HYDRAULICS OF RIVER FLOW
UNDER ARCH BRIDGES

T0: K. B. Woods, Director Joint Higaway Research Project

FROH: H. Io Michael, Asscciate Director Joint Highway Research Rroject

June 19, 1964
Project: HPSoRol (36)
File: 9-5-2

The Find Repost on the project "Hydraulics of River Plow Onder Arch Bridges ${ }^{17}$ is attached. The title of the report is the title of the project and it has been prepared by DroJ. H . Delleur, under whose direction most of the study has been perfomed.

This project wes initiated in Agril 1958 and will be temminated upon accepiance of this finel report by the cooperating agencies. During the six years of the project meny moritily progress reporis and seven larger progress reports were subntted. The atteched report sumarizes 211 the work performed during the entixe project period and. is in two volumes anth Folume If contoining only the sigures.

Mis research bss provided information on the backwater eriects and energi losses of arch bridge constrictions with rigid boundaries. The information provided should be of great value to highvey engineers in evaluating tre problens associated with arch bridge crossings of stresuns.

The report is submitted for the record and will aiso be sent to the Indiana State Highway Commisstion and the Buresu of Bublic Roads ros their accertence of this Rinal Report on this project, subject of course to their review and comments and any subsegnent action reautree

Respectfully subinited,

HIM:be
Attachment
Copy:
F. L. Ashbaucher
J. F. McLaughlin
J. R. Cooper
W. L. Dolch
W. H. Goetz

Fo Fo Havey
F。S. Hill
G.A. Leonards
R. D. MES
R.E. Kijus
M. B. Scott
J. V. Staythe
E.J. Yoder
Pran Repori

-07. I
mg
Time - -


```
    Cwimetere br
```



```
    farginoentug Raperil ar.u Stat,ut
```



```
                        ank: %so
        Mu*eare CL Fuolie Toves
```


Zuciana Stato mixhury cumiss

 on theDigitized by the Internet Archive in 2011 with funding from
LYRASIS members and Sloan Foundation; Indiana Department of Transportation
I．Iol Preface ard Acknonicdgenents
I－2 Bibliography of Chaptere I
Page5
II。 Iftagaruze Absixacts
IIal Constriction and Backurbex 7
II－z Expansion Iosses 13
II－3 Surnergencs 35
II．Theorgtical Analysis
III－2 Flow Conflguretions at an Opon Ghamel Goncti whiv． 38
III－2 Bacie Equarions 20
III－3 Types of That at a Bridge Coratxisim \because
 $: 3$
 30
a）General Consternacions 30
b）Manentum Equation fos Divaigtng Flor 32
e）Enorgy Equaition for Gonverging incor 35
 37
 38
 38
b）Limstisg Backaker 39
III－7 Dischaxge Equation 42
a）Fiee Sus゚ace Flow 42
i）The Equation of Dischares Sor Orifice Plov 45
III－8 Energy Loss in the Constriction 48
III－9．Beckwater Ratio Equations 52
III－10 Dinensionai Considerations 38
a）Dimensional Analysis 58
B）Definition of Channel Opening Ratio and Channel Vidth Ratio 60

III-2I Definnitior af Test Geornetriee
III-12 Biblyography of Chapter III.
IV. Prealainary Tests (by C. To Husain ad A, ti-otry)

IU-ќ. Test Resvict
『o Experimenial Equinnent

b) irflure 2 :
a) गramily π ye
 82
 82 32

a) umos: simarries e cis
b) Rough , -alartas E6

PI-2 Obtentzoll $=2$-xifors f (ton of
VI-3 Fres surfocy -easuavisity y 5
VI-4 Iata Prontactng 98

VII, Free SurCace: 10 Test Rc 1UTS
VII-1 Geonetyy Ia - Smoot a Boundurijes 3 U
a) Zntroduction 101
b) Tests by Ho G Gren 101
s) Tests by PoF. B?ery iok
VII－2 Geometries Ia and Ib－Rough Bounderies－Tests by Po Fo Biery 105
a）Test selection 205
b）Te3t data 205
c）Test results 306
d）Backwater ratio and discharge coefficient 206
阝）Location of the points of marimum backwater 107
（）Datermination of atinimum depth 108
8）Regain curve length 208
छ）Comparison of roughness efincts 10%
5）Comperison of bridge Length effects 209
ך）Surface topography 109
i）Velocity prot＇iles 110
k）The generalized bachwater equation and head loss coefficient 127
VII－3 Geometry II－Tests by So Irppai and T．Po Charg 2\％
VII－4 Gsometry III－Tests by To Po Chang 117
VII－5 Geometry IV－Tests by T．P．Charg 219
VII－6 Ggometry Ve－Tests by To yo Chang 120
VII－7 Geometry ∇b－Tests by $\mathrm{T}_{\mathrm{o}} \mathrm{F}$ ．Chang 221
VII－8 Coometry VI－Pests by To P．Cheng 122
VII－9 Goometry VII－Tests by To．Po Chang 123
VII－10 BibIlography of Chapter VII 224
Subnerged Flow Tast Recults
（Teots by 0．Eikeri）
III－1 Teat Selection 125
III－2 Dofinitions－fully subnerged and partly submerged flow 13．
III－3 Geometry Ia－Smooth Boundaries 135
a）Coeffickents of cortraction，discharge and velcukty for free 135 jet outflow
b）Velocity distrilution at vena contracta for free jet outiow 136
c）Generalizod backwato equation－outflow fulity and partly 137 submerged
d）Discharge cosfficient sor free，submerced and partly submergeci 238 out巩時
VIII－4 Geometry Ib－Smooth boundaries 139
VIII－5 Geonetries Ia and In ∞ Roingh boundaries 340
a）test data 14：0
b）ccraparison betreen mooth and rough tests 24
VIII－6 Geometry Vb－Rough boundaries 12
VIII－？Geometry VI－Rough borndaries 043
VIII－8 Geometry VII－Rough Eoundas＊ies 14．4
VIII－9 Head losses dus to submerged arch bridge constricuions 245
VIII－10 General backwater eouations 12.6
VIII－ll Conclusions－subnerged flow tests 12,5
（x．Eield Fork
Dol Prelininary Field Sumvey of Sites for Modeluprotctype vomparison 150 of the hydraulic of arch bridge constriction by Ness\％．To Po Chang and J．T．Strange，Indsans State Flood Control arci inter Resources Cominission．
TX－2 Sumary of information on bridge sites． 25
Ii－3 Preliminary study of indirect determination of llood discharge fiven 165 contract d bridgs ofening and hish wator markz，认V I。PoWus Indiana Flood Control and Fater Resources Comissior，
lppendix $A=$ lintations 270
ppendix B－List of Tables and Tables 275

I．PREFACE AND AGKNOMLDMESNTS

This report gcmpletes a general progran sponsored by the Stete Highway Department of Indjana and the UoS．Burequ of Public Roads at Purdue Universitig on the theraulios of gentur itow wades arct io icges．

The project has been active from April． 1958 ，to December：之963．From the beginning to June，1961，and Prcz Septerber， 1962 to Degembei， 1963 y the project was under the direction of Professox s．Wo Delieur．Prom June，2961，to Septanber 1963． It was under the direction of Professor G 。H．Toebes．Several reports ca different
 work，＂Preliminary Model Investigation of Hydraulic Characteristice of River Flow Under Arch Bridges＂．Thits was an investigation in a 12 poot longs b inches wide tilting flume with smooth boundaries wheh led，in 1959，to the building of a ók foot by 5 foot by 2 froot，all steel tiliting flume．The design of the b4 ioot flume vos undertaken by MoHoJ。Gven。Thisy along with the firet tests in this flums wes dascribert in tho poport entitied：＂Designt and Construction of fydravic Fhume and Backwater Effects of Smi－circalas Constrictions in Smooth Rectangula Chameln oby H．J．Owen and J．Wo Delleur．${ }^{2} \mathrm{Mr}$ 。A．A．Sooky ${ }^{3}$ derived an equation for the dischatge through a sherp edged serai－circular constriction for the case cil frea surface flow through the operingo he also extonded Mo．S。To Fusain＂s preliminazy tests in the 6 inch wide flume to include the effect of rough boundasies．The work of Kiseing Sooky and Dwen was summarized in a repost entitieds lifyoravihes of River Flow Under Arch Eridges－A Progress Report＂${ }^{3}$

In 1960 and 1961，MroP。F。Eiery undertook an investigation of artificial rough－ ness in the 5 foot wide Elume and studied single span arch bridge constrictions with Iree surface flow。 The experiment did not inclune skews eccentricity or entrance rounding，but tests were macie with smooth am rough bourdaries，A beckwater equation ＊Supersciluts refor to referances in the bibliograpiny．
was obtained together with a bridge design procedure for free surface flow through the opening，and a procedure for indirect discharge calculation froni high vater marics． The woth was zumarized in two reports entitiled：Mindraulics of SingleSpan foch Bridge Constrictions＂4 and＂Discussion on Roughness Spacing in Rigid Open Chamels：5 and both authored by PoF．Biery and Jo＂．Delleur．These reports ware Later Moizshec in the Journal of the Hydraulfes Division of the American Society of Civil Engineers．${ }^{\circ}$

In 1961 and 1962．Messrs．So Ifppai and ToPoCheng investicated the Iree surface geoneisy due to dual bridges，wing wails，eccontricity，skas and arch segw ments．No formal repoit was submitted on the woriss of Messus．So Ifppai and To Po Cheng．A summary of this work was presented in the morthiny progress reports prepnea by Proiessor G_{0} Ho Toeves．

In 1962 and 1963，O，Eakeri undertook the siudy of the affect of submergence of arch bridge constrictions on backwatsw superreievotion．His work was presentec． in a report entitled＂hyorauises of Submerged Areh Bridges＂${ }^{\text {E }}$ ．The experimental
 of 2963 ．The necesaary computer prograns and plots were prepared by Mo Nushraci．

Also in 1962，a program of fleld verification was undertaisen。 Messrs．ToPo Cheng and Jo T．Strange of the Indiana Flood Control and Water Resources Commissiont investigated over 100 arch bridge sites and sslected 10 field verifzcation sitcs ${ }^{9}$ 。 Air photographs of 9 of these sites were made by the Skate Hichnay Department of Indiana．Topogramic maps were prepared from these photograpts in the Airwhoto Laboratory at Purdue University under the direction of Professor R ．Miles。

The research reported herein was performed in the Hydraulics Laboratory， School of Civil Enginooring at Purdue University，under the auspices of the Joint Highway Research Project，Professor $\mathrm{K}_{\mathrm{E}} \mathrm{B}_{\mathrm{o}}$ Hoods，Director and Proiessor Ho Michael． Assoctate Directur．

The present report sumarizes the work done during the entrite duration of the project. It includes the following paris: a litereture abstract, a tinaretical
 and finally tine presentation ank enalysis of the tast datzo

Regarding the motsuation for studying the hydivatic chapecteristica of anch bridges, the following quastion could well be asked: How rang aroh bridges are there in the entire United States? Although chis figure is probebly urimown Indiana alone has abous 900 arch brisdges, over 100 of these are in Mazina Councy ant adjecent comities. Thie arplains the partioutar fnterest ukat has existed in Indana regarding the hydrauitce of arch bridges.

By increasing the backwater unstrean from the bridge site, wary of these bridge constrictions cause adiotional flooding during high flow peoplo and valuanle property are embangeredi。 In weent years, the probisi of minimizing the backwater effect cua to bridge constryction has becone increas:ngly important The highway ongineoss axe foced with a multisided problem; not onisy cio hey have to build brizges to convey a specified traffic volume and are sara with wesroct to flocding, but they also must find the most econazic design posilt ϵ_{0} It is common knowledge to the highway engineer that a bridge crossing will niteriene with the natiunal flow of the strean and will result in a rise of stage ripstreem tran the bridge and in an increase in velocity through the briage constivitiono The enginesire are also aware of alternatives of the inexpensive soii fils canpared to a structural apan. The optimum design is the shortest span that will not cause damage oure to stage increase during serlous flocd conditions. In order to neet thess requirementss, exhaustive investigations were madertaken to study the hyaraulic cilaractersistics of the water flow through different briage constrictions.

The other motivation for the stuly of hroraulics of arch bridees is the indirecte detemination of flood discharge from high water marks. The eikising methotit aro
not applicable to the asch gecmetry. Duo to the large number ci aroh bridges in Indiana, particulariy on small streans, many of with ate rngaged, the cietermination of peak discharge from beckwater obsesvation at bridge site wovid provicie a valuable addition to the knowledge of smell watershed hydrology.

The scope of the present research is lumfted to the study of the beckwater effecis and energy losses through arch bridge consirictions with rigid boundarles. In other words the effects of scour at the bridge site are not considered. This is not an excessive Ifmitation as a cozocecton curve for backwater with scour is availab? in the 11terature ${ }^{10}$ 。

 Bivasi

To the authoris knowledge there is no previons systadate ineetigetion of the hycraulic characteristics of axch hwidges in perfieniar Thise is, hovever an artensive sony of iateratu"e on the nycranlics of oricge constrictionss on yen channel constrictions in generel. on culverots and or the rurderientel aseats of tur mechantes of contracting and expancing streane.

An annotai st bibliograghy covering scme of the mosi perant Ifterajine is given
 Task Fores on frydraulics of Bridgee on the American Socisug of Cuil Enginecre

BRADLIY，J．N．Use of Backwater in Deaten of Eridge Watervays，Pub．Roads Vol． 30 No． 10 Oct．1959． pg 。221－6．
 centered on detemination of backwater produeed by bridges．Scour at bridge ibutment． scour around plers，and methods for olleviating scoup；research resulis，desigr information derived and application of bridge backtvater to waternay designs data piesented are based on experimental backwater studtes using hycireulie modsit end field measurements＂，from Tngro Ind． 1960 ． pg 。 260 ．Fion a more detadied diselussion see Bradley，＂Hydraulics of Budge＂tetwways＂．
 Public Roads．Gove Printing Ofizee． 1960

This report gives the hydraulic design cinteria for bujidge waterway design and for the comoutition of backwater caused by briages，fad is willticn for my ghrave dopert－ ments enginecrs．Design proeedurss and illustrative problems are given for norma？ crossing，dual bridges，skow crossing，eccontric crossing，abormal staite discharge． and backwater with scour．The methods of computing the backwater are based almost entiroly on modial teste conductse at Coloraüo Stata University（see Liug Eraüloy and Flate）

CHOF，VEN TE，Open Charnel Hydzenlics．Kchiaumminl Boolc Companys 5959.
In addition to being the most recent and comprehensive text an hrireulass as open channels，Professor Chowe sook contains a chapter on＂Fiow Through fonprisaatis Channol Sections＂（Chapt。17）e A detailed sumary（Act。17－16）witio complate se of figures of the work of Kindsveter Garter and Traeys（reproduced from U．S．G．S． circular 284，2959）gives 211 the necessary information to valco？ato the discharge through constrictions，or the cackrater ratio due to bridge constrictions．

CrAGHALL，JR．נ．Indirect Methodo of Dischange Measurement．Proceedings 6th Hydraulics Conference 1955 State University of Iowa．Studies in Encineeringmbulletin 36 ，1956。

The 1951 Rood in the Kansas river basin is taken as an example to discuss the necsssity for indirect discharge measurements．The indirect methods are classified In four groups：i）the slope srea，2）the contracted opening，3）the flow through culvert，4）the flow over dam．Eoch method is discussed briefly．

For a more detailed discussion of indirect discharge measurement at bridge constrictions see Kindsvater．Carter，and Tracy，＂Computation of Peak Discharge at Contractions＂。

HEARY，H．Re Discussion on＂Backwater Effects on Open Ghannel Constrictions＂Trans ASCE 120,1013 －1017（1955）

By simultaneous use of the momentum equation and the specinice anergy relation both in dimensionless form．Nr．Hemy obtains graphically a theoratical solution for the backwater ratio，thus elininating the trial and error calculation required by the method of Tracy and Carter（see also Ven Te Chow，Open Chanel Hydraulics，exampie 17－3）．The effect of the roughness on the decrease of momenium nceasioned by boundery shear in the zome of igetanston dowatream of the constriction is comparcd to the roughness effect on the loss of energy on the contricting 且 un upsteas of the constriction．

IZZARD，C．F．Elscussion on＂Tranquil Flovi by G。E．Kindsvater and R．H．Carter＂ Trans．，ASCE，Vol．120．pg．985－89． 1955.

The experiments of Kindsveier and Tracy on＂Prenquil Plos through Openewhamel Constrictions＂，were limited to the case of a horizontal bed．Inzard extends the analysis to the case of sloping charnels，and making use of experznental data of Tracy and Carter（＂Eackwater Effocts or Open－Channel Constrictions＂）he shows that the backwatsr of the constriction may be expressex ayproxinately as the product of a velocity head（velocity at nomal depih in duwnstreen section of constr＂ction） times a coefficient which depends primarily on the contraction ratio of the constriction Hhereas Kindswater and Tracy werc concerned with the problem of estimating the dischaige from measurement of water levels in the vicinity of a channel constrictions．Izzard is concerned with the reverse problom of estimating the beckrater caused by a chamel． carrying a known flow at normel deptho

IZZ RD，C．F．Discussion on＂Backiater Tiffects of Open Chancl Constriction＂by H_{0} J。Tracy and k 。W。Carter．Trans．ASCE Vol． 120 pso 2008－13． 1955.

The paper by Tracy and Carter is analyed fron the highway en ineer viempoint which is that of calculeting expected backwater elevations due to floods of various Irequencies．As the accuecy of the flocd peak estinates is seldom bowter than－t 20% gimplifications may be introduced In the kackwator calculation．The followirg simplification is proposed by Izeard．Neglecting minor effects（roughnessy and Sonith of constriction）the ratio of the maximum bacinater depth upstream of the constrico tion to the nomal depth in the unconstricted channel may be correlated to the contraction ratio and the velocity head in the consicicted section。 The velocity head In the constricted section is based on the ases at normal depth．

IZZARD，C．F．and BRADLEY，J．N．Field verification or̃ model tests on flow through highway bridges and calverts．Froc．7th Hydr．Conf．Iowa Inst．of Hydr．Fies． June 1958，Iowa City，Iowa，State University Iowa 1959，Dg．225－43．AMR 13－4641． Sopt．1960．

The paper reports on comparison of prototype measurenonts with conpisted values， derived fron model tests for backwater caused by birdges，scour at bridge abutmentis． and head－discharge characteristics of culverts．Computed and measuxed rajues of the drop in water level across the bridge embankment is given for ten sites，two of which are for subnerged deck Eirder．The smallest error is 0.5% ，the largest is 23% 。

AINDSVATER，C．Fo：CARTER，R．＂．；TRACY，HoJ．＂Computation of Peak Discharge at Con－ tractions．USGS－Circular 284，1953．

This feport givea a procedure for computing eubcritical peak discharges at cono Cractions based on laboratory studjes．The discharge formula eiven includes a discharge coefficient which may be obtained from sets of curves which contain the eesential geam netric and hydraulte factors governing the flow at a constriction．The factors aras the contraction ratio，the relative length of the abutment，the Froude number ${ }_{9}$ the antrance rounding，the ebutnent chamfers，the angularity of the constriction，the side depth at abutments，the side slope of the abutment，the eccentricity of the constric－ tion，the bridge subnergence，and bridge piles and piers．The primary variables are the contraction ratio and the relative length of the abutments．Standard values of the discharge coefficient as a function of the orimary variables are giver for four yypes of geometries：2）vertical eatbonkments and vertical abutments；2）sloping mbankent ard verticai abut nenis；3）slopsng embankments with sioping abutnents：
sloping erionkments witt．vertical abutmentos with wing walls。 The standard vaiue of the disohavge conificient is then multiplied by adjustment coefficients which dake into accomat the effect of the remeining varlablesg to obtain the discharge coerna fint。 Detailed fiaze and office procedures are given．

See also：＂findsvater and Carter＇，＂Trenquil Flow through Open－Charinel Constrico ions＂－fow a sxamery including working curves see Ven？Te Chow＂Hydraulics of pen Channels＂。
 rans。ASCE 120，9：－992，15550

A practical m．thoi of solving the discharge equation for tranquil flow of watom hrough open chaniel．constrictions is described．The finctional reletionships bew ween the coefficiens of diccharge ard the principal indepardent variables（contiraction ats．0．length of contractior．Wroude number，entrance rounding，eccentricity of pering，angularyty and guicis valls）is presented from experimentel data．Boundary onditions considered incluc $\begin{gathered}\text { vertical constrictive elemants，channel cross－secticnal．}\end{gathered}$ shapes and roughness patterr．WIthin the linits tested the proposed computation pro－ ：edure y＇sldis satiefactory resuits．Tests were min in a horizontal flume．See also

ANS，T．！．＂Exparinents on the Flow of＂ater through Contractions in an Open Charnelo sans．ASC． 83 s 111.9 （1919－1920）．

This is probably the first laboratory study on open channel constriction in the IOS The Froude nuribers used ore higher than those usually found in bridge waterways． ＇here is a Linited nuber of boundar shapes．Experiments were made in fow different llow contractions，namely rcundedwedge plate，sharp edge plote，short flume，Venturif lume。 Coefficients of discharge were fir＇st comuted using Dr Aubuzsson＇s and＂eisbach ${ }^{9}$ s ：omulas．Based on the expernental data a cenerai equation of contraction was develope The results of flumos tests vere presented in detali and discussed．

IU，H，K；BR DLEY，J．No ；PLTM，T．U。＂Backivater Effects of Piers and Abutmentso＂ lept。CER $5^{\prime \prime} \mathrm{HKI}$ 10：Goloracio state Linivo 2957？

This is the final report of a project undertalsen at colorado State University in ooperation with tha Eureau of Public Roadss $J_{0} S$ 。Dept．of Conmerce．Kaximum backvater lue to bridge constriction is giverl for simple normal crossing，abnormal stage witscharge onditions dual bricige crossing，skew crossing eccentric crossing piers，partially rubuerged bridge girders．The water surface prcifles，coefficient of contractiong low ：ation of maximum backwaters ere presented．This report is perhaps the most comprew lensive worl on hyoraulics of bridge constrictions in the American technicai literature
 Blancha. Noves 1950。Pgo 662-973. ANP 7-1849

Position cf contraction in sudionly contracted incons is detemoneci by uace of tho Schwarm-Ghriotofiel theorem. Stumy is made for flows about a suchenyly contracted pipe and abote trat having a round corner. The position of contraction is approxinately glvon with determination of the statiorary ponss of vorter center. Corner radius can be found by which voriex : 131 vanisho

A method of computsing the backwater due to open chamel constriction is given. It $1 s$ based on omplutical discherge coefricients and on a laboretory invostigation of channel shapeg constriction geonetry and influence of chamel rougheas3. the solution involves the ccarutation of water-surface drop through the constriotion and the detemunation of a factor which is the ratio of backwater to water suritace drop. This ratio is show to be a function of chamel coughnesse pes certaze of channel contractions and constriction geometry. See also the discusslon Then Thast

II．EXPAMJIUN ZOSSES
 Trans。ASCE Voi． 115 （1930）pgo 639－69\％．

This papsr doals with the turiulence genemeted at the edges of a prea eir jet issuing from orifices and dots．Besults are given of measurements of the dismoic
 lar interest to bridge hydreulices is the discussion by tiono Hens（2950）on Sloy under slufee gates．

ARCHER，WoH．Experimental．Detemination of Ioss of Head duato Juden Ditargernent in Pipes．FSCE Trens．Tol． 76 （1913）pg．999．

Sudden expanstori head loss：

where till and Un2 are the mean velocities in the ursifeer and acmontrean conctutsu

BIANCHET，C．Sux Le Probleme Des Renous Dte Des Perves De Cherge Produtts pair Tes Singularities Dans Lea Canaux Et Rivers．Fouille Elanche No，Ig Novo 1945 co Jan．1946．pga 39－62。
＂Problen of turbulence and Loss of heac catisec ivy obstructicns in chancis mad rivers；turbulence supves relatot to curves of speciofe enerm；inf？uenee of sill at channel bed and of contrection of crocse sectlon area on kin tic ariargy presults of study can be applied only to channels or rivens of stable kctucn not liabia to form deposits ${ }^{\text {th }}$ ．Fram Engr．J．nd． 1946 PE。 228°
 Hydraulics Division ASCE，Vol．89－HY3；Hay 1963．

Characteristios of flow for four abiupt expansiors with ho fingles of 25° an 300 45° and 90° have been detsmined by a conbination of analyticel and axperinental means． The transformation of mean onerej the rate of production of turbulences and the rate of dissipation of turi Tonce energ ane determined．The evaluated heacioloss results from the airmduct studfes are shecked by independent measuraments in a waterapipe assembly．The kinetic enerey of the mean motiong kinetic onergy of turbulence pressure distributiong turbulence production，and turbulence shear are presented in the form of their spatial disiribution for all expansion angleso fiead Ioss in abrupt empane sions is given fox dififerent angles of separation；for 90°（half angle）the head loss coefficfent is practically equal to that obtained in the assumption of constant pressure at the iniet section and onewdinensional analysis（po80 and Fiso 13）。 The veriation of the faed loss with chonging expansion ratio ie considerec（po 89 and Fie ai

DAVIDIAN，J．，CARRIGAN，Po H．JR．SHEN，J．（USGS）Flow trougis Oponing in tucth Constrictions．Water Supply Paper 1369 m ，1962．p． $92-12 \%$ plate。
miow pattern a．congtrictions with 2 to 7 openings：leboratory experimerts and analysis were directed toward develoment of methods for computing discharge through muitiple openixg constrictions，apporioning givam total dischaige among several openings aind predicting backwater caused by constrictionst．Engro Theex 3902．

DELORAT，A。 Considermions Sur Les De Bouches Des Petits Currages Sous Routes．

＂Water pascages under small road bridges：size of unoerpess is often oten－ dimensioned，becarab formules of caleulation use too high sefety factor；it is recomenderi that permissible factor of incidence of submerston shorid be defined bu considering possible damage due to summersion；cal culations shoold be basei as
 1959．p． 17% ．

This paper is privarliy for wind tunnel desjug dasing with potential mitur through twodimensional contracting channels of finite lemgth liethod of elumbent adverse velocity gradient along chamel wall was presented in great decait． numerical example is given．

HEMRY，HoR．Dfscussion on Subnergea Jets．Transactions，FSCE Vol。Ils（1990）p
 Ho Rouse on diffusion of subnerged jets．？he effect of boundery conditions differ ant from those used in the main paper are investieated．Theses fon the case of the flom under a sluic gete，are the effectsof the free surfaca $i_{0} e_{\mathrm{u}}$ gravitational efrect ano the presence of a solid boundarys $i_{0} e_{e}$ the flime floor instead of a plane or symmetry of a two－dimensional jet．
NKiteulic desigil conclusson：Experimental discharge coefficients for the fiow under a slufce gate are given in texins of a dimenstonless gate openinge a dinensioniess tailvater depth and the orifice Frovae number（figo 35，po 693）．The evpansion of thin jer（which is limited by a fixed lover boundary and by a free suxface upper boundary） is reperted to have a slope of I on 6 approximateiy．

KINDSVFTER，G．E．Energy Loss Assocjatod with Abrupt Finlargernents in Pipeso USGS． Water Supply Paper 1369－B－1961．

In connection with the USGS study of hyduaulics of bridgemwatervays，an experim mental investigation was made of the flow of water through abrupt concentric enlargem ments in circular pipes．pasticular attention is paid to the influence of pipeavajy
 The conventional method of computing the energy loss Iron the Borda－Gamot equation was Cound adequate for practicel．use．

PETERS，H．Conversion of Energy in cross Sectional Divergences Under tifferent

Hydraulic ciesign conclusion：Super imposing a spiral notion on tho flow entering an expansion increased the efficiency，as the rotational motion delays the separation．

ROUSE，H．Energy Transformation in zones of separation．Proceedings Sth IATir Jonf． Durbrounjk，196？．

The integrated equations of momentuan and on mean energy are examined for the cese of twomimensional llow ovax a aumal aill and attention is given to the variacion of the sum of the terms of Bemonili ejuation along a streamline in either the primery flow or the zone of sepreration．
This paper eatablishes siur of the thooretical background on the mechantsm of flow separation used in the experineatill sundies of Chaturvedi（1963）．
 No．38 May 2960 and No． 48 dune 2060.

Distributicn of energy in region of separation
Described in the present paper is the der，eraination of the ineen ard secondayy pattems of adsymmetrsc flow for two comparable boundary foms：the abmat Inlet and the blunt shaft。

Masurements evantaile foz analysis inc nded the distributions of nean veiosity mean pressure，longitudinal and radial Intenctiles of turbulence，turbuient shear，the longitudinal intensity gradient．Throigh use of the equations of mementum and or energy for the gean end the secona ny motion，the measured distrilbutions were aljustes to yield the recuited balnace of the assentiol terms for the equosions，thus fied difng results tn general acenrd wh phersicel requarements。 These aro presemted it the form of the flow patterns．（frar．Mthor＇s atstract）

TULTS，H_{0} ，filow expansion and preesure recovery in fluids．Tratisictions ASCE Vol． 121．1956：Pg。 65，（ARK 5－239i AuE。 55）

Investigating the possibulity of improving the pressure reazvemy in flow ecpan sions，author observed visually the separation phenomena and mensured the deve hofucnt of velocity profilles and pressure distribution in a gadual unt iacerally exparding twoodimensional reichangular test canal with vavied dfyergence froro zero degrees to 20 degrees in range of Reynolds number 5×10^{4} to 3×10^{5} 。

A simple aralytical dependency is established between the angle of divergence and the rate of separation at which the maximm pressure recovery in e－ch section occurs． This permits us to predict the optimum divergence for any required rate of gredual expansion．

VALLENTINE, H.Ro, Flow in Eectargular channels with lateral. constriction nlatea,

Characteristics of flow in a rectangular channel with sharp-edged Iatexral conm striction platas placed symnetrically, normal to the flow, are examinetir a smal tilting channel. The fich Fate Q is rele ted to the upstrean derin gh means uf a discharge equation $Q=0 \mathrm{Cby}_{3} 3 / 2_{\text {; }}$ where b is the width of openirg and C is an expeojw mental coeffickent which coperds upon the constriceton ravio aiki the frade nuibe: of the unconstricted flow. The values ofi C are esteblish for firoude numbers up to 2.1 and consiriction ratios up to 95%

The condithons under which insex'cion cs. constriction plates producas on increase in upstream depth are favestsfated and the entint of the increass is eraluated. (From authows s sumary)

BENJAPIN, Ta Bos Oiz the Tiow in chancia wen riett obstacies are placer in the stream.

$$
Q=\nabla h, \quad K=\pi^{2} 7^{2} h \quad S=\pi^{2}+\frac{1}{2} \operatorname{ch}^{2}
$$

 dogith) and diviced by donelty. Invarlability those quenuiti at diceerent chose

 tests.

Parts 1 and 2 deal with oone propawies flou Mad tive, Cr. the Last thea

 explanation is presertat ion the absent of wa.. on outh stde ot he gateo

 instead the gair opentig reguisca so prodise glvea ivocio dumbro
 Divo Vol. 87-iKU。Ncvo, IS6.。

The mogt procnt gurney of the matious for computing ill: ee classes af gteady

 and gtraight fixed boundaries with grevituy and (3) axialow symistric filu havige frise boundarles withorsh gravity.
 So Po Gasg, To S. Sireliofe asd IoSoIu (dij T962: po 253), and the closing dis. cussion by Go Birkhorix, (Karck 1963, polir) Frirt ort the limitations jif the mathe matical methods: and compariscne between treorotieal calonlations and experinental results are given. The paper along with 1 t, s discussions provides an excellent source of references on the subject.
 ASGE VOL. 102 po 58. 2.537.
"(1) Podels of slulce getos can be terchoch upon to preatet the discharge of thesin
 of sluicengatios (3) Romginoss of both mudet and urosotype aust be given consideration in the construction of the mocel; and (4) ecoi mesnits should roc be expected poro smazl gatemopeminge and 10\% velocities". (raom Anthoma Coniusion.)

Analyticel stresy is tiscc jat ennag orncierations of cho flow uncien a suice

 depth to gata onanug. All zesiits axe exp wit th dimension'ess formo

 paper.

 23 ppos Nov, 195, (ANE 5-5゙2)

 the spocific energy relation。

Although an exact analytical solutwor of the oxpilice problem hes not yet proved feasible, ise of the relaxation notucy noz permitted a mmusical determ mination of flow characterfstics to be rid? whin sufftcient precision for the problent to be consicered solved. The coepillelent of comtractior zs found to be

slots over the entire range of area ratiog and reasunable agreencrit is shown to enist. between measkiement and computation。 Coorrinabes of the jet profiles are prescrend In tabulas and graphicel form, and are fourd to differ apreciabky from thoso previn ousty adapied from the twowimenstonal cesen. A conoosite dimersionless chart is als.

III-1 Flow Gonflguration at En Opar Chanel Constriction

The backrater due to a constriction in an ops chamel depends mainity on the boundary geonetry, the discharge and the regine of the flow, $1_{0} G_{0}$, the Froude Namibero The phenomenon is usualiy so complieatsd that the resulting flow pattern is not ontirely subject to analytical solution. A practical solution is only possible through experiments.

In the natural streanes, the Frouda Nurber of the flow usually ranged frow 0.1 to 0.5. In this range of Froude Numbers the constriction will Induce a prononced
 may exist at the conatriction. Then a cratical control section exista at the con striction, a hydraulic junp occurs downtrean of the constrictiono

Whan a constriotion is introduced thto an otherwise uniform; friction-controliled flow in a prismatic channel of mind slope (see Fied 3-J), a beckrater of the M-1 type is developed upstrean of the constriction. Upstream of the backwater curwe the flow is undsturbed and the flow distribution is governed by the channel charactero istics. Approaching the constriction, the flow decelorates as the dephin increases. The deceleration process continues untila a section (d⿹signated section (1)) is reached. Farther downstrean the flow begins to accelerate owing to the convargence of the flow into the contracted opening (section 2). The flow pattern between sections 1 and 2 is essentially dominated by the constriction geometsyo

As the fluid passes through the opening, the live strean contracts to a widith somewhat less than that on the opening and the corresponding average longitudinal profile drops sharply. At the section of minimum (section 3) the expansion process begins and continues until normal flow again is established at some distance downstream (ssction 4).

The boundary roughness paints an imporiant role in the domstream pattern of motiong especially when the flow just downtrean of the constriction becomes supercritical. The roughness may force the hydraulic funps to move upsiream, end may eventually reach the downstream face of the constriction.

Whon the constriction is subraerged, the centerline proflile and plan view are as shown in figures 3-2 anc 3-3 respectively. In figure 3-2 the approaching water surface is show to have a profile of an M_{1} curve; Y_{0} or Z_{n} is the normal depth of the unobstructed channel flow I_{1} is the depth at the secion of maximum backwater, Y_{2} is the downstream depth taken in the deadweter flow portion of the channel. and I3 is the dopth of the IIve strean at the vera contracta. The flow may be fully Wubmerged as shown by the solid line or the discharge may be free at the domstream and of the constriction. The plan view of the channel constriction flow in adgure 3-3 shows the streamlinee of the flow entering the opervixe The velocity upstrearn of the constriction is low and the streamines follow the walls very closely. The eddies sketched on the upstrean side of the opening moves in a vertisal plane in a screw motion towards the opening. A particie in the corner would not remain in this region but due to these oddies it moves towards the opening. The eddies dowstrean of the constriction, shows on both cides of the jet, are in tine horizontal plane and are less active. Particles could often remain there for louger perlods of time.

The three basic equations of fluid 阿manics: conservation of mass, conservation of momontism, asd conservation of anergy ase usod in the following stugly. These are applied to a definite volume called the control volume (e.z.) and the boundary of this vclume is known as the control surfice (e.s.). The shape of the control volume reinalna constant, but the amount and identity of the fluid in it may vary in time.

The flow configurations in the problen at hand are strictly threcreimensional. However, in order to simplify the analysis, a onemdimensional ilow in which the velosity and the depth of flow vary only along the path of the channel is ofeen used. In aidition, the glow is that of a real fluid, that is to say that friction is present: toundary layers exist and Plow separation may occur. The flow Is thus rotational. The notationality of the flow and its threendimensional characteristics preclude the wing of pitential N10w theory. The free streamine theorys. so ably reviewed by 31rikhofi ${ }^{(1)}(1961)$ is not applicable.

The errors introduced by using a one-dimensional enalysis may be einminated by using suitable correction coefficients. However, in pracitice these coefficients are not known exactly, and even in the laboratory, theis evaluation requires time corsuming messurements and calculations. It is, therefore, often customary to use thu one-dimensional analysis without compection factors, realizing the limitations of ouch an analysis. The approximations somobtained are nevertheless useful for mgineering deaign; their accuracy is consistent with that of the data of the probien. It mant be recognizod that in the design of a oridge waterway opening, the
 et ± 201 are comon. Purthermore, all the Irregulesities of a natural water couree cansot be taken into consideration, and average values or typical cross sections of the etroan are conuldersd. In the reverse problem of calculating a flood discharge from higi water marks, the several inaccuracies inherent to the high weter mark measurament and changes in roughose cootficiont at high stages mate it difficult to
ovaluato the diswharge closer than within 20 to $25 \xi_{0}$
The conservition of mase is expressed by the contanity equation which fore a steady incompressiule flow talses the form

$$
\iint_{G . S} \vec{\nabla} \cdot \overrightarrow{d A}=0
$$

In which the zntegral of the net oxflux is talion around the whole control surface (Cos. This equation staply states the inflow into the control volure (C.y.) is equal to the outhow from the concrol volume, and its oncondmensional foren whea the usual harm

$$
\nabla_{1} A_{2}=\nabla_{2} A_{2}
$$

The conservation of monentum roz steady N1.0w states that the sum of the external forces on the control surface and of the body forces (usually grevity) acting inside the control volune 1 equal to the not rate of efflux of momentuin across the control surface:

$$
\vec{F}_{s}+\iiint_{C \cdot V} \vec{B} \rho d v=\iint_{C . S} \vec{V}(\rho \vec{V} \cdot \overrightarrow{d A})
$$

where \vec{F}_{s} represenis the extomal surface forces and B is the body force per unit uf mass. The one dimensional counterpari of this equation is

$$
\begin{equation*}
F_{x}=\beta Q\left(\beta_{2} v_{x 2}-\beta_{1} v_{x 1}\right) \tag{3-2-4}
\end{equation*}
$$

where 及as the moneritum corsection factor wich takes tnto account the nonwinifornity of the velocity distribution

$$
\begin{equation*}
\beta=\frac{1}{A} \iint(u / v)^{2} d A \tag{3-2-5}
\end{equation*}
$$

The momentur equation applied to a strafght open channel reanin is:

$$
\begin{equation*}
\rho Q\left(\beta_{2} V_{2}=\beta_{1} \nabla_{1}\right)=P_{1}-P_{2}+\pi \sin \theta \infty P_{1} \tag{3-2-6}
\end{equation*}
$$

where P_{1} and p_{2} are the resultant forcso acting on the ent sections of the weash

Wis the woight of wter between the soctions
© is the angle of inclination of eane chamel
\mathbb{F}_{f} is the extermal friction Sorce exerted by the boundaries on the flutd
The friction force Fi \#xay be evaluated from Mamingy sormula written for the boundary shear stress

$$
\begin{equation*}
\tau_{0}=\frac{3405 n^{2} \rho V^{2}}{n^{1 / 3}} \tag{3-2-7}
\end{equation*}
$$

winore \vec{T}_{0} is the average bouncary shear and R is the hydraulac radus.
The spaciffo force equation is obtained by applying the momentum equation to a shost primatic horimontal open channel reach, neglecting the fereticai ioses and ascuming a fydrostatic pressure dustribution:

$$
\beta_{1} \frac{Q^{2}}{E A_{1}}+\mathrm{E}_{1} A_{2}=\beta_{2} \frac{Q^{2}}{E_{2}}+O_{2} A_{2}
$$

or

$$
F_{s 1}=E_{s 2}
$$

where F_{g} is the spectfic Poree, and where tis the hoad oros tho center of gravit. of the cross section.

The conservation of energy foi steady flow may be wititen

$$
\begin{equation*}
\int_{\text {Cos. }}\left(\nabla^{2} / 2 g+2+p / \hat{0}\right)(\hat{f} \vec{V} \cdot \overrightarrow{d A})=\text { hydraulic losses } \tag{3-2-9}
\end{equation*}
$$

and its one dinensional counterpart is

$$
\begin{equation*}
\alpha_{2} v_{1}^{2} / 2 g+z_{1}+p_{1} / \gamma=\alpha_{2} v_{2}^{2} / \mathrm{zg}+z_{2} 2+p_{2} / \gamma+h_{1} \tag{3-2-10}
\end{equation*}
$$

Whare of is the onergy correction factor which takes into account the womaniformity of the velocity distribution

$$
\begin{equation*}
\alpha=I / A \iint(u / v)^{3} d A \tag{3-20.21}
\end{equation*}
$$

$$
\begin{equation*}
V=(104 ; \delta 6 / n) R^{2 / 3} s^{\frac{2}{2}} \tag{3-2-12}
\end{equation*}
$$

whers

$$
\begin{equation*}
S=h_{\underline{c}} / \bar{L} \tag{3-2-13}
\end{equation*}
$$

Is the heat loss per unit length.
In open channel flow it is converient to consider the anancy wich respect to the bottou as a datum. Thus is the specific energy firsh introduced by Bakhasterp (2):

$$
\begin{equation*}
E=V^{2} / 2 \bar{g}+\bar{Y} \tag{4}
\end{equation*}
$$

In this form it is assumed that the velocity is unifont and that the streaminas are esscntialiy peraliely thus the prossum is hydrostatic. If the velowty is not uniorm $_{8}$ and if the stremines ane curved, the velocity head is mitipifed by the ketnetzc enorgy coesifcient, and the dopth y may bo muitinitied by a prossure coepficient (α^{\prime})

$$
\begin{equation*}
\alpha^{\prime}=2+2 / Q y \iint c \bar{y} d A \tag{3-2-25}
\end{equation*}
$$

where

$$
\begin{equation*}
c=(d / g) T^{2} / T \tag{3-2016}
\end{equation*}
$$

 sthe padius of curvature of a streartine. The specific energy thus becones in generrel

$$
E=V^{2} / 2 g+O^{\circ} Y
$$

The cpocific loxce and the specitic energy equations are used to deline a number of open channel flow charecteristics. Whon the specipic energy or the specifice force is minimu, the flow is called critical. The following relationshiy for critical Ilow ney be derived fran the specific energy equation for a stream of an arbitrasy cross section, with $\alpha^{\prime}=1$

$$
\begin{align*}
& Q^{2} / B=A_{c}{ }^{3 / G} \tag{3-2-26}\\
& Q \sqrt{E / R}=Z: Z=A \sqrt{B / A}=A \sqrt{D} \tag{3-2-19}
\end{align*}
$$

$$
\begin{align*}
& T=\sqrt{(B / \angle)\left(A_{C} / W_{C}\right)}=\sqrt{g D_{C} / \sigma} \tag{3-2-22}\\
& W / \sqrt{D_{C} / 2}=?=1
\end{align*}
$$

whervif is the widith of the free sureace, Z is the soction factor fos criticel flew
 rectangula cross section, letting e to the discharge per unit widtas the above reizo \{lonships taks the foilowing simpintice format

$$
\begin{align*}
& q=\left[g g_{3}^{3 / \alpha c}\right]^{\frac{2}{2}} \tag{3-2-23}\\
& \text { a } V^{2} / 2 g=y_{0} / 2 \\
& \text { Ve" }[\text { Esc/a }]^{\frac{1}{2}} \\
& Y_{C}=\left[\delta T^{2} / 5\right]^{1 / 3} \tag{3-2-26}\\
& \text { E }=3 / 2 v_{0} \tag{3-2-27}
\end{align*}
$$

For Mlow th rectengulas clannels the specific force and the specific enesery equations may be writion in a dinenstonless forra, making use of the crititcel flow relationships。 Thery are respectively
and

$$
\begin{equation*}
\frac{\bar{Y}_{2}}{\bar{Y}_{1}}\left[\frac{\Psi_{2}}{\bar{Y}_{c}}\right]^{2}+\beta_{2} \frac{\bar{Y}_{8}}{\bar{Y}_{1}}=\frac{\bar{\Psi}_{2}}{\bar{Y}_{2}}\left[\frac{\bar{Y}_{2}}{\bar{Y}_{c}}\right]^{2}+\beta_{2} \frac{\bar{Y}_{S}}{Y_{2}} \tag{3-2-20}
\end{equation*}
$$

$$
\begin{equation*}
\frac{Y_{1}}{Y_{c}}+\alpha_{1} \frac{Y_{c}{ }^{2}}{Y_{1}}=\frac{Y_{2}}{Y_{G}}+\alpha_{2} \frac{Y_{c}}{Y_{2}}{ }^{2} \tag{3-2-29}
\end{equation*}
$$

where the ratio $\overline{\mathrm{Y}} / 4$ is a geometric characteristis of the crose section and is equal to 0.5 for rectangular channels. I being the head over the center of gravity of the section。

Six classer of flow may extst at a bridge conetriction:
Class 1 o ghe flow is subcritical throughout the transition
Class 2 - The fllow passes frcsin subcilticel to supercmiticel in tio transition
Class 3 - The flow is supercritical throughout the transition
Class 4 - The flow passes from supercritical to suberiticcil nass the transition
Class 5 - The transition inlot is subnerged but the orthet is free, tosulting in a Eree oriffice flow。

Class 6 - Tho traneltion inlet and outlet are sibnerged resulting in a subnerged oritice flowo

 also given.

As the flow toraras the constriction is an ancelorating plow, and as the energe losses ars relatively small in a converging flow, the energy equatlon is suritable wo describe the flow becween sections I and 3. The empuding flow between seetamg 3 and 4 is better described by a momentum eouation.

The first four types of flow may be delineated by the followng simplited analysis. Writing an energy equation between sections 1. ans 20

$$
\begin{equation*}
\alpha_{1} \frac{\nabla_{3}^{2}}{2 g}+d_{1}^{\prime} \Psi_{2}=\alpha_{3} \frac{\nabla_{3}^{2}}{2 g}+d_{3}^{\prime} I_{3}+h_{2} \tag{3-3-1}
\end{equation*}
$$

Ascuraing $\alpha_{2}=\alpha_{3}=\alpha_{1}^{\prime}=\alpha_{3}^{\prime}=I$ and $h_{1}=O_{0}$ leting b_{3} the mean width of the stream at section 3, making use of the continuity equation

$$
V_{1} E X_{1}=V_{3} b_{3} T_{3}
$$

the equation of erergy may be reminitton, after dividing both sides by II

$$
\begin{equation*}
\frac{\nabla_{1}{ }^{2}}{2 z_{Y}}+1=\frac{\nabla_{1}^{2}}{2 \mathbb{I}_{1}} \quad\left(\frac{B}{\partial_{3}} \frac{Y_{1}}{\nabla_{3}}\right)^{2}+\frac{I_{3}}{I_{1}} \tag{3-3-2}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{2\left(\frac{Y_{3}}{1}\right)^{2}\left(1-\frac{Y_{3}}{I_{2}}\right.}{\left(\frac{B}{03}\right)^{2}-\left(\frac{W_{3}}{I_{2}}\right)^{2}} \tag{3-j-5}
\end{equation*}
$$

 the flow is critical at section 3 corresponds to $F_{3}=I_{8}$ anti is obtained from the continuity equations

$$
\begin{equation*}
V_{1} B I_{1}=V_{3} D_{3} I_{3} \tag{3-3+0}
\end{equation*}
$$

or

$$
P_{2}^{2} \quad \frac{B^{2}}{b_{3}^{2}} \quad \frac{Y_{1}{ }^{2}}{X_{3}^{3}}=F_{3}^{2}
$$

When the flow is critical of section $3, F_{3}=1$ and

$$
\begin{equation*}
r_{1}^{2}=\left(\frac{I_{3}}{\frac{2}{2}}\right)^{3}\left(\frac{b_{3}}{B}\right)^{2} \tag{3-3-10}
\end{equation*}
$$

Solving the two equations simultaneously:

$$
\begin{equation*}
F_{1}^{2}=\frac{2\left(\frac{I_{1}}{I_{1}}\right)^{2}\left(1-\frac{I_{1}}{1}\right)}{F_{1}^{2}\left(\frac{\Psi_{3}}{Y_{1}}\right)^{-3}-\left(\frac{Y_{3}}{I_{2}}\right)^{2}} \tag{3-3-11}
\end{equation*}
$$

$$
\begin{equation*}
P_{1}^{4}-P_{1}^{2}\left(\frac{\Psi_{3}}{X_{1}}\right)^{5}-2\left(\frac{Y_{3}}{Y_{2}}\right)^{5}\left(1-\frac{Y_{3}}{X_{1}}\right)=0 \tag{3-3-12}
\end{equation*}
$$

froin which $\quad 2 F_{2}^{2}=\left(\frac{\psi_{3}}{Y_{1}}\right)^{5} \pm \sqrt{\left(\frac{\Psi_{3}}{W_{1}}\right)^{10}+\left(\frac{\Psi_{3}}{T_{1}}\right)^{5}\left(1-\frac{Y_{3}}{Y_{1}}\right)}$
Only the positive sign in front of the square root has a physical significance.
This equation gives the values of the Froude number at section 2 corresponding to a Froude number ois unity at the vena contracta.
The plane:of Rig. $3-2$ is thus divided in 4 regions:
Above the line $F_{1}=1.0$ the flow is supercritical in the approach of the con striction, below the Iine $F_{1}=1.0$, the flow sustrititical at section Io Above the curve $F_{3}=1_{2}$, the flow is supescritical, and below the curve $P_{3}=1$ the now is suberfitical. The four regions of the figure are labolled according to the four classes of flow listed at the beginiting of this section.

 velocity head plus the heat loss in the osiftee。

Thus for the Ifmiting casey sailing it the seaiowinsulaio acis radius:

$$
\frac{V^{2}}{2 g}+\left(\frac{g}{C_{7}^{2}}=E\right) \frac{V_{3}^{2}}{V g}=I_{1}-I
$$

where $\left(\frac{1}{C \psi^{2}}-1\right) \frac{{ }^{3} 2}{2 g}$ is the on erin head loss:

Then

$$
\begin{equation*}
\frac{I}{C_{Z^{2}}} \frac{V_{3}^{2}}{2 \Xi}=Y_{1}-2^{2} \tag{3-4-2}
\end{equation*}
$$

Dy continuity $V_{2} B_{1}=V_{3} b_{3} J_{3}=V_{3} C_{6} A_{0}$ wires A_{0} is the opening axes ea

Then

$$
\begin{align*}
& \frac{1}{C_{y^{2}}} \frac{\nabla_{2}^{2}}{2 g} \frac{B^{2} I_{1}^{2}}{0_{0}^{24} A_{0}^{2}}=I_{1}=x \tag{3-1,-1}
\end{align*}
$$

$$
\begin{align*}
& F_{1}^{2}=20 d^{2}\left(2-\frac{D_{2}}{D_{2}}\right)\left(\frac{A_{0}}{A_{1}}\right)^{2} \tag{2}
\end{align*}
$$

There will be suixiergence when

$$
\begin{equation*}
F_{1}^{2} c_{\varepsilon_{2}}^{2}\left(3-\frac{\Gamma}{I_{1}}\right)\left(\frac{A_{0}}{A_{1}}\right)^{2} \tag{3-2,-6}
\end{equation*}
$$

were Ca ≈ 0.55.
or wien

$$
\begin{equation*}
\left.\mathrm{F}_{2}^{2}<1 / 8 \mathrm{C}_{\mathrm{d}}^{2} \pi^{2}\left(1-\frac{1}{2} \frac{B}{Y_{1}}\right) \quad \underset{B}{b}\right)^{2}\left(\frac{b}{1}\right)^{2} \tag{3-4-9}
\end{equation*}
$$

and since $\frac{b}{B}$ M
when

$$
\begin{equation*}
\frac{E_{1}^{2}}{1^{2}}<i / 8 \pi^{2} 0_{d}^{2}\left(1-\frac{1}{2} \frac{3}{y_{1}}\right)\left(x_{1}^{3}\right)^{2} \tag{3-4-8}
\end{equation*}
$$

An empirical relationship to distinghish between free surface flow and ozifice flow, can be obteined, making use of the notation developed in the article on dimen sional analysis, and of the results of chapter jo

Fran iree surfoce fllow experiments (see chapter 5)

Where $C_{m}=M^{0} / \mathrm{M}$. (See Figure 3-12)
fron orisic flow expeainents (see chapter 5)

Equating

$$
\left[\begin{array}{l}
F_{n} \tag{3-2-1}\\
\frac{M}{M}
\end{array}\right]^{0.46}=13.46 \quad c_{m}^{2.26}\left(\frac{Y_{n}}{\frac{Y_{n}}{0}}\right)^{1.8}
$$

ance since fox $d=0$

For the limiting case

$$
\left(\frac{r_{n}}{M}\right)^{0.46}=13.46\left\{\frac{1}{2} \sqrt{1-\left(\frac{Y_{n}}{r}\right)^{2}}+\frac{r_{n}}{I_{n}} \sin { }^{-1} \frac{Y_{n}}{m_{n}}\right\}^{2.26}\left(\frac{Y_{n}}{25}\right)^{1.86}
$$

A plot of the selationghip is given in figure $3-5_{0}$ - frocn wich it is posstbie to preatict for a eiven Frorte, normal depth and contraction geanetry, whether the flat will be tree or Bulanerged.

III-5 Plow Chass I - Subericical R1ow through Ungubarege Gonstryction

a) Ceneral considerations

This is the most common case The R2ow patterg divides itself in two parts:
(ses Iig. 3-1)。

1) a zone of contrecthg or aecelerating flow, froc the section of maximum backwatas (section 1) to the acction of mininua area oa "vena contracta" - (section 3).
2) a zone of expanding or decelswating filow from the vena contracita (section 3) to the section where the stream has regained its normal depth (sertion 4)

It is, therefors, expected that the analysis of che flow patiem would be divided in two parirs. An energy equation may bo used for the analygis of the conow tracting flow, and a momentum equation Pos that of the axpanding flow Sectlons is at which the ilow occurs at normal depth is the control section. The calculation of the flow profile for a given izscharge could procaed from section 4 to section 3 Dy means of the monentm equation, and from section 3 to section 1 by means of the energy equation, the continuity equaition being used to relate the areas at the severat sections. The difficulty in this appioach lies in the lack of pioper definftion of the geometry of section 3. The geonetry of section 2 , $2 t$ the section of separatzong is defined by the water depth, as the geometry of the constriction ha assumed to be knows - in our case a semp-circular arch.

At section 2 the flow separater from the soluc boundaries, and the throem dimensional Ifve stream converges to the vena contracta. The geonetry of the free boundary of the convergent live stream cannot be determined by means of the free Hownerine thoogy as the latter is limitod to tro-dionsional ilowo Consequentlyg It is customary to make some assunption on the flow geometry betwoen sections 2 and 3. Typical assumptions ares
a) The geometry of section 3 is assumed.
b) The depths at sections 2 and 3 are assumed to be identical.
c) The depth at section 2 is assuned to be equal to the normal depth of cite

The three assumpitions will be discussed．

a）Assuned geometry at，gestay or

 is not uniform across the section，but that th the dead water pegion it in onty 3 ． larger than across the 3 约期 stream．The depch X_{3} may thus be reasonably assumed constant across the sectionto whe widu of the live stream ba may ve epprovimated using the twa－dimensional coefficient of contraction and

$$
\begin{equation*}
b_{3}=S_{0} ? b \tag{3-1,-1}
\end{equation*}
$$

Thus the cross section of he Invesiream would be

$$
\begin{equation*}
A_{y}=u_{c} b Y_{3} \tag{3-5+2}
\end{equation*}
$$

 given in the following table：
$0 \quad 0.1$
0.6110 .622
$0,615 \quad 0,622 \quad 0,63 \%$
0.6440 .662
0.6370722
0.762
2,00

This assumption makes it possibie to delate the depthy $\mathrm{F}_{\mathrm{r}}=\mathrm{F}=$ to V_{3} by means of the momentum equaluons and then I_{3} so I_{2} by meane of the energy squationo
b）Assurned equality i depths at soct＂ons 2 and 3.
This assumption was utsed by Trocy and Caster（Ascit mpars： 1955 po 997）。 The
 do not substantlate this assumptiono
c）Depth at roetion assumed equal to nomsl dept of uncontractca streano
This assumption has been imnlied by Izsasd（ASCE Trans 2955，p．2010）。 Although this assumption cannot be justified theoreticaliy，the experiments of $P_{0} F_{i}$ Biexgr show that this assumption is aproximately satisfied．It．Is then possibie to exprees the head loss in the constriction as a function of the velocity head at section 2_{2}

$$
\begin{equation*}
h=K^{V_{32}} \frac{V^{2}}{2 g} \tag{3-5-3}
\end{equation*}
$$

The dopits of flow $2: 3$ section 1 may then be obualned by mears of an energy equetion botween sectiors Iasas 2 or betreen sectiong i. ane 4. Mhis assumption has also bean used with reasonable success by $I_{0} P_{0}$ 隹 (h) Irs a prelininasy calculation of Ino direct determination of hlood discrange from scntiacted bridge openings and high wete. racke.
b) Fomentur equetion fox diver giug flow
 the preasure dietainution is hydrostatic at These sections:

$$
\mathbb{P}_{3}+M_{3}=P_{4}+M_{4}+F_{D}=E_{Q}
$$

P_{3} and F_{4}-epsescrit the hydrosiatic foness section 3 and is pespontively; Mand
 F_{G} is the component, of the gravicy foree in whe direction of the flowo
 heads ovor the rempectre snters of travity of the cross sections To calsulace tho monentra fiuk enrough sect.on 3 it is nesessay to evajuate the cross sectina: area of ting live sineam at section 30 It is assurned that

$$
A_{3}=D_{3} I_{3}
$$

The monentup equation may then bo writuen

$$
\gamma I_{3} B I_{3}+\rho \frac{e^{m}}{A_{3}}=\gamma I_{4} E P_{4}+\rho \frac{Q^{2}}{A_{4}}+F_{D}=F_{G}
$$

Introducing the esititain depth I ${ }^{2}=\mathrm{q}^{3} / \sqrt{3}$
 of the above equation by $\Psi_{8} 2_{3}$
 for a
rectanguicer saction

$$
\begin{aligned}
\frac{\stackrel{\rightharpoonup}{w}}{\#} & =0.5 \\
& =0.333 \\
& =1-(4 / 3) \pi \\
& =3 / 5
\end{aligned}
$$

iriangulaz secotn
seminetrcle soction
pasabola sectum
 squation becouras:

Naglecting fow the the bsuag the contribution of the term

$$
\left(P_{D}-F_{C}\right) / V B C_{C}^{3}
$$

and celling the speciric foree F_{s}

$$
F_{B}=\gamma \bar{Y} B Y+\rho \cap V
$$

then tho generalized diusensioniess nonenturn equation becomes:

$$
\begin{equation*}
c_{x}\left(\frac{y_{x}}{Z_{0}}\right)^{2}+\frac{B}{B} \frac{Y_{c}}{V_{i}}=E_{B} / \gamma 3 Y_{0}^{2} \tag{3-5-8}
\end{equation*}
$$

A plot of the relationship is given in the right hand sice of figure $3 \mathrm{~m} \%$ which may be used for an approximate solution of the depth Y_{3} if the depth Y_{4} is given。 The width of the live streari at section 3 is usually urknown a prionis but may be taken as the wiath of the constriction times a contractson coefificient.

The drag force of the diverging stream on the channel bottom between the vena contracta and section 4 ray be obtained by integrating the shear stress over the exparsion area along the botton. Firoin the discussion by Henry (5) it appears that the rate of expansion of a submerged jet is approximately 1 on 6 。 The rodel is assumed for the zone of expansion is shown Fig. 3-6.

From Manning's formulas the shear stress on the bottom is
and the elenontary drag force is

$$
\begin{equation*}
d F_{D}=\tau_{d A}=\frac{1405 n^{2} \rho a^{2} B^{2}}{y^{7 / 3} b^{0}} d x \tag{3-5-15}
\end{equation*}
$$

or

$$
\frac{d F_{D}}{\gamma B Y_{c}^{2}}=\frac{\sum_{0} 5 n^{2} B Y_{c}}{Y^{7 / 3} b^{0}} \quad d x=24.05\left(\frac{n}{Y_{c}^{I / 6}}\right)^{2}\left(\frac{Y_{C}}{y}\right)^{7 / 3} \frac{B}{Y_{c}} \frac{d x}{b^{0}}
$$

The dimensionless drag force is

$$
\begin{equation*}
\frac{F_{D}}{\gamma_{B I_{c}}^{2}}=I_{A_{0}} E\left(\frac{\pi}{Y_{c}^{I / 6}}\right)^{2} \frac{B}{Y_{c}} \quad \int_{0}^{I_{3 m} / 4}\left(\frac{Y_{c}}{Z}\right)^{7 / 3} \frac{d x}{b 0} \tag{3-5-17}
\end{equation*}
$$

Since bo $=C_{0} b+x / 3$, and taking an average value of the denth, an approximate value of the drag force is given by

$$
\begin{align*}
& \frac{F_{D}}{\gamma^{B Y_{c}}}=11_{605}\left(\frac{n}{I_{c}^{I / 6}}\right)^{2} \frac{B}{I_{c}}\left(\frac{2 I_{c}}{Y_{n}+Y_{3}}\right) \int_{0}^{3(B-b G c)} \frac{d x}{C_{C}+x / 3} \tag{3-5-18}\\
& =14.5\left(\frac{n}{Y_{c}{ }^{2 / 6}}\right)^{2} \frac{B}{Y_{c}}\left(\frac{2 Y_{c}}{I_{n}+Y_{3}}\right)^{3 \ln } \frac{B}{b C_{d}} \tag{3-5-19}
\end{align*}
$$

The gravity force is

$$
\begin{align*}
& F_{G}=\frac{I_{3}+I_{4}}{2} I_{3-4} S_{0} \\
& =B \frac{X_{3}+I_{4}}{2} 3\left(B-B C_{d}\right) S_{0} \tag{3-5-20}
\end{align*}
$$

and the dimensionless gravity force is

$$
\begin{equation*}
\frac{F_{G}}{B_{C}} 2=3 / 2 \frac{\Psi_{3}+I_{n}}{Y_{C}} \frac{B-3 C_{d}}{Y_{C}} S_{0} \tag{.3-5-21}
\end{equation*}
$$

In the actual computation a first approximation off X_{3} is obtained by negionting F_{D} and F_{G}, With this approximate value of X_{3} o the values of F_{D} and F_{G} io be calculated from the above equations.
c) Energy Equation ion Converging Flow

The energy equation between sections I and 3 may be white:

$$
S_{1} I_{1-3}+Y_{1}+\alpha_{1} \frac{V_{1}^{2}}{2 g}=Y_{3}+\alpha_{3} \frac{\nabla_{3}^{2}}{2 g} \therefore r_{1}
$$

where h_{f} is the heads loss between sections 1 and 3 . Making use of the continuity equation

$$
\begin{align*}
& V_{1} A_{1}=V_{3} A_{3} \\
& X_{1}+\alpha_{1}-\frac{q^{2}}{2 I_{1}}{ }^{2}-I_{3}+o_{3}\left(\frac{A_{1}}{A_{3}}\right)^{2} \quad \frac{q^{2}}{2 g_{1} I^{2}}+h_{f}-S_{0} L_{I-3} \tag{3-5-23}
\end{align*}
$$

Introducing the criticised depth $I_{c}{ }^{3}=q^{2} / g$

$$
\begin{equation*}
\frac{I_{1}}{I_{c}}+\alpha\left(\frac{I_{c}}{I_{1}}\right)^{2}-\frac{I_{3}}{I_{c}}+\alpha_{3}\left(\frac{B}{b_{3}}\right)^{2} \frac{I_{c}}{I_{3}}+\frac{Y_{I}}{I_{c}}=S_{0} \frac{I_{1-3}}{I_{c}} \tag{3-5-24}
\end{equation*}
$$

which is the dimensionless form of the energy equation. Assuming $\alpha_{1}=a_{3}=10$ and neglecting the difference of the last two terms.

$$
\begin{equation*}
\frac{I_{c}}{I_{c}}+\left(\frac{I_{c}}{I_{1}}\right)^{2}=\frac{I_{3}}{X_{c}}+\left(\frac{B}{b_{3}}\right)^{2}\left(\frac{Y_{c}}{X_{3}}\right)^{2}=\frac{I_{S}}{I_{c}} \tag{3-5-25}
\end{equation*}
$$

The plot of this equation is given in the Ieftwand side of figure 3-7。
The friction loss betwean sections 2 and 3 may be calculated fron the expression

$$
\begin{equation*}
h_{f}=L_{1-2} \frac{Q^{2}}{K_{2} K_{3}} \div I_{2-3} \frac{Q^{2}}{K_{3}^{2}} \tag{3-5-26}
\end{equation*}
$$

The value of the conveyanee

$$
\begin{equation*}
K=\frac{1,4,86}{\pi} \quad A R_{2}^{2 / 3} \tag{3=-5-27}
\end{equation*}
$$

may be approsimated as follows

$$
\begin{align*}
& X_{1}=\frac{10_{1} 86}{n} \quad E X_{2} 5 / 3 \tag{3-5-2s}\\
& X_{3}=\frac{1_{4} 486}{n} \quad b_{3} X_{3}^{5 / 3} \tag{30-5-29}
\end{align*}
$$

then

$$
\begin{align*}
& \left.=\frac{\Sigma_{0} a_{0}^{2} n^{2} B\left\{\frac{L_{2}-2}{L_{0}} \frac{1}{-35 / 3} I_{3} 5 / 3\right.}{L_{3}}+\frac{L_{2}-3 B}{b_{3}^{2}} \frac{3}{I_{3} 10 / 3}\right\} \tag{3-5-32}
\end{align*}
$$

The experiments of Blery strow that $I_{1-2} \approx I_{\text {L- }} \approx$ b. Then

$$
\begin{equation*}
\frac{h_{i}}{I_{n}}=\frac{8}{202} \frac{B}{I_{0}}\left(\frac{I_{c}}{I_{3}}\right)^{5 / 3}\left(\frac{n}{X_{A}^{1 / b}}\right)^{2}\left\{\left(\frac{Y_{c}}{X_{2}}\right)^{5 / 3}+\frac{B b}{b_{3}^{2}}\left(\frac{X_{0}}{X_{3}}\right)^{5 / 3}\right\} \tag{3-5-33}
\end{equation*}
$$

In an actual computation, a first approximation of I_{1} is obtained by neglecing the difference between the head loss h_{1} and $S_{0} L_{l-30}$ The termin neglected is the loss in addition to the normal flow head loss due to the acceleration of the flow between section 1 and 3 and the separation of the flow from the boundaries at section 2. The quantity neglected is usualiy negligible.

d) Graphical Solution of Backrater due to a Constriction

The dinensioniess specific force and specific energy curoves may be used to obtain graphiceliy tho backwator upstream of a constricilong as thas firgt suggestod by H 。 R 。 Henry (6) porit of the specific force and specific energy diagras has been enlarged In Fig. 3-8 for the illustration of the graphical method.

As an example, the conditions of the experinent $16 \mathrm{~m}_{3}$ Geonetry Ia (see cable 7-1-2) are illustrated. The data of the problem are:

$$
Q=2.0 \mathrm{cfs}, Y_{\mathrm{n}}=20.30 \mathrm{~cm} ; M=B / \mathrm{b}=0.491
$$

Caleulate

$$
I_{C}=\left(\frac{Q^{2}}{g B^{2}}\right)^{1 / 3}=5.24 \mathrm{cri}
$$

and

$$
Y_{n / L} / Y_{c}=3.88^{\circ}
$$

Enter the diagram with the value of $Y_{b_{4}} / Y_{C} a Y_{n} I_{C}=3.88$ and procecer to the specific curve labaled $\mathrm{B} / \mathrm{b}_{3}=1 . \mathrm{O}_{2}$ correspording to no contraction. Theth a coefficient of contraction $C_{d}=0.6 \mu_{8}$ calcurate

$$
\frac{B}{b_{3}}=\frac{B}{b C_{d}}=\frac{1}{M C_{d}}=\frac{1}{0.491 \times 0.64}=3.18
$$

Proceets on the diagram along a vertical line, corresponding to a constant specific force, vatil an interpolated curve $10 \% \mathrm{~B} / \mathrm{b} 3$ a 3.25 is reached. Proceed to tha left and read $I_{z} / Y_{c}=3.72$. The experimental Tajue of Y_{3} / Y_{c} ras $\frac{18041}{3.88}=5000$ Fith the obtained value of Y_{3} / Y_{c} of 3.72 , proceed to an interpolated specific energy corresponding to $\mathrm{B} / \mathrm{bo}_{3}=3.18$. Procoed upward following a Iine of constant specific energy until the curve $\mathrm{B} / \mathrm{b}_{3}=2$ is reached, corresponding to no contraction at station 1. Read the value of $Y_{1} / Y_{c}=2.069$ and calculate $Y_{1}=4.069 \times 5.24=21.30$ curs. The experimental value was 21.26 cras. A good agreement was obtained in spite of the neglect of the friction and head loss temns. However, it shouId be renembered that the example chosen corresponds to smooth boundaries, and consequently, the head losses are indeed small.

III-6 Flow Class 2 - The Flow Coes ghrough CriticaI in the Constriction
a) Geonetric Properties of Seni-Circular and Circular Segnent Chamels

In this type of flow the control is in the constriction, where there exists a selationship botween the depth of flow arce the discharge rehe depth at snction I may be obtained directly by writing an energy equation between the control section and section 1 . As the calculation of the caritical depth in a conduit having a somicircular section, or a circular segment section, is tied to the geometry of the section: this georetry is studied first. At critical stage

$$
\begin{equation*}
Z=\frac{Q}{\sqrt{E / \alpha}} \tag{3-6-1}
\end{equation*}
$$

where

$$
Z=A \sqrt{\vec{y}}
$$

and $\overline{\bar{J}}$ is the hydraulic depthy dexined by

$$
\begin{equation*}
\bar{y}=\frac{A}{n} \tag{3-6-3}
\end{equation*}
$$

Where W is the free surface width.
The gecmetric properties of the semi-circular and circular segment arches are sumarized in Fig. 3-9. The top right hand side quadrant gives the pelationship between the section factor for critical flow computation and the erretical depth in terns of the distance frora che springline to the center of currvature of the archo The ourve label-d $d / b=0$ corresponds to the scmi-cipeular arech. In order to obtain the caltical appit in the constriction of a glven diameter b ios a given discharge Q_{s} one calculates the saction factor for critical flow ? by means of the relation

$$
\frac{Q}{\sqrt{g / \alpha}}=2
$$

and entering the diagram with the proper vel ue of $Z / b^{5 / 2}$ for the desired d / b one reads the ratio of the critical depth to the diameter Z_{c} / b. The value of the hydraulic depth $\vec{\nabla}$ and of the free surface vidth V can be obtained by means of the sets of curves in the top and brtitu: left hand vice of the lieme respativeitys

With reference to Figo 3-9 (bottoin right hand side) the area of the section of depth y is:

$$
\begin{equation*}
A=\frac{b^{2}}{8} \operatorname{sen}^{2} \frac{\theta_{2}}{2}\left(\theta_{1}-\theta_{2}+\sin \theta_{1}-\sin \theta_{2}\right) \tag{3-6-4}
\end{equation*}
$$

the free surface is

$$
\begin{equation*}
W=0 . \frac{\cos \frac{\theta_{2}}{2}}{\cos \frac{\theta_{2}}{2}} \tag{3-605}
\end{equation*}
$$

the hydravise devth is

$$
\overline{\operatorname{con}}-\frac{\theta_{1}-\theta_{2}+\sin \theta_{1}-\sin \theta_{2}}{\cos \frac{\theta_{1}}{2} \cos \frac{\theta_{2}}{2}}
$$

the section factor for critical flow computation is:

$$
\begin{equation*}
Z=A \sqrt{\bar{y}}=\frac{b^{2 / 8}}{\cos ^{2} \theta_{2}} \frac{\theta_{2}}{2}\left(\theta_{2}+\sin \theta_{2} \sin \theta_{2}\right) \sqrt{\frac{b}{8} \frac{\theta_{1}-\theta_{2}+\sin \theta_{1}-\sin \theta_{2}}{\cos \theta_{1} \cos \theta_{2}}} \tag{3-6-7}
\end{equation*}
$$

ox in dimensionless form:

$$
\begin{gather*}
z=\frac{i^{5 / 2}}{8^{3 / 2}} \frac{\left(\theta_{1}-\theta_{2}+\sin \theta_{1}-\sin \theta_{2}\right)^{3 / 2}}{\left(\cos \frac{\theta_{2}}{2}\right)^{5 / 2}\left(\cos \frac{\left.\theta_{1}\right)^{2 / 2}}{2}\right.} \\
\therefore \frac{z}{b^{5 / 2}}=\frac{\frac{1}{83 / 2}}{\left(\theta_{1}-\theta_{2}+\sin \theta_{1}-\sin \theta_{2}\right)^{3 / 2}}\left(\cos ^{2}\right)^{5 / 2}\left(\cos \frac{\left.\theta_{2}\right)^{3 / 2}}{(2)}\right. \tag{3-6-9}
\end{gather*}
$$

The above relationships wsre used to propare the curves of Fig. 3-9.
b) Liniting Backwater

The purpose of the following analysis is to calculate the backwater at Section 1 when the flow goes through critical in the constriction. This type of flow represents the boundary between clesses 1 and 2.

Assuming that the kinetic energy coefficient and the pressure coaftolents are unity s the specific energy equation 1.

$$
\begin{align*}
& X_{2}+\frac{\nabla_{2}^{2}}{2 g}=y_{2}+\frac{\nabla_{2}^{2}}{2 g} \tag{3-6-30}
\end{align*}
$$

$$
\begin{align*}
& I_{1}\left(I+\frac{F_{2}^{2}}{2}\right)=\bar{Y}_{2}\left(\frac{\Psi_{2}}{\bar{V}_{2}}+\frac{F_{2}^{2}}{2}\right) \tag{3-6-ji}
\end{align*}
$$

When the flow is criticn at section $2_{9} F_{2}=1_{8}$ then

$$
\begin{align*}
& Y_{1}\left(2+F_{1}^{2}\right)=\bar{Y}_{2}\left(2 \frac{Y_{2}}{\overline{Y_{2}}}+1\right) \tag{3-6-23}\\
& \frac{\mathbb{Y}_{2}}{Y_{3}} \frac{\left(2 \frac{Y_{2}}{\left(2+F_{1}\right)}+1\right)}{1} \tag{5<-24}
\end{align*}
$$

The equation of continuity

$$
\begin{equation*}
\left(\nabla_{1} Y_{1} B_{1}\right)^{2}\left(\nabla_{2} \bar{y}_{2} w\right)^{2} \tag{3-6-5}
\end{equation*}
$$

may bo written

$$
\begin{equation*}
F_{1}{ }^{2} B^{2} X_{2}^{3}=F_{2}^{2} \bar{y}_{2}^{3} W^{2} \tag{3-6-16}
\end{equation*}
$$

which for $F_{2}=1$ becomes

$$
\begin{equation*}
\left(\frac{\overline{y 2}}{I_{2}}\right)^{3}=\left(\frac{B}{M}\right)^{2} F_{1}^{2} \tag{3-6-17}
\end{equation*}
$$

Introducing this result into the specific energy equation $(3-6-14)$ is follows that

$$
\begin{equation*}
F_{2} 2 \frac{B^{2}}{b^{2}} \frac{b^{2}}{W^{2}} \frac{\left(2 \frac{Y_{2}}{Y^{2}}+1\right)^{3}}{\left.\left(2+P_{1}\right)^{3}\right)^{3}}=1 \tag{3-6-18}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{b}{B}\right)^{2}=M^{2}=F_{1}^{2} \frac{b^{2}}{W^{2}}\left\{\frac{2 \frac{Y}{2} b}{\frac{y / b}{2+F_{1}}+1}\right\}^{3} \tag{3-6-19}
\end{equation*}
$$

As̆ the velue of the critical dopth is a functici of the crotical fiow factor

$$
\begin{equation*}
\frac{y_{c}}{b}=x\left(\frac{Z}{b^{5 / 2}}\right) \tag{3-6-20}
\end{equation*}
$$

and as the values of the free surfeace width H_{o} and of the hydraulic depth 等 cepend on Ψ_{0} they age implicit functions of $3 / \mathrm{b}^{5 / 2}$ 。 Equation ($3-6-20$) may be then rapsesented In a functional form as $n=\binom{b}{\frac{b}{B}}=P\left(F_{19} \frac{Z}{b 5 / 2}\right)$ for a giver value of a / b.

This relationship is presented in Fig. 3-10 several values oi d/3 panging from 0 to to The values of $\frac{W}{b} \frac{Y}{b^{2}} \frac{\tilde{y}}{b}$ necessary for the preparation of these curves verc
 introduced in formala $(3-6-29)$ for M^{2} for several values of P_{2}

For a given discharge Q, and a trial opening ratio b / B me may calculate the dimensionless section secter for critical flow

$$
\frac{z}{b^{5 / 2}}=\frac{Q^{2}}{\sqrt{g} b^{5 / 2}}
$$

This value of this parameter deinines a curve in Fifo 3-10, For points locater above the curver the flow is suberitical in the constriction. Points located on the cexme correspona to flow golng through critical. in the constriction. The limiting backwater may be obtained by reading the value of F_{2} on Fig. 3010 corrasponding to given valuea of $Z / b^{5 / 2}, b / B$ and d / B_{8} then I_{1} is calculated Ircon

$$
\begin{equation*}
I_{1}^{3}=X_{n}^{3}\left(\mathbb{F I}_{n}\right)^{2} \tag{3-6-2i}
\end{equation*}
$$

For large discharge, the constrictions partially dan the flow, until it becomes an orifice flow.

III-\% Discharge Equations

a) The Equation oi Discharge for Free Surface Flow

With reference to Fig. 3-I and neglecting the velocity of epproachs the disco charge is found to be $Q=\int \nabla d A=\int_{0}^{I_{1}} C \sqrt{2 g\left(Y_{1} \sim h\right)} \times 2 \sqrt{r^{2} \cdot h^{2}} d h$

An approximete value of the above integral may be obtalned by expanding the intogrand into a series, and integrating term by term. Making use of the fact that $2 r=b$

This mey be wsitten as
where

$$
\begin{align*}
& Q=C_{1} Y_{1} 3 / 2 b Y_{1} \\
& C_{1}=C_{d} \frac{17}{2} \sqrt{2 g}
\end{align*}
$$

and

$$
\begin{equation*}
\left.T_{1}=1-0.1294\left(\frac{Y I}{I}\right)^{2}-0.0\right) d\left(\frac{Y_{2}}{T}\right)^{4} \tag{3-7-5}
\end{equation*}
$$

The above equarion is valid as long as the constriction is unsubmexged and $Y_{1}>8_{0}$
The evaluation af the equation of discinarge in the integral form (equation 30701) can be accomplished in two ways. One by expanding into a series and integrating term by term or by evaluating the integral in terms of complete and incomplete elliptical integrals of the first and second kind. The approxinate solution was given above and the exact solution follows.

The theoretical discharge itay be obtained from equation 3-7-1 by making the coefficient of discharge C_{d} equal to unity:

$$
Q_{t}=2 \sqrt{2 g} \int_{0}^{Y_{1}} \sqrt{\left(Y_{1}-h\right)\left(r^{2}-h^{2}\right)} d h
$$

Let $\quad K^{2}=\frac{Y_{1}+r}{2 r} \quad$ or $\quad Y_{1}=2 r\left(k^{2}-1\right), k<1, Y_{1<} r$
and

$$
3 n^{2} \text { is }=\frac{h+2}{Y_{1}+r}
$$

Since

$$
\operatorname{sn}^{2} u+\operatorname{cn}^{2} u=2
$$

then

$$
\begin{equation*}
h=m_{1} \operatorname{sn}^{2} u-\operatorname{ren}^{2} u=2 r s^{2} s^{2} u-r \tag{3-2+x}
\end{equation*}
$$

and $\quad \frac{d i n}{d u}=40 \mathrm{rk}^{2} \operatorname{snu} \frac{d}{d u} \operatorname{snu}=4 \cos \cos ^{2} \operatorname{cnc} \operatorname{cru}$ dino
since

$$
\frac{d}{d u}(\sin x)=\operatorname{con} u d n
$$

Frown ($3-7-8$) and making use of ($3-7-7$)

$$
\begin{align*}
I_{1}-h & =I_{1}\left(1-5 x_{1}^{2} u\right)+\operatorname{ren}^{2} u \\
& =I_{1} \operatorname{cn}^{2} u+x^{2} \operatorname{crs}^{2} u \\
& =2 \operatorname{sk}^{2} \operatorname{cn}^{2} u \tag{3=7-12}
\end{align*}
$$

Also from 3-7-5

$$
\begin{aligned}
& r^{2}-h^{2}=4 r^{2} k^{2} \operatorname{sn}^{2} u\left(1-k^{2} a n^{2} u\right) \\
& =4 r^{2} k^{2} \sin ^{2} u d n^{2} u \\
& d n^{2} u+k^{2} \operatorname{sn}^{2} u=1
\end{aligned}
$$

since

Substituting $(3-7-10),(3-7-11)$ and $(3-7-12)$ into $(3-7-6)$ the expression for the theoretical discharge becomes

$$
\begin{aligned}
& a_{0}=2 \sqrt{2 \pi} \int_{u 2}^{u_{2}}\left[2 \pi^{2} \operatorname{cn}^{2} u \cdot d x^{2} j^{2} \operatorname{sn}^{2} u d n^{2} u\right]^{\frac{1}{2}} u_{s} r k^{2} \sin u \text { dis cru } \cos = \\
& =32 \sqrt{5} s^{5 / 2} k^{4} \int_{u_{1}}^{u_{2}} \operatorname{cn}^{2} u \operatorname{sn}^{2} u \operatorname{cn}^{2} u d u
\end{aligned}
$$

The lower limit u_{1} is obtained fran (3-7-8) as follows:

$$
s I^{2} u_{I}=\frac{0+m}{I_{I}+z^{2}}
$$

or

$$
\operatorname{smu}_{1}=\sin t=\sqrt{\frac{r}{Y_{1}+x}}
$$

where

$$
\phi^{\prime}=20 a y
$$

and finally

$$
\begin{equation*}
u_{1}=F(\phi, k)=\int_{0}^{\phi} \frac{d \phi}{\sqrt{2-k^{2} \sin \phi}}, k<2 \tag{1}
\end{equation*}
$$

$F\left(\delta_{8} k\right.$) is the incomplete elliptic integral of the first kina. the upper limit u_{22} is obtained from (3-7-8) as follows:

$$
\begin{aligned}
& \operatorname{sn}^{2} u_{2}=\frac{Y_{1}+w}{Y_{1}+w}=1 \\
& \operatorname{sn} u_{2}=1
\end{aligned}
$$

or
and

$$
v_{2}=K=\int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-k^{2} \sin \emptyset}}
$$

where K is the complete elliptic integral of the first kind The expression for the theoretical discharge ($3-4-13$) becomes

$$
Q_{t}=32 \sqrt{g} x^{5 / 2} k^{4} \int_{F(\phi, k)}^{K} \operatorname{cn}^{2} u \operatorname{dn}^{2} u \operatorname{sn}^{2} u d u
$$

Upon performing the integration, and introducing the diameter $b=2 r^{\circ}$

$$
\begin{align*}
Q_{t} & =\frac{4}{25} \sqrt{2 g} b^{5 / 2}\left\{2\left(1-k^{2}+k^{4}\right)[E-E(\phi, k)]-\left(1-k^{2}\right)\left(2-k^{2}\right)[K-F(\phi, k)]\right. \\
& \left.-k^{2} \sin \phi \cos \phi \Delta \phi\left(3 k^{2} \sin ^{2} \phi \infty 1-k^{2}\right)\right\} \tag{3-7-27}
\end{align*}
$$

where

$$
\begin{equation*}
E=\int_{0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} \phi} d \phi \tag{3-7-2.8}
\end{equation*}
$$

which is the complete elliptic integral of the second kind, and

$$
\begin{equation*}
\text { I (iss. } \dot{\theta})=\int_{0}^{\infty} \sqrt{1-k^{2} \sin ^{2} \phi} d 0 \tag{3-7-19}
\end{equation*}
$$

Whicis is the incomplote oliptic integral of the second kind，and

$$
\begin{equation*}
\hat{b}=\sin ^{-1} \sqrt{\frac{x}{Y_{1}^{+1}}} \tag{3-7-20}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \phi=\sqrt{1-x^{2} \sin ^{2} \phi}=\sqrt{0.5} \tag{3-7-24}
\end{equation*}
$$

and finally

$$
\begin{equation*}
k=\sqrt{\frac{Y_{1}+5}{b}} \tag{3-7022}
\end{equation*}
$$

Equation（3－7－17）Fiolds the theoretical discharge for the fllow through a semicircular constriction of diameter $b=2 s^{\circ}$ and where the mexdman depth upsiream of the constrofem tion is 81 。 The quantities $K_{y} E_{8} P(0, k)$ ，$E(\phi, k)$ may be obtained from tables。

Equation（3－7－17）is somewhat similar to that，for the fiow through circular welrs obtained by Jo Co Stevens ${ }^{7}$ whierh is

$$
\begin{equation*}
Q_{t}=\frac{4}{15} \sqrt{2 g} D^{5 / 2}\left\{2\left(1-k^{2} \div k^{4}\right) E-\left(2-k^{2}\right)\left(1-k^{2}\right) k\right\} \tag{3-7-25}
\end{equation*}
$$

where $k^{2}=H / D_{2} H$ being the head over the invert ${ }_{2}$ and D is the djanoter of the circular weir．Stevens also gives an infinite serfes approrimation to equation（3－7－23） which is 3ithisar to equation（3－7－2）：

$$
\begin{equation*}
Q_{\tau}=2 \sqrt{2 B} D^{5 / 2} \quad\left(\frac{9}{8} z^{2}-\frac{1}{32} z^{3}-\frac{5}{1024} z^{4} \ldots \circ \circ \circ\right) \tag{3-7-2n}
\end{equation*}
$$

where $z=H / D$ 。

b）The Equation mis Discharge for Osifice Elow

With reierence to Fig．3－21 and neglecting the velocity of approach，the ilse charge is found to bs：

$$
\begin{equation*}
Q=\int \nabla d A=2 C d \sqrt{2 g} \int_{0}^{r}\left(Y_{1}-h\right)^{\frac{2}{2}}\left(r^{2}-h^{2}\right)^{\frac{1}{2}} d h^{-} \tag{3-7-25}
\end{equation*}
$$

An approximate solution to the above integral is found by expanding each term of the integrand into a binoraial series，multiplying the two series and integrating tewn by term．The result，using the 5 leading terms is

$$
\begin{align*}
& Q=0.4029 C_{a} \sqrt{2 g} X^{\frac{2}{2}} b^{2}\left[1-0.2136\left(\frac{T_{2}^{2}}{1}\right)-0.03216\left(\frac{3}{2}\right)^{2}\right. \\
& \left.=0.0112\left(\frac{T_{1+1}}{Y_{1}}\right)^{3}-0.005344\left(\frac{T_{T}}{T_{1}}\right)^{4} \cdots\right]
\end{align*}
$$

$0 r$

$$
Q=C_{1} \mathrm{Y}_{1}^{\frac{1}{2}} b^{2} T
$$

where

$$
c_{1}=0.4019 \sqrt{2 g} \quad c_{d}=3.22 C_{d}
$$

and $T=1-0.2136\left(\frac{T_{1}}{I_{1}}\right)-0.03216\left(\frac{\left(\sum_{1}\right.}{\mathrm{T}_{1}}\right)^{2}=0.0122\left(\frac{\sum_{1}^{20}}{\mathrm{Y}_{1}}\right)^{3}$ $-0,005344\left(3_{2}\right)^{4}$

The above equation is valid as long as the constricton is submerged, which means for $\Psi 175^{\circ}$.

A simpler form of the orifice discharge equation winen the approach velocity is very low relative to the velocity in the discharge jet, ance when the orifice is considered as a whols is:

$$
\mathrm{Q}=\mathrm{C}_{\mathrm{d}^{2}}^{\frac{1}{2}} \frac{\pi \mathrm{~d}^{2}}{4} \sqrt{2 \mathrm{I} I_{1}}
$$

where
$\mathrm{Q}=$ discharge through the opening
$\mathrm{d}=$ diameter of the opening
and
$X_{1}=$ the depth of the backiviter
$1_{d}=$ coefficient of discharge for type of inlew
Now rearranging equation (2ne.30):

$$
\begin{equation*}
\frac{Q^{2}}{g^{d^{4}}}=\frac{c_{g^{2}}^{2} \dot{\pi}^{2}}{32} I_{2} \tag{3-7-3y}
\end{equation*}
$$

By dividing by d_{s} and taking the square root oi both sides oin ($3-7-31$), the following dimensionless equation is obtained

$$
\begin{equation*}
\frac{Q}{g^{\frac{1}{2}}+5 / 2}=\frac{c_{\mathrm{d}} \pi}{\sqrt{32}}\left(\frac{11}{d}\right)^{\frac{1}{2}} \tag{3-7-32}
\end{equation*}
$$

where $\frac{C_{d} \pi}{\sqrt{32}}$ is a constantio.
The previous equation may be written the general foxm

$$
\begin{equation*}
\frac{Q}{g^{2} d y / 2}=I\left(\frac{Y_{2}}{d}\right) \tag{3-7-33}
\end{equation*}
$$

which is used in plotilng experimenial results.

III-8 Energy Loss In the Constriction

It has been show that a complete theoretical anemyde is not possible, However, some impontan conclusions regarding the olassification of flow types and Hinting cases have been obtained from monenturs and energy considerations. The applicability of the momentum and energy equations is linited principaily by the difficuliy of formiating the dreg surea and the head losses. Iremert and Bradley have proposed an emprical relation for the had loss in a constrintion, The heaul loss due to the contraction and expansion of the flow may be expressed as

$$
h=K=\frac{V 2 n^{2}}{2 g}
$$

whore V an is a seference volontty which is givon iy

$$
\begin{equation*}
V_{2 n} \cdot{ }^{w} \frac{Q}{A_{2 n}} \tag{3-8-2}
\end{equation*}
$$

Where $A_{2 n}$ is the anea of section 2 comresponding to the nomal depth in the unconn strictics flow

The energy equation, written between sections 2 and 4 is:

$$
\begin{equation*}
I_{1}+\alpha_{1} \frac{\nabla y^{2}}{2 g}+S_{0} I_{1-4}=I_{4}+\alpha_{4} \frac{T_{4}}{2 g} \quad 2 \% E_{1-4} \tag{3-8-7}
\end{equation*}
$$

where E_{l-4} is the total energy lose between sembions 1 and 40 This energy loss is made of too partiss the normsl boundaxy resistance plus the additional los: due to the contraction and expansion of the flow:

$$
\begin{equation*}
I_{1-4}=S_{0} J_{1-4}+K \frac{\nabla_{n} 2^{2}}{2 g} \tag{3-8-4}
\end{equation*}
$$

Replacing in the energy equation

$$
\begin{equation*}
I_{1}-Y_{4}-V_{n} \frac{V_{n} 2^{2}}{2 g}+\alpha_{b} \frac{V_{4}^{2}}{\frac{L_{g}}{g}}+\alpha \frac{V_{2}^{2}}{2 g} \tag{3-8-5}
\end{equation*}
$$

Since at section \& the noring depth has been regained $Y_{4}=Y_{n}$ and making use of the continuity equation

$$
\begin{align*}
& V_{1} A_{1}=V_{4} A_{4}=V_{n 2} A_{n 2} \tag{3-5-6}\\
& \left.X_{1}=I_{n}=h_{1} *=K \frac{V_{n 2}}{2 g} \quad f_{4} a_{4}\left(\frac{A_{n 2}}{A_{4}}\right)^{2}=x_{1}\left(A_{n} A_{2}\right)^{2}\right] \frac{V_{n 2}}{2 g}
\end{align*}
$$

fron which
or approxinately $K=h_{2} * /\left(I_{n} 2^{2} / 2 g\right)$

The sane resulis are valld for submerged constriction, wher the total cross sees thonal area of the constrictson A_{0} is taken as reforence area instad of in2o Then the head loss due to the contraction and expension of the flow is written as

$$
\begin{equation*}
i_{s}=I \frac{V_{0}^{2}}{2 g} \tag{3-5-10}
\end{equation*}
$$

where

$$
T_{0}=\frac{Q}{A_{0}}
$$

and as before

$$
\begin{equation*}
h_{1}=K \frac{V_{0}^{2}}{2 g} \cdot\left[i_{4}\left(\frac{V_{4}}{V_{0}}\right)^{2} \frac{V_{0}^{2}}{2 g}=o_{1}\left(\frac{V_{1}}{V_{0}}\right)^{2}\right] \frac{V_{0}^{2}}{2 g} \tag{3-8-12}
\end{equation*}
$$

and

$$
K=\frac{h_{1}^{\text {ru }}}{V_{0}^{2} / 2 g}=\left[\sigma_{4}\left(\frac{A_{0}}{A_{4}}\right)^{2} \sigma_{1}\left(\frac{A_{0}}{A_{1}}\right)^{2}\right]
$$

In formulas 7-8-7, 7-8-8 and 7-8 $-12,7-6-13$, a simplification may be obeained by assuming $\alpha_{1}=\alpha_{4}=\alpha_{0}$ 。

An alternate simplified expression for the head loss in the contracting flow may be obtained by considering the contraction as an orifice, and by assuning that the depth at the orifice is the normal depth. "ith these assumptions, and neglecting the velocity head of approach $\nabla_{n I}{ }^{2} / 2 g$, the energy equation yields

$$
\frac{\nabla_{n} 2^{2}}{2 g}=y_{1}-x_{n}
$$

antroburing a cosfuchert of whenty

$$
c_{v}=c_{F}(W, F)
$$

whare wo is the obrmiel oporang rataon thon

$$
T_{32}^{2}=c_{s}^{2} \hat{x g}\left(T_{1}-I_{i 2}\right)
$$

Inviroducing an cirvice Erome mubor iepreded w
then

Fint $: 3$

$$
\left.\frac{B_{0}}{R_{i}}\right)^{\hat{x}}=\left(\frac{V_{n i},}{y_{i}^{2}}=\left(\frac{A_{n} 2}{A_{I L}}\right)^{2}=\left(\frac{3}{M}\right)^{2}\right.
$$

$$
\frac{I_{1}}{I_{11}}-1=\frac{2}{2 m^{2}}{ }^{2} F^{\left.W_{1}\right)^{2}}
$$

The hewa love tito wh axe rifice is gryon bet

$$
\begin{equation*}
u_{\rho}=\frac{1}{a_{y}^{2}}-\frac{7^{2}}{3 g} \tag{160}
\end{equation*}
$$

so that the head $2 n s 3$ in tne contracting rlow is, in dinensioniess iorma

$$
\frac{h_{i}}{y_{n}}=\left(\frac{1}{C_{V}}-1 \cdot \frac{v_{n}^{2}}{2 \bar{m}_{n}}=\frac{1}{2}\left(\frac{1}{C_{V}^{2}}-1\right)\left(\frac{F_{n}}{M_{I}}\right)^{2}\right.
$$

But, by meansof ($3-5-20$)

$$
\frac{2}{C_{1}^{2}}-2=\frac{2\left(\frac{V_{n}}{\sqrt{2}}-2\right.}{\frac{V_{n}}{2}}-2
$$

and (7-8w. 2) ? semes:

$$
\left.\frac{Y_{I}}{Y_{52}}=\frac{Y_{i}}{Y_{12}}-1\right)=\frac{x}{Y_{2}}\left(\frac{\sum_{3}}{N}\right)^{2}
$$

$$
\frac{x_{1}}{i_{1}}\left(\frac{F_{3}}{2}\right)^{2}
$$

then, in somes

$$
\frac{n_{1}}{Y_{1}}=i \frac{T}{n}
$$

III-9 Backwater Ratio Equaticns

The backwater ratio is defined as the ratio of the maximus interline water depth to the normal depth of flow

Expressions for the backwater ratio may be obtained ryon th energy enuation or from the discharge aquation. The use of the energy equation is be considerech first。

The energy equation is written in dinensionless form by div. ing both sicies by $I_{n}:$

$$
\frac{h_{1}^{*}}{I_{n}}=\frac{1}{2}\left(\frac{F_{n}}{M_{0}}\right)^{2}\left[\alpha_{1} M^{2}-\alpha_{1} M^{2}\left(1-2 \frac{h \eta_{n}^{*}}{I_{n}^{*}}-K\right]\right.
$$

Assuming o! $1=\alpha_{4}=\alpha$ 1i follcws that

$$
\begin{align*}
& \left.\frac{h_{1}{ }^{*}}{Y_{n}}\left[1-\alpha F_{n^{2}}^{2}\right]=\frac{F_{n}}{M_{M}^{0}}\right)^{2} \mathrm{~K} \tag{3-9-8}
\end{align*}
$$

whense

$$
\begin{equation*}
\frac{h_{1} \%}{Y_{n}}=\left(\frac{F_{n}}{M^{0}}\right)^{2} \frac{\sum_{n}}{1-\left(F_{n}\right)^{2}} \tag{array}
\end{equation*}
$$

In general. the expression fon the backwater retio for free sursway flow is:

$$
\begin{align*}
& \frac{h_{1}}{n}=D\left(F_{M 1}^{F_{I}}\right)^{2} \\
& D=\frac{1 / 2 K}{1=\left(F_{\Omega}\right)^{2} \alpha} \tag{3-9-2i}
\end{align*}
$$

is a factor related to the head loss in the constriction.
This result is valld only when the flow is subcritical through the constriction and when $h_{1} H_{n}<1$ 。
nxpeximental results have yielded the empirical molation (for singie span semsxocirnilar archess see Chapter V)

$$
\begin{equation*}
\frac{h_{1}^{*}}{Y_{n}}=0.45\left(\frac{F_{n}}{M^{F}}\right)^{2} \tag{3-9}
\end{equation*}
$$

with this result

$$
D=\frac{1 / 2 K}{I-F_{n}^{2}<6}=0,45
$$

or

$$
K=0,90\left(1 \cdots \sigma_{n}^{2}\right)
$$

or with $\alpha=1$

$$
K=0,90\left(1-F_{n}^{2}\right)
$$

The tesi results are presentee in the form of plots of $\frac{h \eta^{2}}{11}$ vs $\left(\frac{F V_{1}}{M_{0}}\right)^{2}$ and least square curves of the form

$$
\begin{equation*}
\frac{K_{1}^{*}}{I_{r_{0}}}=C\left(\frac{F^{r} r^{2}}{M 2}\right)^{n} \tag{3-9-16}
\end{equation*}
$$

 vs $\left(F_{n} / 11^{9}\right)^{2}$ it follows frocn oquation $(3-9-1.6)$ that

$$
\begin{equation*}
\frac{d\left(\frac{n 1}{I_{n}^{*}}\right)^{*}}{d\left(\frac{F_{n}^{n}}{M^{0}}\right)^{2}}=n e\left(\frac{E_{n}^{2}}{M^{n}}\right)^{n-1}=D \tag{3-9-10}
\end{equation*}
$$

Altemate expressions for the backwater ratio may be obtained frcm the discharge oquation for iree suriace and for orfifee mow separately.

Consider the free suxface flow case first. The equation for the discharge through the constriction is (from equ. 3-7-3)

$$
Q=c_{2} I_{2}^{3 / 2} \quad \mathrm{bI}_{I}
$$

where

$$
\begin{equation*}
C_{1}=\operatorname{cd} \frac{17}{24} \sqrt{2 g} \tag{3-9.-19}
\end{equation*}
$$

and $\quad T_{I}=1 \propto 0.1294\left(\frac{Y_{1}}{T}\right)^{2}-0.0177\left(\frac{Y_{2}}{\Gamma}\right)^{4}$

The discharge in the approach channel is

$$
\begin{equation*}
Q=\nabla_{n} A_{n}=F_{n} \sqrt{g} \quad B Y_{n} 3 / 2 \tag{3-9}
\end{equation*}
$$

Equating the two expressions for the discharge one obtaing

$$
\frac{Y_{1}}{Y_{n}}-\left[\frac{12 \sqrt{2} F_{n}}{170 \mathrm{dM}}\right]^{2 / 3}
$$

or in generd
where

$$
\begin{align*}
& \frac{I_{1}}{I_{\mathrm{I}}}=C\left(\frac{F_{n}}{M^{7}}\right)^{2 / 3} \\
& C=\frac{12}{17 C_{d} C_{5}}
\end{align*}
$$

Since $M=M^{0} / C_{n}$ (see equation $3-2 n 8$)
Experimental results for free surface flow heve ylelded the following relation (sechaptor VII)

$$
\begin{equation*}
\frac{Y_{1}}{Y_{n}}=1+0.47\left[\left(\frac{M n}{M}\right)^{2 / 3}\right] 3.39 \tag{3-9}
\end{equation*}
$$

It has been observed that the equations derived by several diferent investigators for the beckwater ratio produced by various constriction geornetries seern to have a basic similarity. As an example equation (23) in the present text for $51 / y_{n}$ appease to be a. function of $(F / 10)^{2 / 3}$.

$$
J_{1} / Y_{m} a g_{2}\left(F_{n} / M^{0}\right)^{2 / 3}
$$

An equation for the brakwater ratio given by Valantino ${ }^{8}$ for lateral constrocefion

Wutes is

$$
J_{2} / J_{n}=\left(g F_{n} / C M\right)^{2 / 3}=g_{2}\left(F_{n} / M 8\right)^{2 / 3}
$$

$$
\begin{aligned}
& \text { Wiere } \quad C=a \text { discharge coeficient } \\
& \text { and } \quad M=b / B=M^{\theta} \quad \text { since } C_{M}=2
\end{aligned}
$$

Alvo Liu ot al present an empirical formula for a two dimensional vertical board model

$$
\begin{equation*}
\left(h_{1} * / h_{n}\right)^{3}=4.483 F_{n}^{2}\left(\frac{1}{M 2}-\frac{2}{3}(2.5-M)\right)-1 \tag{3-9-28}
\end{equation*}
$$

where

$$
M \equiv b / B=M^{0} \text { since } C_{M} \propto I
$$

Consldering only the leading torm $1 / M^{2}$ of the quantity in brackets, equation ($3=9-28$) becomes

$$
\begin{equation*}
\mathrm{h}_{\mathrm{I}}^{*} / \mathrm{y}_{\mathrm{n}}=\mathrm{g}_{3}\left(\mathrm{~F}_{\mathrm{n}} / 8 \mathrm{si}^{0}\right)^{2 / 3} \tag{3-0-29}
\end{equation*}
$$

It appears that with the proper interpretation of the vartables, namely M^{0} ard F_{n}, the results of tests performed on different geometric shapes of bridge openings should produce the same results. For instance, a veritical abutment deck type bridge may physically appear completely different than a semicircular arch bridge。Howevers hydraulically speaking if they have the same opening ratio Mo, they should produce the same backwater retio. The linitations of the assumption must necessarily ife in the fact that both bridges must have the same excentricitys skemess and entrance rounding conditions. It is believer that this concept applies equally as well to multiple span bridges. An attempt has been made to compare the two dimensional sento circular test results of the author, the segment data obtained by $A_{0} A_{0}$ Sookys and the Vertical Board (VB) data as given by Liull. The results of this comparison will be shown and discussed in a later section.

A similar expression for the backwater ratio may be obtained fran the theoretical discharge equation for orifice flow. The equation for the discharge through the constriction was found to be: (see equ, 3-7-27)

$$
\begin{equation*}
Q=C_{1} Y_{1}{ }^{\frac{1}{2}} B^{2} T \tag{3-9-30}
\end{equation*}
$$

The discharge in the apnroewh channel is:

$$
\begin{equation*}
Q=V_{n} A_{n}=F_{n} \sqrt{g} B Y_{n} 3 / 2 \tag{3-9-31}
\end{equation*}
$$

Equating the twis discharge equations (3-9-30 and 3-9-31):

$$
\begin{equation*}
C_{I} Y_{1}{ }^{\frac{1}{2}} b^{2} T=F_{n} \sqrt{g} Y_{n}^{3 / 2} B \tag{3-9=32}
\end{equation*}
$$

$$
\begin{equation*}
C_{2}=\left(\frac{Y_{n}}{Y_{1}} \frac{1}{2}!\frac{Y_{n} B Y_{n}}{b 2 T}=\left(\frac{Y_{n}}{Y}\right)^{\frac{1}{2}}\left(\frac{B}{b} \circ \frac{Y_{n}}{b}\right) F_{n} \quad \frac{1}{T}\right. \tag{3-9-33}
\end{equation*}
$$

but

$$
\begin{aligned}
& \frac{B}{b}=\frac{Y_{n}}{b}=\frac{A_{n}}{k A_{0}}=\frac{1}{k M^{n}} \\
& k=\frac{8}{\pi}
\end{aligned}
$$

Now rsarranging the equation (3-9-33):

$$
\begin{equation*}
\frac{Y_{1}}{Y_{n}}=\left(\frac{1}{k M^{2}} \cdot F_{n} \cdot \frac{1}{C_{1}} \cdot \frac{1}{T}\right)^{2} \tag{3-9-34}
\end{equation*}
$$

or in general a relation of the following form vould be expected

$$
\begin{equation*}
\frac{Y_{1}}{Y_{n}}=0\left(\frac{\mathbb{F}_{n}}{M_{0}}\right)^{2} . \tag{3=9-35}
\end{equation*}
$$

It has boen found empirically that, instead of equation (3-9-35), the experi, mental results can convenientiy be represented by a fuaction of the form:

$$
\begin{equation*}
\frac{\underline{h}_{1}^{*}}{Y_{n}}=\frac{Y_{1}}{Y_{n}}-1=1\left(\frac{F_{n}}{M^{n}}\right)^{2} \tag{3-9-36}
\end{equation*}
$$

where $h_{1}{ }^{\text {h }}$ is the backwater superelevation.
Exporimental results for the oriftce flow have flelded the following relation (see Chapter VII)

$$
\begin{align*}
& \frac{Y_{1}}{Y_{n}}=1+2.18\left[\left(\frac{F_{n}}{M^{0}}\right)^{2}\right] 0.90 \tag{3-9-37}\\
& \frac{Y_{1}}{Y_{n}}=1+2.18\left(\frac{F_{n}}{M^{0}}\right)^{2.80} \tag{3-9-38}
\end{align*}
$$

The experimental result for the backwater ratio equation for free surface was developed by P_{0} F. Blery and found to yield the relation (see chapter V)

$$
\frac{I_{1}}{I_{n}}=1+0.47\left[\left(\frac{F_{n}}{M^{0}}\right)^{2 / 3}\right] 3.39
$$

$$
(3-9-39)
$$

$$
\begin{equation*}
\frac{Y_{1}}{Y_{n}}=1+0.47\left(\frac{\sum_{n}}{(2.26}\right. \tag{3-9-1,0}
\end{equation*}
$$

III－10 Dimensional Considaration

a）Dimensional Analysis

Figure 3－1 shows a definition sketch of the affects of a channel constriction on the wator surface profile。Section view B illustrates the type of centerilne profile obtained with a Class I flow。 This is the mosi generajuy occurebing situation that appears in actual practice．In the figure Y_{0} or I_{n} is the nomal depth of the unobstructed channel．I_{I} is the depth at the point of masimum backwater elevation． I2 is the depth at the section of minimum jet area or the vena contracta．P 3 is the minimum water depth of the regazn curve，and \bar{I}_{4} is at a point suffictentiy dometrean from the contraction where the rlow returns to the normal deptho

For any physical problem such as this，a dimensional analysis is convenient for the purpose of guidance and interpretation of a testing program。 In this mannery the basic rariables can be grouped into dimensionless quantities and their relation ships investignted．In the problem at hand，it is desired to determine the meximum water depth upstream of the constriction．It is assumed that the variables which govern the backwater superelevation may be grouped into three categories as follows： the fluid properties，the kinematic and dyname variables，and the dinensions derining the boundary geometry．Dus to the two dinensional character of the con－ striction，the latter is expressed in terms of Plow areas rather then the usual Iincas dimensions．（See fifure 3－1 for an illustration of the terminology．） The variables are：
a）Flutd Properties
1）W ，the kinematic viscosity of the fluid
2）ρ density of the fluid
b）Kinematic and Dynemic Flow Vamiables
1）g，acceleration of gravity
2）Ψ_{18} maximum water depth upstream of the constriction
3) I_{n} the nomad dapin of flow ir the approach channel.
4) V_{mg} the velocity of ill ow at normal depth
5) n_{2} Manning ${ }^{3}$ - roughness coefficient of tire approach channel
c) Properites of the Constriction Geometry (see figures $2_{3} \mathrm{k}$, and 24 for definition of symbols)。

1) Anlo the total normal ciapth flow area at section Io
2) $A_{n 2}$ the normal depth flow area in the opening of the constriction (Bee Fig 4)。 $A_{n 2}=A_{0}$ for submerged bridges.
3) L/B, thickness factor, where L is the length of bridge in direction of Slow, ib Is the avidin of opening at the bottom.
 identical bridges.
4) On, wing wall angles
5) $\phi_{2 g}$ skew angle
6) ${ }^{7}$ segment factor defined by $=d / 5$ where d to tho distance between She chanel bottorin and the center of the circular segment
7) N_{8} number of spans
8) © eccentricity defined by $e=1-\mathrm{c} / \mathrm{a}_{3}$ where c and a are the width on tither sides of the bridge openings.

Fran the above list of variables.

Buckingham is theorem states that in a physical problem including n quantities in which there ara in dimensions, the quantities may be arranged into ($n=m$) dimensionless parameters. With the mass, length and time system of units, the nam or 14 dimensionless parameters are as follows:
where $\frac{V_{n}{ }^{2}}{\bar{I}_{n} g}$ is the square of the roude numbsi $F_{n i}$ and $\frac{V_{n} Z_{n}}{V}$ is the Reynolds number: R_{0} It is known that:
i) Viseous forces play a negligible role In open charasl flow, so the term
 into $A_{n 2} / A_{n 1} \approx M_{0}$ and letting n be constant, which meass that the boundayy roughess in the flume is kept the same, then the abore equation simplefies七o:

Of the nine wartables only two the froude maber ami the contrectuon ratio describe the slow field. The other saven rariables in the dimencionless anaiysis describe the different model geonetries that could be festei screatelyo For a deftnition of the separats geometrites see section on Defintion of Test Gsometrises.
b) Definftion of Channel Opening Raido and Channet Tidt Ratio

The channel opering ratio (M0) is vefined as that portion of the totel romal depth fllow thet can pass through the bridge watemay without contraction. By defi nition it is equivalent to the ratio $\wedge_{n 2} / A_{n I}$ ohtained from the dinerasional aneiysis. Along with the nowmal depth Eroude number, the opening ratio is peribaps the moze critical variable in the problen!。

Rererring to figure $3-12$ ma for the rectangular casen the total flow is that
flow in area ADEH, and the flow that passes through the hridge opening without contraction is that repzesented by the area PCFG. Therefore the opening ratio Mo is

$$
\begin{equation*}
M^{8}=q / Q \tag{3-10-2}
\end{equation*}
$$

If we assume that there is a constant uniform velocity V_{n} across the entire normai depth section, equation ($3-10 \mathrm{k}$) becomes

$$
\begin{equation*}
M^{0}=\frac{4}{3} / Q=A_{n 2^{V}} V_{n} / A_{n I} \nabla_{n}=A_{n 2} / A_{n I}=b y_{n} / B y_{n}=b / B \tag{3-10-3}
\end{equation*}
$$

$$
\begin{equation*}
M=q / Q=A_{n} 2_{n}{ }_{n} / A_{n} V_{n}=A_{n 2} / A_{n 3} \tag{3-j0-4}
\end{equation*}
$$

The ratio of the tiro areas is clearly not equivalent to b / B 。 for simplictivy, b / B is hereafter define by the symbol M)
 ara becomes

$$
A_{n 2}=\int_{0}^{\pi n} 2 \sqrt{r^{2}-J^{2}} d y=2\left[\frac{1}{2}\left\{5 n \sqrt{r^{2}-\sqrt{n} 2}+x^{2} \sin -y_{n 2} x\right\}\right\}
$$

 with bo The arch has been superimposed upon the flow area dr depth y The Th er center of eumature is at a distance d below the spretrgline of the as ho The flaw area ($A_{n l}$) of the rectangular channel is Byng while the area GRcli is given by

$$
\begin{equation*}
A_{n 2}=\int_{0}^{0} 2 \sqrt{5^{2}-y^{2}} d y-\int_{0}^{2} \sqrt{2} \sqrt{5^{2}-y^{2}} d y \tag{5-20-6}
\end{equation*}
$$

and the corresponding chanel opening ratio is

$$
H=A_{n 2} / A_{n}=\frac{D y^{2}-D^{2}+r^{2} s i n^{-2} D L}{B y_{n}} \quad \frac{d \sqrt{x^{2} \infty d^{2}+r^{2}}}{B y_{n}}
$$

The channel opening ratio N^{1} cen be expressed in terms of three other dimenstmies ratios: the ratio of span to chanel with $M=b / B_{s}$ tia ratio of depth of the arch

 be expressed as:
in which

$$
\begin{align*}
& M^{\theta}=M C_{M} \\
& M=b / B \tag{3-10-8}
\end{align*}
$$

and the channel opening ratio coefficient is

$$
C_{M}=\frac{1}{2}\left\{\left\{\frac{\sqrt{2=(n+3)^{2}} \frac{1}{\frac{5}{25}}\left(1=n^{2}\right)^{1 / 2}(n+5)}{\frac{1}{5} 3}\right\}-\frac{\sqrt{2-n^{2}}+\frac{1}{6}\left(1 n^{-1}\right.}{\frac{1}{6}\left(1+n^{2}\right)^{1 / 2}}\right\}
$$

$$
\eta^{s e d} \alpha / 5^{0}
$$

and

$$
3-y_{n} / x
$$

In the form of equation ($3010-8$) the value of M en b / B is adjusted for the particular arch by an amount equivalent to C_{M} such that $M 0$ is the some as the ratio of $A_{n 2}$ to $A_{n 2}$. In the more general case, the values of 5 and n can take on numbers within certain limits, before the normal depth will submerge the crow of the arch. The limits are as follows:

$$
\text { For } S=7 n / r \quad 0 / r \leqslant y_{n} / r \leqslant\left(r-c^{\circ}\right) / r
$$

or

For \quad y $=\mathrm{d} / \mathrm{r}$

$$
0<\zeta<(3,-n)
$$

$$
\text { . } 0<3<(3-\infty)
$$

- When for ot the case of a semicircular arch with the center of curvature at the springline exists. When $n=1$, the contraction reduces to two parallel abutments.

The values of C have been calculated for several values of 3 and n and are summarized in the graph of figure 3-13. The submergence 14 mit represents the upper limits of both and no The segment arch which is a constant radius arch with its center of curvature below the springline of the arch (1.0 。 q>0) can be used as an arch in its own right or as an approximation to an elliptical or a multiple radius arch. The value of M^{0} for the elliptic and multiple radius arch could be determined directly from equation ($3=10-k_{k}$)。

III II. Definithon of Test Gomstries - velection of sesus

Has independent variables wore considerad in the dimensionel aroijsis be doternh no the dopendent variable $I_{1} / /_{21}$. of these nine variables seven desuribe different types of constriction geometries, the otnes two, he Fronde numuer and the contraction ratio deseribn the flow field and whe anount of contractionc These saven geometric variables were ue th to define serez trpes ct: \&eometries that visre tested separatel.". These typss of geometries are deffned iniuno

Gsomes ry $I=5$

Two Dimensional Semiolecie Arch Briciae Constriations:
(Figure 3-14) The charasteristios or the iype of eeonet-y are the felisonig:
a) Sinse the model is tro-dimenaionel in is $=0$
i) Singie bridge case. $I_{i f}$ mo and $\frac{b \hat{I}_{d}}{A_{n 2}}$ an 0
c) No wingwalls, acccraing to dufinition on or, ons 90°
d) Nonearkew case arcurcing to definition of $\beta_{2} \theta_{2}=0^{0}$
e) Sensichrocular case $d=0$ and $\beta=\frac{d^{\prime}}{\pi}-0$
i) Oae span casc, N_{N} n
E) No occentricity, $e=0$
h) Froude number"o $F_{r:}=\frac{V y_{n}}{\left(k y_{n}\right)^{\frac{1}{2}}}$ designatei as an indopencent variable.

1) Constriction oparing patio 14^{9}, designat ati as an inciependent chanel avening ratio M?

 are designated as constants and we get the relation:

$$
\frac{\Psi_{I}}{Y_{n}}=f\left(\sum_{\Omega 9} M r\right)
$$

ThreeoDinensional Senicircular Arch Bridges:

This geometry differs froa the previous one only in that L is varied, thus o parameter $\frac{\mathrm{L}}{\mathrm{b}}$ describing the length of the model in the direction of the flow a variable and the dimensionless equation (3-10-1) for this case becomes

Geometry IT

Dual Parallel Three-Dimensionai Arch Bridge Constrictions:

This geametry consists oi two identical bridges of geonetry Iobs placed at Iistance I_{d} aparts measured center to center. One new variable, In, is introduced ${ }_{0}$ ich is characterized by the parameter $\frac{\text { BI }_{\text {d }}}{A_{n 2}}$ (Note: For submerged bridgo constric= ns, $A_{n 2}=A_{0}$ sce Chapter III)。Equation (3-10-1) simplifies for this case to:

$$
\frac{Y_{1}}{Y_{n}}=f\left(F_{n 5} M^{0} \cdot \frac{b L_{d}}{A_{n 2}}\right)
$$

Geamitry III

Thres-Dimensional Arch Bridge forstriction with Wingualis:
Tae geometric characteristics were as follows:
a) $\frac{\mathrm{L}}{\mathrm{b}}=0.25$
e) $5=0$
b) $\frac{B L_{\mathrm{d}}}{\mathrm{A}_{\mathrm{n} 2}}=0$
f) $N=3$
c) Th is a parsable O_{2} a $90^{\circ} \% 60^{\circ}$ \& 45° o a 30°
g) $a=0$
d) $\phi_{2}=0^{\prime 2}$
h) F_{n} is a variable

1) IM 2 Ls a vasiable

Hence, equation ($3-10-1$) cen be simplified to:

$$
\frac{Y_{2}}{Y_{n}}=\tilde{\Sigma}\left(F_{n,} M_{0}, \hat{D}_{2}\right)
$$

Ceonery Ir

Two-Dinensional Smicircular ireh Eridge Constracesons witp secent:astis:

The geonetrle characteristics were as follows:
a) $\underset{b}{\stackrel{\ddot{c}}{a}}=0$
d) $d_{2}=00$
g) з is a vas 2able
b) $\frac{b^{7} d}{A_{2}}=0$
e) $\mathrm{x}=0$

c) $\phi_{1}=90^{\circ}$
f) $N=2$
-) In 18 a variable
fad the squation (302012) can be reducod to:

$$
\frac{I_{1}}{X_{n}}=I\left(F_{n} M \delta 0\right)
$$

Gernativi-a

Two-Dfmenstonal Senteincular Arei Bridee Constrituicns wh Ske:r

The gaometric charecteristios wore as foll cws:
a) $\frac{I}{b}=0$
b) $\frac{b \tau_{2}}{A_{22} \alpha}=0$
d) O_{2} 幺ิ \& varoble
e) $y=0$
g) $\Leftrightarrow=0$
h) $\bar{F}_{n 3}$ \{s a vamable
c) $\phi_{2}=90^{\circ}$
2) is or
i) M^{0} is a variable
ind tho erpation (3-10=1) can be raduced to:

$$
\frac{I_{I}}{X_{n}}=I\left(I_{n B} M_{\varepsilon}^{0}, \alpha_{2}\right)
$$

Three-Dimensional Semlereicular Arch Bridge Constrictions urith Skew:

This geonetry is the same as the previous ones exeept that the length of the notriction is allored to vary, the paramerer: $\frac{I}{b}$ is thus a variable and the dimene oniess equation $(3-2 \times 1)$ can bs sinplificd tos

$$
\frac{I_{2}}{I_{23}}=I\left(F_{5: ~} M_{n}^{8} p_{2}, \frac{I_{b}}{b}\right.
$$

Weorietry 7 H

The geangtric charactsictics wero az follcwe:
a) $\frac{\mathcal{L}}{2}=19.50$
E) IN a 2: Thoospen case
i) $\frac{3 x^{x}}{A_{22}}=0$
g) $\varepsilon=0$
c) $\dot{\phi}_{2}=90^{\circ}$
b) F_{n} is a vasiable
d) $\phi_{2}=00$
i) M is a vartable
e) $F=0$
3) $p=\frac{b}{10}$ (for sulnerged tests)
$p=\frac{b}{3} \quad$ (for free surface tosts)
The equation $(3010-1)$ san be reducel to:

$$
\frac{\Psi_{1}}{\Psi_{n}}=\left\{\left(F_{Z B} M D\right)\right.
$$

Cemetry VII

Rve-Dfrenstornat Segmort Arch Bricge Constrictions:

The geometric charactertstles were as follcus:
a) $\underset{i}{J}=0$
e) Ls a vašable
b) $\frac{\mathrm{bI}_{-2}}{\mathrm{An}_{\mathrm{n} 2}}=0$
E) $\mathrm{H}=2$
c) $\phi_{1}=90^{\circ}$
g) 00
d) $\phi_{2}=100$
h) $F_{\text {r }}$ is a variable
i) H^{3} is a variable

Hences, equation (3-10-1) peduces tos

$$
\frac{I_{I}}{I_{\Omega}}=f\left(F_{n}, M_{0}, \hat{B}\right)
$$

2．Birkhofi，$G_{0,}$＂Calculation of Potential Finw with Free Stoer tines＂，AsCE；

 Vol．61，1917，po4 47%

4o Wh，Io Po＂Preliminary Study of the Indirect De Finization of Pload Diseizarge from Contracted Bridge Openings and Figh Taice arke is Menorendum from Io Fo wh to Mr．J．I。 Perrey，Indiana Flood Control and reter Resous ces Comissiono Augusi 15． 1962.

6．Henry，$H_{0} R_{0}$ ，Discussion on＂Open Crannel Entristions＂＂ransactions ASCL： Vol．120，1955，po 1013.
 Divisiona ASCE，Vol．83，No KYb Decenber i957．

B．Izzard，C．Fo，＂Discussion on Oper Channel Constrictions＂s Tr ns．ASCE，1955：
Vol． 120 ，po 985 ．
 U．So Govermont Printing onfice，Avgust： 1960.
0．Valentine，＂Flow in Rectangular Channels Nits Latorey Consurt sion placesp La Houilio Blanches Jeno－Teß． 2953 \＆p． 75.
1．Iut，Ho Kos Bradlay，Jo Nos Plate，E。Jos＂Packwater Effectis of Ploes and Abutments＂。Clvil Engineering Section，Foloredo State Univer ifty，Port Colyinss Colorado Rept。GER5\％HKIO，Dct． 195%

A prelininary investigation was consucted in a small flume for the purpose of evaluating the design requirements por a Larger testing inune and on establisafig the testing procedure。 The small ilune also provided a facllite where some prom Ininery tests could bo xhn with scalea and relative roughnesges diffiexent frou those used in the large flume.

IV -1 Small Flumea Modela and Test Conajitions

For the purpose of prearninary tosting a smail variable slope flume 6° wide and 120 Iong was used. The channel sides and botion were constructsed of Iucite andi carefully alfgned by means of adjusting screvs. (Figo fol) The slope of the munce was controlled by a hand operated scisscx jack at the lower end of the fame, An aluntum I-branim morred homizontaliy abcve the fiume served as a track for the mechanical and electric point gages usce in obtaining the water surface measuromsnt:3. The elsctric point gage consisted of tro metal pointe of slightly differerit length that were wired to e set oin batteries and a galvanameter. When the shorter metal point would rake contact with the water surfaces, the longer one taing alweady uube merged, the circuit would close and tha galvanomaice would defle to The flow eras metered by a 1 inch orifice peate in a 2 inch supply line。 Tro dud three durnensional
 and the walls were lned with copper wire mesh of 26 meehes per incho

The two dinenzionel senicircular modeje warg constructed with dianeers on 3 4 and 5 inches (see Efg. $4 m$). The materlal used was brass. The edees were machined to $1 / 32$ of an inch and then beveled to a 45 degree angle. The two diraensional segment models were of the stme type of construction as the semicipcularo models and had a value of $y=\mathrm{d} / \mathrm{s}$ equal to 0.50 Three three-dimensional modelis were built for the purpose of this prellininary testing.

The matersal used was "Incito". The dimensions of the three-dinensional, modele are the following:

Iuctite Model \qquad	Length of Moder Along Stream in \qquad Inches	Arch Diameter in Inches	Rise inches
1 2 3	$\begin{aligned} & 9.7 \\ & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \\ & 0 \end{aligned}$

A photograph of the models is given in Figkre 4o2. Model. No. 1 is a reprociuctiont id a scale of $1 / 60$ of the Arch irvidge in Clay Conntys. Indianas on State Road 24.50 overo Branch Connley Ditcho For measuring the vater surface under the bridge, veroidai. glass tubea wore installed on the modeles as showa In Figure $4-4$: Through these tubes the probe of an electaical point gauge could bo introduceci。

In all cases, $_{\text {a }}$ an justable wein was ussa at the and of the flume This permitted to incirsase the depth of flow, and to rsduce the length of the M-2 curve at the free overfall so as co obtain a long test section whin uriform flowo The weir height varied for the different tests. Tha wein heights used ffefrdicaiod fore the several tests.

The theo-dinensional model tases were conducted for the followng variable conditions:

1. Wall roughness: The channel sidea and bottoan were exther sncoth or xough as descrised in the previous paragraph.
2. Slops:

Thres different sloper were reed: $0=0, S_{0}=0.0003$, $S_{0}=0.0005$ 。
3. Discharges

The discharges used in cuble feet per second are:
$Q=0,0174$
0.0138
(with 0.413 in orifice meter)
0.015
"
0.017
0.023
(with 2.034 in orifice meter)
0.028

II
0.031
"
0.0379
n
0.042

1
0.0519
0.0525

4o Models: Three models were used, designeted as Nos. 1, 2, 3 and as dibscertan in mevious paragrapligo
The staps of the tost routine were the following:

1. Adiustment of horizontaitty of bean on which the point gauges travel. This was dore by maintaining a pool of water in the $\Psi^{\prime \prime}$ mme ${ }_{9}$ and tat ing the point gauge reedings of the meter surfece at several points. The beam position was adjusted 30 thai the point gauge readinge were the geme 211 aiong the beam.
2. Control of the channol slope This was accomplished by adjusthing the sciesoro Jack until the difference betwean the palnt gange readings of the botton of the flune at two points 10 feet apart world be equal to ten times the liew sired slopa.
3. Establishmemt of the f2oy The floo ves adyusted by mans of a cuntrel valve so as to obtain the desirod reading on the orinizee meter manometer. The dosired readings were obtained from the calibration curves.
4o Estabjishment of unifozm fitomo The adjustable welt at the downsteara mod of the flurae wiss sers so as to obtain uniform flow through most of the flumso The flow was considered uniform in a reech when constant depths were obseryed in that reacho Depth was measured at one foot Intepvals. The section of the flume with unfoxz flow sig the tost sectlon。
 so as to show the complese regain curve and as much as possible of the backa water curve. In the case of the teste with rough channel wall3 120 roughness was installed on the mociel. The bottom of the flume under the arch was covered with arificial roughness for models 2 and 3 only. For model I the roughess was not installed on the bottcrander the bridges but was inserinced along the rest of the fluzne。
4. Observation of the water surface proftie. The wetcr surface elswation was firet measurea with a mechanical point gauge along the center fine of the flume upstrean and downstream of the model. At a lacer time vertical gias tubes were installed on the modols. The water surface elevation was then measured with an electrical point gauge along the centerline of the arch. The tsst data are tabulated in the Appendx, (rible 4-2)

-2 Test Resulta

The observations of tine water surface profiles observed arw tabulated in Table of the Appendix．

Colol is the station as read fram the tepe on the horizontal beam．The tape is graduated to 01 foot from cownstream（gta化 4）to upsirean（station 34）。

Col 2 is the distance along the fontme in the divection of the frow Station 14 corresponds to zero and etration 4 to 20 ．

Col 3 is the flume bottom point gavge reading．At each 2 foot or 2 foot interva？ the botom elsvetion was observod with the mecharieal point gatge，
 before fixing the model． No $_{0} 0_{0}$ with unsicm flowo

Col 5 is the wator surface reading upetrean and dometream of the mosel obtained with the mechanical point gaugs and the watim surface under the bridge obtained with the elencrical point gauge，

Cols 6 ig the difference between Col． 4 and Col． 3 g－nemely the normal water dopth。

Col． 7 Is the difference between Col． 5 and Col．3，ramely the depth of water witin model in plece．
 model．tail weis height that were used in the particuler get of seadings were noted in this column．

The data perfaining to the rough boundaryg two dimensional，segment arch tests the smoll filume and tha calculatiurs necessary for the analysis of the segment are given in Table $1 ; 2$ 。

The results of the two－cianensional weire teste were put in granhical form by ting the coefficient of discharge ws the Froude Number with the channel widh －as the parameter．The channel wioth ratio M is defined as the ratio of the
welr dianetos b to the flume width B_{0}. This grapin is show in the anper loft comes of Figure $4=5$ o The lower greph showe the relation of the Froude Number and the reatio of depth upsiream of the wess to the norval depth.

A tyticai water surface profile for the three-dimensional ureh bridge models Is show in Figure 4-5。 In that case B_{B} the Ilunce walye were lined with copper wie mesh of 16 meshes per inch. This geve a Mannitggon revghess coefptcient of approximately 0.025 , which is typtcal of many canals and noturol streetus. Figwo $4=9$ showe the results of the threestimenclonal nssts with smowe koundarios usfog bridge models of widih L we incher. The coefficients of etwechargo cici and the ratio or the backweter depth II to the rormal depkh Yo are piotwea ys the Froude Number for several values of the chan el weth rat.o M. The zesultis of whe two and therecw
 to notice that for small Froude Nomers, say Less wa: $0.5, \mathrm{Ca}$ and the ratioe Fit are approidmately the same for the two casco For hugher Frouche Niraberg, the vireem dimensional tosta eshibit smallar valuee of C and aspere vaiues of $\frac{\bar{Y}_{3}}{\bar{X}_{0}}$

As part of the prelininary testing, a series of 93 tests were run int the sman fume on two dinensional segnent weirs (Geonetiy VII) with a nam d/r value or 0.5 (See rable 4-2) The data obtatred were reanalered in terms of the channel opaning ratio ing. These tests wore ruis in the smal. cheninel with rough boundaries which had a Manning 3 of of $0.0 \% 0 \mathrm{~L}$. Fesulte were plotted in the same maner as the lazege flume rough tests and are showrs in Figsee 4 aea

∇ experinginl enulpient

1-1 Desien and Construction of the Testing Flume

Before the derign of the filume itself could procesd: it was necessary to latermine whether the backwater and regain phenomena couta be represented to a onvenient and cisily measur?ole scale in the space avaikable in the hydraulics aboratory.

Several sejte of asch bridge plans provideci by the Indiana State Highway Departw ent were analyued for the vilues of backrater. The thery of varied flow and the rquations and tables presented by Erishreteres (1) and by the U.S. Eureau of Public
 nekwater because of the unkiom effect of an axchotype constriction.

Ono criteritn for the eclection of the flume size wes that lit had to be sufficiently ong to accorrodate the full Length of the regatn cunve ciomstream of the constricions the kridge width and pert of the backwater curve upstream of the constriction within tise tast section of the ilume. The tast scetion of the slume incluces oniy dhat y z\% of the flune where unforn plow can to obtuined. The upstream end of the Ius, where the flow is developing, and the downstroman end which is affected by the :ivature of the free surface are not suitable for tosting. The jimitations on the Iume size were 5 mposor by the space available and by the capacity of the water $u p p i \%$ 。

A calculation was made for bridge 579 in Clay County in Indizna. This brazge las a span of 30 feet and the stream has a widith of 46 feet. The backwater curve and the regain curme ware calculated ascuming a velocity of $6 \mathrm{fe} / \mathrm{sec}$ in the constrice ion. The prototype bridge had a widtin of 48 feet and the calculated length of the egain curye was 146 feet. At a scale of $2: 10$ this would represent a length of 1904 "eer. In a teat section of 30 feet in iength, it would be possible to reproduce a (0) foot section of the upstrean backwater.

Taking into account the boundary layer growth at the entranse of the frune and the dropmif curve at the downstreara eint, a totel Iength of about 60 feet was requireed. A width of 5 feet and a depth of 2 feel; was consistent with the siale of $1 / 10$ gor this bridge crossing. Thete flume dimensions reouired a proning capacity which was close to the maximum supply available of 2100 (gPPi。

From this and similas canvitations and froan thy sman. fiume tests (1) is appeareet that a flume Iength of 64 fea; uthluing all of the a vilebie space in the laborafory would be satisfactory.

The width of the flume w3s ifxid at 5 secs. This war bised on a consideraticn of the scale ratios and the space arailable, The cress secticn of the flume was to
 Ion and adaption.

In orcion to tast the flow unctr anytag slope conditions, ins flume was to be :Iltable about ono end. Screw jac!: wore selected for tize slape conilol because of ccuracy and ease of operetiong is nin a3 mommentence and anpertance.

In order to keep tios doflection 1 due to who vartable weigh; os wetur within the ame order of magntiade of the snallut readings of tize point gary for do:th neasurem rent, 0.1 mrn , the flume bottom was d^{2}.ingrech of $1 / 4$ Inch steal nlat supporied ath
 eams rlding on the jacins" The aide pil hos wore deisigned of $1 / 4$ Anchi steol plate uppinted by vertical englns reatbing on the channsl members. A long!tudinal. hozea ontal angie mourisd ory the vertical ang ws servis al a suppurt for the guzin pails. The guide rails, whatch serve as a roferent: plane from which measuments ise nased. ere to bo poljshed stainless stael to mintribe corrosion and scaje.

The desigen was kased on a possible mitis dopth of 2 feet. The distance beveen am supports was set as 20 feet. Simply spported connection was assuned. The bet at ere selected as that their defloctions woulc be negligible. The beam first selected
was an 16 I ： 4.7 which gave a calculated daxiection os 0.00225 Reet under the doskign loadine Contacts with the fabricatos ard erectcr wene made at a later daka and ft was found that a 20 I 65.4 would be aveilable at a cost less than that of the＂fghter beam．The use of the heavier bean wes accepted and the design proceedea based on tints bean．The daflection dus to the variable water weight was approximately 0.002 fees for a depth of one foot．Adjusitnern bults wore provided for trangrerse legelfingo iphez adjustment bolts were placsd butween the channcle and the main beams．Tris acrange＝ ment gave the bottcm place full support asreas fts with at 2 foot friervals

The bottom plato was lesigned slizhtiry wher than the flume whitho Thas pexus mitted attaching an angle to hata the botton exige of the rervical plete fixad．The upper edge of the voritical plawe h．d muts weidra on at the twa pocis polnte：Seuds ware attached botwoen the ruts and the vastical anglae to suppent the plate and prourde an adjustrent for fits longitudunal alignu wit．The tnsade of the filine tes Eimished with an epoxy resin applied with a hand Eolles．The f＂lume conctruction io shomon in figure $5-1$ 。

Tailpate

Control ove：the dept？wa exurciset＇5l a gate nountra at the ond of the flume。 The gate wes manually opersied from the－17e of the 2ume．＂igure $5-3$ shows the gate。 The gate was made in such a way that it could bo utes ed her as a sluace ozt as a welr．Throughorit the tesius，thu atie vas osed arcluelvely as a wein．

COI sibat
The forebay，of feet wlede and 3.0 feet long，wes constructrod of plywoad and Intigl
 the rear of the forobay at the topo the 6 inch Inne was centered and the 3 firsh qine was placed slightly off ceater．The di？ousing mechanism for each supply line consistiot of a tee and cross pipe of the same size as the line at the botton of the forebay． The turbulence level of the entering water was controlled by a 4 inch gravel harfle and three wire mesh screens of 23 mesh par incin．Tho tronsiticin section continuing
into the sottcon and side wails of the flume was made of quareer ellipses in the borizontal and vortical planes respectively with a ratio of najor to minno ares of 1.5 to 1.0 . The foint between the ilume and tha forebay was sealod with a flaxible rubber galco mounted so as not to inter?ere with the flow,

Slope Contril Mechanism

The flume rests upon six sores focks and a hinge. Tho hirge is Iocited at the joint of tiae flume and the forcbey. The jacke ara similas in all respec is with the exception of the geas ratio. The jacks me dividod into throe pairs wita rates of rasse of one two and threc inches for 96 turns of the staft Since the hinge was a flusd point and the opposite end of the flume was ur point of maximura mover ments, the jacks were arranged such that the pate nearest the hinge noved the lease and the pair at the opposite end of the Mene had lareezt displatenent per revolucios This maintained the bottcril of the flume as a plane while it was being yaized and lowered. The jacks on cach side if the filme were driven by a cownor I inch shaft it connected at one end to a 90° miter war. The niter gears on either side in turn ware connected to a single 60:1 ratio gear rewnes. The power to anerate all the jacks was supplied by a 1-1/2 iorsepwer, 1750 revolutions per minute, reverstbies electric motor comnected directly to the geer reducero This frovides a rate ger yert cal displacenent at the downstream fack station of anyroxirabteiy inch per minute The jacks wore arranged in such a way thet the downstream and of the thane mays move from 12 incires oolow horizontal to 3 inches abova horizondal s resuiting fin a maximuri positive slope of $2 / 60$ and a maximum adverse slope of $2 / 240$. Tre motor was controlled by a raiss, lower, and stop control swlech。Safory switches were located both near the mederis and near the control. switch. If was necessary to uriock whese before the control sirccuit could be completed. In addition, autonatic Limit switches were provided to prevent muning the jacks beyond their 1;mits. The gerepal arronge mont fi' jacks and gears is shown in figure 5-5.

In order to connect the encs of the jacks (which move in a vertical inne) to the flume (which moves in an arc) it was necessamy to wae a pinned Ifnkage。 A photograph of the Inkage is shom in IIgure 5-2. (Appendixc C) Due to the ark of the linkage, the relation between the rise of the flume and the revolutions, turned by the jack shafts, was not lineer. Therefore, it was necessary to make a calloration of the slope rather than computing ito

At the time of erection, the jacks were leveled at 0001 foot before the flume was erected, During the allgrment procedure the jack were raised or lovered individually as needed to obtain a level base. The shafe couplinge were then inw stailed and no further indivicuel movements were made.

∇-2. Water Supply and Measurentont Systan

The water available in the laboratory is reci:culated through the syecem by two pumps rated at 300 Grm and 2000 Gono this 3 .nch line contained a': $\times 2.25$ inch venturi accurate to 0.5% over the range from 30 Gon to 300 Gim. A 60 , inch differentia? manameter reading to 0.01 Inch vas connected to the venturi und fis. ${ }^{\text {Ind }}$ with tetrabromo ethane (specific gravity 2.95) which gave a monometer deflection of 51 inches with a flow ci 336 Gpm .

The 2000 Gpu: purap was coinected to a 6 1:nch line which contassed a 6×4.176 inch venturf accurate to 0.5% over the range 200 Gm to 2000 Gpm A 30 inch differention manometer reading to 0.01 inch was connected to the venturi and filled with mercury (specific gravity 13.6) . This illnameter gave a deflection of 44.9 thehes for a maximun flow of 1790 Gpm . In both cases the venturds wero ilitted with air vents to insure proper messurcments.

In order that the callbration of the vanturl meters should hare no error larges than that of the venturi neter; the scele to be used for tine calfbration was checked against standard weights by the Indiana State Board of Health. Division of weights and Measures. The scale error was less than 0.2% or $\%$ pounds per 1000 pounds. For the purpose of calibrating of the venturi meters, branch lines led to a baffled cone crete channel located above the maghing tank.
ft the point inmediately before the 3 inch and inch innes entered the forebayo valves and valve bypasses were instailed. The 6 inch line had a 2 Inch bypass and valve and the 3 Inch line was fitted with a 1 inch b-pass and valve. The manometers were mountod in a position easily visible to the person adjusting the valves. The overall apparatus arrangenent in the laboratory is shown in figure 5 - 4 。

The calibration curves of the venturi meters are given in 11gures 5-6 and 5-7.

T-3 Measuring Equikment

a) Instrument Gaxriage

An almunirn instrumant eamriage. mounted on two stainless ateek guicle raing running the length of the flume, was installed so that the bottorn of the flume could serva as a peference plane. The four viteels of the carriage were grooved to give a precision fatt on the rails. One of the whecls had a set screut to keep the carretage from moving when an experimení was conducted. A surveyors tape was mounted along the whole length of the ilume and an indicating point on the carifage servel as a referm ence point for all Iongitudinal measweaments. Another surveyors tape was installed z_{3} the transverse direstan of the flume on a grooved rail of the instrunent, carrvaga This rail sarved as a guide fos the slide on whith a point gage and Prandtl habe weroe mounted. This slicio also had an indscating point serving as rexerence point for trants verso meazuramentso By means of thess two tapes any point in the ilume could Be locater In the hormzontal plane. The instiment carriage was also couppeci with a fivorescent lamp, several electricel outlets and a wide $3 / 4$ inch plywood strtp on one side to serve as a desk fore notakeeping etc. The carriage could easily be moved to any locationa along the flumo and locked in a speciffc position mita an accuracy of 0.005 fito (Figure $5-8$ shows a top viek of the carriage。)
o) Point Cage

Al工 wator surface elevataton measurements were obtained by means of an electrict indicating polne gage. It was mountod on the instrumert carriage slide which could 3 positioned with an accuracy of $\pm 0,002$ it. in the iransverse direction of thas llume the staff of the point gage was marked in millimeters and was equipped with vernier which allowed a reading accuracy of ± 0.05 moin the vertical direction. The accuracy of the water surfece elowation measurements variad between 0.1 mm to Q. 0 dapending on the snoothriese ois the free surface.
e) Prandta Tube

The flow velocity measurements were obtainsd by means of a $\lambda / 8{ }^{m} 0 . D$. Prander tube of standard design. The Prendil tube wes nounted on a vertical staff which whes narked in 0.2 cm and had a vernies allowing a vertical positloning within t\% 0.01 can of accuracy. A set screw prevented the position to chan:e during test measurements. The support of the Prandel tube formitted, in addition to vertical and traverse motions, rotation so that the horizontal portion of the probe could be aligned according to the direction of the flow indicated by a freely sininging stifiened tuft attached bo the ube The amount of rotatfon was reasured as an angle by means of an indicator sidding long a fixed protractor". For measurentont of large velocities, the Prandra tury as comected to an diverted U manoneior which had a fluid of specifing gravity 3.810 o

Variablo-Reluctares Pressure transducers
The smazl magnitude of the wressura differeatials to be measured with the Pramdith ube in zones of small velocitier medo it necessaxy to wiploy a VartableaReluctance ifforential Fressure Transcucer (modes Pro, Pace Eng。Conpo) Instead of the convenLonal liquad manometer. In the low velocity regions a pressure transduces having a ange of $0_{0} .1$ psid. was used. In the hifger velocity regions on as in the discharge
 alocity pressure transducer systeri.

Calibration of Velocity Probe
By using the retation betwoen the drmanic and static hoad $\frac{\nabla^{2}}{2 \mathrm{E}}=\mathrm{h}$ (whore V is alocity in fipsog his feet of woter and g is the acceleration of gravstity) a statie libration could be performed.

Two reservoirs were connected to the stagnation and static oyenings ow the Prendil ibe respertively. The reservoirs were connected through a valve。 A daturn leve? was pasured by an electric point gage when the connecting valve was open, and the altmetrex rodle was adjusted to the zero marix. The prossure was then equel on both sides of the aphregn in the pressure transdvcer. The valve connecting the reservoirs was closed
and distilled mater was adced to InGreass the level in the resenvoir comectad to the stagnation oponing. The matery lovel wes recorder for even fremenomes art the volur ater readingo Figure 5-I: Bhow the salibration scupo Calloration urwes are show in Figure 5-12.

a) Smoot'h Boundarles

The actual testing program in the large pinua was yun under two different boundawy roughness patterns. The first rourhness which ril2 be referred to as the sonocth bouno dary consisted of the steel Fivis wails finishevi with an epoxy resin paint.

It wes necessary to cegfine the region of uniform flow prior to testing the models so that their eifects on the flow pattern could be evaluated. The models and the affected flow reach mast be contained within a uniform flow pogion Special tests were rum to dciamm no the characteristics of unifory flowo The values of hanringes ng the Darcy-helsbach fricticn coeffictont and the Iength raquired for the flul bourdany layer dovelopnent wros celculated as díscussed belowo

The section used for model testipig wes the portion of the flume between 20.00 fit. and 50 . 00 ft . fran the entrance. Thth the knom unffom depth within the test equation the digcharge, channol geonetry and slope, the lamming ${ }^{0}$ equation could be ussi p:o
 to maintain good control of unitum depths. Bassc upom an average of all the calcula. thons of Maningo ssifor tho smooth bouncarges, a value of 0.0210 kns deteminel. The range os n was fran 0.009 to 0.0130 Por discherges and Froude numbers fran 1 css co 4 cis and 0.05 to 3.59 respsctively.

Darcjoidezsbach Cocficient

In addition, the Darcy-Weisbach iriction factos was calculated accordiug to the following equation.

$$
\begin{equation*}
s=\delta g R_{n} s / \sigma_{n}^{2} \tag{5-4-2}
\end{equation*}
$$

Wharg $f \circ$ Darcy-Weisbach eptetion factor
∇_{n} - Average velcci사
$R_{\Omega} \circ$ Hydraulic radius
S - slope

The friction Lactor was plottoc against the Roynolds number and carpared to the Blasius and Prandit Von-karian curves for snooth surieces. The resultine plot is shown in figure 5-13. The Reynolds number ts that defined by Chow (3) as WR/fo where γ is thefinematic viecosity of the watero Scme of the scatter of the sucoth data points is due to the fact that the surfaces were so smooth that relatively flat slopes were necessaryo As a result, the slopes and suriace profiles were very Eifiplevit bo measure and they introduce erperinental errors in the ealculations.

Turbuㄹnnt Boundary layer Growin

To ansure that the model hests were being run sin a regime of fully cevelorat turbulent flow ths dists.nce dowstrean firan the entrance of the fume t: the polnt at which the boundary layer thickriess 5 was oqtal to the norime3. depth y... wes conputed. The equation nser for the devecoment of the turbulenif boundary layer for sucoth sur⿻ faces was that devoloped for Faf oras a flat plato. This equetion is bssed upon the Blasius $1 / 76 \mathrm{n}$ power 1awo (See ros example Daugherty and Ingersoli4)

$$
\begin{equation*}
\delta_{/ X}=0.3 \times 7 / \mathrm{Re}_{x} 1 / 5 \tag{5-4-2}
\end{equation*}
$$

where $\delta=$ the thickness of the turbulent bcundary layer

$$
X=\text { distarce downstrean fren the point where } \delta=0
$$

$$
\text { Rex }=\nabla_{n} \Sigma / y
$$

$$
V_{n}=\text { sverage unifom velocity }
$$

Solving (27) for X

$$
\begin{equation*}
X=(8 / 0.377)^{5 / 4}\left(V_{n} / \psi\right)^{1 / 4} \tag{5-40-3}
\end{equation*}
$$

Although this formuta is sestricted co flow over a flat plate, it will serve as a first approsdmation in the problem at hand. If δ is made equal to the uniform depth I_{n}, then the value of X will estinate the distance to the point at which the Eraroukent. boundary layer becones fulky devoloped.

Test results showed that the walues of X rangad from about 8 feet fors small disco charges and steep sl.opss to about 40 feet at high dischtrees and steep siones,

For the majomity of the muns. the values of X were well within the rivg: 20 feet os
 seetiona
b) Rough Boundaries

It has beer shom that kanimgt in value for the smocth boundarmes was 0,0210 . This value was not mopresentathve of any natural strean conditiono It fas decided bo run a second sories of tosts With a bondasy roughtess which yould bimi.ate a more natura. conditions and would. permit the use of steaper slopss in the flumeo

For natural streams, Deugherty ana Inzersoll give the following veluss cf Manning ${ }^{9}$ n。

	Minsimun n	Macinuar
Sajous Tatrual frveans	0.025	0,032
Rouchest liatural Strears	0.045	0.060

Basw woon a scale ratio of 1/20 butuen model and procotypes a sol ghange with n 0.020 in the modal mowd sorreapond approxtratoly to an $n=0,030$ in a naturest streano Alss a Manninges n $0: 0.030$ in the model would te appoxtmately 0.045 in the field. Therafora, it would bo desirainte to solect a poughness parterm for codel teai in parposes that would have a Maming? in batrem 0.020 and 0.036.
 patterz was selectesd. The roughness ajong the botion consisted of two jayers of I/L
 a top leyer of transverse bars 6 inches on center. Along the side walles, there tres one layer of vertical bars 6 irches on center placed $1 / 4$ inch fron the, 217 the bottcan layers of bars were tied together whth screen wire. The vertical bare wers thed at the bottom to the transverse bars and clamped to the walls above fine keme sure face. This rougliness pattery can be eeen ir figure 5-14.

Figure 5-15 is a diagran of two velocity proiniles. One prok̃ile was taker 0.03 feet dowstream of a roughess olment and the other at a point lidway betweer twe
adjacent bara. It may ine concluded that a significent amount of $120 \mathrm{~m} . \mathrm{m}_{3} 3$ beneath the Q enamio3.

> Wamingis in and Deroyduciebach i

As in the case of the smioth boundaries, scveral uniformin wiw tosicy were made. The tests were conducted for discharges of 1 : 2 and 3 ofs and for $2 l$, dis astent slopes ranging from $0.00 c 010$ to 0.00450 . Fesults show that the Trouds rumbers anger frome 0.05 to 0.56 Ar average valus of Hanningis n was computed as 0.0235°. we actuaid value of n rangee from 0.022 t. 0.025 .

Daxeyoressbach friction fiztors were calculated for the rough boundrates and plotted in filgure 5-13. The data for rough bo indaries was broker dom encording to constant discharge and constant hycravic rodiass. Tha rear data for the in hostial den tests in the rough channel ase listod in table 5-1 of the Appondio.
Eqisvalent Jand Roughness

Nituradse ${ }^{0}$ s equivalent send zocughness was ciotermined ircan an equaitinn gityen hg Chow ${ }^{3}$ for witoorn flow in rough open channels. (rage 204.

$$
V_{2}=U_{2}\left(6.25+5.75 \log \left(E_{n} / k\right)\right)
$$

where

$$
\begin{aligned}
& \nabla_{n}=\text { average unitozm volocity } \\
& \nabla_{S}=\sqrt{E R_{3}} \bar{S} \text { shear velocity } \\
& R_{i 2}=\text { herdrandic medfus }^{2} \\
& k \text { miknzalse?s equivalent sand rarghrees }
\end{aligned}
$$

 Turuulsnt Boundary Layer Growth

As for the smooth bowndarys the growth of the turoulent boundary layer was indvestigated. For the rough flow, an approximate method proposed by Bruer and prem sented in (houf (page 298) was rised. Although this method was primarily developeri io. steep slopes, it was forna applicable to channels of smali slope provided the mow was uniform. The eouation proposed by Bauer was

$$
\delta / x=0.024 /(x / 15)^{0.23}
$$

Where $\quad \delta=$ thekness of the turbulemt boundary layer
If as dianke ircon the potnt whereS $=0$
$k=$ Nilureadse 0 s squivalunt sand roughness
Having alreesy evaluated k for the rough boundaries, the distance to the point where the bcundayy layer thinckness was equal to the normin dopth In oule ta evals ated. Fos the mavimum dopth, the value of It determined from ecruation 5-bj, $=5$ wa3 80
 In whilch casos the frow has fiuly davelcped ins the tout ssotiono

 pletely cescribo the boandary Ioraginses. The true value of x cepencls on whethare ar yn
 channel. 1 suficicintly wide stich that any apmociable sido woll effecta aro essential eliminated.

Acsoring to Robinson, Kcloseus and Sasre, the friction coofileier: for frition rough turbulent fiow Daym be expressed as a function of the relative soughoss and a parameter represerting the roughness spacingo In terms of Cheay C_{0} as given by Sayre and Albertson?

$$
\begin{aligned}
& c / \sqrt{\delta}=A \log \left(x_{\Sigma} / a\right)+c_{2} \\
& \mathrm{C}_{2} \text { a roughness parameter representing the roughnesi } \\
& \text { spacing and indepertient of roughess size。 } \\
& \text { a }{ }^{\text {as }} \text { peraneter describing the actual roughness height } \\
& A=\text { slope of the plotited line }
\end{aligned}
$$

The constemto C_{2} miay be found by graphical extrapolation in a c / \sqrt{g} vs $\mathrm{y}_{\mathrm{n}} /$ a pilot as the salue of $c \sqrt{g}$ at which $y_{n} / a=$ lo The value of y_{n} extrapolated to $c / \sqrt{g} 00$ defines the roughness parenater $y_{\text {" The properties of a }}$ and $\mathrm{C}_{2} \mathrm{I} x$ equation (5-un-6) ene conso
bined in X accorwing to the relationship

$$
\begin{equation*}
O_{2}=-A \log (X f a) \tag{5}
\end{equation*}
$$

Sayre docmonstrated that by daseribing tha boundayy poughness by a shagio paromstes the data would eroup about a singla curse described by the equation

$$
\begin{equation*}
c / \sqrt{g}=6 / 0 \in \log \left(x_{i 3} / \chi\right) \tag{40-8}
\end{equation*}
$$

Extonaive compexisone to the wonit of Sayse and Albertson wera made. 5 nce che bre value of X depands on having fully mough flow, the tesifigg fivme tra set to lits aximum slope of 0.0125 and a serios of asis tests at yamious discharges weri= ruto The iata Ros these tests an ghvei in Table s.o of the Appencioro

Figura 5026 show a plot of ure restatanes function $0 / \sqrt{8}$ against the watue of

 as 6.06 as in equation $\left(5-4-3\right.$) and the exsmapo?ated valus of C_{2} vas 3015 . Witos Ehe alras of $C_{2 g} A_{5}$ and a the value $3 \rightarrow X$ wes dotemined to $b s .02126$ Peat。 Fifere joly

Walooity Dastrisucton
 -ofiles. The resistanco numetion C / V is equivalent so $\nabla_{n} / \sqrt{\text { Co/for wise to seas }}$
 pth tosts to deternine the palcroter, a sonterline velocity profile ras taken aty slope of 0.0125 and a discharge of $3.7 \mu_{4}$ ofro The profing is shown in dirersionless TII in figure 5old. It is compared to the siniles profille pieserted by Sajre Tize. uations obtained was
noticable differenca in the constants (1.e. 406 and 2.6) was probabiy due to the

a in ecuation (5-kab) was assuned to bo $2 / 2$ Aneh。 In actuallty nin efinective value of a loss than the assunod valus could probebly have been used. ix a stialler value of a less than $2 / 2$ nench had been usecis then the velue of \bar{y} whad decrease aro foen numericol valucs of $7 / \lambda$ in figure $5-18$ wound increase ceusing the polocity jroplio to shift to the Ieft. The constants worid then be approxivatery equal. General Resistance Deagrea
Pigare 5-19 shows a portho of the genemoi rosistance diogran Por ur whom: foo
 In his original papor. Addoci on thie graph are the siz. apecial tests cor rough boundaries and the walue cosiesponding to the infform flow depths veres in both the
 the concepts pregerted tin the paxer of Saye and Albertson have beon gastendet br apply

1. Bakhaterf. $B_{0} A_{0}$ "Hydraujacs of Opert Chonnels", Frginessing Sociecies Moncgraphis:
MeGrawolili: 1932.
2. U. S. Bureau of Public Roads, "Computailon of Backrverer Caucaci by Brioges"
October, 1958 .
3. Chow, Ven te, "Open Channel Hyaraulics", Mecrawolicil. 1959。

to. Sayse, Wo Wo, and Albertson, Ms Hog Roughners Spacing in Fifgid Opan Chamal sil ju Trans. ASCE, 1963, Vol. 128, Paxi; If po 343.

VI-1 Selection of "rariabies

For each geonciry, several nodels were buitu to cover the pracuical ans on? the
 were built to cover 3 to 5 different vaives uf M A insting ci uhe range of all the

 generally made for a range of velues of the Fionde number betueen 0.1 and 0 , Tacis
 The discharges useu varieci betwen I arci L cijo

 Blope and the comesponding revolution counter setting whe bail gete heithe ant cha ormal depth.

For definttion of tize Geanetries see Figo 3-U.

TABLE - SELECTION OF VARTABIES FOR FREE
SURFACE FLOH 2TESTS

VI-2 Ohtention of Unifora Flow

Once the Froude number and the discharge have been selected and the rormal depth slope and tail gate setting have been calculated, the discharge is adjusted to the proper value, the slope and the tail gate are set to the calculatod valueso

The depth of flow is then measured at several stations along the flune, usually at. 10 foot intervals from station 10 to station 50 . If the depth at these stations varies by more than 1 mm the tail gate position is adjusted until uniform flow is obtainea.

VI-3 Free Surface Measupements

Usually the water surface measuremente were taken along the centerling of the arch opening. Additional measurements of the free suriace were taken for twospan arch bridge models, for two-dimensional segnent models, for three-cimensiona? skewed models. The upstrean face of the model was located at station 30. The maxuman backwater depth occurredusually between stations 20 and 30 . Water surface mensure ments were usually taken from station 15 to the end of the regaln curve domstream of the bridge. The interval of the neasurenents varied with the slope and the curvature of the free surface, but in the vicinity of the poirst of maximun backinter depth, measurenents were made at intervals of 0.5 to 1 footo

The water surface measurements were taken by means of an electric point gage ${ }_{8}$ which could be read to the nearest 0.1 mm .

VI-4 Data Processing

In the theorotical develonentit thas been shown (seas equo 309-29 and 3-0.353) that the ratio of the backrater depth Y_{1} to the normal depth Y_{52} could be expressed as a function of the satio of the Froude aumber $F_{r 1}$ (which is the governting fiow parmoter) to the channel opening ratio M^{2} (which is tine governing geometric parametor) of the types:

$$
\begin{align*}
& \frac{Y_{1}}{Y_{n}}=I_{1}\left(\frac{Y_{n}}{M_{1}}\right)^{2 / 3} \\
& \frac{Y_{1}}{Y_{n}}=I_{2}\left(\frac{Y_{n}}{M_{0}}\right)^{2}
\end{align*}
$$

It was found from the experfnental data analysis thas it was more convenfent to present the baekwater superelovation ratio $h_{I_{2}} * / M_{n}$ as a function of F_{n} / M_{0} In the forms

$$
\begin{align*}
& \frac{I_{1}}{I_{I_{2}}}-I=\frac{\mathrm{mI}_{1}^{*}}{I_{n}}=\tilde{I}_{4}\left(\frac{I_{n}}{\left[I_{I}\right.}\right)^{2} \tag{6-0,-3}
\end{align*}
$$

The general form of eque $6-4-3$ was used in the prosentation of the results inn he several progress reports. This presentation of the fesuits is given in the ollowling chapter.

In addition, a new aralysis of the data was made according to the form ris equ. -4-4o This presentation is given for the first time in this reporto thr value of onstriction head loss coofficients have been calculated for all seven geometriea by eses of the formula (see equ. $3=8-13$).

$$
K=\frac{h_{2}}{\nabla_{n 2^{2}}}-Q\left[\left[\left(\frac{A_{n 2}}{A_{4}}\right)^{2}-\left(\frac{A_{n 2}}{A_{I}}\right)^{2}\right]\right.
$$

The value of of used in the computations was 1.20 which was obtained from velocity distribution measurements. (See chapter VII)。

It has been shown (see equ. 3-9.20), that the backwater ratio $\frac{\text { Min }}{\sum_{51}}$ is procoretional to the squire of the ratio of Froude number F_{n} and the contradelon ratios

$$
\frac{m_{1}^{*}}{x_{n}}=D\left(\frac{R_{n}}{\mathbb{R}_{2}}\right)^{2}
$$

The value of D was calculated iron equ. 3-9-27s namely
 results.

A geographical mozithple correlation tech niue twas used for the procoseritation of the data of geometries II to VII, This technique is desuriben in the following paragraphs. The remaining calculations were perfurwed on tin digital corapuite. Figure b-3 shows the program flick chare for data analysis using Fortran III on the IB PM For omputor。

VI-5 Four Variables Graphical Multiple Correlation

(I) Principles of correlation
A. The coardal method of graphical correlation is based on the premise that if any important factor is cmitted from a relation, the scatter of the points in a plotting of the observed yelues of the depencent variabie vs. the values computed from the relation will be at least pastly explained by the amitted factor. In other word ${ }^{2}$, if the points on such a plotting are labeled with the corresponding values of the new factor, a famfly of curves can be drawn to modisy the valuos computed fro the originay relaw tiono For example:
 from dimension analysis for the ursubmerged case

$$
\frac{Y_{2}}{X_{n}}=i\left(F_{r}, M, \beta\right)
$$

(II) Procedures for Correlaticn
(1) Tabulete the required dota: $F_{n o} \beta, M_{3} X_{3} / N_{n}$ for sach run
(2) Consider $\frac{\Psi_{2}}{Y_{n}}$ as the depencont variable, plotied along the innel axis. (See ingo 6ols)

The F values vary in all tosts and should be used as "io fisst correlating variable. The values of β and k are fixed for a gitco model.s it will bo corvenient to consicier them in the second ard thited steps (ouddrants A anc B).
(3) Assume $\frac{Y_{I}}{\bar{Y}_{n}}-\hat{X}_{I}(\hat{F}, \hat{p})$ and naglect the varierle M_{0}

(III) Remark:

The reading sequence in Figo $6-30$ should follow the sequence of correlation. For axample, given $F_{n 2} \beta, M_{0}$ to fird Y_{1} / Y_{n}. The sequence of reading must follow the soquence $F_{n} \rightarrow \beta \rightarrow M-2 I_{1} / Y_{n}$ 。 The sequence $P_{n} \rightarrow N_{1} \rightarrow \beta \rightarrow Y_{1} / Y_{n}$ does not risld the corrent arswrs.
F_{n} is used as the abscijeca and $\frac{Z_{1}}{X_{1}}$ as the ordinate, as town in iso 6 wo to
A point $P_{1}\left(F_{n}, X_{1} / Y_{n}\right)$ can bo located in the quadrant A and the β value of this point is show by an assigned symbol. For example, in Page buy symbol. 0 sh aws that the value of β is 0.5 .
In Piso, 6-5, the points axe scattered because the essential factor M hes tat been considered, However, an average Line fore each β can be sound through the average positions of the points.

 M is labeled or showa by an assigned subacid An ave aga tine for if is platted through the average position of the pitts.
(5) Coach the accuracy of the give ccrrejationo See fig Gmo

 Draw a line through the origin caseating the graisant do Thea the deuce of scatter
 Ration.
(غ) The β-lines and the Li-lines an quadrants A ard B ara adjusted to improve the correlation, see Filo bus.
a. With the given values of $\mathrm{F}_{\mathrm{n} \theta} \mathrm{H}, \mathrm{I}_{1} / Y_{n}$ and using the MInes obtained in the previous step, the points are adjusted in quadrant A 。 The station is reduced, and a better fit of the points is contained.
bo In the same way with given values of $F_{n} \beta, Y_{1} / Y_{n}$ and the newly obtained β-line
closer
do Try the procedures (a to c) a number of times until the points in quadranto no langer change theis positicng then the accuracy of the correlation has reachroti ts maximum possible value.
o. The β-lines and Molines riey also be presented as shom in Fiso s-go
(7) Change Figo $6-9$ to a more comvanient iosing Figo 6 wio, by canbintig quadrvits ance B together.

I-2. Commetsy I

B) Intronuction

 $\left.3 \times 2\}_{0}\right\}_{0}$

 anf the square of tho Froude nurber, The discharge coefftedent Ga caicult tan Lion 3-7-2 is plotted versus tha ratio of the velsolty head to the nomol houthe the channal width retio M as a paraicetes in sigure rol-á

The consisteray of the data is wan j17ustwated by the lack of scatter op the

 (see Chapter IV) for the contractiun ratio or 0.5 which is ammon wo buti ce is
 ue elmost; foentscal. For example, at a Prorde number of $\mathrm{U}_{0} z_{\varepsilon}$ the value of ne diem

$$
\begin{aligned}
& \text { ₹ }<=\frac{V ?}{Y_{3}}
\end{aligned}
$$

 5 open chamel.

The romalas for mooth plpe for ave:
Blaslus $f=0,3064\left(\frac{50}{9}\right)^{-\frac{1}{4}} \quad R_{0}<10^{5}$
Pranaitheiton kargiky $\frac{1}{\sqrt{2}}=2.0 \log \left(\frac{V D}{w} \sqrt{\left.\frac{1}{2}\right)}=0.8\right.$

$$
\begin{aligned}
& \text { Biactu: } 2=10203 \text { औी }
\end{aligned}
$$

theis sriotion sactur do be

$$
\frac{I}{\sqrt{5}}=2,0 \% 2:+2
$$

for troanquia flow

 mootil isiznngrix ehemactar

 f the chernel finish.
 ainod by Tracy anc Caxies for moctergulan corsirtctions. has condraxion: . 5 Snu

c）Smooth Boundaries－Tests by Po Fo Elery
The experimental resulits of the twoodinensional semi－ciroular asch mode＂ tests in the Lazge flume with smooth boundaries were plottod as the backwater rate X_{1} / I_{n} ws．the channol opening ratio wio with the noxmal depth Fromde numbero in as the
 would decrease to unty for all Frouds numbers as the value of ho approzcinos 1.00 。 Alsog_{8} it goes to infinity as M^{0} goes to zeroo In a similam matmers the disparo
 of C_{d} tends to 0.611 at $M=0$ and approndiss the same value as the paramerosn For When $M^{8}=10$
 stant Froude numbers．Although the reeults coversd the entire pange of FEMiab？es， the Froude number of normal depth was never exactily gaval to 0.5 ， 0.6 or any other ralue of the parameter on the figure。 The amount of eiroor prociuced during tine Interpolating process was lound in most caines to be less than cne percento The paw data and calculations are given in tables 7－i－2 aniz 7－2－j respectivelvo

The date of Po Foblezy for smook boundaries have been processet and anaiterd is described in section Viwho The backwater superelevation ratio ha／k so plotted is a function of $\left(F_{n} M 0\right)^{2}$ in Figo＂al－o！the head loss coenficient K is given in ierms of Mo in Figo 7－1－9\％and the backwater patio coelficient D is given in itgo $-1-10$ 。
（See Fi8．3－14 for definitions of geonetries Ia and Ib）。
a）Selection of Rough Boundary Model Tests
From the nomographic chart．（Fig。 6， 2 ）the conditions for the rough boundary model tests were selected．The $X P$ in the table below indfeate the selected nommal depth conditions for each of which the following values of H and L / b were tested．

For $\mathrm{M}=3 / \mathrm{B} \propto 0.3=0.5,0.7,0.9$
and $\mathrm{L} / \mathrm{b}=\mathrm{O}_{0} \mathrm{O}_{2} \mathrm{O}_{0} 52.2$

b）Test Data
Table $7-2 \mathrm{cl}$ presents the raw measurements of all of the large firme，pough boundary semicircular tests．Inciudes are both the two and three dinensional rew sults．The designation of the arn numbers is as followso The finst number reprem sents the nomal depin seimp．The second number represents the paricular model being tested．The perifnemit data and celculations are sumarined in Table 7－2m．

The particular measurements that were taken on aach of the emooth and rough tests in the large flune were those recurinad to calculete the following quantities：the hydraulic radius，the Reynolos number，the Froude number，the Daxcy－meisbach friction factors the channel oponing ratio M° o the discharge coefficient，the backrater ratio $\left(I_{2} / Y_{n}\right)_{0}$ the backwater superelevation $\left(h_{1} N\right)_{0}$ the sumprace propile satio（ m_{2} N $\left./ \Delta \mathrm{h}\right)_{\theta}$ the length to the inaxinum backwater $\left(L_{\hat{\xi}}-2\right)$ s the lengish to the polnt of minfmum deptin
 of temins。）

In view of the large amounc of data that was to be anazyen and the repetitive character of the calculations, a program was prepared for processing the data on the Royal McBee LGP-30 digital computaro

In Table $7-2-3$, the surface topography massurenents for runi number 404 are
Listed. It was felt that this run wes indzcative of average natural strean condi= ifons. For the same run, the velocity measizements at the uniform depthy maximum depth, vena contracta and minimuis depth ara given in Table polotpo In acidition to the uniform depth isovel diagram of run number halir above, एelacity reasirements of uniu"ora flow were also taken for normal depth runs mumeri 2 and 10。 This data is also 11stea in Table 7-20040

FHth the isovel fiagrans for unlform flaws the kinetic enorgy correction fector of and the momenium corraction factor β were detemined. This wes accomplished by obtaining the areas between trio adjacent constant velocity lines with an area plans. meter. Once the areas were detemfined, the emations for α and β wera solved in the following form.
and

$$
\begin{align*}
& \alpha=\frac{\int v^{3} d a}{\nabla^{3} A} \frac{\sum_{1}^{2} v_{2} 3 A s^{2}}{\nabla^{3} \dot{A}}
\end{align*}
$$

Where $n=$ number of sub-areas

$$
\begin{equation*}
\pi=\sum_{i=1}^{n} \text { VI } \Delta a_{1} \tag{c}
\end{equation*}
$$

o) Teo
a) Becleator retio and diccharge coefficient

The backwator ratio is plotted vs the channel opening ratio with the normal
depth Froude number as a paraneter fow the two-dimensional semicirculat arch models
as observed in the large flume with rough boundaries. In view of the importance of these curve3, the scale was expanded and the results are show in two parts. Figure

7－2－La gives the resulits of $\Psi_{1} / X_{n 2}$ vs．M0 for the range of backwater pactos less than I I．50．For the ratios greater than 1.50 ，figure 7～2－2b should be used．

As for the smooth boundaries，the experimental values of the discharge coufficienc for the same test conditions are presented in figure 7－2－2。 This figure and ifgures 7－2－1a and b have been interpolated for constant Froude numbers．The hump that appears in the Froude number lines of 0.25 to 0.60 was a phenorena which appeared in a31 of the curves of C_{d} 。 This was true for the sriooth，rough and all I / b plots。
then compared to the preliminazy test results of Figo $4=3$ ，the values of the backncter ratio for a given En_{n} and M^{10} are 22most identical．

阝）Location of the points of maximum backwates，ard minimum depth
In orner to doscribe the centerline proilile，it is desirable to have an estimate of the distan： 9 from the upstrean face of the constriction to the point of maximun backwater elerautono This distance is referred to as Iy－2。 Because ois the flatness of the surface profils is the vicinity of the marinum point，it was extreenely diffic cult to get an эzas，measuramens of Lim2．The actual measurements taren could have been in error by as much as 0.5 feet．Howevers with the large amount of data which was available，it was possibla to stuay $I_{\text {n－2 }}$ on an average basis。 Average values of $\mathrm{I}_{\text {－}}$ 2 were calculated for several conibinations of $\mathrm{b} / \mathrm{B}_{3} \mathrm{~L} / \mathrm{b}, \mathrm{L} / \mathrm{B}_{8}$ etc．In this annerp it appearei that the effect of the wariabie bridge lengith and the change in 10 were of the same arder of magnitude as the enverimental error．The most consistent ＇elationship was founa by plotting the dimensionless ratio I_{2-2} vs。 the Froude number in with $M=b / B$ as tho iaraneter．This relationship is shown in figure 7－2－3a。 The ralues of $L_{1=2}$ obtanned fron the sriooth boundary tests also compared eavorably with ＇igure 7－2－3a．In a simillar manner it was found that the lengih Ing（distanee from he maximum depth point to the minimum depth point）varied only with the constriction
 igure 7－2－3b．These curves are good for boin two and three dimensional semicircularo rch bridges．
（1）Deternanetion of the mintmum depth
Soveral other investigators have ussd the Froude number at section 3 （ $\mathrm{F}_{3}=\mathrm{V}_{3} / \sqrt{\mathrm{EF}}$ ： see flgure 3－2）as an estimator of the meximun backuater．others have used F_{3} as a controlling parameter in meling indirect measurenents of fiocd discharges．Due to the extromaly irregulax flow vattorn at the mindmum points ft would seem that the use of F_{3} 明y be misleadinge in the present josearch the notmat depin Froude mumber F_{51} was found to be a ver，relfable estimator of $Z_{1} / T_{i 3}$ o $I I_{1}$ orcer to testa the variabilitry
 shown in figure $\%$ ．ariso Belon a Froud！number of $0_{0} 5$ ，the corselation was goodo However，above $\ddot{j}_{n}=0.5$ ，the deptis ∇_{3} was often below the criticul depth and tina correlation of F_{y} / F_{n} bo F_{n} was सery pirro The scotter seaned to inorease with increasing vilues of L / b 。 Therefore．anly tine test results on the $\mathrm{y} / \mathrm{b}=0$ testo are show．If usbl with ceutiong thrse curves can be rised to estimate the mintniwn depth 530 It apleaxs from this cusce that E_{n} is a much mose relfable estimator than $\mathrm{F}_{3}{ }^{\circ}$

S）Re，ain Curve Length
The E＇gain ourve was ruentisd ior a fem tuns．This was done in owder to egtablis： tie fast that the wates sripace profila returns to nomal depth before the end of the terling flume was reached．The tests selected were those winch would have tine longer＇，regain cirve。 The results are sumar＇Lzad belowo

Mun No．	M	I_{4} / b	F_{n}	L_{200}
$2-4$	0.491	0.0	0，04，89	20 ざも。
2－7	0.693	0.0	0.1005	9 It．
$4-4$	0.491	0.0	0.1984	－5，5

In all cases the regain curve was withtn the test section．
E）Comparisons of roughness effects
Comparisons between the model tests in the mooth and rough channel were made by plotting the backwater railo and the discharge coefficient againgt the normal depth Froude numbor E_{n} for constant channel opening ratioso Stmilar comparisons
were mads betwoen the several. threoudimencional model tests in the rough flume. The values of the backwator ratio Y_{I} / I_{n} and the discharge coepescient O_{2} in the
 appears that the graiues are essentially the same for boith smooth and rough conditions at Fronde numbers F_{n} less than 0.5 . Since the praiticus reange of Frovee numbers for netural channels are those less than 0.50 thess curves show that for all prectical purposes the effers of roughness can be ignored.
3) Comparfison of bridge length effecte

Sins laciy, all of the L / b results were conparsd at consiant values of the
 Again it appears from the plots that fos the practleal renge of fteld conditions ($I / b \leqslant I_{0} 0$ and $F_{n} \leqslant 0.5$) the effect of brfage Iength 25 negligible. The erfect of length did seem to increass whth a decrease in the chamel opening raikoc However. as the value of ko gets small. the physical proportions are closer to those of a eulvort gotiser thas a bricige opening.

ך) Surface topograpiny
In order to complete the analysis of the iawinum backweter, addicional studies Were mads of the velocity distributfons and the surfacs profiles. Thesestucies were made for the condition of a sharperested seqforenlar constriction with $M=b / a 0_{0}$, and F_{n} approximately 0.20.

A dotail of the suxecacs topography both upsirean ans dowrstream of the modsl was observer. The results of this study aro shown In figure 7a.2-\% The numberrs shown indicato the depths in centrinters. Only a detail of one haps. of the surface Is given since the pattern is essentially symystrical. The graph shows lines of equal surface 日levation. The centerline profjic is also given In the ifigureo it 1s interesting to note ther the actral maximu water suriace elevation is not along the conterline, cut on the upstrean face of the arutment. Although this may be copected since there is a stagnation point at the abutneni, the actual magnituce of the difference in olevation between the certerline maximum elevation and the
actual maximum is the imporiant question．The actual maximan shorelke elevation was found to erceed the maximum centerline elevation by as much as 5% of the centern Line dopth．This fact was verofied in the surface topographies foken at other con－ ditionso Liu ${ }_{3}{ }_{3}$ as woll as Herbich ${ }^{9}$ gave stmilat sursiace fopographies of other geoo metric constrictions，and the differences in water surface eisvations wes again found to be about 58 of the conterline depth．

1）Velccity profiles
Traverses were run with the Frandit Tube at four sections whe the fif $=0.5 \mathrm{~s}$ I／b 0.0 and F_{n} approximetely 0.20 model tests．The first section was in the no：m mal depth flozs without the model．The second thas at，the section of maximun backwate？ the third at the upstream face of the bridge and the fourth at the section of rinimum doroth。 At the section of nomal depth and marimum depth verticel velocicy traverses vese takers at the conterline and 1．玵。 and 2 ft．leftt and wight。 Ats the vena concriacteg they wese taken at the centerling 0.5 ft 。and 1 ft 。 laft and righto Finallo at the section of minimum depth，traverses were taken at the centerineg 1 fiog 105 ftog and ？． 2 ft．left and right．In general a mere detailed frayerse was taken at the centerne． ine of each section。 From these measurements，plots of equal velocity Lfrea Mrere repared for each section．This was done firat by plotting the velocity proflles at ach location within each section on arithmetic graph paper．Typical are the pro Hes shown in figure 7－2－8 at the mavimum depth condikion．From theas curtres，ponnte I equal velocity were found and plotted in the appropriate location on a cross－3ection lew of the channel。A composite picture of the isovel dragrams is shown in figure －2－9．Only half of the diagran is given due to symmetry．All of the diagrams were ategrated with an area planimeter and the discharge so obtained was checked againste de venturi meter discharge．In all cases they checked within 3%

In addition to the isovel diagrams for uniform flow in Pignipe $7-2-9$ ，two other chorm flow velocity profilos wers plotted．The test conditions were similar to lose of a natural streano All of the diagroms were intogratel and the valucs of the
discharges the kinetic energy correction factor
and the nomentum comection factor wose computed. Listess below are the determined values os α and β sor each provilo.

Q	Slope	y_{n}	Appres. P_{n}	α	β
2 cts	0.000131	0.799 ft 。	0.10	E0345	2.055
1 c ¢	0.00058\%	0.319 ft.	0.20	1.216	2.08,
1 c.fs	0.004080	0.273	0.50	3.250	1.000

k) The generallzed backwater equation and head loss coefilicients

With the ineroduction of the chamel opening ratio M_{8} \& the assumption wass made that if properiy interprated, the bativater produced by constrictions of the canl 3 "
 ent, or a rectangle etco) as long as the constriction effectis are not modisici by

To test this hypothesis, the resulis of this section (VII-2) are compared mith he circular segnent data obtainod in the preltminary investicerion (Plgo $4=8$) and Itw the vertical board data given by [if? The latter tests were run in a flung hich was wdarthen the large flume used in this Investigationo The roughness itterm sed by Liu was also different. It produced a Mennang s a cif 0.02% It 2.5 filu stremely interesting to note that the test eata taken by three investigatios in hreo different flumes and under three completely different constriction geometrae roduced almost identical results. This cleasly verifies that, as defined. the hansl opaing retio M^{0} is the goweming gocnetric parameten* Of course, the cidte mpared were those where the eccentricity was zero ${ }_{2}$ the skew was zero ${ }_{3}$ and tie entrance as sharp. It is still necessary to apply correction terms for these conditions. As mentioned previousjy in the analysis, a. similarity was noticed beiween the sveral different backwater equations. The term $\left(F_{n} / M^{0}\right)^{2 / 3}$ appeareid in several Jutions of y_{1} / y_{n}. In general It appeared that

$$
y_{1} / y_{n}=c\left[\left(F_{n} / M_{0}\right)^{2 / 3}\right]^{\gamma}
$$

where C is a coerficient which would take into account the affects of the discharge coefficiont, approach velocity, and non-uniform velocity distributions and othes empiricaily deternined factorso Equation 7-205 is actualiy the equation of a sirodght line on logasichmic paper with a slope of fo A total of 50 semincirculare $1 / b=0$ test values, 44 vertlcal borrd values (Colorado) and 50 scgnent values were plottcet in the form of $X_{1} / I_{n}-I$ ws $\left(F_{n} A M_{i}\right)^{2 / 3}$ and are shown in P1gure $7-2-1.0$. The value of Y_{1} / Y_{n} a I was used instead on the backwater a"atio. It is cuite appiremt tons the data tands to collapse into one stref ght Inne relationshipo

The method of least squarea was applied iso a pandom samtle of the 34h test pornts
 oquation 7-2-j became

$$
I_{1} / I_{n}=1+0.17\left[\left(\mathrm{~F} / \mathrm{M}_{0}\right)^{2 / 3}\right] 3.39
$$

Equation 7-2-6 is a veryy sinple and easy solution for the backwater produced : 3 y any type of constriction. In actual practice, this equation will give as goc; an estimate of the maximum backwater J2 ass eny previrusly suggestec methodi

It has been suggested br G。Fo Igzard that equation $7-206$ could be approximated

$$
I_{1} /{ }_{\mathrm{n}}=2+0,1,5\left(F / M^{0}\right)^{2}
$$

and still ilit the data very cicsaly,
The daba were also zemalyzed in terms of the sinplex equation

$$
\frac{h_{1}^{*}}{Y_{n}}=\frac{I_{\lambda}}{Y_{n}}=1=2\left(\frac{P}{\mathbb{N}_{9}}\right)^{2}
$$

'igures 7-2-11 to 7-2-13 glue plots of this relation for yalues of $\mathrm{L} / \mathrm{b}=0 ; 005$; aid 1.0. Figo 7-2-14 sumarizes the backrater recio informatton for geometzyy Iy for mooth and rough boundaries. The curwes shown in this figure are the same as those reviously obrained in figures 7-1-3 and 7-2-2i to 7-2w13. In additiong a leasi quare fitting of all the data (smooth and rough) taken by P_{0} Fo Biery is giveno

The haed loss coefficient K is given as a function of M for I/b 0; 0, 5? 1.0 in fiegures 7-2-15 to 7-2-38. A surmary of the head loss coefficient curver th given in Iigo 7-2w18。 The rackwater ratfo coefficient D is given in F3go 7-2-19 to (-2-21. corresponding to values of $I / b=0 ; 0,5$ and $I_{\circ} O$ 。

VI－3 Gecrotry IT Tests by Siquppas and To Po Chang
Dual Parajuc Thros Dimenstonal Senvi－Circular Axch Bridge Constrictions：
（Seo $\mathrm{F}^{2} \mathrm{~g}$ ． $301 / \mathrm{for}$ decinition o Gooretry In）
For sinplicity，only the case of two sdentical arch bridges plased racallel to each other and nomal to the direction of flow was conslecered．The effect of Froude

The saw and calculatod data por the 217 tests are givers ln table 7－3．Typical
 plotting backwater satio I_{J} / I_{13} against the dinensionless bridge spacing bide $/ A_{12}$ w with the chennel opening ratio M^{0} as parameter $10 \sum_{51}=0.10,0.15,0.30,0.25 \% 0.30$ and 3.40 。

It was fourd that for luw Froude Numbers $\left(F_{n} \leqslant 0,25\right)$ the wecksater dua so chosely laced dual parallol brozges（bIn／An2，\＆5）wo． 3 Less then what it would have been for a single bridge．Tre 2 wes pert of the graphical correlation of Plgo 7u3és shows ：learly this offect．

It was also found that Por haghere Froude Nambres（Frivoce5）and small channell peaing ratios（阴 00.3 ），the piacing of motels at bra／ $\mathrm{A}_{\mathrm{n} 2} \approx 5$ to 7 resuliced ir itrong wave acrion betreen the models and an abrupts 1nerease in backwaters matio vas ibsorved as can be seen in Pigures $7-3-3$ to 70305 ．For the latice conditionss the ot expansion below the upper bringe vas unstiv？e。 It osciliated from the left to Leht and back with a period of about 2 see．The backwater upsiream as the uppor ridge was minimum when the jef vas symetrical along the centorlana．The baciveter ncreased as the jet was deflected sideways．The values plotied were the maxirumar ackwater elevations obserused．

Figure 7－3－6 shows the grapincai metrola comelation for do variables（Fns Mo $1 / r_{n}$ bI－d／$A_{n 2}$ ）．Knowing any three of themg the fourth one may be determinoul incon ig． $7-3-6$ 。
 obtaster for dual parallel biridges placed at brad $/ A_{n}$ ？$=0,10,20 \%$ and 50．Figure 7．oj－7 was arrived at through the Pollowing steps：
 $M 0=0.3,0.5,0.7$ anc $0.9, F_{n}=0.10,0.20,0.30$ and 0.40 ．

2．This data was processed and an arithmetic plot of Y_{2} / Y_{n} ws。 $\left(F_{n 1} / M_{0}\right)^{2 / 3}$ Por bine $/ \mathrm{A}_{\mathrm{m} 2}=\mathrm{O}_{2} 10,20$ and 30 was constructed．
 $\mathrm{bloj}_{\mathrm{o}} / \mathrm{A}_{\mathrm{n} 2}=0,10,20$ and 30 on $\log -\log$ japer，appropriate vilues of c were determined by using the method described in reference 8 ．

40 The curve of figure 8 doesnit apply to the unstable flow condtifon rith heary wave action between the dual bridgas．

In addition the ciata were reanalynet making usa of the computer precram．
 figures $7-3-8$ to $7-3-13$ ，for the following values of the pasametor T rib／A_{n} ：

Fig．7－3－8	$3^{2} \mathrm{c}_{6} / a_{n 2}=0$
Figo 7－3－9	O， 3 to \％ 5
Fig。 $7-3010$	$7.5 t \geqslant 15$
Figo 7－3－11	25 tッ2．5
Fig． $7-3-12$	25 to 30

The equation of e．least square fristing is givea for cacis renge of the phametero Iab／Anzo A sumnary of these curves is given in Fig．Toi－l3．

The head loss coefficient K 2s given in the charria？opentng ratio i，for the following values of the parameter $L_{\text {Li }} b / \Lambda_{n 2}$ ：

Fig． $7-3-1 / 4$
Fico 7－3－15
Fig。7－3－16
$I_{r a} b_{n}=0$
0 207．5
Fig。 7－3－17
7.5 to 25

Fig。 $7 \times 3-18$
25 to 25
25 今0 35
Whenever a good least square curve fitting could bo obtaince its equation is given on the graph．in the othor cases，the average values of tra several groups of test for a given valug of Mo vas obtaineds and a Lize was fittc！by eye throurh these points．Figure 7－3－19 is a sumnary of the head 1033 coofficiqit curves．Figure

To3-2J gives the velues of the backrater ratho coefferents io the rav and calculated data for Geamety II awe given in Table 7-3.

（See Figo 3oyi for definition of Gecmetry inI）
The influance of wingwalls on the backratcr ratio（ Y_{1} / Y_{2} ）has been trsted for

 rere obtained by piotting the beckwator ratios（ $\sum_{I} / y_{2 n}$ ）agains ；the chamel opening
 $.5^{\circ}$ ． 60° and 90° 。

Fii：7－4－5 is obtained by Eraphical mutiple corvelation，Funcing any timea o？

 ith \oint_{1} as parameter．It was besed on the creaphical correlation os Pigo 7－4wno Due －the indirget plotising method，the securacj of Figume ${ }^{5}-1-6$ is less than tirat os Lgures $7-4-x$ to $7-1,0640$

The data were reanalyou making use of the compute：progrem．The results asoy ersented in the foriz of plots of the bachwater sipereleyation ratio hat $y_{\sqrt{3}} \mathrm{ys}$ 。tin wase of the ratio of the Prciece number to the channal opentins ratio $\left(P_{n 2} / 1 T_{0}\right)^{2}$ ingwall angle of $30^{\circ}, 4.5^{\circ}, 60^{\circ}$ and 90° in 49 gures $7-1,-\infty 7$ to $7 \cdot 4-10$.
 ；given on the ixguxe。A sumery of these resvits iss given in Figo 7 on－2\％。

The head loss coeffickent fi has been calculated for each of the wingrall angleso e results are presented in the forir of plots of In vs．the charme．opening resio． erevsr possibie a least square fitting of the dafa ms obtainecin and the equation the Ine is given．In the other cases，average values of the coefficient K for grouping of points with the seme vaiue of Mo was obtained．g ayd a streight Ifne was tiod by eye through these average pulnts．These results aro prosenced in Figo 7 －iso 22 $7-4-15$ ior wingwall angles of $30^{\circ}, 4.5^{\circ}, 60^{\circ}$ and 90° ．A suruary oi the curves is asented in F1g．7－4－16。

Finallyg the values os the keckrater ravio coefilcient D are presonted in

VII-5 Gacaretry IV Two-Dinensional Semi-Circular Arch Bridge Cors toyctions with

 Eccentricity $=$ Testa by To P Chang(The eccentricity is defined as ons ninus the ratio of the small embronitnto to the larger embanknent. (See Fig. 3-14 Por cefinftion of Geanetry IV)

The insluance of eccentricity on the backwater ratio aloing the centerifne (Y_{1} / I_{n}) has bean detemined for eccentricities e $0 ; 0.80 ; 0.85 ; 0,90 ; 0.95 ;$ and 1.00. Figures 7-5-1 to 7-5-6 give the backwater ratio ($I_{1} / Y_{H 2}$) plotted vso the chansel opening ratio (M0) with the Fronde Number as a parameres for each of the six eccentrin citie: tested. Figure $7-5-7$ shows the relation between the backwater ratio $\left(I_{1} / I_{31}\right)$ and $\left(i_{n} / \mathrm{Me}\right)^{2 / 3}$ with the eccontrickig as a parametor. Figure $7-5-7$ was obtained by graphical multiple correlation.

The results of the re-amalysis of the same deta making vee of the computer program Is given in the following figures. The backwater superelevetion ratio ($h_{i} z_{i} \mathrm{~N}_{\mathrm{n}}$) is
 Por each eccentricity the equation of the leass square curve fitiling the dava iou fiveno. A summary of the results is given in Figo 7-5-34o

The values of the head loss coufficient \mathbb{K} are plotted against the chamei opering "atio M for each of the six eccentricities tested in figures $\%=5-15$ to $\%=5-20$. The itrajgh lines wese obtained by obtaining average values for \mathbb{X} for groups of point aving the same value of Mo. A strajaigt line ras fitted by erre through these averreft. ointis. A sumnary of the head loss coefficient K is giver in Fig. 7.05-21.

The values of the backwater ratio coefficient are given in FIgo 7-5-22 to $7.3-27$.
The raw and calculated data fos Geometry If ase given in Table 7-5。

VII-6 Gscmetry Va

 on detemined fo skew angles of $\mathrm{O}_{2} \cdot 0^{\circ} 25^{\circ} 30^{\circ}$ and 45°. T a maw anc calculated ta are given in Tasle 7-6。

 $=00,15^{\circ}, 30^{\circ}$ and 4.5°.

 crelation chars.

 the least scuare retrod, ar\} the equations of heas ifnea a. forin in he : espectre
 values of the backwaien raczo cuefilczant D ane -4ven in figme 7-4.27 to rob-20

The raw and calculated data for Geometry ?e a e given in libse fobo

VII-7 Ceometry VI

 (See 5igo 3m14 Ror defint in of Gecnetry Vo)

The Influence of the skew on the backrater supereieyatton ratio aiche the centerline ($h_{1} * / \alpha_{n}$) has beon investizated fow skew angles of $\}_{2}=25^{\circ}$ and 30°. Figrues

 The raw and calculated data fix Geometry yk are giver in Table 7o\%o

 ralues of the chaniel width satioc $N=0,350,5$ and 0.70

Pests by T FoGrang
(Sec Figo 3-14 Sor definition of Oecmery viv)
The influence of the हincunt of depressina of the canter on the amel with respeut

 $\beta=0 ; 0.3$ and 0.50

 -esults de givess in figo $7 \times-\cdots 40$

 surnay of the heae loss coef cicicnt values is given in fy- 7~9mbo
 $-9-1 i$

IIT－10 Btbliograzity of Chaoter 7

 1958，po 707．

Owan，Wo Mog＂Taminar to Turbulent Flow in Wide Open Channeyt？Trans。ASGE vol．119， 19540
 Trans。ASCE $120_{8} 1955$.
 115，19502 p。637－694。

Lroka，J。＂Graohicel and Mechanical Conpacation＂，po 340－l4I。

VII-1 Tost Selestion

 sraooth and then with rough boundaries. The Zarge number of rariajies involval macis It necossary to establish a systientita procedure for selecting the quaritities allo tef to very and those helc corrstani, in the several teats so tha, tha possible prage ar tre variables coulc be covered whtormly and ecajetsly. This was of cinacra bebuuse the range of duscharges and slopes for whici surs axgence eould bo altatnaci was very
 tonting of ulmyie geanerfes.

 sbveral discharges and channsl with ratios to be testoc as melleates in the fithom tahle。

Q		B^{2}				
cis	$M=0.15$	$1=0,23$	$\\|=0.23$	$M=C_{0} 275$	$\mathrm{N}=\mathrm{O}_{0} 30$	
200	0.795	0.353	0.202	0.255	4.32ct	
2.5	0.885	0.4 .41	0.2525	0.159	0.160	
3.0	$\pm .062$	0.523	0.303	0.238	0.19\%	
3.5	∞	\cdots	0.354		0. 2.213	
400	-	$=$	0.405	0.318	0.256	

By choosing flow rates in the test iuns that give different values of $Q / \operatorname{cat}^{\frac{2}{2}} \mathrm{~b}^{5 / 2}$ o grouping of data in the graphs could be provented. The seven tables that follow this section shom the tast

T Pable I through VII were chosen in part frem the table developed in this sectiono

Table I - Sirooth Boundary Tests

$$
n=0.0210
$$

Gemetry Ina

Flow	Froude Number			Giannel Wdth Retio (b/is)			
Rate cfs。	0.10	$\begin{aligned} & F_{n} \\ & 0.95 \end{aligned}$	0.20	0.20	0.2;	0.275	0.30
20	x			\%	χ	X	x
$\hat{z}_{0} 0$		X		"	*	\%	\because
200			Y	*	*	*	$\%$
205	X			0	χ	K	1.
2.5		X		3	X	X	X
2.5			π	\%	X	X	\therefore
3.0	X			0	X	X	X
3.0		X		0	X	X	\therefore
3.0			X	0	X	X	χ
3.5							
3.50		X		0	\%	X	X
3.5			X	0	X	X	6

x Regular test measurements obtainod
0 The flow overtopped the model and chennei walls

* Subrergence vas not possiole for these nlow conditlona

Table I o Srooth Bchndax Test

$$
\begin{aligned}
& \text { an m } 0,0100 \\
& \text { Cernetry } 1-b
\end{aligned}
$$

Froude Fimber
Eharzel ridut Ratio $5 / 3$

I Fogular test measurements obtaired
O The fiow overetoppod the model ark chrnel walus
is Subneigence was not possible ior these flow corliticns
Xe Experimental condition invostigntodi

```
Iyble ITS w Rough Butnesery fesia
\(\mathrm{n}=\mathrm{O}, \mathrm{C} 238\)
Geoneiry I-
```

Flow Rate	araude Lumber			Chamel			.Làt..o	1-5
cfs.	0.20	$\begin{array}{r} { }^{n} \\ 02.5 \end{array}$	0.20	$0.2 ?$		25	Som	0.30
2.0	H			8		X	Y	X
2.0		X_{2}				\%		"
2.0			x	X		*		$\%$
2.5								
2.5		K		l		X	X	K
2.5			X	X		\%	Y	IT
3.5								
3.5		x		()).		
3.5			X	0				

x Aagusi tesi m acuremsito ubcinco
0 Phe flow oret topred the model and charroz wa? :

Xi Experinental conciltion finvesifsaca

Table IV - Reugh Bcundary Tests

$$
\begin{aligned}
& n=0.0238 \\
& \text { Geometry } I-b
\end{aligned}
$$

Froude Nivber

X Regular test measurments ch'rinnad
0 The flo orent-pped the modil had cheninel vells

* Submergenee was no possible for these flon sonditions
Xi. Experimental condicjon investigaied

Table V - Rough Boundary Tests n 0.0238

Crometry 7 -is

D10w Rato cfso		$\begin{gathered} \text { de } N u \\ F_{n} \\ 0.15 \end{gathered}$. 200	Thicknes Factor $\mathrm{L} / \mathrm{b}=0.50$ Charnel WAcith Ratio (b / B) $0.20 \quad 0.30$ ingles of $\mathrm{skew} \mathrm{O}_{2}$					
2.0	\pm			X	x	X		X	X
2.0		x		x	\%	X	这	*	*
2,0			X	K	;	X	*	*	*
3.0	X			X		X	X		X
3.0		X		X		X	X		χ
3.0			8	X		\%	X		X

X Regular tgst measurerents obtain hef.
0 Tho filow overtoppod the medel asd rhannel ralls

* Subnergence was not possikle for these flow conditions

Table VI - Rough Eoundary Tests

$$
\begin{aligned}
& \mathrm{n}=0.0233 \\
& \text { Geametry VI }
\end{aligned}
$$

a. Regular test mesurments oltainod

* Submergence vas not possible for thene flow thelation

Table VIK - Rough Boundary Tests

$$
n<0.0238
$$

Geametry VII

I Regular test measurenents obtained
0 The flow ovcriofted the model and chamel wallis

* Subnergence was roi possible for these flow conditions

Ira Definitionss Fully Surmerigoc and Parity Submerged Flow

The terms free outflows fully submerged and partly submerged outflow aro Erom uently used in this chapter and are defined as foliows. Froe outflow avcista whan he jet discharging fiom the cownstream face cf the bridye opening is sumpuncedy xeept for the chamel bottcon, only by ase ard a hydraulic fur p nccurs fur hor down. trean. Fuliy submerged outflow exd sts when the jot dischangos into a. strean whas as a depth equal to or greater than the dowatream hefgit ow the bridge oveningo partly subnerged outflow is the case when the jet discharg irto a stream tha's as a depth less tinan the helght of the bridge openity and inu dornstream : ap oburus.

IIT-3 Goonaty is .- Sn joth Boundaxtes
(SBe figo $3-14$ for deffrition of Gevinetry Ia)
3) Coefficients of Contraction, of Discharge and of Yelocity for Free jec Orethow In ordar to investangie the coefficients of velocity, eontraction and discharge Cor submergad bridge injais, 67 test runs were made (see Table I - VII)。 The coerfysients are lefined as follows: Coefficient of contractior. $C_{C s}$ is the ratio of jet area at vena contracta A to the axce of the orffilee $f_{\text {oo }}$

$$
S_{c}=\frac{A_{y}}{A_{0}^{2}}
$$

Coofficiont cix discharge, Ces is the ratis of the ectual discharge Q_{a} obtained rom the Vaztur metor roeding, to the thcorett al Qta ae calculated Ey formula

$$
c_{\mathrm{d}}=\frac{Q_{a}}{Q_{i t}}
$$

losfficiont of velccity in the ratho of ectual vilocity V_{Ω} to the theoretical velceicy

$$
b_{v}=\frac{V_{e}}{V_{t}}
$$

t is custa. ury to combine the threc coefficleritl as iollewss Prom cortinuity quation the oollowing tan be writem:

$$
\frac{Q_{R t}}{Q_{i}}=\frac{A_{y}}{A_{0}} \quad \frac{V_{a}}{T_{t}}
$$

rom which it folictus that:

$$
c_{d}=c_{e} c_{Y}
$$

To find the coeffickent of contraction the virna contracta had to be located and he cross-sectional are measured. This wae dane ber moans of the electronfc point 8ge。

A surficient number of readings wer. talean at the vena contracta to plof the crose ectional area on graph paper. By use of a planimeter the area A_{V} was obtained and he cosfficient of contraction could be celculatud, as the area of the nodel opening
 width to the bockwater clepth uirirg the channel width ratio b/8, as paroueter (sse Figure $8-3-1$).

 was presertect in the theoretjcal analysis in Ghatter III. The actuti mate of flow through tla constriction wit obtained from the manonater readinge and to wenturit meter calubrimon curvo. Cur es were olotted for the cueffichent of diuvirge fa

 width rallos. Fore inar $305 n e G_{c}$ elues, within the test range, the Cw curveg tend to increase orort the wide D.7. an thei stablise at this velue, Tre $G_{\text {y }}$ curves have

 values thifind $C_{C,} C_{\dot{Q}}$ ind G_{V} are soum. in Table $8-1$.
b) Viloc ty Distribuisu at Vena Contracta for Free Je, Outflow

Exiensive velooziy measurume tos were talcel in the jet downtream of consiriction at the vera contracta in ordor to obsorve the v low.ty clistrlbution, The Prandici tube together with tha pressure t angducse were used. The readings were taken in a grid systum to obtain frill soverage over the cross section. The borderitne of the area at the crossmection was also measured and plotted on groph paper together with the velocity grid values. From this the aisovelocifer curves were dram. Figure

8-3-2 shows one of the typicai Asoveloclty curves drawh from such grid mex Jurene tos,
Figure 8-3-3 shows the result obtained by following the individual isovelocity surves In the water crossmeetion itself. This was done by moving tine Prendtl tube tmreugn the cross-section and mapping tine path for the in 14 vidual isovelacity cur os obtrisod by means of the horizontal and reretical travorsing devices. The data of Jigut es 8-3-2 and 8-3-3 correspond to d.ischerses 3.75 cis and 2.62 cfe; nomal de th Fronde number 0.142 and 0.106 and spentag ratios 0.30 and 0.30 resp atively

In Figure 8-3-4 the values of be velocheise are plottof at disferen fer ins and a mean velocity cumve is dram。 Tre dauz for Fiflre \&-3-4, dee the we an tron. for Figura 8-3-3. Figure 8-3-4 anows he velo:it. vainatice ove: the chengrg ridets

 velocity distribution as shom 12 F fimes $E \cdots y-2$ te $8-3-4$

Prom the theoretical analysis iont in Chavter II:. It j : exn-cted. tia, the
general relation between the backriaiti and nownal depth is of the formi

$$
\begin{equation*}
\frac{I_{1}}{I_{n}}=c\left[\left(\sum_{M},\right)^{2}\right] \tag{8-3-2}
\end{equation*}
$$

where C is a coefficient that woizlu talie into accuunt the eff cte of toa supnodch
 velocity distribution an cther mpirisally deterined factors In a Jog-rithanic plot of X_{1} / I_{n} veress $\left(F_{n} / M^{\prime}\right)^{2}$ othe slope of the Iine 1a ${ }^{\prime \prime}$. At tal of 3 testa were ada on gemetry I mand processed on the IEM 1620 computcr t. 3 obtaln ploiting values of $\left(Y_{1} / Y_{n}-1\right)$ versus $\left(\mathbb{F}_{\Omega} / 10\right)^{2}$. The gapls is shown oir "igure $8-3-5$ o Eran this graph the values of and C were found to be 0.90 and 1.28 respectively, and aquation 3-3-1 can be writion for the submerged conditions uf geometry Iwa in the following way:

$$
\begin{equation*}
\frac{I_{1}}{I_{2}}=1+1.18\left[\frac{1_{2}}{\left(x_{2}^{3}\right)^{2}}\right] 0.90 \tag{8--3-2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{I_{2}}{\bar{Y}_{x}}=1+1.28\left(\frac{\bar{F}_{Y_{1}}}{(1.80}\right. \tag{8-3-3}
\end{equation*}
$$

The test data caken to obtain thil generalizod kackwatar enuation 8-3-3 are recorded in test rans 102-134 waich are lonated in Table Etor。 Mra ealenlated values from the data ary resented in 'able 8-3. A Zeast square fitting ci' the baciswater rats.o
 coufficiont K are give. in Fig. 8-9-I.

A gareral backwatz equation was not obtairable for the prees jet outflow this Is becaus the froude arabers for teat runs *ob arc all int the renge of $0.550=0.58$?

 versus lip erisves for submerged ard partly sumprged flow as well as Bieryo s rischarge cooffickent curves ici the uncubwread 720 hich tave iect superposed for thr purpose
 in test run 102 to 134 which are locatod in. Taile $\varepsilon-2$. The calculatod valuns are presented in Table $8-4$.
 the submergad jets two sets of curves ire given one uses the Froude number as a parameter, the other uses the ritio $Y_{n} / \frac{\mathrm{b}}{2}$ of the nomal. depth to the arch radius。 The free fat discharge coofficient curves previously preserited in figure $8 \cdots 3-\ldots$ have been reprocizced here for completcness. The calculations are shown in Table 8*-4.

 with $I-b$.
in the theoretbua analysis mide ir Chaytur ith ife dirensionle s zolation

$$
\begin{equation*}
e^{\frac{9}{\frac{1}{2}} t^{7 / 2}}=\frac{1-2 y}{b} \tag{1}
\end{equation*}
$$

 equations of the linos cricanced by ?ent squarny dra gun an the fifure. Figyre 8-10-6 sumarizss the beknater summele ration aita or sometries Ia, and Ib with smooth boundarles. The values of he reach los coeflicicnt k and the linss obsamed by least square fitting are given in figures $3-3 \cdot 2$ to $8-0-5$ for the sane valuen of the length parameter I/b。A summary of the head loss coeflicients for geometries Ia and Ib with smooth boundaries is given in Fig. Bw-o-6.

VIII-5 Gecmetries I-E and It 9 zough Boundaries

B) Test rata

A total oỉ 33 test muns rete ride in order to flot the dimensionless curree shorn in Figure 8-5-2. These thr 2 sets of curves vere also based on the dimemsionla. equation 3min33 developed in Giapter ITT。The data are recorded in test runs 303 m 23 ? and can be found in table >-2. The calculated vilues Ircan the data are Insted in Table 8-4

 1. A Innes frattoc by eje are given in tre figure.

The investigation shons thet the ridu ow the constriction in the cirection of
 The wider the bitige in the directicu of floty the lower is the bramaters dept

 Flow through the eo dingnsiona arch bridges is rexy similez in bekarion to the Flow
 indeperdent of the sloce and the fectors that involve the length are comperadively unimportane The control section for square eite orenfr js, such as investigaved here. is at the inleb。

Separation of fiow around the opering, he the inie* setion, was irequen Iy observed. The flow contracted towards vena contracta scotion in the first pant of the barrel expandez in a spiral notion as shown in Eigure 8-5002 and ended in a slug flow at tire sumerged outlet. Figure $8-5-3$ shows the case where slug flow ocours at

18 exct of the bamrel. Figura 8-5-4 presents the free jet case for gecmetry Iome th rough boundaries and the same flow

Vortex action wes also often observed. This aitmortex occurs frorn the sar sace ght above the crest of the inlet and introditces aft through the opaning. miss acreases the watsi ano of the opening and hence the flow through the constrictizing Id as a result the backwater increases.

An important effect upon the soparation phenomena, that controis the change of
 the carrel. This is causen by the relative magnitudes of aiz inelow fron tine itlet and from the vortex action over the intet. The outilow is pir due to entrainent at the afromate: surface aisu has an affect upon the separation phorancias the ore air entralned the less sepanetion will ocour and the bamel will tend jramis all corciuit flow。

Comparison Betweon Smooth and Rough Founsla: Tests
A comparison beoweon the limitanc curves Figuxes \&whel. and 3-jo- Iox tha nooth and rough boundary conditions respectively ane mede in mane Sumo5o Th ty urves show that a rough boumany concition is of advantage for hi fhor Fronc aw bews

 evel due to the nabural rougness. This will ingrove the abllity f tion be well tis roduce full conduit flow, because it increases the afr entrain ont in the barsel t the afe-vater surface ard hencer reduces the sepase ion at we inlow。
 (See Figo 3-3 for djfinitior giometsites)

The cischarce iet shcots to the Naco of the flume in a lir-ceict qromatym perpindicular to the face of $\therefore 12$ hiraje

 In FAgase
 Fig。8-9-8。 Tho equation is a Asu I fi tine is given on tit there

This geometry represents about 12% of ail existing axch bridges in the st lie Jf Indiana. The great mafcrity of thess briege ccnstrictions have a thichess lactora

The test resulis axe presented in the dimensionless graphs shcwa forlgre B-7olo lo be noted is that the opening width of the models, b_{s} is tire with of one ot the openings. the performance of the mocles th Geometry VI is apmoximetclit tho scme as :or Grometry I-b of same theckuss ractor.
 10. (256-232) as show in mable $8-2$. The catcunatied values are presenter in Teible
 In fig. B-Ia-9. The equabion of a vero? fiu live is given on the fifure. The valses
 So-8. The equation of E visua: fit tins is giver on the figurac
（See Figo 3－1h for derinition of gecretries）
 elationship of the discharge as a function of the beckwater depth and the with of he constriction holds true olso for the segnent arch opentings．Phe curves $5 \cdots \cdots$ in igure 8－8－I are based on this folationship as expressed in waution $3-2-23$ ，Iurive n Chaptor III。 A total cf 22 test runs（No， 285 so 307）wors done and retontiv it． ＇able 8－2．The calculated values are found in table 8－5．

Figure 8－siol shows tha：the spacing betreen tho curves beccnasirery suali as h＇Froude number increases borond 0.3 ．Thas means that the Eroula mubu：beconus nsigrifticant as a parameter when the dogree of turbuince insweases beyor ：a sertor alue $\left(F_{n}>0.3\right)$ 。
 n figo $8-10-10$ ．The equation or a visual fiti lina is given in the figure．
 ig．E－9－10．The equation $0:$ a visuth int lize is given in the figure。

VIIT -9 Head Loss due to Sumerged Arch Brtcoe Constricticr

loss coefficient due to the brodge constriction was Rounds equation 3-5si3, Assuming α_{1} a $\alpha_{4}=\alpha_{9}$ then

$$
\left.K=\frac{h_{0}{ }^{i}}{\nabla_{0}, 2 / q_{0}} \quad \infty\left[\frac{A_{0}}{A_{y}}\right)^{2}=\left(\frac{A_{0}}{\frac{1}{1}}\right)^{2}\right]
$$

a) The chennel opcring retic af
 skemess angle fan thickness tactere L / b
c) Numbes of bricige spar:\% IT
d) Secentricity of buidge orenirg. e
e) Froule number F_{n}

 least mean square rortine the slcpe of the jine of whe phot frevens 1^{n} as itond in
 both for smooth and rough in mary tests. The Ilot of thoes cures ire shor in Figures $8 \rightarrow 9-1$ to $8-9 \times 10$.
 least squaro methot on the computer. In the case of cough ourdidies, toretay the data availabie for each peremeter were not always eufinicient and sone of the Liacs had to be fitted by eje。

The date used for the calculaticns aro 2lsted in runs 101-306 presencea in rat. 8-2. The calculated values from the computer are listed in tables $8-1$, and s-50

The theorotical develoment of these equations was dons in Ghaoter Info on gencrulized backiviter squation is of the form

$$
\begin{equation*}
\frac{I_{I}}{I_{n}}=c\left[\left(\frac{F_{n}}{M}\right)^{-1}\right]^{\xi} \tag{3-3}
\end{equation*}
$$

However, it was Pourd nore convenient to plot the test resulus for tha fuIny shmer.zect discharge jet in the form

$$
\frac{I_{1}}{Z_{n}}=3=c\left[\begin{array}{c}
\mathbb{F}_{n}, \tag{3-1}\\
\left.{\underset{N}{0}}^{N_{0}}\right]^{\prime}
\end{array}\right\}^{\gamma}
$$

If h_{1} is substituted for $Y-I_{n o}$ quation $-10-2$ can be writuen in the foh wing Sorm:

$$
\frac{m_{n} x^{2}}{Y_{n}}=C\left[\frac{F_{Y}}{(H)^{2}}\right]
$$

 to 8-10-10 prosent the genera-ized backrater equatione for thas geonetoies son-thene, Significant values of the gecmetrieu aro used es parameters
 for the head loss considertian in the previ.ous section trase points whe th b-

 log log plots was usej。 Fon the smoth bouncianice a sufficient nuber of in as available to use the least squatre method in inding the slope of the line, In the case of rough boundartes, hcwevors 解 was sometines necescary to fit 'jhe Ines bry eye from the fow data available.

The data usec for the celculaticns are listed in muns lolo30', preserived in tajle
8-2. The calculated values are listed in tables $8-4$ and $8-5$.
There are some advantages in doing ais these calculatzon, in one computer piogiom, Only one gat of data kas to be preperai and the computer stor as the vilues in the menory once. the computer time usct, therefore, becomes a rininnum. For all the
calcuiations pertaining to the figures $8 \mathrm{~m} 9-1$. 'co $8-10-10$. the tize raca by the IEP 7090 was less than 10 minutes.

VIII-11 Conclusions - Subnerged Tests

The results of this reporit are appaicable to bridges with submerged inlev and geometries $1-3_{8} I-b_{g} V-b_{0}$ VI and TII. (see dofinition of geometrius in ohapter
 for.

Findings mate the followirg。

1. Equation of dischurge for osinte wion flow thoupic : momi a merged axch bridge contrrintiol
 type flow through the $k=-d_{g}$ e orening.
 dapth to the arch sser.o

 from the graphs in poirt. 4

2. For equal brid angt! the beckno or du tc exlmorget ath tridges is Burther decreased when the con striction in anved ris o-spott, to whe direction of

3. The value of tre iead loss co fefeient die to a wals orged arch bridge con" striction is independeni of the normal. depit Frourle number is long as both inlat and outlet of the bricige are submer.ger

4o For hyoraulically short subnerged arch bridges (that is whexe the barrel Is not sufficiently long to allow the expending depen of flow below the contractions to raise and fill the barre).) the backwater deptis increases for an increase the the normal depth Froude number .
5. To obtain a minimaz beckwater depth at a submerged anch bridge constricuici The barrel should flow fuld. (full condutt flow)。
 Whaulics of Arch Bindae Corstricteors If To Po thang ard of T. Stionge
 IMDLAHAPOLIS, IMDINA

Intsodiction

 sons $b_{i j}$ taking fiela wen ur wett dueing à thnot

 arch bildges.

1. Iocetane

2. Channei Condition:
(a) Wie , hannel retich close to that bridgs site boun ufstion nat downsifeam sevuld be as clear als posstole so that the flor during the flcad will not bo unduly disturbed.
（b）The cross sections of the channel reach，both upstrean and comm strean from the bridge，should be uniforiz in erder to avoid the offect of head loss due to enlarganent and contraction，and the water should Zo confined within the strean barks during the fleod．
（c）The channel reach should be nearly straighto There should be no confluence close to the bridye．
（d）The shape of the channel c：ooss sections shoul have as few irregularitzes as possiblo．
（e）There showd be no structures，such as otter bridges demss wiers etrog near the bridge site。
（i）Bridge skew should not bs axcessiveo Sheren＂judies，in which the conter line of the opontugs are not parallel with the direction of the channel．shomld os avoicied．

3．Arches of the Bridees：
（a）The share of the arch shouli be close to sertairviler or a part of a csrculer arch．
（b）The opening ratio of the aich should＇o small envagh to protuce an apprecieble beckwater effent．
（c）Excessive eccentricity siscuid be avoided．The aroh openfigg should be symmetrical with zespezt to the center iin of tha chane？

4o Flow Condittion：

（a）Fluv velocity during a flood should be great enough to create a relatively high Froude number，$F=\frac{V_{\text {倍 }}}{\sqrt{g y n}}$ 。
（b）Tho drainage basin should we relatively large（about 15 squere miles or mors）and topographic relief within the baskn relatyvely smaly In order to produce a flecod of suffectent duration so thetu desired data may be obtafrsed。

scriotion of the Field Situation

As fare as the purpose of this report is concemed，all of the arch bridges ich have been inspected can be put into three general classiffcations．These e；Highway bridges，City briclges and County Road bridges．Each has 1ts general atures and problens．

2．Kiderhway Arch Bridges：

（a）Arch shape is excellent，but almost all of them have a very large openting。 Pload raters probably nover reach the midde part of the arch．Hence，the arch effect is negigible。
（b）Usually the road side diainage ditches ase near the faces of the bridgeg both upstry and domstream。 Those drainage ditches suddenly enlarge the channel cross section．
（c）Channels aje not very clear or uniform．Ahannel and bank conditions are uuch thet if riood ievels were hich enou h to produce the deslred arch effest，water vould spill out into the fields；therebyg greatly charing the shape of the chamel eross sections．
（d）Since the srafilc is usually heavy，working concitions on the bridge are not jood．
（e）Usually the length of the arch constriction is relat：．vely Iong 2．Cliy Arch Bxidges：
（a）Chamel conditions are fairly good，especially in the park ar iso
（b）Flood water is confined within the hanks．Flood water leviis are high enough to produce an arch effect．
（c）The shap of the archea are not gooss oftice too fl：s or not sentctrentap．

the birdge．This is a common and serious problea with the city bridges．

3．County Road irch Bridges：

（a）The openings of the axch axe usualiy small．
（b）Channels are not uniform and are scmetimes eroked by brush and small tress．
（c）Parm fencos across the chamel neax the brilige catch logs and debris which seriously affect the flood flow unitr the bridge．
（d）The channel and bridge size is usually suriler than the high－ way arch bridge or the city arch bridge．

Conclust on

After three weeks of fleld inspection of the arch bridges in the eight counujes near Indiancoolis，the wsiters are of the orfinion that it is extremely difficult to find an arch bridge for the purpose of modelwprototype comparison without any defiectso However，ten oi the most suritable bridge sites have bean selected for further finvastio gation．Each one has sone good features and some defects．The Iist of the brictoes
are as follows：
1．Diviy Street，Indianapilis，erossing Pogues Run（Bridge No．2a）
2．Broolside Parkway，Indianapolis，crossing Pogues Run（Bindge No．2b）
3．Jaffarson Avenue，Indianapolis，crossing Porues Run（Bridge No．2c）
4．South Belmont Ayenie，Indianapolis，crossini；Littio Buck Creek（Bridge roo 8a）
5．State Road 100_{B} crossing Firlliams Creek（Bridge Nc。13）
6．Villa Avenue，Indianapolis，ěrossing Pleasant Run（Bridge No。 25a）
7．Lindan Nvenue，Indianapoins，crossing Pleasant Run（Eildge No。 15b）
8．State Road 44，crossing HurricaneCreek（Bridge No．51）
9．ihite Lick Creek near State Boys Schools Plainfield（Bridge No．59a）
10．Dean Road，Indlanapolis，crewising Horland Dftch（Bridge Mo．66a）
The complete information for each of the above bridges are complied on a eparate form．A suggestion given by the writers has been made for each of those ridges。

R-2 Sumary of Information on Fridge Sltes

For each of the ten bridge sites a resmue sheet, ono plan viev and four cross actions wore prepared by the Incinna Flood Control and "ater ?gsources Cormfssiono greal photographs were made by the State H_{i} ghway Departmont 2 Inziana foi nine f these sites. Topographic aaps were preparod from these aer-ul photograpas in the irphoto Laboratory, School of C_{2}.ill Engineeroing, Purdue University, under the apervision of Professor Rolizle:。

I．OTNEI STREET INDTANGPOLTS，CROSSIMG POCUTS RUN

RESUST

1）Compiled numbor of bridge：No． 2 a ，
2）Location：Lat。 $39^{\circ} 4^{7 \circ} 25^{\prime \prime}$ ，Long。 $85^{\circ} 05^{\circ} 26^{\text {m }}$ 。Indianapolk east Indiane， quadrangle sec． $32, \mathrm{~T}$ 。 $16 \mathrm{Nos} \mathrm{R}_{\mathrm{o}} \mathrm{F}_{\mathrm{F}} \mathrm{E}_{0}$ ，at bridge on Olney Sireet， Indianapolis，crossing Poguas Run，sastern cential itt of Indiannoliso
3）Dralnage area：8．7 squario miles．
4）Tributary to：Tribut̂ary to Wect Rosk Thits River Tabsal River basin．
（5）Slope of channe1：3．1／1000。
6）Bridge type：Ono－span concret arth britgee．
7）Skew toward upstream：z^{0} I
8）Skew toward downstrean． $25^{50} \mathrm{I}$
9）Width of Eridge： 50 feet．
0）Clearance of axch opening： 127 feeti
1）：！1dth between banks of charnel： 90 Reet，
2）Width of channel bottan：źL $f \in a$ ：
3）Eacontricity：Low Ploy part of chennel lonatod ni lent pur af thannel。 Centes line of aroch is abcal 7 feet rigit of cents Lire of low low
 bewean the two banks．
4）High water masl： 3 seut below top of arch opening but dite is uinertalno
5）Channel condition：
（a）Bend about $275 \mathrm{f} \in \mathrm{t}$ upatream trom upstrean fa＝e of lridge． Bend about $180 \mathrm{f} \epsilon$ downstreani fram downtrew face of kricee
（b）Trees and brush cistriouted alews right banks ots upstreari and downsticeam。
（c）Tur 2－foot dxametor sewers in upstrean sire。
（d）Channel bortian is irre－alax．

 dumastream fiom chis site．
6）Arch condicion：In upper rart，arch is in good shape u｜t lower part is straight wall．
ggestion：The opening ratio is sinail．Fois a very high slood the channel irregulawity and the stralght nart of the c eining could be neglected．
gures $901-1$ to $9-1-5$ show the rlen view and cross sections at the bridge site。 gure 9－1－6 is a topographic map prepared from aereal photographs．

FESUE

(2) Complled number of bridge: No. 2 No

 Parkway, Inoizurapoins: crossing Eogues Rung eastera cencral pary of Indianapolis.
(3) Drainage araa: 9.2 square míles
(4) Tributary to: Tributary to Trite Fiver. Atuch Rirer bezino
(5) Slope of chanmel: 2.9/500c.
(6) Bridge type: One-spen conczet anch brailes
(7) Ske:r toward upstream: 1501
(8) Skew toward dowastream: 51
(9) Widch of bridge: 20 feet
(10) Clearance of arch oponing: It fect..
(11) IIdth between barks of chaure?: 27 fes..
(12) Eccentricity: No。
(13) Figh water maik: is \& ?eet Velen jop of : vin, date is unerotaino
(14) Chanmel condittion:
(a) Bend at 170 fee upstrean frJ watrean feoe cy baiodge
(b) Buahes distribui ad alorg barite bati upstreani cid domstroano
(c) Channel botican is robulluis bui, pertionlic shape.
(d) is-inch čamater sever in dorsineen inoe.
 the oriage llo 2to
(25) hreh condition: It is a gocd wave arec
 Skew ts smallo Jt is ryommences to bo used fro vommon Plout.

 leresl photographs of tihts sito ine net eacilvile。

III．JEFFTASOR AIENUE TMDIANAPOTIS CROSSTMG POGUFS RUN

resurt

（1）Compiled number of bridge：Nio． $2 c$.

 Indianapolis，crossing Pogues Runs easterm contral part of Incianapolas
（3）Drainage area： 10,3 squere mullas．
（4）Trobutary to：Tributary to i＇est Fork of Thite livers Fabesh River besino
（5）Slope of chamel：204／1000．
（6）Birldge type：One span concrete aich in fdge．
（7）Sleew tostand upstream： $5^{0} \mathrm{R}$ 。
（8）Skew toward downstrean： 5° I．
（9）
（10）Clearance of arch orering： 11 Iset．
（11）Fỉdth between banks of cliannel：70 feet．
（12）！！dth of channel bottcn： 35 pecu。
（13）Eccentricity：None．
（14）High water mark：Two high weter mariss，lover one il jout 6.7 feet below the top of asch openinge the hithes are tic abo：T．ch．feet bel tofs or arch opening．Dates are usertain。
（15）Channel condition：
（a）No bend close to the roicige Eite both vustream and domstry eand side Channel is straight．
（b）Trees and bushes dsturituter allong both slae hanks of lowastrean channel．
（c）Trso sewers upsinear side，oine 2 woot 6 winch tianeters another ons 3－foct 6minch ciameter．
（d）Channel botton is rery good，rogulan and flat．
（16）Arch condition：Uppor part of opening is aech skape but lower phet as straight wall．

Suggestion：The two big sewers are major deeceto brit the influenze is unceronits，

Figures 9－3－1 to $9-3-5$ show the plen view and crossections at the bridge stes Figure $9-3-6$ is a topographic nap of the brioge site prepared irom aereal photographs。

RESUTE

（1）Corpiled number of bridge；No．82．

 of Indzrnopolis，
（3）Jrannage area：I㰯o＇square minoes
（4）Trabutary to：Tributary do West wow ？Fite RLver，＂ana haiver isus
（5）Slope of chansiel：1．5／1000．
（6）Bridge type：One＝gpan corcrete arch briade。
（7）Skew torard upstrean： 3062 ，
（8）Skew toward downtream： 250 Fio
（8）Nidth of bridge： 40 jeet。
（10）Slearance oi arch openings i6． 5 eqet，
（11）Nidth botween barks of iherinei： 109 peet．
（12）Idth of chanars botwons 8 ot clear．

 between banks．

（15）Channil condfeion：
（a）The bridge site is fusk on a 250 curre．
（iv）Tho charmel is clear．
（c）Eeri：3 are hich enough to curitine the fono
（d）Chames bot．tm is irremalay．
（e）No sewers revirto
（16）Arch condition：It ice in goock shape bute toco fliot．
 well．It is recormended to be rian during very lioh flocks be in e or more than the flood of 1955.
＂igures 9－4－1 to 9－4－5 sinow a plan vien and cross sectlo＂th the bridge＂is． igure 9－4－6 is a topographice map of the bricge sithe frepared fron aeveal photym sraphs．

V. STAPE ROAD 100, CROSSING YILLTASS CRFYK

RESTITE

(1) Compiled number of bridge: No. 13.
(2) Location: Lat. $39^{\circ} 54^{\circ} 4^{4 \%}$. Long. $86010^{\circ} 28^{\prime \prime}$, Carmel. Indians, quadrangle ${ }_{9}$ on nosth 13 re s8c: $22, \mathrm{~T}_{0} 17 \mathrm{~N}_{0}$ R $\mathrm{R}_{3} 3 \mathrm{E}_{0}$, at bridge on State Road 100 crossing Williams Creek, $21 / 2$ miles norithwest oi Augusta, Marion County. and 3.8 milles upstream from mouth.
(3) Drainage asea: 1704 square miles.
(4) Tributary to: Tributary to West Fork White River, Wabash River basin。
(5) Slone of channel: about 2/1000.
(6) Bridge type: Oneospan concrete arch bridge.
(7) Skew toward upstream: $15^{\circ} \mathrm{R}_{0}$
(8) Skew toward downstrean: No skewo
(9) Vidth of bridge: 4,2 eet.
(i0) Clearance of arch opening: 22 feet.
(11) Width between banks of channel: About 160 feet.
(12) Width of channel bottom: About 30 feet.
(13) Eccentricity of arch opening: Center Ine of arch opening is 10 feet left of the center line of strean.
(14) High water mark: Flood of April 25, 1961.14 .5 feet below top of arch apeningo (15). Channel condition:
(a) No bend both upstream and downstream within $I_{,} 000$ feet.
(b) Trees and bushes distributed on banks both upstream and sownstrem.
(c) Right banks both upstream and downstrean are very low so that the flood water levels were limited to the lower part of atch opening.
(d) No sewer nearby.

Suggestion: The arch shape is very good. It is recorunended to be used for very high flood.

Figures 9-5-1 to $9-505$ show a plan view and cross sections a't the bridge site。 Figure 9-5-6 is a topographic map of the bridge site prepared from aoreal photo graphs.

VI．VILLA AVINUE，INDIAN：POLIS，CROSSING PLSASANT RUN

RESURE

（1）Compiled number of bridge：NO：15a．
（2）Location：Lat． $39^{\circ} 44^{\circ} 53^{\prime \prime}$ ．Long． $86^{\circ} 07^{\circ} 35^{\prime \prime}$ ，Maywoods Indiana，quadrangle， northeastem comer of sec． $18 . \mathrm{T}_{0} 25 \mathrm{Nog}_{0} \mathrm{R}_{\mathrm{o}} 4 \mathrm{E}_{0}$ ，at bridge on Villa Avenue，Indianapolis，crossing Pleasant Run，south part of Indianapolis．
（3）Drainage area： 12.9 square miles
（4）Tributary to ：Tributary to West Fork Ihite River，Wabash River basin．
（5）Slope of Channel：2．5／1000．
（6）Bridge type：One span concrete arch bridge．
（7）Skew toward upstream： $15^{\circ} \mathrm{R}$ 。
（8）Skew toward downstream： 20° R．
（9）Widus of bridge： 40 feet．
10）Clearance of arch opening：1405 feet。
11）W．1dth between banks of channol： 116 feet．
12）Width of channel botton： 65 feet．
13）Eecentricity of arch opening：Center line of arch oroning is at feet right of center line of low flow channel．
14）High water mark：Filood of April 1961， 7 feet below top of arch openingo
15）Channel condition：
（a）Bend at 150 feet downstream from downstream face．Bend at 150 feet upstream from upstrieam face。
（b）Channel is relatively clear and falrly uniform．
（c）The banks are high enough to confine the flood water．
（d）Bottom is very regular．
（e）A fairly large tree near upstream face may obstruct flood flow
（f）Two l－foot diameter sewers in upstream side．
16）Arch condition：
（a）Upper part is too flat。
（b）Two ands of the arch are elliptic shape．
iuggestion：The channel is clear and undform but the arch seme too flat．It is recommended to be used for segment arch bridge model o prototype comparison．On the other hand，the degree of disturbances due to bends and sewers are uncertain．
＇igares 9－6－1 to 9－6－5 show a plan vien and cross sections at the bridge site。 igure $9-6-6$ Is a topographic map of the bridge site prepared from aereal photogrinphs．
VII. LINDEN AVEMUE IHDI:NAPOLIS, CROTING PLEASMRT RUT

RESURE

(1) Compilec number of bridge: No. $15 \$_{0}^{\circ}$
(2) Location: Lat. $39044_{4}{ }^{0} 4^{\prime \prime}$, Long. $86008^{1} 14^{11}$, Maywood. Indiana quadrangle e_{8}
west of sec. $18, T_{0} 15 \mathrm{No}, \mathrm{R}_{0} 4 \mathrm{E}_{0}$ at bridge on Ifnden Avenue, Indianapolisg crossing Pleasant, Run, south part of Indianapolis.
(3) Drainage area: 13.3 square mlles.
(4) Tributary to: Tributary to West Fork White Rivers Vabash River basino
(5) Slope of channel: 2.5/1000.
(6) Bridge type: One span concrete arch bridge.
(7) Skew toward upstrean: 50 L。
(8) Skew toward downstream: $15^{\circ} \mathrm{I}$ 。
(9) Width of bridge: 40 feet.
(10) Clearance of arch opening: 21.5 feet.
(11) With between barks of channel: 107 seet.
(12) Hidth of channel bottorn: 55 seet.
(13) Eccentricity: Nono.
(14) High water mark:
(a) Flood of April 1961, 5.8 feet below top of arch.
(b) Highest water mark; uncertain date, 1 foot below top of arch.
(15) Channel condietion:
(a) Bend at aovut 200 feet upstrean from upsiram face.
(b) At arch bridge on Shelby Street crosing MLeasant Run at 1000 feet downstream froa the bridge.
(c) The charnel is uniform and clear.
(d) The haniss are high enough to confins the flood.
(c) Channel bottom is very regular.
(f) Theee 8 inch diemster sewers, one in downstream side and two in upstream side. Ons 12 inch dianeter sewer in rigght bank of downo stream side.
(16) Arch condition: It seems too flat.

Suggestions The channel is uniform and clear, but the arch seens too flat. It is recomended to be used for segment arch bridge model - prototype comparis 50n. On the othor hand, the degree of disturbances due to upstream tead, domstr:an buedgo and sewers are uncertain.
 Pigure $9-7-6$ is a topograghic sep of the bridge sito prepared from aereal photographs.

VIII．ST：TE DOAD 44 CROSSING HUPPICANE CRTEK

RESUME

（1）Compiled number of bridge：No． 51
（2）Location：Lat． $39^{\circ} 28^{\prime \prime}$ 2＂$^{\prime \prime}$ Long． $86^{\circ} 02^{\circ} 53^{\prime \prime}$ ．Franklin，Indiana，nuadrangle， sec． $14, T$ ， 12 N, ，R． $4 E_{0}$ ，at bridge on State Road bits crossing Hurricanecreek，eastern part of Franklin．
（3）Drainage area： 27 square miles．
（4）Tributary to：Tributary to Youngs Creek．
（5）Slope of channel：1．3／1000．
（6）Bridge type：Two－span stony arch bridge．
（7）Skew toward upstream． $35^{\circ} \mathrm{R}$ 。
（8）Skew toward downstream： $35^{\circ} \mathrm{R}$ 。
（9）Width of bridge： 45 feet．
（10）Clearance of arch opening：
7.5 feet for left side arch． 9 feet for right side arch．
（11）liidth between banks of channel： 43 feet．
（12）width of chanel bottom： 38 feet．
（13）Eccantricity：The left part of channel is about 2 feet higher than right side． A part of the right side arch is obstructed by the right bank．
（14）High water mark： 2.4 feet below the top of arches．Date is uncertain．
（15）Channel condition：
（a）The channel is perfectiy straight and uniform．
（b）Two sewers，one 3.5 feet diameter and one 2 feet alimeter are under the right side arch opening．
（c）An obstacle，a． 2 peat diameter sever，is at 25 feet downstream frca downstream face of bridge．
（di）The bank slopes are vertical，hoth upstream and downstream。
（16）Arch condition：
（a）The shape of the arch is very good．
（b）A part of the right side arch is obstructed by the right bonk．
Suggestion：The chnnel is uniform and straight．Since the skew is considerables it is recommanded to be used for skew arch bridge model－prototype comparison．However，the influence of sewers are uncertain．

Figures 9－8－1 to 9－8－5 show a plan view and cross sections at the bridge site。 Figure $86 B-6$ 18 a topographic map of the bridgo site prepared from aereal rinotographs．

RESURE

（1）Compiled number of bridge：No．39a．
（2）Location：Lat。 $3904,1^{10} 35^{\prime \prime}$ Longo $86^{023^{\circ}} 53^{\prime \prime}$ ．Pleinfleld，Indianas quadrangle soc．35：Toly Nos Mol \mathbb{F}_{0} at bridge neas State Boys School．Plainfields crossing thite Lick Creeks southern edge of Slajnfield。
（3）Drainage area： 101 square miles．
（4）Tributary to：Tributary to Test Fork Yhite River＂，＂ahash River basino
（5）Slope of channel：1．4／1000．
（6）Bridge type：Tromspan concrate arch bsidge。
（7）Skew toward upstream： $5^{\circ} \mathrm{R}$ 。
（8）Skew toward downstrean： 50 B 。
（9）Midth of bridge： 18 feet．
10）Clearance of arch opening： 16 feet for right side arch． 12 feet for left side arch。
11）Hidth between banks of channel： 172 feet．
12）Mrdth of csarnel bottom：Not very clear．
13）Eccentricity：Low flow part of channel is close to richt banko
14）High water mark：Flood of 2957，just about the same height as the top of arch opening．
25）Channel condition：
（a）Bend about 250 feet upstroam from the bridge。 Bend about 300 feat downstream from the bridge．
（b）Sand heaps distributed along the left part of channel．
（c）Left part of chamel is 4 feet，average，higher than right side。
（d）The banks are able to confine the flood \＆feet lowor than the flocd of 1957．
16）Arch condition：The arches are in good shape except the ends close to the pier．
uggestion：This is the best two－span arch bridge under inspeetion．The defects are the nosmsymatric channel cross section and the low banis on left side．So it is recomended to be used fore a medzum flood．
igures 9－9－1 to 9－9－5 show a plan view and cross sections at the bridge siteo． igure 9－9－6 is a topographic map of the bridge site prepared ircm asreal photographs．

RESUGE

（1）Compiled numbsr of bridge：No．66a．
（2）Location：Lat． $39^{\circ} 53^{\circ} 33^{\prime \prime}$ ，Long． $86^{\circ} 05^{\circ} 54^{\prime \prime}$ 。 Fishers，Indiana，quadrangle，
 crossing Howland Ditch，northern part of Indianapulis．
（3）Drainage area： 405 square miles．
（4）Tributary to：Tributery to West Fork Thitte River。
（5）Slope of channel：3．5／1000．
（6）Bridge type？Original bridge is a one－span concrete arch．Roadway was widened by addition of a oneaspan concrete flat decked structure on the downstrean side of original bridge．
（7）Skew toward upstream： 150 L 。
（8）Skew toward domstrean： 150 I 。
（9）Width of bridge：Arch part， 18 feet。 flat parts 13 feat．
（10）Clearance of arch opening： 7 feet．
（11）iildth bet：：een banks of channel： 46 fees。
（12）I：1dth of channel hottoms 30 feet．
（13）Eccentricity：None。
（14）Higinwater mark：None。
（15）Channel conditions
（a）The cross section near the upstream face is larger than cross sections 10 feet upstream。
（b）Channel cross sections are regular．
（œi）Smail bend at 120 feet domstream from briclge。
（d）Channel is clear．
（16）Arch condition：
（a）Arch opening is in good shape。
（b）Flat deck part of this bridge is high enough to be free from discuxbing the flow．

Suggestion：Arch is good，channel is clear and regular．
Perhaps the drainage area is not big enough to avold the flash flood．

Figures $9-10=1$ to $9-1005$ show a plan view and cross sections $2 t$ the bridge site． Figure $9-10=6$ is a topographic map of the bridge site preparea frow aereal phofographs．

IN-3 Prelininary Study of the Indirect Doterrination of Flood Discharge from Contracted Bridge Openings and High Bater Marks, by I. P Wu Indiana Plood Control and Fiater Resources Commission

As soon as a bridge is constructed across a natural streamg it sempes in at least some degreo as a contracted opening to confine the stream flow, particuilaily in the higher ranges of discharge. irider suitable conditions, such contracted openings provide opportunity for the indiredit determination of the flood discharge passing through the bridge openingo

This offlce has for some years been engaged in a progran for the field astablisho ment of high water marks along a number of stre ms in the State following major anoods. including the setting of such marks ac and in the vicinity of hridges. The puryose of this study is to develop relationships wherehy the high water mavs date coljecter. by this office at various bridges may be used to estimite the flood discharge at etrat point.

The experimental data used herein was obtained from a study by Purdue Unjersity on arch bridges and by the University of Colorado on simple nomal crossingr with a vortical-sided model.

Basic Hydraulics and Assumptions for Doriving the Relationship Bewween ine Flood

 D1scherge and Higi Water MarksWhen the flow is cuntracted by the bridge openine, the flow proitle along the center line of the stream can be plotted roughly as flllows:

section 1 is the section of the highest heading up, the repth is \bar{J}
section 0 is the section right et the opening, the depth is Jo $J_{n}=$ normal depth
Δy e the maximum heading up $=y 1 \cdots y n$
$\nabla_{n}=$ normal velocity
v1 = velocity at section a
$\nabla_{0}=v e l o c i t y$ at section 0
$S_{0}=$ channel bottom slope
$L=$ length from the bridge opening to the section of maximum heading up.
of conservition of energy, we have the relation

$$
\frac{v_{1}^{2}}{2 g}+\nabla_{1}+S_{0} \Delta I=\frac{\nabla_{0}^{2}}{2 g}+J_{0}+l_{0}
$$

Where he is the friction loss from section 1 to section O_{0} [f S_{0} is email. so that the term $S_{o} A L$ may be negiected, and assiming $y_{i,}=Y_{n 9}$ 3q. I becomes.

$$
\begin{aligned}
& \frac{\nabla_{1}^{2}}{2 g}+J I=\frac{v_{0}^{2}}{2 g}+y_{0}+h_{f} \\
& \frac{\eta_{1}^{2}}{2 g}+\Delta y+y n^{2}=\frac{\nabla_{0}^{2}}{2 g}+y_{n}+h_{f} \\
& \frac{\nabla_{I}^{2}}{2 g}+\Delta y=\frac{v_{0}^{2}}{2 g}+h_{f}
\end{aligned}
$$

3ince the high water marks are losated on the banks of the stream, the elevation of the marks will be higher than the elevation of tio water at the center line of the stream, due to differences in velocity. Assuming that the velocity of flow near the banks is very low or approaching zero, it might be said that Δy_{E}, which is defined as the efference in elevation between the high weter marks on the binks and the lepth of normal stream flow J_{n} is Δy plus its velocity head, that is $\Delta y_{E}=y+\frac{\eta^{2}}{2 g}$

$$
\begin{aligned}
& \text { then } \quad \Delta y_{B}=\frac{v_{0}{ }^{2}}{2 g}+h_{f} \\
& 15 \quad u_{0}=E \frac{v_{0}{ }^{2}}{2 g} \\
& \text { where } \quad \mathbb{E}=\text { friction loss officiant } \\
& \text { then } \Delta J E=(2 * x) \frac{V_{0}^{2}}{2 g} \\
& \text { or } \quad \frac{\Delta Y_{E}}{\nabla_{n}}=(2+K) \frac{\nabla_{0}{ }^{2}}{2 g_{n}} \\
& \text { and } \quad \frac{\Delta y E}{J_{n}}=\frac{3+K}{2} F_{0}{ }^{2}
\end{aligned}
$$

Where $F_{0}{ }^{2}$ is the Froude number at the briciga opening o
This gives the relation that $\Delta \mathrm{TE}$ is a function of tide velocity head at the bridge opening and $\frac{\Delta y e}{y n}$ is a function of the Froude number of that opening

Study of Experimental Data

Data from the experimental tests of flow through contracted openings made by the University of Colorado and Purdue University were collected. Since the social field conditions investigated show that the opening rails is is large and the ratio of Δy and I_{n} is small, only those experimental data wore selected which met the criteria that $M^{\rho}>0.6$ and $\frac{\Delta y}{\nabla n}<0.1$. The relations of $\frac{\Delta \overline{J E}}{Y n}$ and F_{0}^{2} an be sean in figure 11-1. which shows that the data holds the relation:

$$
\begin{gathered}
\frac{\Delta \nabla_{E}}{\nabla_{i}}=\frac{1}{2} F_{0}^{2} \\
\text { or } \quad \Delta J_{E}=\frac{\nabla_{0}{ }^{2}}{2 g}
\end{gathered}
$$

Indirect Determination of Flood Discharge For Indiana Streams

Since the above study shows the relations of high water marks and the velocity at the opening, this well serve as a tool to estimate the pale flood discharge which passed the bridge opening during the particular high water event. Several bridges which ese located on a relatively straight and uniform streara, and where the high water mark date is considered to he reliable were selected tor tills stuciyo There
are also U．S．G．S．gaging stations nearby which the ilood discharge was measured directly。

Information as to high water merks，computed discharge，and the aetuel discharge for the eight bridges selected for study is as follows：

Bridge Location Date of Filood AyE路。

Computed	Measured
Q	Q
cfs	cis

Eagle Creek，Beol RR Bridge at Speedway

Juns 1957	2.37	27,850	25,200
Kay 1956	0.90	23,000	27,600
May 1956	0.81	23,700	18,200
June 2957	1.02	31,400	26,300
Nay 2956	0.34	19,600	20,600
1957	1.00	37,400	38,400
Jan． 1959	0.274	13,300	14,500
Nov．1955	0.265	9,600	10,800

There is showa in Figure 3I－2 a plot of Δ YE against the yelocity hsad．Data from the eight bridges shown in the above tabulation，and the expermental study from the University of Colorado and Purdue agree well with the theoretical Ine $\Delta \overline{\mathrm{E}} \times \frac{\mathrm{v}_{\mathrm{o}}{ }^{2}}{2 \mathrm{~g}}$ ： It appears that this theoreticel Inne can be used for a rough estimate of the peak flood discharge which passed through the bridge opering．

Discussion

Theoretically，the flood discharge passed through the bridge opening is a function of the nomal depth of stream Ilow，the cross section of the channelo the size of the bridge opening，the friction loss in the channel and the bridge opening，and the energy coefficient．

Since the nomal depth of the natural channel is difficult to determineg the asumption was made that normal depth occurs at the bridge opening. This was based In the results of the experimental stuoy maris.by Puax due Universtty, which showed from the flow profiles that normal depth cceured sonewhere close to the ovening urnere the ondition that the opening ratio Me >0.6 and that the Frouds number is smaller than).5. The other mafor assumption was that the velocity of flor close to the bank is rery small. or approaching zero, such that the elevation of the high water nark on the pank is equal to the elevation of the flow profile along the center line plus its relocity head. Neither of these assumptions can be proved at this time and hences onstiture the weak points of this study.

As the velocities used in this study are all mean velocities, the velocity head ictually is not $\frac{\nabla^{2}}{2 g}$ but $\alpha \frac{v^{2}}{2 g}$. The energy coefficient α is a little larger than ne for large uniform cliannels, but is far greater than one sor the section close io a contracted opening. Since it is assumed to be unity in this study, a $103 s$ of ccuracy undoubtediy results.

As show in Pigurell-I date from the experimental tests by the Univarsity of iolorado and Purdue agree well with the relation $\frac{\Delta y E}{y n}=3 F_{0}^{2}$ or $\Delta y_{g}=\frac{V_{c}^{2}}{2 g}$. This loes not mans that the friction coefficiont K is zero, but rether Indicates that thes 'actor may' be cencelled by the anergy coefficierit ofs or that there are other uriow ermined effects as a Pesult of the two basic assumptions.

By studying the relation $\Delta y E=\frac{v_{0}^{2}}{2 g}$, it will be noted that this 1.3 ncoining more han the simple statement that the velocity head at the bridge openire is just equal - the maximum heading upstream from the contracted opening. Inafouch as assumptions ade in this study are not quite correct and since the friction loss coefficient K nd energy coefficient α are not precisoly determined, the results of this study can niy be used as a rough estimate of the flood discharge or as a check on the flood Ischarge as determined by other methods.

Purthor work is necessary to use the experinen:al data in conjunction with that rom actual natural streems to evaluate all the speciric factors involved.

APPENDIK A

NOTATIONS

SMMBOL	DIMENSEONS	DFFIMITION
A	L^{2}	Aroa
A_{2}	L^{2}	Total depth water area at section $\mathrm{I}_{2} \mathrm{~A}_{2}=\mathrm{BI}_{2}$
A_{6}	L^{2}	Critical plow amea
Anl	L^{2}	Nonma] dejth watar area, $A_{n}=\mathrm{SX}_{\mathrm{rl}}$
An2	L^{2}	Total depth flow area at section 2
A_{0}	L^{2}	Area of bridge opening
B		Rectangular channel wicth; Body force per unit of ingss
b^{\prime}	2	Diameter of efrcle of wint the arch segment is a part
b	L	Span width at the springline of the aveh
c		A coofilicient
C	I, $\frac{1}{2} / T$	The Chezy joughness coefficientaifn $/ \sqrt{2 n_{n}{ }^{\text {S }}}$
C_{1}		Coofficient, soe equation $3-7 m \%$
Covor		Control volume
Ce_{0}		Coefincient of contraction
$C_{0} S_{0}$		Control surface
c_{α}		Coepricient of discharge
C^{6}		
${ }^{\text {c }}$		Coefficient of velocity
d	L	Diancter of a circle, distance betreen canter of circular arch sogment and charsel bottern (Figo 3-12), depth of plow meazured perpendiculariy to the bottom。
D	L	Hycraulic deprla as defined by i/w; pipe diameter

SYMBOL	DIMENSIONS	DEFTNITEON
${ }^{3}$	L	Distance fror the springline to the center of curvatura of the asch
d	亡	Orisice diamster
$E_{I_{\text {d }}}$		Energy Loss between section 1 and 4
-		Eccentricity
F		Denotes a zethematical function, Fronde numer
F_{8}		Friction fovee
F_{n}		Noimal depth Froudo nutiber an $\nabla_{n} / \sqrt{\text { gY }}$
8_{8}	F	Suniace force on control yoluxe
1		Denotes a mathematical functiong friction coefficient
G		Denotes a mathematical function
g		Denotes a mathomatical. Punction
g	L / T^{2}	Accelerâtlon of gravity
H	I	Total encrgy head
$h_{1}{ }^{\text {\% }}$	L	$\Psi_{1}-\Psi_{n}$
h		Static head
h_{8}	L	Headious
E		Weis coelfisient as derineci in mancis well formuia
K		Head loss due to bridge constriction aione
k		Nikuradse's equivalent sand roughness
L	Σ	Length of the kridge in the direction of flow
Ind	L	Diztance befwean bridges
L_{2-3}	L	Distance béwrean sections 1 and 3

ST:BOL	DIMTMSIONS	DEFITITION
$\Sigma_{1 / 4}$	L	Distance between sections 1 and Lo
M		Chamel widit ratios b / B
W		Channel opening ratio $A_{0} / A_{n 2}$ for subtrerged opering; $A_{n 2} / A_{n l}$ for unsubanevged opening.
M_{2}		NLId slope bachwater curve in an open ciranmel.
N		Number of spans
n	$1{ }^{1 / 6}$	Nanning a roughness coefficient
n		Subscript which refers to the normel depin for unsform flow
P	F / L^{2}	Pressura intensity; plar widh (See Pigo 3-1.4)
P	F	Pressura Porce
Q_{2}	$L^{3 / 2}$	Actual dischasge through opening
Q_{4}		Theoretical calculated diseharge though opentig
Q	$L^{3} / 12$	Total ilok
q	[$3 / 2$	That posilor of the toval plow which could pass thiough the bridge without conerackion
R	I	Hydraulie redius
$\mathrm{R}_{2} \mathrm{R}_{0}$		Reynolcs number $\nabla_{n} \mathrm{R}_{n} / 2$
r	L	Radius os curvature of the archs redius on curvature of streamilne
S		Slope; head loss per unit Length
S_{0}		Slope for normal derth flow in unconstricted channel

STABOL	DIMENSIONS	DEFINITTOA
T		A sories deinsed in Axt. $27-70$
t	T	Trae
∇	L/T	Average velooity
v_{0}	L/ ${ }^{\text {a }}$	Arerage velocity through constriction, Q/A。
v_{n}	I/	Avernge velocity when uniform, nozwal flow occurs, $0 / \mathrm{BY}_{\mathrm{n}}$
V		VCls
W	I	Fres surface wictich; wisght of water within a control voluas
X		Distance aiong flure
8	L	Sydraulic copth y $\mathrm{A} /$ /
I	L	Dapth of siow
\%	I	Head over the center of giavity or a section
z_{1}	L	Deptin of flosi at secifion of maxtmum backwater
Y_{0}	L	Critical depion
	I	Depth of the normal unconstricted flow
Ψ_{t}	L	Tailgate height
2		Section factor for critical fiow computation $z^{2}=A^{3}$ /N; eLevation head.
α		Kinetic enerey coefficient
α^{\prime}		Pressure coefficient
β		Segnent factor d / r, Momentum coefficient
γ	$\mathrm{F} / \mathrm{c}^{3}$	Specific weight of water
δ		Eoundary layer thickness

SIMBOL	DIMENSIONS	DEFINITTON
ε		Roughness size
η		d/v (See fig. 3-12)
v	$L^{2} /{ }^{\text {/ }}$	Kinematic viscosity of the fluld
ρ	F20 ${ }^{4} /{ }^{4}$	Flufd mass censity
ர	F / L^{2}	Shear gtress
01	degrees	! Mngwall angle (See Flg, 3-14)
ϕ_{2}	degrees	Skew angle (Sue Fig. 3-14)
\bigcirc	degrees	Angle of inclination of channel

Geonetivies Ib and YII Water Surdasa Neasumゃments（Smail Flume） 276
Genctry VII Smail Fque－sement Teacs－ỉouen Bouriantes 225
Lasge Flume Data fioc Noxmal Dopit Tent innzaRougn Eonndiantes 227
Large Fume Tesbs for the Ronghess Parameter g 228
Ceanetry Ia Owssrocci and Cazculatiod Detag Sncoth Foundaries 229
 230
Geomotury Ia Caimuations ioz the Insege Finme Smocth Boundamy Mociel Tests 234
 235
Cocmetries Ia and Ib Calculations for tho Lasge Favia Rouzh Boundazy Model Tosts 245
Geometry Ia Surtace Topography \＆Rsges Carve Data 218
Coometry χ_{3} Velocity Kearur mezt： 252
Ceomot：IT Ras ar． 1 Colcuiated Dota 255
Geonetry III Raw anc Celoulatu Iatz． $25 ?$
Gocenstry If Raw and Culculatcil Data 259
Geonstry va faw and Cajoulater Data 262
Goumatry Tis Raw and Civeniatock Data 264
Ceonetiet Vir Raw na Galcunabed Data 265
Geomenger VII Raw and Calculatos Dare 266
Raw Data－Anea os Ima ConsractanBeckwater and Provie 267
Raw Datamsumer eed Tests 275
Raw Data－Suknerged Tosts 287
Calculared Values－Run NO．2－24，0（Svanergea Tests） 289
Calculated Velues－Run No．242－30S（Subnerged Tests） 290
trables $4,-1$ and $4-2$ reser to the snali siume preisninary investigations． The renaining tables sefer to the lasge flume tesis．

4.0	10	. $1+25$. 538	. 538	. 113	. 113	0
4.5	9.5						. 0114
5.0	9		. 538	. 538	. 113	. 113	$.0114$
5.5	8.5						4"
6.0	8		. 538	. 538	. 113	. 113	2"
6.5	7.5						24"
7.0	7		. 538	. 538	. 113	. 113	
7.5	6.5				. 113		$1 "$
7.75	6.25			. 538		. 113	
8.00	6		. 538	. 537	. 113	. 112	
8.1	5.9			. 537		. 112	. 001
8.2	5.8			. 537		. 112	. 005
8.3	5.7			. 535		. 110	. 005
8.4	5.6			. 534		. 109	¢. 3.5
8.5	5.5			. 535		. 110	to
9.0	5		. 538		. 113		5.5
9.21				. 536E		. 111	
9.5	1.5						\%
9.725				. 537 E		. 112	. 035
10.0	4		. 538		. 113		
10.23				. 5385		. 113	
10.5	3.5			. 538		. 113	
10.6	3.4			. 539		. 114	
10.7	3.3			. 539		. 114	
10.8	3.2			. 539		. 114	
10.9	3.1			. 539		. 114	
11.0	3		. 538	. 539	. 113	. 114	
11.5	2.5			. 539		. 114	
12.0	2		. 538	. 539	. 113	. 114	
12.5	2.5						
13.0	1		. 538	. 539	. 113	. 114	
13.5	. 5						
14.0	0	. 425	. 538	. 539	. 113	. 114	

4.0	10	. 425	. 538	. 538	. 113	. 113	0
4.5	9.5						. 0114
5.0	9		. 537	. 538	. 113	. 113	51
5.5	8.5					. 113	5
6.0	8		. 538	. 538	.113	. 113	2.51
6.5	7.5						$24 "$
7.0	7.0		. 538	. 538	. 113	. 113	
7.5	6.5						$1 "$
8.0	6.0		. 538	. 538	. 113	. 113	
8.1	5.9			. 537		. 112	
8.2	5.8			. 536		. 111	. 001
8.3	5.7			. 535		. 110	. 005
8.4	5.6			. 534		. 109	
8.5	5.5			. 534		. 109	3.51
8.695	5.315			. 533 E		. 108	to
9.0	5.0		. 538		. 113		5.51
9.19				. 534 E		. 109	
9.5	4.5						
9.693				. 535 E		. 110	. 035
10.0	4.0		. 538		. 113		
10.183				. 536 E		. 111	
10.5	3.5		. 538	. 537	. 113	. 112	
10.6	3.4			. 537		. 112	
10.7	3.3			. 538		. 113	
10.8	3.2			. 539		. 114	
10.9	3.2			. 539			
11.0	3.0		. 538	. 539	. 113	. 114	
11.5	2.5			. 539			
12.0	2.0		. 538	. 539	. 113	. 114	
12.5	1.5			. 539			
13.0	1.0		. 538	. 539	. 113	. 214	
13.5	. 5						
14.0	0	. 425	. 538	. 539	. 113	.114	

TABLE 4-I WATER SUFFACE MEASUREMERTS P. 7

StATION	distance Along FLUME	POINT GAGE RENDING			NORMAL DEPTH	DEPTH PLINCE	
		FLUME BOTTOM	WATER SURFACE				
			WITHOUT MODEL	$\begin{gathered} \text { MIODEL } \\ \text { N PLACE } \end{gathered}$			
1	2	З	4	5	6	7	8
4.0 4.5	10	. 420	. 520	. 520	. 100	. 10	$\begin{array}{ll} S_{0}= & 0 \\ Q_{m i} & .0138 \end{array}$
5.0	9	. 420	. 520	. 520	. 10	. 10	$\mathrm{Dig}_{10}=5 \prime$
5.5							
6.0	8	. 420	. 520	. 520	. 10	. 10	$L=24 "$
6.5 7.0	7		. 520	. 520	. 10	. 10	
7.3	6.7			. 519		. 099	2. 6/8"
7.4	6.6			. 519		. 099	${ }_{\text {Weight }}=$
7.5	6.5			. 519		. 099	
7.6	6.4			. 519		. 099	$h^{*}=.0011$
7.7	6.3			. 519		. 099	$\Delta h=.0031$
7.8	6.2			. 519		. 099	
8.0	6	. 420	. 520	. 519	. 10	. 099	
8.2 8.4	5.8 5.6			. 519		. 099	Along to Flume 51
8.5	5.5			. 518		. 098	EPG-M.PG=
8.7	5.3			. 518		. 098	E.G.M.047
9.0	5			. 518		. 098	. 047
9.23	4.67			.519E		. 099	FIG. NO.
10.0	4						
10.23	3.57			.519E		. 099	
11.0	3	. 420	. 520	. 520	. 10	. 10	
11.1	2.9			. 520		. 10	
11.2	2.8			. 521		. 101	
11.3	2.7			. 521		. 101	
11.4	2.6			. 521		. 101	
11.5	2.5			. 521		. 101	
11.75	2.25			. 521		. 101	
12.0	2	. 420	. 520	. 521	. 10	. 101	
12.5				. 521		. 101	
13.0	1			. 521		. 101	
13.5				. 521		. 101	
14.0	0	. 420	. 520	. 521	. 10	. 101	

TABLE $4-1$ WATER SURFACE MEASUREMENTS P. 9

$$
\angle-1 \quad \therefore \quad 5
$$

STATM: AN: ANCE Framy

4.C	10.0	. 423	. 541	. 541	. 11ε	. 118	0
5.0	9.0			. 541		. 118	. 015
5.5	9.5			. 541		. 118) $l_{\text {: }}$ "
5.75	2.35			. 540		. 117	-2"
6.0	9.6	. 423	. 541	. 540	.118	. 117	$24 "$
6.5	7.3			. 539		. 116	24
6.8	7.2			. 538		. 115	$1 "$
7.6	7.0			. 538		. 115	
7.72	6.28			. 539 E		. 116	
8.0	6.c	. 423	. 541		. 118		0021
8.24	5.76			.540E		. 117	. 0021
9.0	5	. 423	. 542	. 541	. 118	. 118	. 0051
9.1	4.9			. 542		. 119	19, 51
9.3	4.7			. 543		. 120	fres 5
9.5	4.5			. 543		. 120	1.2: to
10.0	4	. 123	. 541	. 543	. 118	. 120	
11.0	3	. 423	. 541	. 543	. 118	. 120	:
11.5	2.5			. 543	. 118	.12C	. CL 4
$12 . \mathrm{C}$	2	. 423	. 541	. 543	. 118	. 120	
13.0	1	. 423	. 541	. 543	. 118	. 120	
14.0	0	. 423	. 54.1	. 543	. 118	. 120	

188
TABLC 4-1 WATEK

4.0	10	.421	.495	. 495	. 074	. 074	C
5.C	\bigcirc	.421	. 495	.495	. 074	. 074	. 017
6.0	8	. 4.21	.495	.495	. 074	. 074	7.711
7.0	7	. 421	. 495	. 495	. 674	. 074	11
2.0	6	. 421	.495	. 495	.074	.074	4
9.0	5	.421	. 495	. 495	. 074	. 074	9.711
1C. 0	4		.455	.$\therefore 95$. 074	. 274	
1C.1C	?.9			. 494		. 0.73	$3 / 63$
10.?	3.9			$\therefore 94$. 073	
1C. 3	3.7			$\therefore 93$. 672	
16. ${ }^{\text {a }}$	3.6			. 493		. Ciz	$.001{ }^{\prime}$
1C.5	3.5			.492		. C 71	$.004{ }^{1}$
1C.685	3.315			. 492		. 072	
11.0	3	. 121	. 495		. 674		
11.185	2.515						t
21.57	2.43			. 194		. 073	. 25
11.6	2.4			. 4.5		.074	
11.65	2. 3.5			. 495		. Cr^{1}	
12.0	2	.421	. 495	.490	.074	. 075	
12. 5	1.5			. 496		. 075	\pm
13.0	1	. 421	. 495	. 496	. 074	. 075	
13.5	. 5			. 40		. 075	
1:.0	0	. 4.21	. 495	. +36	. 074	. 075	

.512
.512
.512
.512
.512
.512
.512
.512
.512
.512
.512
.512
.512
.512
.512
.511
.510
.509
.508
.091
.091
.091
.091
.091
.091
.091
.091
.091
.891
.071
.091
.091
.090
.099
.088
C87
$.005^{\prime}$
.0091
2.45^{\prime}
.093
. 094
.095
.096
.096
.096
.056
. C90́

TABLE 4-1 WHTER SUREACE NELSLREMENTS P. 19

4.0	10	. 422	. 531	. 531	. 109	. 109	. 0003
4.5	9.5						. $\mathrm{Cl13}$
5.0	9	. 422	. 531	. 532	. 109	. 109	$4 \prime$
5.5	8.5						
6.0	8	. 423	. 532	. 532	. 109	. 109	$2^{\prime \prime}$
6.5	7.5						24"
7.0	7	. 423	. 532	. 532	. 100	. 109	
7.1	6.9			. 531		. 108	$1 "$
7.2	6.8			. 531		. 108	
7.3	6.7			. 531		. 108	
7.4	6.6			. 531		. 108	. 002
7.5	0.5			. 530	. 109	. 107	. 005
7.93	6.02			. 530 E			
8.19	5.81			. 530 E			4.51
8.70	5.30			. 533 E			to
9.20	4.80			. 532 E			6.51
9.5	L. 5		. 532	. 534		. 112	
9.5	4.4			. 534			. 042
9.7	4.3			. 535			. 042
9.8	4.2			. 535			22
9.9	4.1			. 53		. 112	
10.0	4	. 214	. 533	. 535	. 109	. 112	
10.5	3.5			. 535			
11.0	3			. 535			
11.5				. 535			
12.0	2			. 535			
12.5		. 125	. 534	. 534	. 109	. 109	
13.0	1						
13.5							
14.0	0	. 425	. 534	. 534	. 109	. 109	

1- 18:
-_-n-

4.0	10	. 122	. 532	. 532	. 110	. 110	-0CO3
4.1	9.9			. 531		.109	.0114
4.2	9.9			. 531		. 109	7.71
4.3	9.7			. 531		.104	1.411
4.4	9.5			. 531	.110	.109	1.411
4.5	9.5			. 529		.107	$9.7 \prime$
4.68	9.32			. 530E		.108	
4.93				. 532 E		. 110	$1{ }^{\prime \prime}$
5.0	9	. 1.22	. 532		. 110		
5.3	8.7			. 532		. 110	
5.4	8.6			. 533	. 110	. 111	. 001
5.5	8.5			. 534		.111	.005
5.6	8.4			. 534		. 111	
5.3	8.2				.110		8.71
5.9	8.1						to
6.0	8.0	. 423		. 534		. 111	9.51
6.5	7.5			. 534.			
7.0	7.0	. 423	.533	. 534	. 110	.111	O42
7.5	6.5			. 534		. 111	. 042
8.0	6.0			. 532		. 111	27
9.5	5.5			. 534		.111	
9.0	5.0			. 534	. 110	. 111	
9.5	4.5			. 534			
10.5				. 535			
11.0	3.0	. 424	. 534	. 535	. 110	. 111	
12.0	2.0			. 535		. 111	
13.0	1.0		. 535	. 535	.110	. 110	
14.0	0	.1 .25	. 535	. 535	.110	.110	

A上, EC-1 \because TET
\leq \square P. 26

199

4.0	10	. 422	. 534	. 534	. 112	. 112	. 0003
4.5	9.5						. 0115
5.0	9		. 534	. 534	. 112	. 112	5'
5.5	8.5						
6.0	8						2.511
6.7			. 534	. 534	. 112	. 112	24 "
6.8	7.2		. 534	. 534	. 112	. 112	
6.9	7.1	. 423	. 534	. 534			$1 "$
7.0	7	. 423	. 535	. 534	. 112	. 111	
7.1	6.9			. 534		. 111	
7.2	6.8			. 533	. 112	. 110	. 001
7.3	6.7			. 533	. 112	. 110	. 006
7.4	6.6			. 533	. 112	. 110	
7.5	6.5	. 423	. 535	. 531	. 112	. 108	4.51
7.12	6.12			. 531 E		. 108	to
8.13	5.87			. 530 E		. 107	6.51
8.50	5.5						
3.63				. 532 E		. 109	. 042
4.0				. 534 E		. 111	
9.5	1.5	. 123	. 535	. 536	. 112	. 113	21
9.6	4.4			. 537	. 112	. 113	
9.7	4.3			. 537			
9.8	4.2			. 537	. 112	. 113	
9.9	4.1			. 537			
10.0	4	. 224	. 536	. 537	. 112	. 113	
10.5	3.5			. 537			
11.0	3	. 425	. 537	. 537	. 112	. 112	
11.5	2.5			. 537			
12.0	2			. 537			
12.5	1.5			. 537	. 112	. 112	
13.0	1		. 537	. 537			
14.0	0	. 1425	. 537	. 537	. 112	. 212	

4.0	10	. 422	. 533	. 539	. 116	115	. 0003
5.0	9			. 538	. 116	.116	. 0138
5.7	8.3		. 533	. 533	. 116	. 1116	. 0138
5.8	8.2			. 537		. 1115	$4 "$
5.9	8.1			. 537		. 115	2"
6.0	8.0			. 537		. 115	24"
0.1	7.9			. 537		. 115	
0.2	7.3			. 537		.115	$1 "$
5.3 6.4	7.7			. 537		. 115	
6.4 6.5	7.6			. 536		.114	
6.5	7.5	. 422		. 535		. 1113	. 002
7.0 7.22	7.	. 423	. 539	. 534	. 116	. 112	. .0027
7.22	6.79			. 535 E			
7.73	6.37			. 536 E			5.51
8.25	5.75			. 5378			
2.5	5.5			. 538		. 115	7.51
9.6	5.4			. 530		.117	
8.7	5.3			. 540		. 117	
8.8	5.2			. 541		.118	. 042
8.9	5.1			. 541		. 118	24
9.0	5			. 541		. 113	$2{ }_{5}$
$\bigcirc .5$	4.5	. 423		. 541		. 118	
10.0	4	. 424		. 541		. 117	
10.5	3.5			. 541		. 117	
11.0	3	. 424	. 540	. 541	.11ó	. 117	
11.5	2.5			. 541		. 217	
12.0	2		. 540	. 541		. 117	
12.5		. 425	. 540	. 541		. 117	
23.0	1		. 541	. 541	. 116	. 116	
13.5							
14.0	0	. 425	. 541		. 116	. 116	

204
TABLE L-I WATER SIRFACE MËASUPEMEJTS P.31

Station	C.STANCE ALONG FLLIME	FLUME SOT TOM	T ${ }^{\text {SA }}$	-~は	NoMA E".	PLACE	
			WATER SUAFA				
			WTHT	in			
1	2	3	4	5	5	?	8
4.0	109.99.89.79.59.59.45987.457.47.37.27.176.96.756.56.2365.55	. 120	. 550	. 550	. 130	.130	$S_{0}=.0003$
4.1				. 549		. 129	Tr . 017
4.2 4.3			. 550	.548 .548 .		. 1238	a= $4^{\prime \prime}$
4.4				. 543	. 130	. 128	Fise = 21
4.5				. 547		. 127	$L=24 "$
4.55				. 547	$\begin{aligned} & .130 \\ & .130 \end{aligned}$. 127	z $6 / 8{ }^{\prime \prime}$
5.0			$\begin{array}{r} .550 \\ .550 \end{array}$				
6.0							
6.55				. 549		. 129	Hegr
6.6				. 550		. 130	$1 \mathrm{n}^{\mathrm{x}}=.001$
$6 . ?$. 551		. 131	$\Delta h=.0051$
6.9				. 551		. 131	AI ${ }^{\text {a }}$
6.9				. 551		. 131	
7.0		. 421	. 551	. 552	. 130	. 131	
7.1							
7.25 7.5				. 552		.131	
7.5				. 552		. 131	EPG-PMPG-
7.77 8.0				. 552			
8.0			. 551	. 553	. 130	$\begin{aligned} & .131 \\ & .131 \end{aligned}$	Fis No.
8.5				. 553			
9.0				. 553			
10.0		. 422	$\begin{aligned} & .551 \\ & .552 \\ & .552 \end{aligned}$. 554	. 130	.132.132	
11.0				. 554	. 130		
12.0				. 554	. 130	. 132	
13.0			$.552$. 554	. 130		
14.0		. 423	. 553	. 555		. 132	

209

Station	$\begin{aligned} & \text { DISTANCE } \\ & \text { ALONG } \\ & \text { FLUME } \end{aligned}$	- bot gage he ding WATER SHIFACE			NORMAL DERTH	$\begin{aligned} & \text { QEP- } \\ & \text { MOREL } \\ & \text { F ACE } \end{aligned}$		
		FLUME EJTTOM	$\begin{aligned} & \text { WITHO } \\ & \text { MuTE } \end{aligned}$	MCE				
	2	3	4	5		6	7	8
4.0	10	. 420	. 561	. 561	. 141	. 141	$S_{0}=.0003$	
4.1	9.9			. 550		. 140	$Q_{\text {a }}=.028$	
4.3	9.8			. 559		. 139	Oia - ${ }^{\prime \prime}$	
4.5	9.5			. 559		. 139	P:se - 2.5"	
4.5	9.4			. 558	. 141	. 1388	L= 24 "	
4.7	9							
5.5							2. 6/8"	
6.0	8						atersha	
6.5	7.5							
6.7	7.3			. 559		. 139	$r^{x}=.0021$	
6.8 6.9	7.2			. 560		. 140	$\Delta h=.0061$	
6.9 7.0	7.1			. 561		. 141		
7.0 7.25	7	. 421	. 562	.562 .563	. 141	. 1414	Fride $=7.3^{1}$ Pestrice to	
7.50				. 563		. 142	Aliunt 9.31	
8.0	6			. 564		. 113		
$\varepsilon .5$. 564		. 143	EFI-P?	
9.0.	5			. 564	. 141	. 143		
9.5				. 564		. 143	fig no	
10.0	4			. 564		. 143		
10.5		. 422		. 564		-142		
11.0	3	. 422	. 563	. 563	. 141	.141		
11.5 12.0	2	. 423	. 554	. 55.		.141		
12.5								
13.0	1		. 564	. 564		.141		
13.5 14.0	0	. 423	. 564	. 554	. 141	. 141		

TAS C-IWATEQ SUR A MEAS REVENT P. 37

Station	$\begin{aligned} & \text { DISTANCE } \\ & \text { ALONG } \\ & \text { FLUME } \end{aligned}$	POINT GACE PFRCING			Horival		
		FLUME BOTTOM	WATER SURFSCE				
			$\begin{aligned} & \text { WTHOUT } \\ & \text { MUVE: } \end{aligned}$	MODEL			
	2	3	4	5	5	7	8
4.0	10	. 420	. 530	. 530	. 110	.110	$S_{0}=.0005$
4.1	9.9			. 529		. 109	Qfit .0114
4.2	9.8			. 529		. 109	
4.3	9.7			. 529		. 109	01. ${ }^{\text {Pre }} 7.711$
4.4	9.6			. 529		. 109	Rise $=1.4 "$
4.5	9.5	.421	. 531	. 531	. 110	. 110	$L=9.7{ }^{\prime \prime}$
5.0	9	. 421	. 531		. 110		
5.3	8.7			. 531		. 110	z. 11
5.4	8.6			. 531		. 110	Neir $=$
5.5	8.5			. 532		.1.11	Fagrs
5.6	8.4			. 532		. 111	$\mathrm{h}^{*}=.001$.
5.7	8.3			. 532		. 111	$\Delta^{n}=.0031$
5.8	8.2						$\Delta \mathrm{l}-.003$
5.9	8.1			. 533		. 111	Briche - 8.71
6.0	8	. 4.22	. 532	. 533	. 110	. 111	Positor to
6.5	7.5		. 532	. 532	. 110	. 110	Along ${ }^{\text {a }}$, 51
7.0	7	-1,22	. 532	. 532	. 110	. 110	
8.0	6		. 532	. 532			- ${ }^{n+}$
9.0	5	-1,23	. 533	. 533	. 110	. 110	
10.0	,	. 423	. 533	. 533	.110	. 110	- iv.
11.0	3	. 424	. 534	. 534	. 110	.110	
12.0	2	. 424	. 534	. 534	. 110	. 11 C	
13.0	1	. 424	. 534	. 534	. 110	. 110	
14.0	0	. 425	. 535	. 535	. 110	. 110	
			.				

212
C-1 5 S $V=-1+1$

4.0	10	. 420	. 528	. 528	. 108	. 108	$\mathrm{Sn}_{2}=.0005$
4.1	0.9			. 527		. 107	2.9 .0115
4.2	9.8			. 527		.107	O4-4'
4.3	9.7			. 527		.107	-1920
4.4	9.6			. 527		. 107	(18-2"
4.5	9.5		. 528	. 527	. 168	. 107	$24{ }^{\prime \prime}$
5.0	9.00		. 528		. 108		
5.21	8.79			. 527 E		. 107	$1{ }^{\prime \prime}$
5.5	8.5						Ters,
5.72	8.28			. 527 E		. 106	
6.0	8.0	. 421	. 529		. 108		. 002
6.22				. 526 E		. 105	. 005
6.5	7.5		. 529	. 528	. 108	. 107	
6.6	7.4			. 528	. 108	. 107	$-\mathrm{C}=7.51$
6.7	7.3			. 528		. 107	, rer to
6.8	7.2			. 527		. 108	turi 9.5^{\prime}
6.9	7.1			. 530		. 109	
7.0	7.0	. 421	. 529	. 531	. 108	. 110	
7.1	6.9			. 531			. 40
7.2	6.8			. 532			- .
7.3	6.7			. 532	. 108		
7.4	6.6			. 532	. 108		
7.5	6.5			. 532	. 108	. 110	
8.0	6.0	. 422	. 530	. 532	. 108	. 110	
8.5	5.5						
9.0	5.0	. 422	. 530	. 532	. 108	. 1100	
9.5	4.5		. 531	. 532			
10.0	4.0	. 423	. 531	. 532	. 108	. 109	
10.5	3.5			. 532			
11.0	3.0	. 423	. 531	. 531	. 108	. 108	
11.5	2.5						
12.0	2.0	. 426	. 532	. 532	. 108	. 108	
12.5	1.5						
13.0	1.0	. 424	. 532	. 532	. 108	. 108	
13.5	. 5						
14.0	0	. 425	. 533	. 532	. 108	. 108	

TABLE 4-1 WATER SURFFAE MEASUREMENTS P. 36 A

4.0	10	. 420	. 534	. 534	. 116	.114	$S_{0}=.0005$
4.1	9.9			. 533		.113	Corn . 0137
4.2	9.8			. 533		. 113	1... 4'
4.3	9.7			. 533		. 113	2"
4.4	9.6			. 532		.112	$1=24^{\prime \prime}$
4.5	9.5			. 531		. 111	24
$5 . C$	9						$1{ }^{\prime \prime}$
5.21	8.79			. 530E,		. 110	1
5.5	8.5						
5.72	8.28			. 531 E		. 110	
6.0	8	. 421	. 535		. 114		. 002
6.22				. 533 E		. 112	. 006
6.5	7.5			. 535		. 114	
6.6	7.4			. 536		.115	
6.7	7.3			. 537		. 117	int ${ }^{\text {to }}$,
6.8	7.2			. 537		. 117	9.51
6.9	7.1			. 537		.117	
7.0	7			. 537		.117	. 04
7.2	6.8			. 537		.117	. 04
7.5	6.5			. 537		.117	\cdots
8.0	6.0	. $1+22$. 536	. 537	. 114	. 115	
8.5	5.5			. 537		. 115	
9.C	5.0	. 423		. 538		. 115	
9.5	4.5			. 538		. 115	;
10.0	4.0	. 423	. 537	. 538	. 114	. 115	
10.5	3.5			. 538		. 115	
11.0	3.0	.424	.538	. 539	. 114	. 115	
11.5	2.5						
12.0	2.C	. 424	. 539	. 539	. 114	.115	
12.5	1.5						
13.0	1.0	. 425	. 538	. 539	.114	.115	
13.5	. 5						
14.0	0	. 425	. 539	. 539	. 114	. 114	

216

- tab:- l- vater g ance me remevits p. 39

StATION	$\begin{aligned} & \text { DISTANCE } \\ & \text { ALONG } \\ & \text { FLUME } \end{aligned}$	POIMIT GAGE FEADING			NORMAL DEPTH	$\begin{aligned} & \text { DEPTH } \\ & \text { MOCEL } \\ & \text { IN } \\ & \text { HACE } \end{aligned}$	
		FLUNE: EOT TCM	WATER SURFICE				
			$\begin{aligned} & \text { WITHOU } \\ & \text { MODEL } \end{aligned}$	$\begin{gathered} M O C L \\ N G A C E \end{gathered}$			
,	2	3	4	5	ϵ	?	8
4.0	10	. 42 C	. 535	. 535	. 115	. 115	$S_{0}=.0005$
4.1	9.9			. 534	-11	. 112	$Q_{\text {mi }}$. $C 138$
4.2	9.8			. 534		. 1114	$D_{10}=4^{\prime \prime}$
4.3	9.7			. 534		. 114	Rise = $2^{\prime \prime}$
4.4	9.6			. 534		. 114	$L=24^{\prime \prime}$
4.5	9.5			. 534		. 11.4	
5.0	9		. 535		. 115		
5.22	8.78			. 5348		. 114	Vieit
5.73	8.27			. 534 E		. 114	\|haight ${ }^{\text {c }}$
6.0	8	. 1221	. 536		. 115		$n^{*}=.002^{\prime}$
6.23	7.77			. 534 E		. 113	
6.5	7.5			. 534		. 113	$\Delta n=.003^{\prime}$
6.6	7.4			. 535		. 112	$\text { Bridre }=7.51$
6.7	7.3			. 536		.115	$\text { Position }=10$
6.8	7.2			. 53 ?		. 117	Along 9.5'
6.9	7.1						Flume ${ }^{\text {P }}$
7.0	7			. 538	. 115	.117	EEPG-V Fu=
7.1	6.9						. 053
7.2	6.8						
7.3	5.7						FIG NO
7.4	6.6						
7.5	6.5			. 538	. 115	. 117	
8.0	6	. 421	. 536	. 538		. 117	
8.5	5.5			. 538			
9.0	5	. 422	. 537	. 538		. 116	
9.5	4.5			. 538			
1 C .0	4	. 422	. 537	. 538		. 116	
10.5	3.5			. 538			
11.0	3	. 422	. 537	. 538	. 115	. 116	
12.0	2	. 423	. 538	. 538	. 115	. 115	
13.0	1	. 423	. 538	. 538	. 115	. 115	
14.0	0	. 425	. 540	. 540	. 115	. 115	

4.0	10	. 420	. 536	. 536	. 116	. 116	.0005
4.5	9.5						. 015
5.0	9			. 536		. 116	$4 "$
5.5	8.5						2"
5.6	8.4		. 536	. 536	. 116	. 116	24"
5.7	8.3			. 535	. 115	. 115	24
5.8	8.2			. 535		. 115	11
5.9	8.1			. 534		. 114	11
6.0	8	. 421	. 537	. 534	. 116	. 113	
6.5	7.5						. 002
6.75	7.25			. 534 E		.114	. 002
7.0	7						. 007
7.27	6.73			. 534 E		. 115	
7.5	6.5						61
7.72	6.28			. 537 E		.116	to
8.0	6	. 422	. 538	. 538	. 116	. 116	81
8.1	5.9			. 539		. 117	
8.2	5.8			. 540		. 118	. $C 4$
8.3	5.7			. 540		. 118	
8.4	5.6			. 540		. 118	
8.5	5.5			. 541		. 119	
8.6	5.4			. 541		. 119	
8.7	5.3						
9.0	5	. 423		. 541		. 118	
9.5	4.5			. 541		. 118	
10.0	4	. 423	. 539	. 541	. 116	. 118	
10.5	3.5			. 541		. 118	
11.0	3			. 547		. 118	
11.5	2.5			. 541			
12.0	2	. 424	. 540	. 541	. 116	. 117	
12.5	1.5			. 541		.117	
13.0	1			. 541		. 117	
13.5	. 5	. 425	. 541	. 541	. 116	.116	
14.0	0	. 425	. 541		. 116	. 116	

TABIE 4-2 - GMALL FLURE - SEGTENT TESTS - ROUGH BOJNDARIES
(All model tests are two dimensional)
Measured Data

(1) ${ }_{\text {(1) }}$	(2)	(3) Slope	$\begin{array}{r}(4) \\ \mathrm{y}_{\mathrm{n}} \\ \hline\end{array}$	$\begin{aligned} & \text { (5) } \\ & y_{1} \end{aligned}$	(6)	(7)	(6) M	$\begin{aligned} & (9) \\ & \mathrm{C}_{\mathrm{d}} \end{aligned}$	$\begin{array}{r} (10) \\ y_{1} / y_{n} \end{array}$	$\begin{gathered} (11) \\ \left(\mathrm{F}_{\mathrm{n}} / M 1\right)^{2 / 3} \end{gathered}$
1	0.010	0.00005	0.2116	0.2398	0.0957	. 4364	-	. 208	1.251	-
2	"	"	11	0.1190	,	. 820	-	. 312	1.067	-
3	"	"	:	0.2135	"	. 7270	-	. 080	1.018	-
4	"	0.0001	0.7948	0.1081	0.1441	. 4365	-	. 206	1.27?	-
5	"	"	,	0.0899		. 5820	-	. 142	1.060	-
6	"	"	"	0.0861	"	. 7270	-	.104	1.01 ?	-
7	"	0.0003	0.0672	0.0906	0.2035	. 4264	-	. 228	1. 350	-
8	"	:		0.0736	"	. 520	. 16550	. 171	1.02%	. 575
9	:	"		0.0697	"	. 727	. 5124	. 129	1.039	. 475
10	"	"	0.079 ?	0.1050	-15\%	. 4.354	-	. 210	1. 325	-
11	"	"		0.0841	"	. 5820	. 4256	.1ヶ2	1.063	0.18
12	"	${ }^{11}$	"	0.0806	"	. 1270	. $5: 36$. 10%	1.019	. 415
13	"	0.0010	0.0580	0.0792	0.254	. 4364	. 3247	. 254	1.367	0.850
14	"	"	"	0.055?	"	. 5 \% 20	. 4×3	.192	1.125	0.648
15	"	"	"	. 0605	"	. 7270	. 6354	. 147	1.042	0.4 .4
10	"	0.0020	0.0526	0.0780	. 2950	. 4354	. 3421	. 254	1.496	0.005
17	"	"		0.0023	"	. 5820	. 4988	. 202	1.182	0.704
18	"	"	:"	0.0556	"	. 7270	. 61.48	. 362	1.059	0.534
13	"	0.0040	0.0467	0.0744	0.3510	. 4331	-3世:2	. 265	1.51	0.985
20	"	"		0.0593	"	. 5820	. 5087	. 216	1.24 ?	0.71
21	"	"	"	0.0510	"	. 7270	. 0543	. 175	1.031	0.661
22	"	0.0070	0.0380	0.0700	0.4790	.4364	. 3766	. 280	1.841	1.174
23	"	"	"	0.054 ?	"	. 5820	. 5232	$.22^{8}$	1.4.42	0.943
24	"	"	"	0.0462	"	. 7270	. 5688	.194	1.227	0.801
25	"	0.0085	0.0343	0.0695	0.5500	. 4364	. 3827	. 282	2.026	1.289
26	"	1		0.0236	,	. 5820	. 5290	. 232	1.565	1.039
27	"	"	"	0.0445	11	. 7270	. 6744	. 202	1.299	0.933
28	"	0.0100	0.0311	0.0650	0.6470	. 4364	. 3 run	. 286	2.219	2.206
29	"	,	"	0.0523	"	. 5820	. 5349	.242	1.681	1.135
30	"	"	"	0.0425	"	. 7270	. 6797	. 211	1.36%	0.368
31	"	0.0120.	0.0290	0.0682	0.7190	. 21364	. 3910	. 287	2.352	1.500
32	"	"	"	0.0521	"	. 5820	. 5378	. 242	1.799	1.214
33	"	"	"	0.0422	$1{ }^{1}$. 7270	. 6834	. 211	1.1557	1.034
34	"	. .0150	0.0277	0.0672	0.7700	.4364	. 3932	. $29 ?$	2.424	1.555
35	"	"	"	0.0510	,	. 5820	. 5401	. 246	1.842	1.267
36	"	"	"	0.0422	"	. 7270	. 6856	. 221	1.485	1.080
37	"	0.0180	0.0265	C. 0666	0.822	. 1,364	- 3954	. 205	2.517	1.030
38	"	,	,	0.0504	"	. 5820	. 54.18	. 248	1.900	1.321
39	"	"	"	.. .400	"	. 7270	. 877	. 223	1.510	1.125
40	"	0.0210	0.0251	0.0559	0.8910	. 4364	. 3976	. 295	2.622	1.73 .4
41	"	.	"	C.CLIS	"	. 820	. 5442	. 23	1.971	1.389
42	"	"	"	0. 1385	"	. 7270	. 5892	. 233	1.533	1.187
43	"	0.0240	0.0235	$0.051 ?$	0.9780	. 4334	. 4006	. 322	2.E95	1.813
44	"	"	"	0.0470	"	. 520	. 5465	. 258	1.951	1.475
45	"	"	"	0.0362	"	. 7270	. 6921	.247	1.533	1.259

(1) Run No	$\begin{gathered} (2) \\ Q \end{gathered}$	(3) Slope	(4)	$\begin{array}{r} (5) \\ y_{1} \\ \hline \end{array}$	$\begin{aligned} & (6) \\ & \mathrm{F}_{\mathrm{n}} \\ & \hline \end{aligned}$	$\underset{M}{(7)}$	$\begin{aligned} & (8) \\ & \mathrm{MI} \end{aligned}$	$\begin{aligned} & (9) \\ & c_{\mathrm{d}} \\ & \hline \end{aligned}$	$\begin{array}{r} (10) \\ y_{1} / y_{n} \\ \hline \end{array}$	$\underbrace{}_{\left.n^{(I I)} M^{\prime}\right)^{2 / 3}}$
46	0.020	-	0.1526	0.2782	0.1193	. 4364	-	-	1.825	-
47	, 20	-		0.1847	"	. 5820	-	. 207	1.250	-
48	"	-	"	C. 1654	"	. 7270	-	.121	1.086	-
49	"	0.00005	0.2463	0.2738	0.1269	. 4364	-	-	1.870	-
50	"			0.184 ?		. 5820	-	. 200	1.2.50	-
51	"	"		0.1589	"	. 7270	-	.123	1.084	-
52	"	0.0006	0.1185	0.2144	0.1741	. 4364	-	-	2.062	
53	"			0.1529		. 5820	-	.197	1.290	
54	"	"	"	0.1284	02310	- 7270	-	. 145	1.084	
55	"	0.0010	0.0974	0.2160	0.2340	. 6362	-	. 212	1.371	
56	"	"	"	0.1045	"	. 7270	. 5365	. 174	1.072	. 75
58	"	0.0014	0.0811	0.1987	C. 3030	.4? 54	-	-	2.444	-
59	"	"	,	0.1715	"	. 582	.1199	. 236	1.374	. 815
60	"	"	"	0.0899	"	. 7270	. 5974	. $]$ ¢	1.108	0.650
61	"	0.0030	0.0688	0.1876	0.3950	. 4364		,	2.724	-
62	"	"		0.1004		. 5820	. 4604	. 256	1. 450	. 903
53	"	"	"	0.0803		. 7270	. 6158	. 233	1.10	. 74
64	"	0.0050	0.0629	0.1860	0.4510	. 48364	d772	. 266	2.960 1.537	
55	"	"	"	0.0954	"	. .7270	. 47274	. 233	1.224	0.5
67	"	. 0070	0.0507	0.1820	0.5290	. 4354	. 3295	. 972	3.208	1.371
68	"	.	-	0.0937		. 5820	. 1900	. 275	1.651	1.052
69	"	"	"	0.0734	"	. 7270	. 6383	. 245	1.241	0.88 .4
70	"	0.0090	0.05100	0.1803	0.5380	. 4364	. 3500	. 866	3.606	2.485
71	"			0.0922	"	. 520	. 034	. 251	1.812	1.172
72	"	"		0.0723		. 7270	.6485	- 248	1.447	0.989
73	"	0.0110	0.0459	0.1792	0.7230	-4364	-3609	-224	3.908	1.58
74	"	"	"	0.0912	"	. $\mathrm{}$. 270	. 6550	. 252	1.540	1.06?
76	"	0.0140	0.0412	0.1796	0.8360	. 4364	. 3692	. 850	4.310	1.725
77	"	.	.0.16	0.0900	I	. 5820	. 5174	. 294	2.152	$1.37{ }^{8}$
78	"	"	"	0.0597	"	. 7270	. 6523	. 259	1.678	1.168
79	"	0.0180	0.0382	0.1796	0.9510	- 4364	- 3762	- 50	4.700	1.975
80	"	"		0.0858		- 5820	. 52228	- 286	2.323	1.450
81	"	"	"	0.0670	"	- 2270	. 5581	. 760	1.75	
82	"	0.0220	0.7352	0.1774	1.0320	. 48820	- 3797	. 296	2.382	1.568
83 84	"	"	"	0.0852	"	. 7270	. 6717	. 286	1.729	1.332
85	"	0.0240	0.0360	0.1751	1.0420	. 4364	. 3801	. 708	4.870	1.955
86	"	,	,	0.0864	"	. 5820	. 5267	. 294	2.398	1.575
87	"	"	"	0.0614	"	. 7270	. 6717	. 292	1.702	1.340
88	"	0.0260	0.0351	0.1762	1.0800	- 4364	. 3810	. 735	5.026	2.000
89	"	"	"	0.0863	"	. 5820	. 5279	. 296	2.458	1.512
90	"	"	"	0.0625	"	. 7270	. 5732	. 28	1.781	. 370

TABIE5-1- DATA GOR NORUL DEPTH TEST RUNS - ROUGH BOUNDARIES

Run No.	Q	$\begin{aligned} & \text { Slope } \\ & \text { ft./ft. } \end{aligned}$	Y_{n} cm	y_{t} cm	Termp F
1	1.0	0.020010	22.91	20.50	71
2	,	0.000075	16.45	22.70	70
3	18	0.070200	2う. 55	9.70	70
4	"	0.000400	10.90	7.00	70
5	"	0.00 .700	9.27	5.40	59
5	"	C.001200	7.95	4.20	59
?	"	0.702 .00	6.46	3.50	59
8	"	0.003500	5.97	3.30	68
9	2.0	1.000025	30.80	25.00	64
10	"	0.000100	23.35	17.0	64
11	11	0.000250	19.60	12.50	66
12	"	c. .0001507	15.25	9.00	55
13	"	0.000800	13.17	7.00	57
14	"	0.002400	31. 17	5.00	67
15	"	0.002500	9.45	3.80	57
16	"	0.004000	8.18	3.00	68
17	3.0	0.000050	39.16	37.00	71
18	11	0.000150	30.90	22.50	70
19	"	0.000300	21.02	15.50	70
20	"	0.000600	19.04	10.60	70
21	"	0.001000	15.49	7.70	72
22	"	0. 201600	13.73	5.70	72
23	"	0.003000	11.41	4.00	72
24	"	0.004500	. 10.07	3.70	72

TABLE 5－2－TESTS FOR THE ROUGHNESS PARAMETER入

A）Normal Depth Tests

Run No．	$\underset{\mathrm{cm}}{\mathrm{ym}_{\mathrm{n}}}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{cfs} \end{gathered}$	S	$c / \sqrt{\text { g }}$	y_{n} / a	y_{n} / λ
1	8.66	3.714	0.0125	8.169	6.829	22.548
2	8.44	3.574	，	8.162	5.650	21.976
3	8.05	3.273	＂	8.005	6.348	20.960
4	7.72	3.066	＂	7.982	5.086	20.005
5	7.07	2.586	＂	7.546	5.574	18.405
6	6.06	1.969	＂	7.283	4.779	15.778

B）Velocity Profile Data（ Y neasured from the bottom）

$$
Q=3.714 \text { cfs } ; y_{n}=0.275 \mathrm{ft} . ; \quad S=0.0125:
$$

$\begin{gathered} y \\ f t . \end{gathered}$	ソイ	$\begin{gathered} \mathrm{v} \\ \mathrm{fps} \end{gathered}$	$v / \sqrt{\tau_{0} / \rho}$
0.010	0.794	1.89	5.985
0.015	1.190	1.94	6.143
0.020	1.587	2.00	6.333
0.025	1.984	2.17	6.872
0.030	2.381	2.25	7.125
0.035	2.778	2.31	7.315
0.040	3.175	2.42	7.553
0.045	3.571	2.59	8.21
0.050	3.968	2.59	8.518
0.055	4.365	2.74	8.675
0.060	4.762	2.83	8.951
0.055	5.159	2.94	9.310
0.070	5.556	2.59	9.468
0.080	6.349	3.10	9.815
0.090	7.143	3.27	10.355
0.100	7.937	3.38	10.703
0.110	8.730	3.48	11.020
0.120	9.524	3.57	11.305
0.130	10.317	3.65	11.558
0.140	11.111	3.58	11.553
0.160	12.698	3.75	11.875
0.180	14.286	3.86	12.223
0.200	15.873	3.94	12.476
0.220	17.460	4.00	12.566
0.240	19．048	4.06	12.856

※

\propto

5 5

$\stackrel{\circ}{\circ}$
\%

$\hat{0}$

0

ooo응no F

 京

OOOnOnomo oonono

우oㅇnㅇ․ㅇnnono

－べべべべベ 281

34.39 | .300 |
| :--- |
| 281 |
| 4.39 |

 No .1
i c
15.64
 Cont．Ste
（ft．）

צ0．

9

俞 8\％8．

KKNENERばざ

onco
2850 8 8
on

$$
\begin{gathered}
2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$

$$
\begin{aligned}
& \text { Slope - } 0.00010 \\
& \text { Temp. } 67 \mathrm{~F} \\
& \text { Hodel Sta. }-31.5
\end{aligned}
$$

誓害198
6.
6

$$
\begin{aligned}
& y_{n}-10.400 m \\
& n-b / 8-0.693 \\
& L / b-0.0 \\
& \text { Slope - } 0.00010
\end{aligned}
$$

$$
\operatorname{cont} ._{(f t, t)}^{\text {sta. }}
$$

$000 n 0 n t$

 80 8 $\dot{\underline{z}}$
lope -0.0012
in

-
䠘

 -mलंख.

 -

*Only the minimum depth wae measured on the downstream side of the model.

	二 ${ }^{\text {a }}$	
	$\approx x_{i}^{m}=1$	
	－${ }^{\text {ce }}$	
	$=$	
	$7 \underbrace{5}_{\sim}$	
麇	$\pm 0^{\circ}$	
	$\approx \overline{\mathrm{z}}$	
	－	
	$\cong \underbrace{\circ}$	
	$f{ }^{\circ}$	
	$\cdots \times$ E｜	
	$\infty \sim$ 首	
䒼	$\rightarrow 5$ 悬	
总	$0 \leq$ 家	
	no ${ }_{\text {a }}^{\text {a }}$	
	${ }^{1}$ ธ5	
	$m \times$	
	ข	
	－	

.∞

GEOMETRY I_{a} AND I_{b}

P． 1

Suteerged

Sis

商歌安

S

0
0
0
5
5
5

$$
\frac{\mathrm{s}_{8}^{\mathrm{g}} \mathrm{i}}{1}
$$

$$
\begin{aligned}
& \stackrel{Z}{\circ} \\
& \frac{8}{8} \\
& \frac{1}{n}
\end{aligned}
$$

部要


```
\[
\begin{gathered}
9 \\
0 \\
0 \\
0 \\
0 \\
5
\end{gathered}
\]
<
```



```
(ft.)
```



```
-
.00
```


5

$=\mathrm{b} / \mathrm{B}-0.693$
$0=0.0$
$10 \mathrm{pe}-0.000131$
oxp -74 F
del Sta. -30.00
。

\checkmark

goun
y_{n}
M-
M-
L/b
Slope
Toup.
Modid
(fit.)

シonnoot

Kun $\mathrm{No} \begin{gathered}3-10 \\ 3 \mathrm{cfs}\end{gathered}$

8 5.

$$
\begin{array}{r}
1 \\
\therefore \leq x \\
x \\
x
\end{array}
$$

$$
\begin{aligned}
& \text { Run No. } 4-2 * * \\
& z-1 \mathrm{cfo} \\
& y_{n}-9.64 \mathrm{~cm} .
\end{aligned}
$$

$\stackrel{3}{4}$

 …ㅇoㅇ

 ${ }_{\text {(ft.) }}^{\text {cont. Sta. }}$

 공ㅇㅇ
 cont. Sta.

（Tro and Throe Dimonsional Sasaleircular kotiol Tooto）																	
				fun No．21－9		fun Ko． $11-1$		fun to． $21-21$									
				$y_{n}-7.49 \mathrm{~cm}$ ．		Q－ 2 cfs					Run ${ }^{\text {No．}}{ }_{\text {cfis }}{ }^{12-2}$	fun tio．12－3					
				$y_{n}-7.49 \mathrm{cm}$. ．	$y_{n}-7.49 \mathrm{~cm}$ ．		y_{0}－7． 2					$\mathrm{y}_{0}-8.70 \mathrm{cm}$.$\mathrm{M}-\mathrm{b} / \mathrm{B}-0.300$					
		$1 / \mathrm{b}-0.5$				$\begin{aligned} & n-b / B-0.700 \\ & L / 0-1.0 \end{aligned}$				$\mathrm{M}-\mathrm{b} / \mathrm{B}-0.900$				Yn$M-b / 8-0.900$		$\mathrm{y}_{\mathrm{n}}-8.70 \mathrm{~cm}$$\mathrm{n}-\mathrm{b} / \mathrm{B}-0.31$	
$\mathrm{L} \mathrm{b}=0.0$																	
		Slope－ 0.		slope－ 0		slope－ 0		Slope－ 0		Slope－ 0		Llo－ 0	L／b -0.5	L／b－1．0			
								$\begin{aligned} & \text { Tope: - rap } \\ & \text { Hocoi Sta }-30.00 \end{aligned}$		$\begin{aligned} & \text { Tomp. Prap } \\ & \text { Movisi Sta. }-30.00 \end{aligned}$		$\begin{aligned} & \text { Toue. -72P } \\ & \text { Hocol sta. - } 30.00 \end{aligned}$	$\begin{aligned} & \text { slope }=0.00748 \\ & \text { Tope. } 12 \mathrm{FF} \\ & \text { Mocoi Sta. }-30.00 \end{aligned}$	Slope－ 0.00748 Temp．－72F Model Sta．－ 30.00			
${ }_{\text {Cont．}}^{\text {（ft．}}$ St）		（ft．）	$\begin{gathered} \text { Depth } \\ (\text { cmi. }) \end{gathered}$		$\left.\begin{array}{c} \text { Dopth } \\ (\mathrm{cmin}) \end{array}\right)$												
	$\begin{gathered} \text { Dopth } \\ (\mathrm{caf} .) \end{gathered}$			$\begin{aligned} & \text { Cont. Sta. } \\ & (\mathrm{ft} .) \end{aligned}$		$\begin{aligned} & \text { Cent. Sta. } \\ & (\text { ft. }) \end{aligned}$	$\left.\begin{array}{c} \text { Dopth } \\ (\operatorname{cos.}) \end{array}\right)$	$\begin{gathered} \text { Cont. Sts. } \\ (\mathrm{ft} .) \\ \hline \end{gathered}$	$\left.\begin{array}{c} \text { Lopth } \\ (\mathrm{cr.} .) \end{array}\right)$	$\underset{(\mathrm{ft} .)}{\text { Cont. St. }}$	$\begin{gathered} \text { Dopth } \\ (\text { ch. }) \end{gathered}$	Cont．Sta． （ft．）	Cent．Sta．Depth	$\begin{array}{cc} \text { cont. Sta. } \\ (\mathrm{ff} .) \end{array} \quad \begin{gathered} \text { Dopth } \\ (\mathrm{cu} .) \end{gathered}$			
20.0	9.01	20.0	9.48	26.0	10.01												
24.0	9.43	24.0	9.55	26.5	10.12	24.0			8.90	24.0	8.05						
25.0	9．56	25.0	9.65	27.5	10.20	25.0	7.91	26.0	${ }_{8.02}$	25.5	8．98						
26.0 26,5	9.65	26.0	9.71	28．0	10.20	26.0	7.91	26.5	7.99	26.0	8.20	Sutaorged					
27：5	9．69 9	26.5 27.5	9．79	28.5	10.20	${ }^{26.5}$	7.93	27.5	8.03	26.5	8.20	Sutargod	Subarged	Sutborgod			
28.0	9．78	28.0	9．88	29．06		27.5	7.95	28.0	7.96	27.5	8.19						
28.5	9．74	28.5	9.86	35.26	5．45＊	${ }_{28.5}^{28.0}$	8.82 7.85	28.5 29.0	7.95 7.98	28.0 28.5	8.17 8.15						
${ }_{32.62}^{29.0}$	${ }_{5.60 *}$	33.21	5．96＊			31.5	6．38	32.5	7．05＊	29.0	${ }_{8.10}$						
						${ }_{32.5}^{32.0}$	6.33			34.61	7．25＊						

（Tho and Throe Dimensional Seandeircular Kociol Toete）

 （ft．）．
Cent．Sta． P.

$\substack{21-12 \\ \text { cmo } \\ \text { cm．} \\ 0.900 \\ 0.0534 \\ 30.00 \\ 0}$

 －

 Subererged

 －

8
$\stackrel{8}{\dot{8}}$

童童

be
_

息 オ

 MR R M ，范

 om

P． 9
TARE 7－2－1 RAW DATA－LARCE FLUME－NOUGH BOUNDARIES（continued）

fot \％iz

THity
HTy

票要离

An me

＊

整感
30．긍

Tッ

न．

（Two and Three Dimensional Semicircular Model Tests） \square
$\stackrel{3}{\circ}$
Δ

$$
36.50
$$

 IT－$+\pi \cdot$ ON URL Pan No．14－12
-2 cfs
$\mathrm{n}-6.02 \mathrm{~cm}$ $\mathrm{M}_{\mathrm{n}}-\mathrm{b} / \mathrm{B}-0.900$ Slope－ 0.0123 30.00

$$
\begin{aligned}
& \text { 荎苞 }
\end{aligned}
$$

> Run No. 14-7 Run No. $14-8$
> Slope - 76 F
> sociol Sta. - 30.00
> $\begin{gathered}\text { (ft.) }\end{gathered}$
 （ \sim ？ － 1898.

－ 1 辟

'
Cock

$\stackrel{\square}{\circ}$	
\bigcirc	
ค，	
$\cdots \infty^{\circ}$	
\＃ 0°	
	$\stackrel{8}{\circ}$

1． 18 R

$$
\alpha \lambda_{\stackrel{n}{*}}^{n} \mid
$$

- . .

$$
\left.\infty=\frac{T}{9} \right\rvert\,
$$

$$
\sim \rightarrow \hat{\underline{i}} \mid
$$

\therefore 害

no
$+\infty^{\circ}$

*	No
\approx	
¢ 5	
$\underset{\sim}{00}$	
$\xlongequal{\text { ¢ }}$	
$\stackrel{3}{\sim}-$	
$\ddagger L^{\text {a }}$	
\cdots	
\%	18
$\underset{s}{5} t$	
$\infty \sim$	
$\sim \mathrm{Fr}$	
00^{5} 家	
$n \mathrm{c}$	
${ }^{*}{ }^{5}$	
mx	8.
\sim ~	gnooñono
-	

 N"

\Rightarrow

$\rho=$ \qquad
\qquad 으․
-
.
$=$
\leadsto ~

ざ $\underbrace{6}$

 $\frac{8}{\dot{d}}=======\frac{8}{8}=========+\frac{8}{0}$.

$+5$

Geometry İ
TABLE 7-2-3- SURFACE TOPOGRAPHY \& REGAIN CURVE DATA
A) Surface Topography

$$
\begin{gathered}
\text { Run No. } 4-4 ; Q=1 \text { cfs; } S=0.000584 ; y_{n}=9.72 \mathrm{~cm} ; M=0.491 ; \\
1 / b=0 ; \text { Model Station }=29.90 \text { ft. }:
\end{gathered}
$$

Centerline
Station
15.00
1.00
2.00
16.00
17.00
18.00
1.00
2.00
19.00 20.00

1:00
2.00
21.00
22.00

Station Left

$$
2.00
$$

2.00
1.00
2.00
23.00
24.00
1.00

$$
2.00
$$

25.00
26.00
1.00
2.00
26.50
27.50
1.00
2.00
28.00
28.50
1.00
2.00
1.00
2.00
29.00
0.50
1.00

- $\quad 2.50$
2.00

Depths (cm .)
Centerline Left
10.58
10.57
10.54
10.56
10.58
10.61
10.61
10.62
10.63
10.63
10.61 10.59
10.62
10.63
10.61
10.58
10.63
10.63
10.63
10.61
10.64
10.65
10.66
10.63
10.65
10.64
10.64
10.65
10.61
10.65 10.66
10.56
10.60
10.66
20.47
10.51 10.56
10.64
10.72

Centerline Station	Station Ieft	Depths (cm. Centerline	
36.00			
	2.00	9.22	
37.00		9.18	
38.00		9.38	
39.00		9.40	
40.00		9.43	
41.00		9.50	
42.00		9.55	
43.00		9.57	
44.00			
45.00			
4.00			

B) Regain Curves

Run No. $1-4 ; Q=1$ cfs; $Y_{n}=24.50 \mathrm{~cm} \cdot$; Run No. $2-7 ; Q=2$ cfs; $Y_{n}=24.30 \mathrm{~cm}$. $S=0.0000302 ; H=0.491 ; \mathrm{L} / \mathrm{b}=0 ; \quad \mathrm{S}=0.000131 ; \mathrm{M}=0.693 ; \mathrm{L} / \mathrm{b}=0$; Model Station $=30.00 \mathrm{ft}$.:

Centerline	Depth (c
31.00	24.24
31.50	24.15
32.00	24.13
32.50	24.11
33.00	$24 . .10$
33.50	24.14
34.00	24.37
34.50	24.20
35.00	24.26
36.00	24.30
37.00	24.34
38.00	24.35
35.00	24.40
42.00	24.46
44.00	24.50
46.00	24.51
48.00	24.50

Centerline
31.00
31.50
32.00
32.50
33.00
33.50
34.00
35.00
36.00
37.00
38.00
39.00
40.00
41.00

Depth (cm .)
24.20
24.25
24.12
24.13
24.14
24.14
24.15
24.19
24.21
24.24
24.27
24.30
24.29
24.30

Geometry

A) Velocity Profiles for Run No. 4-4

$$
\begin{gathered}
Q=1 \mathrm{cfs} ; S=\begin{array}{c}
0.000584 ; \mathrm{Yn}_{n}=9.72 \mathrm{~cm} \cdot ; \mathrm{M}=0.491 ; \mathrm{L} / \mathrm{b}=0 ; \\
\text { Hodel Station }=30.00 \mathrm{ft}:
\end{array}
\end{gathered}
$$

a. Normal Depth

Centerline Depth ft.	Velocity fps	I ft. Depth ft.	Ieft Velocity fps	2 ft. Depth ft.	Left Velocity fps
0.010	0.447	0.010	0.447	0.010	0.347
0.015	0.490	0.020	0.425	0.020	0.347
0.020	0.490	0.030	0.490	0.030	0.347
0.025	0.490	0.040	0.470	0.040	0.347
0.030	0.565	0.050	0.470	0.060	0.490
0.035	0.565	0.060	0.528	0.080	0.528
0.040	0.565	0.070	0.585	0.100	0.565
0.0455	0.618	0.080	0.600	0.120	0.600
0.050	0.635	0.090	0.650	0.140	0.635
0.060	0.650	0.100	0.650	0.160	0.550
0.070	0.695	0.120	0.665	0.200	0.695
0.080	0.695	0.140	0.722	0.240	0.748
0.090	0.695	0.160	0.708	0.280	0.752
0.100	0.748	0.200	0.735		
0.120	0.762	0.240	0.71 .8		
0.140	0.788	0.280	0.775		
0.160	0.788				
0.200	0.837				
0.240	0.837				
0.280	0.850				

Centerline Depth ft.	Velocity fps	I ft. Left Depth ft.	Lefocity Velos	2 ft. Depth ft.	Left Velocity fps
0.040	0.528	0.040	0.566	0.050	0.447
0.045	0.547	0.050	0.502	0.060	0.447
0.050	0.547	0.050	0.618	0.070	0.468
0.055	0.547	0.070	0.634	0.080	0.468
0.060	0.547	0.080	0.650	0.090	0.509
0.070	0.547	0.090	0.695	0.100	0.483
0.080	0.566	0.100	0.695	0.120	0.566
0.090	0.634	0.120	0.708	0.140	0.566
0.100	0.618	0.140	0.722	0.160	0.566
0.110	0.650	0.160	0.749	0.180	0.634
0.120	0.695	0.180	0.749	0.200	0.650

0.130	0.695	0.200	0.775	0.220	0.650
0.140	0.695	0.220	0.788	0.240	0.680
0.160	0.695	0.240	0.813	0.260	0.695
0.180	0.749	0.260	0.837	0.280	0.695
0.200	0.749	0.280	0.837	0.300	0.695
0.220	0.749	0.300	0.813		
0.240	0.749				
0.260	0.788				
0.280	0.800				
0.300	0.837				

\left.| Centerline | |
| :---: | :---: |
| Depth | |
| ft. | Velocity |
| fps | |$\right]$| 0.010 | 1.145 |
| :--- | :--- |
| 0.015 | 1.154 |
| 0.020 | 1.163 |
| 0.025 | 1.170 |
| 0.030 | 1.180 |
| 0.035 | 1.206 |
| 0.040 | 1.230 |
| 0.045 | 1.265 |
| 0.050 | 1.300 |
| 0.060 | 1.350 |
| 0.070 | 1.367 |
| 0.080 | 1.410 |
| 0.090 | 1.420 |
| 0.100 | 1.455 |
| 0.120 | 1.490 |
| 0.140 | 1.510 |
| 0.160 | 1.517 |
| 0.180 | 1.517 |
| 0.200 | 1.524 |
| 0.220 | 1.555 |
| 0.240 | 1.550 |
| 0.260 | 1.555 |
| 0.280 | 1.570 |

c. Vena Contracta

0.5	ft.	Left	1.0 ft.
Left			
Depth	Velocity	Depth	Velocity
ft.	fps	ft.	fps

0.010	1.206	0.010	1.090
0.020	1.215	0.020	1.180
0.030	1.230	0.030	1.300
0.040	1.240	0.040	1.390
0.050	1.280	0.050	1.490
0.060	1.313	0.060	1.581
0.070	1.367	0.070	1.594
0.080	1.432	0.080	1.642
0.090	1.470	0.090	1.654
0.100	1.490	0.100	1.690
0.120	1.524	0.120	1.690
0.140	1.534	0.140	1.724
0.160	$1 . .543$	0.160	1.770
0.180	1.555	0.200	1.758
0.200	1.570	0.240	1.834

d. Minimum Depth

Centerline		1.0 ft . Left		1.5 ft . Ieft		2.21 ft. Left	
Depth ft.	Velocity fps	Depth ft.	Velocity fps	Depth ft.	$\begin{aligned} & \text { Velocity } \\ & \text { fps } \end{aligned}$	Depth ft.	$\begin{aligned} & \text { Velocity } \\ & \text { fps } \end{aligned}$
0.010	0.695	0.010	0.915	0.010	0.447	0.010	0.200
0.015	0.708	0.020	1.036	0.020	0.425	0.020	0.200
0.020	0.722	0.030	1.162	0.030	0.425	0.030	0.200
0.025	0.749	0.040	1.265	0.040	0.400	0.040	0.200
0.030	0.775	0.050	1.280	0.050	0.400	0.060	0.200

7-2-4 (CONTD.)

0.035	0.850	0.060	1.360	0.060	0.347	0.080	0.200
0.040	0.936	0.070	1.542	0.070	0.347	0.100	0.200
0.045	0.980	0.080	1.618	0.080	0.347	0.120	0.200
0.050	0.980	0.090	1.735	0.090	0.347	0.160	0.200
0.060	1.170	0.100	1.770	0.100	0.347	0.200	0.200
0.070	1.265	0.120	1.835	0.120	0.3477	0.240	0.200
0.080	1.420	0.140	1.813	0.140	0.3477		
0.090	1.505	0.160	1.758	0.160	0.3477		
0.100	1.570	0.180	1.758	0.200	0.3477		
0.120	1.700	0.200	1.770	0.240	0.34 .7		
0.140	1.780	0.220	1.687				
0.160	1.824	0.240	1.735				
0.200	1.940						
0.240	2.030						

B) Velocity Profile for Normal Vepth Run No. 2

$$
Q=2 \mathrm{cfs} ; S=0.000131 ; Y_{n}=24.30 \mathrm{~cm}:
$$

Centerline		I ft. Left Depth Velocity ft. fps		2 ft. Left Depth Velocity ft. fps	
Depth ft.	$\begin{aligned} & \text { Velocity } \\ & \text { fps } \end{aligned}$				
0.010	0.200	0.010	0.347	0.010	0.401
0.020	0.200	0.050	0.401	0.100	0.547
0.030	0.245	0.100	0.101	0.200	0.650
0.040	0.315	0.150	0.491	0.300	0.665
0.050	0.347	0.200	0.547	0.400	0.665
0.060	0.315	0.250	0.566	0.500	0.665
0.070	0.315	0.300	0.602	0.600	0.665
0.080	0.375	0.350	0.650	0.700	0.565
0.090	0.375	0.400	0.605		
0.100	0.401	0.500	0.665		
0.120	0.425	0.600	0.694		
0.140	0.447	0.700	0.722		
0.160	0.401				
0.180	0.491				.
0.200	0.491				
0.240	0.510				
0.280	0.510				
0.320	0.566				
0.360	0.547				
0.400	0.566				
0.500	0.633				
0.600	0.633				
0.700	0.650				

7-2-4 (CONTD.)

-C) Velocity Profile for Normal Depth Run No. 10

$$
Q=1 \text { cfs; } S=0.00408 ; y_{n}=5.35 \mathrm{~cm}:
$$

Centerline Depth ft.	Velocity fps	Ift. Depth ft.	Left Velocity fps	2 ft. Depth ft.	Left Velocity fps	2.23 Depth ft.	ft. Velocity fps
0.010	0.655	0.010	0.750	0.010	0.775	0.010	0.775
0.015	0.695	0.020	0.775	0.020	0.775	0.020	0.775
0.020	0.750	0.030	0.825	0.030	0.775	0.030	0.775
0.025	0.775	0.040	0.875	0.040	0.875	0.040	0.825
0.030	0.825	0.050	1.015	0.050	0.915	0.060	0.980
0.035	0.875	0.060	1.075	0.060	1.035	0.080	1.145
0.040	0.925	0.070	1.245	0.070	1.095	0.100	1.230
0.050	1.180	0.080	1.250	0.080	1.180	0.120	1.340
0.060	1.215	0.090	1.330	0.100	1.340	0.140	1.475
0.070	1.265	0.100	1.390	0.120	1.505		
0.080	1.340	0.120	1.505	0.140	1.550		
0.090	1.170	0.140	1.580				
0.100	1.475						
0.120	1.540						
0.140	1.630						

70

 $-0000000000000000000000000000000$

 の思

0

$00^{5} 8$

 \leftrightarrows

．
纪匤
न

｜r

$\because \approx$
\because
θ 。

:	

$\underset{\sim}{x}$

N

- of |OMOM

\square

 へ s f 8

$-\begin{array}{r}2 \\ -\quad 5 \\ \hline\end{array}$有
\dddot{n}
y
\mathbf{a}

7

$\underset{\sim}{\sim}$
～～
9
1
1
1

へ 玉

n
\mathfrak{b}
\mathfrak{c}
n
0
0
1
1
$\underset{9}{6}$
$\underset{\substack{-1 \\ \\ \\ \hline \\ \hline}}{ }$
9

凡

$\pm \quad$ ตั
ึै

m 乐

$\cdots \geqslant$

1
Pun No

∞ 1 1 1 1

E－8－1
$E-8-3$
$E-8-5$
$E-8-7$

$\xlongequal{7}$

a x^{-1} 品

- \boldsymbol{n}^{5}
$\sim^{-} \approx$ 000

n
\vdots
\vdots
9
$\overrightarrow{1}$
i

7
$\tilde{1}$

\rightsquigarrow
\vdots
$\boldsymbol{\gamma}$
ω
y
\tilde{y}
y
$-\underset{\sim}{N}$

$\underset{\sim}{n} \infty$

H.

- Σ

\Rightarrow - \quad 岕 $\mid 000000000000000000000000000000000$

\rightarrow
$\dot{8}$
5
-1

\vdots
N
ஸ゙
$s-3-3$
-1
0
0
$\begin{array}{ll}1 & -1 \\ 1 & 1 \\ 1 & 1 \\ 1\end{array}$
7
\vdots
\vdots

12
K
0.87967
0.87930
1.15494
1.51967
1.73509
0.79641
0.19012
1.08246
1.78335
1.69002
1.01749
1.09851
1.20857

	$\rightarrow \pm 00$ ロールNNTOL
O ${ }^{-1} \mid x^{\text {a }}$	NoトにNへにつく
	の

「思	

∞
TABLE 7－7 GEOMETRY V_{b} RAW and CALCULATED DATA．

$\infty \quad \hat{r}^{-1}$ 慁

$\xlongequal{\oplus}$ -

$0^{*}=15$

の 5 慁

$\infty \quad 0$

$\sim \bar{z}$

-

$$
\pm 1
$$

\dot{B}

$\dot{4}$

品
茓自自 坛官
NたOM菏

＂！＂，＂•＂．＂．＂
픔
운

Run No．
Q
y_{1}
$y_{2}=\mathrm{b} / \mathrm{B}$

श゚ から官

ต்＇

		$\dot{\circ}^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
	$\begin{gathered} \text { 萿 } \\ \vdots \\ \vdots \end{gathered}$	$0^{\circ} 0^{\circ \circ} 0^{\circ} 0^{\circ}$

$$
\dot{\Delta}
$$

$$
\begin{aligned}
& \text { 解. }
\end{aligned}
$$

TABIE 8－1－RAW dATA－AREA UF VENA CUNTRACTA－BACKKATER AAD PROFILE

宅自自 它守

[^0]

$\stackrel{\leftrightarrow}{4}$

tabie 8-1- raw data - aiea uf veha cuntracta - backwiter ano phufile

table 8－1－ruw data－area of vena contracta－backnater and profile

Profile Sta．	of Jot Depth
ft．	ft.
30.18	0.507
30.30	0.454
30.40	0.414
30.50	0.378
30.60	0.341
31.00	0.236
31.50	0.162
32.00	0.122

言过边

ft．

定

シ

范		
		 웅ㅇㅇㅇㅇㅇㅇㅇ
－		
		今は思思思 $\dot{0} 0000000$

table 8-t-run onta - area of vsma contiacta - backnhter ano profile

\%innotion

品高

Ho

Q An室

thale 8－2 muw dath－sumarbeisd tisits

\＃．

妾

ㄱ．\＃cino

竞 言	
$\cdots{ }_{\text {－}}$	
	家
ω_{i}	प
	\cdots
	Mixity
－	${ }^{2}$
	－i
笔	

部

范

离

 $\stackrel{y}{y}$

 －岇－

等

 －安－

 ज̆

室

荡

 NAN․

家

 ตち

动甘o

 ตั่ \％

26.98 $95^{29.95}$ 26. 21.9

$\% 8$
$\begin{array}{r}\circ \\ \hdashline \\ \hdashline\end{array}$
in ${ }_{\sim}^{n}$
$\rightarrow \underset{\sim}{\sim}$
ㄲ․
\cong 烍
$\cong \widehat{̣}$
๕．气़̣
웅

Э．
온
$\%$～
\cdots
－

$\stackrel{\leftrightarrow}{\sim}$
\approx
8．$\stackrel{\sim}{\underset{\sim}{*}}$
$1:$
은
2．
table 8－3－ban data－submerged tests

Distance from
Centerline（ft．）
Water Depth（ft．）
惫 它

Depth from
Bottom（ft．）

thale $\boldsymbol{8}$ - $\mathbf{3}$-rah data - subrgraied tests

tajele 8-5-calculatio values - Rua lo. 141 - 300

[^0]: $$
 \begin{aligned}
 & \dot{i} \\
 & \dot{Q}
 \end{aligned}
 $$

 $\therefore \stackrel{\infty}{3}$

