HYDRAULICS OF RIVER FLOW UNDER ARCH BRIDGES 001361 JUNE 1964 NO. II VOL. II unt ighuray Lesearch rojec

J.W.DELLEUR

PURDUE UNIVERSITY LAFAYETTE INDIANA

Final Report

HYDRAULICS OF RIVER FLOW UNDER ARCH BRIDGES

Vol. II

by

J. W. Delleur Professor of Hydraulic Engineering

Joint Highway Research Project

Project: HPS-R-3.(36)

File: 9-8-2

Prepared as Part of an Investigation

Conducted by

Joint Highway Research Froject Engineering Experiment Station Purdue University

in cooperation with

Indiana State Highway Commission

and the

Bureau of Public Hoads U S Department of Commerce

ot Released for Publication

Not Reviewed by

Subject to Change

Purdue University

Indiana State Highway Commission or the Bureau of Public Roads

Lafayette, Indiana

June.19, 1964

F1g.	Fescription	Page No.
3-1	Definition Sketch	1
3-2	Lin⊱ Surface Profile Near Subnerged Constriction	2
3-3	Plan View of Flow Through a Submarged Constriction	3
34.	Classes of Flow in Sudden Contractions in Opes. Charnels	žį.
3-5	Empirical Relationship to Distinguish Between Free Surface Flow and Orifice Flow	5
3-6	Definition Sketch for Analysis of Expanding flow	6
37	Graphical Solution of Backwater Bus to a Scuntriction	7
3-8	Detail of Graphical Solution of Eachwater Dee to a Constriction	ŝ
3~9	Geometric Properties of Semi-Circular and Carcular Segment Arches	9
3-10	Limiting Backwater-Boundary Between Flows of Classes I & II Semi-Circular and Circular Segment Arches	140
3-11	Definition Sketch for the Channel Opening Latio	
3-11a	Definition Sketch for Orifice Flow Calculation.	3.2
3-12	Definition Sketch for the Development of the Con- traction Ratio	13
3-13	Convection Factor for the Channel Opening Rabio	14
3-34	Definition Sketches of Test Geometries	2.5
4-1	Preliminary Flune	16
4-2	Effect of Channel Constriction on Taber Suri se Profile	6 17
4=3	Three Dimensional Models for Preliminary Studies	18
ly-ly	Small Flume with Artificial Roughness Installed, and Mechanical and Electrical Gages	19
4-5	Semicircular Weir Tests	20
4=6	Herizontal Distance in Direction of Flow	21
4-7	Semicircular Arch Bridge Model Tests	22
4-8	Flow in Rectangular Channels with Semi-Circular Con- structions - Comparison of Two and Three Pimensional	

ĭ

Fig.	Description	Page No
4-8a	Variation of the Backwater Ratio for Segment Arches - Small Flume - Rough Boundaries	214
5-1	Flume Construction	25
5-2	Jack Detail	26
5-3	Tail Gate	2 6
5-4	General Layout of Testing Facility	27
5=5	Plan View of Jacks and Gears	28
5-6	Calibration Curve for 6" Venturimeter	2 9
5-7	Calibration Curve for Three-Inch Venturi	30
5-8	Top View of Instrument Carriage	31
5-9	Point Gage and Prandtl Tube	31
5-10	Velocity Transducer System	32
5-11	Calibration Apparatus for Velocity Transducer System	33
5-12	Typical Calibration Curves for Probe	34
5-13	f - Re Relation for Normal Depth Tests	35
5-14	Testing Flume with Artificial Roughness	36
5-15	Effect of Bars on Velocity	37
5-16	Variation of Resistance Function with Relative Roughness ym/a	38
5-17	Variation of Resistance Function with Relative Roughness y_n/X	39
5-18	Dimensionless Velocity Profile	40
5-19	General Resistance Diagram for Uniform Flow in Open Channels (Sayre)	41
6-1	Tests Selection Curve - Large Flume - Smooth Boundaria	s 42
6-2	Tests Selection Curve - Large Flume- Rough Boundaries	43
6-3	Program Flow Chart for Data Analysis	44
6-4 - 6-10	Four Variables Graphical Multiple Correlation	45
7-1-1	Superelevation vs. Kineticity	46

iî.

Digitized by the Internet Archive in 2011 with funding from LYRASIS members and Sloan Foundation; Indiana Department of Transportation

http://www.archive.org/details/hydraulicsofrive64112dell

		111
Fig.	Description	Page No.
7-1-2	Discharge Coefficient vs. Kineticity	47
7-1-3	Firction Factor vs. Reynolds Number	48
7-1-4	Friction Factor vs. Reynolds Sumber	49
7-1-5	Backwater Ratio vs. Contraction Ratio	50
7-1-6	Backwater Ratio vs. Channel Opening Ratio L/b = 0 Semi-circ. Smoth Channel	51
7-1-7	Discharge Coof. vs. Channel Opening Ratio L/b = 0 Semi-circ. Smooth Channel	51
7-1-8	Backwater Ratio for Geometry $I_{a,p}$ Smooth Boundary $L = 0.0$	52
7-1-9	Head Loss Coefficient, Geometry I _a Smooth Boundary $\frac{L}{5} = 0.0$	53
7-1 -10	Backwater Ratio Coefficient, Geometry I_{R_9} Smooth Boundary $\frac{L}{b} = 0.0$	54
7-2-1 a	Backwater Ratio vs. Channel Opening Ratio L/b = 0 Semi-circ. Rough Channel yl/yn \lesssim 1.50	55
7-2-1b	Backwater Ratio vs. Channel Opening Ratio L/b = 0 Semi-circ. Rough Channel 1.50 \leq yl/yn \leq 2.50	56
7-2-2	Discharge Coef. vs. Channel Opening Ratio L/b = 0 Semi circ. Rough Channel	L
7-2-38	Length to Maximum Backwater	58
7-2-35	Length of Surface Profile Between y1 & y3	555
7-2-4	Correlation Curve of F3	59
7-2- 5a	Comparison Between Backwater Ratios in Smooth and Rough Channels	60
72- 5b	Comparison of Cato F_n for the Two Roughness Conditions M = 0.7	60
7-2-6a	Comparison Between Backwater Ratios for Bridge Lengths - Rough Channel	61
7-2- 6b	Comparison Between Discharge Coefficients for Bridge Lengths - Rough Channel - M ⁰ = 0.7	61
7-2-7	Surface Topography $Q = 1$ cfs, $S = 0.000584$, $H = 0.5$, $L/b = 0$	62
7-2-8	Velocity Profiles at Maximum Backwater Q = 1 CFS, S = 0.000584, M = 0.5, L/b = 0	63

F1g.	Description	Page Jo.
7-2-9	Isovel Diagrams in FPS Q = 1 CFS, S = 0.0003584_{\odot} M = 0.5_{\odot} L/b = 0	64
7-2-10	Generalized Backwater Ratio	65
7-2- <u>}</u>	Backwater Ratio for Geometry Ia, Rough Boundary $L = 0.0$	65
7-2-12	Backwater Ratio for Geometry Ib, Rough Source $\frac{L}{D} = 0.5$	57
7-2-13	Backwater Ratio for Geometry 1b Rough Ecunion, $\frac{L}{b} = 1$) 68
7-2-14	Summary of Backwater Ratio, Geometry T, Rough & Smooth Boundaries	69
7-2-15	Need Less Coefficient, Geometry Ia Rough Boundary, $\frac{L}{B} = 0.00$.	70
7-2-26	Read Loss Coefficient, Geometry Ib Rough Community L	5 72
7-2-17	Head Less Coefficient Geometry To Rough I outdary $\frac{\tilde{L}_{\rm c}}{\tilde{D}}$ and	0 72
7-2-1 3	Summary of Head Loss Joefficients Commetry Ia & 15, Ac Boundary	nigh 73
7-2-19	Back siter Ratio Coefficient, Geometry La ugh Boundar $\frac{L}{b} = 0.00$	y 74
7220	Backwater Ratio Coefficient, Geometry Ib, Rough Bounda $\frac{L}{b} = 0.5$	ny 75
721	Backwater Ratic Coefficient, Geometry Mb Rough Boundar $\frac{L}{b} \approx 1.0$	7 76
7-3-0	Measured Water Surface Profiles Along the Centerline for Three Dimensional Dual Parallel Arch Bridge Models	77
7-3-2	Backwater Ratio for Dual Parallel Bridges $\mathbb{P}_{n}{=}0.10$ and 0.15	78
7-3-2	Backwater Ratio for Dual Parallel Eridges Fn=9.20	79
7-3-3	Backwater Ratio for Dual Parallel Bridges $F_{\rm R}$ =0.25	80
7-3-4	Backwater Ratio for Dual Parailel Bridges 1,0.30	63.
7-3-5	Backwater Ratio for Dual Parallel Bridges Fn=0.40	82

Fig.	Description	Page Nc.
7-3-6	Backwater Ratio for Dual Parallel Bridges	83
7-3-7	Generalized Backwater Ratio for Dual Parallel Bridges	84
7-3-8	Backwater Ratio, Geometry II Rough Boundary $\frac{L_2 b}{An2} = 0.00$	85
7∞3∞9	Backwater Ratio for Geometry II Rough Bourdary $0 < \frac{1}{2n^2} \leq 7.5$	ଟର
7-3-10	Backwater Ratio, Geometry II Rough Boundary And	5 87
7-3-11	Backwater Ratio, Geometry II Rough Boundary Ldb=15-25	88
7-3-12	Backwater Ratio, Geometry II Rough Boundary An2	89
7-3-13	Sunnary of Backwater Ratio, Geometry IX Rough Boundary	7 90
7-3-14	Head Loss Coefficient, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} = 0.00$	93.
7-3-1 5	Head Loss Coefficient, Geometry II Rough Boundar, $L_{db} = 0 \le 7.5$	92
7-3-16	Head Loss Coefficient, Geometry II Rough Soundary $\frac{L_{db}}{A_{n2}} = 7.5 - 15$	93
7-3-17	Head Loss Coefficient, Geometry II Rough Boundary $\frac{L_{db}}{2n^2} = 15 - 25$	94
7-3-18	Head Loss Coefficient, Geometry II Rough Boundbry $\frac{Ldb}{A_{n2}} = 25 = 30$	95
7319	Survery of Mead Loss Coefficients, Geometry II, Rough Boundaries	36
7-3-20	Backwater Ratio Coefficient Geometry II Rough Boundary	r 9 7
7-4-1	Backwater Ratio for Arch Bridges with Wingwalls $\phi_l=30$	0 0 9 8
7-4-2	Backwater Ratio for Arch Bridges with Wingwalls $\phi_{j}^{t}=4$	50 99
7-4-3	Backwater Ratio for Arch Bridges with Wingwalls ϕ_{j} = 60	0 ⁰ 100
7-4-2:	Backwater Ratio for Arch Bridges with Wingwalls $\phi_{j} = 90^{\circ}$	101
7-4-5	Backwater Ratio for Arch Bridges with Vingwalls	102

Fig.	Description	Page No
7-4-6	Generalized Backwater Ratio for Arch Bridges with Wingwalls	103
7-4-7	Backwater Ratio, Geometry III Rough Boundary ϕ 1=30°	104
7-4-8	Backwater Ratio, Geometry III Rough Boundary $\frac{1}{2}$ 2=45°	105
7-4-9	Bachwater Ratio, Geometry III Rough Boundary ϕ_1 =60°	106
7-4-10	Backwater Ratio, Geometry III Rough Boundary $\phi_1 = 90^{\circ}$	107
7-4-11	Summary of Backwater Ratio, Cocmetry III, Rough Round ary	- 1 04
7=4=12	Head Loss Coefficient, Geometry III Rough Boundary $\phi_1 = 30^{\circ}$	109
7=4-13	Head Loss Coefficient, Geometry III Rough Bourdary ϕ_1 =450	11.0
7-4-14	Head Loss Coefficient, Geometry III Rough Boundary $\phi_1=60^\circ$	111
7-4-25	Head Loss Coofficient, Geometry III Rough Boundary $\phi_1 = 90^{\circ}$	112
7-4-16	Summary of Vead Loss Coefficients Geomptry III, Rough Boundaries	113
7- 4=27	Backwater Ratio Coefficient Geometry III, Rough Boundary ϕ 1=30°	114
7-4-18	Backwater Ratio Coefficient, Geometry III Rough Boundary ${\not\!\!\!\!/} 1^{=\!45^{\circ}}$	11.5
7-4-19	Backwater Ratio Coefficient, Geometry III, Rough Boundary ϕ 1=60°	116
7=4-20	Bac'water Ratio Coefficient, Geometry III, Rough Boundary ϕ 1=900	117
7-5-1	Backwater Ratio for Eccentric frch Bridges == 3	118
7-5-2	Backwater Ratio for Eccentric Arch Bridges e=.80	119
7-5-3	Backwater Ratio for Eccentric Arch Bridges 5.85	120
7-5-4	Backwater Ratio for Eccentric Arch Bridges 50.90	121
7-5⇒5	Backwater Ratio for Eccentric Arch Bridges e=.95	122
7-5-6	Backwater Ratio for Eccentric Arch Bridges e=1.00	123
7-5-7	Generalized Backwater Ratio for Eccentric Arth Bridge	124
7-5-8	Backwater Ratio, Geometry IV Rough Boundary e=0.0	125

Vî

Fig.	Description	Page No
7-5-9	Backwater Ratio, Geometry IV Rough Boundary e=0.8	126
7-5-10	Backwater Ratio, Geometry IV Rough Boundary e=0.85	127
7-5-11	Backwater Ratio, Geometry IV lough Boundary orD.	128
7-5-12	Backwater Ratio, Geometry IV Rough Boundary e=0.35	129
7-5-13	Eackwater Ratio, Geometry IV Rough Boundary col.0	130
7-5-24	Summary of Backweter Ratio Geometry IV Rough Boundary	1.33
7-5-15	Head Loss Coefficient, Geometry IV Rough Foundary e=0.0	132
7-5-16	Nead Loss Cosfficient, Geometry IV Rough Bou dary GTO.8	1.33
7=5=27	Head Loss Coofficient, Cecuetry IV Rough Boundary e=0.35	134
7-5-18	Head Loss Coefficient, Geometry IV Rough Boundary ==0.9	135
7-5-19	Head Loss Coefficient, Geometry IV Rough Pouncapy e=0.95	1.36
7-5-20	Head Loss Coefficient, Geometry IV Rough Boundary 6-1.0	137
7-5-21	Summary of Head Loss Coefficients Geometry IV Rou h Poundary	138
7-5-22	Packwater Ratic Coefficient, Geometry IV Rough Boundary =0.0	139
7-5-2 3	Backwater Ratio Coefficient, Ceometry IV Rough Boundary a=0.2	1 40
7-5-24	Backwater Ratio Coefficient Geometry IV Rough Boundary 6*0.85	141
7−5 ∞25	Backwater Ratio Coefficient, Geometry IV Rough Boundary e=0.9	142
7-5-26	Backwater Ratio Coefficient, Geometry IV Rough Boundary e=0.95	143
7-5-27	Backwater Ratio Coefficient Geometry IV Rough Boundary e=1.0	24
7-6-1	Backwater Ratic for Skew Arch Bridges $\phi_2 = 0^{\circ}$	145
7-6-2	Backwater Ratio for Skew Arch Bridges $\phi_z = 15^{\circ}$	146

		viii
Fig.	Description	Page No.
7-6-3	Backwater Ratio for Skew Arch Bridges ϕ_{2} = 30°	147
7-6-4	Backwater Ratio for Skew Arch Bridges $\phi_{\chi} = 45^{\circ}$	143
7-6-5	Backwater Ratio for Skew Arch Bridge	149
7-6-6	Generalized Backwater Robio for Skew Arch Buildge	1.50
7-6-7	Backwater Ratio, Geometry Va, Rough Boundary 1 2=0.00	1.51
7-5-8	Backwater Ratio, Geometry Va, Rough Boundary 215	1,52
7-6-9	Backwater Ratio, Geometry Va, Rough Boundary 22300	1,53
7-6-10	Backwatar Ratio, Geometry Va, Rough Boundar, 2= 50	154
7611	Surnary of Backsater Ratio Geometry Va Rough Courdary	155
7-6-12	Heal Loss Coefficient Geometry Va, Rough Eou \sim $_{2}$ =0.00	156
7-6-13	Head Loss Coefficient Geometry Va, Rough Boundary ϕ_2 =1.50	1.57
7-6-14	Head Loss 0-efficient, Commetry Va, Rough Bourdary $\not \!$	150
7-6-15	Held Loss Coefficient, Geometry Va Rough Foundary $p = 2^{-45^\circ}$	159
7-6-36	Summary of Head Loss Coefficients Gednetry V: Rough Boundaries	160
7-6-17	Backwater Ratio Coefficient, Geometry Va Forgi Boundary ϕ_2 =0.0	161
7-6-18	Backwater Ratio Coefficient, Geometry Valle gib Boundary ϕ 2=150	1.62
7-6-19	Backwator Ratic Coefficient, Cennetry Va Forgh Boundary \wp_{2} =30°	1.63
7-620	Backwater Ratio Coofficient, Geometry Va Rough Boundary ϕ 2=45°	1.64
7-7-1	Backwater Ratio, Geometry Vb, Rough Boundary ϕ_{2} =15°	165
7-7-2	Backwater Ratio, Geometry Vb, Rough Boundary p_{2} =30°	166
7-7-3	Summary of Backwater Ratio, Geometry Vb, Rough Boundar	y 167
7-83.	Backwater Ratio, Geometry VI, Rough Boundary	1.68
7-8-2	Head Lose Coefficient, Geometry VI, Rough Boundary	169

		1.77
Fig.	Description	Page No.
7-8-3	Backwater Ratio Coefficient, Geometry VI Rough Boundary	170
7-9-1	Backwater Ratio, Geometry VII Rough Boundary β =0.00	1.73.
7-9-2	Backwater Ratio, Geometry ViI Rough Boundary β =0.3	1.72
7-9-3	Backwater Ratio, Geometry VII Rough Boundary $\neq 0.5$	173
7-9-4	Summary of Backwater Ratio, Geometry VII, Rough Boundaries	174
7- 9-5	Head Loss Coefficient, Geometry VII Rough Boundary, β =0.00	175
7-9-6	Head Loss Coefficient, Geometry VII, Rough Boundary β =0.3	176
7-9-7	Head Loss Coefficient, Geometry VII, Rough Boundary $\beta = 0.5$	177
7- 9-8	Summary of Head Loss Coefficient, Geometry VI. Rough Boundary	178
7- 9-9	Backwater Ratio Coefficient, Geometry VII Rough Boundary β =0.0	179
7-9-10	Backwater Ratio Coefficient, Geometry VII Rough Boundary £ ∝0.3	180
7-9-11	Backwater Ratio Coefficient, Geometry VII Nough Boundary 牟 =0.5	181
8-3-1	Coefficients of Velocity, Contraction & Discharge Submerged Inlet but Unsubmerged Discharge Fat	182
8-3-2	Isovelocity Curves at Vena Contracta	183
8-3-3	Isovelocity Curves for Cross Section at Vena Sectracia	a 164
8-3-4	Velocity Distribution at Vena Contracta	185
8 ~3- 5	Generalized Backwater Ratio for Submarged Inlet Geometry Ia	186
8-3-6	Discharge Coefficient vs. Channel Opening Ratho _g Smooth Boundaries, Geometry Ia	187
8-3-7	Discharge Coefficient for Free & Submerged Discharge & Partly Submerged Jet, Geometry Ia	188
8-4-1	Dimensionless Curves for Geometries 1a and Ib, Smooth Boundaries	1.89

Fig.	Description	Page No
8-5-1	Dimensionless Curves for Geometries Ia and Ib Rough Boundaries	190
8-5-22	Spiral Motion in Barrel Section Downstream of Vena Contracta	192
8-5-20	Typical Flow Condition through Constriction	191
8-5-3	Slug Flow at Barrel Ebit	192
8-5-4	Free Discharge Jet	192
8-5-5	Comparison of Dimensionless Curves for Geo try Is for Smooth and Rough Boundaries	193
8-6-1	Dimensionless Curves for Geometry Why, Rough Foundaries	194
8-7-1	Dimensionless Gurves for Geometry VP Units in as Parameter, Rough Boundaries	195
8-8-1	Dimensionless Curves for dec. Mary VII Lough Foundaries	196
6- 9-1	Head Loss Coefficient for Golletry In Structh Boundarie $\frac{1}{5} = 0.0$	ıs 197
8 -9- 2	Head Loss Coefficient for Gennetry Tb Shows Boundaries, $L = 0.25$	198
8-9-3	Head Loss Coefficient for Geometry Ib Smooth. Boundaries, $\frac{L}{b} = 0.50$	199
8-9-4	Head Loss Coefficient for Geometry 1b Smooth. Boundaries, $\frac{L}{b} = 0.75$	200
8-9-5	Head Loss Coefficient for Georetry 1b, Small Boundaries, $\frac{L}{b} = 1.00$	201.
8-9-6	Summary of Head Loss Coefficient Curves for Geometries Ia, & Ib, Smooth Boundaries	202
8-9-7	Head Loss Coefficient Curves for Geometries, Ia & ${\rm Ib}_g$ Rough Boundaries	20 3
3 m 9 m B	Head Loss Coefficient Curve for Geometry Vb, Rough Boundaries	204
3=9-9	Head Loss Coefficient Curve for Geometry VI; Rough Boundaries	205

2.

Fig.	Description	Page No.
8-9-10	Head Loss Coefficient Curves for Geometry VII, Rough Boundaries	206
8-10-1	Generalized Backwater Ratio Geometry Ia, Smooth Boundaries, $\frac{L}{b} = 0.0$	207
8-10-2	Generalized Backwater Ratio Geometry Ib, Smooth Boundaries, $\frac{L}{b} = 0.25$	208
8-1 0-3	Generalized Backwater Ratio Geometry Ib, Smooth Boundaries, $\frac{L}{b} = 0.50$	209
8-10-4	Generalized Backwater Ratio Geometry Ib, Smooth Boundaries, $\underset{b}{L} = 0.75$	210
8-10-5	Generalized Backwater Ratio Geometry Ib, Smooth Boundaries, $\frac{L}{b} = 1.0$	211
8-10-6	Summary of Backwater Ratio Curves for Geometries Ia and Ib, Smooth Boundaries	212
8-10-7	Generalized Backwater Ratio Geometries Ia and Ib, Rough Boundaries	213
8-10-8	Generalized Backwater Ratio Geometry Vb, Rough Boundaries	214
8-10-9	Generalized Backwater Ratio Geometry VI, Rough Boundaries	215
8-10- 10	Generalized Backwater Ratio Geometry VII, Rough Boundaries	216
9-1-1	Olney Street Bridge, Indianapolis, Plan View	217
9-1-2	Olney Street Bridge, Indianapolis, Upstream Face	21.8
9-1-3	Olney Street Bridge, Indianapolis, Dowestream Side	219
9-1-4	Olney Street Bridge, Indianapolis, Natural Cross- Section Upstream	220
9-1-5	Olney Street Bridge, Indianapolis, Natural Cross- Section Downstream	221
9-1-6	Bridge Number 2A, Olney Street and Pogue's Run Topographic Map	Appen- dix
9-2-1	Brookside Bridge, Indianapolis, Plan View	222
9=2=2	Brockside Park Bridge, Indianapolis, Upstream Face	223

xi

Fig.	Description	Page 10,
9-2-3	Brockside Park Bridge, Indianapolis, Downswreum Side	224
9-2-4	Brockside Park Bridge, Indian polis, Natural Gross- Section Upsineam	225
9-2-5	Brookside Park Bridge, Ind. og clis, J. oural Gross-Section Downstream	(26
9-3-1	Jefferson Street Bridge, Intinupplis, Flah / ew	27
9 ~3 ~2	Jerlerson Street Bridge, Luisanapolis, Spatra m Fuce	228
9-3-3	Jofferson Street Eridge, I. Canapolis, Dormst cum Sida	229
9=3-4	Jefferson Street Eridge India apoly Natural Cross-Scribon, Domain and	230
9-3-5	Jafferson Sireet bridge, Indiamenolis Detural Creas-Section Upstream	231
9-3-6	Brilge humber 20, Pogue a R n to Jefferson, Lopo- grathic Hep	Appen- Cix
9-4-1	South Gebrait Street Fridge dierspolis, Flun View	232
9-4-2	Stabl Dolmont Street bridge India. To is, Mystream Proce	233
9-4-3	South Selmont Streat Eridge Indian polis, Sconstream Side	234
9-4-14	South Belmont Streat Bridge. Indianapolis, Natural Cross-Section Upstruck	235
9-4-5	South Belmont Street Bridge, Indian polis is bural Cross-Section Downstrees	236
9-4-6	Bridge Mumber 84, South Bolmont and Little Freek Creek	kpper.∝ dix
9-5-1	State Road 200 Bridge, Indianapolis, Plan Viev	237
9-5-2	State Road 10 Bridge, Indianapolis Upstream Face	236
9-5-3	State Road 100 Bridge, Indianapolis, Downstream Side	239
9-5-4	State Road 100 Bridge, Indianapolis Natural Cross Section Upstream	240
9-5-5	State Ro.d 100 Bridge India a plis Nutural Cross- Scation Downstrum	24,1

9. 9.

9.

9.

9.

9.

9. 9-

9-

9-

9-

9-

9-9-9-9-

9-

Bridge Wimber 23, State Lond 190 to Sillia S Greek Topographic Map 9-5-6 Аррэл-біж

21.

F1g.	Description	Page No.
9-6-1	Villa Street Bridge, Indianapolis, Plan View	21,2
9-6-2	Villa Street Bridge, Indianapolis, Upstream Face	243
9-6-3	Villa Street Bridge, Indianapolis, Downstream Side	22,24
9-6=4	Villa Street Bridge, Indianapolis, Natural Cross- Section Upstream	245
9-6-5	Villa Street Bridge, Indianapolis, Natural Gross- Section, Downstrean	246
9-6=6	Bridge Number 15A, Pleasant Run to Villa, Topographic Map	Appen- dix
9-7-1	Linden Street Bridge, Indianapolis, Plan View	217
9-7-2	Linden Street Bridge, Indianapolis, Upstream Face	248
9-7-3	Linden Street, Bridge, Indianapolis, Downstream Side	249
9=7-4	Linden Street Bridge, Indianapolis, Natural Cross- Section	250
9-7-5	Linden Street Bridge, Indianapolis, Natural Cross- Section Downstream	251
9≈76	Birdge Number 158, Pleasant Run and Linden, Topo- graphic Map	Appen- dix
9-8-1	East Jefferson Street Dridge, Frankling Plan Visw	2 52
9-8-2	East Jefferson Street Bridge, Franklin, Upstream Face	25 3
9-8-3	East Jefferson Street Eridge, Franklin, Downstream Sid	e 254
9-8-4	East Jefferson Street Bridge, Franklin, Natural Cross- Section Upstream	255
9-8-5	East Jefferson Street Bridge, Franklin, Natural Cross- Section, Downstraim	256
9-8-6	Bridge Number 51, East Jefferson and HurricansCreek Topographic Map	Appen dix
9-9-2	County Road Bridge, Plainfield, Plan View	257
9-9-2	County Road Bridge, Plainfield, Upstream Face	258
9-9-3	County Road Bridge, Plainfield, Downstream Side	259
900-900 lj	County Road Bridge, Plainfield, Natural Cross-Section Upstream	260
9-95	County Road Bridge, Plainfield, Natural Cross-	262

xiii

Fig.	Description	Page No.
9-9-6	Bridge Number 59A, Plainfield-White Lick Creek and 267, Topographic Map	Appen- dix
9-10-1	Dean Road Bridge, Indianapolis, Plan View	262
9-10-2	Dean Road Bridge, Indianapolis, Upstream Face	263
9-10-3	Dean Road Bridge, Indianapolis, Downstream Side	264
9-10-4	Dean Road Bridge, Indianapolis, Natural Cross-Section Upstream	265
9-10-5	Dean Road Bridge, Indianapolis, Natural Cross-Section Downstream	266
9-10-6	Bridge Number 66A, Dean Road to Howland Ditch, Topographic Map	Appen- dix
9-11-1	Relation of Maximum Backwater Effect to Velocity Head	267
9-11-2	Generalized Backwater Ratio	268

.

C.) WEIR PLATES

FIGURE 3 - I DEFINITION SKETCH

Fig 3 2 Center Line Surface Profile Near Submerged. Constriction

FIGURE 3-4 - CLASSES OF FLOW IN SUDDEN CONTRACTIONS IN OPEN CHANNELS

GRAPHICAL SOLUTION OF BACKWATER DUE TO A CONSTRICTION FIGURE 3-7-

FLOW IN ADEH = $Q = V_0 B y_0$ FLOW IN BCFG = $q = V_0 b y_0$

DEFINITION SKETCH FOR THE DEVELOPMENT OF THE CONTRACTION RATIO

FIGURE 3-13 CORRECTION COEFFICIENT FOR THE CHANNEL OPENING RATIO

DEFINITION SKETCHES OF TEST GEOMETRIES FIGURE 3-14

STUDIES PRELIMINARY FOR MODELS DIMENSIONAL

AND INSTALLED, and MECHANICAL ROUGHNESS SMALL FLUME WITH ARTIFICIAL FIGURE 4-4

GAGE S

ELECTRICAL

FIG. 4-6

- .

FIG 5-2 JACK DETAIL

FIG 5-3 TAIL GATE

FIG 5-8 TOP VIEW OF INSTRUMENT CARRIAGE

FIG 5-9 POINT GAGE AND PRANDTL TUBE

FIGURE 5-10 VELOCITY TRANSDUCER SYSTEM

FIG 5-11 CALLIBRATION APPARATUS FOR VELOCITY

TRANSDUCER SYSTEM

Fig. 5-12 Typical Calibration Curves for Probe

FIGURE 5-13 f - Re RELATION FOR NORMAL DEPTH TESTS

FIG 5-15 EFFECT OF BARS ON VELOCITY

FIGURE 5-18 DIMENSIONLESS VELOCITY PROFILE

FIGURE 5-19 GENERAL RESISTANCE DIAGRAM FOR UNIFORM FLOW IN OPEN CHANNELS (SAYRE)

.

FIGURE 7-1-1

FIGURE 7-1-2

FIGURE 7-1-3

SMOOTH BOUNDARY $\frac{L}{b} = 0.0$

FIGURE 7-2-1 a BACKWATER RATIO VS CHANNEL OPENING RATIO L/b=0 SEMI-CIRC. ROUGH CHANNEL $y_i/y_n \le 1.50$

ROUGH CHANNEL 1.50 $\leq y_i/y_n \leq 2.50$

FIGURE 7-2-2 DISCHARGE COEF. VS CHANNEL OPENING RATIO L/b=0 SEMI-CIRC. ROUGH CHANNEL

FIGURE 7-2-3 LENGTH TO MAXIMUM BACKWATER

FIGURE 7-2-36 LENGTH OF SURFACE PROFILE BETWEEN y & y

BRIDGE LENGTHS - ROUGH CHANNEL - M'= 0.7

S=0.000584, M=0.5, L/b=0

62

Centerline

FIG 7-2-8 VELOCITY PROFILES AT MAXIMUM BACKWATER Q = ICFS, 3=0,000SF4, M=0.5, L/H=J

FIG.7-2-9 ISOVEL DIAGRAMS IN FPS Q=ICFS, S=0.000584, M=0.5, L/b=0

FIGURE 7-2-10 GENERALIZED BACKWATER RATIO

RY I_b , ROUGH BOUNDARY $\frac{L}{b} = 0.5$

FIGURE 7-2-14 SUMMARY OF BACKWATER RATIO, GEO-METRY I, ROUGH & SMOOTH BOUNDARIES

ROUGH BOUNDARY, $\frac{L}{B} = 0.00$

FIGURE 7-2-16 HEAD LOSS COEFFICIENT, GEOMETRY I_b ROUGH BOUNDARY $\frac{L}{b}$ = 0.5

-9

FIG. 7 - 3 - 1 BACKWATER RATIO FOR DUAL PARALLEL BRIDGES $F_n = 0.10$, AND 0.15

 $F_{n} = 0.20$

FIG.7-3-3 BACKWATER RATIO FOR DUAL PARALLEL BRIDGES

F_n = 0.25

F_n = 0.30

FIG. 7-3-5 BACKWATER RATIO FOR DUAL PARALLEL BRIDGES

FIG. 7-3-6 BACKWATER RATIO FOR DUAL PARALLEL BRIDGES

DUAL PARALLEL BRIDGES

ROUGH BOUNDARY Ldb = 0.00

FIGURE 7-3-13 SUMMARY OF BACKWATER RATIO, GEOMETRY II ROUGH BOUNDARY

FIGURE 7-3-16 HEAD LOSS COEFFICIENT, GEOMETRY II ROUGH BOUNDARY $\frac{Ldb}{A_{n2}}$ = 7.5 - 15

.

FIGURE 7-3-19 SUMMARY OF HEAD LOSS COEFFICIENTS, GEO-METRY II, ROUGH BOUNDARIES

FIGURE 7-3-20 BACKWATER RATIO COEFICIENT GEOMETRY II ROUGH BOUNDARY

FIG. 7-4-I BACKWATER RATIO FOR ARCH BRIDGES WITH WINGWALLS $\Phi_{\rm I}{=}\,30^\circ$

FIG.7-4-4 BACKWATER RATIO FOR ARCH BRIDGES WITH WINGWALLS $\Phi_{\rm l}{=}90^{\circ}$

FIG.7-4-5 BACKWATER RATIO FOR ARCH BRIDGES WITH WINGWALLS

FIG. 7-4-6 - GENERALIZED BACKWATER RATIO FOR ARCH BRIDGES WITH WINGWALLS

ROUGH BOUNDARY $\Phi_1 = 30^{\circ}$

FIGURE 7-4-9 BACKWATER RATIO, GEOMETRY III ROUGH BOUNDARY $\Phi_1 = 60^{\circ}$

FIGURE 7-4-10 BACKWATER RATIO, GEOMETRY III ROUGH BOUNDARY $\Phi_1 = 90^{\circ}$

ROUGH BOUNDARY $\Phi_1 = 30^{\circ}$

ROUGH BOUNDARY $\Phi_1 = 60^{\circ}$

FIGURE 7-4-16 SUMMARY OF HEAD LOSS COEFFICIENTS GEOMETRY III, ROUGH BOUNDARIES

Δ

e = 0

FIG. 7-5-2 - BACKWATER RATIO FOR ECCENTRIC ARCH BRIDGES

FIG. 7-5-3-BACKWATER RATIO FOR ECCENTRIC ARCH BRIDGES

e = .85

e = .90

FIG. 7-5-5-BACKWATER RATIO FOR ECCENTRIC ARCH BRIDGES

e = .95

e = 1.00

ROUGH BOUNDARY e = 0.0

FIGURE 7-5-10 BACKWATER RATIO GEOMETRY IY ROUGH BOUNDARY e = 0.85

ROUGH BOUNDARY e = 0.9

FIGURE 7-5-12 BACKWATER RATIO GEOMETRY IV

ROUGH BOUNDARY e = 0.95

ROUGH BOUNDARY e = 1.0

FIGURE 7-5-14 SUMMARY OF BACKWATER RATIO GEOMETRY IV ROUGH BOUNDARY

.

ROUGH BOUNDARY e = 0.9

FIGURE 7-5-19 HEAD LOSS COEFFICIENT, GEOMETRY IV ROUGH BOUNDARY e=0.95

ROUGH BOUNDARY e = 1.0

 $\Phi_2 = 15^{\circ}$

⊉₂ = 30°

FIG. 7-6-5-BACKWATER RATIO FOR SKEW ARCH BRIDGE

ROUGH BOUNDARY $\Phi_2 = 0.00$

FIGURE 7-6-8 BACKWATER RATIO, GEOMETRY Ψ_a ROUGH BOUNDARY $\Phi_2 = 15^{\circ}$

ROUGH BOUNDARY $\Phi_2 = 30^\circ$

FIGURE 7-6-10 BACKWATER RATIO, GEOMETRY Ψ_a ROUGH BOUNDARY $\Phi_2 = 45^\circ$

ROUGH BOUNDARY $\Phi_2 = 15^{\circ}$

GEOMETRY Va. ROUGH BOUNDARIES

.

ROUGH BOUNDARY Φ_2 = 15°

ROUGH BOUNDARY $\Phi_2 = 30^{\circ}$

METRY V_b rough boundary

ROUGH BOUNDARY

.

**

ROUGH BOUNDARY $\beta = 0.00$

ROUGH BOUNDARY $\beta = 0.3$

FIGURE 7-9-4 SUMMARY OF BACKWATER RATIO, GEO-METRY VII, ROUGH BOUNDARIES

FIGURE 7-9-6 HEAD LOSS COEFFICIENT, GEOMETRY VII ROUGH BOUNDARY, 8 = 0.3

FIGURE 7-9-7 HEAD LOSS COEFFICIENT, GEOMETRY VII ROUGH BOUNDARY, $\beta = 0.5$

FIGURE 7-9-8 SUMMARY OF HEAD LOSS COEFFICIENT GEOMETRY VII ROUGH BOUNDARY

FIG 8-5-3 SLUG FLOW AT BARREL EXIT

FIG 8-5-4 FREE DISCHARGE JET

FIG. 8-9-2 HEAD LOSS COEFFICIENT FOR GEOMETRY Ib SMOOTH BOUNDARIES, $\frac{L}{b} = 0.25$

N

 I_b SMOOTH BOUNDARIES, $\frac{L}{b}$ = 0.75

FIG.8-9-7 HEAD LOSS COEFFICIENT CURVES FOR GEO-METRIES Ig, & Ib, ROUGH BOUNDARIES

FIG 8-9-8 HEAD LOSS COEFFICIENT CURVE FOR GEOMETRY Ψ_b , ROUGH BOUNDARIES

FIG.8-9-9 HEAD LOSS COEFFICIENT CURVE FOR GEO-METRY VI, ROUGH BOUNDARIES

GEOMETRY VII, ROUGH BOUNDARIES

FIG.8-10-IGENERALIZED BACKWATER RATIO GEOMETRY Ia, SMOOTH BOUNDARIES, $\frac{L}{b} = 0.0$

FIG.8-10-2GENERALIZED BACKWATER RATIO GEOMETRY Ib, SMOOTH BOUNDARIES, $\frac{L}{b}$ = 0.25

FIG 8-10-3 GENERALIZED BACKWATER RATIO GEOMETRY Ib, SMOOTH BOUNDARIES, $\frac{L}{b} = 0.50$

FIG. 8-10-4 GENERALIZED BACKWATER RATIO GEOMETRY Ib, SMOOTH BOUNDARIES, $\frac{L}{b} = 0.75$

FIG. 8-10-5 GENERALIZED BACKWATER RATIO GEOMETRY Ib, SMOOTH BOUNDARIES, $\frac{L}{b}$ = 1.0

FIG. 8-10-6 SUMMARY OF BACKWATER RATIO CURVES FOR GEOMETRIES IG AND ID, SMOOTH BOUNDARIES

212

FIG. 8-10-7 GENERALIZED BACKWATER RATIO GEOMETRIES

FIG. 8-10-8 GENERALIZED BACKWATER RATIO GEOMETRY Vb, ROUGH BOUNDARIES

FIG. 8-10-9 GENERALIZED BACKWATER RATIO GEOMETRY VI, ROUGH BOUNDARIES

FIG.8-10-10 GENERALIZED BACKWATER RATIO GEOMETRY VII, ROUGH BOUNDARIES

(LOA 6561, J 2 M) NOITAV313

(LUA ESEL , L & M) NOITAV313

(LUA ESEL , J 2 M) NOITAVAJA

(LOA CSCI, J 2 M) NOITAV313

ELEVATION (N S L, 1929 ADJ)

(LOA ESEL , I.S. M) NOTAVAJA

(POV 6261 ' 1 S M) **NOITAV313**

INDIANA FLOOD CONTROL AND WATER RESOURCES COMMISSION

ELEVATION (M S L., 1929 ADJ)

(LOA 8261, J 2 M) NOITAVAJA

(LOA 6261 ... S. M) NOITAVAJA

(TOA 6261 ... S.W) NOITAVELE

ELEVATION (N S L., 1929 ADJ)

(LOA CSEL , J 2 M) NOTAVELE

(LOA 6501 , J 2 M) NOITAV313

(TOA 9261 . L & M) NOTTAV313

ŧ

(TOV 6261 "1 S M) NOILVA313

(LOA 6561 , J 2 M) NOITAV313

(LOA CSEL .. I S M) NOITAVAJA

ELEVATION (M.S.L., 1929 ADJ)

(LOA ESEL , I 2 M) NOITAVAJA

								: ::::						1
	#:::;	# :::::::::::				#::::		:::::			S		.0	
		++			*******						2			
	-					\mathbb{H}					ă		0	
						1.			E S		Ż		-	
									*****		ā	n c	, ü	
			+							S	z z	8.9	HS	
	N		+			HE	N			α c	ພໍພິ		2	
	N				• • • • • • • •		N		2	z	8 >	ы s	2	
				::::‡2		*** **		:#:::#	N	4SI	A BR	× :		1
		#****		::::		#	KI		+	Ū.	ΕJ	er i	į	
						i E e e e e			+ + + + +	•	<u>۳</u>	2 2		
AR III	<u> </u>					i e e e e					H H	œ °	, I	
3						 	<u>kt :: : : :</u>	: ::::			<i>s</i>		~	
⊨				111111		#=====	N	: ::::	†:::::		ົ້ພ		່ດ	
										1	N.			
N						HE]			-	
	<u> </u>					+	N				,		L	8
								:::::	‡77774	::::	1		****	Ň
G						#		:::::						1
4-1	KI		1			E	kl : : : :	:						
Ň				:::::		#::::	N	:1:::4		::::				
L	N						N	1	ł					l ĕ
	N					;::::	N							1
ů – – – – – – – – – – – – – – – – – – –	<u>N</u>	.	+				\mathbb{N}		z					-
¥			::::::	1111111		it : : : i		::::::	::2:					
		.	+ +	+-		+	<u> </u>		+ <u>5</u>				+ + + + + + + + + + + + + + + + + + + +	8
e e						H	kl · · · ·		SA					1
4 d	kt													-
	N		::::::	:::::		; t : : : :	N							1.
	N					12222	N	:::::	ļ::::		11222			
	Ν					<u>.</u>	N							12 1
	<u>N</u>					i	N							2
	<u>t</u> rž.					1:3:								- u
						MA.		:::::						N
	N-§-	.				<u>-</u> <u></u>								19 1
	N :	: ::::::::::		::::::	111 1111	1 :	N	::::::	i::::	::::	1			1 2
	N					÷ F · · · · ·	N		+					1
	N		5	5				1.1.1.1	* ~					
	<u>N</u>						N							2
						## : : : :		: <u> </u>	1					=
													H	-
	N : : : :					12::::	N	:::::						
	N							:12::		1				0
	N						N							4
				****		#								
	1.													
2						E							Ξ	
	N	+ +				++			+					Ē
	N													1
	N											ШĿ		1
							6		+ + + + + + + + + + + + + + + + + + + +					
						++	H H	:::::	+	1	+++++			20
N	N					H	5		11:1:		111::			Ť
×	k –						H H						H	1
· · · · · · · · · · · · · · · · · · ·						#	N S	: : : : :	11:11	1::::	ttitt			
······································	N				***	# :::	N Š		*****	****	11111			10
Z	<u> </u>					1	N S		+++++	EHH				Ĩ
E C						#		:	L. É.	F	H		Ē	
3						# :::		: . : : : :	+++++	****				1
₹					******	 					****	****		1
	LI					1.			Hill		HH	HH		6
								:::::	+++++		tt H T		H	1
				****		++		:::::	****					1
								:::::::	E					
		++		*****		+++++++++++++++++++++++++++++++++++++++		+++++	HHE	I I I I I	+++++		++++	1

(LOA ESEL , L 2 M) NOITAVELE

ELEVATION (M S.L, 1929 ADJ)

(LOA 6261 , J.2 M) NOITAVAJA

(LOA ESEL, IS L, IOUTAVAJA

ELEVATION (M S L., 1929 ADJ)

ELEVATION (N S L, 1929 ADJ)

(LUDA CSCI, L & M) NOITAVELE

(nav ezei ' 1 's 'w) **ELEVATION**

ELEVATION (M, S.L., 1929 ADJ)

ELEVATION (M S L., 1929 ADJ)

ELEVATION (M S.L, 1929 LU)

(LOA 8261 , J 2 M) NOITAVAJA

		30		ىق 2		L	2		20		30									
E		THE				:::;					4#1		1111							
ł										++++	++++++						S		u	n
-								1111	::::								F		L	5
Ē															2		P		-	-
				1111						tit:	::	****		+++++	+++=		AN		:	-
ŧ											\mathbb{X}					H	ō	>		
ł								::::		:::;	(\mathcal{X})				liit	Ĩ	≤	ы Ш	ON I	
Ē											Y	. W			ò	0	ы	>	AS	
F										$: \mathcal{R}$	1		::::		<u>-</u>	AN	ã	AN		
ŧ											A					Ň	8	2	LE:	
ł		+++++			::::	::::	::::	::::	::::		1::::			4		Ĩ	AD		sc/	-
Ē												7					Ro		c	5
						::::	:::::	::::	::::	: N		يرذدنا	/ :		:.:=		z		-	
Ē					NN:			::::	::::	: KN							Ā		٥	0
				::::						зK	::::Z	· • • • •	::::				0		e	<u>i</u>
ł								::::	222			: <u>ē</u> ::							U	
Ę						::::	::::	::::	1	: []			::::			::::				=
ł		<u>+</u> ::::								÷κΝ		:0:::	::: <i>/</i> .					1		-
								£		: N	::::			::::	::::		::::			H
ł		1		.		::::	1161	::::				: <u>-</u> /								Ξg
E		1::::	::::ē	B	N:			::::	::::	: 2		: /: :								<u>=</u> =
ł	H-1	1::::			<u> М</u> :					: N		/:::		::::		::::		1 H		Ħ
	:;::::::										1.15	::::	::::			::::				Ξ
Ē				(/							1		SE
					<u>.</u>]::::	::::			::::	· N	::::	::::	::::			::::				ΞĽ
																		1	++++	-
ł		1::::							::::				::::		::::		::::	1::::	++++	H.
		1									1.1.1.1									10
		1::::		::::		- 1 I I	1:1:		::::		::::	::::	::::			::::	::::		++++	.] on u
		1			N:					-N									++++	-
		1						a :				::::		::::		::::	::::	1::::	1111	: 6
		1						2												
		1::::			N.			2		: N	: .	::::					::::		++++	
							1	5,		- N	949							First Party	THE	8 7
		1	r																	-
1		1		2							DR.									22
		1									A R								1111	H۳.
		1	(· · · · ·								<u>9</u>						++++			
z							1111												1 8	Ħ
SIO										-							• • • •			
W					HH.											+ + + + +		FIII	1.E	8
NO							+ +		·····											
6									1									Hiii		Ħ
Ű					134		+ +	/-							+ + + +				1 1	75
^R					HE:			Ki di		H	1			::::				IIII		8
E S					N:		kr .		<u> </u>	1.12					+++++					-
æ										. 1.	X ::::							† ††††		
ER						<u> </u>				/-	\mathcal{X}		*****							12
WA.											1.1									
0											K	++++						IIII		H
AN			1111								\therefore	++++	++++++	+++++				*****		
Ъ																				65
TH													† : <u>+ + + -</u>							
CON																		IIII		H
0									* * * * *	* * * *								* ****	1 1	F .
LOO																		Ŧ		38
E.												+ - +	1::::					* ****		Ħ
ANA			1		H:	H H H					+++++		HIII:					TTTT		H
IDI.																		1	111	H
-			1	1	1	1	1111	1	1		1		Li.L.	1111				IIIII	1111	22

(104 6261 " S W) NOITAV313

(LOA 829 L, IS M) NOITAVAIA

Bridge Number 2C Pogue's Run to Jefferson Aerial photographs 48 (170-1) Scale: one inch represents 50 feet July 1963

FIG 9-3-6

744

730-729-728-7 735-736-737729

.

732 731 730 725

726 725 731 730

•

733 734 735 736

739 738 737

July 1963

729 730 731 732 733 734 735 729 34 <u>733 - 732 - 731 730 729</u> 738 736