence the 

modeling results for those intersections with infrequent occurrences of PETs. 

In the plots the sequence of the two vehicles entering a conflict spot for each PET is distinguished 

as 0/1 indicator where 1 signifies the PET that the main-street vehicle reaches the conflict spot 

first and 0 signifies the PET that the side-street vehicle reaches the conflict spot first. The 0/1 

vehicle entering sequences were somewhat evenly distributed for most sites observed. The PET 

variation plots by conflict zones, however, reveal that PETs are more likely to cluster at certain 

conflict zones for sites such as 87906, 87907 and 97903. Apart from the mentioned sites, 

distributions of PET counts by conflict zones were more or less random and therefore the 

aggregation of PET data from all conflict zones at the same site was expected to have minimal 

impact on the safety modeling from a theoretical viewpoint.  

5.2.4 Distributions of PET 

The distributions of PETs for all sample sites are plotted in Figure C-33 to Figure C-36. The 

PETs of eight seconds or less from all conflict zones are presented. Negated PETs were used 

instead of regular PETs for two reasons: (a) it is relatively simpler to compare the distributions 

between sites as the abscissa are left-truncated at the same point and the heavier right tail implies 

a greater degree of hazard; and (b) it is consistent with the extreme value modeling of PET 

presented in the next chapter where PETs are negated and grouped into blocks. 

The following points are observed from the distribution plots: 

• In general, the distributions of negated PETs tend to decrease rapidly at the beginning 

and then level off as negated PETs approach zero. 

• The empirical distributions are disconnected at the right tail for sites 87909, 87915, 

87933, and 97940. For sites with low PET frequency, these few values at the right tail 

can have influential impacts on extreme value modeling. 

• The patterns of PETs greater than six seconds are somewhat random. PETs in this range 

are less governed by the effect of signal settings and driver behavior from two crossing 

flows. Instead, the values of PETs strongly depend on the arrival times of vehicles at 

intersections. The crossing event with PETs in this range are usually far from hazardous 

situations.  
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5.3 TRAFFIC VOLUME 

Traffic volume is perhaps the most popular exposure variable in both crash-based and non-crash-

based safety estimations. The importance of traffic volume is often explained in simple words – 

there is no crash if there is no traffic. The traffic volumes in 15-minute intervals corresponding to 

the eight-hour periods of PET observation were collected using Jamar® traffic counters. 

Two types of volume trends, total entering volumes and conflicting volumes, were examined at 

each intersection. Figure 5-1 is an example of the 15-minute traffic volume variations over time at 

intersection 87915 (see Figure D-1 to Figure D-16 for all intersections).  
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Figure 5-1: 15-Minute Traffic Volume Variations over Time at Site 87915 

The upper line in the figure on the left is the total traffic volume entering the intersection during 

15-minute intervals ( )sumV . The lower line in the same figure is the total straight-ahead traffic 
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volume in 15-minute intervals ( )sumthV . The intersection volume ( )sumV  and intersection through 

volume ( )sumthV  can be written as 

 ,sum NB SB EB WBV V V V V= + + +  (5-2) 

where , ,  and NB SB EB WBV V V V  are total approach volumes from northbound, southbound, 

eastbound and westbound approaches respectively, and 

 ,sumth NBTH SBTH EBTH WBTHV V V V V= + + +  (5-3) 

where , ,  and NBTH SBTH EBTH WBTHV V V V  are through traffic volumes from northbound, southbound, 

eastbound and westbound approaches respectively. 

The figure on the right is a summation of a product of crossing volumes from all conflict zones 

during each 15-minute interval. In order to maintain the same unit as in the left figure, we take a 

square root of this sum, which is referred to as a “conflicting volume.” Conflicting volumes can 

be considered as the amount of conflicting exposure which may lead to right-angle collisions.  

The upper line in the right figure is a conflicting volume computed using approach volumes, 

which can be expressed as 

 ( ).x NB EB SB EB NB WB SB WBV V V V V V V V V= + + +  (5-4) 

The lower line in the right figure represents a conflicting through volume computed using only 

through volumes, which can be written as 

 ( ).xth NBTH EBTH SBTH EBTH NBTH WBTH SBTH WBTHV V V V V V V V V= + + +  (5-5) 

Table 5-4 shows a summary of the traffic volume data at the studied sites. From this table, we can 

see that the traffic volume varies considerably, thus a wide range of traffic is sufficiently 

represented in the sample.  
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Table 5-4: Summary of Traffic Volume Data at Selected Sites 

Site 
ID

Hourly Average 
Intersection 

Volume (Vsum)

Hourly Average 
Intersection Thru 
Volume (Vsumth)

Hourly Average 
Conflicting Volume 

(Vx)

Hourly Average 
Conflicting Thru 

Volume (Vxth)

Average Ratio of 
Left-turn to Total 
Volume (LTratio) 

87905 4463 2484 2224 1195 0.223
87906 2674 1940 1014 377 0.127
87907 2256 1341 1015 379 0.210
87909 1450 1019 734 516 0.152
87915 1246 666 612 290 0.248
87923 1198 888 472 231 0.131
87930 938 698 348 144 0.122
87932 1584 889 734 272 0.213
87933 965 739 362 183 0.225
97901 1781 1523 896 766 0.090
97903 2603 1852 1135 737 0.145
97905 2303 1636 1142 791 0.169
97911 2684 1899 1209 738 0.144
97920 1092 521 536 228 0.262
97922 2766 1878 1316 829 0.149
97940 1682 1048 715 240 0.187

5.4 ENCROACHMENT TIME 

Encroachment time (ET) has an inverse relationship with the speed of a vehicle traversing the 

conflict spot. The summary statistics of ET are shown in Table 5-5. CV is a coefficient of 

variation obtained by dividing the standard deviation with the mean. Percent-norm (%-norm) is 

the ET value at a specific percentile under the normal distribution assumption. Percentile (%-tile) 

represents the empirical quantile of ET at a predefined probability value. For examples, 90% 

quantile of ET is a value of ET that is greater than 90% of the sample and 90%-norm can be 

calculated as 

( )( )
( )( )

0.9090%-norm = sample mean + z sample SD

= sample mean + 1.282 sample SD
 

where z0.90 is a 90%-quantile of a standard normal distribution. 

ET is useful in detecting cases of queue spillback at intersections. An excessively long ET 

indicates a slow vehicle blocked by the queue ahead. In this table, queue spillback appears to be a 

problem at site 97903. The maximum value of ET and the 95% quantile of ET at site 97903 are 

excessively longer than those of other sites. 
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Table 5-5: Summary Statistics of Encroachment Time 
Site Freq Min Max Mean SD CV 85%-norm 90%-norm 95%-norm 85%-tile 90%-tile 95%-tile

87905 68 0.367 1.200 0.694 0.179 0.257 0.879 0.923 0.988 0.867 0.877 1.044
87906 190 0.300 3.567 0.614 0.327 0.532 0.953 1.033 1.152 0.767 0.867 0.933
87907 95 0.200 1.067 0.468 0.124 0.265 0.597 0.627 0.673 0.600 0.600 0.667
87909 538 0.267 1.767 0.589 0.162 0.275 0.756 0.796 0.855 0.700 0.733 0.833
87915 250 0.233 2.167 0.601 0.243 0.404 0.853 0.912 1.001 0.833 0.900 1.018
87923 70 0.167 2.933 0.597 0.329 0.551 0.937 1.018 1.137 0.688 0.740 0.888
87930 90 0.267 1.233 0.502 0.149 0.297 0.656 0.693 0.747 0.588 0.603 0.818
87932 60 0.300 1.500 0.552 0.179 0.324 0.737 0.781 0.846 0.700 0.700 0.735
87933 180 0.400 4.300 0.704 0.345 0.489 1.061 1.146 1.271 0.833 0.900 1.067
97901 573 0.167 3.133 0.638 0.295 0.462 0.943 1.016 1.123 0.767 0.867 1.000
97903 550 0.300 7.400 0.934 0.878 0.941 1.844 2.059 2.378 1.033 1.487 2.655
97905 182 0.400 3.200 0.703 0.321 0.457 1.036 1.115 1.232 0.800 0.867 1.000
97911 113 0.333 2.933 0.668 0.294 0.440 0.972 1.044 1.151 0.767 0.833 0.947
97920 164 0.333 1.933 0.545 0.236 0.434 0.790 0.847 0.933 0.623 0.813 1.026
97922 60 0.233 1.067 0.500 0.219 0.438 0.727 0.780 0.860 0.777 0.870 1.002
97940 28 0.233 2.400 0.676 0.468 0.693 1.162 1.277 1.447 1.059 1.120 1.448  

5.5 REGRESSION ANALYSIS 

To better understand the safety relationships between crashes and surrogate data, we conducted 

the regression analysis on the crash count data using the traffic and PET data as model covariates. 

Crash counts are non-negative integer values and therefore the standard least-square regression 

models are inappropriate. Linear regression models yield predicted values that are non-integers 

and can also predict values that are negative. There are a number of methods that can be used to 

properly model crash counts. The most commonly used ones are Poisson and negative binomial 

regression models. The limitation of Poisson regression is that it restricts the mean of the count 

process to be equal to its variance. In reality, the variance of actual data can be significantly 

larger than the mean; in other words, the data is said to be overdispersed. Typically, 

overdispersed count data is modeled using a negative binomial model. Washington et al. (2003) 

discussed these count data models in detail and provided several examples of modeling results. 

5.5.1 Regression Approaches 

Two widely used count data models are considered in this analysis, Poisson and negative 

binomial regressions. In addition, zero-inflated models are also examined for the case where the 

number of zero counts present in the data is excessive and may be better explained by a two-state 

count process. 
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5.5.1.1 Poisson Regression 

In a Poisson regression, the probability of location i  having iy  counts of traffic crashes is given 

by 

 ( ) ,
!

i iy
i

i
i

eP y
y

λ λ−

=  (5-6) 

where ( )iP y  is the probability of location i  having iy  counts of traffic crashes and iλ  is the 

Poisson parameter for location i , which is equal to expected number of crash counts at location 

i .  Poisson regression models are estimated by specifying the Poisson parameter iλ  as a function 

of explanatory variables. The most common relationship is the log-linear link, which is expressed 

as 

 
( )

( )
exp ,  or 

log ,
i i

i i

X

X

λ β

λ β

=

=
 (5-7) 

where iX  is a vector of explanatory variables and β  is a vector of estimable coefficients. The 

likelihood function is 

 ( )
( ) ( )exp exp exp

.
!

iy
i i

i i

X X
L

y
β β

β
⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦=∏  (5-8) 

Maximum likelihood estimation is commonly used for parameter estimations since the estimates 

are consistent, asymptotically normal, and asymptotically efficient. The log-likelihood function is 

easier to manage and more appropriate for the maximum likelihood estimation procedure, and is 

given as 

 ( ) ( ) ( )
1

exp log ! .
n

i i i i
i

X y X yβ β β
=

⎡ ⎤= − + −⎣ ⎦∑l  (5-9) 

The likelihood ratio test is a common test procedure used to assess the goodness-of-fit between 

nested models. The likelihood ratio test statistic is 
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 ( ) ( )2 ,R Uβ β⎡ ⎤− −⎣ ⎦l l  (5-10) 

where ( )Rβl  is the log-likelihood at convergence of the restricted model (only constant term is 

added) and ( )Uβl  is the log-likelihood at convergence of the unrestricted model. This statistic 

follows 2χ  distribution with the degrees of freedom equal to the difference in the number of 

parameters of two competing models. 

Another commonly used measure of overall model fit is the 2ρ  statistic, which is given by 

 
( )
( )

2 1 .U

R

β
ρ

β
= −

l
l

 (5-11) 

The value of 2ρ  is between 0 and 1 where the value closer to 1 implies a better model fit; in 

other words, the more variance the estimated model is explaining.  

5.5.1.2 Negative Binomial Regression 

The common error in the Poisson regression analysis is when the data violate the equality 

assumption ( ) ( )vari iE y y= . The data are said to be underdispersed when ( ) ( )vari iE y y>  or 

overdispersed when ( ) ( )vari iE y y< . As a result, the estimated coefficients will be biased if 

corrective measures are not taken. The negative binomial model aims to address this issue. The 

model is derived by rewriting equation (5-7) such that, for each observation i , 

 ( )exp ,i i iXλ β ε= +  (5-12) 

where ( )exp iε  is a gamma-distributed error term with mean 1 and variance 2α . The addition of 

this term allows the variance to differ from the mean as 

 ( ) ( ) ( ) ( ) ( )2var 1 .i i i i iy E y E y E y E yα α⎡ ⎤= + = +⎣ ⎦  (5-13) 
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The Poisson regression model is a limiting model of the negative binomial model as 0α → . This 

implies that the selection between these two is dependent upon the estimated value of α  (the 

overdispersion parameter). The negative binomial distribution is of the following form 

 ( ) ( )( )
( ) ( ) ( )

1
1 1 ,
1 ! 1 1

iy
i i

i
i i i

y
P y

y

α
α λα
α α λ α λ

Γ + ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠

 (5-14) 

where ( )Γ ⋅  is a gamma function. The corresponding likelihood function is 

 ( ) ( )( )
( ) ( ) ( )

1
1 1 .
1 ! 1 1
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i i
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α λαλ
α α λ α λ

Γ + ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠
∏  (5-15) 

When the data are overdispersed, the estimated variance term is larger than under a true Poisson 

process. Consequently, all of the standard errors of coefficient estimates become inflated. 

5.5.1.3 Zero-Inflated Poisson and Negative Binomial Regression Models 

An observation of zero events during the observation period can arise from two qualitatively 

different conditions. A normal count-process state can at times lead to a zero count due to the 

random nature of the count process. A zero-count state, on the other hand, is the inability to 

experience an event. 

There is a fine line between these two states in reality. Let us consider the right-angle crashes for 

a particular area within the intersection. For intersections with a heavy left-turn volume, light 

through traffic, appropriate signal setting, and good visibility, the likelihood of a straight right-

angle collision is minimal but yet still present, since human erratic behavior can lead to an 

accident. However, when we have taken the count data for four years for a particular region and 

still we have not yet observed any right-angle crashes. These areas can be considered in a zero-

count state because the likelihood of a collision is extremely small. Thus, the zero-count state in 

this case may refer to a situation where the likelihood of a crash is extremely rare compared to the 

normal-count state where the occurrence of events is more likely and follows some known count 

process.  
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Data obtained from two-state regimes often suffer from overdispersion if treated as a normal 

count process only because the number of zero events is inflated by the zero-count state. Usually, 

the preponderance of zeros in the data often hints that the two-state count process may be a more 

appropriate approach. Models that account for this dual-state system are referred to as zero-

inflated models. 

The zero-inflated Poisson (ZIP) model assumes that the events ( )1 2, ,..., nY y y y=  are 

independent and the model is 
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 Similarly, the zero-inflated negative binomial regression model (ZINB) for independent 

( )1 2, ,..., nY y y y=  is 
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Maximum likelihood estimations can be used to estimate both zero-inflated models. The splitting 

process can be assumed to follow a logit (logistic) or probit (normal) probability process. To test 

the appropriateness of using a zero-inflated model, Vuong (1989) proposed a test statistic for non-

nested models which is well suited for situations where the distributions are specified. The 

statistic for each observation i  is calculated as 
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 (5-18) 

where ( )1 |i if y X  and ( )2 |i if y X  are the probability density functions of models 1 and 2 

respectively. Vuong’s statistic for testing the non-nested hypothesis of model 1 versus model 2 is 

given as (Shankar et al., 1997), 
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where m  is the mean, mS  is the standard deviation, and n is the sample size. Vuong’s statistic 

follows the standard normal distribution asymptotically; and if V  is less than criticalV  (z0.95 = 

1.96 for a 95% confidence level), the test is inconclusive. If criticalV V> , then the test favors 

model 1. Vice versa, model 2 is preferred to model 1 if criticalV V< − . 

Using Vuong’s test and t-statistic of overdispersion parameter ( )α , Shankar et al. (1997) 

proposed a guideline to help select the appropriate model among Poisson, negative binomial, 

zero-inflated Poisson, and zero-inflated negative binomial models. The guidelines for a 95% 

confidence level are given in Table 5-6.  

Table 5-6: Model-Selection Decision Guidelines at 95% Confidence Level using Vuong 
Statistic and Overdispersion  

t-statistic of the negative binomial 
overdispersion parameter ( )α   
< |1.96| > |1.96| 

< -1.96 ZIP or Poisson NB Vuong statistic for comparison 
between ZINB ( )1f  and  NB ( )2f  > 1.96 ZIP ZINB  

5.5.2 PET Counts versus Right-Angle Crash Counts 

5.5.2.1 Analysis by Sites 

First, we produced scatter plots to visually examine the relationship between the PET counts and 

actual crash counts. PET counts are specific to the predetermined threshold. The scatter plots of 

eight-hour PET counts versus four-year crash counts in Figure 5-2 are for PET ≤  6.5 seconds. 

Different thresholds were tested and were found to produce similar trends. Different conditions 

considered in counting crashes are shown in each quadrant of the plot. The trends suggest no 
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significant difference whether all crashes or specific conditions such as daytime only are used. 

Hence, daytime crash counts were considered for our subsequent analysis. This choice represents 

a reasonable compromise between the adequacy of field conditions during data collection and the 

attempt to use as many crash counts as possible to increase the confidence of results. 

8-Hour Counts of PET <= 6.5 sec

A
ll 

R
ig

ht
-A

ng
le

 C
ra

sh
es

100 200 300 400

0
5

10
15

20
25

30

8-Hour Counts of PET <= 6.5 sec

D
ay

tim
e 

O
nl

y

100 200 300 400

0
5

10
15

8-Hour Counts of PET <= 6.5 sec

D
ay

tim
e 

an
d 

N
on

-W
in

te
r O

nl
y

100 200 300 400

0
2

4
6

8
10

12

8-Hour Counts of PET <= 6.5 sec

D
ay

tim
e,

 N
on

-W
in

te
r a

nd
 W

ee
kd

ay
 O

nl
y

100 200 300 400

0
2

4
6

8
10

 
Figure 5-2: Scatter Plots of 4-Year Crash Counts Versus 8-Hour PET Counts 

An important observation can be made here that a short period of PET observation may be 

sufficiently representative for the entire period of crash counting. The crash counting period 

includes periods with conditions different from those in the PET observation period. It could be 

supported by the fact that the overdispersion parameter of crash counts does not change 

significantly between different conditions despite changing means (see Table 5-1). 

Using daytime crash counts as a response variable, a series of negative binomial regression 

models was fitted to PET counts at thresholds varying from eight seconds to one second at 0.5-

second spacings. The model goodness-of-fit was evaluated in terms of the t-ratio of the estimated 
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coefficients, the likelihood ratio test statistic, and the 2ρ -statistic for overall model fit. The 6.5-

second threshold was found to give the best fitted models when the count data were grouped by 

sites. The fitted negative binomial model is shown in Table 5-7. The log-linear link structure is 

given as 

 ( )0 1 ,exp ,i PET i ifλ β β ε= + +  (5-20) 

where ,PET if  is the 8-hour counts of PET less than the specified threshold at location i  and iε  is 

a gamma-distributed error term. 

Table 5-7: Negative Binomial Model of PET Counts by Sites 

Independent Variable Estimated 
Coefficient t-ratio

Constant 0.7098 3.070
8-Hour Counts of PET ≤ 6.5 sec 0.0042 3.563
Overdispersion, (α=1/θ) 0.1699 0.741

Number of Observations 16
Restricted Log-likelihood (Poisson assumption) -51.910
Restricted Log-likelihood (NB assumption) -40.801
Log-likelihood at convergence -36.025
χ2-statistic and associated p-value 9.551 0.002
ρ2-statistic 0.117

Negative Binomial Regression
Y = 4-Year Daytime Counts of Right-Angle Collisions

 
 

Table 5-8: Poisson Regression Model of PET Counts by Sites 

Independent Variable Estimated 
Coefficient t-ratio

Constant 0.6894 3.216
8-Hour Counts of PET ≤ 6.5 sec 0.0043 5.590

Number of Observations 16
Restricted Log-likelihood -51.910
Log-likelihood at convergence -37.329
χ2-statistic and associated p-value 29.161 < 0.0000001
ρ2-statistic 0.281

Poisson Regression
Y = 4-Year Daytime Counts of Right-Angle Collisions

 

The low t-ratio of the estimated overdispersion parameter in Table 5-7 suggests no evidence of 

overdispersion in the data set and that the Poisson regression model may be allowed. Hence, the 
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same set of variables in Table 5-7 is fitted to the Poisson regression model as shown in Table 5-8. 

The comparison of log-likelihoods at the convergence between both models indicates only a 

marginal improvement from the Poisson model. The corresponding deviance statistic is 2(-

36.025+37.329) = 2.608 ~ 2
1dfχ = . The overdispersion in the negative binomial model is therefore 

not statistically significant at a 95% confidence level. In addition, the goodness-of-fit statistics 

shown in the Table 5-8 indicates that the Poisson regression model may be allowed in this case. 

The positive coefficient estimate of the PET counts implies that an intersection with higher PET 

counts is likely to experience more right-angle collisions. The positive estimate of the constant 

implies a tendency to experience right-angle collisions at intersections despite zero PET counts. 

This constant captures the variability of crash counts unexplained by the PET counts alone. 

5.5.2.2 Analysis by Conflict Zones 

The count data are split into four different conflict zones to build the models at a disaggregate 

level. PET counts that belong to a conflict zone of interest are treated as an explanatory variable. 

The relationship between the PET counts and four-year daytime right-angle crash counts by 

conflict zones is plotted in Figure 5-3.  
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Figure 5-3: Conflict Zone Counts of Right-Angle Collisions versus PET Counts 
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It is interesting to note that there are a number of zero counts in the data set when the counts are 

broken down into different conflict zones. The count process of right-angle collisions is more 

irregular at a disaggregate level and the risk of collisions at certain conflict zones may be 

extremely low, such that it may be treated as a zero-risk situation. This leads to the possibility of 

modeling the crash counts by conflict zones using a two-state count process: normal-count and 

zero-count states. Therefore, zero-inflated models (Poisson or negative binomial) may be taken 

into consideration in addition to standard Poisson and negative binomial regression models. 

The negative binomial model is estimated using the same log-linear link structure as in equation 

(5-20). Note that the eight-hour count of PETs is for individual conflict zones in this case, not the 

entire intersection. Table 5-9 summarizes the estimated negative binomial model. The estimated 

overdispersion of 0.934 with the corresponding t-ratio of 2.014 indicates that the data are 

overdispersed and the negative binomial model is an appropriate choice in this case. 

Table 5-9: Negative Binomial Model of PET Counts by Conflict Zones 

Independent Variable Estimated 
Coefficient t-ratio

Constant -0.3908 -1.406
8-Hour Counts of PET ≤ 6.5 sec 0.0117 2.464
Overdispersion, (α=1/θ) 0.9343 2.014

Number of Observations 61
Restricted Log-likelihood (Poisson assumption) -104.204
Restricted Log-likelihood (NB assumption) -90.361
Log-likelihood at convergence -87.054
χ2-statistic and associated p-value 6.615 0.010
ρ2-statistic 0.037

Negative Binomial Regression
Y = 4-Year Daytime Conflict Zone Counts of Right-Angle Collisions

 

A zero-inflated negative binomial model is also estimated to check whether the preponderance of 

zero counts in the data set can be justified by a two-state count process. The logic behind the 

zero-inflated models was described earlier in Section 5.5.1.3. The estimated zero-inflated model 

using a logistic distribution splitting rule is shown in Table 5-10. 

The t-ratios of the estimated model coefficients of the zero-inflated model are not statistically 

significant. The Vuong statistic is also used to compare between the negative binomial and zero-

inflated models. The computed Vuong statistic is -0.707, which indicates no evidence to favor the 

zero-inflated model. The crash occurrences at each conflict zone are therefore adequately 
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explained by a normal-count process. This finding also allows the aggregation of counts from all 

conflict zones at the same intersection. In other words, there is no evidence of a zero-count state 

at a conflict-zone level, thus, the aggregation of counts from all conflict zones in the site model 

(e.g., Section 5.5.2.1) is sufficiently explained by a normal-count process. The standard Poisson 

and negative binomial regression models are sufficient for the modeling of crash counts using this 

data set. 

Table 5-10: Zero-Inflated Negative Binomial Model of PET Counts by Conflict Zones 

Independent Variable Estimated 
Coefficient t-ratio

Negative Binomial Count State
Constant 0.1376 0.439
8-Hour Counts of PET ≤ 6.5 sec 0.0057 1.800
Overdispersion, (α=1/θ) 0.6709 0.787

Zero-Count State
Constant -5.1422 -0.421

Number of Observations 61
Log-Likelihood at Convergence (Poisson) -97.348
Log-Likelihood at Convergence (Negative Binomial) -87.054
Log-Likelihood at Convergence (ZINB) -88.555
Poisson Zeros (Actual/Predicted) 28/21.2
Negative Binomial Zeros (Actual/Predicted) 28/29.5
ZINB Zeros (Actual/Predicted) 28/28.2
Vuong Statistic -0.707

Zero-Inflated Negative Binomial Regression
Y = 4-Year Daytime Conflict Zone Counts of Right-Angle Collisions

 

5.5.3 Traffic Volume versus Right-Angle Crashes 

Traffic volume is the exposure commonly used in safety modeling and has been shown to be 

statistically significant in numerous regression studies of crash frequency. However, the 

significance of traffic volume may diminish for a specific type of counts, such as right-angle 

crashes. Affum and Ap Taylor (1996) found that right-angle accidents are poorly explained by 

exposure data such as traffic volume. Contributing factors for right-angle crashes may be present 

only for a specific time of day; for example, run-on-red violations of through vehicles without the 

separating effect of left-turn phases may occur during periods of low turning volumes at actuated 

signals. Traffic volume is unable to capture these conditions. 
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We will examine whether the traffic volume alone can explain a variability of right-angle crash 

counts. Two types of models are considered as in the PET-based models: site models and conflict 

zone models. 

5.5.3.1 Analysis by Sites 

First, we visually examine the relationship between the volume and crash counts from the plots in 

Figure 5-4. The square root of products of crossing flows, Vxflows, is defined as  

 xflows major minorV = V V ,  (5-21) 

where Vmajor is the hourly average through traffic on the major street and Vminor is the hourly 

average through traffic on the minor street.  
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Figure 5-4: Scatter Plots of Volume Information versus Actual Counts of Crashes 
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The trend between the hourly average intersection volume (Vsum) and the crash counts is very 

weak. Slightly increasing trends are observed for the hourly average conflicting through volumes 

(Vxth) and the square root of products of crossing flows (Vxflows). Vxflows is a simplified indicator of 

the degree of crossing interactions alternative to Vxth. Vsum and Vxth were defined earlier in 

equations (5-2) and (5-5) respectively. A slightly decreasing trend is noticeable for the average 

ratio of left-turn to total volume (LTratio). 

Four different model structures using volume were investigated, of which are summarized below. 

Model structure 1 is modified from a typical highway safety performance function where the 

average hourly traffic volumes on the major street (Vmajor) and the minor street (Vminor) are used in 

place of the major-street and minor-street AADTs respectively. This product form implies a 

meaningful and intuitive physical interpretation since the expected mean of right-angle collisions 

is equal to zero if there is no traffic on either one of the streets. The model structure 2 is similar to 

structure 1 but it assigns equivalent weights to both the Vmajor and Vminor. The model structure 3 

takes a sum of products of crossing flows for all four conflict zones. This sum of crossing flow 

products aims to represent the amount of crossing interactions an intersection is experiencing. 

The last model structure is similar to structure 2 but all the explanatory variables are in the 

exponent term.  

Structure 1: 

 
( )( )

( )

1 2
0 major minor 1

0 1 major 2 minor 1

exp LTratio ,  or

log log log log LTratio
i

i

V V

V V

α αλ β β

λ β α α β

=

= + + +
 (5-22) 

Structure 2: 
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1

0 major minor 1

0 1 major minor 1

exp LTratio ,  or

log log log LTratio

i

i

V V
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λ β β

λ β α β
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= + +
 (5-23) 

Structure 3: 

 
( ) ( )( )

( )

1
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0 1 1

exp LTratio , or
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 (5-24) 
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Structure 4: 

 
( )( )

( )
0 1 major minor 2

0 1 major minor 2

exp LTratio ,  or

log LTratio

i

i

V V

V V

λ β β β

λ β β β

= + +

= + +
 (5-25) 

The ratio of the left-turn volume to the total intersection volume (LTratio) is considered in all 

structures as it consistently improves the model goodness-of-fit. Through-traffic volumes were 

found to give a better model fit than approach-traffic volumes (all movements) for all the 

considered structures. Model structure 2 outperforms the other structures in terms of the t-ratios 

of estimated coefficients and the overall goodness-of-fit of the models. The constant term is 

neglected in the fitted models as its t-ratio is not statistically significant. The fitted negative 

binomial regression model using model structure 2 is shown in Table 5-11. 

Table 5-11: Negative Binomial Model of Volume Data by Sites 

Independent Variable Estimated 
Coefficient t-ratio

Log of (Average Hourly Thru Traffic on Major Road × 
Average Hourly Thru Traffic on Minor Road)0.5 0.473 4.302

Ratio of left-turn volume to total intersection volume -8.797 -2.222
Overdispersion, (α=1/θ) 0.244 1.111

Number of Observations 16
Restricted Log-likelihood (Poisson assumption) -51.910
Restricted Log-likelihood (NB assumption) -40.801
Log-likelihood at convergence -36.850
χ2-statistic and associated p-value 7.902 0.019
ρ2-statistic 0.097

Negative Binomial Regression
Y = 4-Year Daytime Counts of Right-Angle Collisions

 

The estimated overdispersion parameter is slightly greater than zero, which indicates that the data 

is only slightly overdispersed. The t-ratio of the overdispersion parameter is 1.111; this implies 

that the Poisson regression model may be allowed as in the case of the PET-based model. 

Therefore, the data set is re-estimated using Poisson regression and the results are given in Table 

5-12. It should be noted that the Poisson regression model generally provided a higher confidence 

of model estimates as well as better overall fit of the model because the overdispersion is not 

allowed in the model ( )0α = . A similar trend was also observed in the estimated Poisson 

regression model for the PET-based model. 
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Table 5-12: Poisson Regression Model of Volume Data by Sites 

Independent Variable Estimated 
Coefficient t-ratio

Log of (Average Hourly Thru Traffic on Major Road × 
Average Hourly Thru Traffic on Minor Road)0.5 0.520 8.151

Ratio of left-turn volume to total intersection volume -10.624 -4.124

Number of Observations 16
Restricted Log-likelihood -51.910
Log-likelihood at convergence -38.966
χ2-statistic and associated p-value 25.887 < 0.0000001
ρ2-statistic 0.249

Poisson Regression
Y = 4-Year Daytime Counts of Right-Angle Collisions

 

5.5.3.2 Analysis by Conflict Zones 

The intersection data were broken down into different conflict zones for each intersection. As 

shown below, two potential model structures were considered in this case. Both model structures 

incorporate the product of crossing flows into the models. Model structure 1 assigns different 

weights on each flow, whereas model structure 2 assumes no difference between these two 

crossing flows. iV  and jV  are crossing through-traffic volumes at a conflict zone of interest. For 

example, northbound through-traffic (VNBTH) and eastbound through-traffic (VEBTH) are 

considered for the conflicts between the northbound and eastbound traffic flows.  

Structure 1: 

 

( )( )
( )

1 2
0 1

0 1 2 1

exp LTratio ,  or

log log log log LTratio
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V V
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λ β α α β

=
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>

 (5-26) 

Structure 2: 
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1
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=

= + +
 (5-27) 
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Both model structures were tested and model structure 2 is preferred to the model structure 1, 

which was not unexpected since we have no basis on which to claim that the effect of each 

crossing flow on the crash frequency estimate should differ from one another. 

Using model structure 2, Table 5-13 summarizes the estimated negative binomial regression 

model using a conflict-zone data. The constant term was dropped from the model since the t-ratio 

is not statistically significant. The overdispersion parameter estimate is far from zero and the t-

ratio is statistically significant. This indicates overdispersion in the data set and the negative 

binomial model is therefore appropriate in this case. The positive coefficient estimate of the 

product of the crossing flows implies that more right-angle crashes can be expected with the 

increase in the amount of crossing interactions at a conflict zone. The negative coefficient 

estimate of the left-turn ratio suggests that intersections with a higher proportion of left-turn 

volumes are less prone to right-angle collisions, which could be anticipated because the traffic 

controls at intersections with heavy left-turn volume are usually assigned with a protected left-

turn phase and this could lead to a significant reduction in the amount of crossing maneuvers 

between through-traffic.  

Table 5-13: Negative Binomial Model of Volume Data by Conflict Zones 

Independent Variable Estimated 
Coefficient t-ratio

Log of (Product of Average Hourly Thru Traffic Volume 
from Interested Approaches*)0.5 0.315 3.137

Ratio of left-turn volume to total intersection volume -9.758 -3.106
Overdispersion, (α=1/θ) 0.778 1.930

Number of Observations 61
Restricted Log-likelihood (Poisson assumption) -104.204
Restricted Log-likelihood (NB assumption) -90.361
Log-likelihood at convergence -85.576
χ2-statistic and associated p-value 9.570 0.008
ρ2-statistic 0.053

Negative Binomial Regression
Y = 4-Year Daytime Conflict Zone Counts of Right-Angle Collisions

* For example, use a product of NB thru traffic and EB thru traffic to predict the right-
angle crash frequency generated by NB versus EB crossing traffic  

Zero-inflated negative binomial regression was also tested. The corresponding Vuong statistic for 

comparison between the NB and ZINB models is -0.8973 which indicates that the test is 

inconclusive. This is also consistent with the earlier findings in Section 5.5.2.2. 
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5.5.4 Combining PET and Volume Data 

In the last scenario, we combined the PET and volume data to estimate the models. Site and 

conflict zone models were established as in previous cases. We adopted the same volume 

structure as in the volume-based models for the combined-data model. The variable indicating the 

PET counts is then added into the exponent term of the models to combine these two types of 

data. 

5.5.4.1 Analysis by Sites 

The negative binomial was first estimated in this case. The t-ratio of the overdispersion parameter 

reveals that overdispersion was not a problem and the model could be reduced to the Poisson 

regression model. The estimated negative binomial and Poisson regression models are shown in 

Table 5-14 and Table 5-15 respectively. 

The signs of the coefficient estimates are consistent with the findings in the PET-based and 

volume-based models. The combination of both data still produces coefficient estimates with 

statistically significant t-statistics; this implies a potential synergy in the explanatory power when 

both the PET data and the volume are combined. The PET carries additional safety information 

which is unexplained by traffic volume alone. 

Table 5-14: Negative Binomial Model using PET and Volume Data by Sites 

Independent Variable Estimated 
Coefficient t-ratio

Log of (Average Hourly Thru Traffic on Major Road × 
Average Hourly Thru Traffic on Minor Road)0.5 0.2940 1.831

Ratio of left-turn volume to total intersection volume -5.3006 -1.018
8-hour Counts of PET ≤ 6.5 seconds 0.0029 2.091
Overdispersion, (α=1/θ) 0.0420 0.292

Number of Observations 16
Restricted Log-likelihood (Poisson assumption) -51.910
Restricted Log-likelihood (NB assumption) -40.801
Log-likelihood at convergence -34.524
χ2-statistic and associated p-value 12.555 0.006
ρ2-statistic 0.154

Negative Binomial Regression
Y = 4-Year Daytime Counts of Right-Angle Collisions
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Table 5-15: Poisson Regression Model using PET and Volume Data by Sites 

Independent Variable Estimated 
Coefficient t-ratio

Log of (Average Hourly Thru Traffic on Major Road × 
Average Hourly Thru Traffic on Minor Road)0.5 0.3086 3.270

Ratio of left-turn volume to total intersection volume -5.7341 -2.024
8-hour Counts of PET ≤ 6.5 seconds 0.0028 2.917

Number of Observations 16
Restricted Log-likelihood -51.910
Log-likelihood at convergence -34.606
χ2-statistic and associated p-value 34.608 < 0.0000001
ρ2-statistic 0.333

Poisson Regression
Y = 4-Year Daytime Counts of Right-Angle Collisions

 

5.5.4.2 Analysis by Conflict Zones 

Using both the PET and volume data, the right-angle crash counts for each conflict zone were 

modeled using the negative binomial regression. The modeling results are given in Table 5-16. 

Table 5-16: Negative Binomial Model using PET and Volume Data by Conflict Zones 

Independent Variable Estimated 
Coefficient t-ratio

Log of (Product of Average Hourly Thru Traffic Volume 
from Interested Approaches*)0.5 0.2062 1.594

Ratio of left-turn volume to total intersection volume -7.8554 -2.297
8-hour Counts of PET ≤ 6.5 seconds 0.0064 1.262
Overdispersion, (α=1/θ) 0.7241 1.767

Number of Observations 61
Restricted Log-likelihood (Poisson assumption) -104.204
Restricted Log-likelihood (NB assumption) -90.361
Log-likelihood at convergence -84.687
χ2-statistic and associated p-value 11.349 0.010
ρ2-statistic 0.063

Negative Binomial Regression
Y = 4-Year Daytime Conflict Zone Counts of Right-Angle Collisions

* For example, use a product of NB thru traffic and EB thru traffic to predict the right-
angle crash frequency generated by NB versus EB crossing traffic  

The signs of the coefficient estimates indicate the same findings as in the PET-based and volume-

based models. The t-ratio of the overdispersion parameter indicates overdispersion in the data set 

and thus the negative binomial model was suitable. 



 

 

139

5.6 CONCLUSIONS 

The characteristics of crash counts, traffic volume, PET, and ET were examined in this chapter. 

Then, the usefulness of PETs and traffic volume in explaining the variability of crash counts was 

checked. A summary of the selected regression models for PET-based, volume-based, and 

combined models with the values of log-likelihood at convergence is presented in Table 5-17.  

Table 5-17: Summary of Log-Likelihoods at Convergence of Selected Models 

Model Type
Response Variable: 
Frequency of Right-

Angle Collisions
Selected Regression Approach Log-likelihood at 

Convergence

Site Poisson Regression -37.329
Conflict Zone Negative Binomial Regression -87.054

Site Poisson Regression -38.996
Conflict Zone Negative Binomial Regression -85.576

Site Poisson Regression -34.606
Conflict Zone Negative Binomial Regression -84.687

PET-based model

Combined data model

Volume-based model

 

To choose the appropriate model for the task, the model-selection guidelines are as follows: 

• Use of a model depends on the data availability. For example, a PET-based model is 

preferred if the PET data is available. If both PET and traffic volume data are available, 

the combined data model can be applied.  

• If the directional traffic count data or the PET counts for each conflict zone are available, 

the conflict zone model should be selected as it is capable of predicting the expected 

right-angle crash frequency at a more disaggregate level. 

• For planning purpose or in cases where no detailed traffic data are available, the site 

model can be used to predict the expected crash frequency. For example, if only the 

AADTs of the major and minor streets are available, the traffic adjustment factor can be 

applied to the AADT to obtain the hourly average traffic volume during the daytime 

period. Then, the directional split factors from some known similar locations can be 

applied to obtain only the through-traffic volume. A left-turn ratio of 0.15 to 0.25 can be 

assumed if no other information is available; this approximation accounts for typical 

suburban signalized intersections. 

The log-likelihood at convergence can be used to approximately compare the goodness-of-fit of 

the estimated models. A greater value of log-likelihood at convergence implies a better model fit. 

At the site level, the comparison of the log-likelihood at convergence of the Poisson regression 
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model reveals that the PET-based model explains the variability in the count data slightly better 

than the volume-based model.  On the other hand, the volume-based model is slightly better than 

the PET-based model at the conflict zone level. When both types of data are combined, the log-

likelihood at convergence indicates that more variability in the data set is being explained in 

addition to the use of either PET or volume as a sole explanatory variable. In other words, there is 

an increase in the explanatory power of the model when both types of data are combined. 

In the regression analysis, PET counts and traffic volume are viewed as exposure data. The 

positive coefficient estimates of PET counts, as well as the products of crossing flows correspond 

to the notion that the increase in exposure is likely to give rise to the expected right-angle crash 

frequency. 

Based on the regression analysis results, we can conclude that the frequency of short PETs is a 

potential indicator in discriminating varying safety levels within a location (conflict zone models) 

and across locations (site models). The performance of PET as a surrogate measure of safety is 

equivalent or better than traffic-related data, but PET carries additional safety information 

unexplained by the traffic data alone. Hence, PET data can complement the traffic data in 

highway safety evaluation applications. There is a potential gain in having both types of data 

available in safety analysis tasks. 

In addition, the most important benefit of PET lies in its continuous characteristic that exists 

during both crash-free operations as well as crash occurrences. Traffic volume data do not 

possess this characteristic. Based on the premise that a collision is defined as when the PET 

becomes less than zero, PET gives the possibility to build a safety model at individual sites using 

data from the site. The traditional regression approach needs to rely on the trend from a group of 

similar locations and model transferability. In the proposed approach, PET measures enable 

simultaneous estimation of collision risk and exposure, which can be converted into crash 

frequency straightforwardly. In the next chapter, we will outline a theory which provides a tool 

for estimating safety from PET data. 
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CHAPTER 6 EXTREME VALUE APPROACH FOR SAFETY ESTIMATIONS 

In order to obtain an individualized risk estimate and consequently a crash frequency estimate, we 

propose the extreme value theory (EVT) approach to model the variability of post-encroachment 

times. This chapter begins with the fundamentals of EVT and common applications. Different 

sampling schemes and resulting distributions considered in this study are discussed and the most 

suitable approach is selected. Then, we propose a method to estimate the models and predict the 

safety estimates. Discussions on alternatives to quantify the uncertainty of model estimates and 

selected techniques conclude the chapter. 

6.1 INTRODUCTION TO EXTREME VALUE THEORY 

Extreme value theory (EVT) has emerged as an important statistical discipline which has found 

its way to a wide range of applications. Some examples of these include alloy strength prediction, 

ocean wave modeling, wind engineering, thermodynamics of earthquakes, and assessment of 

meteorological change (Coles, 2001). The distinguishing feature of an extreme value analysis is 

the capability to model the stochastic behavior of the process that is unusually large or small in 

nature. This extreme behavior is typically very rare and unobservable within a reasonable data 

collection time period. The EVT often involves the challenge to estimate the probability of 

extreme events over an extended period of time given very short and limited historical data. The 

extreme value paradigm comprises a principle for model extrapolation based on the 

implementation of mathematical limits as finite-level approximations. The key implicit 

assumption of the EVT is that the underlying stochastic behavior of the process being modeled is 

sufficiently smooth to enable extrapolations to unobserved levels. No other credible alternative 

has been proposed to date. 

EVT has been regularly applied in various fields such as meteorology, the financial market, the 

insurance business, structural reliability, and telecommunications. Examples of EVT applications 

include the prediction of annual maximum sea level, wave height modeling, wind speed 
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prediction, investment return modeling, returns of exchange rates modeling, internet traffic 

congestion modeling, and the distribution of sizable claims in insurance business (Coles, 2001; 

Galambos et al., 1994; Reiss and Thomas, 1997). 

We can classify sampling schemes in extreme value modeling into two approaches, time-based 

and event-based. In the time-based sampling scheme, a series of observations is blocked into 

fixed intervals over time and the block maxima (or minima) are treated as extremes. For the 

event-based sampling scheme, the observations are treated as extremes if a predetermined 

threshold is being exceeded. The resulting distributions from these sampling schemes, if applied 

properly, are independent of a true underlying distribution, typically unknown in practice. 

There are several references available for the extreme value theory. In this report, we will closely 

follow mathematical formulations and proofs as presented in Coles (2001) and Leadbetter et al. 

(1983). 

6.2 TIME-BASED SAMPLING SCHEME 

The model focuses on the statistical behavior of 

{ }1max ,..., ,n nM X X=  

where X1,…,Xn is a sequence of independent random variables having a common distribution 

function F. In this sampling scheme, Xi usually represents the values of a process measured on a 

regular time-scale so that Mn represents the maximum of the process over n time units of 

observation. 

Theoretically, the exact distribution of Mn can be derived for all values of n as  

{ } { } ( ){ }1Pr Pr ,..., .
n

n nM z X z X z F z≤ = ≤ ≤ =  

Since the true distribution of F is usually unknown in practice, the alternative approach is to focus 

on approximate families of models for nF , which can be estimated on the basis of extreme data 

only. 
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6.2.1 Extremal Types Theorem 

If there exist sequences of constants {an > 0} and {bn} such that 

Pr{( ) / } ( )   as n ,n n nM b a z G z− ≤ → →∞  

where G is a non-degenerate distribution function, then G belongs to one of the following 

families 

  I : ( ) exp exp ( ) ,  -   z  z bG z
a

⎧ ⎫⎡ − ⎤= − − ∞ < < ∞⎨ ⎬⎢ ⎥⎦⎣⎩ ⎭
 

  

0                           , z b        

II : ( )
exp   , z b         

G z z b
a

α−

≤⎧
⎪

⎧ ⎫= −⎨ ⎪ ⎪⎛ ⎞− >⎨ ⎬⎜ ⎟⎪ ⎝ ⎠⎪ ⎪⎩ ⎭⎩

 

exp   , z b        
III: ( )

        
1                                 , z  b

z b
G z a

α⎧ ⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞⎪ − − >⎢ ⎥⎪ ⎨ ⎬⎜ ⎟= ⎝ ⎠⎨ ⎥⎢⎪ ⎪⎦⎣⎩ ⎭⎪
≥⎪⎩

 

for parameters a > 0, b and in case of families II and III, α > 0. These three classes of 

distributions are referred to as extreme value distributions, with type I, II, and III widely known 

as the Gumbel, Fréchet, and Weibull families respectively. 

This theorem implies that, when nM  can be stabilized with suitable sequences {an} and {bn}, the 

corresponding normalized variable *
nM  has a limiting distribution that must be one of the three 

types of extreme value distribution. 

6.2.2 Generalized Extreme Value Model 

The three types of limits have distinct forms of behavior, corresponding to the different forms of 

tail behavior for the distribution function F of the Xi. For the Weibull distribution z+ is finite, 

while for both the Fréchet and Gumbel distributions z+ = ∞. The density of G decays 

exponentially for the Gumbel distribution and polynomially for the Fréchet distribution.  
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All three types of limits can be combined into a single family of models having distribution 

functions of the form 

 
1/

( ) exp 1 zG z
ξ

µξ
σ

−⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞= − +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
 (6-1) 

defined on the set { }:1 ( ) / 0z zξ µ σ+ − > , where the parameters satisfy µ−∞ < < ∞ , 0σ > , 

and ξ−∞ < < ∞ . Equation (6-1) is the generalized extreme value (GEV) distribution. The model 

has three parameters: µ  (the location parameter), σ  (the scale parameter), and ξ  (the shape 

parameter). The type II and type III classes of extreme value distribution correspond respectively 

to the cases 0ξ >  and 0ξ <  in this parameterization. Three types of density function with the 

same location and scale parameter are plotted in Figure 6-1 for comparison. Note that z- is finite 

for the Fréchet density while z+ is finite for the Weibull density. 

GEV Density Function
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Figure 6-1: Density Functions of GEV Families 

The subset of the GEV family with 0ξ =  is interpreted as the limit of equation (6-1) as 0ξ → , 

leading to the Gumbel family with distribution function 
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 ( ) exp exp , .zG z zµ
σ

⎡ ⎤⎧ − ⎫⎛ ⎞= − − −∞ < < ∞⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎩ ⎭⎣ ⎦

 (6-2) 
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Figure 6-2: Behavior of Fréchet Density Function for Varying Shape Parameters 
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Figure 6-3: Behavior of Weibull Density Function for Varying Shape Parameters 
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Figure 6-2 and Figure 6-3 illustrate the effects of different shape parameters on the tail behavior 

of the Fréchet and Weibull density functions respectively. For the Fréchet distribution ( )0ξ > , 

the density function shifts to the left with the tighter lower bound and the heavier tail as ξ  

increases. In contrast, the Weibull density function shifts to the right with a tighter upper bound 

as ξ  decreases.  

The upper or lower limit of z, depending on the value of ξ , on which G(z) is defined can be 

expressed as 

 limit .z σµ
ξ

= −  (6-3) 

6.2.2.1 Return Level and Return Period 

To model the extremes of a series of independent observations X1, X2,…, data are blocked into 

sequences of observations of length n, for some large value of n, generating a series of block 

maxima, Mn,1,…, Mn,m, to which the GEV distribution can be fitted. Estimates of the extreme 

quantile of the block maximum distribution are then obtained by inverting equations (6-1) and 

(6-2): 

 
{ }

{ }

1 log(1 )  for 0
,

log log(1 )         for 0 
p

p
z

p

ξσµ ξ
ξ

µ σ ξ

−⎧ ⎡ ⎤− − − − ≠⎪ ⎣ ⎦= ⎨
⎪ − − − =⎩

 (6-4) 

where ( ) 1pG z p= − . In common terminology, zp is the return level associated with the return 

period 1/p. In other words, the level zp is expected to be exceeded, on average, once every 1/p 

time blocks. More precisely, the level zp is exceeded by the block maximum in any particular 

time block with probability p. 

To graph a return level plot, defining log(1 )py p= − −  so that 
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1 for 0

.
log          for 0

p
p

p

y
z

- σ y

ξσµ ξ
ξ

µ ξ

−⎧ ⎡ ⎤− − ≠⎪ ⎣ ⎦= ⎨
⎪ =⎩

 (6-5) 

It follows that, if pz  is plotted against py  on a logarithmic scale – or equivalently, if pz  is 

plotted against log py  – the plot is linear in case 0ξ = . If 0ξ < , the plot is convex with the 

asymptotic limit as 0p →  at /µ σ ξ− . If 0ξ > , the plot is concave and has no finite bound. 

The return level plot is useful in highlighting the effect of extrapolation at the tail of the 

distribution. 

6.2.2.2 Asymptotic Models for Minima 

Let { }1min ,...,n nM X X=% , where Xi denote each individual observation which is assumed to be 

independent and identically distributed. Letting i iY X= −  for i = 1,...,n, the change of sign means 

that the small values of Xi correspond to the large values of Yi. Therefore, if 

{ }1min ,...,n nM X X=%  and { }1max ,...,n nM Y Y=% , then n nM M= −% . The GEV distribution for 

minima can be derived in analogous to that for maxima, which results in the following theorem: 

If there exist sequences of constants {an > 0} and {bn} such that 

Pr{( ) / } ( )   as nn n nM b a z G z− ≤ → →∞%%  

defined on { }:1 ( ) / 0z zξ µ σ− − >% , where µ−∞ < < ∞ , 0σ >% , and ξ−∞ < < ∞ . 

This implies that the maximum likelihood estimates obtained from fitting the GEV distribution of 

the maxima to the data -z1,…,-zm correspond exactly to that of the required GEV distribution of 

the minima except for only the location parameter where the sign correction is needed: ˆ ˆµ µ= −% . 

The asymptotic model for the block maxima presented earlier can be applied for the block 

minima as well. The maximum likelihood estimate of the parameters of the GEV distribution for 

the block minima corresponds exactly to that of the block maxima, except for the sign correction 

of the location parameter. Therefore, the better way to handle the block minima with the GEV 
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model without the need for concern about the sign correction is to negate the block minima before 

estimating the model. 

6.2.3 Model Generalization: the r Largest Order Statistic Model 

Extremes are scarce, by the nature of the problem, so that model estimates as well as extreme 

return levels have a large variance. This issue motivated the search for characterizations of 

extreme value behavior that enable the modeling of data other than just the block maxima. There 

are two well-known general characterizations. One is based on the behavior of the r largest order 

statistics within a block, for small values of r. The other is based on exceedances of a high 

threshold. We will focus on the first characterization in this section. The second approach is 

discussed in the next section in the context of the event-based sampling scheme. 

Suppose that X1, X2,… is a sequence of independent and identically-distributed random variables. 

Let us define, 

{ }( )
1largest of ,..., .k th

n nM k X X=  

The limiting behavior of this variable, for fixed k, as n →∞ , can be described by the following 

generalization. 

If there exists sequences of constants { }0na >  and { }nb  such that  

( ){ }Pr / ( )   as n n nM b a z G z n− ≤ → →∞  

for some non-degenerate distribution function G, so that G is the GEV distribution function given 

by equation (6-1), then, for fixed k, 

( ){ } ( )( )Pr /k
n n n kM b a z G z− ≤ →  

on { }:1 ( ) / 0z zξ µ σ+ − > , where 

 { }
1

0

( )( ) exp ( )
!

sk

k
s

zG z z
s

ττ
−

=

= − ∑  (6-6) 
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with 

1/

( ) 1 .zz
ξ

µτ ξ
σ

−
⎡ − ⎤⎛ ⎞= + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

This generalization implies that, if the kth largest order statistic within a block is normalized in 

exactly the same way as the block maximum, then its limiting distribution is of the form given by 

equation (6-6), the parameters of which correspond to the parameters of the limiting GEV 

distribution of the block maximum. 

Although the block maxima from different blocks are independent by assumption, the 

components within a block cannot be independent. For example, (2)
nM  cannot be greater than 

(1)
nM . The outcome of each component influences the distribution of the other. Hence, we require 

a characterization of the limiting joint distribution of the entire vector ( )r
nM  where 

{ }( ) (1) ( ),..., .r r
n n nM M=M  

The following theorem gives the joint density function of the limiting distribution. 

If there exist sequences of constants { }0na >  and { }nb  such that 

( ){ } ( )Pr /   as n n nM b a z G z n− ≤ → →∞  

for some non-degenerate distribution function G, then, for fixed r, the limiting distribution as 

n →∞  of 

(1) ( )
( ) ,...,

r
r n n n n

n
n n

M b M b
a a

⎧ ⎫− −
= ⎨ ⎬
⎩ ⎭

%M  

falls within the family having joint probability density function 

 ( )
11/ 1( ) ( )

(1) ( ) 1

1

,..., exp 1 1 ,
r kr

r

k

z zf z z
ξ

ξµ µξ σ ξ
σ σ

− − −

−

=

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎪ ⎪= − + ⋅ +⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∏  (6-7) 
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where µ−∞ < < ∞ , 0σ > , ξ−∞ < < ∞ ; ( ) ( 1) (1)...r rz z z−≤ ≤ ≤ ; ( ) ( ):1 ( ) / 0k kz zξ µ σ+ − >  

for 1,...,k r= . 

In the case r = 1, equation (6-7) reduces to the GEV family of density functions. The case 0ξ =  

is interpreted as the limiting form as 0ξ → , leading to the family of density functions 

 ( )
( ) ( )

(1) ( ) 1

1

,..., exp exp exp .
r kr

r

k

z zf z z µ µσ
σ σ

−

=

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎪ ⎪= − − ⋅ −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∏  (6-8) 

The parameters of the r largest order statistic model correspond to those of the GEV distribution 

of the block maxima while incorporating more of the observed extreme data. Therefore, relative 

to a standard block maxima analysis, the interpretation of parameters is unaltered, but precision 

should be improved due to the inclusion of extra information. 

6.3 EVENT-BASED SAMPLING SCHEME 

The time-based sampling scheme which models only the block maxima can be a wasteful 

approach to extreme value analysis if one block happens to contain more extreme events than 

another. The second approach for model generalization defines the extreme events where the pre-

specified threshold is exceeded. The entire time series data may be better used by avoiding the 

procedure of blocking. 

6.3.1 The Generalized Pareto Distribution 

Let X1, X2,… be a sequence of independent and identically distributed random variables, having a 

marginal distribution function F. Xi is regarded as extreme events if it exceeds some high 

threshold u. It follows that a stochastic behavior of extreme events can be described by the 

conditional probability 

 { } 1 ( )Pr |  ;  0.
1 ( )

F u yX u y X u y
F u

− +
> + > = >

−
 (6-9) 
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If the parent distribution F were known, the exact distribution of threshold exceedances would 

also be known. However, F is usually unknown in practice. Approximation of distributions in this 

case parallels the use of the GEV for the distribution of the block maxima when the true parent 

distribution is unknown. The threshold excess model is described by the following theorem. 

Let X1, X2,… be a sequence of independent random variables with common distribution F, and let 

{ }1max ,..., .n nM X X=  

Suppose that F satisfies the extremal types theorem (see Section 6.2.1), so that for large n, 

{ } ( )Pr nM z G z≤ ≈  

where 

1/

( ) exp 1 zG z
ξ

µξ
σ

−⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞= − +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
 

for some ,  0µ σ >  and ξ . Then, for large enough u, the distribution function of ( )X u− , 

conditional upon X u> , is approximately 

 ( )
1/

1 1 yH y
ξξ

σ

−
⎛ ⎞= − +⎜ ⎟
⎝ ⎠%

 (6-10) 

defined on ( ){ }: 0 and 1+ y/ 0y y ξ σ> >% , where 

 ( ).uσ σ ξ µ= + −%  (6-11) 

The family of distributions defined by equation (6-10) is called the generalized Pareto family. 

The parameters of the generalized Pareto distribution of threshold excesses are uniquely 

determined by those of the associated GEV distribution of block maxima. The parameter ξ  in 

equation (6-10) is equal to that of the corresponding GEV distribution.  
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The duality between the GEV and generalized Pareto families means that the shape parameter ξ  

is dominant in determining the qualitative behavior of the generalized Pareto distribution. If 

0ξ < , the distribution of threshold excesses has an upper bound of /u σ ξ− % ; if 0ξ ≥ , the 

distribution has no upper limit. The case of 0ξ =  requires a separate treatment by taking limit 

0ξ →  in equation (6-10), leading to 

 ( ) 1 exp  ; 0,yH y y
σ

⎛ ⎞= − − >⎜ ⎟
⎝ ⎠%

 (6-12) 

corresponding to an exponential distribution with parameter 1/σ%. 

6.3.2 Threshold Selection 

In the block maxima approach, there is a bias-variance tradeoff for the choice of block length. 

The small block length generates more extremes but is more likely to violate the asymptotic basis 

of the model, thereby producing biased estimates. The large block length is vice versa; a few 

extremes can lead to estimates with a high variance. 

The issue of block length in the block maxima approach is analogous to the threshold choice in 

the threshold excess model. Too low a threshold is likely to violate the asymptotic assumption of 

the model, leading to bias; too high a threshold will generate few extremes to be used in the 

model estimation, leading to high variance. The standard practice is to adopt as low a threshold as 

possible while the model still provides a reasonable approximation (Coles, 2001). There are two 

methods which can be used as tools to help determine the appropriate threshold: (a) the mean 

residual life plot which can be carried out prior to the model estimation and (b) the assessment of 

the stability of parameter estimates, based on fitting models across the range of varying 

thresholds. 

6.3.2.1 Mean Residual Life Plot 

If Y has a generalized Pareto distribution with parameters σ  and ξ , then 
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 ( ) ,
1

E Y σ
ξ

=
−

 (6-13) 

provided that 1ξ < . When 1ξ ≥ , the mean is infinite. Let 
0uσ  denote the scale parameter 

corresponding to the excesses of the threshold u0. If u0 is a valid threshold, then it should equally 

be valid for all thresholds u > u0. Hence, for u > u0, 

 ( ) 0 0( )
|

1 1
uu

u u
E X u X u

σ ξσ
ξ ξ

+ −
− > = =

− −
 (6-14) 

by virtue of equation (6-11). uσ  is the scale parameter corresponding to the excesses of the 

threshold u. Consequently, for u > u0, ( | )E X u X u− >  is a linear function of u. 

( | )E X u X u− >  is simply the mean of the excesses of the threshold u which can be estimated 

by the sample mean of excesses of the threshold u. This leads to the mean residual life plot which 

consists of the locus of points 

( )( ) max
1

1, : ,
un

i
iu

u X u u x
n =

⎧ ⎫⎛ ⎞⎪ ⎪− <⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑  

where ( ) ( )1 ,...,
unx x  consist of the nu observations that exceed u, and xmax is the largest of the Xi. 

Above the threshold u0 at which the generalized Pareto distribution provides a valid 

approximation of the excess distribution, the mean residual life plot should be approximately 

linear in u. 

6.3.2.2 Assessment of Parameter Stability 

A complementary technique to the mean residual life plot is to fit the generalized Pareto 

distribution at a range of thresholds and then examine stability of parameter estimates. If u0 is a 

valid threshold for the generalized Pareto distribution, then all thresholds u > u0 should also be 

valid. From equation (6-11), we can show that 

 ( )
0 0 .u u u uσ σ ξ= + −  (6-15) 
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The scale parameter changes as u varies unless 0ξ = . This difficulty can be remedied by 

reparameterizing the scale parameter of the generalized Pareto distribution as 

 * .u uσ σ ξ= −  (6-16) 

*σ  is now a constant with respect to u. Consequently, this suggests plotting both *σ̂  and ξ̂  

against u, together with confidence intervals for each of these quantities, and selecting u0 as the 

lowest value of u for which the estimates remain stable. These quantities will not be exactly 

constant due to a sampling variability, but they should be approximately stable after allowance 

for their sampling errors. Confidence intervals of ξ̂  can be obtained straightforwardly from the 

variance-covariance matrix. Confidence intervals for *σ̂  can be determined using the delta 

method. 

6.4 EXTREMES OF DEPENDENT SEQUENCES 

Preliminary visual evaluation of PET variations over time (see Figure C-1 to Figure C-32) reveals 

that PETs tend to exhibit a certain degree of dependency as clusters. The occurrences of short 

PETs are more likely to be followed by a sequence of short PETs. Two hypotheses can be 

suggested for this behavior. First, the PET could be time-varying per se or certain underlying 

covariates may influence the PET occurrences. This issue calls for the examination of the process 

non-stationarity which is discussed in the next section. The second hypothesis is that the 

occurrences of PETs are temporally dependent on prior events. The latter issue treats the PET 

occurrence process as identically distributed but not independent. The aforementioned sampling 

schemes and resulting distributions address the extremes under the independent and identically 

distributed (iid) assumption. This section examines how the possible dependency in a series of 

observations can be handled in the extreme value models. 

The most natural generalization of a sequence of independent random variables is to a stationary 

series. A stationary process is a series whose variables may be mutually dependent but whose 

stochastic properties are homogeneous through time. Dependence in stationary series can take 

many different forms. We will follow the treatment of this issue as limited long-range 

dependence at extreme levels (Coles, 2001). This consideration is often plausible for physical 

processes and particularly for our application. In other words, extreme events are close to 
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independent at times that are reasonably far apart. This leads to a relatively simple quantification 

of such effects on the standard extreme value limits. 

6.4.1 Maxima of Stationary Sequences 

Coles (2001) shows that, if a series has limited long-range dependence at extreme levels, the 

serial dependency has no influence on the limit result and the maxima of the stationary series 

follow the same distributional limit laws as those of an independent series. However, the 

parameters of the limit distribution are affected by the dependence in the series. This impact is 

summarized in the following theorem. 

Let 1 2, ,...X X  be a stationary process and * *
1 2, ,...X X  be a sequence of independent variables 

with the same marginal distribution. Let { }1max ,...n nM X X=  and { }* * *
1max ,...,n nM X X= . 

Under suitable regularity conditions, 

( ){ } ( )*
1Pr /n n nM b a z G z− ≤ →  

as n →∞  for normalizing sequences { }0na >  and { }nb , where G1 is a non-degenerate 

distribution function, if and only if 

( ){ } ( )2Pr /n n nM b a z G z− ≤ →  

where 

 ( ) ( )2 1G z G zθ=  (6-17) 

for a constant θ  such that 0 1θ< ≤ . This implies that the effect of dependence in the stationary 

series (which satisfies the limited long-range dependence condition) is simply a replacement of 

1G  as the limit distribution with 1Gθ . If 1G  corresponds to the GEV distribution with parameters 

( ), ,µ σ ξ  and 0ξ ≠ , then 
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( )
1/

1

1/*

*

exp 1

exp 1

zG z

z

θξ
θ

ξ

µξ
σ

µξ
σ

−

−

⎧ ⎫⎡ − ⎤⎪ ⎪⎛ ⎞= − +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪= − +⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

 (6-18) 

where ( )* 1 ξσµ µ θ
ξ

−= − −  and * ξσ σθ= . 

Similarly, if 1G  corresponds to the Gumbel distribution with parameters ( ),µ σ , 2G  is also a 

Gumbel distribution, with parameters * logµ µ σ θ= −  and *σ σ= . 

The quantity θ  defined in equation (6-17) is termed the extremal index. A more precise statement 

together with proofs is given in Leadbetter et al. (1983). The extremal index θ  of a stationary 

series can be interpreted in terms of the propensity of the process to cluster at extreme levels. 

Loosely, 

 ( ) 1limiting mean cluster size .θ −=  (6-19) 

For an independent series, the extremal index 1θ = . The converse, however, is not true. A 

stationary series with 1θ =  does not necessarily have to be a series of independent observations. 

6.4.2 Modeling Stationary Extremes 

In this section, we examine how the dependent series has an impact on extreme value modeling in 

practice.  

For block maxima data, provided long-range dependence at extreme levels is weak, the 

distribution of the block maxima is still within the GEV family. From the results in Section 6.4.1, 

the parameters estimated from the stationary series will be different from what would have been 

had the series been independent. But, since the parameters are to be estimated anyway, the 

conclusion is that dependence in the data is already addressed in the model estimation procedure 

and can be ignored. 



 

 

157

For threshold excess models, the fact that extremes in a stationary series have a tendency to 

cluster means that some change of practice is needed. The asymptotic equivalents suggest that the 

distribution of any individual threshold excess may be modeled using the generalized Pareto 

distribution. However, the clustering induces dependence in the observations, invalidating the 

typical log-likelihood. One widely-used method to deal with dependent exceedances in threshold 

excess models is declustering. The declustering technique is a filtering of dependent observations 

to obtain a set of threshold excesses that are approximately independent. This method works in 

steps as follows: (a) using an empirical rule to define clusters of exceedances, (b) identifying the 

maximum excess within each cluster, (c) assuming cluster maxima to be independent with 

conditional excess distribution given by the generalized Pareto distribution, and (d) fitting the 

generalized Pareto distribution to the cluster maxima. 

In conclusion, the block maxima models have an advantage over the threshold excess models 

when dependency exists in a series of extremes due to its simplicity. A declustering scheme can 

be helpful for the threshold excess models but the results can be sensitive to the arbitrary choices 

made in the cluster determination. In addition, the declustering is a waste of data, which is 

contrary to one of the key benefits we try to achieve from the threshold excess models. 

6.5 EXTREMES OF NON-STATIONARY SEQUENCES 

In the previous section, we examined the effect of dependent extremes in the context of a 

stationary series, provided that a series has a weak long-range dependence. It is possible that the 

PET occurrence process could be time-varying per se or influenced by certain underlying 

covariates. In such a case, the distribution of extremes is not identical and the standard extreme 

value modeling may be invalid. Non-stationary processes have characteristics that change 

systematically over time. The fact that PET variations over time exhibit similar patterns across 

sites suggests that the identically-distributed assumption may be invalid and some underlying 

mechanisms may characterize the PET occurrence processes. This section will focus on the non-

stationary extremes and how the non-stationarity can be incorporated in the model structure. 
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6.5.1 Model Structure for Non-Stationarity 

A variable that appears to relate to the extreme behavior of a series is referred to as a covariate. 

To incorporate the covariates into the model structure, the extreme value parameters can be 

expressed in the following form 

 ( ) ( ) ,Tt hθ = X β  (6-20) 

where θ  denotes either ,µ σ  or ξ , h is a specified function, β  is a vector of parameters, and 

X  is a model vector. In this context, h is usually referred to as the inverse-link function. For 

example, a linear trend over time in the location parameter µ  can be expressed by letting h be the 

identity function and 

 ( ) [ ] 0

1

1 .t t
β

µ
β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (6-21) 

The log-linear model for σ  has a similar structure to equation (6-21); ( )tµ  is replaced by ( )tσ  

and the inverse-link h  is taken as the exponential function. For example, a log-link of σ  with 

covariates X1 and X2 can be expressed as 

 ( ) [ ]
0

1 2 1

2

log 1 .t X X
β

σ β
β

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (6-22) 

There is a similarity between the class of models implied by equation (6-20) and generalized 

linear models (GLMs), whose theory is well developed and computing algorithms are standard 

implementations in several statistical analysis software programs (e.g., SAS, LIMDEP, and S-

Plus). For detailed discussions about GLMs, interested readers can consult a number of textbooks 

available on this topic, e.g., see Dobson (2002). The standard results or computational tools for 

GLMs are not directly transferable to extreme value modeling. The major difference is that the 

GLM family is restricted only to the distributions that fall within the exponential family (Coles, 

2001) while the standard extreme value models generally fall outside this scope. 
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6.5.2 Model Selection 

With the possibility of modeling any extreme value parameters as functions of a combination of 

time and/or any covariates, there is a large catalogue of models from which to select, and 

choosing an appropriate combination becomes an important issue. Probably the most widely 

adopted principle is to choose the best model on the ground of parsimony, i.e., selecting the 

simplest model possible that can explain the variability in the data set as much as possible. 

Maximum likelihood estimation of nested models leads to a simple test procedure of one model 

against the other. With models 0 1Μ ⊂Μ , the deviance statistic is defined as 

 ( ) ( ){ }1 1 0 02 ,D = Μ − Μl l  (6-23) 

where ( )0 0Μl  and ( )1 1Μl  are the maximized log-likelihoods under models 0Μ  and 1Μ  

respectively. Large values of D  indicate that the model 1Μ  substantially explains the variability 

in the data more than the model 0Μ . The formal statistical test is provided by the asymptotic 

distribution of the deviance function, which can be summarized as follows. 

The model 0Μ  is rejected at the α-level significance test if D cα> , where cα  is the ( )1 α−  

quantile of the 2
kχ  distribution, and k  is the difference in the dimensionality of 0Μ  and 1Μ . In 

other words, the formal criterion specifies how large D should be before the model 1Μ  is to be 

preferred. 

6.6 POINT PROCESS CHARACTERIZATION OF EXTREMES 

The extreme value behavior of a process can be characterized in many different ways. One 

elegant formulation is derived from the theory of point process. The benefits of point process 

characterization of extremes are of twofold: (a) it provides a unified framework to interpret the 

extreme value behavior for all the models introduced so far; and (b) the model leads directly to a 

likelihood that enables a more natural formulation of non-stationarity in threshold excesses than 

the use of the generalized Pareto model. 
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The basic theory of point process is discussed briefly in this section. Except for the threshold 

excess models, the point process characterization of extreme value behavior does not offer any 

significant advantage over standard formulations. Therefore, only the connection between the 

point process and the threshold excess models is further discussed. Coles (2001) and Leadbetter 

et al. (1983) provide a more in-depth discussion on this generalization. 

6.6.1 Basic Theory of Point Processes 

A point process on a set Τ  is a stochastic rule for the occurrence and position of point events. In 

a modeling context, with Τ  representing a period of time, a point process model might be used to 

describe the occurrence of thunderstorms, earthquakes, and PETs in our particular case.  

For each τ ⊂ Τ , ( )N τ  is the number of points in the set τ . The intensity measure of the 

process is defined as 

 ( ) ( ){ }.E Nτ τΛ =  (6-24) 

The intensity measure ( )τΛ  is the expected number of points in any subset τ ⊂ Τ .  

Assuming [ ] [ ]1 1, ... , k
k kt x t xτ = × × ⊂ℜ , and provided it exists, the derivative function 

 ( ) ( )
1 k

x
x x

τ
λ

∂Λ
=
∂ ⋅⋅⋅∂

 (6-25) 

is the intensity (density) function of the process. 

A point process on kΤ ⊂ℜ  is said to be a k-dimensional non-homogeneous Poisson process, 

with intensity density function ( )λ ⋅ , if it satisfies the property of independent counts on non-

overlapping subsets and, for all τ ⊂ Τ , 

( ) ( )( )N Poissonτ τΛ:  

where 
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 ( ) ( ) .x dx
τ

τ λΛ = ∫  

We now assume that the intensity function ( )λ ⋅  is within a family of parametric models 

( ) ;λ θ⋅ . Therefore, the only issue is the estimation of the unknown parameter vector θ . 

Suppose points 1,... nx x  have been observed in a region Τ ⊂ℜ , and that these are the realization 

of a Poisson process on Τ , with intensity function ( );λ θ⋅ , for some value of θ . This leads to, 

by the Poisson property, the following likelihood function 

 ( ) ( ){ } ( )1
1

;  ,..., exp ; ;
n

n i
i

L x x xθ θ λ θ
=

= −Λ Τ ∏  (6-26) 

where ( ) ( ); ;x dxθ λ θ
Τ

Λ Τ = ∫ . Likelihood (6-26) also applies to the more general case of a 

Poisson process on a k-dimensional set Τ . 

6.6.2 Statistical Modeling 

In order to enable modeling extremes within the point process framework, we need the result 

from the following theorem. 

Let 1,..., nX X  be a series of independent and identically distributed random variables, and let 

, ;  1,..., .
1n i

iN X i n
n

⎧ ⎫= =⎨ ⎬+⎩ ⎭
 

The scaling in the first ordinate ensures that the time axis is always mapped to (0, 1). Then, for 

sufficiently large u, on regions of the form ( ) )0,1 ,u× ∞⎡⎣ , nN  is approximately a Poisson 

process, with intensity measure on [ ] ( )1 2, ,t t zτ = × ∞  given by 

 ( ) ( )
1/

2 1 1 .zt t
ξ

µτ ξ
σ

−
⎡ − ⎤⎛ ⎞Λ = − + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (6-27) 
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First, select a high threshold u  and set ( )0,1 [ , )uτ = × ∞ . The ( )N τ  points observed in the 

region τ  are re-labeled ( ) ( ) ( )( ){ }1 1, ,..., ,N Nt x t xτ τ . Assuming the limiting Poisson process is an 

acceptable approximation to the process of nN  on τ , an approximate likelihood can be derived. 

Maximizing this likelihood leads to estimates of parameters ( ), ,µ σ ξ  of the limiting intensity 

function. The small adjustment is needed for (6-27). If PET data is observed for eight hours, the 

parameters obtained will correspond to an eight-hour maximum. By replacing (6-27) with 

 ( ) ( )
1/

2 1 1y
zn t t

ξ
µτ ξ

σ

−
⎡ − ⎤⎛ ⎞Λ = − + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (6-28) 

where yn = the number of time blocks of observation. If we discretize the PET data into hourly 

intervals, by letting yn = 8, the estimates of parameters ( ), ,µ σ ξ  will correspond to the hourly 

maximum distribution of the observed process. Similarly, if we let yn = 32, the estimates will 

correspond to the 15-minute maximum distribution of the observed process. 

Substituting (6-28) into (6-26), with [ ] [ ]1 2, 0,1t t = , leads to the likelihood function in (6-29). 

 

( ) ( ){ } ( )
( )

( )

1
1

1 11/
1

1

, , ;  ,..., exp ,

exp 1 1

N

n i i
i

N
i

y
i

L x x t x

xun

τ

τ

ξ τ ξ

µ σ ξ τ λ

µµξ σ ξ
σ σ

=

− −−
−

=

= −Λ

⎧ ⎫ ⎡ − ⎤⎡ − ⎤⎪ ⎪ ⎛ ⎞⎛ ⎞= − + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∏

∏
(6-29) 

This function can be treated as a typical likelihood function to obtain maximum likelihood 

estimates, standard errors, and approximate confidence intervals. 

6.6.3 Connections with Threshold Excess Model Likelihood 

From the threshold excess models, we know that the distribution of the excesses of a high 

threshold u  follows the generalized Pareto distribution. The likelihood function of threshold 

excess models originally ignores Xi that fails to exceed threshold u. We now supplement the 
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likelihood to include partial information on these observations in order to demonstrate the 

connections between the likelihoods of the point process and the threshold excess models. 

From the knowledge of the generalized Pareto distribution, we have 

 { } ( )
1/

1Pr 1 1 .i
uX u F u

n

ξ
µζ ξ

σ

−
⎡ − ⎤⎛ ⎞= > = − ≈ + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (6-30) 

The rate of exceedances ζ  is the probability of any individual observation iX  exceeding a high 

threshold u . Next, recall from equation (6-11), 

( ).uσ σ ξ µ= + −%  

The likelihood contribution of individual observation iX  that fails to exceed the threshold u  is 

 { }Pr 1 .iX u ζ< = −  (6-31) 

On the contrary, the likelihood contribution of each iX  that exceeds u  is 

 { } { } ( )Pr Pr | ;  , ,i i iX x X x X u f x uζ σ ξ= = = > = − %  (6-32) 

where ( ) ; ,f σ ξ⋅ %  denotes the probability density function of the generalized Pareto distribution. 

Taking products across independent realizations gives the likelihood 

 ( ) ( )
1 1

1
1

1

, , ;  ,..., 1 1 ,
u

u
n

n n i
n

i

x uL x x
ξ

ζ σ ξ ζ ζσ ξ
σ

− −
− −

=

⎡ − ⎤⎛ ⎞= − + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∏% %

%
 (6-33) 

where un  is the number of exceedances of u . For a high threshold, un  will be relatively smaller 

than n , therefore 

 ( ) ( ) { }1 1 exp .un n n nζ ζ ζ−− ≈ − ≈ −  (6-34) 

Additionally, by (6-30) and repeated use of (6-11), 
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 ( )
1 11 1

11 1 1 .i ix u x un
ξ ξ

ζσ ξ σ ξ
σ σ

− − − −
−− ⎡ − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

%
%

 (6-35) 

Substituting (6-34) and (6-35) into (6-33) gives the likelihood in (6-29) with 1yn = . The point 

process likelihood gives the threshold excess models reparameterized in terms of the usual GEV 

parameters. 

The equivalence of the threshold excess models and point process characterization confirms that 

any statistical inference made within the point process framework is equal to those obtained 

within the threshold excess model framework. However, the immediate advantages of the point 

process characterization over standard threshold excess models are: (a) the natural model 

parameterization in terms of usual GEV parameters, (b) the scale parameter σ  is invariant to the 

thresholds, and (c) the threshold exceedance rates form a part of the statistical inference. These 

benefits are particularly useful for modeling non-stationarity in threshold excesses. It is not 

difficult to incorporate time or other covariates into the location parameter µ , which is usually 

simple in the block maxima models. In addition, point process likelihood facilitates the estimation 

of models with time-varying thresholds. 

6.7 MODELING APPROACH FOR PET EXTREMES 

Two major approaches for modeling PET extremes are considered in this study – time-based 

versus event-based extreme value sampling schemes. For both approaches, the negated PET 

values are modeled instead of the actual PET values. The lower PET values correspond to 

situations associated with a greater risk of collisions; therefore, the large negated PETs now 

correspond to a more hazardous situation. There are two immediate advantages of doing so. First, 

it is more convenient mathematically to model the right tail of the extreme value distributions 

using the classes of models presented earlier. Moreover, we demonstrated in Section 6.2.2.2 the 

connection of asymptotic models for maxima and those for minima. We can avoid the need to 

correct the sign of parameter estimates by using the negated observed values. Second, the 

threshold excesses of a high threshold approximately follow the generalized Pareto distribution, 

but not for a low threshold in our case of actual PET values. Threshold excess models will require 
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the negated observations where low values are of interest. To avoid any inconsistency in model 

considerations, the negated observed PETs are preferred henceforth. 

6.7.1 PET Extreme Modeling Alternatives 

Two categories of extreme value modeling approach are considered for modeling PET extremes – 

time-based and event-based sampling schemes. 

6.7.1.1 Time-Based PET Extremes 

In the time-based sampling scheme, we discretize the negated PET data into intervals and select 

the maximum from each block. The block maximum distribution is approximated by the GEV 

distribution. The more flexible approach is the model generalization as the r largest order statistic 

in which we can select r largest observations from each block.  

A bias-variance tradeoff is considered in choosing the suitable block length. A too large block 

length will generate few data points leading to estimates with large variance while a too small 

block length is likely to violate the asymptotic assumption of the GEV distribution. We have 

chosen 15-minute intervals, which result in 32 blocks for the eight-hour observation period. This 

is equivalent to 32 block maxima, provided that the block is sufficiently large to have at least one 

PET. In addition, as a general rule of thumb in statistical sampling, a sample size of 30 or more is 

deemed to be sufficiently large for many limit theorems to be applicable. A block length larger 

than 15 minutes is not practical due to the limited observation period in this study. A larger block 

length would generate too few extreme data points and the parameter estimation algorithm would 

be difficult to converge. Also, the 15-minute interval is a natural block length for our application 

since it also corresponds with a standard practice in traffic volume measurement.  

However, not all the blocks experience at least one PET in the field for two main reasons: (a) we 

observed only the PETs that are less than a specified threshold, which is eight seconds in this 

study; therefore, large PET values usually associated with normal crossing traffic operations are 

omitted and (b) heavy left-turn volume at intersections with a protected left-turn phase separates 

conflicting through-phases and prevents sufficiently low PET values from occurring. For these 

reasons, it should be noted that some sites may have less than 32 block extremes where low PET 
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values do not exist in certain blocks. The sample size issue can be addressed at some sites using 

the r largest order statistic model which enables the sampling of more than just a block maximum. 

The utmost important benefit of modeling PET using block maxima distribution is that the 

dependency across the series of observations is automatically handled in the parameter estimation 

procedure (see Section 6.4). On the other hand, the shortcoming of this modeling approach is 

wastage of data, which may result in a large variance of model estimates and subsequent model 

predictions. 

6.7.1.2 Event-Based PET Extremes 

This approach defines the negated PETs as extremes where they exceed a specified threshold. 

The choice of a threshold is analogous to the choice of the block length in the case of a time-

based sampling scheme. Threshold excesses can be approximated by the generalized Pareto 

distribution as described in Section 6.3.1. The more flexible approach is to model threshold 

excesses using point process characterization. The connection between point process and 

generalized Pareto likelihoods was discussed in Section 6.6.3. The point process likelihood has 

the intensity density function characterized in terms of the usual GEV parameters. In addition, 

under the point process framework, the rate of exceedance forms a part of the likelihood function 

and the scale parameter is invariant to the threshold. 

Selecting an appropriate threshold is a relatively difficult task and there is no standardized 

practice on this issue. In Section 6.3.2, we discussed two techniques to help select the appropriate 

threshold, provided that a time-constant threshold is sufficient. These two techniques require a 

visual evaluation, which is subjective. In cases where a non-constant threshold is more 

appropriate, one may adopt a time-varying threshold within the point process framework in order 

to maintain a constant rate of exceedance. The determination of time-varying thresholds is usually 

carried out using a trial-and-error procedure.  

The major advantage of this modeling approach is the more efficient use of data. However, the 

effect of data dependency across a series of observations is a serious concern. Computationally, 

the degree of dependency can be approximately determined by the extremal index. The data 

dependency, if left unhandled, can lead to biased model estimates. Declustering is a commonly-

used method for dealing with data dependency in threshold excess as well as point process 
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models (see Section 6.4.2). A declustering method, however, still suffers from the lack of a 

standardized procedure and the degree to which declustering is needed remains subjective. 

In brief, we need to apply a declustering method to a series of PET data and then select an 

appropriate threshold from a declustered series prior to model estimation. Then, PET threshold 

excesses as extremes can be modeled within the framework of the point process likelihood. 

6.7.1.3 Selected Modeling Approach 

Due to the dependency embedded in a series of observation, the first method, time-based 

sampling scheme, is more suitable for modeling PET extremes. Although a sample size issue is of 

our concern, the problem is partially addressed by the r largest order statistic model. The model 

estimation results from the second method is likely to be less robust than the first one due in large 

to the subjectivity associated with a declustering method and a threshold selection required prior 

to model estimation. The advantage of additional extremes achieved from the event-based 

sampling scheme is considerably offset by the potentially biased estimates and the arbitrary 

nature of the method. 

The modeling procedure for PET extremes can be summarized as follows: 

1. Block a series of negated PET observations into 15-minute time intervals. 

2. Select the r largest values from each block. The choice of r depends on the actual sample 

size. Note that the GEV distribution is a special case of the r largest order statistic model 

where r = 1. 

3. Prepare the covariate data (e.g., total intersection volume, PET frequency, and left-turn 

proportion) for each corresponding 15-minute interval. 

4. Estimate the models based on the PET and covariate data. The log-likelihood value at 

convergence can be used to compare the goodness-of-fit between nested models. 

The detailed modeling procedure is described in subsequent sections. Then, we will describe the 

method to predict the extreme return level and the crash frequency based on the parameter 

estimates. 
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6.7.2 Parameter Estimation and Inference 

Many techniques have been proposed for parameter estimation in extreme value models. These 

include graphical techniques based on model of probability plots, method of moments, and 

likelihood-based methods. However, the all-around utility and adaptability to complex model-

building make the likelihood-based approach particularly attractive. 

One potential difficulty with the use of likelihood-based methods concerns the regularity 

conditions required for the standard asymptotic properties associated with maximum likelihood 

estimates. The violation of the regularity conditions implies that the usual asymptotic results are 

not automatically applicable. Smith (1985) studied this issue and concluded the findings as 

follows: 

• For 0.5ξ > − , the maximum likelihood estimators are regular and possess the usual 

asymptotic properties. 

• For 1.0 0.5ξ− < < − , the maximum likelihood estimators are estimable but the usual 

asymptotic properties do not apply. 

• For 1.0ξ < − , the maximum likelihood estimators are unlikely attainable. 

6.7.2.1 Maximum Likelihood Estimation 

The maximum likelihood estimation is used to estimate the model parameters in this study. 

Extreme value distributions are not a standard package in statistical analysis software, so we 

developed a source code for this task in S language, which can be executed in S-Plus or R 

platforms. Parts of the code are modified from the S-code originally written by Coles (2001).  

Generalized Extreme Value Model 

GEV distribution is a special case of the r largest order statistic model where r = 1. Under the 

assumption that Z1,…,Zm are GEV-distributed independent variables, the log-likelihood function 

for 0ξ ≠  is 
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 ( )
1/

1 1

1, , log 1 log 1 1
m m

i i

i i

z zm
ξ

µ µµ σ ξ σ ξ ξ
ξ σ σ

−

= =

⎛ ⎞ ⎡ − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞= − − + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦
∑ ∑l  (6-36) 

defined on 

 1 0 ; 1,..., .iz i mµξ
σ
−⎛ ⎞+ > =⎜ ⎟

⎝ ⎠
 (6-37) 

The condition (6-37) ensures that none of the observed data points falls beyond the end-point of 

the distribution. 

The case 0ξ =  requires separate treatment using the Gumbel limit, which leads to the log-

likelihood 

 
1 1

( , ) log exp .
m m

i i

i i

z zm µ µµ σ σ
σ σ= =

⎧ ⎫− −⎛ ⎞ ⎛ ⎞= − − − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ ∑l  (6-38) 

The r Largest Order Statistic Model 

This generalization of block maximum distribution enables a more efficient use of information 

from a series of observed PETs. In practice, we would select the r value as high as possible 

subject to the model adequacy. For each block i , the largest ir  observations are recorded as  

( ) ( ) ( ){ }1 ,...,  ; for 1,..., .i ir r
i i iz z i m= =M  

Usually we set 1 2 ... mr r r r= = = =  but fewer data points are allowed in certain blocks where the 

data are unavailable.  

Taking products across blocks with the density function defined in (6-7) gives the likelihood 

function, for 0ξ ≠ , 

 ( )
( ) ( )

11/ 1

1

1 1

, , exp 1 1
i ir krm

i i

i k

z zL
ξ

ξµ µµ σ ξ ξ σ ξ
σ σ

− − −

−

= =

⎛ ⎞⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎪ ⎪ ⎟= − + ⋅ +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎜ ⎟⎣ ⎦⎩ ⎭⎝ ⎠

∏ ∏  (6-39) 
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provided that 

 
( )

1 0 ; 1,..., ,  1,..., .
k

i
z k r i mµξ
σ

⎛ ⎞−
+ > = =⎜ ⎟⎜ ⎟

⎝ ⎠
 (6-40) 

For the case 0ξ = , we have the likelihood derived from (6-8) as 

 ( )
( ) ( )

1

1 1

, , exp exp exp .
i ir krm

i i

i k

z zL µ µµ σ ξ σ
σ σ

−

= =

⎛ ⎞⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎪ ⎪⎜ ⎟= − − ⋅ −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎣ ⎦⎩ ⎭⎝ ⎠
∏ ∏  (6-41) 

Non-stationary Models 

The advantage of likelihood-based methods for model estimation is the ability to incorporate time 

variables or covariates to describe non-stationary behavior based on the existing model structures. 

For a non-stationary model, we describe the distribution of tZ  for 1,...,t m=  having extreme 

value distribution F  as 

( ) ( ) ( )( ), , ,tZ F t t tµ σ ξ=  

where each parameter is linked with a combination of covariates as described in (6-20).  Let us 

denote β  as a complete vector of parameters. Then, we can express the likelihood function for 

the non-stationary versions as 

 ( ) ( ) ( ) ( )( )
1

;  , , ,
m

t
t

L f z t t tµ σ ξ
=

=∏β  (6-42) 

where f  is the corresponding probability density function. 

6.7.2.2 Inferences for Maximum Likelihood Estimates 

Standard asymptotic results of maximum likelihood estimates stated that, under suitable 

regularity conditions, for large n, 
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 ( )( )1
0 0 0
ˆ ,d EMVN Iθ θ θ −:  (6-43) 

where 0̂θ  is a vector of maximum likelihood estimates of d-dimensional model parameter vector 

0θ  and the matrix ( )EI θ  is the expected information matrix that measures the expected 

curvature of the log-likelihood surface. 

As a result of standard asymptotic results, under suitable regularity conditions, the approximate 

distribution of θ̂  is a multivariate normal with mean θ  and a variance-covariance matrix equal to 

the inverse of the observed information matrix, ( )oI θ , evaluated at the maximum likelihood 

estimates. Let ( )⋅l  be the log-likelihood function. The matrix ( )oI θ , an approximation of 

( )EI θ , is defined by 

 ( ) ( ), d d
ˆˆ ; evaluated at =o i jI eθ θ θ θ

×
⎡ ⎤= ⎣ ⎦  (6-44) 

where 
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θ
θ θ

θ
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θ

⎧ ∂
− ≠⎪ ∂ ∂⎪= ⎨
∂⎪− =⎪ ∂⎩

l

l
 (6-45) 

Denoting the diagonal elements of the inverse of the matrix ( )oI θ  by ,i iψ% , it follows that an 

approximate ( )1 α−  confidence interval for iθ  is 

 / 2 ,î i izαθ ψ± %  (6-46) 

where / 2zα  is the ( )1 / 2α−  quantile of the standard normal distribution. 

In our PET modeling context, θ  can be either a standard parameter vector ( ), ,µ σ ξ  or a vector 

β  in a non-stationary case. 
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6.7.3 Model Diagnostics 

The fitted extreme value models have two components: (a) the observed component and (b) the 

extrapolation component. The validity check of the extrapolation is usually very difficult and it is 

often impossible to check the validity of extrapolation in practice. We will discuss this concern in 

subsequent chapters. However, we can assess the quality of model fit with reference to the 

observed data. This is typically done by graphical evaluations known as probability and quantile 

plots. Other plots, such as return level plot and density plot, are also used in the diagnostics of 

fitted extreme value models. 

6.7.3.1 Diagnostic Plots for GEV Models 

Probability and Quantile Plots 

The probability plot is a comparison of the empirical and fitted distribution functions. With the 

ordered block maxima (negative PETs)  (1) (2) ( )... mz z z≤ ≤ ≤ , the empirical distribution function 

is defined as 

 ( )( ) .
1i

iG z
m

′ =
+

 (6-47) 

The corresponding model estimates ( )( )
ˆ

iG z  can be obtained by substituting ( )iz  into (6-1), 

evaluated at ( )ˆˆ ˆ, ,µ σ ξ . A probability plot consists of the locus of points 

( ) ( ){ }( ) ( )
ˆ ,  ; 1,...,i iG z G z i m′ =  

which should lie close to unit diagonal. A weakness of the probability plot for extreme value 

models is that both ( )( )
ˆ

iG z  and ( )( )iG z′  are bound to approach 1 as ( )iz  increases, while it is 

usually the tail region of the extreme value distribution that is of the greatest concern. This can be 

avoided by the quantile plot, which consists of the points 
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1
( )

ˆ ,  ; 1,..., .
1 i

iG z i m
m

−⎧ ⎫⎛ ⎞ =⎨ ⎬⎜ ⎟+⎝ ⎠⎩ ⎭
 

The quantile plot has an advantage over the probability plot in that the data points are not 

clustered when z(i) increases. Any substantial departure from a unit diagonal for both probability 

and quantile plots may indicate a model inadequacy. 

Return Level Plot 

A return level plot consists of the points 

{ }ˆ(log , ) :  0 1p py z p< <  

where log(1 )py p= − −  and ˆpz  is defined in (6-5). The tail of the distribution is compressed so 

that return level estimates for long return periods are displayed, while the linearity of the plot in 

the case ξ = 0 provides a baseline against which to judge the effect of the estimated shape 

parameter. 

Probability Density Function Plot 

For completeness, the probability density function can be plotted against the histogram of the 

actual data. However, this is generally less informative than the other plots since the shape of the 

histogram can vary substantially depending on the choice of grouping intervals. 

6.7.3.2 Diagnostic Plots for the r Largest Order Statistic Models 

The previous section discussed the plots for examining the quality of fit of the models fitted to 

only the block maximum in the GEV models. The r largest order statistic model is the 

generalization of the GEV case; we can examine the quality of fit in a similar manner for any kth 

largest values from the block ( )1,...,k r= .  
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Probability and Quantile Plots 

These are obtained by comparing the distribution of the kth order statistic, model (6-6), with 

parameters replaced by maximum likelihood estimates. For each kth order statistic, the probability 

plots are straightforward, as in the case of the GEV models. 

The quantile plot is more complicated since model (6-6) cannot be inverted analytically. For the 

model estimate of the ( )1 p−  quantile, pz  is to be solved numerically from the expression 

 ( ) 1 ,k pG z p= −  (6-48) 

where ( )kG z  is the distribution function of the kth order statistic defined in (6-6). 

As usual, any substantial departure from the unit diagonal for any kth order statistic in these plots 

may signify a fundamental lack-of-fit problem. 

6.7.3.3 Diagnostic Plots for Non-Stationary Models 

The model checking for the non-stationary case is more complicated due to the lack of 

homogeneity in the distributional assumptions across the series of observations. The approximate 

extreme value distributions are not identically distributed in the non-stationary case. We need to 

apply the diagnostic plots to a standardized version of the data instead, conditional upon the fitted 

parameter estimates.  

For the block maxima distributed as non-stationary GEV, the estimated model is 

( ) ( ) ( )( )ˆˆ ˆ, , .tZ GEV t t tµ σ ξ=  

The standardized variables tZ% is obtained by 

 
( )

( ) ( )
( )
ˆ1 ˆlog 1 .ˆ ˆ

t
t

Z t
Z t

tt
µ

ξ
σξ

⎧ ⎫⎛ ⎞−⎪ ⎪= + ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
%  (6-49) 
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Each tZ% now follows the standard Gumbel distribution ( )0,  1µ σ= = , with probability 

function 

 { } ( )Pr exp ,  .z
tZ z e z−≤ = − ∈% ¡  (6-50) 

This means that probability and quantile plots of the observed non-stationary tz% can be made 

with reference to the distribution (6-50). Let ( ) ( )1 ,..., mz z% %  be the ordered values of tz%, the 

probability plot consists of the pairs 

( )( )( ), exp exp ;  1,...,
1 i

i z i m
m

⎧ ⎫− − =⎨ ⎬+⎩ ⎭
%  

while the quantile plot consists of the locus of points 

( ) , log log ;  1,..., .
1i

iz i m
m

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎛ ⎞− − =⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
%  

The probability plot is invariant to the choice of Gumbel as a reference distribution, but this is not 

the case for the quantile plot. Choices other than Gumbel would lead to a different quantile plot. 

Despite this arbitrariness, the Gumbel distribution is arguably the most natural choice given its 

connection with GEV family. 

6.7.4 Model Selection Criteria 

For each site, the model goodness-of-fit can be evaluated by checking the probability and quantile 

plots. With the possibility to model PETs as a non-stationary process, a number of combinations 

of covariates can be considered in the modeling procedure. The appropriate link structure is also 

important. The selected set of covariates should logically relate to the mechanism of PET 

occurrences. The test for statistical significance between different nested models was described in 

Section 6.5.2.  
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The best model should be selected on the grounds of parsimony. The more complicated models 

should be preferred only if additional covariates can substantially (in a statistical sense) explain 

the variability in a series of the observed data in a logical manner. 

6.8 MODEL INTERPRETATION 

We can estimate the risk of right-angle collisions using the information from the tail behavior of 

the extreme value distributions. Generally, the extreme return level is the value of interest 

estimated from the fitted models in typical applications of extreme value analysis. Alternative 

interpretation is to examine the area under the tail region of the extreme value distributions as 

estimated crash frequency. This section describes the safety interpretation from the distribution 

tails of estimated models and the computational procedure to determine safety estimates. 

6.8.1 Safety Implications 

The tail behaviors of the fitted models are the results of the selected extreme value distribution 

and its properties. Extreme value theory enables the extrapolation of the distributions fitted to the 

observed PETs to the unobserved levels on a sound mathematical argument. The extrapolated 

component of the distributions fitted to a series of PETs is crucial since it implies the safety levels 

associated with an individual site. There exist two values of interest in this extrapolated tail 

region. The first one is the risk defined by the area under the extreme tail region; the second one 

is the extreme return level defined by the value of the negated PET corresponding to the given 

area under the tail region where the extreme return level is exceeded. 

6.8.1.1 Definition of Risk 

Recall the traffic crossing event, which is the underlying mechanism of PET occurrences. As the 

degree of hazard of right-angle collisions increases as the separation between crossing traffic 

becomes narrower. The degree of separation is quantified in terms of the PET which in turn 

directly relates to the degree of hazard of the crossing situations. For a normal traffic operation, 

the PET is usually very large and therefore does not carry much information about safety. At the 

other extreme, the failure to perform normal crossing maneuvers will result in a right-angle crash, 
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which implies a zero separation. These extreme cases or right-angle crashes, in other words, if 

observable in the field, will correspond to the measured PET value of zero or less. However, we 

know that actual crashes are a rare event and require a considerable amount of waiting time. 

Therefore, it is unlikely to observe actual crashes in a relatively short period of field data 

collection. But, based on the knowledge of the PET occurrence mechanism, the collision event is 

characterized by the PET ≤  0. In extreme value modeling, the negated PETs are fitted to the 

distributions instead of actual PETs; hence, the collision event is defined as the event that has the 

negated PET ≥  0. 

For the GEV and the r largest order statistic models, a series of PETs is blocked into 15-minute 

intervals. The area under the tail region where a negated PET is positive corresponds to the 

probability of experiencing a collision in a 15-minute interval. We refer to this probability as the 

risk. The risk alternatively can be recognized as the expected frequency of collisions during a 15-

minute interval. The latter interpretation simplifies the conversion of the risk to the expected 

frequency of collisions for any given period of time. The detailed procedure is described in 

Section 6.8.2. 

6.8.1.2 Extreme Return Level 

Although the return level is a standard prediction in extreme value analysis, the interpretation in 

the case of PET modeling is more subtle. By definition, the return level zp corresponds to the 

value which gives 

( ) { }Pr 1 ,p pG z Z z p= ≤ = −  

where ( )G ⋅  is the extreme value distribution function and p is the specified probability under the 

tail region. The value 1/ p  is usually referred to as the return period. 

Let us consider the extreme value analysis of the annual maximum sea level as a typical example. 

Assume that we have the maximum sea levels collected on a daily basis. If observed sea levels 

are blocked annually and the annual block maxima are fitted to the GEV distribution, the 100-

year return level can be computed by letting 1/100 0.01p = = . The return level 0.01pz =  here will 

correspond to the 100-year return level of the annual maximum sea level or, equivalently, the 
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annual maximum sea level which is expected to be exceeded on average once every 100 years. In 

other words, the probability of the annual maximum sea level exceeding 0.01pz =  in any particular 

year is 0.01. 

The same analogy applies to the PET extremes. The PET data are blocked into 15-minute 

intervals. To compute the n-year return level of maximum negated PETs, we need to specify p 

based on the number of 15-minute blocks equivalent to n years of observation. For example, a 

one-year return level of maximum negated PET is the negated PET level, which is expected to be 

exceeded on average once every year. Alternatively, the probability of the maximum negated 

PET exceeding the one-year return level in any particular year is 1/(number of 15-minute blocks 

in a year). 

Let zp be the n-year return level of maximum negated PETs. The condition 0pz ≥  implies that 

positive crash frequency is expected during the n-year period; while the condition 0pz <  

indicates that zero crash frequency is expected during the n-year period. The greater value of pz  

on a positive axis implies a greater degree of hazard of right-angle collisions and that collisions 

are more likely. On the other hand, the smaller value of pz  on a negative axis indicates a safer 

situation for the same type of collisions and that collisions are less likely. 

Section 6.8.3 explains the computational procedure to obtain the extreme return level for different 

types of extreme value models. 

6.8.1.3 Advantages and Disadvantages 

There is a relationship between the risk and the extreme return level. However, these two entities 

are neither convertible nor interchangeable. The tail behaviors of extreme value distributions 

represented by two different approaches have their own pros and cons.  

The advantages of the first approach are: (a) it is more intuitive and relatively simple to 

understand; (b) it can be converted to frequency of collisions; and (c) the validation check is 

straightforward by direct comparison with actual crashes. However, the risk is non-negative and 

low-risk intersections tend to yield estimates close to zero. Because of small values, a meaningful 

comparison is not possible in certain cases. 



 

 

179

The extreme return level obtained in the second approach is unrestricted by the constraint 

encountered in the first approach. For this reason, the second approach may fare better in 

discriminating varying safety levels across different locations. However, the shortcomings of the 

return level estimate are: (a) it is not convertible to frequency of crashes, which is a standard 

measure of safety; (b) the validation check relies on the correlation with actual crashes; (c) the 

estimation procedure is computationally cumbersome; and (d) the safety interpretation is less 

intuitive than the first approach. 

 

6.8.2 Estimation of Crash Frequency 

The risk of right-angle collisions in the ith 15-minute block is defined by 

 { } ( )Pr 0 1 0 ,i i iR Z G= ≥ = −  (6-51) 

where iZ  is the maximum negated PET of block i and ( )iG ⋅  is the extreme value distribution 

function. The iR  is a non-negative quantity, which becomes zero if one of the following 

conditions is satisfied: 

• No low PET is observed in the ith block where the observation threshold for PET in the 

field was set at eight seconds. If there exists no PET equal to or shorter than eight 

seconds in that interval, this implies a near-zero-risk situation for that particular block i 

and zero risk will be assumed. 

• The maximum return level of block i, max,iz , is not greater than zero. This implies zero 

probability that a maximum negated PET in block i will be greater than zero, the 

threshold for crash occurrence.  

The maximum return level of the ith block, max,iz , is obtained by 

 max, ,0

;  0
lim ,

        ; 0

i
i i

ii p ip

i

z z
σµ ξ
ξ

ξ
→

⎧ − <⎪= = ⎨
⎪∞ ≥⎩

 (6-52) 
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where ,p iz  is the 1/p return level of block i as defined in (6-4) and ( ), ,i i iµ σ ξ  is a parameter 

vector associated with block i. 

In the case of GEV models, the distribution of block maxima is fitted and ( )0iG  follows the 

model (6-1). In the model generalization as the r largest order statistics, the r largest values of 

block i are modeled, but only the block maxima is of our concern; this corresponds to the model 

(6-6) where 1k = . Therefore, the definitions of ( )0iG  are the same for both the GEV and the r 

largest order statistic models. Provided that iR  is non-zero, this leads to 

 ( )

1/

exp 1 ;  0

0 .

exp exp            ;  0

i

i
i i

i
i

i
i

i

G

ξ
µξ ξ
σ

µ ξ
σ

−⎧ ⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎪ − − ≠⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎝ ⎠⎪ ⎣ ⎦⎪ ⎪⎩ ⎭= ⎨
⎪ ⎧ ⎫⎛ ⎞⎪ ⎪− =⎪ ⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎪ ⎩ ⎭⎩

 (6-53) 

 

The risk iR  can be alternatively viewed as the expected number of right-angle collisions during 

block i . The summation of iR  over a period of interest T is therefore equivalent to the expected 

number of right-angle collisions during time T, which is 

 
1

,
TN

T i
i

C R
=

= ∑  (6-54) 

where TN  is the number of 15-minute blocks during period T. If T is one year, then TC  is the 

expected number of collisions during a year, or the annual frequency. 

It is impractical to observe the PET data for a long period. To estimate the frequency of collisions 

during long period T based on partial observation period t, we need to assume that the period of 

observation t is representative of the entire period T. In our case, the collected PET data represent 

only the daytime traffic operations and therefore the estimated frequency of collisions during 

period T is restricted to only daytime right-angle collisions.  
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Let tN  be the number of 15-minute blocks during the period of data collection t and TN  be the 

number of 15-minute blocks having similar conditions as period t during the entire period of 

interest T. The estimated frequency of collisions for a period T is 

 
1

ˆ ˆ ,
tN

T
T i

it

NC R
N =

= ∑  (6-55) 

where ˆ
iR  is the estimated risk for the ith block obtained by replacing parameter estimates into 

equations (6-51) and (6-53). 

To be specific, the period of observation t = 8 hours is equal to 32tN =  blocks and, given period 

of interest T = 4 years, the annual average daytime period in Indiana, which is approximately 

12.09 hours per day leads to 12.09 365 4 17,651TN = × × =  blocks. For homogeneous models, 

iR  is constant for all i  with exception to the case of assumed 0iR =  which corresponds to the 

blocks that have no PETs. In a non-stationary case, iR  varies across a series of blocks depending 

on covariates associated with each block. 

6.8.3 Estimation of Extreme Return Level 

6.8.3.1 Homogeneous Models 

Under the homogeneity assumption, the block maxima are identically distributed and the 

determination of return level pz  is straightforward. The p  corresponds to the likelihood of pz  

being exceeded by the maximum negated PET in any 15-minute daytime interval. For example, a 

one-year return period corresponds to ( ) 51/ 12.09 365 4 5.6653 10p −= × × = × . 

Replacing parameter estimates into equation (6-4) gives the estimated return level of 

homogeneous GEV models as follows: 
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{ }

{ }

ˆˆ ˆˆ 1 log(1 )  for 0ˆˆ .
ˆˆ ˆ log log(1 )         for 0 

p

p
z

p

ξσµ ξ
ξ

µ σ ξ

−⎧ ⎡ ⎤− − − − ≠⎪ ⎢ ⎥⎣ ⎦= ⎨
⎪ − − − =⎩

 (6-56) 

For the r largest order statistic generalization, the estimated return level of kth order statistic 

requires a numerical inversion for a solution of pz  that satisfies equation (6-48). Recall that when 

1k = , the distribution function of the r largest order statistic reduces to the GEV distribution. 

Moreover, only the largest negated PET in a block ( )1k =  is of our concern and this is 

equivalent to the block maxima. This means that, as long as a block maximum is the only 

concern, the case of 1k >  is irrelevant and the numerical inversion is not necessary. The return 

level of the r largest order statistic models can be estimated in the same manner as in the GEV 

case. Replacing parameter estimates obtained from fitting the r largest order statistic distributions 

into equation (6-56) yields the estimated return level associated with the block maxima ( )1k = . 

6.8.3.2 Non-Stationary Models 

The estimation of the return level is more complicated in the non-stationary models as the 

distributions for intervals i are no longer identical. Denoting pz  as the return level corresponding 

to 1/ p  return period and letting tN  be the number of 15-minute time blocks in the observation 

period t, pz  satisfied the equation 

 ( ){ }1Pr max ,..., 1 .
tN pZ Z z p≤ = −  (6-57) 

By this definition, p  is the probability of the level pz  being exceeded by the maximum negated 

PET during any period of length t with similar conditions. By the independent assumption, 

equation (6-57) becomes 

 { } { }1
1

Pr ...Pr 1 ,
t

t

N

p N p i
i

Z z Z z p p
=

≤ ≤ ≈ = −∏  (6-58) 

where  
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( ) ; 1 0

1           ; otherwise
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G z
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⎧ −⎛ ⎞
+ >⎪ ⎜ ⎟= ⎨ ⎝ ⎠

⎪
⎩

 (6-59) 

and ( )iG ⋅  corresponds to the distribution of block i  defined by equations (6-1) and (6-2) for the 

cases 0iξ ≠  and 0iξ =  respectively. Note that 1ip =  includes the case of no PET in block i . 

Taking logarithms on both sides of equation (6-58), 

 ( )
1

log log 1
tN

i
i

p p
=

= −∑  (6-60) 

where 

 

1/

1 ;  1 0 and 0

log exp      ; 1 0 and 0 .

0                                  ; otherwise
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⎪
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⎪
⎪
⎪
⎩

 (6-61) 

The value of p  corresponding to a n-year return period is obtained by (the number of daytime 

periods of length t in n years)-1. For example, the probability p  for a one-year return period is 

equal to ( )
1

1 312.09 365 1 551.61 1.8129 10
8

−
− −× ×⎛ ⎞ = = ×⎜ ⎟

⎝ ⎠
. This means that there are 

approximately 551.61 blocks of eight-hour daytime period in one year. Solving (6-60) for a given 

p  using parameter estimates ( )ˆˆ ˆ, ,  ; 1,...,i i i ti Nµ σ ξ =  gives the estimated return level ˆpz . 

Equation (6-60) cannot be solved analytically, but any standard numerical methods for non-linear 

equations can be applied.  
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6.9 QUANTIFICATION OF UNCERTAINTY 

Quantifying the precision of an estimator can usually be made by calculating a confidence 

interval. Certain techniques, such as the simulation approach, can provide a more complete 

picture of the property of estimators in terms of the empirical distributions. The information about 

the uncertainty of estimators tells us a range of values for which we can be “statistically 

confident” where the true parameter lies. Different techniques are suitable for different 

estimators, depending on the underlying assumptions and computational complexity. Methods 

used to quantify the uncertainty of model estimates in this study are summarized in this section. 

Then, selected methods for different model estimates are discussed. 

6.9.1 Inference Methods 

6.9.1.1 Delta Method 

By the invariance property of the maximum likelihood estimates, if 0̂θ  is the maximum 

likelihood estimate of 0θ  and ( )gφ θ=  is a scalar function, then the maximum likelihood 

estimate of 0φ  is given by ( )0 0
ˆ ˆgφ θ= . 

The invariance property is also valid for d-dimensional parameter vector 0θ  with approximate 

variance-covariance matrix Vθ . Then if ( )gφ θ=  is a scalar function, the maximum likelihood 

estimator of ( )0 0gφ θ=  satisfies ( )0 0
ˆ ,N Vφφ φ:  where 

 TV Vφ θφ φ= ∇ ∇  (6-62) 

with 

 
1

... .
T

d

φ φφ
θ θ

⎡ ⎤∂ ∂
∇ = ⎢ ⎥∂ ∂⎣ ⎦

 (6-63) 
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evaluated at 0̂θ . This result is usually referred to as the delta method. The delta method enables 

the approximate normality of 0̂φ  to be used to obtain confidence intervals for 0φ . 

To illustrate the method, the maximum likelihood estimate of pz  for 0 < p < 1, the 1/p return 

level, is obtained as 

 

ˆ ˆˆ 1  for 0ˆˆ
ˆ ˆ log       for 0 

p
p

p

y
z

y

ξσµ ξ
ξ

µ σ ξ

−⎧ ⎡ ⎤− − ≠⎪ ⎣ ⎦= ⎨
⎪ − =⎩

 (6-64) 

where log(1 )py p= − − . Using the delta method, the variance of the ˆpz can be approximated as 

 ˆvar( ) T
p p pz z V z≈ ∇ ∇  (6-65) 

where V is the variance-covariance matrix of ˆˆ ˆ( , , )µ σ ξ and  

, , .p p pT
p

z z z
z

µ σ ξ
∂ ∂ ∂⎡ ⎤

∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦
 

6.9.1.2 Profile Likelihood Function 

The profile log-likelihood of any individual parameter is obtained by fixing a parameter of 

interest and then maximizing the log-likelihood with respect to the remaining parameters. This is 

repeated for a specified range of the parameter of interest. The corresponding maximized values 

of the log-likelihood can be used to obtain approximate confidence intervals that are generally 

more accurate than those obtained from the delta method. 

Let 1,..., nx x  be independent realizations from a parametric distribution and let 0̂θ  denote the 

maximum likelihood estimator of the d-dimensional model parameter ( ) ( )( )1 2
0 ,θ θ θ= , where 

( )1θ  is a k-dimensional subset of 0θ . Then, under suitable regularity conditions, for large n 
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 ( )( ) ( ) ( )( ){ }1 1 2
0̂2 .p kD θ θ θ χ= −l l :  (6-66) 

The approximate inferences on the maximum likelihood estimator of ( )1θ  can now be determined. 

For a single component iθ , ( ){ }:i p iC D cα αθ θ= ≤  is a ( )1 α−  confidence interval, where cα  

is the ( )1 α−  quantile of the 2
1χ  distribution. 

6.9.1.3 Simulation 

A difficulty arises in the estimation of standard errors or confidence intervals of estimates of the 

non-stationary models since each independent realization is not identically distributed. Both the 

delta method and calculation of the profile likelihood are impractical. A crude approximation in 

this scenario can be obtained by simulation.  

The value of interest in our analysis is usually a scalar function of model parameters. If the 

sampling distribution of the maximum likelihood estimator of the model parameters were known, 

we could simulate from this distribution and, for each simulated value, compute the quantity of 

interest to obtain the sampling distribution of the quantity of interest. Since the sampling 

distribution is generally unknown in practice, an alternative is to approximate this procedure by 

using the multivariate normal approximation of maximum likelihood estimates, under suitable 

regularity conditions. 

More precisely, denoting the model parameters by θ , and their maximum likelihood estimates by 

θ̂ , the approximate sampling distribution to obtain 1 ,..., kθ θ∗ ∗ , which constitute a sample from the 

approximate sampling distribution of the maximum likelihood estimator. For each jθ
∗ , compute 

the quantity of interest ( )j jg g θ∗ ∗=  which is a realization from the approximate sampling 

distribution of ( )ˆg θ . Finally, the set 1 ,..., kg g∗ ∗  can be used to construct the density estimate of 

the distribution or to obtain approximate confidence intervals. 
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6.9.2 Guidelines for Method Selection 

Inferences on parameter estimates obtained by maximum likelihood estimations, under suitable 

regularity conditions, can be obtained from the inverse of the observed information matrix as 

described in Section 6.7.2.2. 

Inferences on the return level can be made using both the delta method and the profile likelihood 

function with the exception of non-stationary models. The inferences from the delta method and 

the profile likelihood function on the return level are approximately the same for the low return 

period. However, the discrepancy may arise with the increasing return period, which is due in 

large to asymmetry in the profile log-likelihood surface. Such asymmetries are to be expected 

since the data provide increasingly weaker information about high levels of the process. The 

profile likelihood function should be preferred to the delta method where such discrepancy exists. 

In the case of non-stationary models, inferences on the return level are obtained by the simulation 

method. Inferences by the delta method or the profile likelihood function are impractical due to 

the lack of an identically-distributed assumption for each independent realization. 

Inferences on the crash frequency estimate are best obtained by the simulation approach. The 

crash frequency is a non-negative quantity and the delta method would simply use a symmetric 

pivot around the mean estimate to obtain a confidence interval, which can fall into the undesirable 

negative region. A profile likelihood method would require a reparameterization of an expression 

to determine the return level, such that the return period is a part of log-likelihood function to be 

maximized. Then, a profile likelihood plot can be obtained by maximizing the likelihood function 

with respect to a range of specified return periods. This procedure is not applicable in two cases: 

(a) the location has a block with no observed PET and (b) non-stationary cases. The profile 

likelihood requires a continuously differentiable function for the return level and the case of a 

block with no PET is equivalent to an infinite return level. The stepwise function is needed in this 

case and therefore the profile likelihood function cannot be constructed. In addition, non-

stationary models create the same difficulty encountered in the case of inferences on the return 

level – non-homogeneous distributions. Therefore, the simulation method is the most appropriate 

method to draw inferences on the crash frequency estimate as it is unrestricted by the limitations 

encountered in other methods.   
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CHAPTER 7 MODEL DEVELOPMENT AND ESTIMATION RESULTS 

Following the proposed analytical approach outlined in the previous chapter, the PET modeling 

considerations are first discussed in this chapter. Then, the logic behind the model development 

and the criteria for model selection are explained. The results from a selected model are presented 

and discussed along with model interpretation. Important issues in modeling PETs with EVT are 

summarized. Suggested resolutions conclude the chapter.  

7.1 MODELING CONSIDERATIONS 

Several factors are taken into account in the procedure of extreme value modeling of PETs. These 

factors are discussed in the following sections.   

7.1.1 Sample Size 

A small sample size can lead to two major problems in the analysis procedure: (a) a large 

variance of model estimates and (b) a non-convergence of a maximum likelihood estimation 

algorithm. There are two different levels of sample size considerations in this study. The first one 

is the total number of PETs observed for each location and the second one is the number of data 

points that are used to estimate the models based on the selected extreme value sampling scheme. 

The total number of observed PETs depends on the length of the observation period and the 

frequency of crossing events at the location. Technically, the longer observation period is better 

but is not always possible due to time and resource constraints. The selected r largest order 

statistic model allows us to include more data points for model estimation by increasing the r 

values. However, the choice of a greater r requires a careful examination as it may violate the 

asymptotic assumption upon which the model is established.  
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7.1.2 Data Aggregation 

The PET data were measured with reference to the location of their occurrences, which are 

referred to as conflict zones. Provided that a sample size is sufficient, the disaggregate modeling 

of the PET by conflict zones is preferable as it may provide more insight into the specific area of 

problems inside the intersection. This is, however, not practical in this study due to a limited 

sample size when PET data were disaggregated by conflict zones. A preliminary evaluation using 

PET data by conflict zones was found to give estimates of an extremely large variance and 

frequent cases of the non-converged maximum likelihood estimation. For these reasons, PET data 

from all conflict zones are combined for each site in further modeling of a distribution of PET 

extreme values.  

7.1.3 PET Classification 

Short PETs can be classified into two different categories according to the mechanism of the 

crossing events: (a) short PETs from regular crossings and (b) short PETs from queue spillbacks.  

In the first case, the first vehicle traverses the virtual conflict spot at a normal speed. Unusually 

short PETs in this case are attributed to situations such as the first vehicle ran on red or the 

second vehicle started early upon or in anticipation of receiving the green light. This category of 

PETs regularly occurs over time depending on traffic signal settings and road users’ reacting 

maneuvers in response to the traffic control and other road users.  

The second type of short PETs occurs when queue spillbacks from the upstream traffic block the 

right-of-way of the vehicle from a conflicting approach. A vehicle in the queue typically traverses 

a conflict spot at an unusually low speed. In contrast to the first type, short PETs from queue 

spillbacks tend to recur during the congested period. The PET occurrence process is obviously 

non-random and tends to cluster for a certain period of time for the latter case.  

Although the speed data were not collected for each vehicle, we are able to distinguish these two 

categories using the encroachment time (ET) as a speed proxy. ET was manually measured along 

with the PET for each crossing event. The relationship between the traversing vehicle speed and 

ET can be described as 
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1 .ET

Speed
∝  (7-1) 

The second type of short PETs, however, cannot be omitted from the modeling since it would 

imply a fallacy that a congested intersection was safe and, consequently, the risk could be 

underestimated. On the other hand, the inclusion of this type into the models may lead to the risk 

overestimation due to the fact that the risk associated with these short PETs seems to be 

overrepresented. The dilemma posed by PETs from queue spillbacks triggers the need to carefully 

examine the following issues: 

• How can we measure the degree of short PETs resulting from queue spillbacks? 

• How can we use the above measure to address the dilemma posed by the short PETs from 

queue spillbacks? 

For the first issue, the coefficient of variation (CV) of ET at each site can be computed in order to 

gauge the degree of short PETs from a queue spillback. The CV is defined by 

 ,ET ET
ET

ET ET

sCV
x

σ
µ

= ≈  (7-2) 

where ETσ  is the standard deviation of ET, estimated by the sample standard deviation ETs  and 

ETµ  is the mean of ET, approximated by the sample mean ETx . Large value of CVET indicates a 

potential problem of excessive number of short PETs from queue spillbacks.  

Using the computed CVET, we can pinpoint the problematic sites and then filter out the PETs with 

high ET values prior to the model estimation to avoid the short PETs being overrepresented. 

There is no definite answer for how high the CVET is deemed to be problematic and how the PET 

data should be filtered. Several ideas were implemented in order to find out the best approach to 

filter PET data using CV of ET as one of the criteria. Findings and results are discussed in the 

model development section. 
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7.1.4 Non-Stationarity Considerations 

Visual examinations of PET (Appendix C) and volume (Appendix D) variations over time reveal 

similar trends to an extent at several sites. This questions the assumption of homogeneity of the 

PET process. The corresponding variation patterns between PET and volume indicate a 

possibility of explaining the variability in the PET process using certain covariates. The exposure 

data, such as the frequency of PET counts and traffic volume, may be considered. 

Non-stationary models generally demand more data and entail a relatively complicated parameter 

estimation. Therefore, it should be preferred to the homogeneous models only if it can 

substantially explain the variability in the process. 

A list of potential covariates is summarized in Table 7-1. The basic principle underlying these 

possible covariates is that it should have a logical relationship with the PET process. The 

exposure data, such as PET counts and traffic volume, are obvious candidates. A PET count 

varies with the number of crossing events, which in turn also depends on the amount of traffic 

interactions at the intersections.  

The conflicting volume, xV , in Table 7-1 was defined earlier in equation (5-4) as 

 ( ),x NB EB SB EB NB WB SB WBV V V V V V V V V= + + +  

where ,  ,  , and NB SB EB WBV V V V  are total approach volumes from northbound, southbound, 

eastbound, and westbound approaches respectively. The conflicting through-traffic volume 

( )xthV  is similar to the equation above, except that the through-traffic volumes from respective 

approaches are used instead of the total approach volumes; this was previously defined in 

equation (5-5) as 

 ( ),xth NBTH EBTH SBTH EBTH NBTH WBTH SBTH WBTHV V V V V V V V V= + + +  

where ,  ,   and NBTH SBTH EBTH WBTHV V V V  are through-traffic volumes from northbound, southbound, 

eastbound, and westbound approaches respectively. 
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These two variables aim to represent the opportunity for interactions at the intersection. The 

variables ,x czV  and ,xth czV  use the product of the volumes at a conflict zone associated with each 

PET. The logarithm versions of certain covariates were also checked to determine if the model 

fits can be improved when adjusted for scaling effects. The remaining covariates in the list are 

self-explanatory. 

Table 7-1: List of Covariates 

Acronym Descriptions
Vsum Total intersection volume
Vsumth Total through traffic volume
Vx Conflicting volume
Vxth Conflicting through volume
VLT Total left-turn volume
LTratio Ratio of left-turn to total traffic volume
Vsum,cz Total approach volume at a conflict zone
Vsumth,cz Total through-traffic volume at a conflict zone
Vx,cz Conflicting volume at a conflict zone
Vxth,cz Conflicting through volume at a conflict zone
fPET<u 15-minute counts of PET < threshold u
log(Vsum) Natural logarithm of Vsum

log(Vsumth) Natural logarithm of Vsumth

log(Vx) Natural logarithm of Vx

log(Vxth) Natural logarithm of Vxth

log(VLT) Natural logarithm of VLT

log(LTratio) Natural logarithm of LTratio
log(Vsum,cz) Natural logarithm of Vsum,cz

log(Vsumth,cz) Natural logarithm of Vsumth,cz

log(Vx,cz) Natural logarithm of Vx,cz

log(Vxth,cz) Natural logarithm of Vxth,cz

Note: All volumes are 15-minute counts  

Both the GEV and the r largest order statistic distributions have three model parameters: location 

( )µ , scale ( )σ , and shape ( )ξ . The choices of the combination of covariates, the inverse-link 

structure (see Section 6.5.1), and the model parameters to be linked are important considerations 

in the non-stationary models of extreme values. 

The identity and exponential functions are the two commonly-used inverse-link structures. The 

identity link is appropriate for location and shape parameters as it implies a linear unconstrained 

relationship between parameters and covariates. The exponential link is a natural choice for the 
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scale parameter since it satisfies the condition of 0σ >  in the GEV and the r largest order 

statistic distributions. 

Table 7-2: Non-Stationary Models with Different Link Structures – Site 87933 

Site 87933

Covariates Link r n p nllh β01 β11 β02 β12 β03 β13 se(β01) se(β11) se(β02) se(β12) se(β03) se(β13)
None NA 2 62 3 74.706 -4.674 NA 1.209 NA -0.237 NA 0.201 NA 0.104 NA 0.061 NA
Vsum 2 62 4 71.007 -7.083 0.010 1.132 NA -0.221 NA 0.857 0.003 0.098 NA 0.059 NA
Vsumth 2 62 4 70.197 -6.943 0.012 1.116 NA -0.221 NA 0.730 0.004 0.097 NA 0.058 NA
Vx 2 62 4 70.904 -7.671 0.033 1.127 NA -0.206 NA 1.032 0.011 0.099 NA 0.062 NA
Vxth 2 62 4 59.699 -8.518 0.082 0.899 NA -0.180 NA 0.576 0.012 0.084 NA 0.081 NA
Vx,cz 2 62 4 74.704 -4.649 0.000 1.209 NA -0.238 NA 0.445 0.007 0.104 NA 0.062 NA
Vxth,cz 2 62 4 69.159 -7.060 0.076 1.090 NA -0.230 NA 0.686 0.022 0.095 NA 0.064 NA
log(Vsum) 2 62 4 71.101 -17.583 2.352 1.133 NA -0.226 NA 4.633 0.845 0.098 NA 0.059 NA
log(Vsumth) 2 62 4 70.337 -16.003 2.172 1.119 NA -0.228 NA 3.689 0.709 0.097 NA 0.059 NA
log(Vx) 2 62 4 70.914 -18.095 2.978 1.126 NA -0.209 NA 4.622 1.027 0.099 NA 0.062 NA
log(Vxth) 2 62 4 59.672 -18.567 3.639 0.900 NA -0.180 NA 2.123 0.559 0.084 NA 0.079 NA
log(Vx,cz) 2 62 4 74.696 -4.895 0.057 1.209 NA -0.237 NA 1.589 0.402 0.104 NA 0.061 NA
log(Vxth,cz) 2 62 4 69.362 -12.073 2.172 1.096 NA -0.236 NA 2.155 0.634 0.095 NA 0.063 NA
Vsum 2 62 4 74.506 -4.620 NA 0.503 -0.001 -0.229 NA 0.217 NA 0.502 0.002 0.066 NA
Vsumth 2 62 4 74.555 -4.623 NA 0.419 -0.001 -0.228 NA 0.220 NA 0.428 0.002 0.067 NA
Vx 2 62 4 73.996 -4.578 NA 0.913 -0.008 -0.224 NA 0.211 NA 0.601 0.007 0.071 NA
Vxth 2 62 4 72.806 -4.374 NA 1.377 -0.026 -0.058 NA 0.216 NA 0.536 0.011 0.130 NA
Vx,cz 2 62 4 74.632 -4.671 NA 0.268 -0.001 -0.245 NA 0.200 NA 0.226 0.004 0.065 NA
Vxth,cz 2 62 4 73.875 -4.544 NA 0.850 -0.022 -0.190 NA 0.211 NA 0.508 0.016 0.076 NA
log(Vsum) 2 62 4 74.505 -4.624 NA 1.894 -0.312 -0.227 NA 0.214 NA 2.677 0.488 0.066 NA
log(Vsumth) 2 62 4 74.514 -4.623 NA 1.474 -0.247 -0.225 NA 0.215 NA 2.076 0.398 0.067 NA
log(Vx) 2 62 4 74.016 -4.583 NA 3.480 -0.735 -0.221 NA 0.209 NA 2.732 0.608 0.071 NA
log(Vxth) 2 62 4 72.051 -4.402 NA 4.653 -1.184 -0.066 NA 0.201 NA 1.696 0.444 0.114 NA
log(Vx,cz) 2 62 4 74.688 -4.671 NA 0.343 -0.039 -0.240 NA 0.201 NA 0.831 0.211 0.063 NA
log(Vxth,cz) 2 62 4 74.084 -4.569 NA 1.905 -0.507 -0.199 NA 0.213 NA 1.523 0.447 0.073 NA
Vsum 2 62 4 74.468 -4.686 NA 1.153 NA -0.774 0.002 0.202 NA 0.122 NA 0.813 0.003
Vsumth 2 62 4 74.371 -4.693 NA 1.137 NA -0.777 0.003 0.202 NA 0.125 NA 0.724 0.004
Vx 2 62 4 74.508 -4.669 NA 1.160 NA -0.886 0.007 0.200 NA 0.120 NA 1.029 0.012
Vxth 2 62 4 70.019 -4.608 NA 0.876 NA -2.024 0.036 0.158 NA 0.085 NA 0.585 0.012
Vx,cz 2 62 4 73.825 -4.685 NA 1.196 NA 0.051 -0.007 0.186 NA 0.103 NA 0.190 0.004
Vxth,cz 2 62 4 71.037 -4.639 NA 0.955 NA -2.661 0.072 0.164 NA 0.084 NA 0.667 0.020
log(Vsum) 2 62 4 74.271 -4.693 NA 1.136 NA -4.030 0.691 0.200 NA 0.118 NA 4.444 0.808
log(Vsumth) 2 62 4 74.143 -4.699 NA 1.120 NA -3.551 0.633 0.200 NA 0.121 NA 3.629 0.692
log(Vx) 2 62 4 74.338 -4.673 NA 1.143 NA -4.091 0.861 0.199 NA 0.117 NA 4.559 1.017
log(Vxth) 2 62 4 69.900 -4.603 NA 0.871 NA -6.460 1.599 0.157 NA 0.083 NA 1.969 0.510
log(Vx,cz) 2 62 4 74.116 -4.685 NA 1.204 NA 0.901 -0.304 0.191 NA 0.104 NA 1.040 0.279
log(Vxth,cz) 2 62 4 NA NA NA NA NA NA NA NA NA NA NA NA NA
Abbreviation: r = Number of largest negated PETs selected from each 15-minute block, n = Total number of extremes used in the model estimation, 
p = Number of parameters to be estimated, nllh = negative log-likelihood value at converge (NA if the algorithm fails to converge)

r largest order 
statistic model Standard errors of parameter estimates

Identity link 
in location 
parameter

Exponential 
link in scale 
parameter

Identity link 
in shape 

parameter

( )T

eσ =
X β Tξ = βXTµ = βX

In order to identify which model parameters should be linked, the following procedure was 

conducted. The basic homogeneous models were first fitted for all sites using the r largest order 

statistic models as a base case. Then, a series of non-stationary models were estimated for each 

site with the identity link in location and shape parameters and the exponential link in scale 

parameter. Selected covariates from the list in Table 7-1 were used in model estimations. The 
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findings were consistent from sites to sites; therefore partial estimation results from two 

arbitrarily selected sites – 87933 and 97901 – are presented in Table 7-2 and Table 7-3. 

Table 7-3: Non-Stationary Models with Different Link Structures – Site 97901 

Site 97901

Covariates Link r n p nllh β01 β11 β02 β12 β03 β13 se(β01) se(β11) se(β02) se(β12) se(β03) se(β13)
None NA 3 96 3 32.722 -3.940 NA 0.655 NA -0.150 NA 0.102 NA 0.054 NA 0.081 NA
Vsum 3 96 4 20.967 -6.025 0.004 0.560 NA -0.109 NA 0.383 0.001 0.050 NA 0.109 NA
Vsumth 3 96 4 21.522 -5.953 0.005 0.564 NA -0.116 NA 0.381 0.001 0.050 NA 0.111 NA
Vx 3 96 4 21.204 -5.993 0.009 0.562 NA -0.113 NA 0.383 0.002 0.050 NA 0.108 NA
Vxth 3 96 4 21.800 -5.904 0.010 0.565 NA -0.122 NA 0.378 0.002 0.050 NA 0.110 NA
Vx,cz 3 96 4 22.124 -5.663 0.014 0.564 NA -0.143 NA 0.342 0.003 0.049 NA 0.108 NA
Vxth,cz 3 96 4 22.644 -5.490 0.015 0.567 NA -0.148 NA 0.315 0.003 0.049 NA 0.112 NA
log(Vsum) 3 96 4 21.013 -15.965 1.962 0.563 NA -0.092 NA 2.247 0.370 0.052 NA 0.112 NA
log(Vsumth) 3 96 4 21.628 -15.282 1.900 0.567 NA -0.098 NA 2.180 0.368 0.052 NA 0.114 NA
log(Vx) 3 96 4 21.236 -14.457 1.938 0.564 NA -0.097 NA 1.990 0.370 0.051 NA 0.111 NA
log(Vxth) 3 96 4 21.922 -13.716 1.856 0.568 NA -0.104 NA 1.912 0.366 0.052 NA 0.113 NA
log(Vx,cz) 3 96 4 21.818 -11.970 1.686 0.564 NA -0.128 NA 1.597 0.339 0.050 NA 0.110 NA
log(Vxth,cz) 3 96 4 22.461 -10.943 1.519 0.568 NA -0.132 NA 1.430 0.314 0.050 NA 0.114 NA
Vsum 3 96 4 29.001 -3.899 NA 1.000 -0.003 0.111 NA 0.101 NA 0.405 0.001 0.130 NA
Vsumth 3 96 4 29.316 -3.900 NA 0.966 -0.003 0.110 NA 0.102 NA 0.412 0.001 0.132 NA
Vx 3 96 4 29.185 -3.899 NA 0.960 -0.006 0.103 NA 0.101 NA 0.404 0.002 0.128 NA
Vxth 3 96 4 29.536 -3.899 NA 0.915 -0.007 0.099 NA 0.102 NA 0.412 0.002 0.130 NA
Vx,cz 3 96 4 30.346 -3.892 NA 0.643 -0.009 0.067 NA 0.103 NA 0.396 0.003 0.127 NA
Vxth,cz 3 96 4 30.780 -3.891 NA 0.544 -0.009 0.068 NA 0.104 NA 0.399 0.004 0.135 NA
log(Vsum) 3 96 4 28.766 -3.903 NA 7.844 -1.348 0.115 NA 0.101 NA 2.339 0.382 0.133 NA
log(Vsumth) 3 96 4 29.096 -3.904 NA 7.448 -1.316 0.114 NA 0.101 NA 2.306 0.386 0.136 NA
log(Vx) 3 96 4 28.944 -3.902 NA 6.737 -1.318 0.106 NA 0.101 NA 2.075 0.383 0.132 NA
log(Vxth) 3 96 4 29.331 -3.903 NA 6.297 -1.273 0.103 NA 0.101 NA 2.043 0.388 0.134 NA
log(Vx,cz) 3 96 4 29.950 -3.897 NA 4.397 -1.008 0.067 NA 0.102 NA 1.681 0.351 0.125 NA
log(Vxth,cz) 3 96 4 30.375 -3.899 NA 3.748 -0.899 0.067 NA 0.103 NA 1.589 0.342 0.131 NA
Vsum 3 96 4 28.351 -4.002 NA 0.551 NA -1.753 0.004 0.093 NA 0.063 NA 0.523 0.001
Vsumth 3 96 4 28.296 -4.004 NA 0.551 NA -1.744 0.004 0.092 NA 0.061 NA 0.517 0.001
Vx 3 96 4 28.414 -4.004 NA 0.550 NA -1.737 0.008 0.093 NA 0.063 NA 0.518 0.002
Vxth 3 96 4 28.352 -4.005 NA 0.549 NA -1.727 0.009 0.092 NA 0.061 NA 0.511 0.003
Vx,cz 3 96 4 28.865 -4.007 NA 0.549 NA -1.518 0.013 0.093 NA 0.061 NA 0.511 0.005
Vxth,cz 3 96 4 28.962 -4.008 NA 0.547 NA -1.412 0.013 0.093 NA 0.061 NA 0.502 0.005
log(Vsum) 3 96 4 28.397 -4.002 NA 0.551 NA -10.207 1.669 0.093 NA 0.064 NA 3.504 0.582
log(Vsumth) 3 96 4 28.362 -4.003 NA 0.552 NA -9.862 1.655 0.093 NA 0.063 NA 3.355 0.573
log(Vx) 3 96 4 28.459 -4.003 NA 0.550 NA -8.988 1.660 0.094 NA 0.065 NA 3.084 0.579
log(Vxth) 3 96 4 28.427 -4.005 NA 0.550 NA -8.642 1.643 0.093 NA 0.063 NA 2.936 0.569
log(Vx,cz) 3 96 4 28.891 -4.005 NA 0.549 NA -6.686 1.398 0.094 NA 0.063 NA 2.598 0.556
log(Vxth,cz) 3 96 4 29.001 -4.009 NA 0.548 NA -5.862 1.264 0.094 NA 0.063 NA 2.364 0.523
Abbreviation: r = Number of largest negated PETs selected from each 15-minute block, n = Total number of extremes used in the model estimation, 
p = Number of parameters to be estimated, nllh = negative log-likelihood value at converge (NA if the algorithm fails to converge)

Standard errors of parameter estimates

Identity link 
in location 
parameter

Exponential 
link in scale 
parameter

Identity link 
in shape 

parameter

r largest order 
statistic model

Tµ = βX ( )T

eσ =
X β Tξ = βX

The significance of the covariates incorporated in the non-stationary models can be determined 

from the values of the negative log-likelihood at convergence in comparison to the base case – 

homogeneous models. The greater reduction from the base case implies a better fit. From these 

two tables, the following conclusions can be made: 
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• For the same set of covariates, the identity link in the location parameters gives the 

greatest reduction in negative log-likelihood value from the base case. This finding is also 

consistent with the results from other sites not presented herein. 

• Marginal reductions in negative log-likelihood values are obtained from the links in the 

scale and shape parameters. This implies that non-stationarity in the scale and shape 

parameters can be excluded from further consideration in the model development. In 

addition, the shape parameter is usually left intact in practice unless there is factual 

evidence of the non-stationarity in the tail behavior of extreme value distributions (Coles, 

2001). 

• The logarithm versions of covariates do not give any significant improvement over the 

standard ones in terms of model goodness-of-fit. 

There is a large catalogue of modeling covariates to be chosen in the non-stationary modeling 

framework. The test statistics described in Section 6.5.2 can be used to determine the statistical 

significance between nested models. The basic principles in building statistical models should be 

followed when selecting the best model; i.e. logical, simple, and parsimonious. 

7.2 MODEL DEVELOPMENT 

The r largest order statistic distributions as described in 6.2.3 were fitted to the negated PET data. 

The model development procedure is discussed along with selected results. The issues discussed 

in the previous section were taken into account in order to improve the fit quality of the models. 

All the computational analysis is implemented in S-Plus environment (Insightful, 2001). Coles 

(2001) provides several functions as well as source codes to estimate extreme value models in S-

Plus. Everitt (2002) gives a good introduction to S-Plus for beginners and intermediate users. 

Venables and Ripley (2002) address the implementation in S-Plus more in-depth for advanced 

users and cover most of commonly-used statistical analyses.   

7.2.1 Criterion for r Selection 

The bias-variance tradeoff plays an important role in selecting a suitable r in the order statistic 

models. First, we fitted the r largest order statistic models to negated PET data at each site with r 

varying from 1 to 3 to examine its effects on maximum likelihood estimates and confidence of 
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estimates. For comparison purpose, basic homogeneous models were estimated in this case. The 

estimation results are shown in Table E-1.  

The estimation results show that the location parameters change only slightly as the r increases 

while the differences are relatively noticeable for the scale and shape parameters. The obvious 

trend is the decrease in the standard errors of estimates as r increases. This is expected since more 

data points were used in the model estimations with greater r. 

The greater r may improve the confidence of estimates, but we have to ensure that the asymptotic 

assumption is not invalidated. Figure E-1 to Figure E-4 illustrate the probability and quantile 

plots for each order statistic k, where r = 3. The departure from a unit diagonal line indicates a 

failure of the kth order statistic. A visual inspection of these plots reveals that a departure from a 

unit diagonal is more likely as k increases. This finding is anticipated as the second largest and 

third largest order statistic may violate the asymptotic assumption, particularly at sites with small 

sample sizes. Note that the probability and quantile plots at certain sites, such as 97903, indicate a 

serious problem with the fit quality, even at k = 1. This situation requires a special treatment 

before model estimation since two classes of PETs (see Section 7.1.3) were observed. This 

problem is discussed later in this section. 

Based on these plots, a general guideline for selecting r is provided in Table 7-4. The r = 2 is a 

reasonable choice in most cases with exception to the sites with a low frequency of PETs. In such 

cases, r = 1 is recommended. The r = 3 can be used for sites with a high frequency of PETs in 

order to increase the confidence of estimates. 

Table 7-4: General Guideline for Selecting r 

Counts of PET* ≤ 6 sec Recommended r 
≤ 90 1 

91 – 300 2 
> 300 3 

* Counts per 8-hour observation period  

7.2.2 Homogeneous Models 

Following the criterion in Table 7-4, the homogeneous r largest order statistic models were fitted 

to the negated PET extremes at each site. The estimation results are summarized in Table E-2. 
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Although the data were collected for eight hours, or 32 15-minute intervals at each site, the 

number of extreme values is not necessarily equal to multiples of 32 because certain time blocks 

had no PET of eight seconds or less (observation threshold).  

The estimated distribution is a three-parameter model in which the shape parameter estimate ξ̂  

determines the corresponding type of extreme value distributions. Examination of the standard 

errors of maximum likelihood estimates reveals that the standard error of ξ̂  is relatively larger 

than the other two parameters at several sites. This phenomenon can be anticipated since extreme 

value distributions are most uncertain about tail behaviors and the nature of the model allows us 

to incorporate this uncertainty as a part of the estimation procedure, which is being reflected 

through the standard errors of the shape parameter estimates. The negative ξ̂  across all the sites 

estimated implies that the tail behavior of the extreme negated PET has a strong tendency to 

follow the Weibull density. The Weibull density, or the extreme value type III, is defined on 

( ), z+−∞ , which means that an upper bound is finite. An upper bound z+ can be computed based 

on the maximum likelihood estimates using equation (6-52). The condition 0z+ ≤  corresponds to 

the case where the expected risk of right-angle collisions is zero and, therefore, the expected 

crash frequency is zero. In addition, the strong case of the Weibull density across all the sites may 

indicate the problem of underestimation of safety levels. 

Crash frequency estimates and return level estimates can be determined using the procedures 

described in Sections 6.8.2 and 6.8.3 respectively. Inferences on these estimates are also 

provided. Inferences for these model-based estimates can be made using a simulation-based 

inference method (see Section 6.9.1.3). The underestimation problem associated with the 

homogeneous models is confirmed when we consider the four-year crash frequency estimates 

shown in Table E-2. There are 12 out of 16 sites with zero estimates for a four-year crash 

frequency. Estimates of the remaining sites are less than two crashes per four years, except for 

site 97903, for which the predicted crash frequency was 842. The unusually high estimate at site 

97903 is due in large to the excessive number of short PETs from queue spillbacks during 

congested periods. The probability and quantile plots, based on the fitted homogeneous models 

(see Figure E-5 and Figure E-6), indicate a lack-of-fit problem at several sites and particularly at 

site 97903. The excessive number of PETs caused by queue spillbacks triggers the need to refine 
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the modeling approach such that the sites with high-frequency PETs are not overwhelmed by 

short PETs from traffic backup. 

PET values can be classified whether they belong to normal operations or queue spillbacks, using 

ET data. Complete removal of short PETs from queue spillbacks is a logical flaw as it would 

simply eliminate the likelihood of experiencing a right-angle crash during a congested traffic 

condition. To handle this issue, we considered partial removal of the PET data at the sites with a 

high PET frequency based on the degree of variability of ET. This process is referred to as PET 

filtering. 

The variability of ET, represented by a coefficient of variation (CVET), approximates the impact 

that queue spillbacks have on the PET occurrences at an intersection. Based on the values of 

CVET, we can determine candidate sites for partial removal of PETs associated with queue 

spillbacks. The sites with low PET counts but having a high CVET are not considered as 

candidates for PET removal because CVET can be influenced by a few long ETs and the data 

removal can influence the estimation results drastically due to the small sample size. Diagnostic 

plots for the homogeneous models (Figure E-5 and Figure E-6) also indicate that the lack-of-fit is 

not a problem at sites with low PET counts. 

For candidate sites, the PET data are removed when the corresponding ET is greater than the 

specified threshold; in other words, PETs are not used in the model estimation if  

,ET pET υ>  

where ,ET pυ  is the site-specific ET removal threshold. Two alternatives for specifying the ET 

removal threshold were considered. The first one is to use a normal probability threshold 

 ( ) ( ),ET p pmean ET z stdev ETυ = +  (7-3) 

where zp is a p%-quantile of a standard normal distribution. The mean and standard deviation of 

ET at each site are calculated using only ETs associated with PET ≤ 6 seconds in order to be 

consistent with the criterion for selecting r. The second approach relies on the empirical quantile 

of ET, which is 
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 ( ) ( )( ){ }, / : Pr /i i
ET p i n ET ET ET i nυ = = ≤ =  (7-4) 

where ( )iET  is the ith value of the ET values in an ascending order. Both specification approaches 

were tested and it was found that the filtering of PET using the empirical quantile of ET as a 

threshold produces a better fit quality for estimated models. This can be explained by the fact that 

the actual underlying distributions of ET substantially depart from the normal density such that 

the threshold defined by (7-3) cannot effectively remove the PETs associated with queue 

spillbacks. The empirical quantile, on the other hand, is not affected by the skewness of the 

distribution and therefore is a preferred alternative in the PET filtering process. 

A test was conducted to determine the appropriate quantile for a cutoff point and it was found that 

the 95%-quantile of ET gives a reasonable improvement in the models’ goodness-of-fit in most 

cases. This implies that only 5% of PET observations are not considered in the modeling if 

necessary. Only site 97903 requires a lower threshold to improve the fit quality; however, this is 

consistent with its CVET value, which is relatively higher than all the remaining sites. As a result, 

the suggested ET threshold specifications in the PET filtering process can be summarized as 

described in Table 7-5. 

Table 7-5: Recommendation for PET Filtering 

Criteria Suggested Filters 

PET counts ≤  100 and CVET ≤  0.500 No PET is removed 

0.500 < CVET ≤  0.750 Remove PET where ET > 95% empirical quantile 

CVET > 0.750 Remove PET where ET > 80% empirical quantile 

Notes: 
1) PET counts are based only on PET ≤  6 seconds during 8-hour period of observation. 
2) CVET is computed using only ET associated with PET ≤  6 seconds. 

  

Following the suggestions in Table 7-5, there are only four sites that require PET filtering: 87933, 

97901, 97903, and 97905. The modeling results when PET filtering is considered are shown in 

Table E-3. Corresponding diagnostic plots for the sites with the PET filtered, shown in Figure 

E-7, indicate improved goodness-of-fit of the estimated models, particularly at site 97903. Hence, 

the PET filtering procedure is applied in all the subsequent modeling considerations. 
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A quick examination of the return level and crash frequency estimates in Table 7-5 reveals that 

the underestimation problem still persists. This is not unexpected because the results only from 

the four sites with PET filtered have changed from the non-filtered case. This implies that further 

attempts to improve the models must be sought. If we consider the PET variation over time, 

together with the volume variation site by site (see Appendix C and Appendix D), we can observe 

the apparent association of temporal variations between these two sequences. This suggests that 

the variability in the PET process may be additionally explained by non-stationary covariates. 

Therefore, the non-stationarity of the PET process was examined within the framework of the r 

largest order statistic models. The results from the homogeneous models in Table 7-5 are 

considered as a base case for the evaluation whether the model improvement, if any, is 

statistically significant. 

7.2.3 Non-Stationary Models 

Non-stationary models incorporate characteristics that change systematically over time. The 

apparent trends in PET variation plots suggest that the PET process is possibly better explained 

with the additional covariates. As discussed in Section 7.1.4, we examined the appropriate link 

structure with a number of covariates and the identity link in the location parameter µ  

outperforms the other alternatives in capturing the additional variability in the process.  Several 

sets of covariates have been incorporated through the identity link in µ . The findings and 

selected results are summarized in this section.  

7.2.3.1 Convergence of Model Estimation Algorithm 

The maximum likelihood estimation procedure still applies for the non-stationary models. In 

general, the optimal solutions of maximum likelihood estimates of the r largest order statistic 

distributions can be found. However, the estimation procedure of the non-stationary models may 

not converge at times and the confidence of model estimates may be poor when a sample size is 

small. 

After a series of model estimations with different combinations of covariates across all sites, it 

was found that the sites with low PET counts are more likely to encounter algorithm non-

convergence, particularly when non-stationarity is involved. For example, two sites that 
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frequently involve model non-convergence are 87932 and 97940. Both sites have eight-hour 

counts of PET ≤  6 less than 30. Moreover, a small sample size leads to the problem of a large 

variance of estimates provided that a solution can be found. The magnitude of this problem 

increases during the model evaluation as a large variance can give rise to instability in crash 

frequency estimates and return level estimates. Therefore, it was decided to remove these sites 

having a low frequency of PETs from further modeling analysis. The frequency of PETs ≤  6 

seconds at each site was used as a criterion to determine the candidates for removal and the value 

of 30 appears to be a natural threshold in this case. 

In addition, the sites with a low frequency of PETs are less likely to experience an above-normal 

frequency of collisions from the correlation check in Section 5.5. The removal of potentially safe 

sites from further consideration was not a serious concern for the approach. The sites removed 

were 87923, 87932, 97922, and 97940. There were a total of 12 out of the 16 sites remaining in 

the subsequent analysis. 

7.2.3.2 Covariate Selection 

The amount of the variability explained by the addition of selected covariates can be evaluated in 

terms of the reduction in the negative log-likelihood values at convergence (see the test statistics 

described in Section 6.5.2. A number of models were estimated using the covariate list in Table 

7-1 for all 12 sites, using the non-stationary r largest order statistic distributions. This leads to the 

findings as follows:  

• The additional variability explained by the volume-based covariates and the PET counts 

on a 15-minute interval basis were statistically significant. 

• In terms of volume-based covariates, the conflicting volumes (Vx and Vxth) produced a 

better fit than the total volumes (Vsum and Vsumth). 

• The conflict volumes (Vx) and the conflicting through-volumes (Vxth) gave more or less 

the same improvement with respect to the model goodness-of-fit but the conflicting 

through-volumes are preferred since they logically relate to the mechanism of right-angle 

collisions. 

• Since each PET occurrence corresponds to a specific conflict zone, we checked as to 

whether conflicting volumes at a specific conflict zone (Vx,cz and Vxth,cz) can give a better 



 

 

202

model goodness-of-fit than intersection conflicting volumes (Vx and Vxth). It was found 

that model fits, using either covariate, did not significantly differ from their respective 

counterparts, i.e., Vx,cz versus Vx and Vxth,cz versus Vxth. 

• In addition to the volume-based covariates, 15-minute counts of PET shorter than a 

specified threshold u (fPET<u) constitute another variable tested to be consistently 

significant. A threshold of about 4.5 seconds was found to give statistically significant 

improvement to the model’s goodness-of-fit. The corresponding covariate is denoted as 

fPET<4.5. This 4.5-second threshold is slightly shorter than intergreen period at most 

signalized intersections. 

The volume-based covariates and the PET counts both represent the measure of traffic exposure 

that the intersections experienced during the observation period. The likelihood of right-angle 

collisions is zero if there is zero exposure, i.e., no traffic or no crossing interactions. This 

likelihood of collisions increases as the amount of exposure increases and this trend was captured 

by incorporating the volume and the PET counts as covariates linked with the location parameter. 

7.2.3.3 Modeling Results 

Non-stationary models are estimated using the same criteria for r selection and PET filtering as in 

the case of homogeneous models. Table E-4 presents the modeling results when the covariate Vxth 

is linked with the location parameter as 

 ( )0 1 .t xth t
Vµ β β= +  (7-5) 

The corresponding diagnostic plots are displayed in Figure E-8 and Figure E-9. The intercept 

estimates 0β̂  are consistently negative across all sites. The positive coefficient estimates 1̂β  for 

most locations implies the tendency of increasing risk of collisions as the volume increases. This 

is because the location parameter tends to shift towards zero, which is the crash occurrence level 

by the definition of PET. The negative estimates 1̂β  at sites 87905 and 87907, however, are 

statistically insignificant at 95% confidence level based on the test statistics derived from the 

reductions in the negative log-likelihood value at convergence (see Section 7.3.1). 
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The 15-minute PET count is another potential covariate for the non-stationary models. The link 

structure is similar to the previous case, which is 

 ( )0 1 4.5t PET t
fµ β β <= +  (7-6) 

where fPET<4.5 is the 15-minute counts of PETs that are less than 4.5 seconds. The estimation 

results are shown in Table E-5. 

The negative shape parameter estimates ξ̂  still implies the Weibull density for all sites except for 

site 97901, where the positive ξ̂  corresponds to the Fréchet distribution. The positive coefficient 

estimates 1̂β  are consistent across all sites, which strongly support the notion that increasing 

exposure in terms of PET counts may increase the risk of right-angle collisions. The four-year 

crash frequency estimates from model (7-6) indicate a slight improvement in the underestimation 

problem.  

Finally, we estimated the non-stationary r largest order statistic models using both covariates in 

the link with the location parameter as 

 ( ) ( )0 1 2 4.5 .t xth PETt t
V fµ β β β <= + +  (7-7) 

The estimation results are summarized in Table E-6 and the corresponding diagnostics are plotted 

in Figure E-10 and Figure E-11. The coefficient estimates 1̂β  are positive at sites where the 

addition of the covariate Vxth alone is statistically significant. The coefficient estimates 2β̂  for 

PET counts are consistently positive across all the 12 sites. This corresponds to the findings when 

only fPET<4.5 is considered in the non-stationary models. 

The model-based estimates of return level and crash frequency were also apparently improved. 

The return level estimates consist of both positive and negative values, whereas the crash 

frequency estimates are not overwhelmed by zero estimates. Simulation-based inferences on both 

estimates at each site are also provided. 

The hypothesis testing was conducted to examine if the significance of covariates incorporated 

into the location parameter can be justified statistically using deviance statistics.  
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7.3 BEST FITTED MODELS 

7.3.1 Analysis of Deviance 

The best fitted model for each site can be objectively determined using the analysis of deviance. 

First, denoting the modeling alternatives estimated earlier as follows: 

• M1: Homogeneous r largest order statistic distributions with r selection and PET filtering 

as outlined in Table 7-4 and Table 7-5 respectively. This is considered as a base case. 

• M2: Non-stationary r largest order statistic distributions with r selection and PET filtering 

as in M1. The link structure is ( )0 1t xth t
Vµ β β= + . 

• M3: Non-stationary r largest order statistic distributions with r selection and PET filtering 

as in M1. The link structure is ( )0 1 4.5t PET t
fµ β β <= + . 

• M4: Non-stationary r largest order statistic distributions with r selection and PET filtering 

as in M1. The link structure is ( ) ( )0 1 2 4.5t xth PETt t
V fµ β β β <= + + . 

The deviance statistics to determine the significance of covariates between nested models are 

summarized in Table 7-6. The covariate “Vxth” is statistically significant at the 95% confidence 

level if D1 > 2
0.95, 1dfχ = . Similarly, the covariate “fPET<4.5” is statistically significant at the 95% 

confidence level if D2 > 2
0.95, 1dfχ = . When both covariates are included in model M4, the statistic 

D3 can be compared against 2
0.95, 2dfχ =  to determine its signifance at the 95% confidence level.  

The test statistic D4 can be used to determine if the inclusion of “Vxth” into model M4 can 

substantially capture the additional variability unexplained by the “fPET<4.5” alone in model M3. 

Model M4 is statistically significance at the 95% confidence level in comparison with model M3 

if D4 > 2
0.95, 1dfχ = . 

The values of D2 are relatively larger than D1 across all the sites observed, which indicates that 

the “fPET<4.5” can better explain the variability in the PET process than the “Vxth.” This means that 

model M3 is preferred to M2 and both M3 and M2 are preferred to model M1.  
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Table 7-6: Analysis of Deviance Statistics 

Model No. M1 M2 M3 M4
Model Type Homogeneous Non-Stationary Non-stationary Non-stationary

Description Base case µ = β0+β1Vxth µ = β0+β1fPET<4.5 µ = β0+β1Vxth+β2fPET<4.5

Site nllh1 nllh2 nllh3 nllh4
87905 23.489 23.185 20.786 20.282
87906 68.169 60.496 54.072 51.811
87907 41.517 40.181 NA 29.406
87909 47.626 44.293 30.097 29.868
87915 54.008 46.660 40.067 38.515
87930 38.753 37.150 NA 27.855
87933 74.706 58.349 56.457 49.594
97901 32.722 15.025 4.844 4.143
97903 96.924 76.084 55.193 55.188
97905 57.003 60.818 52.086 52.049
97911 39.524 NA 33.030 31.968
97920 37.140 37.113 27.429 26.991

2(nllh1-nllh2) 2(nllh1-nllh3) 2(nllh1-nllh4) 2(nllh3-nllh4)
87905 0.608 5.406 6.414 1.009 M3
87906 15.347 28.196 32.718 4.522 M4
87907 2.672 NA 24.222 NA M4
87909 6.666 35.059 35.515 0.456 M3
87915 14.696 27.882 30.986 3.104 M3
87930 3.205 NA 21.795 NA M4
87933 32.713 36.497 50.224 13.727 M4
97901 35.393 55.756 57.158 1.402 M3
97903 41.679 83.460 83.471 0.011 M3
97905 Invalid 9.833 9.907 0.074 M3
97911 NA 12.987 15.112 2.124 M3
97920 0.054 19.421 20.297 0.875 M3

Notes:
1)
2)
3)
4)

5)

Selected 
ModelSite

Base case is the homogeneous r largest order statistic models fitted to filtered PET data where choice of r 
is dependent on the 8-hour counts of PETs ≤ 6 seconds

NA is the case where no optimal mle can be found at convergence.
χ2

(0.95, df=2) = 5.991

Invalid deviance is defined as the case where the deviance becomes negative. This can occur if the nllh of 
the full model is greater than the reduced one. This problem is likely to be caused by the local optimum of 
mle.

Analysis of Deviance
D1~Χ2(1) D2~Χ2(1) D3~Χ2(2) D4~Χ2(1)

χ2
(0.95, df=1) = 3.841

To summarize, using the deviance statistics shown in Table 7-6, the best fitted models can be 

determined as follows: 

• Compare model M3 versus base case M1 using test statistic D2. If D2 > 2
0.95, 1dfχ = = 3.841, 

then M3 is preferred to M1. In our analysis at all 12 sites, non-stationary model M3 

outperformed model M1. 
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• Compare model M4 versus model M3 using test statistic D4. If D4 > 2
0.95, 1dfχ =  = 3.841, 

then M4 is preferred to M3 or, equivalently, the inclusion of the “Vxth” can substantially 

explain the variability in the PET process in addition to the covariate “fPET<4.5” in model 

M3. 

7.3.2 Selected Models 

Following the model selection procedure described in the previous section, the final selected 

model for each site is listed in the last column of Table 7-6. The modeling results of the selected 

models are summarized in Table 7-7. 

Both 1̂β  and 2β̂  are positive for all the sites estimated except for the 2β̂  at site 87907. This 

indicates a positive correlation for the risk of right-angle collisions with traffic volume and PETs. 

For site 87907, model M4 is selected because the maximum likelihood estimation algorithm 

cannot find the optimal solution at M3. The negative 2β̂  at site 87907 is marginally significant 

and hence does not contradict the positive trend of estimates at the other sites. 

At eight out of 12 sites, the volume covariate “Vxth” is not statistically significant when added to 

model M3 where PET covariate “fPET<4.5” already existed. This is not unexpected since “fPET<4.5” 

is likely to correlate with “Vxth”. However, PET is a better representation of opportunities for 

traffic interactions that can lead to right-angle collisions. A protected left-turn phase would 

decrease the risk of straight right-angle collisions, which is reflected through a longer PET value 

but not the traffic volume. The effect of increased traffic volume on the risk of right-angle 

collisions is more subtle. An increase in total traffic volume does not necessarily imply a greater 

risk of straight right-angle collisions if the left-turn traffic volume increases as well. At 

intersections controlled by actuated signals, PET values account for the manner in which the 

traffic control – phases and signal timings – responds to changes in traffic volume and directional 

split. Traffic volume, on the other hand, can only manifest the aggregate impact on the risk of 

right-angle collisions at best. 
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Table 7-7: Modeling Results – Best Fitted Models 

87905 M3 31 0.281 None 1 15.000
87906 M4 98 0.642 None 2 58.000
87907 M4 54 0.285 None 1 30.000
87909 M3 268 0.303 None 2 64.000
87915 M3 116 0.423 None 2 61.000
87930 M4 38 0.380 None 1 25.000
87933 M4 104 0.576 95%-quantile 2 62.000
97901 M3 311 0.538 95%-quantile 3 96.000
97903 M3 327 0.969 80%-quantile 3 96.000
97905 M3 106 0.537 95%-quantile 2 60.000
97911 M3 69 0.500 None 1 26.000
97920 M3 79 0.509 None 1 31.000

nllh β0 β1 β2 σ ξ se(β0) se(β1) se(β2) se(σ) se(ξ)
87905 M3 20.786 -5.835 0.523 -- 0.992 -0.333 0.329 0.200 -- 0.210 0.199
87906 M4 51.811 -6.709 0.685 0.014 0.802 -0.272 0.580 0.149 0.006 0.073 0.090
87907 M4 29.406 -5.126 1.017 -0.004 0.881 -0.830 0.594 0.207 0.005 0.180 0.200
87909 M3 30.097 -4.759 0.308 -- 0.520 -0.049 0.117 0.039 -- 0.055 0.122
87915 M3 40.067 -5.222 0.586 -- 0.673 -0.165 0.128 0.088 -- 0.060 0.056
87930 M4 27.855 -6.767 1.495 0.026 0.774 -0.360 1.175 0.330 0.032 0.145 0.225
87933 M4 49.594 -7.736 0.524 0.053 0.743 -0.230 0.538 0.118 0.013 0.069 0.086
97901 M3 4.844 -4.773 0.299 -- 0.471 0.032 0.101 0.033 -- 0.049 0.109
97903 M3 55.193 -4.570 0.335 -- 0.794 -0.110 0.162 0.040 -- 0.068 0.084
97905 M3 52.086 -5.341 0.923 -- 0.798 -0.454 0.209 0.196 -- 0.068 0.087
97911 M3 33.030 -5.788 1.143 -- 0.953 -0.456 0.289 0.243 -- 0.154 0.130
97920 M3 27.429 -5.242 0.542 -- 0.614 -0.350 0.142 0.104 -- 0.084 0.104

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 -0.603 -0.468 0.157 2.970 -2.306 -2.006 -1.623 -1.397 -0.291 1.260 1.767 3.036 5.021
87906 0.074 0.239 0.352 0.686 -0.771 -0.621 -0.433 -0.301 0.293 0.977 1.168 1.528 1.842
87907 -2.447 -2.443 -2.412 0.364 -3.098 -3.002 -2.878 -2.791 -2.422 -2.028 -1.937 -1.802 -1.663
87909 0.300 0.751 2.427 5.597 -1.578 -1.351 -1.089 -0.887 0.804 5.245 7.480 11.481 16.425
87915 -0.229 0.058 0.151 0.640 -0.892 -0.749 -0.589 -0.477 0.086 0.771 0.964 1.264 1.583
87930 -0.859 -0.772 -0.160 2.999 -1.545 -1.397 -1.251 -1.141 -0.628 0.225 0.699 2.182 4.756
87933 -0.257 -0.093 0.129 0.750 -0.909 -0.787 -0.651 -0.545 -0.002 0.772 1.038 1.500 1.927
97901 1.345 2.248 4.891 8.156 -1.639 -1.340 -0.898 -0.491 2.383 10.107 13.315 19.185 26.870
97903 1.809 2.214 2.822 2.497 0.124 0.315 0.597 0.824 2.215 4.824 5.731 7.614 9.086
97905 -1.787 -1.765 -1.721 0.307 -2.278 -2.198 -2.089 -2.022 -1.741 -1.419 -1.335 -1.200 -1.059
97911 -0.386 -0.331 -0.277 0.600 -1.394 -1.227 -1.016 -0.877 -0.304 0.338 0.488 0.726 0.963
97920 -1.512 -1.438 -1.385 0.421 -2.151 -2.041 -1.902 -1.805 -1.404 -0.960 -0.844 -0.673 -0.508

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 1 0.000 32.351 94.552 0.000 0.000 0.000 0.000 0.000 52.291 93.651 182.994 291.494
87906 6 6.457 27.990 50.040 0.000 0.000 0.000 0.000 7.919 58.435 80.501 122.606 169.185
87907 3 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
87909 7 9.602 89.700 188.424 0.000 0.000 0.000 0.000 9.430 186.192 279.881 453.231 656.532
87915 3 1.356 6.730 14.129 0.000 0.000 0.000 0.002 1.546 13.047 18.629 30.137 44.471
87930 0 0.000 10.327 53.219 0.000 0.000 0.000 0.000 0.000 3.729 11.987 46.170 112.077
87933 1 0.376 13.394 31.181 0.000 0.000 0.000 0.000 0.934 26.436 40.065 68.561 99.819
97901 18 35.555 141.123 243.439 0.000 0.000 0.000 0.035 35.619 307.316 424.430 636.468 849.675
97903 7 386.951 560.530 534.540 3.922 14.740 44.111 80.840 404.764 1079.948 1295.943 1638.861 1981.178
97905 7 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97911 4 0.000 24.918 79.493 0.000 0.000 0.000 0.000 0.000 33.370 66.948 145.110 253.468
97920 1 0.000 0.015 0.306 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

Site Model

Model Descriptions:

M4: µ = β0 + β1fPET<4.5 + β2Vxth

Site Model
8-Hour 

Counts of 
PET≤6

Abbreviations: n = Number of extremes used in the model estimation, nllh = Negative log-likelihood value at model convergence
Note: NA is the case where no optimal mle can be found at convergence.

M3: µ = β0 + β1fPET<4.5

Non-stationary r largest order statistic models fitted to filtered PET data

Site

4-Year Right-
Angle Crash 

Counts 
(Daytime)

4-Yr Crash 
Frequency 
Estimate

Simulation-based  Inferences on 4-Year Crash Frequency Estimates: Number of Simulation Runs = 
25000

Mean SD
%-quantile of 4-Year Crash Frequency Estimates

Site
1-Year 

Return Level 
Estimate

4-Year 
Return 
Level 

Estimate

Simulation-based  Inferences on 4-Year Return Level Estimates: Number of Simulation Runs = 5000

Mean SD
%-quantile of 4-Year Return Level Estimates

Maximum Likelihood Estimation Results

CV(ETPET≤6) Filter r n
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The crash frequency estimates appear to be in a reasonable range, except for site 97903, for which 

the range of estimates is unreasonably large. This is probably due to the special condition at this 

site, where there are frequent short PETs from traffic backups during peak hours. The proposed 

non-stationary model at this site improves the model’s goodness-of-fit significantly but still fails 

to provide a reasonable crash frequency estimate. The method deficiencies will be discussed in 

detail in the next chapter. 

7.3.3 Quantifying Uncertainty of Estimates 

The inferences on the estimates of four-year return level and four-year right-angle crash 

frequency are provided in terms of empirical quantiles of estimates in Table 7-7. Considerations 

for inference methods were discussed earlier in Section 6.9. For the best fitted models, only the 

simulation-based inference method is plausible since the modeled distributions of PET are non-

homogeneous over time. In addition, the simulation-based method is a generic approach that can 

be applied to the homogeneous case as well. The simulation-based method relies on the standard 

asymptotic results of maximum likelihood estimates, which follow multivariate normal 

distribution under suitable regularity conditions. The disadvantage of this approach is that it is 

computationally intensive and time-consuming.  

To determine the confidence interval from the result table, a 90% confidence interval of the four-

year crash frequency estimate can be determined by reading the 5%- and 95%-quantiles from the 

table as the lower and upper bounds respectively. For example, the 90% confidence interval of 

the four-year crash frequency estimate at site 87915 is (0, 30). Similarly, the 90% confidence 

interval of the four-year return level estimate at the same site is (-0.749, 1.264). 

It should be noted that the empirical distributions of both the crash frequency and the return level 

estimates are skewed in general and therefore the empirical means will not coincide with the 

model-based estimates. Medians, or 50%-quantiles, are the suitable approximations to the model-

based estimates. A quick check on the accuracy of the simulated distributions can be done by 

comparing the empirical medians versus the model-based estimates. These two figures should be 

close. A large discrepancy may be remedied by simply increasing the number of iterations in the 

simulation. 
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The confidence intervals obtained for both crash frequency and return level estimates are still 

very large however. This can be explained by several factors, such as a small sample size, a too 

short observation period, and the model settings. We will evaluate the fitted models as well as the 

problem of large uncertainty of the estimates in the next chapter.  
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CHAPTER 8 MODEL EVALUATION AND SIMULATION STUDY 

We presented the extreme value approach for modeling safety using the PET data in previous 

chapters. The standard approach for safety estimation requires the constant risk assumption for a 

group of similar locations. Furthermore, the standard approach is reactive since considerable 

waiting time is needed for sufficient accident occurrences. This renders the traditional approach 

impractical for safety estimation of a new transportation system. The proposed EVT approach, on 

the contrary, no longer requires historical crash data and individualizes the risk spatially 

(location-specific) and temporally (time-specific) through the variability of the surrogate safety 

measure called the post-encroachment times. The proposed method is proactive in that it does not 

require crash data in the model calibration. 

The EVT approach enables the extrapolation of the observed levels of PETs to the rarely 

observed collision level. The difficulties encountered in typical applications of the EVT are the 

validity of the extrapolation. In the extreme value modeling of natural phenomena such as sea 

level, wind speed, and earthquake, the validation task is virtually implausible because the 

prediction horizon is usually distant from the observed levels and the events of interest may have 

never existed in the past. In our applications, the validation task is feasible since the extreme 

event of interest is the right-angle collision in which its expected frequency of occurrences can be 

reasonably assumed to follow historical crash data. Two precautions are worth mentioning here 

about the validation data. The locations must not have any major upgrade or renovation that could 

influence the safety levels of intersections since the time period in which the crash data are 

retrieved. Second, there must be no major change in the land-use pattern in the vicinity of the 

studied intersections because significant changes in traffic patterns can have a major impact on 

driver behavior and consequently the safety levels of intersections. It should be stressed that these 

precautions impose limitations on the validation procedure, but not on the EVT validity. 
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In this chapter we will check the relationship between the model estimates and the observed 

counts of right-angle collisions. Then, we will evaluate the proposed extreme value modeling 

approach for several model settings using a simulation experiment.  

8.1 VALIDATION OF EXTREME VALUE MODELING RESULTS 

Two safety estimates determined from the extreme value models are the crash frequency 

estimates and the extreme return level estimates of negated PETs. The former can be validated by 

direct comparison with the actual crashes. The extreme return level, on the other hand, must be 

validated using its correlation with the observed counts. Direct comparison is not plausible for 

this latter case because crash frequency and return level estimates are not convertible 

straightforwardly.  

The performance of the traditional regression approach cannot be compared with that of extreme 

value models directly because the observed crash counts, as a response variable, must be known 

and incorporated in the multivariate regression analysis. The regressional analysis appears to 

perform well since the observed counts were already a part of the estimation procedure. On the 

contrary, the observed crash counts were not used at all in the calibration of the extreme value 

models. The extreme behaviors of PETs determine the estimates of crash frequency. The extreme 

value approach satisfies the objective of study in the sense that the safety estimation approach is 

independent of historical crash data and satisfies the postulate of risk varying across locations.  

The proposed method measures safety during the period of PET observation. To enable 

comparison with the safety obtained through the crash-based approach, the PET observation 

period should be representative of the longer period of recorded crashes. 

8.1.1 Crash Frequency Estimates 

8.1.1.1 Direct Comparison 

The model-based crash frequency estimates are computed by the functions described in Section 

6.8.2 evaluated at maximum likelihood estimates. Let us first consider the uncertainty of the 

model estimates of crash frequency as summarized in Table 8-1. The confidence intervals of the 
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crash frequency estimates are very large at both the 90% and 95% confidence intervals. The four-

year observed counts of right-angle crashes at nine out of 12 sites (75%) fall within the range of 

the 95% confidence intervals. The corresponding coverage for the 90% confidence intervals is 

eight out of 12 sites (67%). Three sites that fall outside the range of the 95% confidence intervals 

had 1, 4, and 7 crashes during the four-year period. The range of predicted estimates for these 

three sites is very tight, which is about 0 to 0.002. The implication is that the models tend to 

underestimate the expected number of collisions at the sites with relatively infrequent PET 

occurrences. Due to the rarity of sufficiently short PETs, these sites may require much longer 

observation periods in order to observe PET values that can influence the crash frequency 

estimate. We will further examine this estimate behavior through a simulation experiment (see 

Section 8.2). 

Table 8-1: Model-based Estimates of Crash Frequency and Inferences 

Lower Upper Lower Upper
87905 1 15 0.000 32.351 94.552 2.923 0.000 182.994 0.000 291.494
87906 6 58 6.457 27.990 50.040 1.788 0.000 122.606 0.000 169.185
87907 3 30 0.000 0.000 0.004 -- (1) 0.000 0.000 0.000 0.000
87909 7 64 9.602 89.700 188.424 2.101 0.000 453.231 0.000 656.532
87915 3 61 1.356 6.730 14.129 2.099 0.000 30.137 0.000 44.471
87930 0 25 0.000 10.327 53.219 5.153 0.000 46.170 0.000 112.077
87933 1 62 0.376 13.394 31.181 2.328 0.000 68.561 0.000 99.819
97901 18 96 35.555 141.123 243.439 1.725 0.000 636.468 0.000 849.675
97903 7 96 386.951 560.530 534.540 0.954 14.740 1638.861 3.922 1981.178
97905 7 60 0.000 0.000 0.014 -- (1) 0.000 0.000 0.000 0.000
97911 4 26 0.000 24.918 79.493 3.190 0.000 145.110 0.000 253.468
97920 1 31 0.000 0.015 0.306 -- (1) 0.000 0.000 0.000 0.002

4-Year Right-
Angle Crash 

Counts 
(Daytime)

4-Yr Crash 
Frequency 
Estimate

Summary Statistics of Model-based 4-year Crash 
Frequency Estimates (2)

Mean SD

(2) The modeling results are based on the best fitted models.

Notes:

CV

Sample 
Size 90% C.I. 95% C.I.

(1) CV cannot fairly represents the degree of variability in the estimates where the mean is close to zero.

Site

An alternative way to quantify the quality of the estimates is in terms of the coefficient of 

variations (CV). The CV is computed by dividing the stardard deviation (SD) by the mean. The 

mean and SD are obtained by the simulation-based inference method where multivariate normal 

maximum likelihood estimates are used to compute crash frequency estimates. The majority of 

the sites (8 sites) have CVs ranging from about 1 to 3. Only site 87930 has a CV that is fairly 

larger than the others (about 5). Note that there are three sites with the means close to zero and 

thus CVs cannot fairly represent the uncertainty of the estimates in this case. The range of CVs 
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from 1 to 3 is somewhat better compared to the CVs of the 15-minute traffic conflict counts in the 

study by Glauz and Migletz (1980) in which they reported CVs ranging from 2 to 6 for cross-

traffic conflict types. Though it is not a direct comparison, the repeatability of the estimates here 

obviously fares better than the traditional traffic conflict counts. 

Next, the plot of observed crash counts versus the model-based estimates of crash frequency for 

all the sites is shown in Figure 8-1. Because of the highly overestimated crash frequency at site 

97903, 11 of 12 data points are clustering near the ordinate when all data points are presented on 

the same scale. To address the scaling issue, we excluded the data point of site 97903 in Figure 

8-2 to better illustrate the relationship between observed crash counts and model estimates.  

Historical Crash Counts versus Model Estimates
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Figure 8-1: Model-based Crash Estimates versus Actual Crash Counts 

A unit diagonal line in Figure 8-2 represents the case of perfect agreement between the observed 

counts and the model-based estimates. The inspection of this figure reveals that the models are 

likely to underestimate the observed counts at locations with a low crash frequency as indicated 

by the cluster of data points on the left of the unit diagonal line. In contrast, the models have a 
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tendency to overestimate observed counts where short PETs from congestion comprise a 

significant portion of all PETs observed. This is particularly the case for site 97903 where the 

method falls short of a reasonable prediction. 

Historical Crash Counts versus Model Estimates (without site 97903)
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Figure 8-2: Model-based Crash Estimates versus Actual Crash Counts (without 97903) 

The positive correlation between the observed counts and the model-based estimates is very 

promising nevertheless. Without site 97903, the Pearson correlation between these two is 0.931. 

This is quite intuitive as the higher model-based estimates imply the higher observed crash 

counts. 

8.1.1.2 Root-Mean-Square Error (RMSE) 

If we assume that the observed counts of accidents at each site are the best estimates of the true 

safety level, then the model performance can be evaluated in terms of the residual variation 

between the model estimates and the observed counts. The model performance of the estimated 

extreme value models for a group of selected sites can be measured by the root-mean-square error 
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(RMSE), which measures the spread of the residuals. The smaller RMSE therefore implies better 

model performance. RMSE can be computed as 

 ( )2

1

1 ˆ ,
n

i i
i

RMSE c c
n =

= −∑  (8-1) 

where ic  and îc  are the actual counts and the estimated counts of right-angle collisions at 

location i  respectively. 

The RMSE of crash frequency estimates based on all the sites except for problematic site 97903 

is 5.99 crashes, which is fairly reasonable in comparison to the corresponding mean of the 

observed counts at 4.64 crashes. The RMSE is an aggregate measure which tells us how close the 

model estimates are to the observed crash counts; i.e., RMSE tells us if the approach gives the 

biased estimates. From the eight-hour observation period, it is not feasible to conclude if the 

models give biased estimates based on the RMSE at this point because the presence of the model 

bias, if any, can be obscured by compound effects from a large variance of the model estimates. 

8.1.1.3 Poisson Confidence Intervals 

The observed counts of right-angle collisions at each location are in fact just one observation of 

the underlying count process, which means that the true level of safety of a location is unknown. 

However, one can fairly assume that the observed counts for a number of years can 

approximately represent the safety level of a location. We would like to know how our model-

based estimates fare in the prediction task once the variability of accident counts is considered. 

This can be done by establishing the confidence intervals based on the observed counts and then 

checking if the model estimates lie in this range on a site-by-site basis.  

The assumption of the variability of accident counts is needed to establish confidence intervals. 

Nicholson (1985) studied this issue and proposed three different distributions to represent the 

variability of accident counts. To choose the appropriate distribution, one needs to determine the 

temporal variation of accident counts as determined by the variance-to-mean ratio. If the variance 

is close to the mean, then the popular Poisson assumption is suitable. If the historical counts are 

fairly regular, then the binomial distribution is the most appropriate. On the other hand, if a 
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pattern of counts at a location is very irregular, then the negative binomial distribution should be 

preferred. 

Nicholson (1985) determined the temporal variability based on a series of accident counts with 

durations from 5 to 30 years. We do not have that amount of historical crash data herein to 

conduct the same test. However, it is fair to say that a particular type of collision, especially right-

angle crashes, at intersections is quite an irregular process and therefore unlikely to follow the 

binomial distribution. The negative binomial choice, though seemingly appropriate, requires the 

estimated variance-to-mean ratio. In addition, the negative binomial distribution is a less 

conservative choice as it gives wider confidence intervals that can easily favor our model 

estimates. Hence, the Poisson variability is assumed for the observed counts of right-angle 

crashes. Note that we are addressing this from the viewpoint of classical statistics. The true 

accident frequency ( )λ  of a Poisson population is fixed but unknown. The random quantity is in 

the confidence intervals, not the parameter λ . 

Poisson Interval Estimator 

Nicholson (1987) showed that the Poisson confidence interval can be used for the observed crash 

counts for a particular location. It has been shown that the 2χ  integral and the cumulative sum of 

the terms of the Poisson distribution are different forms of the same mathematical function. We 

will outline the proof briefly in this section. Further details can be found in Casella and Berger 

(2002) for instance.  

First, recall the relationships among Poisson, gamma, and chi-square. If X is a gamma ( ),α β  

random variable, where α  is an integer, then for any x , 

 { } { }Pr Pr ,X x Y α≤ = ≥  (8-2) 

where Poisson .xY
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

:  

If we set / 2α υ= , where υ  is an integer, and 2β = , then the gamma pdf becomes 



 

 

217

 ( ) ( )
( )/ 2 1 / 2

/ 2

1| ,  0 ,
/ 2 2

xf x x e xυ
υυ

υ
− −= < < ∞

Γ
 (8-3) 

which is the chi squared pdf with υ  degrees of freedom. 

Let 1,..., nC C  be random crash counts in n  years from a Poisson population with the true mean 

annual crash occurrences equal to λ  and define iY C= ∑ . Y  is sufficient for λ  and 

( )PoissonY nλ: . If 0Y y=  is the observed counts during n  years, we are led to solve for λ  

in the equation (8-4). 

 
( ) ( )0

00

and .
! 2 ! 2

k ky
n n

k k y

n n
e e

k k
λ λλ λα α∞

− −

= =

= =∑ ∑  (8-4) 

Using the relationships above, we can write 

 
( ) { } ( ){ }

0

0

2
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where ( )0

2
2 1yχ +  is a chi squared random variable with ( )02 1y +  degrees of freedom. Thus, the 

solution to the above equation is to take 

 ( )0

2
2 1 , / 2

1 .
2 yn αλ χ +=  

Similarly, applying the identity to the other equation in (8-4) yields 
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0

2
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λ λα λ χ λ
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−

=
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With some algebraic manipulation, the 1 α−  confidence interval for λ  can be obtained as 

 ( )0 0

2 2
2 ,1 / 2 2 1 , / 2

1 1: .
2 2y yn nα αλ χ λ χ− +

⎧ ⎫≤ ≤⎨ ⎬
⎩ ⎭

 (8-5) 



 

 

218

At 0 0y = , we define 2
0,1 / 2 0αχ − = . 

For example, we observed seven counts of daytime right-angle collisions during a four-year 

period at intersection 97905. Therefore, using equation (8-5), the 95% confidence interval for 

expected annual crash frequency is given by 

 2 2
14,0.975 16,0.025

1 1 ,
8 8
χ λ χ≤ ≤  

which is [0.704, 3.606] per year or [2.814, 14.423] per four years. 

Comparison Results 

Figure 8-3 presents the Poisson confidence intervals of expected counts at each site and the 

corresponding model-based estimates. The confidence of model estimates (see Table 8-1) is not 

included in this figure because it is too wide to visualize any meaningful comparison. If we 

include the confidence intervals of model estimates, the Poisson confidence intervals based on the 

observed crash counts will become a subset of the confidence intervals of model estimates. The 

comparison results would be inconclusive at best. 

However, it is interesting to see how the most credible value in that wide range of confidence 

interval of model estimates, i.e., the predicted crash frequency, will compare against the Poisson 

confidence intervals based on the observed crash counts. We assume that the true accident rate is 

unknown, but the Poisson confidence intervals can be established based on the observed counts. It 

is postulated that the observed crash count is a Poisson realization with a mean equal to the true 

accident rate. 

At the 95% confidence level, the model-based estimates are in the range of Poisson confidence 

intervals at seven out of 12 sites (see Figure 8-3). The corresponding figure increases to eight out 

of 12 sites at the 99% confidence level (see Figure 8-4). 
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Figure 8-3: Model Estimates versus Crash-based 95% Poisson Confidence Intervals 
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Figure 8-4: Model Estimates versus Crash-based 99% Poisson Confidence Intervals 



 

 

220

The results were examined case by case. The overestimation and underestimation across the 

majority of locations appear to be influenced by the randomness in both model-based estimates 

and observed counts. However, the highly overestimated result at site 97903 and the apparent 

underestimation at site 97905 are possibly linked to additional factors other than the random 

variability of estimates. 

The overestimation at site 97903 appears to be more serious than the other locations as the 

extreme value model consistently gives an unreasonably high crash frequency estimate. 

Undoubtedly, this problem is due in part to the inherent uncertainty of a short-term observation of 

PET extremes. However, site 97903 is unique in several respects in comparison to other sites. The 

eight-hour counts of PET are the second highest among all studied sites and there were a number 

of extremely short PETs observed from queue spillbacks during congested periods at this 

location. The coefficient of variation of ET is greater than 0.9 while all the others range from 0.4 

to 0.7. This leads to our concern that the proposed extreme value approach may not be able to 

estimate the crash counts properly at the intersections with excessive queue spillbacks. The main 

reason underlying this issue is possibly related to the violation of the assumption of the 

underlying distribution of the PET process. The PET from a normal crossing situation may have a 

different underlying distribution from PET caused by queue spillbacks. For example, a one-

second PET associated with a red-light violation definitely carries a greater risk than a one-

second PET from queue spillbacks. The current modeling approach assumes both cases of PET 

arise from the same distribution and therefore treats both cases equally. A more advanced 

extreme value modeling approach for this special condition may be necessary to account for a 

mixture of two underlying distribution processes and properly combine these different processes 

of risk to give single estimate of safety level. Such an approach is beyond the scope of this study 

at this point.  

The model-based crash frequency estimate of site 97905, on the contrary, tends to give zero 

estimates of crash counts. The visual examination of the trend of observed PETs during the 

afternoon peak hour (4:30–5:30PM) shows that PETs become noticeably longer during this 

period. This contradicts the volume variation trend, which gradually increases during that same 

period. We researched the weather conditions during the observed period and surprisingly we 

found that it was raining from 4:00PM – 6:00PM on that date, which likely explains the longer 

PET values during that period. Drivers probably adjusted their driving behaviors to compensate 

for their extra perceived risk during bad weather conditions. The effect of this risk compensation 
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was reflected through the PET values. They may overcompensate the risk such that the PETs 

during that hour become longer than usual when shorter PETs are in fact expected. When long 

PETs are unexpectedly observed instead of short PETs, the risk becomes lower than expected, 

thus leading to an underestimation problem at this site. This finding is quite interesting on its own 

because this may indicate the potential of PET to serve as a measure for risk perception of road 

users. Nevertheless, more data are needed before we can strongly support this argument. 

8.1.2 Extreme PET Return Level Estimates 

In a similar manner to that used for crash frequency estimates, the successful validation of return 

level estimates can be confirmed by its correlation with observed crash counts. However, a direct 

comparison is not plausible since the return level and the crash frequency estimates are not 

directly convertible. The extreme return level is an expected level of negated PET being exceeded 

on average once for a given return period. 

8.1.2.1 Uncertainty of Estimates 

A summary of the four-year return level estimates and inferences based on the best fitted extreme 

value models for all the selected 12 sites is presented Table 8-2. The comparison of standard 

deviations of the return level estimates versus those of the crash frequency estimates reveals that 

the return level estimates give much tighter confidence intervals as well as smaller standard errors 

at most sites. In this sense, the return level estimate appears to be a more robust safety indicator 

derived from the proposed models comparing to the crash frequency estimate. 

8.1.2.2 Correlation Check 

The plots of one-year and four-year return level estimates versus observed counts of right-angle 

collisions are given in Figure 8-5. These two plots indicate similar positive correlations. The 

Pearson correlation between the one-year return level estimates and the observed crash counts is 

0.564. With the four-year return level estimates, the Pearson correlation is slightly better at 0.631. 

These show that both return level estimates exhibit a good agreement with the observed crash 

counts. The correlation with crash data is quite robust to the choice of a time horizon (one year or 
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four years) used in the prediction. Hence, the four-year return period is preferred in this case as it 

gives a slightly better correlation and it is also consistent with a duration considered in the crash 

frequency estimate. 

Table 8-2: Model-based Estimates of Return Level of Negated PETs and Inferences 

Lower Upper Lower Upper
87905 1 -0.468 0.157 2.970 -2.006 3.036 -2.306 5.021
87906 6 0.239 0.352 0.686 -0.621 1.528 -0.771 1.842
87907 3 -2.443 -2.412 0.364 -3.002 -1.802 -3.098 -1.663
87909 7 0.751 2.427 5.597 -1.351 11.481 -1.578 16.425
87915 3 0.058 0.151 0.640 -0.749 1.264 -0.892 1.583
87930 0 -0.772 -0.160 2.999 -1.397 2.182 -1.545 4.756
87933 1 -0.093 0.129 0.750 -0.787 1.500 -0.909 1.927
97901 18 2.248 4.891 8.156 -1.340 19.185 -1.639 26.870
97903 7 2.214 2.822 2.497 0.315 7.614 0.124 9.086
97905 7 -1.765 -1.721 0.307 -2.198 -1.200 -2.278 -1.059
97911 4 -0.331 -0.277 0.600 -1.227 0.726 -1.394 0.963
97920 1 -1.438 -1.385 0.421 -2.041 -0.673 -2.151 -0.508

(1) SD is preferred to CV since CV cannot fairly represent the degree of variability in the estimates as 
the means are very small in many cases.
(2) The modeling results are based on the best fitted models.

Summary Statistics of Model-based Estimates of 
4-year Return Level of Negated PET (2)

Mean SD(1) 90% C.I. 95% C.I.
Site

4-Year Right-Angle 
Crash Counts 

(Daytime)

4-Year Return 
Level Estimate

Notes:
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Figure 8-5: Actual Counts of Collisions versus Extreme Return Level Estimates 
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In contrast to the crash frequency estimate, the extreme return level estimate does not suffer from 

the overestimation problem at site 97903. From a sequence of validation plots with the other 

model settings (see Appendix F), it is apparent that the return level estimates are consistently in 

the expected range in comparison to the crash frequency estimates of the same site.  

Note that the return level is determined in terms of negated PET, not the PET itself. The higher 

return level estimates imply riskier locations. Based on the best fitted models, the relationship 

between crash frequency and return level estimates is shown in Figure 8-6. The data point from 

site 97903 is excluded in the right figure to better illustrate the trend visually. From this figure, 

we can observe that the crash frequency estimates are zero or close to zero where the four-year 

return level estimates are less than zero, which is expected because the negative four-year return 

level estimate implies that the likelihood of right-angle collisions is extremely low during the 

four-year period. Recall that the negated PET > 0 characterizes the event of collision. For the 

entire four-year period, the probability of a right-angle collision would be extremely small if the 

expected maximum negated PET is still less than zero. When we compute the return level by 

increasing the return period to infinity, the negative maximum return level basically implies the 

zero expected risk of collision for a location. 
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Figure 8-6: Estimates of Crash Frequency versus Estimates of Return Level 
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8.1.3 Summary of Validation Results 

Both return level and crash frequency estimates of the extreme value models exhibit a promising 

relationship with the widely-used safety indicator, i.e., historical crash data. However, there are 

obvious pros and cons of each estimate that are worth special consideration. The validation 

results and findings regarding the crash frequency estimates can be summarized as follows: 

• The crash frequency estimate is a safety indicator whose interpretation is directly 

understandable for policymakers as well as highway engineers. 

• Crash frequency estimates exhibit a potential relationship with observed crash counts. 

Excluding the data point of site 97903, the Pearson correlation between actual counts and 

model estimates is 0.931. The crash frequency estimates correspond well with the 

observed counts at locations with high counts of right-angle collisions. 

• The confidence interval of a PET-based crash frequency estimate is still very wide, which 

is due in large to an insufficient sample of extreme values from an eight-hour observation 

period. The data requirement to obtain a reasonable confidence interval will be examined 

later in this chapter. 

• A crash frequency estimate suffers from the overestimation problem where a number of 

short PETs are caused by queue spillbacks. 

• A crash frequency estimate is non-negative, which tends to cluster at zero for relatively 

safe intersections. Hence, it may not well discriminate varying levels of safety across 

locations with low-crash and moderate-crash counts. 

The validation results and findings of the estimates of return levels of negated PETs can be 

concluded as follows: 

• Similar to crash frequency estimates, return level estimates exhibit a good agreement 

with observed crash counts. In addition, the return level estimate does not suffer from the 

overestimation problem, particularly at site 97903. The Pearson correlation using all data 

points is 0.631 for a four-year prediction horizon. 

• Return level estimates are not restricted to only non-negative values as in the case of 

crash frequency estimates. Therefore, they fare better in discriminating varying safety 

levels at safe or moderately safe locations. 

• The standard errors of return level estimates are relatively much smaller than those 

obtained for crash frequency estimates. 
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• Safety interpretation of return level estimates is, however, less intuitive than for crash 

frequency estimates. In addition, return level estimates cannot be converted into crash 

frequency estimates. 

• The safety implication based on return level estimates of negated PETs is similar to crash 

frequency estimates; a higher return level associated with a greater risk of collisions.  

• General guidelines for safety interpretation of return levels of a negated PET are as 

follows: (a) if the four-year return level for a particular location is less than zero, the risk 

of right-angle collisions is likely to be low, but additional evaluation is recommended 

before it can be confirmed; and (b) if the four-year return level is greater than zero, there 

is an above-normal risk of right-angle collisions and a comprehensive safety evaluation is 

recommended. 

The current extreme value approach using the block maxima distributions appears to produce 

promising results, as exhibited by the correlations between model estimates and observed crash 

counts. However, the major shortcoming of the approach is the poor confidence of estimates, 

which may be attributable to an insufficient sample of PET extreme values from an eight-hour 

observation period. To examine this issue in greater detail, we studied the effects of model 

settings including the block length, the choice of r value, and the observation period on the 

confidence of model estimates. Analyzing these effects with field observation would be 

extremely data-intensive and thus impractical at this point. Instead, we propose a simulation-

based analysis which takes into account the field data and historical crash counts to generate the 

PET observations. The method and findings are presented in the next section. 

8.2 SIMULATION STUDY OF MODEL CHARACTERISTICS 

A simulation-based analysis of the PET sampling scheme is proposed to evaluate the impact of 

model settings on the confidence of model estimates. The comparison benchmark for an 

acceptable confidence interval of crash frequency estimates is the crash-based confidence 

interval. This simulation-based approach assumes that the complete and accurate information 

about the PET distribution is known for a given site. Provided that the assumption of the 

continuum of events is valid, the tail behavior of this distribution reflects the actual frequency of 

right-angle collisions. The analytical framework resulting from this notion is to construct a 

continuous distribution that can approximate PET variability in the field and simultaneously give 
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an accurate estimate of crash frequency. Then, based on the fitted distribution, we can simulate 

the PET observations over time for a sampling scheme of interest to investigate its impact on the 

confidence of model estimates. 

The approach to establishing the parametric distribution from observed PETs at selected sites is 

first described. Then, we describe the PET simulation procedure based on the selected 

distribution. It is important to note that the proposed simulation approach does not account for the 

temporal dependency and non-stationarity that may exist in a series of empirical PET data. 

Consequently, only the homogeneous extreme value models are considered for the simulated 

PET. The dependency in a series of observations requires no special treatment in the block 

maxima extreme value models since the effect of dependency is automatically handled in the 

parameter estimates. The possible non-stationarity in the PET occurrence process, though not 

considered in the simulation, should have minimal impact in this analysis. It is important to bear 

in mind that the goal of this task is to understand the effect of model settings and the observation 

period on the confidence of estimates. The non-stationarity may influence the accuracy of model 

estimates in the field condition but the impact on the confidence of estimates is unlikely to be 

consequential. This is more or less confirmed once we describe the simulation results. The 

variability observed from the model-based estimates based on one-day simulated PETs (eight 

hours per day) is somewhat similar to what we experienced with the field data. 

8.2.1 Constructing Underlying Parametric Distribution 

Denoting 1 2, ,...X X  as independent realizations of negated PETs and letting iX F:  where F  

is a parametric distribution underlying PETs at a specific site.  Distribution F  must satisfy 

 { }Pr 0 | ,i i cX X u p> > =  (8-6) 

where u  is a PET modeling threshold and cp  is the likelihood of right-angle collisions given that 

the threshold u  is exceeded. The PET modeling threshold u  represents the lower limit of 

negated PET upon which the distribution F  is to be established. Notice that the modeling 

threshold u  is not necessarily the same as the observation threshold. In fact, the modeling 

threshold is intentionally chosen to be lower than the observation threshold (eight seconds) to 

ensure that all the PETs in a range of interest were measured. In our study, we consider 6u = −  
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(or 6 seconds) as our modeling threshold for negated PETs based on visual examinations of PET 

histograms of several sites. 

Condition (8-6) ensures that the area under the tail region of the distribution F  can accurately 

reflect the specified number of crashes. The likelihood cp  can be determined from the historical 

crash data as 

 
( )

,

/ 12.09 365
,

/
y

obs

n y
c

u t obs

c n
p

f t

× ×
=  (8-7) 

where 
ync  is the observed counts daytime right-angle collisions during yn  years and , obsu tf  is the 

counts of negated PETs that are less than threshold u  ( )6u = −  during the observation period of 

obst  hours.  

Let θ  be a parameter vector of the distribution F . Then, the parameter estimates can be 

determined by maximizing the likelihood function 

 ( ) ( )1
1

| ,...,
n

n i
i

L x x f xθ
=

=∏  (8-8) 

subject to the constraint (8-6) where 1,..., nx x  are the observed negated PETs equal to or greater 

than u . Computationally, the constraint (8-6) is relaxed to ensure the convergence of the 

algorithm for maximum likelihood estimation, which becomes 

 ( )2ˆlog log ,c cp p k− <  (8-9) 

where ˆcp  is the conditional likelihood of collisions evaluated at maximum likelihood estimates 

θ̂  and k is the tolerance level. The specification of k is a trial-and-error process which is 

dependent on an assumed distribution F  and observed PET data. 
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8.2.1.1 Fitting Parametric Distributions 

We selected the PET data from site 97901 as an example case to determine the appropriate 

distributional function. Visual examination of an empirical histogram of negated PET data of this 

site (see Figure C-35) indicates that the PET modeling threshold at six seconds appears to be 

suitable. The PET values less than six seconds are then negated and fitted to the following 

distributions. The negated PET modeling threshold is 6u = − . 

Generalized Extreme Value Distribution 

Recall the GEV distribution function from equation (6-1), 

 
1/

( ) exp 1 zG z
ξ

µξ
σ

−⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞= − +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
 

defined on the set { }:1 ( ) / 0z zξ µ σ+ − > , where the parameters satisfy µ−∞ < < ∞ , 0σ >  

and ξ−∞ < < ∞ . The log-likelihood function of GEV distribution was given in equations (6-36) 

and (6-38) for 0ξ ≠  and 0ξ =  respectively. 

The maximum likelihood estimates ( )ˆˆ ˆ, ,µ σ ξ  must maximize the log-likelihood function while 

subject to (8-9) where the estimated conditional likelihood of collisions ˆcp  in (8-9) can be 

obtained by 

 
( )
( )

ˆ1 0
ˆ ,ˆ1c

G
p

G u
−

=
−

 (8-10) 

evaluated at ( )ˆˆ ˆ, ,µ σ ξ .  

Setting k = 0.01 and maximizing the constraint log-likelihood function give the fitted GEV 

density in Figure 8-7. There appears to be a lack-of-fit problem at the range of negated PETs from 

-6 to -5 seconds. The histogram of negated PETs observed at site 97901 is also shown for 

comparison. 
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Figure 8-7: Fitted Constraint GEV Density – Site 97901 

Exponential Distribution 

Exponential density has a continuous decreasing trend, which is similar to the empirical 

histogram of the negated PETs observed from the field. In addition, an exponential distribution is 

the only distribution in a family of continuous distributions that has the memoryless property; this 

implies that, for a modeling threshold of negated PETs u , 

 { } { }Pr 0 | Pr .X X u X u> > = > −  (8-11) 

The distribution function of the exponential distribution is 

 ( )
( )

1 ;  0,  0.
x

F x e x
µ

β µ β
−

−
= − − ≥ >  (8-12) 

The corresponding log-likelihood function is 

 ( )
1

1, log .
n

i

i

xn µµ β
β β=

⎛ ⎞ ⎛ − ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑l  (8-13) 

By (8-11), the conditional likelihood of collisions can be estimated by 



 

 

230

 ( )ˆ ,cp F u= −  (8-14) 

evaluated at ( )ˆˆ ,µ β .  

Maximizing log-likelihood (8-13) subject to condition (8-9) with k set at 0.01 yields the fitted 

exponential density as depicted in Figure 8-8. Although the trend is correct, the lack-of-fit 

problem is still obvious for the entire range of fitted values. 
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Figure 8-8: Fitted Constraint Exponential Density – Site 97901 

Generalized Pareto Distribution 

We discussed the generalized Pareto distribution briefly in Section 6.3.1. In the extreme value 

applications, this distribution was fitted to extremes defined by the threshold excesses of a pre-

specified high threshold. We fit the negated PET to this distribution at a threshold of 6u = − . A 

high threshold is not a concern herein because PET extremes will not be directly taken from the 

fitted distribution. Instead, we will be taking only the block maxima from a set of simulated PET 

values. Note that we are searching for a distribution that can reasonably approximate the 

variability in PET data for a given site. A good fitted distribution will allow us to reliably 

generate PET observations that adequately replicate field data. 
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Rewrite equation (6-10), the generalized Pareto for threshold excesses Y X u= −  where X  is 

negated PETs is 

 ( )
1/

1 1 yH y
ξξ

σ

−
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (8-15) 

defined on ( ){ }: 0 and 1+ y/ 0y y ξ σ> > . For threshold excesses 1,..., ny y , the log-likelihood 

function can be derived as 

 ( ) ( ) ( )
1

, log 1 1/ log 1 / .
n

i
i

n yσ ξ σ ξ ξ σ
=

= − − + +∑l  (8-16) 

Correspondingly, the conditional likelihood cp  can be estimated by 

 
1/

ˆ 1 ,c
up

ξξ
σ

−
⎡ ⎤= +⎢ ⎥⎣ ⎦

 (8-17) 

evaluated at ( )ˆˆ ,σ ξ . Maximizing (8-16) subject to constraint (8-9) at k = 0.005 gives the fitted 

generalized Pareto density as shown in Figure 8-9. 
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Figure 8-9: Fitted Constraint Generalized Pareto Distribution – Site 97901 
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8.2.1.2 Comparison of Distributional Assumptions 

The distributions fitted to site 97901 are summarized in Table 8-3. The comparion of negative 

log-likelihood at convergence indicates that the generalized Pareto distribution gives the best fit 

among selected distributions.  

Table 8-3: Comparison of Fitted Distributions 

Distribution

Estimated 
Conditional 

Probability of 
Crashes (pc)

Estimated 4-
Year Crash 
Frequency

Negative 
Log-

likelihood

0.6933 0.6933 -0.0668
(µ) (σ) (ξ)

-6.0000 0.5742
(µ) (β)

1.2588 -0.1775
(σ) (ξ)

Generalized 
Pareto (GP) 2.6430E-05 17.73

Site 97901, modeling threshold = 6 sec, observed crash counts = 18

Parameter Estimates

GEV 2.5132E-05 17.25 341.20

Exponential 2.8986E-05 19.89 734.02

311.38
 

Visual examination of Figure 8-9 also reveals a good agreement between the fitted density and 

the empirical histogram of the negated PET. The fitted generalized Pareto distribution is therefore 

selected as a parameteric model for negated PETs greater than the specified threshold. 

8.2.2 PET Simulation Procedure 

Now we have devised the procedure to determine and estimate the distribution of PETs such that 

the likelihood of a collision satisfies the observed crash counts. Let us consider crossing events 

and a PET observation process to help understand the simulation procedure. A PET is the result 

of a crossing event which usually takes place during the change of signal phasings. If we assume 

that there exists at least one through-vehicle from each approach in every phase, then we always 

have at least one PET for every cycle. The approximate number of PETs is therefore dependent 

on the average number of cycles per unit time at a signalized intersection.  

It should be noted, nevertheless, that not all PET values are recorded in the PET measurement. 

Due to the fact that a large PET is basically caused by a normal crossing event, a PET is recorded 

only when it is shorter than a specified threshold. The total number of observable PETs is 

relatively large compared to the total number of recorded PETs. In other words, the likelihood of 
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having PET recorded is equal to the likelihood of a PET being less than a reasonably low 

threshold. The number of PETs collected per unit time is the same as the number of PETs less 

than the specified threshold. If we treat the chance of having a PET recorded as a Bernoulli 

process, then the number of collected PETs per unit time follows the binomial distribution. When 

this likelihood is sufficiently small, a Poisson approximation of a binomial distribution is 

applicable. Hence, for a sufficiently large block length, we can assume that the number of 

recorded PETs per block is Poisson-distributed with the mean equal to the average count of PETs 

less than the specified threshold. 

The next issue is how to simulate PETs that are greater than the specified threshold. This range of 

PETs obviously cannot be approximated by the generalized Pareto distribution. A general 

solution depends on the size of the block length being considered. If the block length is 

sufficiently large, the likelihood of PET extremes (block maxima of negated PET) falling into this 

range is negligible. Therefore, this range of PETs can be ignored for a sufficiently large block 

length. Another scenario is when a site has low PET counts and consequently the block length 

may not be large enough. In such a case, we cannot ensure that the PET extremes will always fall 

within the range of the fitted generalized Pareto distribution. A uniform distribution is employed 

to generate PET observations within the range of one to two seconds greater than the threshold to 

supplement the PET values in the range that is not included in the fitted generalized Pareto 

distribution.  

The step-by-step procedure to simulate PETs can be described as follows: 

1. Specify the number of blocks to be generated. Without loss of generality, let us assume 

that observation period is fixed at eight hours a day. Therefore, the observation period 

can be referred to in the unit of days for the sake of convenience. 

2. Generate the number of PETs per block using Poisson distribution with a mean equal to 

the average block count of PETs less than the specified threshold. 

3. If a block length is sufficiently large, generate each PET observation using the fitted 

generalized Pareto distribution. 

4. If a block length is short, generate each PET observation using a two-step process. The 

likelihood of falling within the range of large PETs (greater than the threshold) is 

estimated by the actual proportion of the field data. Generate a large PET with the 

uniform distribution and a short PET with the fitted generalized Pareto distribution. The 
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chance of having a large PET is determined by the estimated probability of negated PETs 

greater than the modeling threshold. 

8.2.3 Selected Sites and Estimated Distributions 

The simulation experiment is conducted for two selected sites: 87906 and 97901. Site 87906 had 

six right-angle collisions during the daytime from 1997 to 2000. Site 97901 had 18 collisions for 

the same period. Selected sites aim to represent two opposite situations: (a) low crash counts and 

(b) high crash counts. The parameter estimation for site 97901 was explained earlier in Section 

8.2.1 to exemplify the procedure. Applying the same procedure to the observed PETs at site 

87906, the parameter estimates can be determined in a similar manner. The generalized Pareto 

distribution apparently gives a reasonable goodness-of-fit for both locations. The parameter 

estimates of both sites are summarized in Table 8-4.  

Table 8-4: Summary of Parameter Estimates at Selected Sites 
Fitted distribution: generalized Pareto

Selected 
Sites

PET 
Modeling 
Threshold 

(sec)

Observed 
Counts per 

4 years

Estimated 
Conditional 

Probability of 
Crashes (pc)

Estimated 4-
Year Crash 
Frequency

Negative 
Log-

likelihood

1.2670 -0.1788
(σ) (ξ)

1.2588 -0.1775
(σ) (ξ)

97901

87906

18

6

6.0

6.0

Parameter 
Estimates

311.38

100.41

17.73

5.81

2.6430E-05

2.7742E-05
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Figure 8-10: Fitted Constraint Generalized Pareto Distribution – Site 87906 
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Notice that the estimated conditional probabilities of crashes at both sites are very close. This is a 

coincidence because the ratio of PET counts and the ratios of observed right-angle crash counts 

between both sites are fairly close (about 3 times). The plot of the fitted constraint generalized 

Pareto distribution versus the empirical observations at site 87906 is given in Figure 8-10. A 

similar plot for site 97901 was shown earlier in Figure 8-9. 

8.2.4 Simulation Experiment and Results 

We simulate the PETs from the fitted distributions at both sites and then apply the proposed 

extreme value modeling approach to determine the crash frequency estimates and return level 

estimates of negated PET. To be consistent with the validation part, a four-year prediction 

horizon is applied in all subsequent analysis.  

Without the loss of generality, let us assume that the PET data will be collected for eight hours 

per day for simplicity. The number of observation days is referred to instead of the number of 

hours in the simulation results. The number of observation days, model choice (number of block 

maxima), and block length are varied in simulation settings to investigate its effect on the 

confidence of model estimates. 

As a result, three settings are considered in this simulation experiment for both sites, which are: 

• Experiment 1: the r largest order statistic model at r = 1 (GEV equivalent) and a 15-

minute block length 

• Experiment 2: the r largest order statistic model at r = 1 (GEV equivalent) and a one-hour 

block length 

• Experiment 3: the r largest order statistic model at r chosen as proposed in Table 7-4 and 

a 15-minute block length. In other words, r = 2 for site 87906 and r = 3 for site 97901. 

For each experiment, we increase the number of observation days from one day to 500 days (or 

100 days if the model execution time is unreasonably long). For each set of simulated series of 

PETs, we estimate the extreme value model and compute the estimates of crash frequency and 

return level of negated PETs. Therefore, one experiment produces two graphical plots: (a) crash 

frequency estimates versus observation days and (b) return level estimates versus observation 

days. This is equivalent to six figures for one site (three experiment setups for two types of 
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estimate). Two selected sites are considered in this study and thus lead to a total of 12 plots of 

simulation results as shown in Appendix G. 

The most natural benchmark for the confidence of crash frequency estimates is the Poisson 

confidence intervals based on observed crash counts. The 95% and 99% Poisson confidence 

intervals are provided for all the plots related to crash frequency estimates to illustrate the 

desirable level of uncertainty.  

The return level benchmark is taken at the crash occurrence level which is equivalent to a zero 

negated PET value. In Section 8.1.2, we noted that the return level estimate of a negated PET 

greater than zero indicates a potential risk of right-angle collisions. Therefore, the desirable 

confidence of return level estimates is achieved when the chance of a negative return level being 

incorrectly predicted is very slim. 

8.2.4.1 Effects of Block Length 

Consideration of a suitable choice of block length is governed by the bias-variance tradeoff. As 

the consequence of a violation of the asymptotic assumption underlying the extreme value 

distributions, a too short block length can give rise to biased estimates. A large block length, on 

the other hand, will generate fewer PET extremes, which in turn can give parameter estimates 

with a large variance. The eight-hour field observation poses a constraint on us to favor a smaller 

block length for two practical reasons: (a) to increase the confidence of model estimates and (b) 

to ensure an adequate sample size for the convergence of maximum likelihood estimation. This 

restriction is no longer an issue in a simulated environment. We estimate the GEV models (r = 1) 

using two different block lengths at selected sites to evaluate its impact on modeling results. 

To examine the effects of block length, the plots of estimated crash frequency using a 15-minute 

versus one-hour block length are compared. The comparison of the effect of block lengths on the 

crash frequency estimates of site 87906 is shown in Figure 8-11. The number of observation days, 

from 10 to 500, is shown in the plots. On the left figure, the tendency to underestimate the crash 

frequency is noticeable when a 15-minute block length is selected. The bias disappears when the 

block length is increased to one hour on the right figure. However, the elimination of the model 

bias was achieved at the expense of a large uncertainty of model estimates.  
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Figure 8-11: Effect of Block Length on Crash Frequency Estimates – Site 87906 

 

The total number of PET equal to or less than eight seconds at site 87906 is 190 for the eight-hour 

period, which is equivalent to about six per block on average when a 15-minute block is being 

used. With a one-hour block length, the average number of PET per block is about 24.  

Let us look at a similar comparison at site 97901 in Figure 8-12. The bias is not a problem at 

either 15-minute or one-hour blocks at site 97901. However, the estimates suffer from poor 

confidence when a one-hour block was chosen. The observed number of PET equal to or less than 

eight seconds at this site is 573 for the eight-hour period. That is an average of 18 per 15-minute 

block or 72 per one-hour block. The 15-minute block length is apparently a suitable choice for 

site 97901. 

 



 

 

238

Site 97901, r=1 (GEV), Block=15 min

Days (8 hours per day)

E
st

im
at

ed
 C

ra
sh

 F
re

qu
en

cy

5 10 50 100 500

0
50

10
0

15
0

20
0

Poisson-based 95% CI
Poisson-based 99% CI

Site 97901, r=1 (GEV), Block=1 hour

Days (8 hours per day)

E
st

im
at

ed
 C

ra
sh

 F
re

qu
en

cy

5 10 50 100 500

0
50

10
0

15
0

20
0

Poisson-based 95% CI
Poisson-based 99% CI

 
Figure 8-12: Effect of Block Length on Crash Frequency Estimates – Site 97901 
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Figure 8-13: Estimated Crash Frequency at Site 87906 Using r = 1 and 30-minute Blocks 
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This has led us to the suggestion that, for a long observation period, a suitable choice of block 

length should depend on the average number of PETs per block. It is observed that an average of 

six per block is inadequate while an average of 18 per block is sufficient. To find the optimal 

average number of PETs per block, we ran the simulation test again for site 87906 at 30-minute 

blocks to examine if the model bias can be corrected. The 30-minute block length at site 87906 

gives an average of 12 PETs per block. The crash frequency estimates are plotted 

correspondingly in Figure 8-13. 

It can be seen from the plot that the bias problem at site 87906 is eliminated at a 30-minute block 

length. This is equivalent to an average of 12 PETs per block. Based on the simulation 

experiment on the effects of block length, general guidelines for a selection of block length can 

be given as follows: 

1. For a short-term observation period (one to five days), a small block length (usually 15 

minutes) is preferred in favor of better confidence of model estimates and algorithm 

convergence. To illustrate, poor algorithm convergence is inevitable when only eight 

extreme values are observed in one day using a one-hour block and a model has at least 

three parameters to be estimated.  

2. For a long-term observation period (longer than five days), a suitable block length can be 

selected based on the average number of PET observations per block. To ensure that the 

asymptotic assumption is satisfied, the average number of PET observations per block 

should be at least 10. The selection among typical block lengths of 15 minutes, 30 

minutes, and one hour are likely to be sufficient in most cases.  

In reality, the true measure of safety is unknown and thus it is not possible to check if the safety 

estimates of the extreme value models are biased by comparison. However, we can rely on the 

model diagnostic plots to determine a possible violation of the asymptotic assumption, which may 

signify a biased estimate. We illustrate this diagnostic check with site 87906 where a 15-minute 

block length appears to give a biased estimate. Let us assume that the PET data are collected for 

10 days and then fitted to GEV models using a 15-minute block length versus a one-hour block 

length. The diagnostic plots of both cases are shown in Figure 8-14 and Figure 8-15 respectively. 
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Figure 8-14: Diagnostic Plots of Model Fitted to 10 Days of Simulated PET at Site 87906 

(block length = 15 minutes and r = 1) 

 

The quantile and return level plots in Figure 8-14 show a potential violation of the asymptotic 

assumption as indicated by a few data points at the extreme ends of both plots. On the other hand, 

at a 10-day observation period, no apparent violation is observed for a one-hour block length in 

Figure 8-15. Hence, it is possible to point out a potential model bias in practice even if the true 

safety level is unknown, provided the data from a long-term observation are available. 

Nevertheless, this is not the case for a short-term observation because the sources of imperfect 

diagnostic plots are often compounded between an asymptotic bias and a large variance of 

parameter estimates. 
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Figure 8-15: Diagnostic Plots of Model Fitted to 10 Days of Simulated PET at Site 87906 

(block length = 1 hour and r = 1) 

8.2.4.2 Effects of Number of Block Maxima 

The proposed r largest order statistic models for PET extremes is a generalization of the GEV 

distribution such that the model can incorporate more than just one block maximum in the 

estimation. The choice of r, or the number of block maxima of negated PETs, depends on the data 

set. For the field data, we selected r based on the number of PETs observed during the eight-hour 

period. The selected r ranges from 1 to 3. In this simulation study, r is set at 2 and 3 for 87906 

and 97901 respectively. Theoretically, a larger r, or using more extremes per block, is expected to 

increase the confidence of the model estimates. However, we do not know the degree to which 

the confidence of estimates is improved. Therefore, this simulation study can help reveal the 

effect of r selection on this particular aspect. 
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In doing so, we compare the plots of crash frequency estimates using r = 1 (equivalent to GEV 

distribution) versus r = 2 at site 87906. The comparison plots are presented in Figure 8-16 and 

Figure 8-17. The first figure shows the crash frequency estimates obtained from one to 10 days of 

simulated PETs while the second figure displays estimates obtained from 10 to 100 days. We 

separate the plots for the same site into two figures because the range of crash frequency 

estimates is too wide to appropriately represent them all on the same scale. 
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Figure 8-16: Effect of Choice of r on Crash Frequency Estimates – Site 87906 

(Observation = 1 to 10 days) 

From both figures at site 87906, the improvement in the confidence of the estimates is marginal 

for the range of one to 10 days and is more noticeable for the range of 10 to 100 days. This is not 

unexpected because site 87906 has a low average number of PET per 15-minute block, which 

means that there is a good chance that some blocks may have just one PET occurrence. Therefore, 

the setting of r = 2 only slightly increases the sample size of PET extremes for one to 10 days of 

observation, which is reflected through marginal improvement of the confidence of the estimates 

in this case. 
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Figure 8-17: Effect of Choice of r on Crash Frequency Estimates – Site 87906 

(Observation = 10 to 100 days) 

Similar comparison is carried out for site 97901 as shown in Figure 8-18 and Figure 8-19. For this 

site, we compare r = 1 versus r = 3 since the number of observed PETs on average is much higher 

than those of site 87906. 

It can be seen in Figure 8-18 that the confidence of the crash frequency estimates is apparently 

better for r = 3 where the observation period is short. The fitted models can seriously 

overestimate the crash frequency at r = 1 when only one or two days of observation is available. 

However, when the observation period is longer, improvement of the confidence of the estimates 

through the increase in r is very marginal (see Figure 8-19).  
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Figure 8-18: Effect of Choice of r on Crash Frequency Estimates – Site 97901 

(Observation = 1 to 10 Days)  

From the examination of simulated results at both sites, the effect of the number of extremes 

selected per block on the confidence of the model estimates can be summarized as follows: 

• For a short observation period (less than five days), a r value should be selected as large 

as possible subject to model adequacy. The benefits of a large r value for a short 

observation period are twofold: (a) to ensure the convergence of maximum likelihood 

estimation and (b) to increase the confidence of model estimates. 

• For a long observation period (five days or more), the benefit of increased confidence of 

the estimates is no longer substantial and the model convergence is no longer an issue. 

Therefore, there is no reason to favor a large r value in this case. The proposed r largest 

order statistic model can be reduced to the GEV model (r = 1) when the sample size is 

sufficiently large.  

• From a computational aspect, the GEV model is also preferred to the r largest order 

statistic model for a large sample size. The computational time for the r largest order 
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statistic model seems to increase exponentially with the sample size of PET extremes. To 

illustrate, the execution time of the case of r = 3 for site 97901 takes about six hours for 

one day to 100 days of simulated PETs while this same data set will take merely 30 

minutes with the GEV models. 
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Figure 8-19: Effect of Choice of r on Crash Frequency Estimates – Site 97901 

(Observation = 10 to 100 days)  

8.2.4.3 Optimal Observation Period 

The last issue to be examined is the optimal observation period. Let us first consider the return 

level estimates of negated PETs in Figure 8-20. We use r = 1 or GEV models as a basis for 

comparison since we have shown earlier that there is no significant gain in terms of confidence of 

the estimates from large r values once the number of observation days is sufficiently large (five 

days or more).  
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The horizontal line indicates a zero value, which is equivalent to the crash occurrence level. A 

higher return level implies a greater risk of right-angle collisions. There is no direct relationship 

between crash frequency and return level estimates. However, from the results in Section 8.1.2, 

we found that the intersections with positive return level estimates are more likely to experience 

high counts of right-angle crashes. Therefore, by means of a return level estimate, the suitable 

observation period is defined as the length of observation that allows us to confidently confirm 

whether the extreme return level of negated PETs is positive. As a result, the examination of 

Figure 8-20 indicates the following: 

• For a high-crash-count location such as site 97901, we can confidently assure that the 

return level estimate is positive at 15 days of observation or more. 

• For a moderate-crash-count location such as site 87906, we can also assert with a high 

degree of confidence that the return level estimate is positive at 15 days of observation or 

longer. 
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Figure 8-20: Comparison of Return Level Estimates 
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This basically implies that by the means of return level estimates with a minimum of 15 days of 

PET observation, we can tell whether the intersection warrants a comprehensive safety evaluation 

program without the need for historical crash data. If the return level estimate based on 15 days of 

observed PET is positive, the intersection is justified for further evaluation due to the excessive 

risk of right-angle collisions. The negative estimate, however, may not immediately confirm that 

the intersection is safe but it is very likely that the risk of right-angle collisions at that intersection 

is below average. 

Once we can affirm that the intersection is at excessive risk for right-angle collisions, the next 

question is how long the observation period has to be in order to predict the crash frequency with 

a satisfactory level of confidence. The most natural benchmark for a comparison of confidence 

levels is the crash-based Poisson confidence intervals. The GEV models with 15-minute and 30-

minute block lengths are estimated for sites 97901 and 87906 respectively. The comparison of 

crash frequency estimates with corresponding crash-based Poisson confidence intervals is 

presented in Figure 8-21. 
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Figure 8-21: Comparison of Crash Frequency Estimates  
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From the plots of both sites, we can observe that the estimates converge rapidly from five days to 

50 days and then continue to converge gradually thereafter. Therefore, the recommended 

observation period in order to predict the right-angle crash frequency with a level of confidence 

close to what we can obtain with four years of crash data is approximately 50 days. There is no 

substantial gain in terms of the confidence of the estimates once the observation period has 

reached 50 days. In fact, a shorter observation period, such as 30 days, appears to be justified for 

a moderate-crash-count location such as site 87906. Therefore, in practice, the first target for the 

observation period can be set at 30 days; then if situations warrant such, increase the observation 

period to 50 days. For example, the observation period should be increased to 50 days if the 

prediction of crash frequency is still off the mark using a 30-day period, i.e., unrealistically high 

or unusually low. 
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CHAPTER 9 CLOSURE 

A summary of the research findings, conclusions, and recommendations for future research are 

presented in this final chapter. In addition, we also provide a simple method for an evaluation of 

the risk of right-angle collisions at signalized intersections in Appendix B. 

9.1 RESEARCH SUMMARY 

We studied the traffic crossing events leading to right-angle collisions at signalized intersections. 

We measured the post-encroachment time (PET) and the encroachment time (ET) at 18 selected 

intersections for eight hours each. The PET is defined as the time between the moment the last 

vehicle leaves a conflict spot and the moment the first conflicting vehicle enters a conflict spot. 

The PET is a proposed surrogate measure of safety to evaluate the risk of right-angle collisions 

caused by two crossing straight vehicles. A shorter PET value implies a greater risk of collisions. 

Under the postulate of a continuum of events, a collision occurs when the PET takes a value of 

zero or less.  

Different PET measurement techniques were tested, including the automated method, the semi-

automated method, and the manual method. The automated and semi-automated methods used the 

Autoscope® to help detect and measure the events. However, the methods still produced 

significant rates of false and missed detections; therefore, the manual method was chosen for all 

subsequent measurement of PETs. 15-minute directional traffic volume counts were also 

collected during the eight-hour observation period for all selected sites using Jamar® counters.  

The validity of PET as a safety indicator was first examined using Poisson and negative binomial 

regression methods. Using observed crash counts as a response variable, three categories of 

regression models were calibrated: (a) PET-based models, (b) volume-based models, and (c) 

combined models. The models were estimated for two different levels in each category: (a) site 

level and (b) conflict zone level. In the regression analyses, the counts of short PETs and the 
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products of crossing flows were found to have the most explanatory power in explaining the 

variability of observed right-angle crash counts.  

In addition, the regression results revealed that a PET is capable of discriminating varying safety 

levels within a location (conflict zone models) as well as across locations (site models). A PET 

carries safety information unexplained by traffic volume alone. The implication is that a PET can 

either supplement or complement the traffic volume data in a safety evaluation. There is 

statistical evidence of benefits from having both PET data and traffic volume data available. 

We propose the extreme value theory approach to model a behavior of post-encroachment times. 

Note that negated PET values are modeled instead of actual PET values for the sake of 

mathematical convenience. There are two alternative definitions of PET extremes: (a) time-based, 

which is the largest negated PET observed in an interval, and (b) event-based, which is the 

negated PET exceeding a pre-specified threshold. 

The first approach was chosen for the analysis for the following reasons: (a) the possible 

dependence in a series of extreme values is automatically handled in the parameter estimation; (b) 

the point process characterization of event-based PET extremes, on the other hand, requires a 

declustering scheme which remains quite subjective; and (c) a threshold specification for event-

based extremes is quite arbitrary, neither a mean residual life plot nor an assessment of parameter 

stability can completely eliminate subjectivity in determining appropriate thresholds. 

Time-based negated PET extremes were fitted to a generalization of a block maximum 

distribution (GEV) as the non-stationary r largest order statistic model. The r largest order 

statistic model enables us to incorporate more than one extreme from each time interval in order 

to increase the confidence of parameter estimates. The selection of the r value was based on 

eight-hour counts of short PETs. The PET can be classified into two categories: (a) those 

associated with normal crossing events and (b) those associated with queue spillbacks. The 

encroachment time (ET) was used to help discriminate these two catogories. A coefficient of 

variation of the ET helped determine intersections that had excessive numbers of short PETs from 

queue spillbacks. 

The non-stationarity of PET process was substantially explained by the traffic volume and the 

frequency of PET occurrences. These non-stationary covariates were incorporated into the 

location parameter of the model using the identity link. There were 12 intersections with a 
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sufficient number of PET extremes for model estimations and eight of them required only the 

frequency of PET occurrences as a sole covariate. For the remaining four intersections, the 

addition of traffic volume improved the goodness-of-fit of the models at the 95% confidence 

level.  

The risk of collision can be derived from the estimated extreme value models and then converted 

to the crash frequency estimate. The risk of right-angle collision during any time interval is the 

probability of a negated PET being greater than zero. Since the risk is the expected frequency of 

collisions during a short interval, summation of the risk over a long period T gives the expected 

number of collisions during period T. 

The second safety estimate, not as straightforward as the risk of collision, is the extreme return 

level. The extreme return level is the maximum negated PET level, which is expected to be 

exceeded once every return period 1/p. The higher return level of negated PETs implies a greater 

hazard of right-angle collisions. There is a positive correlation between the return level and the 

risk (crash frequency) estimates; however, these two quantities are neither convertible nor 

interchangeable. The advantages of the risk estimates are: (a) intuitive and simple to understand, 

(b) convertible to crash frequency, and (c) easy to validate with observed crash counts by direct 

comparison. However, the risk and the crash frequency estimate are a non-negative quantity 

which may tend to cluster near zero. For this reason, the crash frequency estimate may not well 

discriminate a spectrum of safety levels among a group of low-risk intersections. The extreme 

return level, on the contrary, is a better behaving estimate. However, the concerns with the use of 

extreme return level are: (a) it is not convertible to crash frequency; (b) validity check by direct 

comparison is not possible; (c) the estimation procedure is computationally cumbersome; and (d) 

the interpretation is less intuitive than the risk and crash frequency estimates. 

The modeling of PET behavior using the extreme value statistics relaxes several assumptions 

imposed in the traditional regression analysis. The immediate advantages of the extreme value 

approach can be summarized as follows: 

• The risk is estimated for each location separately. We know that there are no two exactly 

identical intersections. The extreme value approach no longer requires the assumption of 

the constant risk across a group of similar locations in order to apply the results 
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elsewhere. The extreme value approach estimates the risk based upon the behavior of the 

PET extremes observed during specific conditions in time and space.  

• The calibration of the extreme value models does not require historical crash data. In the 

traditional approach, the calibration of regression models of surrogate measures such as 

conflict counts requires historical crash counts. In the extreme value approach, we 

estimate the crash frequency based on the mechanism of PET occurrences where the 

collision is defined by zero PET or less.  

• The extreme value modeling of PETs is a proactive safety evaluation approach in that we 

no longer need to wait for crashes to take place before we can confirm the safety level of 

an intersection. This is particularly true for a new or recently modernized intersection 

with no historical crash data available.  

• The extreme value approach enables a simultaneous estimation of risk and exposure for a 

particular intersection. The exposure is the number of time intervals having conditions 

similar to the period of observation. In comparison, a traffic conflict study is a two-step 

procedure in that conflict counts for individual locations are being treated as exposure 

while the risk is subsequently calibrated for a group of studied locations. This estimated 

risk is then assumed to be invariant for similar locations for the result to be applicable 

elsewhere. 

In the method validation, we compared the safety estimates obtained from the best fitted extreme 

value models with the observed crash counts. Crash frequency estimates were examined by both 

direct comparison and correlation check. The validity of the return level estimates can only be 

confirmed by correlation.  

The observed right-angle crash counts at intersections are widely accepted as the objective 

measure of safety. The validation results indicate the existence of a relationship between both 

types of safety estimates and observed crash counts. Poisson confidence intervals based on 

observed crash counts were established to account for the variability of crash-based safety 

estimates. The confidence intervals of crash frequency estimates are still very large however. For 

an eight-hour observation period, the crash-based Poisson confidence intervals would be a subset 

of the PET-based confidence intervals at most locations. However, there is evidence of a possible 

relationship between model-based estimates and observed crash counts as follows:  
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• The extreme value approach yields a crash frequency estimate in a reasonable range. 

Similar unpublished attempts in the past had discouraging results. 

• The Pearson correlation between crash frequency estimates and observed crash counts is 

very high (0.931) without intersection 97903 where the estimate was unreasonably large. 

A similar trend was also observed between the return level estimates and observed crash 

counts (Pearson correlation = 0.631). 

• The expected crash frequency estimates fall within the 95% crash-based Poisson 

confidence intervals at eight out of 12 intersections. This figure increases to nine out of 

12 intersections when the 99% Poisson confidence intervals are considered. 

Three intersections that fall outside the Poisson confidence intervals are 97901, 97903, and 

97905. Although this situation can be easily explained once the variability of the estimates is 

accounted for, a closer examination of the three intersections uncovers certain compelling 

findings as follows: 

• Intersections 97901 and 97903 experienced a number of extremely short PETs caused by 

queue spillbacks. This may be the main cause of the overestimation of crash risk due to 

the violation of the assumption of a single underlying distribution of the PET process. 

PETs of normal crossing situations may have a different underlying distribution from 

PETs caused by a queue spillback.  

• There was a heavy rain during the evening peak at intersection 97905. The longer PETs 

observed during this peak hour contradicts with the observed increasing trend of traffic 

volume. This may indicate the driver risk compensation behavior during perceived 

difficult driving conditions.  

Safety estimates derived from the extreme value models based on a short observation period still 

have a large variance and it is therefore difficult to check for the presence of bias in the estimates. 

To study the variance of the estimates, we conducted a semi-empirical simulation experiment to 

examine impacts of model settings.  

While the PET data in the field represent the frequency of observed crossing behaviors, the 

observed crash counts represent the extreme portion of the process, which is rarely observable 

within a reasonable amount of time. From the postulate of event continuum, we can estimate the 

distribution that applied to the entire spectrum of PETs observable in the field, as well as the 
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crash frequency. The maximum likelihood method subject to the constraint on the conditional 

probability of right-angle collisions was used to fit the generalized Pareto distribution to the 

collected PET data. The fitted generalized Pareto distribution was used to generate PET values in 

the simulation study. The findings from the simulation results can be summarized as follows: 

• A too short time interval (block length) can yield biased estimates which can be 

eliminated only at the expense of a large variance of estimates. 

• For a short observation period (one to five days), a small block length (e.g., 15 minutes) 

is preferred in order to decrease the variance of estimates and ensure the convergence of 

maximum likelihood estimation. 

• For an observation period longer than five days, a suitable block length should have at 

least 10 observed PETs (that are less than eight seconds) on average to avoid violation of 

the asymptotic assumption. Typical time intervals of 15 minutes, 30 minutes, and one 

hour are likely to be sufficient for most intersections. 

• For a short observation period, the r value in the r largest order statistic model should be 

selected as large as possible subject to model adequacy to ensure the convergence of 

parameter estimation and to increase the confidence of model estimates. 

• For a long observation period (five days or more), the increase in confidence of the 

estimates is no longer substantial and the convergence of parameter estimation is no 

longer an issue. The r largest order statistic model can be reduced to the GEV model or 

equivalently r = 1.  

• From a computational aspect, the GEV model is also preferred to the r largest order 

statistic model for a large sample size. Computational time for the r largest order statistic 

model seems to increase exponentially with a sample size of PET extremes.  

• Based on the return level estimate, we can confirm whether the risk of right-angle 

collisions at a location warrants further safety evaluation once the observation period has 

reached 15 days. 

• An observation period of 50 days is needed to have confidence intervals of PET-based 

crash frequency estimates as tight as crash-based confidence intervals (four years). There 

is no substantial gain in the confidence thereafter. The implication is that we can cut 

down the waiting time of four years in the crash-based safety evaluation to only 50 days 

in the PET-based method. This is equivalent to a time-saving ratio of approximately 1:30. 

The required observation period may be shortened if collisions are more frequent. This 
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could be a location with frequent right-angle crashes or other types of collision that are 

more regular than right-angle crashes. For example, the required observation period at 

intersection 97901 may be shortened from four years of crash data to 30 days of PET 

observation, or equivalently, the corresponding time-saving ratio of about 1:50.  

Although not directly related, this optimal period offers some insight into the reason why a one-

day or even a one-week conflict count program of the widely-used traffic conflict technique 

yielded mixed findings in the past in terms of its relationship with observed crash counts. As 

illustrated in the simulation study, the extreme nature of PETs, which is also applicable to traffic 

conflicts, requires a sufficiently long period of data collection in order to have unbiased and low-

variance safety estimates.  

The current limitations of the proposed extreme value approach for modeling PET extremes can 

be summarized as follows: 

• The method tends to overestimate the expected crash frequency at intersections that have 

a number of short PETs caused by queue spillbacks. 

• The method is very data-intensive. A short-term observation for a few days is unlikely to 

yield low-variance safety estimates. Weeks of continuous monitoring at a location are 

indispensable to obtaining desirable safety estimates. A manual measurement method, 

despite its accuracy and reliability, is impractical at the moment.  

• Analysis of extreme value statistics is not a standard implementation in commonly-used 

statistical and econometric analysis software. The method proposed in this research was 

implemented in S language which can be executed on S-Plus®, a specialized statistical 

computing platform. The current version of the implementation may not be readily 

accessible for highway safety practitioners.   

9.2 CONCLUSIONS 

A risk of collision can be estimated using traffic observables during crash-free operations. 

Observed traffic characteristics must satistify the postulate of event continuum; in other words, 

the selected characteristic must be continuous and take values during crash-free operations as 

well as crash occurrences. An extreme value theory approach is well suited for safety estimation 

using traffic observables.  
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In this research, the PET between through-crossing traffic is a valid measure of the risk of right-

angle collisions. A risk of right-angle collisions can be estimated using PETs observed at invidual 

locations for a specific condition. A series of negated PETs should be discretized into fixed time 

intervals, and the block maxima are known to follow the generalized extreme value (GEV) 

distribution. This extreme value modeling approach is preferred to the threshold excess models 

since the dependence of extremes is automatically handled in the maximum likelihood estimation 

and no arbitrary threshold specification is required. 

A GEV model may yield large-variance and biased estimates and the following issues therefore 

must be taken into account in the modeling of PET extremes: 

• Bias-variance trade-off must be considered in choosing a suitable block length.  

• The r largest order statistic model is preferred when only a few days of PET observations 

are available. 

• Non-stationarity in a series of observations must be addressed if the conditions during the 

observation period are changing. For example, a temporal variation of traffic volume is a 

potential covariate in the link structure of the location parameter of the model. 

Our proposed risk estimation method is a novel idea in extreme value theory applications. A 

return level is a typical value of interest in applications of EVT. For example, a structural 

engineer may be interested in the expected maximum wind speed in the next 100 years, which 

corresponds to a 100-year return level of wind speed. In our application, we are interested in the 

area under the distribution curve where the observed value exceeds a fixed return level. This fixed 

return level defines a boundary between crash and non-crash events in our method and the risk of 

collision is defined as the area under the distribution where the negated PET is greater than zero. 

The estimated risk can be converted to the estimated crash frequency using exposure that is 

representative of conditions during PET observation. 

Evaluation results of the proposed extreme value theory approach indicate the existence of a 

relationship between model estimates and crash data but more data are required to confirm this 

result due to a large variance of crash frequency estimates at present. A simulation study revealed 

that a large variance of estimates is primarily due to a short observation period. Several weeks to 

a few months of PET observation would be required to obtain a desirable confidence level of the 

estimates. Any systematic bias can be eliminated by increasing the length of time interval, 
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provided that the sample size is sufficiently large. Otherwise, a model bias is likely to be 

obscured by uncertainty of the estimates. 

The method proposed in this study is neither limited to only right-angle crashes nor a specific 

measure such as post-encroachment times. The proposed method can be applied to other traffic 

characteristics as well as other types of collision. To apply this method, the key considerations 

can be summarized into the following steps: 

1. Traffic characteristics leading to the collision type of interest must be defined. 

2. A valid traffic characteristic must be observable and possess a continuous characteristic 

that can represent varying risk levels during crash-free operations as well as characterize 

a collision at extremes.  

3. A boundary between crash and non-crash events may need to be redefined, depending on 

the traffic characteristic being considered. 

4. The proposed risk estimation method, using the r largest order statistic model, can be 

applied to extremes of the observed traffic characteristic. General model considerations 

still apply, which include a bias-variance trade-off in choosing the block length, a choice 

of r value, and non-stationarity. 

9.3 FUTURE RESEARCH 

Several weeks to a few months of PET observation are required to obtain a desirable confidence 

level of the estimates. Cost and resources needed for a monitoring program using human 

observers would be prohibitive and thus impractical. A more efficient and cost-effective 

automated measurement method is definitely vital to overcome the implementation barrier. 

Despite the current increasing capability of the video image processing (VIP) technology, the 

present challenges of accurate and efficient measurement of a traffic characteristic such as PET 

using VIP include: 

• Different lighting conditions over the course of a day 

• Long shadows from trucks, nearby obstacles, and physical infrastructure in the vicinity 

• Camera vibrations 

• Varying vehicle travel paths 

• Partial occlusions in the field of view 
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• Lack of an efficient algorithm for real-time processing. 

Taking into account the aforementioned difficulties, more efficient and accurate measurement 

technique may aim toward physical detection instead. A hardware-oriented system to detect the 

physical presence of vehicles around conflict spots may offer a more promising capability to 

achieve the desired accuracy and efficiency. 

Once the appropriate automated data collection system is available, we can re-examine the 

extreme value approach based on a long-term observation period. Field data are still needed to 

support the simulation results in this study. Applications for other types of collisions and 

locations can be considered as well. 

The current extreme value approach does not properly represent the extreme behavior of PETs at 

intersections with excessive queue spillbacks during congested traffic conditions. One possible 

hypothesis for this problem is the different underlying distributions of PETs from normal crossing 

situations versus queue spillbacks. The risks of collisions associated with these two situations 

could differ yet share the same PET value.  Despite the fact that the extremal type theorem is 

independent of an underlying distribution, the mixture of underlying distributional assumptions 

may require a special treatment of extremes. Further research on the extreme value method for 

risk estimation could advance on the following aspects: 

• An effective approach to discriminate different categories of PETs 

• A method that allows a mixture of underlying distributional assumptions   

Estimates of unsafety at a location can be improved by combining PET-based and crash-based 

safety information. Let us consider PET-based and crash-based safety information as two separate 

entities. We, in fact, do not know which measure can give a closer approximation of a true 

measure of safety. But, we do know that both measures contribute some information about the 

hazards of a location. A method to combine these two entities should be researched and validated 

once safety information obtained from a surrogate safety measure can be obtained at a 

satisfactory level of confidence. Empirical Bayesian combination is one possible alternative that 

may allow us to proceed from the Poisson confidence intervals based solely on observed crash 

counts to the narrower Poisson credible intervals in which the PET-based safety information is 

incorporated.  
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In addition, the empirical PET observation reveals that changes in drivers’ behavior during 

certain driving conditions may be reflected through the observed PETs. This may lead to an 

innovative approach to study a risk perception of road users under different driving conditions. 

This evaluation requires a data set that comprises PETs observed for a variety of intersection 

features and driving conditions. A classification analysis or a cluster analysis as described in 

Johnson and Wichern (2002), for example, may be an appropriate tool for the study.  
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APPENDIX A PROOF OF THEOREMS 

 

This appendix summarizes the proof of theorem pertinent to the analytical models proposed in 

this research. 

A.1 EXTREMAL TYPES THEOREM 

Formal proof of the extremal types theorem is somewhat complicated mathematically – see 

Leadbetter et al. (1983) for example. In this section, we will outline the important steps of this 

proof. To begin with, let us make the following definition: 

Definition A.1: A distribution G is said to be max-stable if, for every 2,3,...n =  there are 

constants 0nα >  and nβ  such that 

 ( ) ( ).n
n nG z G zα β+ =  (A-1) 

Since nG  is the distribution function of { }1max ,...,n nM X X= , where the iX  are independent 

variables each having distribution function G , max-stability is a property satisfied by 

distributions for which the operation of taking sample maxima leads to an identical distribution, 

apart from a change of scale and location. 

Theorem A.1: A distribution is max-stable if, and only if, it is a generalized extreme value 

distribution. 

It is relatively straightforward to show that all members of the GEV family are indeed max-stable. 

The converse requires advanced knowledge of functional analysis – see Leadbetter et al. (1983). 

Theorem A.1 is used directly in the proof of the extremal types theorem. The idea is to consider 

nkM , the maximum random variable in a sequence of n k×  variables for some large value of n . 

This can be regarded as the maximum of a single sequence of length n k× , or as the maximum of 

k  maxima, each of which is the maximum of n  observations. More precisely, suppose the limit 

distribution of ( ) /n n nM b a−  is G . So, for large enough n , 
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 ( ){ } ( )Pr / .n n nM b a z G z− ≤ ≈  (A-2) 

 Hence, for any integer k , since nk  is large, 

 ( ){ } ( )Pr / .nk nk nkM b a z G z− ≤ ≈  (A-3) 

But, since nkM  is the maximum of k  variables having the same distribution as nM , 

 ( ){ } ( ){ }Pr / Pr / .
k

nk n n n n nM b a z M b a z⎡ ⎤− ≤ = − ≤⎣ ⎦  (A-4) 

Hence, by (A-3) and (A-4) respectively, 

 { }Pr nk
nk

nk

z bM z G
a

⎛ ⎞−
≤ ≈ ⎜ ⎟

⎝ ⎠
 (A-5) 

and 

 { }Pr .k n
nk

n

z bM z G
a

⎛ ⎞−
≤ ≈ ⎜ ⎟

⎝ ⎠
 (A-6) 

Therefore, G  and kG  are identical apart from location and scale coefficients. It follows that G  

is max-stable and therefore a member of the GEV family by theorem A.1. 
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APPENDIX B EVALUATION OF RISK OF RIGHT-ANGLE COLLISIONS 

 

A simple estimation method of risk of right-angle collisions at signalized intersections using 

short-term observation of post-encroachment times (PETs) is described. Before we begin the 

description of the method, let us introduce important definitions relevant to the method: 

• Conflict zone is an area defined by the intersection of two crossing traffic flows. One 

intersection may have up to four conflict zones – see Figure B-1.  

• Conflict spot is an intersection area of two crossing vehicle paths in a conflict zone – see 

example in Figure B-2.  

• Post-encroachment time (PET) is the time it takes from the end of the right-of-way 

infringement of the first vehicle for the second vehicle to reach the conflict spot, 

measured from the rear bumper of the first vehicle to the front bumper of the second 

vehicle – see Figure B-3. 

 

 

 
Figure B-1: Collision/Conflict Zone Notation  
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Figure B-2: Example of Conflict Spot Designation  

 

 

 
Figure B-3: Illustration of Post-Encroachment Time 

 

PETs reflect driver behaviors in response to intersection control, intersection geometry, and other 

drivers and these make PET a desirable safety indicator. Long-term observation of PET, if 

practical automated measurement method is available in the future, may lead to rapid crash 

frequency estimation without the need to rely on a trend from a group of similar locations. 
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B.1 METHOD OVERVIEW 

We will illustrate step-by-step the procedure for collecting the PETs between two crossing traffic 

streams and estimating the frequency of right-angle collisions. The proposed method is simple in 

the sense that (a) only counts of PET are required and (b) the estimation of crash frequency is 

straightforward. The method estimates annual frequency of daytime right-angle crashes and is 

extended to enable estimation of the annual frequency of all right-angle collisions regardless of 

the time of day. 

The method procedure can be summarized in the following steps: 

• Data collection – collect the frequency of short PETs between crossing traffic flows at a 

conflict zone or at the entire intersection. 

• Crash frequency estimation – estimate the crash frequency using the equations provided. 

• Interpretation of results – interpret the results to determine if there is excessive risk of 

right-angle collisions at the studied location. 

In the data collection, PETs shorter than 6.5 seconds are counted during an 8-hour period. The 

hardware and software requirements for data collection are discussed in the next section. 

B.2 EQUIPMENT 

Hardware and software requirements are given at two different levels: (a) desirable and (b) 

minimum. To obtain the best results, the desirable requirement should be followed, particularly 

for complex intersections – heavy traffic volume and more than one through lane at intersection 

approaches. The minimum requirement is acceptable if one of the two following conditions is 

met: 

1. A safety estimation at a relatively simple intersection with single through lanes and light 

traffic volume, or 

2. A safety estimation of a single conflict zone. 

Desirable Equipment 

The following equipment is desirable: 
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• One computer with 512 MB RAM and Pentium 4 processor at least 

• Available harddrive storage space of about 100GB for 8-hour data (~12GB per hour)  

• A computer must be installed with a graphic card that can digitize videos at 30 fps. For 

example, Pinnacle DV 500 plus was used in this project. 

• Clear plastic tapes (affix the tape to a computer monitor and then use a marker to draw 

virtual conflict spots). 

• Video viewing software with capability of accessing the video frame-by-frame (e.g. 

Adobe Premiere) 

• Video camcorder installed at 30-40 feet height or above at a corner of an intersection or a 

corner of a conflict zone being studied 

• Camcorder installation platform. A pole nearby the intersection corner or a mobile traffic 

lab similar to what we used in this study is acceptable. 

• Jamar® traffic counters – for PET counts instead of vehicle counts 

Minimum Equipment 

The minimum specification requires no special hardware or software. The following tools are 

necessary in the data collection: 

• Stop watches 

• Chalk to mark the conflict spot on the pavement 

• Jamar® traffic counters – for PET counts instead of vehicle counts 

B.3 DATA COLLECTION PROCEDURE 

PET shorter than 6.5 seconds can be counted in two different ways depending on available 

equipment. If the desirable equipment is obtainable, PET can be counted post-processed from the 

recorded video clips in the office. This would require no more than one human observer for the 

entire intersection. The minimum equipment relies on on-site observation of PETs less than 6.5 

seconds and this would require at least 2 human observers for one intersection. Recommended 

period of observation is 8 hours during daytime with coverage of morning and afternoon peak 

periods for one hour each.  
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Counting Short PETs from Video Clips 

If the desirable specification is attainable, the post-processing of recorded videos to count PETs 

shorter than 6.5 seconds will require only one human observer. PET counts can be obtained 

accurately because an observer can always review a portion of video clips in question. The steps 

for the entire procedure can be summarized as follows: 

1. Set up the video camcorder such that the field of view covers the intersection region as 

much as possible. Always zoom-in to obtain the best coverage of conflict spots and leave 

out the unused portion of the intersection. 

2. Record traffic movements for at least 8 hours. Recommended periods are 7.00AM to 

10:00AM, 11:00AM to 2:00PM, and 3:00PM to 6:00PM. This will give 9 hours of 

recordings to ensure that at least 8-hour observation criterion is met. The 3-hour duration 

can be recorded in one S-VHS tape media. The suggested periods also cover morning and 

afternoon peak periods. 

3. Back to the office, recorded videos should be digitized at 30 fps for fast frame-by-frame 

access during video clip reviewing process. 

4. Open the digitized video clips in video viewing software such as Adobe Premiere. Then, 

affix a clear plastic tape at the intersection whereabouts on the computer screen. 

5. Play the video clips and observe the traffic movements. Focus on the areas where two 

traffic flows are crossing. Mark the virtual conflict spots on the screen and keep adjusting 

as necessary. Reviewer may pause the video to help locate exact paths of vehicles 

traversing a conflict spot. The virtual conflict spots on the screen should be similar to 

Figure B-4.  

6. A group of conflict spots belong to the same conflict zone if the conflicts are generated 

by the same pair of crossing traffic flows. Label all the conflict spots and their 

corresponding conflict zones. For example, from the Figure B-5, the crossing conflicts 

between EB through traffic (2 lanes) and SB through traffic (1 lane) create 2 conflict 

spots (SB1EB1 and SB1EB2) in one conflict zone (czSBEB). 

7. Count the number of PETs shorter than 6.5 seconds for each conflict spot. Video time 

stamp with frame reference in the Adobe Premiere can be used in the PET measurement. 

Jamar® counter may be applied to the counting task by assigning different conflict zones 

to different movement numbers. 
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8. Record the collected data, which are the number of PETs shorter than 6.5 seconds for 

each conflict zone. 

During the counting procedure, an observer may notice that sufficiently short PETs usually take 

place during the intergreen period, which is between the moment that the green light is 

terminating on one approach and the moment that the green light is beginning on another 

approach. Therefore, the portion of video clips outside these intergreen periods may be partially 

skipped by the reviewer. This can help shorten the post-processing time of the video materials. 

 
Figure B-4: Example of Conflict Spots at Site 97905 

In addition, the crash frequency can be estimated for individual conflict zones. The implication is 

that PET counts can be limited to individual conflict zones of safety concern. The counts of short 

PETs at specific conflict zones can be carried out much faster than the counts for the entire 

intersection. On-site PET counts may be a viable alternative if (a) an intersection is not too large 

and traffic volume is light or (b) no more than two conflict zones are being studied. The on-site 

observation is a simplified observation procedure which we will explain in the subsequent 

section. 
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Figure B-5: Labeling of Conflict Spots 

On-Site Observation 

The on-site observation is a simplified method which requires neither special hardware nor post-

processing efforts. This method requires one observer for each conflict zone observed. One 

observer may be able to handle PET counts for two conflict zones if traffic volume is light 

enough. This method is not recommended if there are more than four conflict spots to be 

observed. The data collection procedure can be summarized in the following steps: 

1. Mark the pavement for approximate position of conflict spots. This can be done quickly 

during light-traffic conditions but safety precautions must be carefully exercised in this 

step. An observer should put on a safety vest and traffic cones should be placed to alert 

the oncoming traffic. 
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2. Using a stop watch, measure the time between the moment that the last vehicle leaves a 

conflict spot (t2) and the moment that the first vehicle from a crossing flow enters a 

conflict spot (t3) – see PET illustration in Figure B-3. Stop watch with time lapse feature 

can be helpful for this task. Instead of using start/stop buttons, start/lapse buttons can be 

used to time the departure/entry events. If the last vehicle anticipated from the approach 

is actually not the last one, an observer can still time the next one using lapse feature 

instead. 

3. During the waiting period for the next intergreen, review the stop watch and determine if 

the measured PET is shorter than 6.5 seconds (t3-t2). 

4. Count only the PET value that is shorter than 6.5 seconds. Jamar® traffic counter can 

facilitate the counting task.  

5. Reset the stop watch and watch for the crossing traffic at the assigned conflict spots 

during the next intergreen period. 

6. Repeat the steps 1 to 5 until the PETs are counted for 8 hours. Example of recommended 

periods is 7.00AM to 9:30AM, 11:00AM to 2:00PM, and 3:30PM to 6:00PM. 

7. Record the collected data, which are the number of PETs shorter than 6.5 seconds for 

each conflict zone. 

Although the on-site observation is relatively simpler and consumes less time than the previous 

one, the disadvantages of the method should be noted as follows: 

• PET counts may not be as accurate as counting from video clips due to subjective 

judgment required in identifying the exact t2 and t3. 

• More human observers are required for the same task. One observer should be allocated 

to one conflict spot for best results and no more than two simultaneously. 

• The method is prone to error if applied to a large intersection with heavy traffic volume. 

B.4 ESTIMATION OF RIGHT-ANGLE CRASH FREQUENCY 

Based on the Poisson and negative binomial regression of PET-based models (see Section 5.5.2), 

the frequency of daytime right-angle collisions can be estimated by simply substituting the 8-hour 

counts of PET shorter than 6.5 seconds into the given equations. Two levels of PET-based models 

were calibrated – site and conflict zone. If the PET counts are aggregated from all conflict zones, 
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the site equation (B-1) should be applied. If the PET counts are disaggregated by conflict zones, 

the conflict zone equation (B-2) should be applied.  

In case where PET counts are available for all conflict zones, the summation will give the PET 

counts for the entire intersection. We checked the results using both equations and they were 

comparable for the same intersection. This implies that if PET counts are disaggregated by 

conflict zones, either site or conflict zone can be applied.  

From the regression results in Table 5-8, the annual frequency of daytime right-angle collisions 

can be estimated as 

 ( )0.25 exp 0.6894 0.0043 ,PETa f= ⋅ +  (B-1) 

where a  is the estimated annual frequency of daytime right-angle collisions at the intersection 

and PETf  is the 8-hour counts of PET shorter than 6.5 seconds for the entire intersection (all 

conflict zones). 

Similarly, from the regression results in Table 5-9, the annual frequency of daytime right-angle 

collisions for individual conflict zone can be estimated as 

 ( ),0.25 exp 0.3908 0.0117 ,cz PET cza f= ⋅ − +  (B-2) 

where cza  is the estimated annual frequency of daytime right-angle collisions for individual 

conflict zone and ,PET czf  is the 8-hour count of PET shorter than 6.5 seconds at individual 

conflict zone. 

Table B-1 to Table B-3 show examples of crash frequency estimation results for three selected 

intersections using equations (B-1) and (B-2). 

Example B-1 

PET count at intersection 87907 is equal to 68 (summing up the counts from all conflict zones). 

The expected annual daytime right-angle crash frequency can be estimated for this intersection 

using equation (B-1) as 
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( )0.25 exp 0.6894 0.0043 68 0.6684.a = × + × =  

This means that the expected number of daytime right-angle collisions is 0.6684 per year or 

approximately 2.7 crashes for 4-year period. 

Table B-1: Example of Estimation of Right-Angle Crash Frequency at Site 87907 

czNBEB 24 0.2239
czNBWB 1 0.1711
czSBEB 43 0.2796
czSBWB 0 0.1691

0.8437
(Sum of Conflict Zone Estimates)

0.6684
(Site Model Estimate)

Example of estimation at site 87907 (Historical annual daytime count
of right-angle collisions = 0.75 crashes)

8-hour counts of 
PET ≤ 6.5 sec 

Expected annual frequency of 
right-angle crashes (daytime)

All 68
 

 

Table B-2: Example of Estimation of Right-Angle Crash Frequency at Site 87909 

czNBEB 97 0.5256
czNBWB 103 0.5638
czSBEB 76 0.4112
czSBWB 81 0.4360

1.9367
(Sum of Conflict Zone Estimates)

2.3327
(Site Model Estimate)All 357

Example of estimation at site 87909 (Historical annual daytime count
of right-angle collisions = 1.75 crashes)

8-hour counts of 
PET ≤ 6.5 sec 

Expected annual frequency of 
right-angle crashes (daytime)

 

Example B-2 

PET count at the conflict zone “czNBWB” of the intersection 87909 is equal to 103. The 

expected annual daytime right-angle crash frequency for this conflict zone can be estimated using 

equation (B-2) as 

( )0.25 exp 0.3908 0.0117 103 0.5638.cza = × − + × =  
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This means that the expected number of daytime right-angle collisions at this conflict zone is 

0.5638 per year or approximately 2.25 crashes per 4 years. Similar calculation was applied to 

other conflict zones. Summation of all conflict zone estimates gives the annual daytime right-

angle crash frequency at this intersection, which is 1.94 per year or equivalently 7.76 per 4 years. 

Table B-3: Example of Estimation of Right-Angle Crash Frequency at Site 97901 

czNBEB 120 0.6878
czNBWB 64 0.3574
czSBEB 128 0.7552
czSBWB 101 0.5508

2.3513
(Sum of Conflict Zone Estimates)

2.9719
(Site Model Estimate)

Expected annual frequency of 
right-angle crashes (daytime)

All 413

Example of estimation at site 97901 (Historical annual daytime count
of right-angle collisions = 4.5 crashes)

8-hour counts of 
PET ≤ 6.5 sec 

 

Crash Frequency Estimate Regardless of Time of Day 

The estimated daytime annual crash frequency can be extended to include all conditions 

regardless of time of day.  We discussed earlier in Section 5.5.2.1 that the trends between PET 

counts and observed right-angle crash counts are similar for various conditions during crash 

occurrences – see Figure 5-2. The implication is that a short period of PET observation may be 

sufficiently representative for the entire period of crash counting. Crash counting period includes 

periods with conditions different from those in the PET observation period. From this 

observation, the annual crash frequency regardless of time of day can be approximated by 

multiplying the annual daytime crash frequency with the ratio of all observed right-angle crash 

counts to observed daytime right-angle crash counts. This leads to 

 
128ˆ ˆ ˆ1.803 ,
71all day dayc c c= =  (B-3) 

where ˆallc  is the estimated right-angle crash frequency regardless of time of day and ˆdayc  is the 

estimated right-angle crash frequency during daytime only.  
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Example B-3 

Let us consider the data from the intersection 97901. From Table B-3, the estimated annual 

daytime frequency of right-angle collisions at the intersection 97901 is 2.972 crashes or 11.888 

per 4 years. Therefore, using equation (B-3), the frequency of right-angle collisions for the entire 

year can be approximated as 

( )( )ˆ 1.803 2.972 5.359.allc = =  

Equivalently, the estimated annual frequency of right-angle collisions at the intersection 97901 is 

21.434 per 4 years. 

Estimation of Annual Left-Turn Right-Angle Crash Frequency 

Left-turn right-angle collisions as shown in Figure B-6 may be frequent at signalized intersections 

with a protected left-turn phase and heavy left-turn traffic volume. Due to a similarity of crash 

occurrence mechanism, the equations given earlier may be applied to the estimation of annual 

daytime frequency of left-turn right-angle collisions as well. However, the results should be used 

with cautions because the equations were not calibrated specifically for this case. The estimates 

are intended to give only approximate safety levels of this type of collision at studied conflict 

zones or intersections. 

 

 
Figure B-6: Illustration of a Left-Turn Right-Angle Collision  

To apply the given equations, PETs shorter than 6.5 seconds between left-turn and through 

vehicles must be counted for 8 hours instead of PETs between through vehicles. Then, 

substituting PET count into equation (B-1) gives an estimate of annual daytime crash frequency 
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of left-turn right-angle collisions at a studied intersection. Similarly, substituting PET count at 

individual conflict zone into equation (B-2) gives a conflict zone estimate of annual daytime 

crash frequency of left-turn right-angle collisions. 

The next section will provide a guideline to evaluate if the predicted right-angle crash frequency 

at a studied intersection or individual conflict zone is indicating a safety problem which may call 

for comprehensive safety evaluation and/or preventive countermeasures. 

B.5 INTERPRETATION OF RESULTS 

We established a guideline to help evaluate if the estimated right-angle collisions are of safety 

concern using empirical PET counts across all the observed conflict zones in this study. By 

substituting the counts of PETs shorter than 6.5 seconds from the 61 observed conflict zones into 

equation (B-2), empirical cumulative distribution curve for annual daytime right-angle crash 

frequency of individual conflict zones was established as shown in Figure B-7. 
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Figure B-7: Empirical Cumulative Distribution of Annual Daytime Right-Angle Crash 

Frequency of Individual Conflict Zones  
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The level of crash frequency estimates that define excessive risk of right-angle collisions depends 

on the criteria set by highway policy/decision makers.  

For example, a location can be considered as having excessive risk of right-angle collision if the 

right-angle crash frequency at that location is higher than 85% of all locations. This corresponds 

to the 85th percentile value in Figure B-7, which gives the reading of 0.3924 daytime crashes per 

year for individual conflict zone or 1.803(0.3924) = 0.7075 crashes per year regardless of time of 

day. Typically, there are four conflict zones in an intersection unless one or more of crossing 

roads is one-way. Therefore, the corresponding number for the entire intersection is equal to 

4(0.7075) = 2.830 right-angle crashes per year. 

Table B-4 summarizes the annual crash frequency estimates at 85th and 90th percentiles for 

individual conflict zone as well as an intersection.  

Table B-4: Annual Right-Angle Crash Frequency Estimates at 85th and 90th Percentiles 

85th 90th

Daytime only 0.3924 0.5256
All 0.7076 0.9477

Intersection Daytime only 1.5697 2.1026
(4 conflict zones) All 2.8302 3.7910

Percentile

Conflict zone

Conditions

 

Example B-4 

As a continuation from Example B-2, the estimated annual right-angle crash frequency for a 

conflict zone “czNBWB” at the intersection 87909 is 0.5638 for daytime condition. This value is 

greater than 85th and 90th percentiles in Table B-4, which are 0.3924 and 0.5256 per year 

respectively. Therefore, the risk of right-angle collisions at this conflict zone is higher than most 

locations and may warrant further safety evaluation. 

Example B-5 

As a continuation from Example B-3, the estimated annual right-angle crash frequency regardless 

of time of day at the intersection 97901 is 5.359 crashes. This value is greater than 85th and 90th 
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percentiles in Table B-4, which are 2.8302 and 3.7910 per year respectively. Therefore, there is 

an excessive risk of right-angle collisions at this intersection and comprehensive safety evaluation 

may be considered. 

 

 



 

 

284

APPENDIX C POST-ENCROACHMENT TIME 

 

Plots of PET variations over time and histograms of the negated PET values at the selected 18 

signalized intersections are shown in this appendix. 
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PET variation over time at site  87905
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Figure C-1: PET Variation over Time at Site 87905  
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Figure C-2: PET Variation over Time by Conflict Zones at Site 87905 
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PET variation over time at site  87906
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Figure C-3: PET Variation over Time at Site 87906 
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Figure C-4: PET Variation over Time by Conflict Zones at Site 87906 
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PET variation over time at site  87907

P
E

T 
(s

ec
)

7:00 8:00 9:00 10:00 11:00 12:00 1:00 2:00 3:00 4:00 5:00 6:00
May 22 2003

0
1

2
3

4
5

6
7

8

1

1

1

1

1
1

1 1

11

1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1
1

11

1

1

11

1

1

1

1

11

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1
1

11

1

1

1

1

1
1

 
Figure C-5: PET Variation over Time at Site 87907 
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Figure C-6: PET Variation over Time by Conflict Zones at Site 87907 
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PET variation over time at site  87909
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Figure C-7: PET Variation over Time at Site 87909 
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Figure C-8: PET Variation over Time by Conflict Zones at Site 87909 
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PET variation over time at site  87915
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Figure C-9: PET Variation over Time at Site 87915 
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Figure C-10: PET Variation over Time by Conflict Zones at Site 87915 
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PET variation over time at site  87923
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Figure C-11: PET Variation over Time at Site 87923 

 

PE
T 

(s
ec

)

7:00 9:00 11:00 1:00 3:00 5:00
May 27 2003

0
1

2
3

4
5

6
7

8

PET variation over time at site  87923 : czNBEB

1
1

1 1

1

1

1

1
1

1

0 0

0

0

0

0

0

PE
T 

(s
ec

)

7:00 9:00 11:00 1:00 3:00 5:00
May 27 2003

0
1

2
3

4
5

6
7

8

PET variation over time at site  87923 : czNBWB

1 1

1

1 1 1

1

1

1

1

1
1

1

11

1

1 1
1

1

1

1

1
1

1

1

1

0

0
0

0

0

PE
T 

(s
ec

)

7:00 9:00 11:00 1:00 3:00 5:00
May 27 2003

0
1

2
3

4
5

6
7

8

PET variation over time at site  87923 : czSBEB

1

1
1

1
1 1

1

11

1

1

0

0

0

PE
T 

(s
ec

)

7:00 9:00 11:00 1:00 3:00 5:00
May 27 2003

0
1

2
3

4
5

6
7

8

PET variation over time at site  87923 : czSBWB

1

0

0

0

0

0

0

 
Figure C-12: PET Variation over Time by Conflict Zones at Site 87923 
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PET variation over time at site  87930
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Figure C-13: PET Variation over Time at Site 87930 
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Figure C-14: PET Variation over Time by Conflict Zones at Site 87930 
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PET variation over time at site  87932

P
E

T 
(s

ec
)

7:00 8:00 9:00 10:00 11:00 12:00 1:00 2:00 3:00 4:00 5:00 6:00
Jul 14 2003

0
1

2
3

4
5

6
7

8

1

1

1

1

1 11

1

1
1

1

1

1

1
1

1

1

1

11
1

1

1 1

1
1

1

1

1

1

1

 
Figure C-15: PET Variation over Time at Site 87932 
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Figure C-16: PET Variation over Time by Conflict Zones at Site 87932 



 

 

293

 

PET variation over time at site  87933
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Figure C-17: PET Variation over Time at Site 87933 
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Figure C-18: PET Variation over Time by Conflict Zones at Site 87933 
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PET variation over time at site  97901
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Figure C-19: PET Variation over Time at Site 97901 
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Figure C-20: PET Variation over Time by Conflict Zones at Site 97901 
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Figure C-21: PET Variation over Time at Site 97903 
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Figure C-22: PET Variation over Time by Conflict Zones at Site 97903 
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Figure C-23: PET Variation over Time at Site 97905 
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Figure C-24: PET Variation over Time by Conflict Zones at Site 97905 
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PET variation over time at site  97911
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Figure C-25: PET Variation over Time at Site 97911 
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Figure C-26: PET Variation over Time by Conflict Zones at Site 97911 
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Figure C-27: PET Variation over Time at Site 97920 
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Figure C-28: PET Variation over Time by Conflict Zones at Site 97920 
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PET variation over time at site  97922
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Figure C-29: PET Variation over Time at Site 97922 
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Figure C-30: PET Variation over Time by Conflict Zones at Site 97922 
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PET variation over time at site  97940
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Figure C-31: PET Variation over Time at Site 97940 
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Figure C-32: PET Variation over Time by Conflict Zones at Site 97940 
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Figure C-33: Distributions of Negated PETs (1) 
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Figure C-34: Distributions of Negated PETs (2) 
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Figure C-35: Distributions of Negated PETs (3) 
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Figure C-36: Distributions of Negated PETs (4) 



 

 

303

APPENDIX D TRAFFIC VOLUME 

 

In this appendix, 15-minute traffic volume variations for total entering volumes and conflicting 

volumes are plotted for all the studied sites. A gradual increasing trend of traffic volume can 

observed for most locations. 
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Figure D-1: 15-minute Volume Variation over Time at Site 87905 
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Figure D-2: 15-minute Volume Variation over Time at Site 87906 
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Figure D-3: 15-minute Volume Variation over Time at Site 87907 
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Figure D-4: 15-minute Volume Variation over Time at Site 87909 
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Figure D-5: 15-minute Volume Variation over Time at Site 87915 
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Figure D-6: 15-minute Volume Variation over Time at Site 87923 
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Figure D-7: 15-minute Volume Variation over Time at Site 87930 
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Figure D-8: 15-minute Volume Variation over Time at Site 87932 
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Figure D-9: 15-minute Volume Variation over Time at Site 87933 
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Figure D-10: 15-minute Volume Variation over Time at Site 97901 
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Figure D-11: 15-minute Volume Variation over Time at Site 97903 
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Figure D-12: 15-minute Volume Variation over Time at Site 97905 
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Figure D-13: 15-minute Volume Variation over Time at Site 97911 
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Figure D-14: 15-minute Volume Variation over Time at Site 97920 
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Figure D-15: 15-minute Volume Variation over Time at Site 97922 
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Figure D-16: 15-minute Volume Variation over Time at Site 97940 
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APPENDIX E ESTIMATION RESULTS AND MODEL DIAGNOSTICS 

 

Model estimation results and related model diagnostics of the GEV models and the r largest order 

statistic models are documented in this appendix. All the computational procedure was 

implemented in S-Plus®. 
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Table E-1: Estimation Results of All PET Data Fitted to Homogeneous Models 

n nllh µ σ ξ se(µ) se(σ) se(ξ)
87905 68 31 15 23.489 -5.384 1.257 -0.444 0.375 0.300 0.262
87906 190 98 30 50.465 -4.844 1.362 -0.345 0.270 0.187 0.101
87907 95 54 30 41.517 -5.380 1.094 -0.498 0.217 0.166 0.116
87909 538 268 32 34.928 -4.058 0.619 -0.017 0.125 0.091 0.144
87915 250 116 31 44.764 -4.910 1.000 -0.191 0.194 0.127 0.075
87923 70 24 23 31.322 -5.755 0.867 -0.139 0.207 0.150 0.173
87930 90 38 25 38.753 -5.233 1.240 -0.422 0.271 0.197 0.124
87932 60 27 23 33.724 -5.867 1.152 -0.442 0.262 0.195 0.134
87933 180 104 31 49.918 -4.866 1.162 -0.181 0.227 0.152 0.088
97901 573 311 32 35.340 -4.025 0.667 -0.135 0.135 0.098 0.154
97903 550 327 32 51.957 -2.235 1.561 -0.711 0.300 0.273 0.149
97905 182 106 32 37.810 -4.407 0.892 -0.510 0.179 0.144 0.167
97911 113 69 26 39.524 -4.764 1.415 -0.701 0.298 0.253 0.136
97920 164 79 31 37.140 -4.838 0.897 -0.495 0.183 0.149 0.174
97922 60 26 25 34.389 -6.011 0.979 -0.336 0.225 0.169 0.183
97940 28 15 16 23.723 -6.012 1.043 -0.244 0.291 0.207 0.176

n nllh µ σ ξ se(µ) se(σ) se(ξ)
87905 68 31 27 35.288 -5.318 1.109 -0.355 0.318 0.149 0.199
87906 190 98 58 68.169 -4.685 1.098 -0.269 0.186 0.096 0.069
87907 95 54 54 59.259 -5.329 0.951 -0.431 0.172 0.085 0.085
87909 538 268 64 47.626 -3.981 0.738 -0.185 0.122 0.067 0.082
87915 250 116 61 54.008 -4.745 0.863 -0.161 0.143 0.078 0.061
87923 70 24 42 42.450 -5.929 0.798 -0.022 0.174 0.103 0.152
87930 90 38 44 59.628 -5.379 1.106 -0.316 0.224 0.116 0.110
87932 60 27 39 48.789 -5.902 0.978 -0.338 0.212 0.108 0.115
87933 180 104 62 74.706 -4.674 1.209 -0.237 0.201 0.104 0.061
97901 573 311 64 43.007 -3.931 0.690 -0.207 0.116 0.062 0.096
97903 550 327 64 81.998 -2.074 1.284 -0.600 0.233 0.115 0.126
97905 182 106 60 57.003 -4.407 0.875 -0.509 0.153 0.075 0.096
97911 113 69 44 57.452 -4.542 1.112 -0.614 0.222 0.112 0.096
97920 164 79 59 56.589 -4.728 0.896 -0.570 0.156 0.080 0.094
97922 60 26 39 40.148 -5.794 0.808 -0.307 0.196 0.082 0.127
97940 28 15 23 30.485 -6.120 0.849 -0.157 0.248 0.123 0.139

n nllh µ σ ξ se(µ) se(σ) se(ξ)
87905 68 31 36 38.253 -5.349 0.958 -0.278 0.267 0.101 0.138
87906 190 98 85 80.426 -4.664 1.069 -0.269 0.174 0.076 0.060
87907 95 54 71 62.381 -5.307 0.861 -0.396 0.162 0.058 0.067
87909 538 268 96 50.472 -3.898 0.776 -0.256 0.120 0.054 0.058
87915 250 116 89 67.051 -4.717 0.930 -0.212 0.146 0.066 0.046
87923 70 24 56 45.816 -6.001 0.780 -0.087 0.167 0.078 0.103
87930 90 38 58 67.583 -5.468 0.993 -0.257 0.214 0.085 0.096
87932 60 27 48 50.848 -6.008 0.820 -0.238 0.200 0.078 0.107
87933 180 104 88 89.059 -4.591 1.173 -0.250 0.188 0.081 0.049
97901 573 311 96 32.722 -3.940 0.655 -0.150 0.102 0.054 0.081
97903 550 327 96 96.924 -1.983 1.160 -0.529 0.204 0.083 0.111
97905 182 106 86 72.463 -4.420 0.888 -0.524 0.155 0.058 0.080
97911 113 69 57 63.555 -4.454 0.953 -0.552 0.205 0.070 0.082
97920 164 79 84 71.685 -4.697 0.887 -0.584 0.157 0.061 0.083
97922 60 26 49 43.389 -5.972 0.746 -0.230 0.210 0.067 0.117
97940 28 15 26 26.307 -6.278 0.660 -0.062 0.244 0.086 0.130
Notes:
(1) n = Number of extreme values used in the model estimation
(2) nllh = Negative log-likelihood value at model convergence

8-Hour 
Counts of 
PET ≤ 6

Site
8-Hour 

Counts of 
PET ≤ 8

8-Hour 
Counts of 
PET ≤ 6

Homogeneous, All PETs, r = 1

Homogeneous, All PETs, r = 3

Site
8-Hour 

Counts of 
PET ≤ 8

8-Hour 
Counts of 
PET ≤ 6

Homogeneous, All PETs, r = 2
Site

8-Hour 
Counts of 
PET ≤ 8

 



 

 

314

 

 

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

k=1

Probability Plot - Site 87905

-6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5

-7
-6

-5
-4

-3

k=1

Quantile Plot - Site 87905

0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

k=2

Probability Plot - Site 87905

-7.0 -6.5 -6.0 -5.5 -5.0

-7
-6

-5
-4

k=2

Quantile Plot - Site 87905

0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

k=3

Probability Plot - Site 87905

-7.0 -6.5 -6.0 -5.5

-7
.5

-6
.5

-5
.5

k=3

Quantile Plot - Site 87905

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

k=1

Probability Plot - Site 87906

-6 -5 -4 -3

-7
-5

-3

k=1

Quantile Plot - Site 87906

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

k=2

Probability Plot - Site 87906

-7 -6 -5 -4

-7
-6

-5
-4

k=2

Quantile Plot - Site 87906

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

k=3

Probability Plot - Site 87906

-7.0 -6.5 -6.0 -5.5 -5.0 -4.5

-7
-6

-5
-4

k=3

Quantile Plot - Site 87906

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

k=1

Probability Plot - Site 87907

-6.5 -6.0 -5.5 -5.0 -4.5 -4.0

-7
-6

-5
-4

k=1

Quantile Plot - Site 87907

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

k=2

Probability Plot - Site 87907

-7.0 -6.5 -6.0 -5.5 -5.0 -4.5

-7
.0

-5
.5

k=2

Quantile Plot - Site 87907

0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

k=3

Probability Plot - Site 87907

-7.5 -7.0 -6.5 -6.0 -5.5

-7
.0

-6
.0

k=3

Quantile Plot - Site 87907

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

k=1

Probability Plot - Site 87909

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0

-4
.5

-3
.0

k=1

Quantile Plot - Site 87909

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

k=2

Probability Plot - Site 87909

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0

-5
.5

-4
.5

-3
.5

k=2

Quantile Plot - Site 87909

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

k=3

Probability Plot - Site 87909

-5.5 -5.0 -4.5 -4.0

-6
.0

-4
.5

-3
.0

k=3

Quantile Plot - Site 87909

 
Figure E-1: Diagnostics of Order Statistics for r Selection (1) 
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Figure E-2: Diagnostics of Order Statistics for r Selection (2) 
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Figure E-3: Diagnostics of Order Statistics for r Selection (3) 
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Figure E-4: Diagnostics of Order Statistics for r Selection (4) 
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Table E-2: Results – Homogeneous Models Using All PET Data 

nllh µ σ ξ se(µ) se(σ) se(ξ)

87905 1 68 31 None 1 15 23.489 -5.384 1.257 -0.444 0.375 0.300 0.262
87906 6 190 98 None 2 58 68.169 -4.685 1.098 -0.269 0.186 0.096 0.069
87907 3 95 54 None 1 30 41.517 -5.380 1.094 -0.498 0.217 0.166 0.116
87909 7 538 268 None 2 64 47.626 -3.981 0.738 -0.185 0.122 0.067 0.082
87915 3 250 116 None 2 61 54.008 -4.745 0.863 -0.161 0.143 0.078 0.061
87923 2 70 24 None 1 23 31.322 -5.755 0.867 -0.139 0.207 0.150 0.173
87930 0 90 38 None 1 25 38.753 -5.233 1.240 -0.422 0.271 0.197 0.124
87932 2 60 27 None 1 23 33.724 -5.867 1.152 -0.442 0.262 0.195 0.134
87933 1 180 104 None 2 62 74.706 -4.674 1.209 -0.237 0.201 0.104 0.061
97901 18 573 311 None 3 96 32.722 -3.940 0.655 -0.150 0.102 0.054 0.081
97903 7 550 327 None 3 96 96.924 -1.983 1.160 -0.529 0.204 0.083 0.111
97905 7 182 106 None 2 60 57.003 -4.407 0.875 -0.509 0.153 0.075 0.096
97911 4 113 69 None 1 26 39.524 -4.764 1.415 -0.701 0.298 0.253 0.136
97920 1 164 79 None 1 31 37.140 -4.838 0.897 -0.495 0.183 0.149 0.174
97922 1 60 26 None 1 25 34.389 -6.011 0.979 -0.336 0.225 0.169 0.183
97940 7 28 15 None 1 16 23.723 -6.012 1.043 -0.244 0.291 0.207 0.176

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 -2.605 -2.581 -1.246 7.768 -3.549 -3.443 -3.302 -3.200 -2.556 -0.405 0.753 3.783 8.451
87906 -0.907 -0.814 -0.664 0.864 -1.932 -1.788 -1.603 -1.471 -0.802 0.146 0.449 0.928 1.406
87907 -3.199 -3.190 -3.128 0.311 -3.564 -3.511 -3.448 -3.401 -3.183 -2.859 -2.749 -2.566 -2.366
87909 -0.645 -0.497 -0.221 1.314 -1.876 -1.724 -1.522 -1.367 -0.497 0.910 1.371 2.221 3.143
87915 -0.497 -0.274 -0.055 1.240 -1.850 -1.649 -1.396 -1.220 -0.261 1.121 1.543 2.241 2.910
87923 -1.197 -0.903 1.853 12.866 -3.661 -3.441 -3.127 -2.865 -0.859 5.256 8.206 14.620 23.699
87930 -2.348 -2.325 -2.171 0.676 -3.017 -2.925 -2.811 -2.732 -2.312 -1.628 -1.387 -0.961 -0.477
87932 -3.302 -3.283 -3.134 0.635 -3.894 -3.812 -3.715 -3.642 -3.273 -2.648 -2.422 -2.004 -1.529
87933 -0.085 0.056 0.217 1.003 -1.312 -1.127 -0.903 -0.740 0.071 1.184 1.511 2.054 2.590
97901 -0.578 -0.388 -0.009 1.671 -2.035 -1.852 -1.611 -1.432 -0.383 1.395 2.021 3.093 4.259
97903 0.199 0.206 0.314 0.491 -0.325 -0.258 -0.174 -0.112 0.214 0.731 0.912 1.228 1.554
97905 -2.700 -2.694 -2.642 0.250 -3.001 -2.959 -2.906 -2.869 -2.683 -2.416 -2.330 -2.184 -2.028
97911 -2.748 -2.746 -2.710 0.148 -2.918 -2.890 -2.857 -2.834 -2.732 -2.597 -2.549 -2.457 -2.351
97920 -3.042 -3.035 -2.861 0.672 -3.458 -3.406 -3.341 -3.294 -3.029 -2.475 -2.249 -1.801 -1.237
97922 -3.212 -3.168 -2.433 4.309 -4.244 -4.134 -3.992 -3.882 -3.153 -1.302 -0.495 1.219 3.460
97940 -2.205 -2.072 -0.680 5.437 -3.903 -3.726 -3.479 -3.293 -2.029 1.364 2.922 6.262 10.771

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 1 0.000 11.690 61.019 0.000 0.000 0.000 0.000 0.000 0.006 5.085 54.166 149.068
87906 6 0.000 7.531 33.362 0.000 0.000 0.000 0.000 0.000 2.867 11.437 41.196 87.931
87907 3 0.000 0.001 0.069 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
87909 7 0.000 21.970 71.182 0.000 0.000 0.000 0.000 0.000 28.420 59.057 130.441 221.356
87915 3 0.104 16.701 47.241 0.000 0.000 0.000 0.000 0.099 27.057 48.747 94.086 151.416
87923 2 0.000 50.647 139.780 0.000 0.000 0.000 0.000 0.001 85.392 157.687 305.766 471.380
87930 0 0.000 0.296 5.269 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003
87932 2 0.000 0.033 0.970 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
87933 1 1.834 49.693 111.234 0.000 0.000 0.000 0.000 1.772 102.738 158.776 263.695 380.824
97901 18 0.014 29.861 89.583 0.000 0.000 0.000 0.000 0.014 45.858 84.529 174.291 279.868
97903 7 841.989 1466.354 1633.554 0.000 0.000 0.000 0.000 924.477 3287.937 3880.660 4740.791 5499.963
97905 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97911 4 0.000 0.001 0.188 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97920 1 0.000 0.196 4.545 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97922 1 0.000 3.885 28.835 0.000 0.000 0.000 0.000 0.000 0.000 0.092 7.196 35.430
97940 7 0.000 14.946 59.840 0.000 0.000 0.000 0.000 0.000 8.789 29.492 90.065 171.520

Mean SD

Filter r

%-quantile of 4-Year Return Level Estimates

8-Hour 
Counts of 
PET ≤ 6

Model Descriptions: all PET data fitted to the homogeneous r largest order statistic model

Maximum Likelihood Estimation Results4-Year Right-
Angle Crash 

Counts 
(Daytime)

Simulation-based  Inferences on 4-Year Return Level Estimates: Simulation Runs = 50000

n

Site
1-Year 

Return Level 
Estimate

4-Year 
Return 
Level 

Estimate

Site
8-Hour 

Counts of 
PET ≤ 8

Abbreviations: n = Number of extreme values used in the model estimation, nllh = Negative log-likelihood value at model convergence

Site

4-Year Right-
Angle Crash 

Counts 
(Daytime)

4-Yr Crash 
Frequency 
Estimate

Simulation-based  Inferences on 4-Year Crash Frequency Estimates: Simulation Runs = 50000

Mean SD
%-quantile of 4-Year Crash Frequency Estimates
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Table E-3: Results – Homogeneous Models Using Filtered PETs 

nllh µ σ ξ se(µ) se(σ) se(ξ)

87905 1 31 0.281 None 1 15 23.489 -5.384 1.257 -0.444 0.375 0.300 0.262
87906 6 98 0.642 None 2 58 68.169 -4.685 1.098 -0.269 0.186 0.096 0.069
87907 3 54 0.285 None 1 30 41.517 -5.380 1.094 -0.498 0.217 0.166 0.116
87909 7 268 0.303 None 2 64 47.626 -3.981 0.738 -0.185 0.122 0.067 0.082
87915 3 116 0.423 None 2 61 54.008 -4.745 0.863 -0.161 0.143 0.078 0.061
87923 2 24 0.725 None 1 23 31.322 -5.755 0.867 -0.139 0.207 0.150 0.173
87930 0 38 0.380 None 1 25 38.753 -5.233 1.240 -0.422 0.271 0.197 0.124
87932 2 27 0.216 None 1 23 33.724 -5.867 1.152 -0.442 0.262 0.195 0.134
87933 1 104 0.576 95%-quantile 2 62 74.706 -4.674 1.209 -0.237 0.201 0.104 0.061
97901 18 311 0.538 95%-quantile 3 96 32.722 -3.940 0.655 -0.150 0.102 0.054 0.081
97903 7 327 0.969 80%-quantile 3 96 96.924 -1.983 1.160 -0.529 0.204 0.083 0.111
97905 7 106 0.537 95%-quantile 2 60 57.003 -4.407 0.875 -0.509 0.153 0.075 0.096
97911 4 69 0.500 None 1 26 39.524 -4.764 1.415 -0.701 0.298 0.253 0.136
97920 1 79 0.509 None 1 31 37.140 -4.838 0.897 -0.495 0.183 0.149 0.174
97922 1 26 0.445 None 1 25 34.389 -6.011 0.979 -0.336 0.225 0.169 0.183
97940 7 15 0.649 None 1 16 23.723 -6.012 1.043 -0.244 0.291 0.207 0.176

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 -2.605 -2.581 -1.136 13.666 -3.558 -3.445 -3.305 -3.200 -2.551 -0.434 0.731 3.722 8.419
87906 -0.907 -0.814 -0.669 0.858 -1.939 -1.788 -1.608 -1.476 -0.808 0.148 0.433 0.906 1.379
87907 -3.199 -3.190 -3.125 0.311 -3.559 -3.506 -3.444 -3.399 -3.181 -2.856 -2.751 -2.556 -2.355
87909 -0.645 -0.497 -0.224 1.302 -1.892 -1.733 -1.528 -1.371 -0.500 0.930 1.402 2.238 3.115
87915 -0.497 -0.274 -0.056 1.237 -1.860 -1.659 -1.402 -1.220 -0.258 1.118 1.548 2.255 2.933
87923 -1.197 -0.903 1.939 12.388 -3.660 -3.444 -3.129 -2.872 -0.851 5.288 8.297 14.994 24.217
87930 -2.348 -2.325 -2.169 0.689 -3.014 -2.926 -2.814 -2.734 -2.314 -1.614 -1.382 -0.950 -0.476
87932 -3.302 -3.283 -3.129 0.638 -3.890 -3.807 -3.707 -3.638 -3.266 -2.636 -2.415 -1.997 -1.545
87933 0.009 0.166 0.347 1.128 -1.344 -1.146 -0.903 -0.721 0.171 1.431 1.807 2.430 3.030
97901 -1.064 -0.914 -0.683 1.152 -2.208 -2.053 -1.865 -1.718 -0.919 0.359 0.759 1.463 2.229
97903 0.231 0.327 0.577 1.230 -1.039 -0.882 -0.671 -0.518 0.333 1.669 2.100 2.845 3.626
97905 -2.773 -2.769 -2.732 0.184 -3.011 -2.976 -2.934 -2.904 -2.758 -2.563 -2.503 -2.400 -2.295
97911 -2.748 -2.746 -2.712 0.146 -2.921 -2.892 -2.858 -2.834 -2.733 -2.600 -2.554 -2.465 -2.356
97920 -3.042 -3.035 -2.858 0.676 -3.454 -3.402 -3.340 -3.294 -3.025 -2.468 -2.240 -1.804 -1.245
97922 -3.212 -3.168 -2.442 2.828 -4.245 -4.137 -3.995 -3.886 -3.157 -1.291 -0.450 1.325 3.864
97940 -2.205 -2.072 -0.688 5.459 -3.911 -3.730 -3.490 -3.298 -2.042 1.325 2.921 6.368 10.769

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 1 0.000 11.865 62.852 0.000 0.000 0.000 0.000 0.000 0.008 5.045 52.767 148.853
87906 6 0.000 7.513 33.950 0.000 0.000 0.000 0.000 0.000 3.121 11.750 40.209 85.685
87907 3 0.000 0.000 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
87909 7 0.000 21.458 69.074 0.000 0.000 0.000 0.000 0.000 28.671 58.424 127.400 213.971
87915 3 0.104 16.550 46.700 0.000 0.000 0.000 0.000 0.104 27.544 47.939 92.506 150.440
87923 2 0.000 50.188 138.426 0.000 0.000 0.000 0.000 0.000 83.259 157.217 306.090 462.923
87930 0 0.000 0.240 4.182 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
87932 2 0.000 0.059 2.652 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
87933 1 4.272 63.340 132.951 0.000 0.000 0.000 0.000 4.638 136.194 201.134 324.633 458.338
97901 18 0.000 7.307 31.324 0.000 0.000 0.000 0.000 0.000 4.580 12.649 39.676 80.931
97903 7 32.941 229.702 406.030 0.000 0.000 0.000 0.000 33.101 528.019 739.195 1092.225 1432.845
97905 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97911 4 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97920 1 0.000 0.181 5.421 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97922 1 0.000 3.968 29.099 0.000 0.000 0.000 0.000 0.000 0.000 0.087 8.003 37.088
97940 7 0.000 14.465 57.185 0.000 0.000 0.000 0.000 0.000 8.356 27.830 86.715 170.038

Abbreviations: n = Number of extremes used in the model estimation, nllh = Negative log-likelihood value at model convergence

Site

4-Year Right-
Angle Crash 

Counts 
(Daytime)

4-Yr Crash 
Frequency 
Estimate

Simulation-based  Inferences on 4-Year Crash Frequency Estimates: Simulation Runs = 50000

Mean SD
%-quantile of 4-Year Crash Frequency Estimates

Model Descriptions: Filtered PET data fitted to the homogeneous r largest order statistic models

Maximum Likelihood Estimation Results4-Year Right-
Angle Crash 

Counts 
(Daytime)

Simulation-based  Inferences on 4-Year Return Level Estimates: Simulation Runs = 50000

n

Site
1-Year Return 

Level 
Estimate

4-Year 
Return 
Level 

Estimate

Site
8-Hour 

Counts of 
PET ≤ 6

Mean SD

Filter r

%-quantile of 4-Year Return Level Estimates

CV(ETPET≤6)
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Figure E-5: Selected Diagnostics for Homogeneous Models Using All PET Data (1) 
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Figure E-6: Selected Diagnostics for Homogeneous Models Using All PET Data (2) 
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Figure E-7: Diagnostics for Sites with PETs Filtered – Homogeneous Models 
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Table E-4: Results – Non-Stationary Models Using “Vxth” 

nllh β0 β1 σ ξ se(β0) se(β1) se(σ) se(ξ)

87905 1 31 0.281 None 1 15 23.185 -4.056 -0.005 1.175 -0.369 1.663 0.006 0.324 0.364
87906 6 98 0.642 None 2 58 60.496 -7.420 0.029 0.955 -0.290 0.668 0.007 0.084 0.086
87907 3 54 0.285 None 1 30 40.181 -4.106 -0.012 1.167 -0.701 0.513 0.004 0.231 0.220
87909 7 268 0.303 None 2 64 44.293 -5.360 0.011 0.692 -0.184 0.523 0.004 0.063 0.091
87915 3 116 0.423 None 2 61 46.660 -7.025 0.032 0.747 -0.167 0.551 0.008 0.068 0.069
87930 0 38 0.380 None 1 25 37.150 -7.343 0.056 1.079 -0.278 1.068 0.028 0.163 0.112
87933 1 104 0.576 95%-quantile 2 62 58.349 -8.668 0.084 0.877 -0.156 0.552 0.012 0.084 0.084
97901 18 311 0.538 95%-quantile 3 96 15.025 -5.867 0.009 0.530 -0.092 0.339 0.002 0.048 0.099
97903 7 327 0.969 80%-quantile 3 96 76.084 -4.444 0.006 0.982 -0.334 0.888 0.005 0.069 0.101
97905 7 106 0.537 95%-quantile 2 60 60.818 -4.482 0.000 0.934 -0.551 0.824 0.004 0.081 0.094
97911 4 69 0.500 NA 1 26 NA NA NA NA NA NA NA NA NA
97920 1 79 0.509 None 1 31 37.113 -4.982 0.002 0.889 -0.480 0.666 0.011 0.148 0.179

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 -2.033 -1.943 7.686 68.411 -3.420 -3.221 -3.017 -2.863 -1.586 4.073 10.931 35.108 80.263
87906 -0.835 -0.692 -0.551 0.758 -1.701 -1.537 -1.379 -1.254 -0.665 0.150 0.347 0.823 1.491
87907 -3.164 -3.156 -3.057 0.274 -3.396 -3.357 -3.308 -3.268 -3.100 -2.887 -2.799 -2.620 -2.332
87909 -0.650 -0.471 -0.195 1.253 -1.670 -1.542 -1.380 -1.248 -0.494 0.934 1.425 2.089 2.756
87915 -0.709 -0.473 -0.248 1.088 -1.733 -1.603 -1.378 -1.215 -0.461 0.761 1.153 1.835 2.268
87930 -1.231 -1.076 -0.883 1.175 -2.583 -2.357 -2.087 -1.937 -1.101 0.199 0.514 1.186 1.918
87933 0.926 1.321 1.672 1.656 -0.211 -0.050 0.214 0.421 1.346 2.838 3.249 4.478 5.712
97901 -0.490 -0.188 0.577 2.599 -2.017 -1.807 -1.594 -1.366 -0.167 2.362 3.512 5.802 7.879
97903 -0.306 -0.214 0.065 0.886 -0.957 -0.863 -0.721 -0.629 -0.152 0.809 1.070 1.707 2.188
97905 -2.774 -2.769 -2.558 0.247 -2.934 -2.896 -2.828 -2.785 -2.596 -2.321 -2.228 -2.093 -1.987
97911 NA NA NA NA NA NA NA NA NA NA NA NA NA
97920 -2.977 -2.947 -2.623 0.650 -3.342 -3.269 -3.200 -3.144 -2.778 -2.158 -1.895 -1.360 -0.985

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 1 0.000 65.272 198.960 0.000 0.000 0.000 0.000 0.000 84.368 197.193 438.182 701.172
87906 6 0.000 4.959 23.803 0.000 0.000 0.000 0.000 0.000 2.539 7.333 24.310 53.203
87907 3 0.000 0.056 2.299 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
87909 7 0.003 21.195 70.247 0.000 0.000 0.000 0.000 0.005 26.349 55.268 123.004 208.597
87915 3 0.022 8.063 27.406 0.000 0.000 0.000 0.000 0.027 10.049 19.740 45.538 79.566
87930 0 0.000 8.109 36.386 0.000 0.000 0.000 0.000 0.000 3.563 12.526 43.739 91.244
87933 1 51.191 111.064 147.502 0.003 0.574 3.631 7.789 58.632 219.886 285.139 403.383 529.867
97901 18 0.388 37.055 99.897 0.000 0.000 0.000 0.000 0.456 62.297 108.223 213.081 337.238
97903 7 0.000 83.038 246.568 0.000 0.000 0.000 0.000 0.001 121.483 240.233 508.123 826.529
97905 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97911 4 NA NA NA NA NA NA NA NA NA NA NA NA
97920 1 0.000 0.375 6.769 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004

CV(ETPET≤6)
Maximum Likelihood Estimation Results

Notes: NA is the case where there is no optimal mle can be found at convergence

SD

Filter r

%-quantile of 4-Year Return Level Estimates

Abbreviations: n = Number of extreme values used in the model estimation, nllh = Negative log-likelihood value at model convergence

Site

4-Year Right-
Angle Crash 

Counts 
(Daytime)

Model Descriptions: Filtered PET data fitted to non-stationary r largest order statistic models, µ = β0 + β1Vxth

4-Year Right-
Angle Crash 

Counts 
(Daytime)

Simulation-based  Inferences on 4-Year Return Level Estimates: Simulation Runs = 1000

n

Site 1-Year Return 
Level Estimate

4-Year 
Return 
Level 

Estimate

Site
8-Hour 

Counts of 
PET ≤ 6

Mean

4-Yr Crash 
Frequency 
Estimate

Simulation-based  Inferences on 4-Year Crash Frequency Estimates: Simulation Runs = 30000

Mean SD
%-quantile of 4-Year Crash Frequency Estimates
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Table E-5: Results – Non-Stationary Models Using “fPET<4.5” 

nllh β0 β1 σ ξ se(β0) se(β1) se(σ) se(ξ)

87905 1 31 0.281 None 1 15 20.786 -5.835 0.523 0.992 -0.333 0.329 0.200 0.210 0.199
87906 6 98 0.642 None 2 58 54.072 -5.508 0.850 0.837 -0.289 0.181 0.141 0.075 0.086
87907 3 54 0.285 NA 1 30 NA NA NA NA NA NA NA NA NA
87909 7 268 0.303 None 2 64 30.097 -4.759 0.308 0.520 -0.049 0.117 0.039 0.055 0.122
87915 3 116 0.423 None 2 61 40.067 -5.222 0.586 0.673 -0.165 0.128 0.088 0.060 0.056
87930 0 38 0.380 NA 1 25 NA NA NA NA NA NA NA NA NA
87933 1 104 0.576 95%-quantile 2 62 56.457 -5.548 0.825 0.861 -0.322 0.169 0.126 0.075 0.089
97901 18 311 0.538 95%-quantile 3 96 4.844 -4.773 0.299 0.471 0.032 0.101 0.033 0.049 0.109
97903 7 327 0.969 80%-quantile 3 96 55.193 -4.570 0.335 0.794 -0.110 0.162 0.040 0.068 0.084
97905 7 106 0.537 95%-quantile 2 60 52.086 -5.341 0.923 0.798 -0.454 0.209 0.196 0.068 0.087
97911 4 69 0.500 None 1 26 33.030 -5.788 1.143 0.953 -0.456 0.289 0.243 0.154 0.130
97920 1 79 0.509 None 1 31 27.429 -5.242 0.542 0.614 -0.350 0.142 0.104 0.084 0.104

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 -0.603 -0.468 -0.009 1.912 -2.343 -2.054 -1.726 -1.472 -0.296 1.172 1.707 2.889 4.845
87906 0.317 0.471 0.581 0.577 -0.422 -0.283 -0.106 0.017 0.555 1.108 1.268 1.514 1.789
87907 NA NA NA NA NA NA NA NA NA NA NA NA NA
87909 0.300 0.751 2.458 5.528 -1.517 -1.343 -1.048 -0.795 0.774 5.360 7.153 11.916 15.713
87915 -0.229 0.058 0.151 0.628 -0.845 -0.725 -0.564 -0.452 0.081 0.728 0.926 1.239 1.549
87930 NA NA NA NA NA NA NA NA NA NA NA NA NA
87933 0.071 0.196 0.280 0.390 -0.428 -0.299 -0.185 -0.102 0.254 0.653 0.766 0.937 1.112
97901 1.345 2.248 4.440 7.539 -1.739 -1.348 -0.921 -0.491 2.147 8.826 11.573 17.889 23.981
97903 1.809 2.214 2.822 2.497 0.124 0.315 0.597 0.824 2.215 4.824 5.731 7.614 9.086
97905 -1.787 -1.765 -1.725 0.307 -2.292 -2.202 -2.096 -2.026 -1.740 -1.414 -1.336 -1.204 -1.074
97911 -0.386 -0.331 -0.266 0.590 -1.378 -1.203 -1.015 -0.878 -0.275 0.321 0.477 0.719 0.951
97920 -1.512 -1.438 -1.388 0.426 -2.154 -2.032 -1.892 -1.812 -1.408 -0.973 -0.863 -0.655 -0.525

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 1 0.000 32.623 94.918 0.000 0.000 0.000 0.000 0.000 55.071 93.164 183.819 293.777
87906 6 23.948 58.581 87.285 0.000 0.000 0.087 1.089 27.364 118.438 152.334 218.123 287.078
87907 3 NA NA NA NA NA NA NA NA NA NA NA NA
87909 7 9.602 90.762 188.225 0.000 0.000 0.000 0.000 9.577 191.071 280.929 461.408 654.942
87915 3 1.356 6.615 13.439 0.000 0.000 0.000 0.003 1.591 12.707 18.268 29.996 43.266
87930 0 NA NA NA NA NA NA NA NA NA NA NA NA
87933 1 7.075 26.219 46.187 0.000 0.000 0.000 0.056 9.878 50.048 67.961 107.692 152.203
97901 18 35.555 141.540 238.901 0.000 0.000 0.000 0.032 35.964 308.877 421.787 654.739 852.504
97903 7 386.951 560.530 534.540 3.922 14.740 44.111 80.840 404.764 1079.948 1295.943 1638.861 1981.178
97905 7 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97911 4 0.000 24.995 80.134 0.000 0.000 0.000 0.000 0.000 33.594 69.970 145.638 254.280
97920 1 0.000 0.016 0.444 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003

4-Yr Crash 
Frequency 
Estimate

Simulation-based  Inferences on 4-Year Crash Frequency Estimates: Simulation Runs = 10000

Mean SD
%-quantile of 4-Year Crash Frequency Estimates

Model Descriptions: Filtered PET data fitted to the non-stationary r largest order statistic models, µ = β0 + β1fPET<4.5

4-Year Right-
Angle Crash 

Counts 
(Daytime)

Simulation-based  Inferences on 4-Year Return Level Estimates: Simulation Runs = 2000

n

Site
1-Year Return 

Level 
Estimate

4-Year 
Return 
Level 

Estimate

Site
8-Hour 

Counts of 
PET ≤ 6

Mean

CV(ETPET≤6)
Maximum Likelihood Estimation Results

Notes: NA is the case where there is no optimal mle can be found at convergence

SD

Filter r

%-quantile of 4-Year Return Level Estimates

Abbreviations: n = Number of extremes used in the model estimation, nllh = Negative log-likelihood value at model convergence

Site

4-Year Right-
Angle Crash 

Counts 
(Daytime)
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Table E-6: Results – Non-Stationary Models Using “Vxth” and “fPET<4.5” 

nllh β0 β1 β2 σ ξ se(β0) se(β1) se(β2) se(σ) se(ξ)

87905 1 31 0.281 None 1 15.000 20.282 -4.435 -0.005 0.519 0.965 -0.345 1.431 0.005 0.209 0.217 0.229
87906 6 98 0.642 None 2 58.000 51.811 -6.709 0.014 0.685 0.802 -0.272 0.580 0.006 0.149 0.073 0.090
87907 3 54 0.285 None 1 30.000 29.406 -5.126 -0.004 1.017 0.881 -0.830 0.594 0.005 0.207 0.180 0.200
87909 7 268 0.303 None 2 64.000 29.868 -4.982 0.002 0.294 0.517 -0.041 0.346 0.003 0.044 0.055 0.126
87915 3 116 0.423 None 2 61.000 38.515 -6.149 0.014 0.468 0.650 -0.167 0.526 0.008 0.107 0.059 0.059
87930 0 38 0.380 None 1 25.000 27.855 -6.767 0.026 1.495 0.774 -0.360 1.175 0.032 0.330 0.145 0.225
87933 1 104 0.576 95%-quantile 2 62.000 49.594 -7.736 0.053 0.524 0.743 -0.230 0.538 0.013 0.118 0.069 0.086
97901 18 311 0.538 95%-quantile 3 96.000 4.143 -5.113 0.002 0.259 0.466 0.034 0.299 0.002 0.047 0.049 0.109
97903 7 327 0.969 80%-quantile 3 96.000 55.188 -4.518 0.000 0.335 0.794 -0.107 0.520 0.003 0.040 0.069 0.090
97905 7 106 0.537 95%-quantile 2 60.000 52.049 -5.564 0.001 0.931 0.799 -0.463 0.843 0.004 0.200 0.069 0.093
97911 4 69 0.500 None 1 26.000 31.968 -4.776 -0.006 1.307 1.013 -0.642 0.570 0.003 0.268 0.188 0.172
97920 1 79 0.509 None 1 31.000 26.991 -4.618 -0.011 0.587 0.634 -0.440 0.805 0.015 0.139 0.109 0.210

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 -0.621 -0.500 0.385 3.874 -2.046 -1.777 -1.485 -1.259 -0.221 1.207 1.828 3.566 6.980
87906 0.074 0.239 0.351 0.681 -0.772 -0.600 -0.408 -0.291 0.274 0.961 1.198 1.572 1.901
87907 -2.447 -2.443 -2.410 0.372 -3.113 -3.012 -2.889 -2.796 -2.423 -2.019 -1.929 -1.795 -1.672
87909 0.397 0.877 2.812 7.629 -1.525 -1.324 -1.027 -0.798 0.893 5.673 8.171 12.039 19.371
87915 -0.306 -0.031 0.055 0.616 -0.986 -0.819 -0.646 -0.527 -0.021 0.636 0.844 1.162 1.453
87930 -0.859 -0.772 -0.061 3.814 -1.531 -1.401 -1.270 -1.157 -0.621 0.331 0.948 2.691 5.024
87933 -0.257 -0.093 0.130 0.757 -0.919 -0.779 -0.638 -0.541 -0.006 0.786 1.091 1.532 2.072
97901 1.362 2.284 4.899 8.305 -1.607 -1.340 -0.878 -0.557 2.240 10.327 13.098 20.074 27.312
97903 1.863 2.279 3.036 2.742 0.121 0.350 0.666 0.902 2.291 5.207 6.269 8.099 10.240
97905 -1.788 -1.762 -1.621 0.328 -2.203 -2.097 -2.003 -1.940 -1.651 -1.300 -1.201 -1.043 -0.926
97911 -0.710 -0.694 -0.648 0.551 -1.702 -1.545 -1.350 -1.223 -0.652 -0.069 0.063 0.257 0.421
97920 -1.665 -1.624 -1.412 0.770 -2.270 -2.167 -2.029 -1.932 -1.526 -1.010 -0.817 -0.483 0.102

2.5% 5.0% 10.0% 15.0% 50.0% 85.0% 90.0% 95.0% 97.5%
87905 1 0.000 42.741 129.454 0.000 0.000 0.000 0.000 0.001 64.403 114.692 233.083 405.855
87906 6 6.457 27.990 50.040 0.000 0.000 0.000 0.000 7.919 58.435 80.501 122.606 169.185
87907 3 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
87909 7 11.909 105.248 212.143 0.000 0.000 0.000 0.000 13.156 222.170 330.568 529.597 751.881
87915 3 0.837 5.266 11.858 0.000 0.000 0.000 0.000 0.978 9.865 14.548 24.972 36.669
87930 0 0.000 10.327 53.219 0.000 0.000 0.000 0.000 0.000 3.729 11.987 46.170 112.077
87933 1 0.376 13.394 31.181 0.000 0.000 0.000 0.000 0.934 26.436 40.065 68.561 99.819
97901 18 35.470 137.917 237.838 0.000 0.000 0.000 0.054 35.749 303.820 409.583 621.523 832.699
97903 7 401.621 593.618 587.115 3.002 13.697 43.231 77.810 418.618 1160.041 1386.899 1779.118 2138.191
97905 7 0.000 0.002 0.131 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97911 4 0.000 20.587 97.380 0.000 0.000 0.000 0.000 0.000 0.000 8.721 107.848 282.629
97920 1 0.000 0.899 12.239 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.095 1.847

Notes: NA is the case where there is no optimal mle can be found at convergence

SD

Filter r

%-quantile of 4-Year Return Level Estimates

Abbreviations: n = Number of extreme values used in the model estimation, nllh = Negative log-likelihood value at model convergence

Site

4-Year Right-
Angle Crash 

Counts 
(Daytime)

Maximum Likelihood Estimation Results

4-Yr Crash 
Frequency 
Estimate

Model Descriptions: Filtered PET data fitted to non-stationary r largest order statistic models, µ = β0 + β1Vxth + β2fPET<4.5

4-Year Right-
Angle Crash 

Counts 
(Daytime)

Simulation-based  Inferences on 4-Year Return Level Estimates: Simulation Runs = 3000

n

Site
1-Year 

Return Level 
Estimate

4-Year 
Return 
Level 

Estimate

Site
8-Hour 

Counts of 
PET ≤ 6

Mean

CV(ETPET≤6)

Simulation-based  Inferences on 4-Year Crash Frequency Estimates: Simulation Runs = 25000

Mean SD
%-quantile of 4-Year Crash Frequency Estimates

 



 

 

326

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

k=1

Probability Plot - Site 87905

-1 0 1 2

-1
0

1
2

3

k=1

Quantile Plot - Site 87905

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87906

-1 0 1 2 3

-1
0

1
2

3
4

k=1

Quantile Plot - Site 87906

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

k=2

Probability Plot - Site 87906

-1.5 -1.0 -0.5 0.0 0.5 1.0

-2
.0

-1
.0

0.
0

0.
5

k=2

Quantile Plot - Site 87906

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87907

-1 0 1 2 3

-1
0

1
2

3
4

k=1

Quantile Plot - Site 87907

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87909

-1 0 1 2 3

-1
0

1
2

3
4

k=1

Quantile Plot - Site 87909

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=2

Probability Plot - Site 87909

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
0

1

k=2

Quantile Plot - Site 87909

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87915

-1 0 1 2 3

-2
0

2
4

k=1

Quantile Plot - Site 87915

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

k=2

Probability Plot - Site 87915

-1.5 -1.0 -0.5 0.0 0.5 1.0

-2
-1

0
1

k=2

Quantile Plot - Site 87915

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87923

-1 0 1 2 3

-1
0

1
2

3

k=1

Quantile Plot - Site 87923

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87930

-1 0 1 2 3

-1
0

1
2

3
4

5

k=1

Quantile Plot - Site 87930

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87933

-1 0 1 2 3

-1
0

1
2

3
4

5

k=1

Quantile Plot - Site 87933

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=2

Probability Plot - Site 87933

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
0

1

k=2

Quantile Plot - Site 87933
 

Figure E-8: Diagnostics – Non-Stationary Models Using “Vxth” (1) 
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Figure E-9: Diagnostics – Non-Stationary Models Using “Vxth” (2) 

 



 

 

328

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87905

-1 0 1 2

-1
0

1
2

3
4

k=1

Quantile Plot - Site 87905

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87906

-1 0 1 2 3

-1
0

1
2

3
4

k=1

Quantile Plot - Site 87906

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

k=2

Probability Plot - Site 87906

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
.5

-0
.5

0.
5

k=2

Quantile Plot - Site 87906

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87907

-1 0 1 2 3

-1
0

1
2

3
4

5

k=1

Quantile Plot - Site 87907

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87909

-1 0 1 2 3

-1
0

1
2

3
4

k=1

Quantile Plot - Site 87909

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

k=2

Probability Plot - Site 87909

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
.5

-0
.5

0.
5

1.
0

k=2

Quantile Plot - Site 87909

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87915

-1 0 1 2 3

-2
0

2
4

6

k=1

Quantile Plot - Site 87915

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8

k=2

Probability Plot - Site 87915

-1.5 -1.0 -0.5 0.0 0.5 1.0

-2
.0

-1
.0

0.
0

k=2

Quantile Plot - Site 87915

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87930

-1 0 1 2 3

-1
0

1
2

3
4

k=1

Quantile Plot - Site 87930

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

k=1

Probability Plot - Site 87933

-1 0 1 2 3

-1
0

1
2

3
4

5

k=1

Quantile Plot - Site 87933

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

k=2

Probability Plot - Site 87933

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
.5

-0
.5

0.
5

1.
0

k=2

Quantile Plot - Site 87933

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

k=1

Probability Plot - Site 97901

-1 0 1 2 3

-1
0

1
2

3

k=1

Quantile Plot - Site 97901
 

Figure E-10: Diagnostics – Non-Stationary Models Using “Vxth” and “fPET<4.5” (1) 
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Figure E-11: Diagnostics – Non-Stationary Models Using “Vxth” and “fPET<4.5” (2) 
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APPENDIX F VALIDATION PLOTS 

 

Sequences of validation plots showing return level estimates versus observed crash counts, crash 

frequency estimates versus observed crash counts, and crash frequency estimates versus return 

level estimates are given in this appendix. The plots are shown for several model settings that 

were considered in the model development process. 

 



 

 

331

 

Estimated 1-Year Return Level

D
ay

tim
e 

R
ig

ht
-A

ng
le

 C
ra

sh
es

-3 -2 -1 0

0
5

10
15

Estimated 4-Year Return Level

D
ay

tim
e 

R
ig

ht
-A

ng
le

 C
ra

sh
es

-3 -2 -1 0

0
5

10
15

Sqrt(Estimated 4-Year Crash Frequency)

D
ay

tim
e 

R
ig

ht
-A

ng
le

 C
ra

sh
es

0 5 10 15 20 25 30

0
5

10
15

Estimated 4-Year Return Level

S
qr

t(E
st

im
at

ed
 4

-Y
ea

r C
ra

sh
 F

re
qu

en
cy

)
-3 -2 -1 0

0
5

10
15

20
25

30

 
Figure F-1: Validation Plots – Homogeneous Models Using All PETs 
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Figure F-2: Validation Plots – Homogeneous Models Using Filtered PETs 
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Figure F-3: Validation Plots – Non-Stationary Models Using “Vxth” 
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Figure F-4: Validation Plots of 12 Sites – Non-Stationary Models Using “Vxth” 



 

 

333

 

Estimated 1-Year Return Level

D
ay

tim
e 

R
ig

ht
-A

ng
le

 C
ra

sh
es

-2 -1 0 1

0
5

10
15

Estimated 4-Year Return Level

D
ay

tim
e 

R
ig

ht
-A

ng
le

 C
ra

sh
es

-2 -1 0 1 2

0
5

10
15

Sqrt(Estimated 4-Year Crash Frequency)

D
ay

tim
e 

R
ig

ht
-A

ng
le

 C
ra

sh
es

0 5 10 15 20

0
5

10
15

Estimated 4-Year Return Level

Sq
rt(

Es
tim

at
ed

 4
-Y

ea
r C

ra
sh

 F
re

qu
en

cy
)

-2 -1 0 1 2
0

5
10

15
20

 
Figure F-5: Validation Plots of 12 Sites – Non-Stationary Models Using “fPET<4.5” 
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Figure F-6: Validation Plots of 12 Sites – Non-Stationary Models Using Both Covariates 
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APPENDIX G SIMULATION EXPERIMENT 

 

This appendix documents the results of simulation experiment for two selected sites – 87906 and 

97901. The examined settings are a block length, a choice or r value, and length of observation 

period. 
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Site 87906, RL Models: r=1 (GEV), 15-minute blocks
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Figure G-1: Estimated Crash Frequency at Site 87906 using r = 1 and 15-minute Blocks 
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Figure G-2: Estimated Return Level at Site 87906 using r = 1 and 15-minute Blocks 
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Site 87906, RL Models: r=1 (GEV), 1-hour blocks
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Figure G-3: Estimated Crash Frequency at Site 87906 using r = 1 and 1-hour Blocks 
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Figure G-4: Estimated Return Level at Site 87906 using r = 1 and 1-hour Blocks 
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Site 87906, RL Models: r=2, 15-minute blocks
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Figure G-5: Estimated Crash Frequency at Site 87906 using r = 2 and 15-minute Blocks 
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Figure G-6: Estimated Return Level at Site 87906 using r = 2 and 15-minute Blocks 
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Site 97901, RL Models: r=1 (GEV), 15-minute blocks
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Figure G-7: Estimated Crash Frequency at Site 97901 using r = 1 and 15-minute Blocks 
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Figure G-8: Estimated Return Level at Site 97901 using r = 1 and 15-minute Blocks 
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Site 97901, RL Models: r=1 (GEV), 1-hour blocks
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Figure G-9: Estimated Crash Frequency at Site 97901 using r = 1 and 1-hour Blocks 
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Figure G-10: Estimated Return Level at Site 97901 using r = 1 and 1-hour Blocks 
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Site 97901, RL Models: r=3, 15-minute blocks
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Figure G-11: Estimated Crash Frequency at Site 97901 using r = 3 and 15-minute Blocks 
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Figure G-12: Estimated Return Level at Site 97901 using r = 3 and 15-minute Blocks 
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APPENDIX H IMAGE PROCESSING SOFTWARE FOR CONFLICT DETECTION 

 

This appendix describes the development of image-based processing software for PET 

measurement. The developed software employs the optical flow calculation algorithm. The 

installation and usage instructions of the software are also provided in this appendix. 

We would like to acknowledge the effort of Zbigniew Bublinski, Zbigniew Mikrut, Piotr Pawlik, 

and Andrzej Adamski for their contribution in the development of this software. 
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H.1 INTRODUCTION 

The aim of the project is to build a software package capable of automated measurement of 

selected traffic characteristics at the monitored intersections. The system input consists of video 

files (*.avi), compressed with the “dvcodec” (Video for Windows) compressor. The digital video 

clips are recorded in the NTSC standard: 

• frame rate: 29.97/30 frames per second 

• resolution: 720x480 pixels 

• color depth: 24 bits (RGB) 

The software should be able to process images, recorded as *.avi video clips, detect passing 

vehicles, and record their arrival directions and times of their presence in predefined crossroad 

areas, called conflict spots.  Results from the analysis should be written to a text file in order to 

allow further statistical analysis.  

The main challenges that still remained unsolved include: 

• occasional blending of the analyzed objects (vehicles) in the background, 

• variable weather and lighting conditions,  

• occlusion of objects by other objects, related to the perspective projection, which should 

be considered both in the context of mutual occlusion of the analyzed vehicles and the 

occlusion of vehicles by other fixed objects, visible in the scene (e.g. line supports, lamp-

posts, billboards, traffic lights, etc.), 

• vibrations of the camera recording the video clips, 

• transient changes of the video signal level caused by automated camera accommodation 

to the actual average lighting level of the image.  

Some of the above mentioned problems have been solved in a satisfactory way. The applied 

method of preliminary image segmentation, based on the calculated optical flow (see page 346), 

allows detection of moving objects blended with the background and it makes the results 

insensitive to the presence of shadows cast by fixed objects in the scene. Image post-processing 

carried out after the segmentation (see page 348) reduces other negative impacts.  The problems 
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still left unsolved include shadows cast by vehicles, in some cases occlusion of vehicles by other 

vehicles, and vehicles stopped for a prolonged period.  

Programming Environment 

According to the specifications prepared by the School of Civil Engineering, Purdue University, 

the software was expected to run off-line under the Windows™ system. The authors assumed that 

a user would like to review the results of the main processing stage, i.e., the mutual coincidence 

of objects recognized as vehicles with predefined conflict spots. It was decided that the software 

package VirtualDub1 (Lee, 2003) would be used and appended by a set of filters. After reading in 

the video file and linking appropriate filters, the VirtualDub program works in a frame server 

mode to allow off-line continuous processing, pausing the video, reviewing frame-by-frame, 

skipping to another frame, and simultaneous displaying of both the original and processed video 

images.  

The filters executing the processing algorithms, described in the next chapter, were programmed 

using the Microsoft Visual C++ Studio 6.0 environment. This is the programming environment 

recommended by the author of VirtualDub (Lee, 2003). 

Processing Speed 

The advanced image processing algorithms are extremely time-consuming, and the segmentation 

technique applied in the project, based on the optical flow calculations, was not widely used until 

recently because of the huge computation effort required. Therefore, in order to complete the 

calculation in a reasonable time the authors took the following steps: 

• The resolution of the analyzed image was reduced twice: from 720x480 to 360x240 

pixels. 

• The color information has been skipped, i.e., the image with three RGB color 

components was transformed to grayscale image. 

                                                      

1 the software is available under the GNU General Public License. 



 

 

344

• Additionally, the action of some of the analysis algorithms was limited to the specific 

scene area (Region of Interest, ROI), which covers the central part of the crossroad 

together with the entrance and exit traffic lanes (see Figure H-1).  

Configuration Elements 

A program user can create up to three configuration files to adapt the intersection geometry and to 

locate conflict spots for detection purposes.  

Using a graphic application (e.g. Jasc Paint Shop Pro, see Section H.7), the user should properly 

mark the configuration elements, like the stop lines and conflict spots and should indicate (also by 

“painting”) the objects occluding the ROI. In such a way, two graphic bitmap files are created, 

the names of which must be inserted in the text configuration file. An exemplary placement of the 

elements required for vehicle detection is shown in Figure H-1, which was obtained as a screen-

dump of one of the VirtualDub windows. The borders of the Region of Interest are determined 

automatically by analysis of the locations of stop lines. Examples of creation of both types of 

configuration files can be found in Section H.7.  

 Region 
of 
interest 

STOP 
line 

Conflict spot 

 
Figure H-1: Conflict spots, STOP lines and Region of Interest on the Screen Capture of 

the Intersection 97901 (SR-26 @ 18th St) 
 

Every configuration element must be described in the text file in strict conformance with specific 

rules (see Section H.6). Additionally, the file should contain other information necessary for 
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correct program operation, including the recording start time (coded by the user from the first 

video frame), the names of graphic configuration files, and the name of the output text file 

(containing the results of the analysis). The file may also contain (as a comment) additional 

information required by the user for proper identification of video material. That information will 

be copied to the output text file.  

Running the Software 

A detailed program installation description and the user’s manual (with examples) can be found 

in Section H.5. The manual operation of the program comprises the following tasks: 

• starting the VirtualDub program 

• opening the digital video clip file (*.avi) 

• loading the filters executing the analysis algorithm 

• starting the processing 

During the program operation the source image and the graphic interpretation of the analysis 

results are concurrently displayed. The program creates two files: (a) an error file, in which all of 

the warnings and possible errors are logged and (b) a preliminary output file (LOG) with the 

detection area numbers and the corresponding entrance/exit times for all detected vehicles. After 

completing the analysis by the filters, the LOG file is re-ordered. The re-ordered file is processed 

by another program which calculates the values of interest and saves them into the final output 

file. 

H.2 METHODS AND ALGORITHMS  

The developed algorithm of image analysis calculates the so-called motion field (optical flow). 

The result of the calculations is an image containing translation information for each pixel in the 

time period of the predefined number of frames (two frames for the illustrated case). The method 

is sensitive even to the smallest motion, provided that the surrounded pixels do not form large and 

homogenous areas.  

The optical flow produces a binary image well-suited for segmentation. The segmentation is done 

only inside ROI. Small objects are eliminated. During the processing, the current colors are 
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replaced by the colors of the objects obtained in the previous processing step.  Correction 

algorithms that merge and divide objects are also executed.   

The next step is inspection of the STOP lines and conflict spots: the occupancy times are recorded 

for every object detected. If certain conditions are fulfilled, the record, including information for 

the detected object, is saved into the output file.  

After completing the video processing, the results are analyzed by a separate program (see 

Section H.5). The target situation that qualifies for recording is the consecutive passage through 

the conflict spot of two vehicles traveling in perpendicular directions within a predefined time 

interval. The user can manually check the files produced by VirtualDub with Excel or other 

spreadsheet applications.  

The algorithm described above will be discussed in the following series of sections. 

Optical Flow 

Optical flow (also called optic flow, visual flow, image velocity) is a vector field. This field 

contains information required for transforming one video image into a second video image by 

executing a transformation, consisting of translation of the first image areas according to the 

vectors determined previously (Horn and Schunck, 1993). The basic conditions required for 

application of optical flow to video segmentation are (Beauchemin and Barron, 1995):  

• uniform lighting - required for the assumption that the object location with respect to the 

light source does not affect its actual look - the lighting of the object surface does not 

change, 

• ideal light diffusion from the object surface - required for the assumption that the 

object location with respect to the light sensor and light source also does not affect the 

object’s actual look - the image of the object is the same in various projection planes,  

• projection 3D -> 2D is parallel - it does not introduce the perspective effects. 

For the case of a real scene analysis, the fulfillment of all these conditions is highly improbable.  

However, it is assumed that the conditions may be fulfilled locally for a three-dimensional scene, 

and what follows may be also fulfilled locally in the image plane.  
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The condition of constant brightness of the considered pixel can be written as the following 

formula: 

 
( , ) 0dI x t
dt

=
r

 (H-1) 

where ),( txI ρ
 is the function of image intensity in the point xρ and at the time t.  

The assumption of constant point intensity follows directly from the definition of the optical flow: 

 ( , ) ( , )I x t I x x t tδ δ= + +
r r r

 (H-2) 

where xδ r
 is a translation of a given image point in the time interval tδ . After appropriate 

transformations the basic flow equation can be obtained in the form: 

 0tI v I∇ ⋅ + =
r

 (H-3) 

in which ( , )xv u v
t

δ
δ

= =
rr

 denotes the optical speed, tI  is the first order derivative of the 

intensity function ),( txI ρ
, and ),( yx III =∇  is the space gradient of intensity. 

Taking into account the works (Barron et al., 1994; Liu et al., 1998; Galvin et al., 1998), in which 

their authors have carried out comparative tests of a wide spectrum of methods dedicated to 

calculations of optical flow and taking into account the application’s requirements, it was decided 

that in the first stage the utility of two first-order gradient methods should be tested: local Lucas-

Kanade method (Lucas and Kanade, 1981) and global Horn-Schunck method (Horn and Schunck, 

1981; Horn and Schunck, 1993). These two methods have been compared in the paper (Mikrut 

and Palczynski, 2003). After analysis of the results, it was decided that the Horn-Schunck method 

would be applied in the described algorithm and that the time-space derivatives would be 

approximated by the respective first order finite differences.  

In the Horn-Schunck method, the basic condition (H-1) has been appended by an extra 

assumption that neighboring points, belonging to one moving object, exhibit rather close speed 

values and the motion field changes smoothly in the whole image area. Field discontinuities are 

observed only in areas where different objects overlap. The measure of smoothness of the optical 
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flow field is provided by Laplacian values for both of its spatial components, and the authors of 

the paper (Horn and Schunck, 1981) propose the following approximation: 

 

2 2
2

2 2

2 2
2

2 2

u uu u u
x y
v vv v v

x y

∂ ∂
∇ = + ≈ −

∂ ∂

∂ ∂
∇ = + ≈ −

∂ ∂

 (H-4) 

where vu i are values averaged over the point’s neighborhood.  

Finally the functional that should be minimized takes the form: 

 ( ) ( ) ( ){ }2 222 2 2 2
t

D

I I u dxdyϑ ν α ν⎡ ⎤= ∇ ⋅ + + ∇ + ∇⎢ ⎥⎣ ⎦∫∫
r

 (H-5) 

where α  is a weight coefficient in condition (H-4) and D is the image area.  

Applying the rules of variational calculus Horn and Schunck obtained an expression minimizing 

the value of functional (H-5) thus determining the values of optical speed ),( vu .  

Due to the size of the resulting system of equations, Horn and Schunck suggest the application of 

the iterative Gauss-Seidel method for its solution. Therefore, the accuracy of the optical flow field 

calculation depends on the number of completed iterations.  

In the paper (Mikrut and Palczynski, 2003), the authors assessed the effect of algorithm 

parameters on the obtained results.  It was found that the algorithm provides acceptable results for 

α = 33 after nine iterations. The binarization criterion was taken as the condition of the absolute 

value of the optical flow exceeding a fixed value of 0.2.  The values listed above were used in the 

videodetector algorithm. 

Segmentation Process 

The segmentation of the binary image, obtained from binarization of the optical flow, was carried 

out by the classical “flood-fill” method, vastly described in literature – see Pratt (1988) for an 

example. The objects with surface area less than 100 pixels were regarded as noise and removed.  
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A further stage of the algorithm is aimed at the identification of vehicles in consecutive frames of 

the video clip. At that stage the vehicles are represented as labeled objects. Unfortunately, such a 

representation does not take into account the following problems: 

• merging of representations of two or more vehicles into one object, 

• discontinuities of vehicle representation (division into two or more objects), 

• occlusion of vehicles by other vehicles or the fixed elements in the scene. 

Therefore, an additional (virtual) vehicle representation was introduced: a record containing, first 

of all, a unique object identifier and other fields describing the vehicle (surface area, envelope 

rectangle) or its motion (e.g. the recent positions of its center of gravity). 

The vehicle identification consists of the correct attribution of objects in the scene to the virtual 

vehicle representation. The attribution is carried out by analysis of two consecutive video frames 

and the list of records.  

It is assumed that every object in the first video frame represents exactly one vehicle.  The basic 

parameters of the vehicle representation are calculated, i.e., its area and the rectangle 

circumscribed about the object (envelope rectangle). Because occasionally one vehicle can be 

represented by several objects, it seems reasonable to merge the description of all such objects 

into one record, which is done by appending small objects to the considerably bigger ones if their 

respective envelope rectangles overlap.  At that moment the first unique identifiers are assigned 

to the records, describing individual vehicles. In further stages the segmented image will be re-

indexed, with identifiers that should be unique and cannot coincide with the segmentation indices, 

so the first identifier therefore should be greater than the highest possible index. It seems that the 

value of 150 (used in the present algorithm implementation) should be sufficient, which is several 

times higher than the usual number of objects detected in the scene.  

After the attribution of identifiers, other consecutive parameters describing the vehicles (e.g. 

gravity center) are determined and the above mentioned re-indexing is carried out, ending the first 

algorithm step.  

The second image frame (and the following ones) is analyzed with respect to the information 

obtained in the previous algorithm step. The beginning of the analysis is identical with the 

beginning of the first step: an auxiliary list of records is created, under the assumption that one 
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record refers to exactly one vehicle. The records are filled with information regarding the objects 

and then the main part of the analysis takes place, namely, the synchronization of the auxiliary list 

with the list obtained in the previous step (further on called the main list). The synchronization 

comprises the assignment of records from the main list to records of the auxiliary list, such that 

both records describe the same vehicle (in two consecutive video frames). During the 

synchronization procedure the possibility of the following cases occurring should be taken into 

account (Figure H-2): 

• one record of the auxiliary list refers to one record of the main list 

• two or more records of the auxiliary list refer to one record of the main list 

• one record of the auxiliary list refers to two or more records of the main list 

• many records of the auxiliary list refer to many records in the main list 

 

a) b) c) d) 
 

Figure H-2: Possible Relations between the Main and Auxiliary List 

The term “record reference” should be understood as the object property of sharing a common 

area in two consecutive frames. 

The first case is the simplest. The record in the auxiliary list is assigned a unique identifier, 

copied from the respective record of the main list, i.e., the vehicle is represented by exactly one 

object in the scene. 

In the second case, division of one object into several objects occurs – see Figure H-2(b). All of 

the records in the auxiliary list are assigned an identifier taken from the respective record of the 

main list.  This picture describes a situation when, after segmentation, one vehicle is represented 

by several objects. However, occasionally a new vehicle shows up in the location occupied by 

another vehicle in the previous frame. Therefore, in the final stage ( post-processing of the main 

list,described below), an additional analysis takes place, i.e., analysis of the locations of gravity 
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centers for objects tagged by one identifier and in the case when some predefined limit is 

exceeded the abnormally “distant” object is assigned a new identifier.  

The third case denotes unintended merging of representations of several vehicles into one object. 

In order to retain control over the motion of every vehicle, an additional segmentation of the 

object takes place, by copying the overlapping part of individual vehicles and execution of a 

morphological operation called “dilation” on the common area.  The “dilation” operation exhibits 

directional features, where each sub-object grows in the direction of its present motion, defined 

by the translation vector of the gravity center location. In the actual algorithm version the 

“dilation” operation is performed in three directions. The direction closest to the vehicle’s motion 

is determined, together with two neighboring directions, and only these directions are used in the 

“dilation” operation. If the vehicle has not been moving (the translation of the gravity center 

location is a zero vector) then a standard eight-directional “dilation” is executed. After 

completing the directional dilation, one more standard dilation operation is performed in order to 

append the remaining shared parts of the object.  At this point, a question emerges about how the 

dilation operation is taken into account in the record lists. In the auxiliary list there is only one 

respective record (according to the general rule: one record - one vehicle) and it is assigned the 

identifier of the object which shares the biggest common part with the represented object.  The 

remaining vehicles taking part in the dilation are represented by records from the main list and 

these records are assigned the identifier of the object to which they have been appended.  

The fourth case, many to many – see Figure H-2(d), rarely occurs. At the moment, it is not taken 

into the analysis because the resources required for its proper analysis considerably outweigh the 

frequency of its occurrence.  

After synchronization of the relationships between the records in both lists, the procedure looks 

for the unmatched records in the auxiliary list, i.e., the records which do not have their 

counterparts in the main list. They are treated as representations of new vehicles and they are 

assigned consecutive new identifiers.  

On the other hand, the records in the main list which do not have their counterparts in the 

auxiliary list represent the vehicles that have left the ROI or have stopped. They are properly 

labeled and after a predefined time period removed from the list.  
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The aim of the list synchronization stage is the assignment of proper, unique identifiers to the 

records from the auxiliary list. After that step the current frame is re-indexed using the assigned 

identifiers. As the last step, the main list is updated. The records taking part in the dilation 

operation (appended to other objects) and the records referring to vehicles that have stopped or 

left the ROI are left in the main list. The remaining records are replaced by records from the 

auxiliary list. 

After that stage, post-processing of the new main list is required.  First of all, several records with 

the same identifier may be found (resulting from object division into several smaller objects). In 

such a case, the distances between the objects represented by those records are checked for 

possible detection of new vehicles. The records describing too distant objects also are assigned 

new identifiers. The remaining records are merged into one record, which should describe all the 

remaining objects. Secondly, the changes in objects taking parts in the dilation operation should 

be taken into account. For both of the above mentioned reasons, the parameters are recalculated 

for all the objects in the scene, taking into account their new indices (identifiers).  

After completing that stage, the next frame is loaded for the analysis and the whole process is 

repeated.  

Occupancy of Conflict Spots 

The image file containing the conflict spots and the stop lines is used for detection of the presence 

of analyzed vehicles in these zones. A vehicle is present in the zone if at least one of the points 

belonging to the moving vehicles in the image area coincides with one of the points belonging to 

the conflict spots. Presence time is recorded and later used to identify the accurate entrance and 

exit times for the conflict zone. In the field condition, it was quite frequent that a single vehicle 

simultaneously occupied more than one conflict spot because of varying vehicle travel paths but 

static conflict spots. To address this situation, we assume that a conflict occurs if the vehicle 

occludes at least 1/3 of the conflict spot area. The condition has to be fulfilled only with respect 

to the conflict spots.  The stop lines do not require such a treatment because of their different 

shapes and roles in the process of analysis.  
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Output (LOG) File 

The fact of a vehicle presented in the conflict spot is recorded if, in the LOG file, at least one of 

the two conditions is fulfilled: 

1) the vehicle has crossed at least two stop lines, and at least one of the occupancy times 

(difference between the exit and entrance) is non-zero, or, 

2) the vehicle has crossed at least one stop line and at least one conflict spot and at least one 

of the occupancy times of the stop lines and at least one of the occupancy times of the 

conflict spots are non-zero. 

The information about each passage contains: 

• recorded time (frame number in the analyzed video), 

• vehicle number, 

and for each stop line and conflict zone with non-zero occupancy time: 

• spot number, 

• entry time, 

• exit time. 

The data for a passage are written in a simple line and separated with semicolons. 

Postprocessing of Output (LOG) File 

The data saved into the LOG file are further processed with the program TRAFFIC.EXE (see 

Section H.5). Important stages of the processing include: 

• consolidation of all of the information concerning the same vehicle, thereby, one record 

is obtained for each vehicle, 

• output data writing, whereby, a file is created containing data which are similar to the 

output (LOG) file, but the data concerning a given vehicle are written only once and the 

zones are ordered with respect to the entrance time to the zone. This allows a fast 

determination of the vehicle trajectory and enables a verification of the obtained results 

by comparison with the results of reviewing the video clip. The data are written to a file 
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with the filename specified in the text configuration file (CONF) by the SORT parameter 

(see Section H.5), 

• determination of the direction from which the vehicle has arrived, which is done by 

finding the zone for which the entrance time is the least. If the zone found is not a stop 

line but rather a conflict spot, then the direction determination is not possible and such 

data are rejected and are not included in further stages of the analysis, 

• determination of the direction of the vehicle leaving the ROI, which is done by finding 

the zone with the latest exit time. If the zone found is not a stop line but a conflict spot 

such a direction determination is not possible. However, such data are not rejected 

because there is always a chance that the missing information can be completed in further 

stages of the analysis, 

• identification of the motion trajectory, which makes use of the information contained in 

the configuration file, specifying the zone numbers and the order of their crossing (see 

Section H.6). A satisfactory matching of the actual vehicle trajectory to a model route 

specified in the configuration file enables a proper determination of the exit direction,  

• merging of vehicles, whereby an attempt takes place to merge neighboring and 

incomplete records.  The aim is to merge the record pairs from which the first contains 

information concerning the initial stage of the passage (the entrance into the crossroad 

(stop line), passages through the first conflict spots) and the next concerns the final stage 

of the passage (the last conflict spots and the stop line (exit from the crossroad)). The 

condition allowing the merge is the consistence of the order of zones crossed with the 

model route, determined from the information about the direction from which the vehicle 

has arrived. Additionally, in the merged records one shared zone (spot) can be found,  

• output data writing, whereby a file is created containing data similar to the data in the file 

created earlier (SORT), which contained reduced and sorted data but now the data 

concerning a vehicle are appended by information about its entrance and exit directions 

and the respective zones are ordered according to their entrance times. The file is 

appended with vehicle records, for which the vehicle trajectory is consistent with the 

routes contained in the CONF file (see Sections H.5 and H.6). This file is used only for 

testing purposes - there is no possibility to specify its filename in the configuration file, 

the data are always written to a file named TEST.TXT, 

• final calculations and report generation, during which the reduced, appended, and merged 

data are used for detection of conflict events and determination of their parameters, and 
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later for generation of the final report of the predefined form. The name of the created 

report file is specified by the REPORT parameter (see Sections H.5 and H.6), 

• additional information output, which occurs before the end of processing, contains 

additional information concerning the data analysis that is output to the screen. The 

information includes the number of records contained in the LOG file, the number of 

objects (vehicles) after the information reduction, the number of vehicles for which the 

determination of entrance and exit directions was not possible, the number of vehicles for 

which the motion trajectory matching was completed, and the number of successful 

merges of incomplete objects.  The last information output to the screen is the number of 

detected conflict events. 

H.3 RESULTS 

The results obtained from analysis of seven video clips (eight hours) are summarized in Table 

H-1 and Table H-2. All of the details can be found in GapData_res2.xls file (see Section H.8). 

The particular items are defined as follows: 

• actual conflicts: the number of conflicts detected by the human operator (eight seconds 

or less),  

• reported conflicts: the number of reported measurements from the post-processing of the 

VirtualDub filter event data file. All the reported values of 8.2 seconds or less were 

counted, 

• detected conflicts: the number of actual conflicts that can be detected by matching the 

occurrence times and conflict spots of the actual and reported conflicts, 

• false detections: the number of reported conflicts that could not be matched with the 

actual conflicts, 

• detection rate: the ratio of the number of detected conflicts to actual conflicts, 

• false detection rate: the ratio of the number of false detections to reported conflicts, 

• gap time (GT): the time between the moment when the first vehicle enters into the 

conflict spot and the moment when the second vehicle enters into the conflict spot (front 

bumper to front bumper),  

• GT mean error: mean of the differences between actual and detected GTs,  

• GT std error: the standard deviation of differences between the actual and detected GTs,  
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• post enchroachment time (PET): the time between the moment when the first vehicle 

leaves the conflict spot and the moment when the second vehicle enters into the conflict 

spot (rear bumper to front bumper), 

• PET mean error: mean value of the differences between the actual and detected PETs,  

• PET std error: the standard deviation of differences between the actual and detected 

PETs.  

In Table H-1, the detection performance is summarized. The false detections are defined as all the 

reported detections that cannot be matched with the actual ones. False detection rates appear to be 

excessive at certain intersections. After a manual check of false detections one-by-one, a number 

of false detections can be discounted since they are correctly reported but the actual values are 

greater than the threshold and therefore cannot be matched. The detection performance after a 

careful revision of false detections is given in Table H-2. 

Table H-1: Detection Performance 

Mean Std Error Mean Std Error
87907 10 11 8 3 80.00 27.27 0.048 0.903 -0.135 0.912
87923 19 45 18 27 94.74 60.00 -0.010 0.701 0.044 1.030
87933 30 39 29 10 96.67 25.64 -0.050 0.197 -0.188 0.187

97901_10 49 76 44 32 89.80 42.11 -0.026 0.278 -0.124 0.263
97901_16 92 88 83 5 90.22 5.68 -0.115 0.449 -0.174 0.642

97905 39 35 33 2 84.62 5.71 0.043 0.546 -0.158 0.405
97920 20 21 20 1 100.00 4.76 0.010 0.210 -0.056 0.238

Intersection
Detection Performance Measurement Errors (sec)

GT PETFalse Rate 
(%)

Detection 
Rate (%)FalseDetectedReported 

(≤ 8.2s) 
Actual (≤ 

8s)

 

Table H-2: Detection Performance after Manual Check of False Detections 

Mean Std Error Mean Std Error
87907 10 11 8 1 80.00 9.09 0.048 0.903 -0.135 0.912
87923 19 45 18 21 94.74 46.67 -0.010 0.701 0.044 1.030
87933 30 39 29 9 96.67 23.08 -0.050 0.197 -0.188 0.187

97901_10 49 76 44 20 89.80 26.32 -0.026 0.278 -0.124 0.263
97901_16 92 88 83 1 90.22 1.14 -0.115 0.449 -0.174 0.642

97905 39 35 33 1 84.62 2.86 0.043 0.546 -0.158 0.405
97920 20 21 20 0 100.00 0.00 0.010 0.210 -0.056 0.238

Notes:
1. False detections include the following scenarios:
   (a) A reported conflict spot is different from the ground truth
   (b) A vehicle path is covering two conflict spots and therefore two conflicts are reported
2. False detections are not counted if the actual value is > 8s but the difference between reported and actual values is < 0.5s

Intersection
Detection Performance Measurement Errors (sec)

Actual (≤ 
8s)

Reported 
(≤ 8.2s) Detected False(1,2) Detection 

Rate (%)
False Rate 

(%)
GT PET

At the moment, three sources of recoverable errors can be pointed out as follows:  

• camera vibrations, 
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• positioning (and areas) of the conflict spots, 

• occlusions caused by the poles. 

The camera vibrations are the main source of the high false detection rates at 87923 and 

97901_10. Another source of problems is double detections for one single PET event when the 

vehicle covers a portion of two conflict spots simultaneously. The vehicle traveling path can be 

slightly varied while the conflict spots are fixed in the field of view. This happened frequently at 

87923, 87933, and 97905. 

In the case of occlusion occurrence, the present version of the detection algorithm often fails 

when two (or more) vehicles are concurrently passing the occluded zone (pole). In order to avoid 

such situations the image obtained from the camera should be similar to intersection 97920 rather 

than intersection 87923. 

H.4 SUMMARY AND CONCLUSIONS 

The result of this project is a unique software package, offering both the identification of vehicles 

in motion and visualization of the process. The latter is possible due to the application of the 

VirtualDub program (Lee, 2003). The identification procedure is based on the calculations of 

optical flow (see page 346) and the algorithms of merging and division of labeled objects 

described in Section 2.2. Each object is assigned a unique number (color), which provides a good 

basis for developing a full tracking procedure (in further development stages). At the present 

stage of the project, the study includes the analysis of time periods when the detected objects 

overlap with the defined conflict spots and stop lines. The obtained information is used to verify 

vehicle routes and then generate output files with the analysis results (see pages 353-353). The 

adjustment of the program operation to the actual scene geometry is done by the user. The user 

must provide the configuration files: one text file and two bitmap graphic files, specifying the 

locations of conflict spots, stop lines, and scene elements obscuring the view (see Sections H.6 

and H.7). 

The developed software package, to a large degree, meets the requirements specified to the AGH 

UST team by the Purdue University group.  In comparison to the specified detection rate of 95% 

and false rate of 5%, the achieved values were about 90% and 11% respectively.  The main error 

sources were, attributed to the camera vibrations, insufficient precision of the specification of 
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conflict spots, and the imperfections that are still present in the algorithm. Numerical evaluation 

of error rates for individual video clips can be found in Table H-1 and Table H-2.  

The precision of evaluation of the GT and PET times should be also mentioned (see Table H-1). 

The maximum values of average errors do not exceed 0.2 sec for all of the video clips, the 

standard deviations do not exceed 1.03 sec in comparison to the specified values of 1.0 sec and 

3.0 sec respectively.  

In the current version of the “traffic.vdf” filter (v1.3), only partial time optimization has been 

completed by suitable selection of compiler options and some other factors. Some extra 

acceleration can be achieved by optimizing the optical flow calculation algorithm and the process 

of secondary segmentation (morphological operations). The processing times for individual video 

clips are listed in Table H-3. The analysis of video clips takes 4.6 to 5.6 times longer than their 

actual duration time on PC Pentium III / 800 MHz processor and 256 MB of RAM. It can be seen 

in Table H-3 that the processing time is sensitive to neither the traffic intensity nor the number of 

elements obscuring the view. It seems that the processing time is affected by the object size: the 

larger is the object (higher zoom factor), the longer is the processing time. When faster processor 

(Intel 2.4 GHz) is used, the processing time is shortened to the range between 1.67 and 1.79 (for 

VirtualDub working in batch mode – see Table H-3). 

Table H-3: Processing Times of Video Clips (in multiples of real-time duration) 

Intersection Pentium III 
800 MHz 

AMD 2.4 GHz 
normal (display)

Intel 2.4 GHz 
normal (display)

Batch 
mode Zoom Traffic 

intensity Occlusion

87907 4.59 2.59 2.0 1.76 small heavy + 
87923 5.15 - - 1.70 medium medium + 
87933 5.65 2.62 1.98 1.79 large medium - 

97901_10 5.17 - - 1.74 medium medium + 
97901_16 5.43 - - 1.67 medium medium + 

97905 5.49 - - 1.74 medium heavy - 
97920 5.32 2.63 1.94 1.74 medium medium ~ 

         

The main sources of errors should be considered for the improved version of the software. The 

software should neutralize camera vibrations, which is the source of false detections. The 

improvements in the configuration of conflict spots can be achieved by the program user. The 

further refinement of the image analysis algorithm may include: 
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• improvement of the object merging/division algorithm, 

• tracking of stopped vehicles within the intersection, 

• implementation of full-vehicle tracking with the calculation of motion trajectory, 

• object analysis methods other than the optical flow calculations may be incorporated, i.e., 

the subtraction of dynamically updated background from the current video frame; 

unfortunately, this implementation is likely to increase the processing time considerably. 

H.5 INSTRUCTIONS FOR SOFTWARE INSTALLATION AND USAGE 

The software has two components: 

• The filter for the VirtualDub (VD) application, which executes the processing algorithms 

described in Section H.2 (optical flow), performs visualization of the final segmentation 

and writes the file with the “raw” results (the second mode of the filter operation is the 

visualization of the video clip with overlaid detection areas, stop lines and ROI). 

• The program to post-process the data obtained from the VD filter, generate the list of 

vehicles, and then calculate the GT and PET for the detection areas.  

The inputs required for both components are read from the following configuration files: 

• A text file which contains (a) the information on the other files, (b) descriptions of 

conflict spots and STOP lines, and (c) other information such as the video clip identifier, 

the recording time, etc. (see Section H.6 for examples). 

• Two binary graphic files (*.bmp) which define the positions of conflict spots, stop lines, 

and the occluded areas (see Section H.7). 

Installation 

The first step consists of installation of the VirtualDub program and the “dvcodec” decompressor 

(Video for Windows)2. These two components provide a playback interface for video clips. 

                                                      

2 Both the VD archive (version 1.5.1) and a working codec version dvdemocodecv2.1.exe are provided in 
the software CD (see Appendix D). 
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Installation of the VD program comprises the archive decompression and the creation of the 

desktop shortcut if required.  The “traffic.vdf” filter should be copied to subdirectory “Plugins” in 

the VD installation directory.  The application for post-processing the results obtained from the 

VD program (traffic.exe) should be copied to the subdirectory, where the output files and text 

configuration files will be stored.  All the configuration files (both text and graphic files) for the 

video clip being processed should be copied to the video clip directory.  

Video Clip Analysis 

The present procedure describes a method for running the VirtualDub program with the required 

filters. It is assumed that the video clip and the corresponding configuration files are placed in the 

same directory.  The order of the described operations is essential – the video clip must be read 

before defining the required filters.  

The user may automate some of the operations using the VD program scripts or VD batch mode. 

In the list below, the basic “manual” method is described: 

• Start the VirtualDub program. 

• Read in the video clip to be analyzed. 

• Decrease by half the window for the source clip (ClickR the left window, choose “1/2 

size” option). 

• Select “Filters” from the “Video” menu: an empty window appears. 

• Click “Add”: a list of internal VD filters appears. 

• Choose “2:1” reduction, click OK. 

• Click “Add...” once more. 

• Find “Traffic analysis” filter3.  

• Select this filter and click OK. A configuration window will pop up (see Figure H-3). 

Type in the name of the text configuration file (“97901_conf.txt” for the example in the 

Figure H-3) and choose the appropriate options: (a) if the user does not check any fields, 

                                                      

3 If there is no such a filter load it manually (copy “traffic.vdf” to video clip directory): 
click “Load”: the contents of the video clip location directory is shown, 
choose “Traffic.vdf”: an additional filter entitled “traffic analysis” appears. 
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the software will start with the run-time visualization of the image processing on the right 

window, (b) if the user checks the “Turn off visualization of analysis” field, the run-time 

visualization will be turned off, which will slightly improve the processing time, or (c) if 

the user checks the “Only visualization of stops and spots” field, the video clip will not 

be analyzed and in the right window the source clip will be displayed with configuration 

elements overlaid (useful for manual review or manual measurement). 

• click OK in the configuration window and then OK in the filter selection window. 

• In the main window of the VD program, start the analysis (and/or visualization) with the 

control buttons (“output playback” or “key next” – step operation). The screen 

appearance during the analysis is shown in Figure H-5. 

 
Figure H-3: Configuration Window of the “Traffic.vdf” Filter 

Attention: the “traffic.vdf” filter generates a file containing the output data, with a filename 

consistent with the name given in the text configuration file.  If the VirtualDub program is 

stopped and then restarted, the error message will be displayed (see Figure H-4) because it 

attempts to create the file that already exists.  The user has to remove the file in person or 

comment out the specific line of code in the text configuration file (the line with the LOG name - 

see Section H.6) so that the program will not try to re-create the file. 
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Figure H-4: Dialogue Box of Error Message 

  

Left: source image, right: segmented objects (yellow and green ones) inside ROI (red). STOP lines and 
collision spots are drawn in violet and yellow respectively. 

 
Figure H-5: Image Analysis by VirtualDub and “Traffic.vdf” 

After completing the video clip analysis, we need to remove the excessive elements from the file 

and generate the conflict list in a format readable by a spreadsheet application (semicolon 

delimiter).  The program is executed from the command line by typing:   

traffic <conf> 

where <conf> is the name of the text configuration file. The “Traffic.exe” program reads from 

that file the information regarding the stop lines, conflict directions, starting time, filenames for 

the input and output files and records added by the user.  
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Input and Output Files 

The “Traffic.vdf” filter and the “Traffic.exe” program read in and create files according to the 

following scheme (see Figure H-6 – file labeling are consistent with the names discussed in 

Section H.6). 

CSPOTS 

OCCS 

CONF 

traffic 
VDF 

traffic 
EXE 

errors.txt 

LOG 

REPORT

SORT 

test.txt  
Figure H-6: Software Structure 

The key file, required for correct operation of both programs, is the text configuration file 

(CONF). Its detailed structure is described in Section H.6. In addition, the “Traffic.vdf” filter can 

read the bitmap files CSPOTS and OCCS (see Appendix C). These graphic files contain the 

conflict spots, stop lines (CSPOTS), and occluded areas (OCCS). The “Traffic.vdf” filter 

generates the LOG file, which contains records for all the objects detected in a given frame.  In 

cases when processing errors are encountered, the error messages are appended to a file 

“errors.txt” 

The “Traffic.exe” program reads in the data from the CONF file and then processes the file with a 

filename specified in the LOG line. The output of this program is the REPORT file, in which all 

the events associated with detected conflicts are recorded. The SORT file is a result of the LOG 

file filtering: it contains records of consecutive objects registered. Additionally one more file with 

a fixed name “Test.txt” is created. It contains records of all the objects moving straight.  

The LOG, SORT and “Test.txt” files have similar record structures. Each record belongs to one 

object. Consecutive data items are separated by semicolons and denote in sequence: 

1. end time of the recording (in frames) 
2. object number 
3. code of the first stop line or spot  
4. entry time for the first stop line or spot 
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5. departure time for the first stop line or spot 
..... 

n.      code of the n-th stop line or spot 

n+1.  entry time for the n-th stop line or spot 

n+2.  departure time for the n-th stop line or spot 

The “Test.txt” file has a similar structure with the number of entry areas and departure areas 

recorded next to the object number (in square brackets).  

Batch Mode 

Batch mode (File/Job control) is the fastest computing method (see Table H-3) because there are 

no delays caused by video clip input/output display. To use it effectively, one should understand 

the concept of Sylia scripting (Lee, 2003). Below we present a simplified example obtained from 

“trials and errors”: the automatically generated script has been manually changed to match our 

needs. 

Let us assume that, in the directory J:\87907_1000, the following files exist: 

• 2.avi and 3.avi – video clips to be analyzed 

• 87907_conf_2.txt and 87907_conf_3.txt – text configuration files for 2.avi and 3.avi 

respectively 

• Graphic configuration files as specified in text configuration files 

• There should be no LOG files specified in text configuration files 

After executing the steps in “Video Clip Analysis”, the user should select “File/Save as *.avi” 

menu option.  The window entitled “Save as *.avi” appears: the user should specify a file name 

(in this case “2x”), mark the box pointed by white arrow (see Figure H-7) and click “Save”. At 

this moment the first job is appended to “VirtualDub.jobs” file. 
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Figure H-7: Writing the Script to be Executed in Batch Mode  

The same steps should be repeated for the second video clip to be analyzed.  

Now it is the time to close VirtualDub program and change the name of “VirtualDub.jobs” file 

(eg. to “VD_example.jobs”). This slightly modified file (changes are underlined and in bold) is 

presented in Box H.1.   

There are at least three modifications (in every job): 

• The full path to the CONF file and two quotation marks are added to the line describing 

the “traffic.vdf” filter parameters 

• The instruction for AVI saving is commented (using two slashes //) 

• The instruction to start VirtualDub in “preview” mode is added 
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Box H.1. The modified file „VD_example.jobs” (changes are underlined and in bold). 
// VirtualDub job list (Sylia script format) 
// This is a program generated file -- edit at your own risk. 
// 
// $numjobs 2 
// 
// $job “Job 1” 
// $input “J:\87907_1000\3.avi” 
// $output “J:\87907_1000\3x.avi” 
// $state 0 
// $start_time 0 0 
// $end_time 0 0 
// $script 
VirtualDub.Open(“J:\\87907_1000\\3.avi”,0,0); 
VirtualDub.audio.SetSource(1); 
VirtualDub.audio.SetMode(0); 
VirtualDub.audio.SetInterleave(1,500,1,0,0); 
VirtualDub.audio.SetClipMode(1,1); 
VirtualDub.audio.SetConversion(0,0,0,0,0); 
VirtualDub.audio.SetVolume(); 
VirtualDub.audio.SetCompression(); 
VirtualDub.audio.EnableFilterGraph(0); 
VirtualDub.video.SetDepth(24,24); 
VirtualDub.video.SetMode(3); 
VirtualDub.video.SetFrameRate(0,1); 
VirtualDub.video.SetIVTC(0,0,-1,0); 
VirtualDub.video.SetRange(0,0); 
VirtualDub.video.SetCompression(); 
VirtualDub.video.filters.Clear(); 
VirtualDub.video.filters.Add(“2:1 reduction”); 
VirtualDub.video.filters.Add(“traffic analysis 1.3”); 
VirtualDub.video.filters.instance[1].Config(0, 0, “J:\\87907_1000\\87907_conf_3.txt”); 
VirtualDub.audio.filters.Clear(); 
VirtualDub.subset.Delete(); 
//VirtualDub.SaveAVI(“J:\\87907_1000\\3x.avi”); 
VirtualDub.Preview(); 
VirtualDub.Close(); 
// $endjob 
//-------------------------------------------------- 
// $job “Job 1” 
// $input “J:\87907_1000\2.avi” 
// $output “J:\87907_1000\2x.avi” 
// $state 0 
// $start_time 0 0 
// $end_time 0 0 
// $script 
VirtualDub.Open(“J:\\87907_1000\\2.avi”,0,0); 
VirtualDub.audio.SetSource(1); 
VirtualDub.audio.SetMode(0); 
VirtualDub.audio.SetInterleave(1,500,1,0,0); 
VirtualDub.audio.SetClipMode(1,1); 
VirtualDub.audio.SetConversion(0,0,0,0,0); 
VirtualDub.audio.SetVolume(); 
VirtualDub.audio.SetCompression(); 
VirtualDub.audio.EnableFilterGraph(0); 
VirtualDub.video.SetDepth(24,24); 
VirtualDub.video.SetMode(3); 
VirtualDub.video.SetFrameRate(0,1); 
VirtualDub.video.SetIVTC(0,0,-1,0); 
VirtualDub.video.SetRange(0,0); 
VirtualDub.video.SetCompression(); 
VirtualDub.video.filters.Clear(); 
VirtualDub.video.filters.Add(“2:1 reduction”); 
VirtualDub.video.filters.Add(“traffic analysis 1.3”); 
VirtualDub.video.filters.instance[1].Config(0, 0, “J:\\87907_1000\\87907_conf_2.txt”); 
VirtualDub.audio.filters.Clear(); 
VirtualDub.subset.Delete(); 
//VirtualDub.SaveAVI(“J:\\87907_1000\\2x.avi”); 
VirtualDub.Preview(); 
VirtualDub.Close(); 
// $endjob 
//-------------------------------------------------- 
// $done 
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The last step is to carefully check if all the files specified in CONFs exist and restart VirtualDub. 

To enter the batch mode, one should choose the “File/Job control” option from the main menu, 

load (File/ Load job list…) the appropriate *.jobs file (in our case “VD_example.jobs), mark the 

first job, and press START. In Figure H-8, the larger window (in background) shows particular 

jobs and their status. The small foreground window provides information about the progress of 

the job being executed (in this case the second one). When all of the jobs are executed, the small 

window disappears. 

 
Figure H-8: Executing Jobs in “Batch” Mode 

H.6 DESCRIPTIONS OF THE CONFIGURATION FILE 

The configuration file must contain all of the information required for the execution of the 

VirtualDub filter (traffic.vdf) and post-processing program (traffic.exe). Some parameters are 
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shared by both applications. Some information is merely copied from the configuration file to the 

output files. 

The configuration data can be divided into two classes: 

• Information comments – the lines begin with <#> character. These comments will be 

directly transferred to the output files with the lines begin with <;> character. 

• Data inputs are in one of the following forms: 

<data_name>=<data_value> 

or 

<grey_level>=<object_name> 

or  

<data_name>=<data_list> 

In order to preserve data consistency, the data regarding stop lines and conflict spots should be 

ordered with respect to the gray level, which specifies the respective data values in the graphic 

files (see Boxes H.2 and H.3, Figure H-9, and Section H.7). 

• The configuration of individual parameters is given for video clip 97901 as an example 

(see Box H.2). Each individual line is numbered to the left for subsequent explanations.  

• Lines 1-5 are basic comments that will be written out to the output files (see item 2). The 

next two lines (6, 7) and the lines 16, 21, and 26 are comments added to provide 

additional information (see item 1). The next data block contains lines starting from line 

8 and ending with line 15. The lines can be inserted in an arbitrary order as long as the 

correct data format is preserved. 

 

Names and their meaning: 

TIME – Starting time of the video clip recording 

FRAMES – Frame rate; it usually takes the values of 30 or 29.97 frames per second (fps) in the 

NTSC format 
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MINDIFF - The conflict detection threshold [s]: maximum GT time that will be taken into 

account in the output report 

CSPOTS - Name of the graphic configuration file, in which the locations of the stop lines and 

conflict spots are defined (see Section H.7) 

OCCS - Name of the graphic file defining the objects obscuring the view (see Section H.7) 

LOG - Name of the file containing the raw output: this is a file produced by the VirtualDub 

filter “traffic.vdf”, which is later processed using the “traffic.exe” program. 

SORT - Name of the file containing the data on consecutive objects (this is a file that has been 

filtered and sorted using the “traffic.exe” program). 

REPORT - Name of the file containing the data of all conflicts detected (the file is generated by 

the “traffic.exe” program). 

Lines 17-20 (stop lines) define the locations of intersection entry and departure. Lines 22-25 

define the conflict spots defining the locations of crossroad entrances/departures and the conflict 

spots (lines 22-25). These lines are of the following format 

<gray_level>=<data_name> . 
 

The naming conventions for the conflict spots have been specified by the Purdue University team. 

The stop lines are defined by a conventional geographic orientation attributed to the entering 

vehicle: 1 denotes the vehicle entry/departure along the main road, while 2 denotes the respective 

vehicle entry/departure along the side street. 

The last set of inputs contains definitions of possible vehicle paths (see lines 27-30).  The syntax 

of line input is as follows: 

<traffic direction><traffic lane number in the given direction>=<stop line code>,<number of 

conflict spots>, <code of the first conflict spot>, ... , <code of the n-th conflict spot> 

The configuration specified in Box H.2 is consistent with Figure H-10 in Section H.7. A more 

complicated example has been presented in Box H.3 and Figure H-9. 
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Box H.2: Configuration file for video clip 97901 

1 ; SITE CODE:  97901 
2 ; MAIN STREET: SR-26 
3 ; SIDE STREET: 18th 
4 ; DATE:  Apr 8, 2003 
5 ; TIME:  9:58:56 
6 # ANY OTHER USEFUL DATA 
7 # 
8 TIME=9:58:56 
9 FRAMES=29.970 
10 MINDIFF=8.2 
11 CSPOTS=97901_AREAS.BMP 
12 OCCS=97901_OCC.BMP 
13 LOG=97901_10_log.TXT 
14 SORT=97901_10_srt.TXT 
15 REPORT=97901_10_REP.TXT 
16 # STOP lines 
17 1=W1 
18 2=E1 
19 3=N2 
20 4=S2 
21 # Conflict spots 
22 11=SB1WB1 
23 12=NB1WB1 
24 13=SB1EB1 
25 14=NB1EB1 
26 # routes 
27 N1=3,2,14,12 
28 S1=4,2,11,13 
29 E1=2,2,13,14 
30 W1=1,2,12,11  
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Box H.3: Configuration file for video clip 87923 

# TRAFFIC program config file 
# 
; SITE CODE:  87923 
; MAIN STREET: SR-43 
; SIDE STREET: CR-600 N 
; DATE:  May 27, 2003 
; TIME:  16:29:32 
# ANY OTHER USEFUL DATA 
# 
TIME=16:29:32 
FRAMES=29.970 
MINDIFF=8.2 
CSPOTS=87923_AREAS.BMP 
OCCS=87923_OCC.BMP 
LOG=87923_log_opt1.TXT 
SORT=87923_srt_opt11xx.TXT 
REPORT=87923_REP_opt11xx.TXT 
# STOP lines 
1=N1 
2=S1 
3=W2 
4=E2 
# Conflict spots 
11=NB1WB1 
12=NB1EB1 
13=NB2WB1 
14=NB2EB1 
15=SB1WB1 
16=SB1EB1 
# routes 
N1=1,2,12,11 
N2=1,2,14,13 
S1=2,2,15,16 
E1=4,3,16,14,12 
W1=3,3,11,13,15  
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Figure H-9: Graphic Configuration File for Clip 87923 – “routes” Section in Box H.3 

H.7 CREATING GRAPHIC CONFIGURATION FILES 

To configure software to detect vehicles in the intersection area, two graphic configuration files 

have to be created: (a) the graphic file defining conflict spots and stop lines and (b) the graphic 

file defining occlusion areas (optional).  The sizes of these two bitmap files should exactly match 

the size of the screen capture of the video where the vehicles are to be detected (at present, the 

preferred image size is = 360 x 240 pixels). 

Conflict Spots 

This configuration file is required for proper vehicle detections. The user should define two types 

of elements: the stop lines and the conflict spots. The elements of different types should be 

marked with different shades of gray (see below). 

Stop lines are used to determine the directions from which the vehicles enter and depart the 

intersection.  Therefore, the stop lines should be stretched across the whole width of the road and 

should be situated closer to the intersection than the stop bars (see Figure H-10). The positions of 

stop lines also define the Region of Interest (ROI). 

The conventions used are: 
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• The stop lines should be defined by gray levels from 1 to 9. Note that the 1 and 2 values 

are reserved for the main road. The stop lines should be drawn with solid lines, with 1 

pixel width.  

• The gray levels of the conflict spots should start from the level 11 and be assigned in 

sequence.  

• The configuration elements should be drawn on a white background (level 255). 

• The picture should be saved as a bitmap file with the 8-bit color depth (256 colors). 

• Each element should be correctly described in the text configuration file (Section H.6). 

 

background = 255 stop line = 3

conflict spot = 11 

4 
12

13 14 

2

1

 
Figure H-10: Overlaid Configuration Elements at Clip 97901 (Left) and Configuration 

File (.bmp) with Gray Levels (Right) 

Using the Jasc Paint Shop Pro to Create Graphic Configuration Files 

The Jasc Paint Shop Pro (PSP) application is easy-to-use photo-editing software, well-suited for 

the creation of graphic configuration files for our application. The list below describes the step-

by-step procedure for PSP Version 8: 

1. Open image file (360 x 240 pixels) and zoom it (Num +) 

• if you are using PSP for the first time find in the “materials”  palette “swatches” and add 

appropriate grey levels (eg. from RGB=111 to 666 and from RGB=11,11,11 to 18,18,18) 
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2. Add new vector layer (Layers/New Vector Layer). The defined areas can be re-edited later. 

3. Choose Pen Tool and set the parameters (using the toolbar above the image, see Figure H-11):  

• select Contigous, Drawing Mode, Line style = Solid, Width=1 pixel, do not set Antialias. 

4. For Pen Tool: select New, set the same color (greylevel, R=G=B) both for the foreground and 

for background (in Materials/Swatches clickL to set Foreground, clickR to set Background,  or 

clickL on Foreground/Background and set  RGB values, clickL OK), 

5. draw the stop line: ClickL at the beginning of the line, release the button and ClickL at the end 

point (you can move these points and change color for the selected object)  

6. check the color of the object using Dropper Tool 

7. To draw further objects go to 4 

8. When all of the lines and spots are drawn, save the image as “*.pspimage” (you can edit 

objects in future) 

9. Save image once more using different name  

10. Select background as an active layer 

11. Select Flood Fill Tool, set foreground=background=255 

• fill background layer (ClickL on the image): you should see “almost black” configuration 

elements on white background (see Figure H-10 right) 

12. Look at Image/Image information: pixel depth/colors should be 8/256. 

• If it not the case apply: Image/Greyscale 

13. Save this image as bitmap 

14. Write info on gray levels and objects’ names in the text file (see Section H.6). 
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Occluded Areas 

In the second bitmap file the user should mark the areas (objects) which may obscure the 

observed vehicles (see Figure H-12). The list of elements includes: 

• line supports, lamp-posts 

• big traffic lights 

• road signs ordering the traffic direction from a given traffic lane, hanging over the road 

• other objects (see the file for the video clip for the 87923 crossroad) 

The list of occluding objects, for which the locations should be marked, should contain objects, 

which can effectively obscure the moving vehicles or the presence of which may result in 

division of the monitored objects into parts. 

 

 

 
Figure H-12: Consecutive Stages of Generation of the Graphic File with the Occluded Areas 

(Bottom Right – Inverted Image) 
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The drawing can be realized using various software packages for creation of graphic files, e.g., 

the Paint Shop Pro program described earlier. The method for objects generation is similar to 

drawing the conflict spots, only the applied gray levels are different, both for the objects and the 

background. 

Conventions Used 

• The occluding objects should be drawn in white (RGB=255, 255, 255) and should be 

somewhat bigger than the images of actual objects. 

• The background of the final image should be set to 0 (RGB=0, 0, 0). 

• The image should be saved as a bitmap, with color depth equal to 256 (8 bits). 
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H.8 SOFTWARE CONTENTS 

The root directory contains the following subdirectories and files:  

Software: 
traffic13.vdf: VirtualDub Filter ver. 1.3 
Traffic11.exe: program which generates the final REPORT on detected conflicts (ver. 1.1) 
traffic.zip: the two above mentioned files zipped 
dvdemocodecv2.1.zip: demo (version 2.1) of the DV codec   
VirtualDub-1.5.1.zip: VirtualDub program (ver. 1.5.1) 
 
doc_res: 
0rep.doc: the main part of report  
app_ae.doc: Section H.5 
app_be.doc: Section H.6 
app_ce.doc: Section H.7 
app_de.doc: Section H.8 (this file) 
GapData_res2.xls: results of processing compared to the ground data, summary of recognition 
rates 
    
87907 
87923 
87933 
97901_10 
97901_16 
97905 
97920 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Configuration and result files for all the analysed video clips 

(see example for the video clip 87907 below) 

87907 

87907_areas.bmp  graphic conf. file - definition of conflict spots 
and STOP lines  

87907_conf.txt  text configuration file 
87907_LOG_opt.zip  result file from „traffic.vdf” 
87907_occ.bmp  graphic conf. file - definition of occluding 

elements 
87907_REP_TR3_3A.TXT REPORT file, generated by „traffic.exe” 

program (detected conflicts) 
87907_SRT3_3A.TXT  SORT file, generated by „traffic.exe” program 

(records of all the detected vehicles) 
87907_occ.pspimage same as 87907_occ.bmp but in 

vector graphics (generated by Jasc 
Paint Shop Pro) 

87907_areas.pspimage same as 87907_areas.bmp but in 
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H.9 SUPPLEMENT 

Supplement 1: Dealing with the Camera Vibrations 

In Table H-2 of the main (previous) report, the authors point out the most important sources of 

errors generated by the program for analysis of crossroad conflicts. By comparison of the 

program output results with the respective ground data, camera vibrations have been found to be 

the main reason of interferences causing the so-called “false detections.” The authors of the 

program have appended the algorithm, described in Section H.2, with an additional filter, which 

makes the main traffic analysis algorithm (in particular the optical flow part) insensitive to small 

vibrations of the image.  

The main principle of the algorithm for analysis of video clips remains unchanged, as well as the 

form and sequence of processing, the output files, and the program configuration files. The 

changes affect the final results (Section H.3) and the program setup and reference manual 

(Section H.5). For the user’s convenience, Supplement 1 has been appended with Section H.5, 

now called Section S1.H.5.  The previous sections were appended by a supplement so that for the 

cases when the camera is fastened steady the original software version, described in the main 

report, may be still safely used.  

S1.1 Algorithm 

The action of the algorithm is based on the well-tested and widely applied method of tracking a 

fixed object in the scene. The object is selected and indicated by the user. In the cases when the 

object location is changed, it is assumed that the camera has been moved. The digital image is 

then shifted in the direction consistent with the apparent object motion. After such a correction 

the object should be restored to the original location.  

That simple method required the implementation, studies and elaboration of many details. In 

particular it turned out that in some cases the image movements were of subpixel nature. 

Therefore the image size was enlarged by a factor of two, using the filter of the VirtualDub 

program. In some (very rare) cases, probably because of cumulating errors of the subpixel image 

shifts, the image was not returned to the original, stable position, but exhibited a steady 
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migration. Another problem was created by lighting changes, which made the adjustments rather 

difficult.  

A simplified flowchart of the consecutive steps of the algorithm is presented in Box S1.1. The 

standard size of the video clip picture was 720x480 pixels. In such a picture the user defines a 

rectangle, in which the selected fixed object is located. The rules of the object selection are 

described in Section H.10. Exemplary objects, defined for various video clips have been 

described in Table H-4. The object is enveloped by a fixed width frame. In that area the matching 

operation is carried out (see Section 1 in Box S1.1). The pattern is shifted within these borders. 

After each shift a special matching function M(x,y) is calculated, which takes the form: 

 ( ) ( ) ( )
1 1

0 0
, , ,

m n

k l
M x y d x k y l o k l

− −

= =

= + + −∑∑  (H-6) 

where O is the pattern (object) area (mxn pixels), D the area in which the matching is looked for, 

k and l are the pattern coordinates, x and y are D area coordinates. In the next stage the minimum 

value of the matching function is found, the coordinates for which the minimum takes place are 

determined and finally the whole image is shifted. Then another filter (included in the VirtualDub 

distribution) executes the image shrinking by a factor of four.  

The update and supervision of the total_shift variable prevents the image migration phenomenon, 

described above. In the case when a threshold value is exceeded the unshifted current picture is 

sent to the next filter, appended by a special marker. 

Each time the pattern is collected from the present image (see Section 6 in Box S1.1). It increases 

the matching precision, because it eliminates the effect of lighting changes, introduced by the 

time of the day or weather changes. 

Applying the camera vibration removal filter resulted in small modifications of the main traffic 

analysis filter. The elements implemented in the filter included management of frames, on which 

the additional marker is placed.  Such a frame is saved as a base image for calculation of the 

optical flow in the consecutive step. No calculations are carried out for the frame itself. 

Additionally the program part selecting every third frame for the analysis has been removed. The 

decimation setting is specified by the user directly in the VirtualDub program (see Section H.10). 

The setting is valid for all the filters. 
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Box S1.1. Consecutive steps of the algorithm of camera vibration removal. 

1. Set: 
limits of the window containing the object  
limits of the matching window 

2. Set: 
total_shift=0 
collect the first frame 
remember the pattern 

3. collect the image  
4. match the pattern 
5. update the total_shift variable 
6. if total_shift > threshold  

      generate a marker for the image 
      remember the pattern 

             total_shift =0 
             go to 7 
      else  
             shift the image 
             remember the pattern 
             go to 7 
7.  send the picture to the next filter 
     go to 3  

  

 

Table H-4: Coordinates of Objects Selected for the Camera Stabilization (for 720x480)  
Video clip x1 y1 x2 y2 Size (XxY) Remarks 
87907 402 17 448 32 46x15 top of a pole 
87923 250 442 285 462 35x20 info board near a pole 
87933 605 110 635 127 30x17 traffic lights on a pole  
97901_10 a) 393 449 438 470 45x21 base of a pole 
97901_10 b) 247 43 299 69 52x26 traffic lights (far) 
97901_10 c) 380 50 410 63 30x13 top of a pole 
97905 631 453 667 470 36x17 base of a pole 
97920 110 204 157 226 47x22 top of a pole  

S1.2 Results  

The results obtained from analysis of seven video clips (eight hours) are summarized in Table 

H-5 and Table H-6. All of the details can be found in GapData_res5.xls file (see S1.H.8). The 

specific items are defined as follows: 
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• actual conflicts: the number of conflicts detected by the human operator (8 seconds or 

less),  

• reported conflicts: the number of reported measurements from the post-processing of the 

VirtualDub filter event data file. All the reported values of 8.2 seconds or less were 

counted, 

• detected conflicts: the number of actual conflicts that can be detected by matching the 

occurrence times and conflict zones of the actual and reported conflicts, 

• false detections: a number of reported conflicts that could not be matched with the actual 

conflicts, 

• detection rate: the ratio of number of detected conflicts to actual conflicts, 

• false detection rate: the ratio of number of false detections to reported conflicts, 

• gap time (GT): the time between the moment when the first vehicle enters into the 

conflict spot and the moment when the second vehicle enters into the conflict spot (front 

bumper to front bumper),  

• GT mean error: mean of the differences between actual and detected GTs,  

• GT std error: the standard deviation of differences between the actual and detected GTs,  

• post enchroachment time (PET): the time between the moment when the first vehicle 

leaves the conflict spot and the moment when the second vehicle enters into the conflict 

spot (rear bumper to front bumper), 

• PET mean error: mean value of the differences between the actual and detected PETs,  

• PET std error: the standard deviation of differences between the actual and detected 

PETs.  

Table H-5 is a counterpart of the Table H-2, presented in the main report. Application of the 

“unshake” filter and proper modifications in the “traffic analysis” filter have completely removed 

the “false detection” cases, caused by the camera vibrations. The other detection results were 

more or less the same as before: for video clips 87907 and 97905 the number of detected 

situations increased (by a total of three cases), while for video clip 97901, the number has 

decreased by one case. Three of the four false detections in video clip 87923 were generated by 

an atypical, particularly tall vehicle, which happened to cover an additional stop line.  
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Table H-5: Results Obtained after Applying Vibration Removal Algorithm 

 conflicts detection (%) measurement [s]   
Intersection actual report. detect. false rate false rate GT_mean GT_std PET_mean PET_std

87907 10 12 10 0 100,00 0,00 -0,023 0,862 -0,176 0,864 
87923 19 36 18 4 94,74 11,11 0,051 0,503 -0,023 0,571 
87933 30 40 29 0 96,67 0,00 -0,046 0,164 -0,195 0,203 

97901_10a 49 56 44 0 89,80 0,00 -0,035 0,248 -0,133 0,234 
97901_16 92 87 82 0 89,13 0,00 -0,079 0,446 -0,145 0,547 

97905 39 36 34 0 87,18 0,00 0,033 0,541 -0,173 0,409 
97920 20 21 20 0 100,00 0,00 0,010 0,210 -0,056 0,238 

average:     93,93 1,59 0,040 0,425 0,129 0,438 

max:       0,079 0,862 0,195 0,864  

Detailed analysis of the video clips revealed the existence of events undetected by the human 

operator as well as marginal situations, for which the algorithm of hazardous events detection 

acted properly. The list of such situations is presented in Table H-6 in the part called “algorithm 

detections.” The events undetected by the human operator and detected by the algorithm are 

located in the “OK” column. In the column labeled as “~8[s]” the authors have summed up all of 

the situations detected by the algorithm near the acceptable time limit (for all of the video clips 

the registration time between consecutive events has been taken as equal to 8.2 [s]). The 

situations in which a vehicle covered (e.g., as a result of the perspective projection) the 

neighboring conflict spot are listed in the “n.spot” (neighbor spot) column. In the “Total” column 

all three situations discussed above have been added. 

Table H-6: Performance Results of the Algorithm 

 conflicts detection (%) algorithm detections 
Intersection actual report. detect. false rate false rate ~8 [s] OK. n. spot Total 

87907 12 12 12 0 100,00 0,00 0 0 2 2 
87923 33 36 32 4 96,97 11,11 2 4 8 14 
87933 41 40 40 0 97,56 0,00 0 2 9 11 

97901_10a 61 56 56 0 91,80 0,00 5 7 0 12 
97901_16 97 87 87 0 89,69 0,00 4 1 0 5 

97905 41 36 36 0 87,50 0,00 0 2 0 2 
97920 21 21 21 0 100,00 0,00 1 0 0 1 

average:     94,79 1,59     
      total: 12 15 19 46  
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From the algorithm’s point of view the discussed situations cannot be regarded as errors. 

Therefore the number of situations from the “total” column was added to the respective fields in 

the “actual” and “detected” columns.  The results obtained by such action are even closer to the 

real values. 

S1.3 Summary and Conclusions 

In Supplement 1 the authors describe a way to eliminate false detections caused by small camera 

vibrations. As a consequence, a special algorithm, described in Section S1.1, has been 

constructed, implemented, and tested. The results of conflict detection obtained after the 

elimination of camera vibrations are listed in Table H-5 and Table H-6. For these tables the 

detection rate and false detection rate were calculated using two methods: as the average over all 

detected events in all video clips and as an “average of the averages,” calculated separately for 

each individual video clip. For the results listed in Table H-5 the respective results of such 

calculations were:  91.5% and 93.9% for the detection rate and 1.38% and 1.59% respectively for 

the false detection rate. It was noticed that the algorithm works correctly in some cases that 

remain undetected for the human operator and for some marginal cases. Therefore, such 

situations have been identified and are listed in Table H-6 and the respective table columns have 

been supplemented. For the corrected results the detection rate has increased to 92.78% and 

94.79% respectively. Thus, the main goal of the software modification has been achieved: as a 

result of elimination of false detections caused by camera vibrations, the false detection rate has 

went down from about 11% to about 1.5%.  

The obtained value is much lower than the recommended number of 5%. Also, the detection rate,  

after taking into account the marginal situations, is closer to the assumed 95%. 

The software development has also affected its complexity level. The user now has to load more 

filters to the VirtualDub program, as well as find and properly define the fixed scene element, 

which will be tracked by one of the filters. The respective procedure for the new version of the 

program has been described in Section H.10. Some of the operations can be automated by using 

scripts (see S1.H.5.4).  

The result of the increased program complexity level is also the extension of analysis time. In 

Table H-7 the actual processing times have been compared with the respective times obtained 
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previously. The times have been given in the relative form, i.e., as the ratio of the analysis time to 

the actual duration of the video clip. The tests were carried out on a PC with a Pentium IV 

2.4GHz processor in batch mode, working under the MS Windows 2000 operating system.  

Table H-7: Relative Video Clips Processing Times in the Batch Mode between Previous 
and New Versions of the Software  

Video clip time length previously now fixed element area [pixels] 
87907 1:01:32 110653 1.76 2.30 690 
*87923 1:01:32 110663 1.70 2.25 700 
87933 1:01:50 111189 1.79 2.15 510 

*97901_10 a)    2.39 945 
*97901_10 b) 1:02:19 112083 1.74 2.48 1352 
*97901_10 c)    2.08 390 

97901_16 1:02:00 111499 1.67 2.23 945 
97905 2:02:01 219433 1.74 2.11 612 
97920 1:01:44 111034 1.74 2.27 1034 

Note: The 97901_10 video clip has been analyzed three times with various fixed elements selected (* 
camera vibrations which affected the results obtained by using the previous software version). 

For the 97901_10 video clip three additional tests have been carried out, comprising the 

execution of the algorithm for three various fixed elements to be tracked. The respective objects 

have been defined and described in Table H-4. In Figure H-13, a frame is presented, in which the 

rectangles enveloping the selected objects have been marked.  

 c) 

b) 

a) 
 

Figure H-13: Locations of the Selected Reference Points for the Vibration Removal 
Algorithm (97901_10) 
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The results obtained from these three tests have been presented in Table H-8 and Table H-9 

similarly as in the Table H-5 and Table H-6. For all the experiments the statistical values of GT 

and PET times are rather close to each other. The same can be said about conflict events: the 

changes of both detections and false detections are minimal. 

Table H-8: Results Obtained Using 3 Different Tracked Objects (Clip 97901_10) 
 conflicts detection (%) measurement [s]   

Intersection actual report. detect. false rate false 
rate GT_mean GT_std PET_mean PET_std

97901_10a 49 56 44 0 89,80 0,00 -0,035 0,248 -0,133 0,234 
97901_10b 49 59 45 1 91,84 1,69 -0,035 0,250 -0,139 0,235 
97901_10c 49 59 45 0 91,84 0,00 -0,040 0,246 -0,139 0,231  

 

Table H-9: Results as in Table H-6 Using 3 Different Tracked Objects (Clip 97901_10) 
 conflicts detection (%) algorithm detections 

Intersection actual report. detect. false rate false rate ~8 [s] OK. n. spot total 
97901_10a 61 56 56 0 91,80 0,00 5 7 0 12 
97901_10b 62 59 58 1 93,55 1,69 5 8 0 13 
97901_10c 63 59 59 0 93,44 0,00 6 8 0 14  

The prospects of further development of the software were described in the main report in Section 

4 and mainly pertain to the modification of the video clip analysis algorithm. In relation to the 

mentioned problems regarding the proper way of defining the conflict spots, the construction of a 

dedicated tool to assist the user also should be considered. After the preliminary analysis of a 

video clip section, a special filter would be able to indicate the areas of maximum traffic, 

providing a good basis for precise location of the required conflict spots. 

H.10 ADDRESSING CAMERA VIBRATION 

The necessary software consists of three items: 

• The first filter for the VirtualDub (VD) application which executes the “unshake” 

procedure (see S1.1).  

• The second filter for VD implements processing algorithms described in Section H.2 

(optical flow and segmentation), then performs visualisation of the final segmentation 

and writes the file with the “raw” results (the second mode of the filter operation is the 

visualization of the video clip with overlayed detection areas, stop lines and ROI). 
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• The application filtering the data obtained from the VD filter, generating the vehicles list 

and then calculating the GT and PET times for the detection areas, occluded (covered) by 

consecutive vehicles, moving along directions that are perpendicular to each other.  

For the first filter the user should define a rectangle bordering the object to be observed. 

The input data for programs 2 and 3 are read from shared configuration files: 

• the text file, which contains the information on the other files, used or created by 

particular applications, descriptions of conflict spots and stop lines, as well as other data, 

allowing identification of the video clip, the recording time etc. (detailed description and 

example can be found in Section H.6), 

• Two binary graphic files (*.bmp), defining the location of individual conflict spots and 

stop lines, and defining the occluded areas (see Section H.7). 

S1.H.5.1 Installation 

The first step consists of installation of the VirtualDub program4 and the “dvcodec” decompressor 

(Video for Windows)5, required for playing the video clips.  Installation of the VD program 

comprises the archive decompression and creation of the respective desktop shortcut if required.  

The “unshake.vdf” and “traffic20.vdf” filters should be copied to subdirectory “Plugins” in the 

VD installation directory.  The application interpreting the results obtained from VD program 

(traffic.exe) should be copied to the subdirectory, where the output files and text configuration 

files will be stored.  All of the configuration files (both text and graphic files), related to the video 

clip being processed, should be additionally copied to the video clip location.  

S1.H.5.2 Video clip analysis 

The present procedure describes a method for running the VirtualDub program with the required 

filters. It is assumed that the video clip and the respective configuration files are located in one 

                                                      

4 the required VD version is 1.5.10. 
5 both the VD archive (version 1.5.10) and a  working codec version  dvdemocodecv2.1.exe have been 
stored in the accompanying software package. 
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directory.  The order of the described operations is essential - it is particularly important to read in 

the video clip first, and only then define the required filters.  

In the analyzed video clip, a fixed scene element should be found, which can be used in the 

vibration removal algorithm. The element should be: 

• small, 

• contrasted, 

• characterized by a complex outline (not too simple), 

• located outside the Region of Interest, 

• located at least 10 pixels from the picture border, 

• free from obscuring by any other scene elements. 

For such an element a rectangle should be defined (enveloping the object and at least two pixels 

of its neighborhood) by saving the coordinates of its corners (x1, y1) and (x2, y2). These points 

respectively define the upper left and lower right corners of the rectangle. It is assumed that the 

origin of the coordinate system (x=0, y=0) is located in the upper left corner of the picture. The 

coordinates are defined for the respective picture (clip) resolution, i.e., 720x480 pixels, by using 

any bitmap graphic manipulation program. 

The user may attempt to automate some of the operations, using the VD program scripts or VD 

batch mode (see S1.H.5.4). In the list below the basic, “manual” method is described: 

• start the VirtualDub (ver. 1.5.10) program, 

• read in the video clip to be analyzed, 

• decrease by half the window used for playing the source clip (ClickR the left window, 

choose “50%” option), 

• select “Filters” from the “Video” menu: an empty window appears, 

• click “Add”: a list of available VD filters appears. Choose: 

 resize, specify the expansion parameters (1440 960) and select the interpolation 

method (filter mode = bilinear, see Figure H-14), 

 unshake, specify the previously determined corners of the rectangle enveloping 

the object (see Figure H-15), 
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 resize, specify the parameters (360 240) and select the interpolation method 

(filter mode = bilinear), 

 traffic 2.06, specify the name of the configuration file for the analyzed clip (see 

Figure H-16). Type in the name of the text configuration file (in the example in 

the Figure H-16 it is the “97901_10c_conf.txt” file) and choose the appropriate 

options: (a) if the user does not mark any of the respective fields it results in 

starting the analysis with visualization of its results in the right window of the 

VD program, (b) if the user marks the “Turn off visualization of analysis” field 

the results of the analysis will not be shown (the program runs a bit faster), and 

(c) if the user marks the “Only visualization of stops and spots” field the video 

clip will not be analyzed, and in the right window the source clip will be played 

with configuration elements overlaid (useful for results revision or generation of 

the ground data) 

 click OK in the configuration window and then OK in the filter selection 

window, 

• from the Video/Frame rate menu mark decimate by 3 field, 

• in the main window of the VD program start the analysis (and/or visualization) using the 

respective button (“output playback” or “key next” – step operation). The screen 

appearance during the analysis is shown in Figure H-18. 

 

                                                      

6 traffic2.0 is a new version of a previous filter traffic1.3,  adjusted to the needs of the unshake filter 
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Figure H-14: Configuration of the First Filter (“resize”) 

 

 
Figure H-15: The “unshaken” Filter – Specifying the Coordinates of the Object Selected 



 

 

391

 

 
Figure H-16: Configuration Window for the “traffic 2.0” Filter 

 

 
Figure H-17: Error Window 

ATTENTION: The “traffic.vdf” filter generates a file containing the output data, with a filename 

consistent with the name declared in the text configuration file.  If the VirtualDub program is 

stopped and then restarted, it generates an error message (see Figure H-17) caused by the fact that 

the respective file cannot be created as it already exists.  The user has to remove the file or 

comment out the respective line in the text configuration file (the line with the LOG name - see 

Section H.6): after that step, the program will not perform the file creation.  

After completing the video clip analysis the next program should be run, which removes the 

excessive elements from the file and generates the conflict list in a format that can be processed 
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using a spreadsheet application (the number fields are separated by semicolons).  The program is 

started from the command line by typing:   

traffic <conf> 

where <conf> is the name of the text configuration file. The “Traffic.exe” program reads from 

that file information concerning the stop lines, conflict directions, starting time, filenames for the 

input and output files and records added by the user. 

 

Left: source image, right: segmented objects (yellow and green ones) inside ROI (red). STOP lines and conflict spots 
are drawn in violet and yellow respectively. 

Figure H-18: Image Analysis by VirtualDub and User-Defined Filters 

S1.H.5.3 Input and output files 

The “Traffic20.vdf” filter and the “Traffic.exe” program read in and create files according to the 

following scheme (see Figure H-19 – file labeling consistent with the names discussed in Section 

H.6). 
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CSPOTS 

OCCS 

CONF 

traffic 
VDF 

traffic 
EXE 

errors.txt

LOG

REPORT

SORT

test.txt  
Figure H-19: Files and Programs 

The key file, required for correct operation of both programs, is the text configuration file 

(CONF). Its detailed structure is described in Section H.6. In addition to that file, the 

“Traffic20.vdf” filter can read the bitmap files CSPOTS and OCCS (see Section H.7). In those 

graphic files the conflict spots and stop lines (CSPOTS), as well as occluded areas (OCCS), are 

defined. The “Traffic20.vdf” filter also generates the LOG file, which contains records for all of 

the objects detected in a given frame.  In cases when processing errors are encountered the 

respective error messages are appended to a file with a fixed name “errors.txt.” 

The “Traffic.exe” program reads in the data from the CONF file and then processes the file with a 

filename specified in the LOG line. The main result of its action is the REPORT file, in which all 

the events associated with detected conflicts are recorded. The SORT file is a result of the LOG 

file filtering: it contains records of consecutive objects registered. Additionally, one more file 

with a fixed name “Test.txt” is created. It contains records of all the objects moving straight.  

The LOG, SORT, and “Test.txt” files exhibit similar record structures. Each record is attributed 

to one object. Consecutive data items are separated by semicolons and denote in sequence: 

1. end time of the recording (in frames) 
2. object number 
3. code of the first Sstop line or spot  
4. entrance time for the first stop line or spot 
5. departure time for the first stop line or spot 
..... 
n. code of the n-th stop line or spot 
n+1. entrance time for the n-th stop line or spot 
n+2. departure time for the n-th stop line or spot 

The “Test.txt” file exhibits a similar structure, with the only difference that after the object 

number (in square brackets) the numbers of entrance area and departure area are written.  
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S1.H.5.4 Batch mode 

Batch mode (File/ Job control) is the fastest computing method (see Table H-3) because there are 

no delays caused by video clip input/output display. To use it effectively one should understand 

the concept of Sylia scripting (Lee, 2003). Below we present a very simplified example obtained 

from “trials and errors”: the automatically generated script has been manually changed to match 

our needs. 

Let us assume that in the directory h:\digitalvideo the following files exist: 

• intx97901_1000.avi - video clip to be analyzed, 

• 97901_10c_conf.txt - text configuration files for intx97901_1000.avi, 

• graphic configuration files defined in text configuration files. 

There should be no LOG files defined in text configuration files. 

After executing steps 1-6 (see S1.H.5.2) the user should select “File/ Save as AVI” menu option.  

The window entitled “Save AVI 2.0 File” appears: the user should write a file name (in this case 

“2x”), mark the box pointed by white arrow (see Figure H-20) and click “Save”. At this moment 

the first job is appended to “VirtualDub.jobs” file. 

If needed - the same steps should be repeated for the second video clip to be analyzed.  

Now it is the time to close VirtualDub program and change the name of “VirtualDub.jobs” file 

(eg. to “vibra97901c.jobs”). This slightly modified file (changes are underlined and in bold) is 

presented in Box S1.A1.  

The three manual modifications listed below remain unchanged - in relation to the previous script 

version:  

• the full path to the CONF file and two quotation marks are added to the line describing 

the “traffic20.vdf” filter parameters, 

• the instruction responsible for AVI saving is commented (using two slashes //), 

• the instruction starting VirtualDub in “preview” mode is added. 
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Figure H-20: Writing the Script to be Executed in Batch Mode 

Changes introduced in relation to the previous version of the script can be divided into two 

categories: 

• changes, that has been introduced by the software modification, as a consequence of the 

camera vibration removal (they are labeled by a consecutive number and a “+” character) 

• changes introduced by use of newer version of the VirtualDub program (they have been 

labeled by a consecutive number and the “*” character). 

Changes introduced as a consequence of the software modification (1) are: 

• 1+ the second argument is now equal to 3. It is responsible for the decimation, i.e., the 

generation of every third frame taken from the video clip, 

• 2+ and the following line form a definition of the first filter, the task of which is to 

increase the frame size twice, using the “bilinear” approximation, 

• 3+ and the following line are responsible for adding the “unshake” filter and  defining in 

the next line the rectangle enveloping the object to be tracked, 
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• 4+ and the following line form a definition of the filter decreasing the frame size to 

360x240 pixels (method: “bilinear”), 

• 5+ and the following line denote addition of the “traffic” filter in 2.0 version, adjusted to 

the needs of the “unshake” filter. 

Changes introduced by the use of the VirtualDub program (2) in version 1.5.10: 

• 1*: is a line changed automatically (the word “Delete” has been replaced by the word 

“Clear”), 

• 2*: is a new line, determining the range of the video clip analysis (in frames). 

The last step is to carefully check if all of the files mentioned in CONFs exist and start 

VirtualDub again. To enter the batch mode, one should choose “File/ Job control” option from the 

main menu, load (File/ Load job list…) the appropriate *.jobs file (in our case 

“vibra97901c.jobs), mark the first job and press START. In Figure H-21, the larger window (in 

background) shows the particular jobs and their status. The small foreground window provides 

information on the progress of the job under execution. When all of the jobs are finished, the 

small window disappears. 
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Box S1.A1. The modified file “vibra97901c.jobs” (manual changes are underlined boldface) 
 // VirtualDub job list (Sylia script format) 
 // This is a program generated file -- edit at your own risk. 
 // 
 // $numjobs 1 
 // 
  
 // $job “Job 1” 
 // $input “d:\digitalvideo\intx97901_1000.avi” 
 // $output “D:\DigitalVideo\2x.avi” 
 // $state 0 
 // $start_time 0 0 
 // $end_time 0 0 
 // $script 
  
 VirtualDub.Open(“h:\\digitalvideo\\intx97901_1000.avi”,”“,0); 
 VirtualDub.audio.SetSource(1); 
 VirtualDub.audio.SetMode(0); 
 VirtualDub.audio.SetInterleave(1,500,1,0,0); 
 VirtualDub.audio.SetClipMode(1,1); 
 VirtualDub.audio.SetConversion(0,0,0,0,0); 
 VirtualDub.audio.SetVolume(); 
 VirtualDub.audio.SetCompression(); 
 VirtualDub.audio.EnableFilterGraph(0); 
 VirtualDub.video.SetDepth(24,24); 
 VirtualDub.video.SetMode(3); 
1+ VirtualDub.video.SetFrameRate(0,3); 
 VirtualDub.video.SetIVTC(0,0,-1,0); 
 VirtualDub.video.SetRange(0,0); 
 VirtualDub.video.SetCompression(); 
 VirtualDub.video.filters.Clear(); 
2+ VirtualDub.video.filters.Add(“resize”); 
 VirtualDub.video.filters.instance[0].Config(1440,960,1); 
3+ VirtualDub.video.filters.Add(“unshake “); 
 VirtualDub.video.filters.instance[1].Config(380,50,410,63); 
4+ VirtualDub.video.filters.Add(“resize”); 
 VirtualDub.video.filters.instance[2].Config(360,240,1); 
5+ VirtualDub.video.filters.Add(“traffic 2.0 “); 
 VirtualDub.video.filters.instance[3].Config(0,0,”h:\\digitalvideo\\97901_10c_conf.txt”);
 VirtualDub.audio.filters.Clear(); 
1* VirtualDub.subset.Clear(); 
2* VirtualDub.subset.AddRange(0,112084); 
 //VirtualDub.SaveAVI(“h:\\DigitalVideo\\2x.avi”); 
 VirtualDub.Preview(); 
 VirtualDub.Close(); 
  
 // $endjob 
 // 
 //-------------------------------------------------- 
 // $done  
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Figure H-21: Executing Jobs in “batch” Mode 

S1.H.8 Package ver. 2.0 contents 

The package contains the following files:  

Software: 
traffic20.vdf: VirtualDub Filter ver. 2.0 
Traffic11.exe: program which generates the final REPORT on detected conflicts (ver. 1.1) 
traffic2.zip: the two above mentioned files zipped 
VirtualDub-1.5.10.zip: VirtualDub program (ver. 1.5.10) 
dvdemocodecv2.1.zip: demo (version 2.1) of the DV codec   
 
doc_res: 
0supp1.doc: the main part of Supplement 1 
app_s1_ad.doc: Section H.10 
vibra97901c.jobs: the example of the “batch” file 
GapData_res5.xls: results of processing compared to the ground data, summary of recognition 
rates 
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