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PREFACE AND ACKNOWLEDGMENTS

This report describes the work accomplished as part of research project
OWRR-B=-D08~IND entitled "Assembly and Anaiysis of Hydrologic and Geomorpho-
logic Data for Small Watersheds in indiana.” It is the continuation of pro-
ject OWRR-A-00I~IND entitled "Estimation of Runoff from Small Watersheds in
Indiana.” The results of the first project were repcorted in "A Program for
Estimating Runoff from indiana Watersheds - Part f. Linear System Analysis
in Surface Hydrology and 1ts Application to Indiana Watersheds™ by D. Blank
and J. W. Delleur, Purdue University Water Resources Research Center, Tech-
nical Report No. 4, August [968. This report included the acquisition of a
{ibrary of rainfal! excess and direct runoff data, and the identification of
the instantaneous unit hydrographs by the Fourier and Laplace fransforms and
by & numerical deconvoiution method. '

The use of the mathematical transforms and of digital filtering in the
identification of the instantaneous unit hydrograph was extended further
jointly with project OWRR~-B-022-1ND, entitted "Effects of Urbanization in
Hydrology," and was reported in "The Instantaneous Unlt Hydrograph: Its
Calcutation by the Transform Method and Noise Control by Digital Filtaering™
by R. A. Rac and J. W. Delleur, Technical Report No. 20, June 1971,

To the hydrologic date bank a geomorphologic data bank was added, form-
ing what may be called a hydrologic and geomorphologic atlas of Indiana. The
compiiation and use of this atlas was reported in "A Program for Estimating
Dunotf from Indiana Watersheds - Part il. Assembly of Hydr~logic and Geomor-
phologic Data for Small Watersheds in Indiana™ by M., T, Lee, D. Biank and J.
W. Delleur, Technica! Report No. 23, May 1972.

The present report summarizes the previous work and concentrates on the
analysis of the data contained in the hydrologic and geomorphologic atias
of Indiana. The geomorphologic data of a number of Indiana watersheds are
studied. The stream network planform and other geomorphologic characteris-
tice are included in the formulation of a new rainfati-runotf model. This
model is based on the dynamic partial response area concept and on a linear-
ized flood routing procedure. The method is applied to I[ndiana watersheds.

The authors wish to express their appreciation to Dr. Dan Wiersma, Olrec~
tor of the Water Rescurces Research Center at Purdue University and to Dr. J.
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administration of the project. The authors are grateful to Professor W. N.
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computer programs (reference 18), and for thelr assistance In the use of these
programs and in the Interpretation of the results. The authors aiso wish to
express their thanks to Mr, M. Hale, formerly District Chief of the U.S. Geo~
fogical Survey Indianapoiis Office, and to Mr. McCol lam of the same office
for their cooperation and assistance in assembling the hydroiogic data.
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ABSTRACT

The determination of the time distribution of the runoff from a water-
shed is a common and complex problem in water resources design. It depends
primarily upon the watershed characteristics, the rainfall pattern and the
climatic conditions, The construction of an integrated model of the rain-
fall-runoff process and its application to watersheds located in indiana
were the maln objectives of this study.

This study consists of three major parts:

i) the development of a computer oriented assembiy and retrieval sys-

tem for hydrologic and geomorphologlic data for watersheds 2 to 300
square miles,

2) the formulation, with The help of this assembly, of a dynamic model
of the areas contributing to the watershed runoff based on the water-
shed stream network and on the climatic conditions.

3) the development of a method of digital simulation of the watershed
behavior in order to estimate streamflow hydrographs for smail Indiana
basins under varying raiﬁfail and watershed conditions.

tn order to pursue these objectives, the following steps were taken.

t} The principal geomorphologic characteristics of the watersheds were
quantified by analyzing the planform of the watershed networks.

2) An integrated mode! of the rainfalli-~runoff process was formulated
by using the dynamic response area concept and a linear routing
technigue.

3) The mede! parameters were correlated to geomerphologic, rainfall,
and climatelogic characteristics.

The analysis of stream network data indicates that the small Indiana
watersheds obey the Strahler and Shreve ordering system. It was found that
+he drainage area, the drainage density and the basin slope are the major
watershed parameters.

A contributing drainage area distribution curve along the stream reaches
was developed, for the purpese of runoff estimation. The dynamic contribut-
ing area model is expressed in terms of a ratio of the weighted accumulated
rainfall up To the time considered to the total rainfall and this ratio is
raised to a power. This power which quantifies the rate of expansion of the

dynamic area was found To be related to the runoff ratio which in turn was

i




correlated with the rainfall pattern, the climatic conditions, the watershed
condition and the major soil type.

A iinear three parameter method was used to route the contributed run-
off Through the dralnage area distribution curve. The roughness parameter
was found to be correlated with the average base flow per unit area and with
geomorphologic characteristics whereas the stope parameter could be estimated
trom topographic maps and the reference discharge parameTer'varied within nar-
row limits,

Based on the dynamic area model and the linear routing Techﬁique, a run-
off simulation model |s proposed. The basic Input information required is:
the rainfall hyetograph, the base flow, the daily minimum temperature, the
soil index, and drainage and topographic maps. The model regenerates the
runoff hydrographs within reasonable error limits, The model performance
was compared with some of the other methods currently used in engineering

design In order to evaluate its advantages and disadvantages.
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CHAPTER I

INTRODUCTION

Development and management of water resources are major economic activ-
ities of ail nations. Water resources are developed to ensure the satisfac-
+ion of other economic activities, such as water supply both for domestic
and industrial uses, flocod control, drought prevention, hydroelectric power,
irrigation, water pollution abatement, navigation efc.; these activities are
strongly dependent upon the knowledge of the hydrologic cycle. In the state
of indiana and many parts of the United States and other nations, a substan-
tial portion of the water used comes from surface water. Therefore, surface
water runoff estimation is one of the key problems In the water resource de-
veiopment,

The surface water probiem needs an extensive understanding of the rain-
fal l=runoff process. Most engineering methods currently used are based on
the unit hydrograph and the instantaneous unit hydrograph. A more precise
understanding of the rainfall-runoff transformation needs extensive data
acquisition, application of physical laws, and integrated system model ing
techniques. As a result of this demand, this study was proposed to pursue
the following objectives:

{) to develop a computer oriented assembly and retrieval system for
hydrologic and geomorphologic data for watersheds from 2 to 300
square miles in Indiana.

2) to study with the help of this assembly, the hydrologic response
{runoff hydrograph) of small Indiana watersheds under varying cli-
matic conditions and to correlate the parameters describing the
hydrologic systems' transfer functions fo the basin hydrologic and
geomorphoioglic characteristics.

3) to develop a method of digital simulation of the watershed behavior
in order to forecast streamflow hydrographs for Indiana basins under
varying storm and watershed conditlons.

The detalls of this study are given in the following Chapters. A review
of related studies is given In Chapter II. Chapter III discusses the pre-
vious work on data acquisitions and |inear systems analysis. Before the for-
mulation of the hydrologic model, the understanding of the basin merphology

is necessary, The analysis of the geomorphology of the stream networks Is




presented in Chapter IV. Based on the stream network planform, a hydrologic
mode! is formulated to simulate the ralnfall-runoff process. The Integrated
system is given In Chapter V. The results and discussions are presented In

Chapter VI. Finally the summary and concluslions are given in Chapter VII.



CHAPTER II

RELATED STUDIES

There are two major problems involved in the modeling of the rainfall-
runoff process., The first is the ldentification of the rainfall volume
both in time and space which produces the runoff. The second is the method
of routing the rainfalt to direct runotf at the basin outlet.

The first problem in lumped system analysis is the rainfall excess sep-
aration. The methods employed for this type of analysis were cited in ref-
erence [1]. The most commoniy used method is based on the Infiitration ca-
pacity concept proposed by Horton [27]. However, the recent studies [3, 4,
5,6,7,8,9,i0,11,12] indlcated that the classic Horton overland flow is a
rare occurrence in time and space. Nutter and Hewlett [1@ cited that the
partial area response approach is more general than the traditional Horton
Infiltration method. The fleld experiment [13] by T.V.A., and the numerical
simulation by Freeze [12,14] further showed that the partial response area
concept is needed to simuiate the fleld condition. Therefore, the partial
response area approach was employed to simulate the hydrologic model in
This study.

The second problem is concerned with the routing procedures. Essentiaity,
those procedures may be divided into two broad categories. The first is based
on the unsteady fiow equations. The second one is based on the storage con-
cept. The storage concept includes the conceptual modeis [[15] and storage
methods [ 15] which may be !linear or nonilinear. One characteristic of this
type of anaiysis Is that the runoff response is represented by a set of
functions with few parameters. The second category is based on the unsTeady
fiow equations. There are four basic methods In this approach. They are:
|} the dynamic wave, 2) the kinematic wave, 3) the diffusion anailogy and 4}
the |inearization method. The dynamic and kinematic wave methods are valid
for simpie stream reach problems. They are laborious and impractical to
apply in watershed simulation. The dlffusion analegy Is a simplified ver-
sion of linearization solution. As we know, most of the routing models based
on the storage concept are valid for lumped system analysis. Hence the lin-
earized solution was pursued further. Using unsteady flow egquations, Harley

(6] derived a complete |inear approximation for the upstream inflow instan-




tanecus unit hydrograph. Harley and Dooge [t7] alsoc compared the complete
linear solution with the methods of storage approach. They concluded that
the complete linear solutlion Is as accurate or more accurate than the other
models commonly used. Therefore, |t was declded to employ the complete |in-
ear routing technique In this study.

In summary, there are two phases which are fo be investigated in this
study. They are the partial area response and the complete linear routing.
Bpfh phases nead substantial! Information on the dralnage basins. Therefore,
It was decided To pursue this study In the following sequence:

) Using W.A,T.E.R, [18] system to analyze the basin parameters which
quantitfy the characteristics of watersheds.

2) Using the partial response area concept and the linear routing tech-
nigue to form an integrated system for the ralnfall-runoff process.

3) Using the geomorphologic parameters and characteristics of the rain-
fall pattern to correlate the system parameters found in the model for pre-

diction of the runoff response in Indiana smal!l watersheds.



CHAPTER III

PREVIOUS WORK ON DATA ACQUISITION AND LINEAR SYSTEMS ANALYSIS

This Chapter summarizes two phases of the research that have been pre-
viously reported. These are the assembly and retrieval of hydrologic and
geomorphologic data and the application of linear systems analysis in hydrol-
ogy.

3.1 Assembly and Retrieval System of Hydrologic and Geomorphologic Data

The study of the hydrologic cycle requires extensive data. Systems
analysis of the rainfall-runoff process in particular needs a large bank
of good quality data for model identification and verification, Hydro-
logic data are collected by many agencies and published in scattered reports.
As a result the compilation of geomorpholeglic and hydrologic data banks is
both time consuming and expensive.

The hydrologic data were coliected by Mr. D, Blank in the early stage
of this study. The hydrologic data bank included the total rainfall, the
total runoff, the rainfall excess and the direct runoff discretized at 30
minute intervals for 1059 storms in 55 watersheds with areas between 3 and
300 square miles located in Indiana. The data were loaded on magnetic tapes.
The complete description of the hydrologic data bank may be found in [[19].

Two major types of geomorphoiogic data were collected. They are: the
drainage network and the topography. The drainage network was compiled from
the Indiana county drainage atlas prepared by Purdue University [20]. The
topographic data were digitized from U.5. Geclogical Survey {/24,000 quad-
rangle and 1/125,000 topographic maps. All these sets of data were digit-
ized and recorded on computer cards. The CALCOMP plotter was used to dis-
play the data for checking purposes. Then the data were [omded on magnetic
tapes.

The ocutline of data collection procedures is shown in Figure 3-l. Tape
| and tape 2 contain the rainfall excess and direct runoff and the total
rainfall and runoff data banks. Tapes 3 and 4 contain the geomorphologic
data bank. Detailed procedures cf the data storage and retrieval system

are discussed In reference [191.




The selection of the watersheds was determined by: |} the desire to
cover most of the regions of the state of Indiana, and 2) the condition that
man-made disturbances ware not predominant factors confrof!ing the behavior
of the watershed. |+ should be realized, howevar,.fhaf with the lncrease
in urbanization and with the ever increasing use of surface water in the
state, most watersheds already are or will be subjected to some form of
disturbance such as diversions for water supply, dams, or sewage disbosal
Into the main stream. Table 3-1 gives a llst of the watersheds selected,
thelr area in square miles, the number of storms included, the assigned
precipitation stations, and the avallabillty of digitized topography and
stream network.  Figure 3-2 shows the locafion of the stream and raln gage

stations consldered.

3.2 Linear Systems Analysis

in the early part of the research only the hydrologic data bank was
available. The analysis of the rainfal! excess-dlirect runoff data was then
made using the lumped Iinear system analysis approach which is summarized
in this sectlon.

A watershed, as defined by Eagleson [21], Is an open physical system in
the sense that there Is Import and export of matter across its closed bound-
aries. In the strict sense, we . may define the watershed boundary as a fixed,
closed curve lying on the land surface and incliuding a chosen point, such
that all surface runoff produced by precipitation falling within the curve,
and no other, leaves the area In a concentration flow at that point.

in hydrology, the word "system” has been defined by Chow [22] as, "an
aggregation or assemblage of parts, being either objects or concepts, united
by some form of regular interaction or In(ter)dependence"” (syliable in paren-
thesis added). Therefore, the classical hydrologlic cycle may be considered
as a "hydrologic system". The hydrologic cycle contains various components:
interception, evaporation, transpiration, infiltration, detention, retention,
surface runoff, subsurface runoff and ground water flow. In a watershed sys-
tem, the rainfal! is considered as the input and fthe runoff as the output.

In watershed mathematical simulation, there are two basic means o achieve
modeling. Elther a lumped-system or a distributed system is selected. A

fumped system was clted by Chow [22] as a "black box", There Is no interest
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or concern glven to the process going on inside the box. Other character-

istics such as the space coordinates or Th; positions are not important and
all the parts of the system are regarded as being located at a single point
in space. Lumped system models do not explain the baslic mechanics of flow

through the watershed because they are only simutations of the black box as
a whole and offer in effect only a mechanical aid to "data fitting,

The second approach is the distributed system. 1+ was cited by Chow [22]]
that It Involves more than one Independent variable: the space coordinates,
in addition to the usual time variable. Mathematically, thersfore, .it can be
represented by a set of partial differential equations as against an ordinary
differential equation for a fumped system.

The work of Sherman [23] was the starting point of the linear lumped sys-
tems analysis In hydrology. His basic ideas were the principies of propor-
tionailty and supefposifion. His basic assumptlons are listed as follows:

(1) The rainfall is uniformly distributed within I+s duration or

specific period of time.

(2) The rainfall is uniformly distributed over the drainage basin.

(3) The time base of the direct runoff hydrograph due to rainfall

of unlt duration Is a constant.

(4) The coordinates of the direct storm hydrograph of the same base

time are proportional to the total amount of direct runoff.

{5) For a glven drainage basin, the hydrograph refiects ali the com-

bined physical characteristics of the baslin.

The T-hour unit hydrograph Is the time distribution of the direct run~
off from-a basin due to one Inch of runoff producing rain. In other words,
the rainfalil excess has an intensity of i/TR inch per hour for a period of
TR hours,

Chow [15] interprets the instantaneous unit hydrograph as follows: as-
sume The outlet of a basin to be constricted by a dam, and let the watershed
be covered by one inch of rainfall excess. 1f the constriction Is suddenly
removed, the resuiting flow is described as the Instantaneous unit hydro-
graph.

From a system point of view, the unit hydrograph might be interpreted
as a response of a system to a unlt step function of ralnfall excess x{t) =
Lult) - ult =~ TR)]/TR, where u{t) is the unit step function, and TR is the
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duration., |t TR approaches zero, then x{1} becomes a delta function &(t)
and the unlt hydrograph becomes an instantaneous unit hydrograph. The in-
troduction of the instantaneous unit hydrograph is of great value for the
development of conceptual models. [t also leads to the general |inear sys-
tem analysis in hydrology.

The transform approach was used in the early phase of this research,
before the geomorphologic data were collected as this method only needs the
rainfal! excess and direct runoff to identify the instantansous unit hydrograph
and is not dependent upon any kind of conceptual model. The detalis of the
method have been reported by Blank et al. [24] and by Delleur and Rao [25].
A brief outline of the transform method follows.

The rainfall excess-direct runoff relationship on a watershed are as-
sumed to be expressible by the convolution integral

+

Y(t) = [ h{t) x(¥+-1)dr (3.2.1)
0

The Fourier transformation pair is defined by the following Integrais.

Fla) = ,f sy o 9T gy (3.2.2)
) = ‘f’ﬁj flw) ed%Tdy (3.2.3)
e

By taking the Fourier transform of both sides of Eq. (3.2.1), it can be
shown that the convolution In the time domain is equivalent to the product

of the transforms In the frequency domaln:

Vi) = X(w) Hlw) (3.2.4)
Hw) = -;n%%— (3.2.5)

¥ Hlw) is known, h{t) can be evaluated by means of the inverse integral,

which may be written as
hit) = %?r Hlw) % du (3.2.6)

The use of the Laplace transform is similar,
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The previous methods of system analysls by the Fourier and Laplace trans-
forms ware 6rig!naiiy developed for continucus input, output and transfer
functions. The necessary approximations were developed to extend the use of
these methods fo the analysis of discrete data as they are usualiy found in
hydrology. The Z-transform was developed specifically for this purpose. The
Z-transform palr of a sequence number X(A+), X{2At}, ... , X{(nAt) is defined

by

X(Z) = ] Xtnatrz™" (3.2.7)
n=0 '
The input and output of Z-transform were X(Z) and Y(Z) respectively.
The kernel function H(Z) was expressed as H{Z) = Y(Z}/X{(Z} or

Y)Y + Y(2A0)2 % L 4+ Yinat)Z
:

X(AT) + X(28+YZ '+ ... + X(mAt)Z

w4 |
H(Z)} =

= |

|

(a2 e L. e Hn(nA+)z“”+‘

H

H, (A1) + H

i 2

LI (3.2.8)

where _ _
Hinat) = ET%?T [Y(nAt) = H(A) X(nAT) - H(2A1)

X(n=1at) = ... = H(A=TAT) X{(2a+)7 (3.2.9)

The comparison of Laplace, Fourler and Z-transform methods [25] indicated
that Z-transform requires the least computer time, but the Fourier trans-
form provides the best Insight In the understanding of the methodology.
Osciliations of the Impulsive response are offen observed. Their cause may
be due to the computational procedure or to noise in the data. Proper selec-
tion of the discretization time Inferval and the use of digital fllters ef-
fectively control the Instabilities in the kernel function. For details the

reader is referred to references [24] and [25].




CHAPTER LV

USING THE W.A.T.E.R. SYSTEM FOR DATA ANALYSIS

4.1 General

Recent developments In gquantitative fluvial geomorphoiogy are ciosely
related with the classificatlion of stream network. The study of stream
networks requires a considerable amount of data to support its fundamental
principles. The availabillity of the data bank makes such studies possible.
Such an improvement leads to a possible way to handle the compiex stream
network by computer. The data bank also brings the study of hydrotogy and
geomorphology together to investigate the quantitative relationship of wa-
tershed hydrologic behavior. The stream network has its own systematic
and persistent characteristics. Before studying the hydrologic behavior,
an understanding of the geomorphology Is useful in the modefing of the
hydrofogic system for runoff estimation 6r prediction.

The research on computer app!ications to geomorpholiogy were reported
by eariier workers [18,26,27]. One of the most recent developments is the
Water And Terrain Evaluation Research program [[18] which was developed as
a part of the research program of the Purdue Unlversity Water Resources Re-
search Center. This chapter is.concerned with the use of the W.A.T.E.R.
system using the data bank described in the previous chapter.

The W.A.T.E.R. system has been programmed in FORTRAN IV. The programs
have been tested on a CDC 6500 computer at Purdue University and on an IBM
360/65 computer at Toronto University, Toronto, Canada. The programs con-
sist of one maln program and a set of subroutines. The system was made +o
collect all input and output operations In a special routine. The detailed
description of this system was reported in Reference NERE

The following sections will discuss the use of these computer programs
for the analysis in Indiana small watersheds. Section 2 will discuss the
input and the output, Section 3 the stream network classification and basic
geomorphologic parameters, Section 4 the results and discussions and Section
5 will be the summary of the geomorphologic application of the data bank.




4.2 Use of the W.A.T.E.R. System

The Input data of the W.A.T.E.R. System were divided intc two groups.
In the first group was the required information o process these data. For
instance, tThe requested optlons, the name of the watershed, the scaie of
the coordinate grid and the format of the network data pertain to this
group. The second group was called "fthe network data set™ which contalned
the ordered set of data cards, Including the X and Y coordinates. The
first group gave the Information necessary to the program for analyzing the
stream network data set. The basic information which the W.A.T.E.R, sys-
tem needs Is: the type of input date and the types of analysis which are
expected Tc be done. All this [nformation was lumped into the category
which was called "option™. AT present, there are eighteen optlons; seven
“inpuf options” and elsven "output options”. The input or ocutput was de-
fined as the option which affects input or cutput respectively, Besides
the types of options, it is also important o know that all options are
not of egual Importance. Some options are dependent upon others. There-
fore, the classiflcation of options was proposed. There were four classes,
Class 1 was the reguired "option™. Class II was the primary choice of in-
puts and outputs. Class III and IV were dependent on the higher classes.
These options are fisted in Table 4~i,

The following examples iilusirate the typical input data setup and I+s

related outputs for smail watershed analysis,

Options Qutput ltems and Remarks
KWATER (¥, (2), (9)
*STRAHLER | ' (3)

#MAGN ! TUDE (6}

*ENGTHS 4y, (7}

*H{ STOGRAPH (53, (8}

*DATA start of co~ordinate data set
1669 1 9 3 watershed identification
Watershed No, 3 watershed identification
636.6 0.0 0.0 0.0 scale, orientation

3 (10X, 3(2F2,0,12)0) data format

(Data) nefwork data set

REND end of a basin data

¥ENDALL end of all sets of options and data
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The corresponding outputs include:
i} Table showing input data
2) Table showing computed stream reaches Strahier order
3} Strahler stream order statistics
4}  Lengths of order segments
5) Histograph of length of each order
6) Stream magnitude statistics
7y Link lengths of different magnitudes
8) Histograph of length of Shreve's magnitude
9) Table of basin statistics

*The output |ist number

Sampling outputs may be seen in Reference [18]. The next section wiil

discuss the river network classification and basin geomorphoicgic parameters.

4,3 River Network Classification and Baslc Geomorphologic Parameters

The study of river network classification has a long history, a detailed
description of which may be found In the work of Coffman et al. [I8]. In
summary there are two kinds of classifications which are wldely used. The
first is the Strahler ordering system, and the second is Shreve's |ink-mag-
nitude system. The Strahler ordering assigns the order one to every un-
branched finger-tip tributary segment. Two first-order streams unite to
form a second order segment, A third order segment is formed by Junction
of two second-order streams, but may be joined by additional first- or
second-order segments., Two third order segments join to form a fourth-

order segment, and so on. The gensral rule may be expressed as:
U U= U+ | (4.3.1)

where U represents the stream order of any channel segment, and ¥ represents

the operation of joining any two segments. [f two unequal channels unite to

form a segment its assigned order is the same as the larger order of the two

upstream segments. Numerous Investigators have used this classification to

analyze drainage networks and several emplirical "laws" have been developed.
On the other hand, Shreve used the probability theory to investigate

stream networks. According to Shreve links rather than segments are the
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Tabte 4~1 The Water System Options®

NAME CLASS TYPE®¥* PURPOSE
*1DSw PRERUN  Identifles data as point dats or order-
_magnitude data
#SCALE PRERUN  Aliows maps to be produced at set
scale
*WATER I INPUT Bagin new basin, Initialize all
countars
¥DATA I INPUT Start of co-ordinate data set
®END I INPUT tnd of all options and data for a
basin
*ENDALL I INPUT End of all sets of options and data
*HYPSOMETRY I INPUT  Elevation data being supp!ied
*STRAHLER Iz QUTPUT  Classify network into Strahler's
ordars
¥MAGN | TUDE II  OUTPUT  Classify network into Shreve's magni-
tudes
*ANGLES 11 OUTPUT  Compute Junction angle statistics
¥JUNCTION 11 QUTPUT  Addition of orders and magnltude
tor independently analyzed sub-basin
*CONNECT II QUTPUT  Simuitaneous analysis of multiple inter-
connected basins
*NETWORKS III OUTPUT  Make printer-maps of orders and/or
magnitudes. Requires *STRAHLER
and/or *MAGNITUDE
*PROFILES Irx OUTPUT  Display longitudinal profiles (max =
1Y of main stream and from selected
polnts. Requires *HYPSOMETRY
*AZ IMUTHS II1 OQUTPUT  List aximuths of ordered segments.

Requires *STRAHLER
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. Tabie 4-1 continued

NAME

CLASS

TYPEH#®

PURPOSE

*LENGTHS

®EALLS

*GRADIENTS

III

III

III

OUTPUT

OUTPUT

OUTPUT

List tengths of segments by order
and/or 1inks by magnituds. Requires
#STRAHLER and/or ¥MAGNITUDE

List falis of segments and/or links.
Requires *HYPSOMETRY AND *STRAHLER
and/or *MAGNITUDE

List gradients of segments and/or
tinks. Requires ¥HYPSOMETRY AND
#STRAHLER and/or ¥*MAGNITUDE

*H1{STOGRAM

EPUNCH

IV

Iv

oUTPUT

ouTRUT

Display histograms of azimuths,
lengths, falls, and gradients
of segments and/or iinks. Re-
quires combination of
RHYPSOMETRY, ¥STRAHLER,
¥MAGNITUDE, and *AZIMUTHS,
®{LENGTHS, *FALLS, *GRADIENTS

Causes |lists produced by *AZIMUTHS,
*LENGTHS, ¥ ALLS and/or *GRADIENTS
options to be punched onto cards
and identified by header cards

*From ref. |8

#¥TYPE {ndlicates purpose of option, PRERUN options are used with
program PRERUN only, INPUT and OUTPUT options affect input and
output respectively.
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basic units of stream networks. He proposed that all exterior links be as-
signed the magnitude of one. The junction of any two iinks increases the

magnitude of the resulting downstream link by the following formula.

MI * M2 & M? + M2 : €4,3°2)

Thus the link magnifudé Increases by adding the magnitudes from two upstream
[ Inks.

Based on these two systems, numerous dralnage basin. characteristic para=
meters were darived. The infarweﬂé?ionships between these parameters and
other basin characteristics calculated directly from the stream network data
torm a structure shown schematically in Figure 4-1. This structure conslists
of three major parts based on the Strahler stream ordering system, the Shreve
{ink-magnitude sysfem and the direct measurements from drainage basins; re-
spectively. The major function of Strahler's stream ordering system is the
assignment of an order to each stream segment. The number of streams of a
given order and the distribution of stream lengths among the same order seg-
ments were obtained. From the stream length distributions, the means and
standard deviations of stream lengths were calculated. At the same Time,
the total stream length and the ﬁa@n sTream iength were also obtained. The
order of a basin is defined [ 18] as the order of the largest segment which
It contains, The bifurcation ratios defined as ths stream number of one
order divided by the stream number of tThe next higher order were calculiated.
Similarly, the stream length ratios defined as the mean stream length of one
order divided by the mean stream length of +he next higher order were com-
putad,

The second part of the geomorphologic parameter structure s Shreve's
fink-magnitude system. |t has an analogous description and its baslc func-
tion Is the assignment of a magnitude to each {ink, based on Shreve's rule.
The numbers of links and the distributions of link lengths were obtained.
The mean and standard deviation of the iink lengths were computed. The
total number of iinks is the sum of all the iink numbers of each magnitude.
The magnitude of a basin Is deflned as the magnifude of the targest 1ink
which it contains. The probabllity distribution of the link numbers in each

magnitude uses the total link number as the total population.
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in the third part the dlirect measuremenis from basin maps are used to

estimate the geomorphologic parameters. Four important parameters descfibe

the most important characteristics of basins. They are: the drainage area,

the basin perimeter, the basin length and the basin slope. Drainage area Is

given in square miies and Is defined as the area within which the ralnfall

excess drains through the basin mouth. The basin perimeter is the length

of the drainage boundary, in miles. The basin length [18] is defined as the

maximum straight line distance between a polnt on the basin perimeter and

the stream mouth, The basin slope is defined as the total relief, or the

di fference between the highest contour and the eievation of the basin mouth,

divided by the main stream length.

Secondary basin parameters were derived from the three major parts of

the geomorphic parameter structure. They are defined as follows:

(1

(23

(3)

(4)

(5)

(67

en
(8}

(9}

(o)

(i)

+he texture ratlo: the ratio betwsen the total number of stream
and the length of the basin perimeter.

+he 1ink=-texture ratic: +the ratio between the total number of
stream | inks and the length of The basin perimeter.

the fineness ratlo: the ratio of total channel length and the
iength of the basin perimeter.

the drainage density: the ratio of the total length of channels
of all orders in a basin to the area of the basin.

+the constant of channsi maintenance: the ratto between the area
of a drainage basin and the total tength of all the channels ex-
pressed In square feet per foot.

the channel frequency: the number of streams (segments) per unit
area in a drainage basin.

the channe! {ink freguency: the number of links per unlt area.
the clrcularity ratio: the ratio of the basin area to the area of
a clrcie having a clrcumference equal to the perimeter of the basin.
the elongation ratio: the ratic between the diameter of a circle
with the same area as the basin and the basin length.

the watershed shape ratio: the ratio of the main stream length to
the diameter of a circle having the same area as the watershed.
the unity shape factor: the ratio of the basin length to the square

root of the basin area,
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Atl the primary parameters obtained from the Three major sources and
the secondary parameters were used to quantify The basin characteristics.
However, a few remarks are In order. Ffirst, it should be recognized that
Strahler's ordering system and Shreve's |ink-magnltude system are not the
only two ways of classifying dralnage networks, Nevertheless, these two
systems are The most frequently used. Secondly, the parameters listed do
not inciudé all the possible basin parameters., In particular, the relief
was not shown on the planform of the drainags maps and parameters involv-
ing the relief are not Included. Thirdly, all the geomorphologic para~
maters are not independent. Numsrous studies reported close relationships
among these parameters. One of the objectives of this study Is the inves-
tigation of the Infer-relationships of the geomorphic parameters of indiana
smal | watersheds, The understanding of these basin characteristics is ex-
pactad to be useful in the study of the hydrologic behavior of Tthe water-

shads.

4.4 Analysis of Geomorphologic Data

The following sections contaln the results obtained by means of the
W.A.T.E.R, system using the data bank for fourteen Indiana watersheds.

Table 4-2 shows the locatlons of watersheds for gsomorphic analysis.

4.4,1 Law of Stream Number and Stream Length

Horton [ 28] proposed that the stream numbers and the stream {engths
vary with the stream orders in a geometric progression. Accordinagly, The
plot of the data on semi-logarithmic paper, sheuld result in an approxi-~
mately stralght llne. Shreve [297] studied a law of stream number based
on the statistics of a large number of randomly merging stream channels.
He demonstrated that in a topological random population, the most probable
networks approximately obeyed Horton's Law but that they exhibit certain
systematic deviations. Smart [30] clarified Horton's Law and commented
that:

"Any attempt to apply The law In such a strong sense leads to in-
ternal Inconsistencies. Horton's statement can also be interpreted
in a much weaker sense, namely, simply as an approximation that be-
comes successlively better as the order of basin increases.”

All of these studies show, as Shreve [29] stated, that "Horton's law indi-
cates the distribution of natural river nefworks among the possible sets

of stream numbers, the most probabie networks according to Horton being
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Table 4-2 Watersheds for Geomorphoiogic Analysls

Watershed
Name

Lawrence Cr. at
Ft. Benjamin
Harrison

Bear Cr. near
Treviac

Bean Blossom Cr.
at Bean Blossom

Big Blue River aft
Carthage

Hinkie Cr, near
Cicero

Brush Cr. near
Nebraska

Clcero Cr. at
Noblesville

Buck Cr. at
Muncle

Salamonte River at
Portland

Bice Ditch near
South Marion

Little Cicere Cr.
near Arcadia

Wildcat Cr. near
Jerome

Stough Cr. near
Collegevillie

Littie tndian Cr.
near Royal Center

Dralnage
Area
{sqg.ml.)

2.86

7.00

14.6

187.

16.3

219.

36.7

86.0

22.6

44.7

148.

84.1|

35.0

Baslin
Order

Basin
Magnitude

97

259

785

3066

624

894

3066

817

2159

4514

1003

933

490

129

Number of
sub~basin
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those with stream numbers close to -inverse geometric series.™

With these remarks in mind,
Horton's laws for small Indiana
mean stream lengths are plotted

as shown in Figure 4-2,

It was intended to check the validity of

watersheds,

The stresm numbers and the

versus the stream order for twelve basins

The plots approximate a stralght line, with the

exception of the stream iength plots of Bean Blossom Creek (WS3), Littlie
Cicero Creek (W539), Wildcat Creek (WS42), Siough Creek {WS43) and Little

fndian Creek (WS44) which are of the "incomplete" type networks.

be detected in two ways,

This may
First, they contained oniy two second highest

order streams which were just barely enough to make them form the highest

order streams. Secondly, thelr highest order stream lengths are very short.

Therefore, they do not obey the geometric progression trend.

In general,

the law of stream number ls obeyed much more strongly than that of stream

length.

in Figure 4-2, the average first order stream length ranges from 0.08

to 0.20 miles in indiana smai! watersheds.

the great detail with which the dralnage maps were drawn.

These small values are due to

The first order

stream lengths reported by other researchers {28,31,32] were listed In

Table 4-3,

Table 4-3 Comparison of First~Order Stream Lengths

Name

Horton
(1945)

Strahier
{1952}

Morisawa
(1962)

Lee, M.T.

{1972)

Mean first
order stream
length (mi,}

0.885
0.154

0,073

0.140

Std.
Dev.
{mi)

0.157

0.078i

0.0360

0.0519

Number of
basin

(o)
( 5)

(15

(12}

Geograph~
fcal
jocation

N.Y.

Va, La,
1il, NC.

Ohio, Md,
Tenn, Pa,
Va, W.Va.

Ind,
North
and
Center

Map
Sources

UcSaGpSa'
Quad.

4.5.G.5.
Quad.

Quad. &
Aerial
Photo

County
Drainage
maps
(aerial
photo)

This table shows that there is no standard first-order stream length.
I+ Is strongly dependent upon the quality of maps. The study of Morisawa [33]
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tndlcated that data from the U.$.6.S. topographic maps and aerial photographs
have signiticant differences. The comparison of Horton's and Morisawa's data
shows the difference between the results obtalned using U.S.6.5. quadrangle
maps and aerial photographs. (f the county dralnage maps were consldered as
standard maps, for taking the mean first order stream fength, then the first
order stream lengths of the guadrangle maps approximate third or fourth order
stream lengths of the county drainage maps. This coincides with the conclu~

sion from a previous study [18],

4,4,2 Blfurcation Ratio and Stream Length Ratio
The bifurcation ratio, R_, was defined by Meliton [34] as the stream
number of one order divided by the stream number of the next higher order.
It provides some measure of a stream segment's tendency to divide. Eagle-
son [21] referring to the bifurcation ratlc indicates that "Strahler {323
has found R

b
5, but to be remarkably stable about the average value of 4," Coates [35]

+o be uncorrelated with relief, and to have a range from 3 to

measured some basins in southern Indiana and found bifurcation ratios for
first order to second order streamsranging from 4.0 fo 5.1, Morisawa [3}]
cited that bifurcation ratlios for first-order and second-order streams range
from 3.) to 4.6 in the Eastern United States. Shreve (29] reported that:
"For a given number of first-order streams in network, the most probable
network 1s that which makes the geometric mean bifurcation ratio closest

to 4." Scheidegger [36] has suggested that "lost" stream segments make

i+ inherently impossible for the bifurcation ratio To remain constant be-
tween consecutive orders in a basin,

The bifurcation ratio distributions of these thirteen basins were plotted
in Fig. 4-3. They range from 2.8 to 7.0. Streams of ordershigher than four
were aliminated, because they might contain "Incomplete drainage networks'.
The average'bifurcafion ratios of the thirteen watersheds of different order
streams were almost constant and equal to about 4.5. This shows that Indiana
stream networks have a higher blfurcation ratio than those of a topologlcally
random network. This might indicate that minor geological controls occur in
this area.

The mean bifurcation ratio of 13 watersheds and the bifurcation ratios

of watersheds 3 and 16 are plotted against stream order in Fig. 4-4a, It
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indicates that each basin dogs not have consistent bifurcation ratlios for
all stream orders. Ths general +rend Indicates that the mean blfurcation
ratlo decreases as the stream order Increases. The standard deviations are
seen to increase as the stream order increases. These measurements have
The same trend as reported by Smart [30] and Schelidegger [36].

The piet of stream fength ratios against stream orders is also shown
In Fig. 4-4. Shreve [37] hypothesized, In his study of the "Law of Stream
Lengths" that all links have the same length. (The properties of |ink lengths
are shown in Fig., 4-€ in this study.} He concluded that, “The.?Law of Stream
Lengths'® corresponding to the previous crude flaws' would state that the aver-
age length of stream Increases with order as a geometric serles with ratic 2.V
That means the stream tength ratlo should approximately equal to 2. Fig. 4-4b
shows that It Is indeed true for The lower order streams. The mean stream
fength tends to Increase slowly as the stream order increases. At the same
time, the standard deviation Increases as The stream order incresses. The
data of watersheds no. 16 and no. 3 Indicate that the watersheds do not have
consistent stream length ratios for different stream orders. Both the bifur-
cation ratio and the stream length ratio of highest order (i.e. 5=6 order) do

not foliow the trend, because they contaln "incomplete segments".

4.4.3 Number of Link Magnitude
Shreve [37] reported that the discrete probability density function Viu)
of randomly drawing a link of magnitude u In an Infinite fopologically ran-
dom channetl nefwork is:

zn(Zy-E)

Vi) = & (2u-il (4.4.1)

231 tou
and the preobabiiity wly;M) of drawing a [ink of magnitude p from finite
topologicatl random networks magnitude M is:

(M-p41) NO(Mwu+i) NO{u)

{(2M=1) NO(M)

(4.4.2}

wlp M) =

whars

- _me“ 2u-1
R e (4.4.3)

The numerical tables of V(u) and w(p;M) In Shreve's paper [ 37] indicate
that the differences between the probabilities for infinite and finite fopo-



Z7

fogically random networks were very smail when M is targer than 200. The
basin magnltudes of small Indiana watersheds as shown in Table 4-7 range
from 97 +o 3066, The average basin magnitude is 900. There are only two
basins having basin magnitudes iess than 200. Therefore, V(u) was used as

s standard to investligate the properties of small Indiana watersheds., Fig.
4-5 shows the function Y(u) and the observed frequency distribution for six
basins. The semi-logarithmic scale was used because the frequency decreases
very rapldiy as the magnitude increases. The jink number probability den-
stty distribution function Is the discrete function. For The reasons of
comparing and easier visuallzation, the discrete density functions were
connected by lines. The streams with magnitudes greater Than 10 were neg-
lected, because they represent a very small portion of the total population.
Some magnitudes even do not occur for magnitudes larger than 10.

in Fig. 4~5, the departures from the tnfinite random network have defi~
nite patterns. Once the observed freguency is lower than that of the infi-
nite random network, then the consecutive frequencies maintain this trend
tor a few magnitudes. This Is the result of the network jointng properties.
Magnitude | has an almost constant frequency of 50% of total link population.
The magnitude 2 Is formed only by two {inks of magnitude |. Similarly, mag-
nitude 3 ls formed by magnitude | and 2. Magnitude 4 has two possibitities:
elther by two links of magnitude 2 or one magnitude | and one magnitude 3.
By the same token, the higher the order, +he more the different combinations.
As links of magnitude | have a 50% frequency, if tinks of magnitude 2 have a
fower frequency than that of an infinitely random network {this means magni-
tude | has higher probabllity to join higher magnitudes), then the opportun-
t+ies +o form the magnitude 3 are relatively reduced. Watershed no. | is a
typical exampie. This property indlcates that the frequency distribution of
neighboring magnitudes have close correlations.

The departures from the fopologically random network magnitude frequency
were not too large for most of the networks. The differences showed The
lower magnitudes have lower frequencies +han those of random networks. This
property causes the bifurcation ratio to increase at low Strahler stream

order. This conclusion colincides with the results from bifurcation ratlos.
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4.4.4 Link Lengths Distribution

There are not many studies on link length distributions. Schumm [38]
raported from his measurements in Badiands Basins at Perth Amboy, New Jer-
say, that the distribution of first order stream ieng?hsy that Is, exterior
{ink tengths Is fog-normal. Smart [39] conciuded from a goodness~of-fit
test of measurements from maps of basins in Missour!, Virginia, and Arizona
that the distribution of link lengths could be exponential as suggested by
his computer simulation [40]. Krumbein and Shreve [27] measured 10 basins
in Marion County In Eastern Kentucky. They concluded that the exterior {inks
and The Interior links must be considersd separately. They also suggssted
a family of gamma distributions.

This study does not intend to find some probabiiity distribution of the
bink l{engths, but intends to find parameters To quan#ify the basin character=-
istics., Therefore, means and standard deviations of iink lengths were chosen
to itlustrate these properties. Fig. 4~6 shows that the mean |ink tength
varies with the link magnitude. Half standard deviations on the higher and
The lower sides are also shown., fFor most of the basins, the exterior links
have larger mean |ink lengths than the interior finks. The mearsof interior
tinks show a genera! trend to decrease as the {ink magnitudes Increase in
most basins. The standard deviations vary little with the link magnitudes.
This Information [tiustrates the conclusion that ‘the mean exterior |inks are

targer than the mean interior links.

4,4.5 Summary Table of Watershed Characteristics

The summary of the watershed characteristics of these fourteen basins
Is given in Table 4-4. From this fable, a few watershed characteristics
reiationships may be found as follows:

b} Relationship between drainage areas and mean stream lengths:

This Is the basic relationship betwsen lengths of basins and basin areas,
It is apparent that the geometric similarity of the basin will yield an aver-
age relationship between area and length of basin. Each individual case will
vary from this mean.  The catchment length is usually Taken to be the length
of the main stream. Gray [4!] showed in his report using his data, and those

of Taylor and Schwartz [42] that:

L. = {.a0 p 0-%8 (4.4.4)

0 0
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where L, = main stream length, in miles

0

AO = drainage area, in square miles

The data from the Indiana basins plotted in log~log scales are shown
tn Fig. 4-7. A straight tine may be fitted to the data. A least square
fit gave the regression aquation:

= j.64 A.027 (4.4.5)

Lo 0

The regression coafficients have similar values as those reported by
Gray [417].

Z2) Relationship between dralnage srea and watershed slope:

The dralnage areas plotted vs. watershed slopes as shown In Fig. 4-8
exhibit the general trend that smaller watersheds have steeper slopes.
This point might be verified by examining the main stream profiles. The
stream profiles generally have concave upward tendency. The upper ltand

areas have stesper slopes than the low land areas.

3) Relationship between dralnage density and watershed slope:

The plot of drainage density and watershed slope In Fig. 4-9, shows that
watershads with steeper slope have a higher drainage density. i+ illustrates
+hat the slope Is one of the major factors for the land erosion to generate
the drainage networks. However, the data show much scatter. The influence

of other factors is still an unanswered question.

4) Retationship between drainage density and texture ratio:

Figure 4-10 shows that the drainage density tends to increase as the
texture ratio increases, but the scatter is considerable. The drainage
density and texture ratio are dominated by the total number of stream seg-
ments, because the stream segment length does not vary appreciably in this

set of data from Indiana watersheds.

5) Relationship between Elongation Ratic and Drainage Area:

Schumm [38] reported that the elongation ratio tends to increase with
increasing catchment area. This means that the larger dralinage areas tend
to becomenearly circuiar,and smalier dralnage areas have a higher probabll-
ity to have irregular shapes. However, Fig. 4-11 shows that watersheds un-

der 200 square miles in indiana have no consistent trend in efongation ratie.
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6) Relationship between basin 1ink length and areal factor:

Shreve [37] had reported two important parameters rela#ing the |inear and
areal dimensions. Let the total stream length, LT” of channels In a basin
of magnitude u be LT = 2{2u-1) where & is basin mean !ink length and (2u-1i)
is the total number of [inks in a basin. 2 Is a good measurement to relate
the linear aspect to the |ink-magnitude system. ISEméiariy the area AO of

the basin may be written:

Ao = KeZ (2u-1) (4.4.6)

where K& Is the average width which the stream {ink can cover. Tharsfore,

K is the relative ratio of the average width to basin average |ink length.
Table 4~4 shows the L values of these fourteen basirsin Indiana varying from
0.084 to 0.28. The K values range from 0.887 +o 1.99. it is Important to
point out hare that the dralnage density Dd is defined as:

T
Dy = = el . (4.4.7)

0 KT {2u-1)
where T, is total stream length. It is obvious that dralnage density is

.
the combination of these two parameters.
The identification of £ and K values can be done as follows. £ can ba

exprassed as

L
b= (4.4.8)
MN
where LT is total stream length and TMN {s total link number., They can be

measured from maps. {in general, & does not have a near constant value. The
K value can be cbtalned In two ways. First, it can be obtained from the re-
tationship of basin averasge link length (L) and drainage density (Dd). Drain-
age density is expressed as

D, = o or += KD (4.4.9)

d K& 2 d
A plot of 1/ versus Dd in Fig. 4-12 shows that there is an approximately
straight [ine for drainage density below 8 miles per square mile. |t shows
a K value of approximately 5/3. The cother way to identify the K vaiue is
by introducing the link frequency FL‘ By definition, FL is expressed as:
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T
FLo= (2e-1) (4.4.10)
0 0
where TMN Is the total [ink number, AO is dra;nage area. !f link frequency,
FL’ is divided by drainage density square (Dd y, then
F Az 2.2
Lo (2u=i) 0 (Z2p=1)" K&
2“’ A T = 2 2 {494ait}
Dd 0 L (Zp=-1)" &
Therefore,
FL
oy = K (4.4.12)
DD
The plot of FL Vorsus Dd2 will yleld the estimated K value which is shown

in Fig. 4-i3.

K value is about 5/3.

i+ was noted that Strahier's basin order glves a wide range of drainage

areas.

miles in the deta shown In Table 4-4.

better description of the drainage area.

For instance, sixth order basins range from 8.2 to 205.7 square
The Shreve magnliiude system glives a

The dralnage areas were plotted

against basin magnitudes for the fourteen watersheds in Fig. 4-14. The

drainage density of each basin was fabelied on the same plot.

i+ indicates

+hat the relationshlip between basin magnitude and drainage area varies with

the drainage density.
sity yields a larger

area, a higher drainage density yields a larger basin magnitude.

For the same basin magnitude, a smaller drainage den-

drainage area.

In other words, with the same drainage

The pre-

cise relationship needs more data to define the regression equation.

4,5 Summary and Conclusions

The study of the watershed characteristics in Indiana leads Yo the fol-

lowing conclusions:

I} Laws of stream number and stream length, In general, are valid in

the indiana area.

However, the presence of "incomplete drainage net-

works"® is one of the key factors for the deviations.

2) The average bifurcation ratic of 12 watersheds for each stream order has

a nearly constant value of about 4.5, almost equal to the ideal

network value,

3} The mean flrst order stream length ranges from 0.08 to 0.13 miles.
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5}
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This Is due to the large detail of the county dralnage maps compared
to U.S5.G.5. gquadrangle maps. From the stream iength polnt of view,

In the U.S5.G.S. quadrangie maps, a first order stream is about equi~
valent to & 3rd or 4th order stream In Indiana Cdun?y drainage Maps.
The combinatloh of effects in watershed characteristics Is dominated
by the drainage area in Indlana. The dralnage area has a strong cor-
relation with the stream tength, and Is Inversely reiated with the
watershed siope. Because the drainage density is affected by the
slope, the drainage area Is Indirectly related to the drainage den-
sity. And since the texture ratio has the same trend as the drain-
age density, then the dralinage area Is indlrectly related with the
texture ratio. These relationships are only general trends in indiana.
The exact quantitative relationships requlre more data and further ver-
[fication,

Shreve's !ink magnitude concept is a newly developed concept. For

a large basin, it Is known Yo have a definite relationship with the
Strahler ordering system. it has Tthe advantage of detecting the same
order basin with different basin characteristics, In particular for
higher orders. There are three baslc measurements that portray the
pianform of the basins: The basin magnitude, the basin average !ink

tength & and the width covering factor K.
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. CHAPTER V

 FORMULATION OF THE HYDROLOGIC MODEL

5.1 The Natural Watershed as a System

As defined by the Indiana Flood Control and Water Resources Act of 1959,
a watershed is an area from which water drains to a COMMOT poiﬁ? {43]. From
a system point of view a watershed Is deflined as an opan physical system.
Matter is imported Into and exported out of this system. The outiet of this
system is the gaging station which is used in this report for watershed iden-
tification purposes. The import matfer (or the Input function) Is the rain=
fall and the export matter (or the output function) is the rumoff. Fig. 5-1
shows a simplified natural watershed system.

The area of a watershed usually is determined from topographic maps and
This definition is used in this study. The dralnage area can also be ob-
tained from detalled drainage maps. These two methods of determining water-
shed area do not necessarliy yleld the same results, nevertheless, the dis-
crepancy is generally smali. The lineswhich divide surface water and the
groundwater basins do not necessarily coincide. Oniy the surface water basin
is considered in this study as it addresses Itself primarily to the modeling
of direct runoff. Ali the characteristics within the watershed boundary form
the system basic properties. As far as the hydrograph s concerned, these
properties have the function of attentuating and transiating the ralnfall
input and yleld the runoff output.

The runoff time series (output function) in this system generally is
divided intc ftwo portions: +the direct runoff and the base flow. As the
experience of a previous study [44] indicated, the bass flow porfion of
the runoff hydrograph does not vary significantly with the several methods
of base flow separation and that the base flow is only a smell portion of
fﬁe total hydrograph. Table 5-1 shows the mean and the standard deviation
of the ratio of the average base flow to the peak runoff for several storms
in six watersheds. (1 confirms that the average base flow is generally a
small but not negliglble percentage of the peak fiow In single storm events.
In view of the importance of the direct runoff this study concentrates on

the modeling of the two principal pér#s of the rainfall-runcff process.

36
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First Is the determination of the contributing ralnfall voiume In both space
and time. The second portion Is the routing of these ralnfal}l excesses to the
direct runoff. Before modaiing the ralnfali-runcff process, the simplitying

of watershed geometry Is necessary to lead to a practical solutlon.

5.2 Areal Distribution Along Stream Reach

The geometry of a watershed is three dimensional. It is Empraéficai
to discretize and to tabuiate the coordinates of This three dimensional
geomatry even with the ald of a large memory and high speed computer be-
cause of the vast amount of data reguired. Therefore, soms idealization
or simpiification of the physical system which constitutes the watershed
must be sought, keeping in mind That this simplified watershed geometry
is for the estimation of runoff hydrographs. This estimation includes
thae Identification of the portlon of the ralnfall which becomes runoff
and the routing of these rainfall excesses from the different parts of
the watershed through the stream network to the watershed cutiet.

Hydrelogists defline isochrone line as the locus of the pelnts in the
watershed for which the runoff travel time %o the outiet is & constant.
Surkan [45] utilized the channe! network fo synthesize hydrographs. He
assumes That the velocity of flow along the network Is effectively uni~
form. Chorley [46] cltes thst the downstream channel slope of most rivers
tends fo decrease from the source to the mouth, giving to the longitudinal
profile a concave-ugward form. Nevertheless, the downstream channel has
a higher hydraullc efficiency. Leopoid's study [477 in +he midwest U.S.
of the combined effects of the relief distribution and of the runoff char-
acteristics Indicates there is no definite tendency for the velocity to have
a great change along the length of the stream system. |+ has been observed
In this study of Indiana watersheds That the stream links which have the
same travei distances In The same basin are subject to simblar refief
and hydraulic constraints. Based on these two observations, the simpllfy-
ing assumption wiii{ be made that locations having equal distances measured
along the stream network to the outlet, have the same runcff travel time to
the outlet. This makes It possible to simpiify the ftwo-dimensional planform
of the drainage network To a one-dimensional representation.

The observation of indiana dralnage networks further showed that the

streams were approximately uniformly distributed over the watersheds.
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Table 5-2 shows as an exampie The drainage density of each sub-basin of the
Big Blue River at Carthage, Indiana (watershed no. t0) and 0of each sub-basin
of the Salamonie River at Portland, indiana {watershed no. 35). Watersheds
10 and 35 have an average dralinage density of 4.876 and 5.822 miles per square
mile respectively and standard deviations of 0.950 and 1.249 respectively.
These data confirm that the drainage density s approximately unlform within
sach watershed. Therefore, the assumption was made that the fotal stream
tength upstream of a particular point on a stream is proportional to the
tributary dralinage area at that point.

Based on the two simplifying assumptions that locations having equal
distances along the stream network fTo the outliet have the same runoff travel
time and that the total stream length upstream of a point on a stream is pro-
porticnal to the tributary drainage ares at that particular point, it is now
possible to estimate the distribution of travel time along the stream reaches.
The distribution of the trave! time Is thus proportional to the distribution
of the dralnage area along the watershed reaches, and only the latter needs
to be consldered.

The method of estimating the distribution of tributary drainage areas
along the stream reaches is Illustrated in Fig. 5-2. The upper part of the
figure shows an ideallzed stream network. The central portion of the figure
shows the distribution of the number of stream iinks along the main stream.
The area under this line is the total stream length of the watershed. The
fongest stream reach is the main stream length. Dividing the ordinates of
the stream link distribution by the drainage density, or stream {lnk Ieng+h
per unlt area, the distribution of drainage area along the stream reaches
is obtained as shown in the lower part of Fig. 5-2. The area under the
drainage area distribution must be equal tc the watershed area. Within a
constant the latter diagram is also a time-area diagram. Fig. 5-3 shows,
as an example, a) the CALCOMP plot of the discretized stream network of
Bean Blossom Creek {(watershed no. 3}, b) the distribution of the number of
stream links and ¢) the distribution of drainage areas along the stream
reaches. The following sections discuss The physical response of a water-
shed.
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5.3 Flxed Response Arsa and Varied Response Area

tn the last decade, hydroifogists L 3, 4, 5, 61 have found more evidences
that the traditional methods of separation of the rainfal!l excess have thelr
weaknesses. As a result a number of hydrologlsts {4,6,8,9] have proposed a
spatial varlation, or a space-time variation of rainfal! excess rather than
a time separation of the rainfall time series.

The traditional method of rainfal! excess separation is based on the
relationship

=4 .4
Xplt) = = P(f) = o2 6(1) (5.3.1)

where PO(T) is the total precipitation distribution, and
G{+y ts the loss function, including Interception, evapotrang~
piration, depression and detention storages and infiltration,

XR(T) is the excess precliplitation time distribution.

As G{t) ls unknown, various empirical methods are used to obtain the excess
precipitation. A summary of these methods can be found In Van De Leur Ol
Ona of the most common approaches !s that of the infiltration capacity

which was proposed by Horton [2]. It was defined as the maximum rate at

which a given soll in a given condition can absorb water. [T was expressed
as:
i _ =Kkt
§f= fc + (fo fC)e {(5.3.2)
where fc = [nfiitration rate which represents the falrly steady rate of
water absorption reached after water has been appiied continu-
ousty for a long pericd of time.
e = base of natural logarithms
o the initial infiitration rate at + = 0, and

k = parameter

After the infllitration rate is determined, the rainfall excess X(t) can be

obTained by subtracting the infiltration rate from the rainfal! hyetograph.
The boundary condlition associated with the differential equation (5.3.1)

may be expressed in terms of the response area, AO’ takan as the watershed

area:
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1~f 1‘t"
Qit)dt = A+ X_{trdt (5.3.3)
0 R
+ +
s 5
or discrete form
T T
LoQuiatiat = Ay - X(iat)at (5.3.4)
i=o i=oQ
whare TS Is the starting +ime of the rainfalt,
+ is the time at the end of the storm event,

f
Q(t) is the time series of direct runoff,

'XR(?) Is the time series of rainfal!l excess,
AO is the response area, and _
T Is the total number of sampling points of the direct runoff.

In the traditional method of rainfall excess separation the response

area A, Is considered to be fixed and equal to fotal drainage area. This

assumpgion is generally used for lumped |inear systems analysis which ex-
cludes the spatial variation of the input function. The input function is
then lumped as I(t) = AO . XR(T). The effects of the response area concept was
absorbed and mixed wlith the rainfall excess separation procedurs which forces
the total voiume of rainfal!l excess to be equal fo the total volume of
direct runoff.

if a distributed system Is considered, it is necessary to know the time
and space distribution of the input. Thus, It becomes necessary to know
the time and space distribution of the response area (which is the area on
which ralnfall excess occurs) and which may include only part of the drain-
age area. The time and space distribution of the response area affects the
rainfall excess routing into the direct runoff at the basin outlet.

Freeze [ 12,14] made a theoretical analysis of the runoff process by
using three runoff mechanisms. They were: (1) overiand flow due to sur-
face saturation from above, (2) subsurface stormfiow, (3) overiand flow
from near-channe! partial areas due to surface saturation from below. He
concluded that on concave siopes with lower permeabillities, and on atl con-
vex slopes, hydrographs are dominated by dlrect runoff with a very short
overland flow path from precipitation on transient, near-channe!l wetlands.

He also cited that the classic Horton type of overland flow Is a rare occur-
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rence in time and space. His simulation confirmed that the varying response
area in a basin is the basic runoff generating mechanism in the rainfall-run-
off process.

The TVA [ 37] made an experiment at Bradshaw Creek and Elk River, Tennesses.
[+ was conciuded That a new concept of a dynamic watershed was needed to sim-
ulate the field condition. It was cited that the watershed is dynamic in The
sense that when rainfall starts after a dry period, this dynamic watershed is
very smail; only the bottom lands and stream channels contribute runoff., But
as rain continues and the siope gets wet, the watershed expands and more area
contributes runoff. The difference between the new concept and the classical
Horton method is illustrated in Figure 5-4. The upper portfion of Figure 5-4
shows the Horton approach. The response area is fixed and the key problem is
+o estimate the rainfall excess, XR(?), On the other hand, the lower portion
of Figure 5-4 shows the dynamic watershed. The major problem is to estimate
the response area a(l,t). Then this dynamic area times the rainfall time
series In excess of "B" horlzon permeability was utilized as input for chan-
nel routing process.

These fieid experiments and theoretical simulations illusirate that the
stream runcff origlnates from a rather fixed, consistent portion of the water-
shed along the stream channels [11]. However, the application of the coupling
of the channel flow and saturated-unsaturated subsurface flow on the entire
watershed is laborious and impractical in engineering design. In fact, It is
beyond the capabilities of the present generation of diglital computers Ci21
without considering the problems associated with the necessary data acquisi-~
tion. A simpiified version of the dynamic source area model Is urgently
needed for practical engineering application.

For the simpliflied watershed idealized in The previous section, with
i+s one dimensional distribution of the drainage area along the main stream,

equation (5.3.3) may be modifled as:

t e Yo
I 0t+)dt = I I a(L, HIRG (YL (5.3.5)
?5 Ts ©

where L. |s the main stream length and a(l,t) is the variable response area

0
at stream reach L and at time t. In discrete form Eq. (5.3.5) may be re-

written as
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T T 5
I ootiat = alJAL, iADIR (IATIAL AT, (5.3.6)
i=0 : {=0 j=0 '
whaere T 1s total number of sampfing points In the runcff time series, and
5 is total number of stream reach sampling points In the Idealized

one dimensional watershed,
- AL is the stream !ink length,
al{jAL,iAT) is the variable respoﬁse area at stream reach jAL and at
time iAt, _
i Is the running index for counting the time intervals and

j  is the running index for counting The number of links.

The concept of a dynamic response area of a watershed, A(i:ﬁ-)9 was re-
ported by TVA et al. [48] and the foliowing conceptual mode! was proposed
to simulate the dynamic hydrological behavior of watersheds, in discrete

form:
A(iAT) = o + s[sRFcaa¢)]V (5.3.7)

where A(iAt) is the response area of a basin at Time A+, and a, B, v are

the parameters and SRF{%A?} s the sccumulated ralnfall in excess of tha

"B horizon Infiltration given by

P
Spetiat) = [ : R(kAT% + R(IAT) - B (5.3.8)
k=0
where B = "BY horizon permeability
R{kAT) = rainfall at time kat
Ik = the running indexes to count the time sampiing points,

0 <k < i

Eq. (5.3.7) expresses tThe response area as a function of the accumulated
rainfall over time in a storm event. This accumulated rainfali, howaver,
includes only that velume of rainfall for each time increment that is in
excess of the "B" horizon permeability. The study of Ragan [5] suggested
that the contributing area was a function of the storm duration and Inten-
sity. TVA [13] made a diagrammatic sketch as shown in Fig. 5-5 in which
a watershed responds to rainfall under the dynamic watershed concept. At

the beginning of a storm the runoff producing area is relatively small and
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ls located near the low wet land., As a storm progresses the contributing
area generally increases, although the rate of increase or decrease is a
function of the intensity of storm rainfall. Hewlett and Nutter [6]), Nut-
ter and Hewlett [14] have depicted the expansion of the source area and the
channei system during a storm, as shown in Fig. 5-6. Dunne and Black (8]
reported that the area contributing to overiand flow is dynamic in the sense
that i+ may vary seasonally or throughout a storm. The fluctuation of this
partial area can be rationally related to topography, soils, antecedent mois-~
ture, and rainfall characteristics.

Based on these preceding reviews, the following two modified modeis are

proposed. In discrete form, the flrst model is expressed as:
o -
D} [Rekat) - BJat + [RUiAT) - BIAt

k=0

Aliat) = A (5.3.9)

0 T
7 [R(kAt) - BIat
=0 _J

where A(iAt)
A

the contributing (response) area at time [At

13

total drainage area

R?k&?) = the rainfall intensity at time kAt

B = "B" horizon permeability

D = ¢raction of the antecedent rainfall contributing to the
response area

N = parameter

T = the fotal number of sampling points of runoff hydrograph

k = index to count time of antecedent rainfal!l excess, k < i

| = Index indicating current time

in the second mode!l it Is assumed that the fraction of the antecedent rainfall
excess contributing to the response area decreases exponentially with the
eiapssd time. The mode! in discrete form is expressed as:
(il )
§ ot rrekaty - BJat + [RGiat) - BIat
AGiat) = A | K22 (5.3.10)

0 T
7 [R(kat) - BIAt
=0
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As the volume of rainfall excess should be equal To that of the direct
runoff, the following continuity equation may be written:

T T :

} Atiat) [RGat) - Bl = ] QUiat (5.3.11)

i=o I=0 '
where Q(IAT) = the direct runoff at time [At. By using the conf!nui+y equa-
tion one of the unknown parameters B, D, or N can be eliminated. In this
study, D was considered as model parameter and N was determined Yo satisfty
the continulty equation at the end of The storm svents, B was estimated from
the solls map. The estimation of B and D will be discussed in The next chap-
ter. |

Further investigation is needed in connection with the response area for
the oneﬂdimensfonai simplified areal distribution. The study of the Tennes~
see Valley Authority [ 3] cited that the iower portions of the watersheds
would have higher soil moisture levels. These lower portions could be ex-
pected to produce runoff early in Tthe storm period, while the Initial losses
were still being satisfied on the siopes and on the ridges.

The observation of dralnage maps of Indiana small watersheds, for example
Flg. 5-3 of Bean Blossom Creek (watershed no. 3), indicated that stream sources
(first order streams) are approximately uniformly distributed over the basin.
Table 5-2 shows the quantitative description of the source distribution in
the Big Blue River watershed (no. 10) and in the Salamonie River watershed
(no. 35). The average numbers of sources (first order streams) per unit ares
are 3073 5 169.73 = {B.105 and 2145 + B80.56 = 26.626 sources per square mile
respectively. Thelr standard deviations are 5.42 and 7.78 sources per square
mife.

Another method of investigating the sources distribution Is by calculat-
ing the number of sources per unit stream length in each sub-basin. It was
found that the mean numbers of sources per unit stream length for watersheds
10 and 35 are 3073 # 827.68 = 3,713 and 2145 ¢+ 469 = 4.574 sources per mile
respectivel{y. The corresponding standard deviations are 0.41 and 0.40 sources
per mile. For the reason of comparison in the same unit, the standard devia-
tions of the latter method are muitipiied by dralnage density. They yield
1.9991 and 2.352 sources per square mile which are smaller than the standard
deviations for the previous method. The latter method is more logical for

the present study because it ties with the previous distribution of tributary
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area aleng The stream reaches.

The analysis of stream classification (Chapter IV) indicated that the
number of the streams varies with stream orders approximately in an inverse
geometric progression (law of stream number of Horton's law), This taxono-
mic hierarchy utilizes stream sources as the basis and emerges into higher
order streams. The uniform distribution of stream sources ensures the uni-
form scatter of the successively higher order segments along the main stream.
The expansion of the source arsa and the channel system suggested by Nutter
and Hewlett {10] (Fig. 5-6) starts from the higher order streams in the early
stage of a storm and gradually extends to lower order streams. Because of
these response characteristics, the stream scurces are considered as the late
response portion of the basin and at an early stage of the storm, the stream
sources are considered as nonresponse areas. The uniform distribution of the
stream sources reduces uniformly the ratio of drainage area to the response
area along the stream reach. Therefore, it is further assumed that the ratic
of the response area of a stream reach Interval to the drainage area at a
stream reach interval is equal fo the ratio of the response area of the whole

basin fo the fota! watershed area. This is expressed as:

a(jaL,iat) _ ACiAT) ’e _ ALTAt) .
ST T R or al{jAL,1At) = —— aO(JAL) (5.3.,12)
o 0 - 0
where AO is the total drainage area.

A(iAtT)y is The dynamic response area of whole basin.

ao(jAL) is the dralnage area per unit reach at stream reach s = jAL,
and

a{jaL,iAT) is the response area of stream reach JAL at time AT,

Substituting (5.3.12) into (5.3.6), It ylelds

T T & a,
J otiatwat = § ¥
i=zo i=0 j=0

(JALYACIAT)

R
AO B

(Tat)AL At (5.3.13)

This Is the continulty equation appiied to the distributed varled response model.
tn summary, the study of the stream networks lead to the following sim-
plifying assumptions used in the formulation of the partial area concept:
1) The locations having equal distance aleong the stream network to the
outiet have the same runoff travel time, l.e. the veloclty of flow

along stream network is uniform.
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2) The total stream length upstream of a point on a stream network is
proportional to the tributary drainage area at Thaf-pér?icuiar point,
l.e., the drainage density is a constant within a watershed.

3) At any glven ?Ehe, the ratlo of the response area to the drainage
area at a stream reach Interval is equal to the ratio of the response
area of the whole basin To the total watershed area. This implies

that the late response areas, i.e. stream sources (first order streams)

are unlformly distributed along the stream reaches.
After the response areas are determined, the rainfal f excesses from these
areas are routed through the stream network to obtain the direct runcffs at
the outlet of %he basin,

5.4 Flood Routing Technique

The dynamic and kinematic approaches have been used in solving a single
stream reach probiem, but are !aborious 1o appiy to the stream network of
a watershed. The diffusion anaioay Is a simplified version of a !inear com-
plete soiutlon., |t was shown [17] to give a better simulation of +he flood
wave propagation Than the two parameters mode! such as the Muskingum method
[49], the lag and Route method [50] and the diffusion analogy [517] or other
Three—pafamefer models such as the tagged diffusion method [16], three par-
ameter gamma method [50] and muitiple reach Muskingum method [52]. 1t is
noted That most of the models which were compared with the complete !inear
routing method were derived from the simple storage concept. Harley showed
that the models which are based on the unsteady flow equation give better
perspective simuiation than those based on the simple storage concept. It
Is observed that the parameters in the complete |inear routing method re-
present some of the physical characteristics o% the drainage basin such as
the siope of the stream reaches, and the coefficients of certain physical
formulas such as the Chezy constant and the reference discharge. These par-
ameters have their measured values for comparison purpose in the tdentifica-
tion stage. Therefore, the linearized complsete solution was'pursued further
and employed to route the rainfall excess to direct runoff.

Following Harley for the purpose of hydrograph prediction It is desir-

able to rewrite the S5t. Venant equations:

29 . 3y .
3% * 3t qL
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3y yudu, L3u, o u
P Tg A S0 TSt g
in terms of g and y. They are expressed as:
_2, Noxq
tekE g (5.4. 1)
3 02,8y 3g . 239 . e el
{qy q7) gk + 2ay 3L v YT 33 gy S gq /Cz (5.4.2)
2
where Sf = Ehgsg-, q = yu and C2 Is @& voughness coefficient.
z

I+ is assumed furthermore that a perturbation occurs about some refer-

znce discharge q, and reference depth Yoo Thus

= g
g=4q, %4 {5.4.3}
= ?
Yy =¥, Y (5.4.4)
where q' = deviation from the reference discharge
y'! = deviation from the reference depth

A linearized partial differential equation Is obtained by substituting Eq.
(5.4.3) and Eq. (5.4.4) into Eq. (5.4.1) and (5.4.2) and neglecting the
second order differential terms based on the assumption that the pertur-

bations are small. It Is expressed as:

2 2 s

3 2 3% _ 2 3%q _ 2 9q _ 3% aq _
tayy™ = 9 ) o 2quo axa? = Yo BT% 3aSg¥q B T 29Yg i
) 3 2.3 A 2
= (ay,” - 9500 53 (@ 06 - 3g50vo” g Go L) (5.4.5)

Consider first the case of an upstream inflow Instantaneous unit hydro-

graph without lateral inflow. The Imposed boundary conditions are:

glo,t) = &(1) (5.4.6)
gix,0) = 0 (5.4.7)
qL{x,?) = 0 (5.4,8)

The Impuisive respense of this system was derived by Harley Cied. 1t

Is expressed as:
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) X
Hu(x,f} = §{T ~ E?J exp (-px)

1&[/2h<~r - Lyt - 207
o S5

+ h(g-—» - ~§-> expl-rt + 5x) (5.4.9)
i 2 ' I/ ¥ X
(t = ) = =)
s €2
where u_ = C_vy S p = 52— i
o z 'c’o 2yo FOT+F)
Foe uo - Souo 2+F2
9y, - o F
Yqv e
CI = uo + gyo S = Wﬂ;
S u 2 i
e - b o 0% Vla-Frh-FY)
2 o ° 2y, 22

I![sj = first order modifled Bessel function of the first kind

where Ugr Ggs and Y, are the reference steady state conditions. This Im-
pulse response consists of two portions. The first term including the delta
function represents the head of the wave. As a matter of fact, It can be
stated to represent %he propagation of a decaying delta function at the wave
calerity along the forward characteristics, The second term represents the
main body of the wave which Is traveling at a siower rate and which can be
shown to be 3/2uo on the average, a propagation velocity often referred to
as Seddon's Law [53].

The response Hu(x,?; SO, CI CZ) Is a three-parameter model of the flood
wave propagation. Harley calls it the Linear Channel Routing (LCR) methed.

The Upstream inflow Instantanecous Unit Hydrograph Hu(x,f) (in abbrevia-
t+ion as UITIUH) has the functlon of transiating and attenuating the rainfall
excess. The storage and decay effects are quantified by parameters EJ Czp
and SOn Fig. 5-7 iilustrates the physical expression of the upstream inflow
instantaneous unit hydrograph. In the upper portion of the Figure 5-7, a
stream reach with distance L is considered. 1f & delta function, &(1), is
applied at time + = 0 at the upstream end, the response at the downstream

end can be expressed by HU(L,f) as shown at Fig. 5-7(c). In othsr words,
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this stream segment can be considered as a |linear system as shown in Fig.
5-7(b). The upstream inflow, gqlo,t) = x{o,t} is the Input into the sys-
tem and the output at the downstream end is The routed outflow gllL,1) =
Y{L,t) as shown in Fig. 5-7(e}. The response at the downstream end may be
obtained by the standard techniques of iinear system analysis, namely by
performing the convolution operation as shown in Fig. 5-7(e}. The mathe-
matical expression is glven as:
+
Y(L,t) = j' HU(L,¢ - ¢1X{o,T) {(5.4.100
o]
where Y(L,t) is the runoff confribution at stream reach L due to the input
X{o,t}. 1in discrete form, It is expressed, for a reach of the simplified
watershed model described in section 5-2, as:
i
Y(jAL,iAT) = kgo H, (JAL, (I=KIATIX(JAL, katiat (5.4.11)

where X{JAL,kAT)
where a(JAL,iAt)

a(JAL,kat) Ry(kat)

the response area of the simplified watershed at time

1]

iat and at stream reach jAL

RB(iAT) = the rainfall at time iAt in excess of the B horizon
permeability

i = the running index for Time

J = the running Index for stream reach

For whole stream network represented by the simplified watershed model,

+he calculated direct runoff is then glven Dy:

L

0 (1) = j ©v(g,t)rde
O
or
L,
Q (+) = H (&, ft-t)als, TR, (1)drde (5.4.12)
¢ O Ou B

In discrete form, it Is expressed as:

{(kat) = AtAL (5.4.13)

s j
Q (iAt) = J 7 H (jaL,Ci-k)Atia(jaL,kat) « R
c j=0 k=0 U v B

Jou
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where s = the total number of sampling points in the ldealized network
i = the Index for present time
k = the running indesx for time array

j= ?he‘runhing index for one-dimensional watershed arsa distribution

in summary, £q. (5.3.13) of the previous section is used to fdentify the
portion of rainfall which becomes direct runoff. Eg. (5.4.13) has the func~
tion of transiating and attenuating the rainfall ekcess into direct runoff
based on the watershed characteristics,

The formutation of mode! elements in previous sectlons is the prepara=~
tion for an Integrated system., The complete description of the proposed

sys?em'is discussed in the foilowing sectlions.

5.5 Formuiation of the Model

The decomposition of the hydrograph and the utillzation of the geomor-
phologic characteristics in the hydrograph model lead To The'!n+egraTeé sys-—
tem shown in Fig. 5-8. It illustrates the total system in the ident!¢ica-
tion mode. The prediction mode is shown inside the dotted line box of Fig.
5-8. The input Information In this model is as follows:

(1) The rainfail +ime series, R{{)

{2} The soils map (to estimate the parameters B and D)

(3} The respeonse area parameters, N

{4) The map of the drainage network of the basin

{5) The topographic map of the watershed (to estimate SO)

{6} The routing parameters g and CZ (reference discharge and rough-

ness)

In the identification stage the direct runoff time series is also needed,
and only the parameters B, D, g and C2 are necessary. lhe rainfall time
series is used to develop the contributing (response) area which requires
the previous rainfall welghted by a factor D and the B horizon permeabitity.
The parameter N in the Identlfication stage is determined by satisfying the
conservation of mass between the effective rainfall and direct runoff,

The output of block (1) in Fig. 5-8 is the response area Time series,
A(t). Using the simpiified watershed area d!sfribufion along the main stream
reaches ao(L), and the response area A{t), the contributing area, al(l,t), for

the stream reach L is determined as shown in the output of block (2). The
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rainfall Imposed on the response area a(lL,t) ls considered as the Input to
block (3). The output of block (3) is the rainfall excess time distribu-
tion, X(+,L), produced at stream reach L. The watershed mean siope and the
two llnear routing parameters 9% and Cz’ are used to form the upstream In-
flow instantaneous unit hydrograph as shown in block (4}, Considering the
runcff producing rainfall as the input, and the supstream inflow Tnstantan-
gous unit hydrograph as the transfer function the convolution operation shown
in block {5} 1s performed to calculate the runoff, Y(L,t), contributed by
stream reach L. This operation is repeated for all the stream reach inter-
vals of the simplified watershed. The block (6) shows the accumuiation of
the trunoffs from all the stream reaches up to the main stream total length
Lo’

For the runoff estimation, the parameters B, D, ey and C2 are estimated
from the watershed characteristics and the rainfall pattern. The output of
biock (6} T1s the calculated direct runoff hydrograph, Q(+). In the identi-
fication stage, the parameters B, D, 9 and Cz are adjusted so that the
calculated hydrograph matches the observed hydrograph within a tolierance e.

The parameter identification s discussed further in the next section.

5.6 Estimation of Parameters

in the parameter estimation mode, the calculated direct runoff hydrograph
is compared to the observed direct runoff hydrograph. A criterion is needed To
estimate the error function shown in block (7). At present, there are two
criteria commonly used. The first one is based on a comparison of the direct
runoff hydrographs. The sum of the absclute values of the differences be-
t+ween the ordinates of the calculated and the observed hydrographs is ex-

pressed as a percentage of the sum of the observed hydrograph ordinates:

;
Zl 0. -0/
i=

b ci ci
E!(%) = (5.6.1)

=
.Z Qoi

i=1

where the Qci are the ordinates of the calculated direct runoff hydrograph
and Qoi are the ordinates of the observed direct runoff hydrograph. The

second criterion is based on the difference between the observed and cal-
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culated peak discharges and the time to the peak discharge. It is defined

[547] as foliows:

-0 2 T -1 J2it/?

Q
£,(%) = _Eﬂaq__ﬁi + _EE_?mmEE - {00 {5.6.2)
po po

where on is the peak of the observed hydrograph
Q¢ . is the peak of the calculated hydrograph

pe
Tpo is the time to peak of the observed hydrograph
Tpc is the time to peak of the calculated hvdrograph

The error detected Is compared with the allowable error as shown In
block {8). At this stage, there are two possible ways to proceed. |f the
error Is acceptable, then the parameter estimation procedure ls completed. Other-
wise readjusting of the pre-assigned parameters is needed. In order to seek
the minimum error function, an optimization technigue is required. The next

saction discusses the optimization method used and shown in block (9).

5.7 The Unit-Variate Search Method

There are numerous optimlization methods which are widely used in system
anaiysis. in ordsr to limit the computer time consumed in the avaluation
of the errcr function, it was decided to find the optimum grid point in the
error space. The unit-variate search [55] method was used. It Is easily
visualized 1n the case of two-variablies. The method involves alternating
only one variable at a time, holding the other variable constant. After the
error values at two neighboring pointsare calculated, the direction towards
the optimum polint is determined. The procedure is repeated until there is
no further improvement In that variabie. Then this variable is held as a
constant and the other variable is changed. The same procedure is repeated
until the error function Is within allowable limit. Fig. 5-9 {{lustrates
the path in the error space. In This study, oniy Cz and q, were considered
as independent variables. B and D were pre-assigned to reiate watershed soil
class and the ralnfall pattern. '

in general, it is easier to locate the optimum grid point in probliems
with error contours characterized by little interaction between the vari-
ables. However, it should be polnted out that the grid point with the mini-

mum error value Is not the exact optimum point, but It locates the cliosest
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neighborhood for the selected grid size. After the parameters Cz and a,
are optimized the caiculation returns +o biock (4) to evaluate a new cal-
culated direct runoff hydrograph. When the error function is within the
acceptable limit, then the identification procedure is completed.

This procedure can handle one storm at a time., The same procedurs
can be used to test a set of storms in the same watershed. Storms of dif-
terent watersheds were analyzed and the mode!| parameters can be compared.
The correlations among the geomorphological parameters, rainfall pattern
and the estimated parameters in this model are pursued further in the

next chapter.




CHAPTER VI

RESULTS AND DISCUSSIONS

6.1 introduction

The results obtained with the proposed model using observed rainfall,
runoff and watershed characteristics are presented in this chapter. Four~
teen watersheds and about 200 storms were analyzed. The summary of the data
was shown in Table 4-2., The results are presented in the following Sequence.
Section 6.2 discusses the drainage area distribution, Section 6.3 gives the es-
timation of "B" horlzon loss and the weight factor D for the antecedent rain-
fall effect in the varied source area mode!. Section 6.4 and 6.5 glve some
Justifications and sensitlivity analysis of the Upstream inflow Instantane~
ous Unit Hydrograph (in abbreviation as UITUH). Section 6.6 presents the
sample results of The parameter estimation.; Section 6.7 discusses the correla-
tion of esfimafed mode! parameters with clima?ologfc and geomorphologic
parameters. Sectlon 6.8 presents the proposed simulation model. Finally,

sectlion 6.9 presents some regenaration performance and comparison.

6.2 Contributing Area Distribution Curve

The calculation of the contributing drainage area distribution curve may be
thought of as a simplified or infegrated watershed network and was obtained by
means of the basic assumptions of Chapter V. Two examples of drainage area dis-
tribution curves are |ilustrated in Figure 6-1 and 6-2, The method used to calcu-~
fate the contfributing area distribution curve was Illustrated in an ideal network
with equal link fengths. Hence, it is necessary to set up a sampling procedure to
handle these field stream networks. For the convenience of the calculations an

equal inferval sampliing was utilized. The sampling interval was used as a tool

to measure the network. In this study, 0.05 mile was used as the sampling inter-
val. The measurement of the fractional value was treated by the following method.
The residual link lengths which are less than one half sampling interval are

neglected. It is considered as a whole sampling unit 1§ the residual value Is
greater than or equal to one half of a sampling unit. For later calculation

purposes, a iarger sampling value can be achleved by averaging neighboring

56
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sampling values. For example in Figures 6-1 and 6-2, the 0.25 mile sampling
interval is the average of five sampling values of the 0.05 mile basic inter-
val. Three examplés of +he contributed area distribution are presented In
Figure 6-~3. The sampling intervals are 0.05 mile. The 0.25 mile sample In-
terval was obtained by averaging the neighborhood five values.

Based on the geometric similarity, it was found that the main stream
length (the longest stream length in the stream network) was correlated with

the drainage area. The Figure 4-7 shows the regression analysis result as:

0.55

LO = |.64 AO (6.2.1)
where LG = main stream ieng?h; ml les
Ag = drainage area, square miles

The maximal ordinates of the drainage area distribution curves are plotted
in Figure 6~4, which shows, on the average, an I[ncrease of the maximal ordinates
as the drainage area increases. Nevertheless, the rate of increase of the max-
imal ordinates of the drainage area distribution curves is smaller than the
rate of increase of the main stream length as a function of the drainage area.
The location of maximum ordinates in the dralnage area distribution curve de-
pends upon The characteristics of the stream network. The possible quantita-
t+ive characteristic parameter is the stream length ratio of the highest stream
order. Table 6-! shows the stream length ratlos of highest stream orders of
watersheds number }, 2, 3 and 16, It Indicates watershed no. | has the smallest
stream length ratio for the highest stream order. |Iis drainage area
distribution curve, shown in Figure 6-3, indicates that it has the maximal
ordinate located near the basin outlet. On the other hand, the watershed
no. 16 has the highest stream length ratio for the highest stream order. As
a result, the maximal ordinate of the drainage area distribution curve is lo-
cated at the far end from the basin outiet as shown in Figure 6-2. Watersheds
no. 2 and 3 are somewhere between these two extreme cases.

I+ 1s also noted that the shapes of the watershed boundaries do not ai~-
ways give the right Information regarding the paths of the runoff, expecially
for meandering channels. Table 6-1 indicates fhat watersheds no. | and 16
have very simliar basin circularities; they are 0.603 and 0.610 respectively.

However, the drainage area distribution curves are completely different as
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shown previously. These indicate tThat the basin clrcutarity, that is the
ratio between the basin area To the area of a circle having a circumference
equal to the perimeter of the basin is not a good indicator for the paths

of the runoff. Similarity, both the elongation ratio and shape factor quan-
tify the depar?ures'of basin shapes from a clircle. They do not indicate

+he dralnage area distribution characteristics.

The folfowing section discusses the dynamic response area parameters.

6.3 The Determination of "B" Horizon Loss and Weight Factor D

The "B" horizon loss {s based on the properties of the subsoil. There
are several sources of information avaiiable for the soil permeabi!ity. The
~general scll mapping and classification in Indiana was reported by Purdue
University [56] and by Bushnell [57]. The general scil regions are shown
in Figure 6~5. The broad classification is divided into 16 categories labeled
A to P as shown In Fig. 6-5. The U.5.G.S5. Indianapolis Office {58,59.] made
an estimation of the soll permeabiiity index which is shown in Table 6-2.

Tabie 6~2 Estimation of Soli Permeability In Indiana

Soit Type (Fig. 6~5 Permeabl ! 1ty Index
Fe A, (H)¥%, (D) 20
Z. (Ay, B, (C}, D, H 0
3, C, E, G t,d,L, M. N, O, P 5
4, (L) !
5. F, K 0.5

*The minor group

The study of Betcher et al. 7607 showed the sublayer soi! permeabilities given
in Table 6-3.

Table 6~3 indicates that the measured subsoil permeabi ity Is low com-
pared to the usual rainfall intensities. The estimation by U.5.G.S. indiana-
potis [59] indicates only The relative values. Therefore, the Table 63
values were utitized in this study. Because thelr values are very small,
+he B value was taken as zero based on the present available data.

The next parameter to be estimated is the welghing factor D. ?his fac-

tor indicates the Influence of the previous rainfall on the behavior of the source
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Table 6~3 Soll Results Permeabliity After Betcher et al.

Soil Name

20.

21,

. Brookston

Brookston

. Cincinnati

. Clermont

Crosby

. Crosby
. Crosby
. Crosby
. Crosby
. Crosby
. Crosby
. Crosby
. Frederick
. Maumee
. Miami
. Miami
. Miami
. Newton

. Plainfield

Robertsville

Warsaw

Ref. No. 60

County

Tipton
Tipton
Switzerland
Jennings
Jennings
Tipton
Tippecance
?fppecanoe
Tippacanoe
Tippecance
Tippecanoe

Tippecanoce

' Washington

Pulaski
Tippecanoe
Tippecanoce
Tippecanoe
Pulaskl
Pulaski
Glbson

Vermi||lion

Soli
Classification

H,C,d
H,C,J
H,C,
H,C,d
H,C,J

H,C,d

Depth
(1N}

40
40
36
72
72
(5
21
21
24
40
40
40
24
30
25
40
40
20
20
8

24

Permeabl | ity
(tN/HR)

0.00005
0.00006
0.0040
0.0020
0.0004
0.0002
0.00009
0.006003
0.00007
0.00005
0.0001
0.0001
0.002
0.003
0.002
0.00003

0.00001

0.002
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area. The weighing factor D was defined between 0 and {. The sensitivity

of the response area To changes in D was tested by giving D values of 0.3,

0.65 and 0.80 and keeping B = 0. Flgure 6-6 shows that the response area

curve does not exhibit a sensitive varfation. However, 1t should be pointed

out that the N values increase as the values of D increase. It Indicates that
hoth D and N have the function of quantifying the expansion of dynamic source
area. Due to the insensitivity of the factor D and for simplification the

b value was chosen as a fixed value and N was utilized to gquantify the expansion
of the dynamic source areas.

The testing of the proposed dynamic response area mode! showed that the
value of N has a close relationship with the runoff ratlo. Flgure 6-7 shows
the results of six watersheds in which several storms were tested. Therefore,
further study was done to find the factors affecting the runoff ratioc or N
value. That study is given In sectlon 6.7,

The previous study by Wu et al. (617 utitized the soll types to determine
the runoff ratio (or runotf coefficient). The storm data of the fourteen
watersheds were used to test Wu's method of finding the estimated runoff ratio.
The soil type of each watershed was labeled according to the general soil class-
ification [567. |f there was more than one soil type occurring In a basin,
the soil type of low land areas was chosen, because it was illustrated that
the runoff production area was focafed in those areas. Then the method pro-
posed by Wu et al. [61] was applied. The results of the observed and estimated
runoff ratios are listed in Table 6-4 and displayed in Figure 6-8. The results
obtained by the method of Wu et. al. [61] are higher than those calculated
$rom the actual storm data. Nevertheless, it appears that the Wu et al. [611
method is safe and yields an over estimation for englneering design. The spread
of +he estimated values was also larger than that suggested by Wu et al. [61].
The mean runoff ratios of watersheds do not have a definite frend as the soil
types change. The conclusion is that the runoff ratio is not a function of
soil type only.

In summary, The estimation of B Is based on the sol i properties. It
appears to be very small compared To t+he rainfall intensity normally observed
in Indiana. The dynamic response area function appears Insensitive to the
the D vaiue. Therefore, the N value was utilllzed to quantify the dynamic

source area.
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the next section dlscusses the transfer function of the contributing

rainfall into direct runoff In space and time.

6.4 Verification of Computer Programs Used In the Analysls
of Upstream Inflow Instantaneous Unlt Hydrograph

(Ul TUH)

The Ul1UH was derived by Harley [[16]. The previous studies based on
the Linear Channe! Routing {abbreviated as LCR) were reported in [[17,62,63].
This section intends to compare the results of the present computer programs
evaluating the UIIUH to those of the previous studies. The sensitivity of
the parameters of the cited mede! was aiso Investigated.

The UlIUH was expressed as:

H (L5 q.,C,,5) = 6, + q, (6.4.1)

The UIIUH consists of two portions, q; and qye The first term Including
the deita function represents the head of the wave. The second term repre-
sents the main body of the wave. The relative magnitudes of these two por-
tions are dependent on the parameters L, Gy CZ and Sos i+ should be noted
that the sum of these two portions is squal to unity. An understanding of
the magnitude of the first term is very Important for Tthe calculation scheme
of the ftotal direct runcff. A specéai computation procedure [s necessary for
handiing the deita funcfion. Figure 6-9a iilustratas the varlation of the
magnitudes of q, with varying roughnass cosfficient Cz and stream reach, L,
but holding the reference discharge E at 50 cfs and the basin slope SO at
I foot per mite. 1+ shows that 9, Is almost negligible when L is larger
than 10 miles, The magnitude of q, decreases as the roughness coefficient
Cz decreases. By the same token, Figure 6-9b Tilustrates the variation of
q, as the stream slope SO and stream reach L vary but holding CZ and 9%
fixed. |t shows that as the stream slope Increases, the q, decreases quite
rapldly. The magnitude of q, becomes negligibie when L is longer than 3 miles
and stream stope is larger than 5 feet per mlle.

The computer program was coded 1o display the UlIUH., The verification
of the UIIUH calculation was done by displaying some of the results from
previous studies [17,63]. Hariey and Dooge [ 7]} used two dimensiontess
parameters To quantify the UlIUH, These two parameters are: Froude number

S L _
= uo/¢§§~' and DN = “%"'“ Figure 6-10 shows six cases of UIIUH with

FN o)
o)
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FN = 0.1, DN = ,25, 1.0, 5.0 and FN = 0.9; DN = 5., 15, and 50.. The di-
mensionless forms in time axes were calculated by dividing the real time
by the time to the wave head, To = L/(uo+J§?;}, The UITUH of these six
cases are The same as those reported by Harley and Dooge [171.

Arnother veriflcation consisted of comparing the UITUH with q, = 50 cfs,
Cz = 50 ffi/zfsec, So = | f+/mile with L = 50, 100 and 200 mifes as calcu-
lated by Bravo et al. [63]) and by the program developed in this research,
The results of this comparison are shown in Fig. 6~il. These two cdmpari“
sons conflirm that the computer program of UIIUH has the same performance
as previously reported [17,63]. Next is the verification of the convolu-
tion technique. The numerical convolution used in this study Is a discrete
convolution with squal time interval sampling whereas Bravo et al. (631
used a Gaussian quadrature method of integration with a variable sampling
interval. The equal interval sampling of UIIUH is very straight forward
for the second term because it is continuous. The treatment for the first
term In the UITIUH is described as follows: First, the time to the wave
head, L/c! and the magnitude of q, are calculated. Then the sampling values
which appear before the wave head are set equa! to zero except the sampling
point just before the wave head. The sampling value of s at ‘the wave head,
hy’ is then computed. In order to conserve the constant sampling interval
a new value h{i) is chosen as shown in Figure 6-13 located just before the
wave head and is defined such that the following reiationship is satisfied:
{i.e. the tofal area between these two sampling values is the same as the
trapezoidal area using these two sampiing values as fwo parallel sides and
the sampling infterval as height.)

: At t_ . L :
Lh(i) + hi+)] > = q + -ﬁ[:hy + h{i+ 0+ Clj (6.4.2)

The Thomas-96-hours wave was used as input which was used by Harley and

Dooge [ 17] and which is expressed as:
glo,+) = 125 = 75 cos{nt/48) (6.4.3)

i+ was used for the purpose of comparison. The transfer functions or ULIUH
were calculated with QO = 150 cfs, CZ = 50 f?i/zfsec, So = | f+/mile and
L = 5, 50, 200 and 500 miles. The convoiution operations were performed.

The results are shown in Figure 6-12. The results are very ciose to those
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which were reported by Harley and Dooge [[17]. This comparison confirms
that the convolution scheme used In this study yields essentially the same

results as reported in the previous study.

6.5 Sensitivity Analysis of Mode! Parameters

After the verification of the computer programs, the sensitivity analy-
sis of the model parameters Is needed for a beTter understanding of the model
behavior. The geomorphologlic data analyslis In this study indicated that the
main stream lengths range from 3 to 42 miles. The 5 and 20 miles stream
reaches were chosen To represent the typical cases. Figures 6-14 (A), (B)
and (C) refer to 5 mile stream reaches and Figures 6-14 (D), (E}, and (F)
refer to the 20 mile stream reaches. Figure 6-14 (A} shows the variation of
UITUH due to a variation in Qo by holding Cz = 50 f?i/z/séc and S0 = |
ft/mite. The peak of the UIIUH has a strong rate of attenuation and a weak
rate of translatlon at large QO. When QO decreases, the rate of attenuation
Is reduced and the sffect of the rate of franslation becomes dominant. This
phenomenon is the same for 20 mile stream reaches shown in Figure 6-14 (D).
However, it was noted fhaf for the 5 mile stream reach case, the attenuation
effect is stronger than that of the 20 mile stream reach. Figure 6-14 (B)
shows the variation of the UIIUH due to a siope S@ variation for a 5 mile stream,
with Q, = 90 cfs and C = 50 f?t/Elsec heid constant. |t Indicates that the
siope has a very strong attenuation effect and very weak Translation effect.
A simllar situation for a 20 mile stream Is shown in Figure 6~14 (E). Flgure
6-14 (C) shows the variatlion of UIIUH due to a variation in CZ for a 5 mile
stream, with So = {0 $#t/mile and QO = 50 ¢fs held constant. [+ indicates fthat
the attenuation effect of CZ decreases as C2 decreases. A similar situation
for a 20 mile stream reach is shown in Figure 6~14 (F). However, It should
be noted tThat the slope increases to 10 ft/mile in Figure 6~14 (C) and (F).

In summary, the QO and Cz have a strong attenuation effect for large
vaiues., The transiation effect becomas dominant for smail values of Qo and
Cz, The siope has a strong attenuation effect and a very weak transiation
effect,

The next section discusses the results of utilizing the UIiUH as the
transfer function, the simpiified watershed as the drainage basin and the
dynamic response area model as the tool to Identify the runoff contributing

nortion In space and time.
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6.6 The Sample Results of ldentification Mode

A sample of the results obtalned for watersheds which have been analyzed
in The hydrologic and geomorphologic phases s presented in this section.
The two dynamic response area models were compared. The two criteria of the
optimization procedures were Investigated.

The proposed model was tested by utilizing the rainfall as the Input,
+he observed direct runoff as glven output, and the drainage area distribution of
+he basin. The parameters B and D are pre-assigned. The parameters N, S
and CZ need to be estimated.

There are two dynamic rasponse area models cited in Chapter V. The first
one, eq. (5.3.9), assumes that the previous rainfalls have the same weight.
in the second.model, eq. (5.3.10), it Ts assumed that the fraction of the
antecedent rainfall excess contributing 1o the response area decreases ex-
ponentially with the elapsed time. AT Bean Blossom Creek near Bean Blossom
(Watershed No. 3) the storm of February 27, 1955 (storm No. 4) was tested to
compare the two response area models. Figure 6-15 indicates that the response
areas during the rainfall period are similar., In this figure the left list
of parameters corresponds to mode! 2 and the right list of parameters corre-
sponds to mode! |. However, after the rainfall s?ops,-fhe response area of
the second mode! decreases rapidly, while the response area of the first
mode! remains constant. The same slituation holds for D = 0.5, 0.65, and
0.80. The effects of these two dynamic response modeis on the runoff esti-
mation were investigated. Figure 6~15 (D}, (E), (F) indicate that these
two modeis gave results very close to the observed hydrograph for D = 0.5,
0.65 and 0.80. The reason may be interpreted as follows: The rainfall
vanishes after the end of the stormy The Input Into the system Is fhus zero
and the magnitude of dyrmamic response area does not matter. This confirms
+hat these two modeis give very similar results. For the convenience of
data analysis, the first model was utilized.

When +he response area is determined, the rainfall Imposed on these areas
was consldered as Input. The complete |inear channel routing method was uti-
lized to estimate the direct runoff. The observed and estimated direct run-
offs were compared based on the two given criterfa. The first one, eq. (5.6.11,
is based on the sum of the absolute values of the differences between the or-

dinates of the calculated and the observed hydrographs. The second criferion,
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eq. (5.6.2), Is based on the difference bstween observed and calculated peak
discharges and the time to the peak discharge. The expserience In this study
Indicated that with the second criterion It is gasler to obtain the optimized
value. For soms storms, two criteria yleld very similar results. However,
for some other storms, these two criterla yvield two different "optimum" situa-
tions. Flgure 6-16 (A) shows the matching of the observed and the computed
direct runoff hydrograph based on the first criterion. Figure 6-16 (B) shows
the case based on the second criterlion, Figure 6-16 (A) indicates tThat the
“tali and rising limb of the direct runoff hydrograph are better matched than
those of Flgure 6-16 {B). However, ‘the difference between observed and com-
puted peak dlscharges is larger than that of Figure 6-16 (B). .In this study,
both criteria were tested. When the two criteria did not yield similar results,
the second criterion was utilized, because the engineering applications are
usualiy concerned with the peak flows and their time of occurrence.

Nine sample storms which belong to nine different watersheds are pre-
sented in Figure 6-17 to 19. These results Indicate that the mode! can mafch
+the observed direct runcff hydrographs wlthin a reasonable error {imit. Af-
ter the optimization of model parameters, the correlations of the identified

mode! parameters, with geomorphoiogic characteristics and with measures of

v
the rainfail pattern are pursued further in the next section.

6.7 The Correjation of identified Parameters with Geomorphologic
Charactsristics and Raintall Pattern

The analysis of a large sample of storms In these testing watersheds
resulted in sets of identified parameters in each watershed., To study the
nature of the differences and |+s Implications for practicai engineering
design, three watersheds are presented below. A summary of the hydrologic
parameters of these three watersheds 15 listed in Table 6-5. Six samples
of the observed and calculated direct runotf hydrographs are presented in
Figure 6-20.

Tabie 6-5 indicates that the values of CZ corresponding o the
several storms In the same watersheds were not constant. The CZ values
were plotted against the rainfall volume of each storm. Figure 6-~21 shows
that Cz doss not vary with the rainfall volume of the storms. However, it

indicates that watershed no. 10 has a larger CZ value than those of water-
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sheds no. 3 and no. 24. The drainage area of watershed no. 10 is [B7 square
mi les which Is much {arger than the areas of watersheds no.3 and no. 24.
(Their drainage areas are 4.6 and 36.7 square miles respectively.). The
geomorphologic data analysis showed that the drainage area is the primary
tactor in watershed characteristics. This may Indicate that C2 is related
to the geomorphcloglc parameters or antecedent conditions rather than to
the storm pattern,

For finding the reliation between geomorphologlc parameters, antecedent
conditions and Cz’ more watershed dats are needed. It is noticed that the
data bank for the several watersheds doesnot contain the same number of storm
even?é for each watershed. In order to welgh equally each watershed, the
t+hree best matched storms were seiected to represent that particular water-
shed. Table 6-6 shows the representative storms and the geomorphologlc par-
ameters of thirteen watersheds. The selected pérame?ers are: dralnage area,
drainage density, mean link tength and basin slope. The base flow per unit
drainage area is selected to represent the watershed antecedent condition.
The stepwise multipie regression analysis [64] was utilized to find the cor-

relation. The results are shown in the foilowing equations (see Table 6-7):

Table 6-7 Regression Equations of Cz

Step Multipie Correfation Regression Eguation
coefficient
B
| ,242 C o= 1,21 (7230
z A
0
175 Bf -.232
2 L3 c o= 677 AT (7
z A
0
3 637 c = 0.00141 A 7% 1+42 (?f4“°208
* 4 ¢ 8] 0 AO
983 _ |.44 B¢ .227. .070
4 .640 C = .00134 A 00" g o4 (LLymesslg o
z 0 0 AO T
) 976 -.238,. 1.37
5 643 c, = .00098 A, % S
Be =.236 _ .092
0
) 073 . L987 . -.206
6 .644 C, = 0.00082 Sy A D,
B
,m-416 ¢ 1,41 5t =239
o A
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where S, = solf permeabillty index 397}

Bf-r base flow when the storm occurs (cfs)

£ = mean link length (miles)

AO = drainage area (square milés)

Dy = drainage density (mi/square ml)
SO = basin siope (ft/ml)

The fack of substantlal Improvement in the multiple correlation beyond
the third step Is probably due to the fact that few geamorpholioglic parameters
are Independent as was shown in the analysis of the geomorphoiogic data.

The next itmportant parameter is the reference discharge. ‘Table 6-5 shows
values ranging from 20 to 75 cfs. Figuﬁe 6-22 shows that the reference dis-
charges are apparentiy unreléfed to the rainfall volume. The three watersheds'
data do not indicate any separable groups. However, the values of q,, concen-
trate within the range of 40 to 70 cfs, - The variations for small storms are
targer than those for large storms. These resuits indicate that the refer-
ence discharge does not vary sensitively from storm to storm or from water-
shed to watershed.

The third majer parameter s The exponential factor of the dynamic re=-
sponse area, N. A prellminary study showed that the N values and runoff
ratios are closely correiated. Figure 6-23 illustrates the piot of N against
the runcff ratio. |1 shows That N and the runoff ratic are approximately
Finearly related on semi~logarithmic paper. The regression analysls of
Rr = ki + k2 ln N was tested where k, and k., are the regression coefficients.

1 2
The result of thls regression snalysis yieids the following relationship:

R = .464 - 242 1n N

or

464 ~ Rr '
N = expEmmtﬁzﬁm-m] for D= .8 and B = 0.0 (6.7.1)

Yo pursue further, it is necessary to find the factors governing the runoff
ratio., It is noticed that the runoff ratic is measurable but is a variable
collectively influenced by many factors. |t depends primariiy on the clima-~
tic condition, the rainfall pattern, the soil type, the watershed condition
when the rainfall occurred, etc. As illustrated in tThe last section, the

soil type is not the only indicator for the runoff ratlio., Therefore it was



decided
factors
{A)

(8)

(C)

(>

The

salectad watersheds in Table 6-5.

75

+o select more factors to describe the runoff ratio. The following

were selected. '

Rainfall pattern

(i) Rainfall volume {in inches), P?

(2) Maximum rainfall Intensity within the storm, in inches per
hour, Pmax

(3} Rainfaill duration in hours, Dr

Climatic condition

Daily temperature was selected. The available data in U.S. Weather

Bureau Climatic data Indiana [65] are the daity maximum and minimum.

Watershed Conditions

The average base flows when the storms occur were utilized to indi-

cate the watershed condition. However, it was noted that the base

flow is dependent on drainage area. Therefore, the average base

fiow per unit drainage area was used in the analysis.

Soil type :

A soil permeability index was developed by the U.5.G.S., Indianapolis

Office [58].

were determined by assigning soll permeability values to msjor soil

I+ was expressed as a dimensionless number. These vaiues
types occurring in the basins, and calculating the weighted average

for each basin.

regression analysis was performed for the data retrieved from three

The stepwise multiple [64] regression analy-

sis yields the following result (see Table 6-8),

Step

Table 6~8 Regression Equations of Runoff Ratlo

Muitipte Correlation Regression Equation
Coafficient

0.883% R =7 72207

r min
0.899 R = -, 355 .~-.123

P min T

L o221 -, 345 _~.154
0.909 Rr = Pf Tmin 1
: o™ .245 o~ 178 _~.422 .~-.150

0.914 Rr = Pmax P+ Tmin SI
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Table 6-8 (continued

Step  Multiple Correia?iom
Cosfficient
~. 252 P~.I79 Tm,425

5 0.915 R =P .
. r max 1 min
Be o83 -.150
(ﬁmd SI
0
. _ g—:289 =155 _~.386
6 0.916 : Rr = Pmax Py Tm?n
B 093 -
(mi),OBS D—.093 S LS
A r I
0
whare Rr = runotf ratio ,
Pmax = maximum rainfatt Intensity, (IN/HR)
PT = rainfall volume, (INCHES)
Tmin = minimal daily temperature when storm occurs (F®)
Bf = average base flow (CFS) '
Aq = dralnags areas {sq. ml.)
Dr = ralnfall duration (HR)
SI = soil permeability index

fn summary, it was shown that two parameters were the dominant factors
in this model. The N vaiue is used to determine the runoff ratio which was
correlated with the ralnfall pattern such as rainfall voiume, maximum rain-
fat) intensity and rainfall duration, climatic condition such as daily minimal
temperature when storm occurred, watershed condlition such as average base fiow
par unit drainage area, and soil type such as soll permeabiiity index. The se-
cond parameter is the roughness coefflicient Cz’ it is primarily a geomorphoiogic
factor. It was correlated with the drainage area, the drainage density, the
basin mean slope, and the watershed cond!tion when storm occurs. With the re-
sults from these corretations, the prediction model 15 presented in next section.

6.8 Proposed Runcff Estimation Modei

The corretation of geomorphologic parameters, rainfail pattern and
identified parameters makes the estimation model possible, at least one based
on regional data. The following runoff estimation mode! is based on the
Indiana small watersheds data. The application for other regional areas
requires the necessary data to define the regression equations. Neverthe-

less, the methodology stiil can be applied.
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The runoff estimation model {s shown in Figure 5-8 in a dotted box.
The summary of the input Information is tisted in Table 6~9. The first
input information is the rainfall hyetograph. This information may be
obtalned from the frequency analysis of the historical rainfall data or
t+he historical storm events. The parameters which are retrieved from
the rainfal! hyetograph are rainfall volume, PT’ maximum rainfafl infen-
sity Pmax’ rainfall duration Dro The second item is the base flow magni-
tude. This may be obtalned from the U.5.G.S. surface water data [66]. The
third item is the daily minimum temperatures. These temperatures can be
cbtained from the ciimatic data published by the Weather Bureau by state.
The fourth item is the topographic maps. The mean basin slope and drain-
age area are retrieved from these maps. The fifth item is the drainage
maps. The maln parameters which can be retrieved are the contributed area
distribution curve and the drainage density. These maps in Indiana were
compiled by Purdue University [20]. The digitized data from dralnage maps
was reported in 1971, The sixth item is soll data. Two parameters, B and
S;, are determined from these soil data. The Indiana soil data [60] indi-
cate that B is quite smail, For runoff estimation purposes in Indiana, B
is assumed fo be zero. The S, values can be obtalned from [58].

The first six items are the fundamental information., The foliowing
items are the results of the regression analysis of identified systems parameters.
The seventh item is the weighting factor D. It was found that D was not
a sensitive factor as far as direct runoff s concerned. It ranges from
0.5 to 0,8, The value of D = 0.8 was used in this model. The eighth item
is Cz' I+ was found that the drainage area, the mean basin siope, and the
base flow are significantiy correlated with Cz“ For small Indiana water-

sheds, Cz was found to be

B
c = o0.0014] A% gle42 (£
z 0 o A

-.208

) (6.8.1)

The multiple correlation coefticient is 0.637. The nlneth Ttem is reference
discharge. It's values were between 40 to 70 CFS in this study for storm
volumes ranging from 0.1 to 5.6 inches, for small Indiana watersheds (3 Yo
200 square miles). The tenth Item is the parameter N. It was found tTo be
related with the runoff ratioc. For Indiana watersheds, the following ralation-

ship was found
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Table 6-9 Summary of Prediction Model lnput Information

[toms

Rainfall Hyetograph

Base Flow
Dally Temperature
Topographlic maps

Dralnage maps

Soil maps

Parameters.

Ret

rieved

Simp

Watershed and

P4

B8, S

jifled

I

Data Source or
Regression Egquation
for Indiana

Dasign Ralnfall
Hyetograph

U.5.6.5. Data
Climatic Data
Topograph maps

Drainage map

B = Oa’ 'UpS-GeSe
Open fiie report

[58]
D= 0.5t0 0.8

. 985

Cz = 00141 AO

.42 Ot -.208

S
O AO

)

40 to 70 cfs

R = P—.ZAS P—.l78
r max t

- 422 s-,ISO
min I

L
1]

’ r
N = exp (—-—W)
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464 - R?
N = GXDEWW——-], for D= .8, B =20 {(6.8.2)

For defining the runoff ratio, the following regression equation may be

utitized for Indiana small watersheds

L pme245 =178 _=.422 ~.150
Rr = Pmax P+ Tmin SI {6.8.3)
where Pmax’ PT’ Tmin and S1 could be retrieved from the fundamental infor-

mation. The multiple correlation cosfficlent is .914.

After the parameters B, D, N, Cz and q, are defined, then the estimated
direct runoff hydrograph can be obtained as shown in Figure 5-8.

There are several iimitations in *this modei. First the study used water-
sheds which have dralnage areas ranging from 3 square miles to 200 square
miles. Secondly, the storms which were analyzed have the rainfal! vo i ume
ranging from 0.1 to 5.6 inches for each storm event. Thirdly, atl the basins
in this study are rural watersheds. The man-made disturbances are not in-
cluded. Fourth, all the parameters are based on the presently available
data in Indiana. Any new Information could Improve the parameter accuracy.
However, the basic framework of this modef still could be utitized. Finally,
this mode! is designed for short term hydrologic prediction. The long term

prediction is not valid.

6.9 Mode! Regeneration Performance and Comparison with
Some Other Methods

in order to understand the regeneration performance of the proposed model,
some storms and other given conditions were fed info the model to regenerate
the predicted hydrographs. The summary resulfs are listed in Table 6~10. The
peak flows of The observed and regenerated direct runoff hydrographs are com-
pared, They indicate the average error was about + 20%. Table 6-9 aisoc shows
that the Time to peak had better regeneratlion performance. The error ot the
regenerated hydrograph may be Interpreted in terms of the estimation of the
system parameters Cz and N. The N value is related to the runoff ratic. A
good estimation of N indicates the total direct runoff volume close to that
of the observed hydrograph. The CZ is the routing parameter which affects
the shape of the hydrograph. The regenerated and ident!fled Cz and N are

{isted in Table 6~10. The sample results of the observed and regenerated
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hydrographs are shown in Figure 6-24.

The proposed model was compared with some other methods. The storm of
February 27, 1955 at Bean Blossom Creek near Bean Blossom (watershed no. 3)
was selected to illustrate the differences. The methods selscted for the com-
parison were: (1) the method of Wu et al. [61] and (2) the method of grouping
the IUH suggested by Blank and Delleur [24]. The detailed calculations are
shown in the appendix. The results of these three methods and the observed
hydrograph are shown in Figure 6-25. It indicates that these three methods
yield three different results. The IUH grouping method gives a late peak but
the calculated peak flow is almost the same as the observed peak. Wu's method
gives the highest peak flow. The dynamic area model gives the calculated hy-
drograph closest to the observed hydrograph. However, sets of storms and water-
sheds should be analyzed to obtain more definite conclusions. The foliowing
comparison is based on the characteristics of each method. {* is shown in
Tabte 6-ii.
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CHAPTER ¥1I

SUMMARY AND CONCLUS{ONS

The rainfall-runoff process in a watershed was simulated by two basic
means, namely, a dynamlc contributing area concept and a linear routing
technique. The contributing area distribution curve which Integrates the
contributing areas along the stream network was developed for the purpose
of hydrograph estimation. The model parameters were optimized Yo match the
calculated and the observed direct runoff hydrographs. The rainfall charac-
teristics, the climatic conditions expressed by the minimum dally tempera-
+ure, tha watershed conditions quantified by the base flow per unit area,
the U.S.56.5. soll index and geomorphologic parameters were correlated with
the system parameters. These results were utiiized to estimate The stream
flow of a watershed under varying climatic and watershed conditions.

The following conclusions are drawn, based on the application of this method-
ology to Indiana watersheds:

(1) The study of stream network geomorphology indicated that:

{a) The laws of stream number and stream length, in general, are
valid in Indiana watersheds. The presence of incomplete net-
works 15 one of the key factors causing some deviations fn
these laws,

(b) The average bifurcation ratio for each stream order has a
near constant value of about 4.5 which is aimost equail fo
the ideal stream network value.

(¢} The mean first order stream tengths range from 0.08 to 0.13
miles. This short length is due to the large detal! of The
county dralnage maps used In this study compared with the
U.5.6.5. gquadrangte maps used by many others.

(d) In general, the drainage area, the drainage density, and the
basin slope are the major gecmorphologlc parameters of hydro-
logic slgnificance.

{e) The shreve magnitude system is portrayed by the mean link
tength, the link magnitude and the ratio of the basin area

to the total stream length.
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(2} The sfudy of the dynamlc response area model revealed that the "BY
horlzon intiltration and the welght of the antecedent rainfali, D,
ware not the priméry'paramefers. The expeonent N quantifying the
rate of expansicn of the response area was found to be correlated
with the runoff ratio. The runoff ratio was, in turn, correiated
with rainfaii characteristics, the minimum. daily temperature, the
base flow per unit area and the U.5.G.5. soll index. |

(3) The study of the Three parameter [insar routing method indl-
cated that the watershed was characterized primariiy by the con-
tributing area distribution curve and by the roughness parameter.
The iatter was found fo be correlated with geomorphologic parameters
and the base flow per unit area. The reference discharge was found
not to change significantly from starm fto storm or from watershed
to watershed and the slope was estimated from topographic maps.

(4) A comparison was made with Wu's method and that of grouping instan~-
taneous unit hydrographs according to peak value and time o peak.
This comparison Indicated that each method has its advantages and
disadvantages. A further systematic and quantitative comparison
is suggested to evaluate the conditions for which each method is

best suited.
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