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PREFACE

The work presentad in this report is ¢losely related to that performed
undar preject OWRT-B-083-IND entitied "Multilevel Approach to Urban Water
Resourcaes System Anzlysis-Application to Madium Size Cities.' The present
report is essentially the counterpart of Technical Report No. 137, entitled
“Planning Ground Water Supply Systems for Urban Growth: Appiication to
West Lafayette, Indiana, by G.V. Loganathan, J.M. Delleur and J.J. Telavage,
which was concerned with the determination of the optimal location of water
wells and of distribution reservoirs as well as optimal flow rates and
pine sizes for the water supply of & growing town. This report is concarned
with the conflicting goals of Tand use expansion and the control of the
quality of urban runoff effluent. A probability distribution approach is
used to obtain the distribution of the overflows and of pollutant concen-
tration Tevels in the receiving stream. At the planning level this approach
is simpler than the simulazion approach developed in the previous research
project and reported in Technical Report No. 101 entitled "Urban Storm-
Drainage Systems Planning” by $.A. Dendrou, J.J. Talavage and J.W. Delleur.
The present reports also extends the theory of Multi Criteria Decision
Making, and the application to West Lafayette shows that it is a viable

tool which deserves further investigation.
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CHAPTER I

INTRODUCTION

1.1 Introducktion: Ever growing urban cities with relatively

searce land and water resources, require proper planning for
the enhancement of living conditions for the city dwellers.
As the population increases, the demand fﬁf fand and water
increases. The expansion of cities produces changes in the
land /water interface. As the result of the need to keep
ahead of the impending problems, research on the interaction
of land use development and stormwater planning is
necessary. This research c¢oordinates many facets of land
use planning with the areas of stormwater runoff and
wastewater collection.

1.2 Stormwater Modeling: Urban stormwater management is one

of the areas of active research in hydrology. it is
concerned with the cause and effect relationships of the
quantity and quality of stormwater and cptimal control
alternatives so that the effects c¢an be controlled at a
desired level (Medina,1979). Models describing stormwater
management are varying in debail depending upon the level of

accuracy desired. In general these models fall into three



categories, namely:
(1) Design Storm Approach
(2) Simulation Medeling, and

{3) Derived Distribution Approaches

Designlﬂstorm_ Approach: This approach provides a means of
estimating rainfall depth or intensity for a specified
duration and given frequency which will be wused in
estimatﬁng runeff peaks and volumes. The design storm is

cbtained from frequenpy—durationnintensity curves or from
other statistical means based on rainfall records, The
design storm is usually coupled with the rational formula or
& unit  hydrograph method %o obtain the runofrf. This
approach neglects the storage carryover effect that'may
exist in the drainage system by ignering the time interval
between storms. Ofter an intense short duration storm may
be completely contained by the system rather than a closely
spaced less intense storm series, In the latter case the

‘system is overtaxed and an averllow occurs.

Simulatipn Modeiiqg;*This is considered to be the refined
way of stormwater modeling. This approach simulates the
entire physical system,recognizing not only the properties
of a storm but alse the cumulative effect of close spaced
storms. The storage carryover effect is completely depicted
and . additional information like quality of the =ffluent may

be obtained. These models are expensive, data intensive and

require a large core memory in the computer.
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Derived Distribution Approaches: Thess methods are based on

the statistical distributions of storm variables. Using the
hydrological relationships, distributions are derived for
the dependent variables such as runoff and overflow. This

approach very much depends on how well the distributions of

the original variables can be hypothesized. These methods
are intended to approximate the simulation modeling. They
may yield closed form solutions and are useful for

preliminary planning and design.

1.3 Land Use Planning: Another consideration in stormwater

management is Lhe effect of the degree and type of
urbanization, Changes in land wuse patterns affect both
quantity and quality of stormwater runofr. On the other

hand it has been well realized that, for a comprehensive
land use plan the inclusion of variables pertaining to
natural resources 1is necessary. This interaction between
water resources and land use planning needs to be modeiled
to represent +truiy the response of the wurban drainage
system. Any land use model must be capable of matching the
available characteristics (soil type, slope, ete.) of
parcels of vacant land with the demand characteristics
(water supply, transportation, etec.) of different land use
activities {(industries, residential units, etc.).

1.4 Multiple Objective Optimization: It was stated that

optimal c¢ontrol! alternatives would be necessary to regulate
the cause/effect reiationships. The limited resources

impose an optimal tradeoff between competing needs. In



urban water resources, minimizing .pollution increases the
cost of control alternatives. In land use planning matching
the suppfy and  demand also inereases ‘the cost. This
observation-néturally leads to simultansous consideration of
different objectives. These objectives are, in general,
incommenﬁurabie, thus ruling out the possibiiity of
traditional single objective optimization. In addition the
uncertainty. inherent in the hydrologic system requires the
modeling of land/water interface asg a multiobjective

optimization problem under uncertainty,

1.8 Previous Work - In this section reference is made to
several review papers. As the review Papers are self~-
contained and comprehensive, those topics will not be

discussed in detail.

Urban Hydrology: Delleur and Dendrou(1880) provide an

excellent review of different techniques inveolved in
modeling the runoff Processes in urban areas. . Delleur{1gs81)
clearly explains the various aeffects of urbanization on
stormwater runofr.

Derived Distribution Approaches in Stormwater Management:

Howard(1976) assumes that the storm volumes and intermittent
times between storms are exponentially distributed. This
article’'s central idea is the derivation of analyﬁical
expressions for overflows and related variables. This paper
does not take into account the duration of runoff events.
Di Toro and Smal1{1978) propose a derived distribution for

stormwater overfiows. The flows are assumed to be uniform



over the duration. Flows, duration and intermittent time
are assumed to be gamma distributed. In the formulation
several expressions do not have analytical soiutions and are
numerically evaluated. This often arises in derived
distribution modeling of stormwater runoff. Chan and
Bras(1979) propose a distribution for overf{lows based on
kinrematic routing. This method does not consider carryover
storage. This formulation also requires numerical
evaluation for end results; however it has the advantage of
depicting the time distribution of runeff. Smith (18805
takes into consideraticn the duration of storms. The storm
yolumes, duration and intermittent time are assumed ko be
exponentialiy distributed. The storage level in the
reservoir is also considered as a random variable. The
expression for the distribution of storage level rules out a
strictly analytical selution. This work takes into
consideration many of the criticisms of Howard 's(1976)
paper. Schwarz and Adams(1981) also assume exponential
distributions for storm volumes, duration and intermittent
time. This paper provides analytical expressions for spill
volumes from two detention storage resefvoirs in series.

Land Use Planning: Dendrou et.al (1978) review various land

use planning models. The model which is more suitable for
water resources applicatiqns is the modified version of
DYLAM called LANDUZE. The model LANDUSE assumes an implicit
preferential ordering in allocating land use types because

of its sequential allocation of iand use types.
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Dendrou(1977) proposes a multilevel approach for urban storm
drainage planning. The land use model is used as an input

generator for the storm drainage block using a two level

coordination scheme. Bammi and Bammi{1979) present a
multicbjective formuiation for comprehensive land use
planning. A compesite objective function is generated as

the weighted sum of individual cbjective functions and Lthe
problem is solved. Nijkamp and Vos(1977) suggest a variant
of concordance analysis Lo ¢hoose among alternative projects
which have multiple objectives to be maxmized. A land use
planning project is illustrated.

Multiobjective ontimization: Hwang and Masud{(ig79) present =a

state of the art survey. The various intricacies involved
in Multipie Criteria. Decision Making (MCDM) are well
explained along with a compendium of references.
Stadler(1978) presents =z review of Vector Maximization
Problem(VMP) solving methods. In the area of water
resourcés, Cohon and Marks(1975) is the ‘familiar ‘review
paper exposing the MCDM problem. Haimes, Hall and
Freedman{(1975) indicate the wide range of MCDM problems 1in
water resources with the Surrogate Worth Tradeoff method
proposed by Haimes and Hall(1974), Major{(1977) presents =
few case studies in‘water rescurces systems. CohcnfiQTS)
presents different solution procedures for solving MCDM
problem and contains a chapter on water resources
applications, Keeney and Wood(1977) iilustrate AN

application of Multiattribute Utility Theory in water



resources planning. Musselman and Talavage(1980) propose a
tradecff cutting plane algorithm and a stormwater management

problem is solved as an illustration of the method.

1.6 Organization of the Thesis: Chapter II contains the
preblem statement. This Chapter explains the logic in the
formulation of the probiem. Chapter III presents a new

algorithm to solve Multi Criteria Decision Making problens.
There are also example problems éolved using the new
algorithm. Chapter IV contains the analytical treatment of
storm drainage planning. Closed form, tractable solutions
are obtained. Chapter V illustrates thé application of the
metHodology to West Lafayette. Chapter VI contains the

conclusions.



CHAPTER I1I

PROBLEM STATEMENT

2.1 Introduction: In this chapter the land/water interface
problem is described. The land use planning portion-of ths
problem is presented in §ection 2.2. The water resources
part of the problem is explained in section 2.3 and the
whole problem is presented in section 2.4.

2.2 Land Use Pianﬁing: Land 1is heterogeneous in nature.

Each parcel of land is characterised by rhysical elements
such as soil type and slope. In addition to the physical
characteristics , man made changes like transportation
facilities, water supply, also affect the value of land. It
has been well established that a proper comprehensive land
use plan must involve the interrelationshin» between the
environmen£ and the urban development.(Dendrou et al,,1978).

The land use neéds are estimated based on
population projectien for a fubture time. The land use needs
are £o be achievad wiﬁh makimum satisfaction at a minimum
cost. The notion of satisfaction is involved because

certain land use types  have specific need for certain



physicai and sociological characteristics.(e.g. land use
type 'school’' may require a low noise environment with good
transportation facilities). Hence there is =z supply side
pertaining te the characteristics of the vacant land and =a

demand side depicting the characteristics reguirement of the

different land use types. This leads to ‘characteristic
matching’. This sort of matching naturally results into a
location ~ allocation problem.which requires a 'minimum cost
plan’,

2.3 Formulation for Land Use Planning: The land use demand

estimates are based on population projections obtained from.
the standard OBERS projections (combination of Office of
Business Economics{OBE) , U.S.Department of Commerce and the
Economic Research Service(ERS) ,VU.S.Department of
Agriculture). The supply of land units is described by a
set of atiributes that characterizes the zones approximating
the natural areas and neighborhoods. Examples of attributes
are physical=~topographic characteristics{es.g. soil type,
depth to bedrock), and characteristics: describing the
availlability of community services and facilities(e.g.
transportation accessibility, avaiiability of water supply

and sewar).

On the demand side the loosely coordinated private
locational decisions are aggregated into ' several land use
categories, for example, industrial, commercial, housing

stc. These activities require diffsrent attributes with
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different levels of importance. Some attributes may be
eritically needed and some are not{e.g. water supply is
critical for - housing wunits). A matching between demand

- requirement and supply availabilities is rpossible at the
level of attributes ip both the supply and the demand are
characterized by the same set of attributes. Based on this

logic the fellowing formulation is presented:

Ay = total area available for development in zone j

By = total capital available'for develeopment of zone j

D = set of pairs of %ones (I,m), such that
the distance between them is less than or equal
to p, {1,m)] dy, = 2 }.

D, = Discrepancy set which contains all land
use activities i and zones j which will result in
mismatches if the allocations are made.
For example land use type 1, industry requires
industrial water, But zone 1 does not have
industrial water. Hence {(1,1) will be a member
in D, . This set is constiructed by comparing the
available characteristics by zZones and the
required charachteristics of the different
land use activities.

Umae .é ratiec of the abstraction storage

and the mean runoff volume
corresponding to 100% urbanization,

Wy = weight to indicate the degree of
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3

H

i1

disturbance (e.g. street flooding) in zone j.
large positive number

0 if a particular characteristic or

attribute k is absent in zone J

{e.g.no water supply)

if the characteristic k is available

projected number of required land use activities
of type i.

{(e.g. if 3 schools are needed and i=l=gschool,
then X,=3)

number of land use activities of type 1

assigned to zone j.

area required for land use activity of type 1i.
cost of locating land use activity of type i

in zone j

distance between zones | and m

total number of different types of activities, e.g.
{ 2 different types: (1) school (2) industry }
total number of zones

urbanization factor{fractional runoff volume Eain
because of increased imperviousness and decreased
abstraction storage}

deviational variable for characteristic

matching between ZCxj and §;;.

This variable permits activities to be assigned

to a zone J where the required characteristic k
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need not be present. For example zone 1 may not
have industrial water (charackteristie i), 22, = 0,
But land use type 1, industry which requires

characteristic 1 might still be allocated

to zone 1. Consider §pq-dy tdy =0,
then §,,=1 implies d,,*=1 which is a mismatch.
di;~ = deviational complement

This variable pérmits a particular land
use typé i not to be assigned tg a zZone J
which has the required characteristic k for
the land use type i. For examplé land use Ltype |
industry may not be assigned to zone 1 which has
industrial water available (characteristic 13
Consider &;,-d;,*+d,,~=1,
then 8,;=0 implies dyy~=1.

§;:; = 1 if land use type 1 is allocated

to zone j; O otherwise

The characteristic matching portien of the problem may be
described as follows. The discrepancy set D, is identified
based on the pairs (i,j), indicating that alloccating i'th

type of land use in zone J will result in 2 imismateh {e.g.

locating commercial center(type i), far off from the gity
(zone j) is g mismateh). Such allogations are to be
minimized. Thase allcocations may be welgted with number of

such activities allocated or the total number of mismatches



13

{sum ¢f =zll such dij+) may be counted, In the present
analysis the weighted objective function results in
nonconvex objective T[lunction  and hence is not used. Only
d;;* deviations are considered. Because of the convergence
criterion the d;;* terms are squared to obtain a strictly
convex objective function. Thus the objective function for
land use planning may be written in two parts. The first
part is the characteristic matching which is written as a
minimization of sum of the squares -of the deviational
variables and a minimization of the cost. The mathematical

formulation of the land use problem is as follows,

Min Z;Z; (d;;%)2? { characteristic matching }

Min Z;Z;C;; X335 { cost minimization}

subject to:

6;; 2 ZCy; (eritically needed characteristic) (1)
for some values of 1,

6y = diy* + dg;” = ZCyy o (2)
for all i,j € D,

0 ‘ (3)

dij* dyy S
for all i,j e Dy
u ?Afzizjaiwjxij/ZjAj]Umax (4)
for i=1.,2,....m; j=1,2,...,n.
Z;a;X;; £ A; (area constraint) j=1,2,..... .n (8)
Z;C;X;; £ B; (budget constraint) j = i,z, ..... n (8)

Xpi1— MES;m — M&;, = 0 (min. distance) for (i,m) € D (7)

Kyj = M{1 =~ §_.;) 2 0 (compatibility) (8)
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¥iX;; & X; (total number of land use activities)

(i =1,2,..... m) (8)
Xij & Ms;; (10)
Xij 2 85 (11)
6;; =1 {12)

Kizabyj z 0 and integer

Constraint (1) restricts ‘the .Jand use.types.tO'bé located in
a zone only ,if the erdtical charactéristic is ‘present.
Constraint (2 allows Tor  flexibi1iby  in nenecritical
charactéristics. Constraint (3) restricts only one .of the
deviational variables ‘Lo be present or'bothfcanibﬁ.ab$ent,
Constraint (4) conmputes ‘the urbanization factor. The
urbanization factor u is compubed as :a Traction .of ‘kEhe 100%
Urbanization factor Umax depending wupon the land use
allocations. fConstraint £5) accounts for  the land
availability.

Constraint (8) -ensures the budget is satisfied.
”Constraint-(7)'says that the land use type .k will be located
in zone 1 if and only if 8y, is positive and -eitheér at least
onie of the zones in D has iand use ‘type 1 or zone | -itself
"hés land use "typs -i. For :example ‘it 'is preferable to have
‘residential units .and .a .sc¢hool hogebher., e dand use
~typesrk‘and:iamustibe.010$e“to_eachw0ther.

Congtraint (8) impasas‘kénd use type i bo:be.absent if land
use ‘Lype r . is ‘present.

Constraint (9) restricts fhe number .6f land use aebivities
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of each type.
Constraints (11) and (12)impose the conditions
when 5i} = 1 Xij > 0

when §;; = 0, X = 0

i ]

2.4 Urban Runoff Management Planning: Figure 2.1 shows the

stormwater runoff process. The runeff volume. #:{in) which
occurs over =a perod of Xz(hr) is treated at the treatment
fate ‘a’(in/hr). If the runoff volume 4is less than the
amount that can be treated in X5 hours there Is ro need for
storaze. Otherwise the excess runoff is to be stored so
that it can treated at a later time. If a second stornm
cccurs in guick succession X; hours after the end of the

previous runoff event it is quite possible only part of the

storage will be available. If the second runeflf event
excess volume is greater than the availabie.storage ;o an
overflow Y{in), oeccurs. Because ¥;, X, and ¥. =are randonm
variables, Y is also a randem variahle. In the present
analysis BOD is considered to be the rollutant. The

overflow containing the pollutant of concentration C.{mg/1)

reaches the the receiving body. The receiving body also
contains the pollutant with concentration Cp{mg/1). In
general, the government reguiabtions recguire the minimization

of mirxed pollutant concentration C,(mg/l1) in the sktreamn.
This can be interpreted as, the sxceedence probatility of

some bthreshold concentration. must be a minimum.
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Figure 2.1 Schematic Representation of Urban Stormwater Runof? Process.




Minimizing the pollutant concentration reguires larger
storage and increased treaktment capacity, which in turn
resuits in higher cost. The  Thydrologic yportion of the

problem may be stated as,

min C,{(a) + C,(b) (drainage cost minimization)
min € {risk minimization)

subjeszt te: P(C,

where:

Ci(a) = cost of treatment process (dollars)

Cz(b) = gcost of storage {(dollars)

Cm = mixed concentration {(mg/1)

C, = threshold concentration (mg/1)

€ = very small probability of exceedence (e.gz. 0.01)

2.8 Land/Water Problem: The whole rroblem may be stated as

follows,

min Z;%; {d;;*>? (characteristic matching)

min Z;; Cyy Xiy (iand development cost minimizaticon)

min C,(a) + C,{b) (drainage cost minimiéation}

min ¢ {(risk minimization)

subject Lto:

(1) land use constraints (secktion 2.2)

(2} probability constraint (section 2.3

Because the interest lies only on the total ceost, the land
use cost and drainage cost can be combined into one. This
is a three objective optimization problem. In Chaptgr ITI a

methodology will be developed to solve a general
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multiobjective problem. Chapter IV contains the theory

underlying the probability constraint development.
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CHAPTER III

MULTIOBJECTIVE OPTIMIZATION:

AN INTERACTIVE CUTTING PLANE ALGORITHM

3.1 Introduction: An algorithm to sclve a general Multi

Criteria Decision Making (MCDM)problem is presented in this
chapter. Various definitions and approaches of solving MCDM
preblems are presented in section 3.2. The nonconvexity of
the objective space under concave mapping from the feasible
region is explained in section 3.3. A few useful results
for the set ¥ = {y| y = f(x) for socme x € X} and its
relations with the objective space are established in
section 3.3. The actual algorithm is presented in section
3.4. Section 3.8 contains the proofs for the efficiency of
the generated points and for the convergence of the

algorithm.
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3.2 General Multiple Criteria BDecision Making PFroblem:

Multiple Criteria Decision Making (MCDM), Vector Maximization
Problem(VMP), Multiobjective Optimization Problem(MOOP} all
mean the same problem. The Vector Maximum Problem may be

stated as (vector maximization is denoted by, V - Max)

(VMP) : V. - Max f(x) = [fi(x), Fal(x),. ..., s Felx)]
subject to: gy (x) S0, i = 1.,2,..... . M

where: ¥ 1s an n dimensional vector of decision variables
fi{x), i = 1,2,..1,,,p are the p objective or
criteria functions *
g:{x), i = 1,2,..... . are the m constraint
funections

The objective functions are noncommensurable, Ir the

objective functions are commensurable the problem reduces to
a scalar maximization problem. The following definitions
will be used for the development of the algorithm.

1) A Feasible Solution is a vector X satisfying the

constraints g;(x) 2 0, i = 1,2,..... .
2) Feasible Region dencted by X, is the set of all feasible
solutions. i.e, H={yx| g:{x) S0, i = 1,2,.....,m},

3) Objective Space dencted by T, is the set of points mapped

by the vector objective function f, from the feasibla
region, i.e. T = {t}] f(x)=t, xze X}

4) An Efficient Sclution(Nondominated Solution, Pareto

Optimal Solution) denoted by x% is a feasible solution such
that there does not exist another feasible solution x, which

can improve at least cne objective function without hurting
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at least one other objective function. i.e. if
£:(x)>0;(x%), then there exists at least one other Jj such
that 1;(x9) > r;(x)

5) A Best Compromise Solution is an efficient solution that

is best with respect to the Decision Maker's(DM) preference
structure

8) A Superior Solution denoted by x5 is a feasible solution

which maximizes all the objectives simultaniosly, i.e.
f(x%) & F{x), for all x g ¥

7) A Utility Function{Preference Function) denoted by U, is

a scalar valued function which assigns higher values for
more preferable points (actions) within the set over which U
is defined.

Note: x* is the best compromise solution if and only if

U{x*) 2 U(x), for all x g %

Methods which solve MCDM problems fall inte three
categories:
1) Metheds which do not use any knowledge of DM's
praeferences. (E.g. methods which generabte all the
efficient solutions)
2) Methods which use completely prespecified preferences of
the DM, (E.g. (a) Goal Programming (b) Multiattribute
utility theory)
3) Methods which use progréssive!y revealed preferences of
the DM. (E.g. Interactive methods)

Why efficient sclution?: It is assumed that the DM prefers
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higher f(x) values for every x & X. If f(x!) > £{x2) then
the DM will choose %! over %2, This assumpﬁion implies that
the sclutién of the VMP is among the efficient points and
all the dominated solutions can be deleted from
consideration,

An evaluation:

1) Methods which do not use any knowledge of DM's

preferences: In these methods all the efficient points are

generated. Usually Lthe VMP is formulated as a parametrie
scalar maximization problem. In general these problems
generate an infinite number of efficient points. This
implies that analyzing all the efficient points is a tedious
process, An  obvious inference will be te couple the
efficient point generation scheme with = preferential
structure so that only a subset of the efficient set needs
to be considered for the best compromise sojution. -

2) Methods which use completely prespecified preferences of

the DM: In these methods the DM is clearly able to state his
preferences. Because the preferences are known explicitly,
it is possible to reduce the VMP to a single scalar maximum
pProblem. The amcunt of subjectivity involved in this
approach needs careful attention.

3) Interactive methods: These methods involve g progressive

dialogue between the DM and the analyst during problen
sclving. The interactive methods involve the following

steps:
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a) generation of a feasible point (efficient point is
preferable)

b) adjusting for compatibility with DM's preference choice,
¢) flipping back and forth between steps (a) and (b) until
the DM is satislied.

By incorporating efficient point generation scheme as step
{(a) the cognitive burden on the DM can be reduced because
each iteration leads to a 'nothing is lost’' situation
because of the efficisncy of the generated point.

A few observations

a) Even though MCDM probiems invelve solution of wvecktor
maximum problems, these problems can be solved as single
scalar maximization problems (metheds in category(2)) or =a
series of scalar maximization probliems{methods in
categories(1) and{(3)),.

b) The efficiency of the MCDM solution procedure also
depends on the type and amount of information required from
the DM.

¢) Many times MCDM problems involve solving a series of
nonlinear programming (NLP) problems. Naturally the
efficiency of MCDOM solution procedure depends on the

efficiency of the NLP code used.

In NLP proeoblems the gradient based methods have better
convergence properties than the direct search technigques.
it also turns out that, though the utility function is only

implicitly known to the DM, the information regarding the
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gradient of the wutility function U, with respect to its
components symbolicaliy denoted by VU, can be easily
provided by the DM. There are a number of interactive
methods which take advantage of this 6bservation. Iin the
foliowing section an algorithm is presented which eiiminates
an unwanted portion of the feasible region, along with the
generation of an efficient point at each iteration with the
use of gradient information

Notation: f{x%) will be denoted as %, the components wil]
be dencoted by £k,

3.3 Preliminary Analysis: Consider the (VMP),

"{P1}: ¥V - Max f{x) = [r (=), £,(x), ... .. fe{x)]

subject to: x g ¥
In general a utility function UCr o faun.... .fp) is defined
on the cobjective space T (range under the mapping £ from the
domain X} for the scalarization of VMP.
i.e. (P2): Max Ulf, ,fa...... el

subject to: x g X

Solution Lo (P2) is the best compromise solution,

Assumptions:

1) X is a convex, compact setb.
2) f3{(x) are differentiable and concave on X.
3 U is strictly increasing and differentiable.

It turns out that the range space T need not be a convex set

when f is concmve.
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y=logx

»{

Figure 3.1 Nenconvex Objective Space
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Example(Moesake, 1965): Let X = {x[ x > 0} , convex set

F,(x) = x , doncave
f2{(2) = gog % , concave
The objective space T, is the Zog % graph which is not a

convex set, Figure 3.1.

In general it is desired that the function U be concave,
but it is il! defined on T if T is not a convex set. One
way to overcome this difficulty is ke create a new set which
is

{13 convex (Theorem 3,1)
{2) the optimal solutions of the new set and of
the range space must be the same (Theorem 3.2)
A special set YV is presented which has the above two
properties, Let,
Y o {yl.y 5 (%), for some % & X}
Note: T is a subset of Y. T € ¥
The following Theorem and the proof can be found in
(Moeseke, 1985) .

Theorem 3.1(Moeseke,1985): If X is & convex set and £ is

concave on X, then Y is a convex sekb.

Proof: Let yi,y? g v

To show: Ay' + (1 -~ A)y2 ¢ Y ; 025 ) 5 1

y'* € Y implies that there exists x! g X such that y! 3 f(x!)
y? € Y implies that there éxists x? g X such that y? 5 r(x?)
Because X is s convex set, k¥ € X where x = Ax! + (1 - A)x2

f concave on X implies,
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£{x) 2 A (x') + (1 - AXr(x?) = Ayl + (1 - Ny2 =y,
implies y € Y. Hence Y is convex. , Q.E.D.
Following Sadagopan(i980) we will prove the following

Theorem for the general case.

Theorem 3.2: Let {P3): Max U{f(x)]

subject ﬁo: f{x) € T
and let {P4): Max Uly]

subject to: y & ¥

The optimal solution set T* of (P3) and optimal soiution set

Y* of (P4) are equal. |

Proof:

Casel: To show T* ¢ Y*¥

Let t* € T* which implies t* £ ¥ because TCY

claim: t* g ¥*

assume t* ¢ Y* which implies that there exists

y* € Y* such that U(y*) > U(t*)

By construction of Y there exists f{x*) € T

such that f{(x*) Z y* which implies

ULE(x*)] 2 UCy™) > U(L*)

contradicting the fact £% g T*

Hence t™ ¢ Y* implies T* C v*,

Case 2: To show Y* C T*, let y* g Y*.

Since Y @ T, if we show y* is in T,

that will imply y* ¢ T*.

claim: y* g T

By construction of Y for y* € Y* there exists,
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f(x?) € T such that f(x*) z y*

If 7 (x*) > y* then U[r{x*)] > Uly™)

Also f(x*) € T C Y contradicting y* é ¥,

Hence f(x*) = y* impiying y* € T which implies y* g T*

Hence Y* C T¥*, ' . @R.E.D.

In the folléwing section an algorithm which makes use of
a tradeoff cut proposed by Musselman and Talavage{1981) is
presented. The algorithm progressively eliminéées portions
of the feasible region where the maximum of the objective
can not lie(lemma 3.1). It is shown that the aigorithm
generates only efficient points(Theorem 2.3) and eventually
converges to the best compromise solution in a finite number
of steps(Theorem 3.4) or in the limiting sense(Theorem 3.5).

3.4 Algorithm:

The objective function is
{(Pz) Max Uff]

subject to: xg X

where: U = ytility funection
f = vector objective Ffunction
X = feasible region

Assumpbtions:

1} X is a convex, compact set in R©

2 U is not known explicibly

3) U is concave on the convex set Y

4) U is strictly increasing in its components

B) U and f are differantiable
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8) Each f; is concave on the convex set X and at least one
;i is strictly concave.

Tradeoff cut generation:

Lemma 3.1{Musselman and Talavage,1980): Let U{(y) be concave

on the convex set Y.

If Uly) > U(y9) then VU(y®).(y - y%) > 0

Lemma 3.1 implies that by céncentrating on the half space,

£ (8U/87;) (f; -~ k) z 0 (3.1)

the improved values of U can be found. Since (3U/28f;) is
unknown, inequality (3.1) in the present form is not useful.
However, by dividing (2.1) with a positive number (8u/ar, )
which is also unknown, the foliowiﬁg inequality is obtained.
(Trade off cut):

Zwi (f; - k) zo0 (3.2)

i

where: w3 (8u/ary)/(au/sar, )
= tradeoff value

Wi is the number of units the DM is willing to forego in the
cbjective ', for a unit gain in objective f; to keep up the
same amount of utility. It is hoped that the DM can easily
provide this information from his experience, w; > 0
becauée U is strictly increasing. It is also possible that
the inequality (3.2) can be delfined on the feasible region X

by expressing f in terms of x.

Central idea: 1Inequality (3.2) called tradeoff cut when

transformed on the feasible region indicates in which

direction one should move to inerease the utility, Figures

3.2 and 2.3.
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Tradeoff cuts in
chjective space

N . I

1 Translated Tradeoff Cuts

Figure 3.3 Tradeof? cut over the Feasible Region
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More explicitly it removes a portion of the feasible region
where the maximum can not lie. One interpretation of the
tradeoff cut can be to move in the tradeoff direction as far
as possible for maximum improvement. Another interpretation
can be because U is increasing in , increase f as much as
possible. Using w; as the tradeoff between objective 1 and
cbjective 1, U can be expressed in terms of f, alone. Thus

to maximize U, we need to maximize I, according to the local

tradeorffs.

The Algorithm:

Step 0: Ask the DM for tradeoff values at x*. Establish a
tradeoff cut at xk,

Step 1: Solve the folliowing problem

{P5) Max Zk =El., wk (fy - )

subject to: » € X

hj(}{} = I:p

i=i

wi (fy - ) =z o,
for j = 1,...,k

Feasible region XX = X N {x] n;{x) 2z o} ,
for § = 1,...,k

Let x*¥*! be the sciution for {(P3).

Step 2: If at iditeration k 2Z%¥ = 0, then x* is the besk
compromise solution. Otherwise x* = x¥*!, Go to Step 0.

3.5 Theory of the Algorithm:
The following theorems prove the effficiency of the generated
points and the stopping rule for the algorithm.

Theorem 3.3: Optimal! solution of (PS) x**! is an efficient
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selution for (P1)
Proof: Assume x**! is not efficient fer (P1). Then there
exists x° g X such that

f:(x%) 2 £i(xk*1) for all i = j
and £;(x%) >f;{xk*t) for atleast one § (2.3)
Because x**! is feasible in (PB), x**! satisfies
P, owi (F;(x®) - ry(x¥)) 20, §=1,...,k
From (3.3} it follows that .
2P, wi (ry (%% - £(xI)) 20, j = 1,...,k Hence x° g Xk.
Alseo by (3.3)
E0o oWl (0% = £ (x%)) > EP_ | wk (£ (xk*) - £, (xK))
Contradicting x**! is optimal in (P3) o
Hence x**! is efficient in (P1). Q.E.D.
Lemma 3.2: Let U be c¢oncvave on the convex set Y. Given
VU(y®).(y = y°) 5 0 for all y € Y for some y° € ¥, then yo
is optimal for U in Vv,
Proof: If v% is not optimal, then there exists y* & Y such
that U(y') > U(y?). By lemma 3.1 VU(y%°).(y — ¥°) > 0 which
is a contradiction. Hence y% is optimal in Y. Q.E.D.

Theorem 3.4: If Zf_ | wk (£;(x) - r;(x*)) S 0, for all x & X¥

then x% is the best compromise solution.

Proof:

claim: fk is optimal in;X*n Assume x* is not optimal in X¥,
Then there exists x! such that

0, wl (fy(x') = £,;{(x%)) > O which contradicts the fact

z? wk (£3{x) = £;{x%)) = 0 for all x g X*. Hence x* is

i=1

opbtimal in Xk.
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Let Yk = {y| y % f(x) for some x € X*}. Then Yk is.a convex
set by Theorem 3.1. Fix yk = r(x%)

Also ZP . wk (f(x) - r;(x%)) £ 0 for all x € XX which
implies for all y g Yk

E0., wi (yy —y®) 2 ZP_ 0 wk (£;(x) - £ (x%)) 50

By lemma 3.2 y* is optimal in Y. By Theorem 3.2

Ulr(x*)] = UIr(x)] for all x e XX. (3.4)

By construction of X¥, {X — X%} csontains only inferior

solutions., Hencs,

Ulr{xk)] 2 Ulf{x}}! and %% is the best compromise solution.
Q.E.D,

Theorem 3.5: The sequence ({x,} of optimal solutions of

subproblems of (PS5) has a2 subsequence {x7} converging to the
best compromise solution.
Proof: By construction of subproblems we have,

xlgx?;

...............

Each Xk is nonenmpty. Because each X*¥ contains all its
boundary points by way of its construction, each Xk 1is g
closed set. Now X is compact. There exists a subsegence

{xn.} of {x,} such that,

1im {%m} = x* g X
Ksen
ngy £ k implies, %%, %%, e.... all lie in X*.
As X* is closed and x* is a limit point of X% , x* g Xk.

Because k was fixed but arbitrary in the above argument,
% & X% |, for all k 2 1

Therefore x* ¢ NX* of all k z 1
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By construction of Xk , ¥ - X%

where: K® = M ¥k

contains only inferior solutions. Since atleast one f; is
strictly concave and each w; 1s positive, 2 is strictiy
concave,

Claim: x* is the best compromise solution.

Proof by contradiciion. Assume x® is the best compromise
solution. By construction of Xks, x%® € X*¥. Since

UCr{x™)) 2 U(r(x)) for all x € X® it implies that

Z{r{x™)) 0. But %™ also belongs to X® which implies that

P, wP (i (x*) - £ (x™)) = 0 (3.5)
if ZP_, w¥ (£ (x*) = (x®)) > 0 ,then it will violate that
x¥ is the best compromise solution. From (3.8) it is seen
that

ZP. WP fi(x*) = 22, w® £y(x™)

which contradiects the fact that 2 is strictly concave.

Hence x™ must be the beskt compromise solution.

QdE-D
3.8 Advantages of the Algorithm:
(1) Only efficient points are generated.
(2} For a utility function linear in the

objectives(objectives may be nonlinear in x} eonly one
iteration is required because the local tradeof s are also
global.

(3) No line search is required. This implies the DOM's

response is neesded only once for each iteration; otherwise



the DM must state his preference during the line search.
(4) Use of gradient direction and regional elimination

tradeoff cubts might lead to quick convergence.

Example 3.1:

(P8): Max f = —{(x = 8)2 = (x, — 2)2
subject to:
0.1 2,2 = x5, 20

A
<o

X2 + 0.33 x, - 4.8
R, ,%3 2 0

Optimal solutioen to_(Pé) ¥ = (5.253147,2.784811)
Solution: |

starting point, %! = (0,0)

Gradient at x! = (18,4)

{(P7): Max Z? = i8x, + 4x,

subject to:

0.1y, 2 -~ x5, 2 0

x, + 0.33x, - 4.8

A
o

16){i + 4}(2 z 0

Optimal solution, x* =(5.288147,2.764811)
Gradient at z? = (35.483706,-1.5286822)
(P8): Max z? = 5.483708x, - 1.529822x,

subject to:

ItA
O

O..lklz - X2

A
o

xgz + 0.33x, — 4.8

18%, + 4x, 2 0

35

by
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5.483706x, - 1.828822x%, - 24.808017 = o

Cptimal solution.s= (5.288147,2.784811)
Objective function value Z2 = Q.

Extension to Mixed Integer MCDM:

As an extension to mixed integer MCDM the problem (PB) can.
be solved as a nonlinear mixed integer program."Branch and
bound procedure ecan be used for the purpose(Gupta,1980).
The exampie 3.1 is solved as an integer program for

illustrating the idea.

Example 3.2;

(P): Max f = —(x, - 8)2 - (x, — 2)2

subject to:

0.1 Xiz"x:§0
Xz + 0,38 x, - 4.5350
Z,, X3 & 0, and X, is integer

Optimal solution x* = (5,2.5)

Solution:

Starting point, x'= (0,0}

Gradient at x! = (16,4)

The resulting problem is same as (P7) in example 3.1

solving (P7> as a mixed integer program the following
optimal solution is obtained.

Optimal solution %2 = (5,2.85)

Gradient at x? = (5.0,~1.7)

(P10): max Z? = 8x - 1.7z,

1
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sub jeckt to:

Bx, — 1.7%,5 ~ 25.158 2 0

1

0.1 x,2 ~ x; S0 x, + 0.88 x, -~ 4.5 5 0

¥, %3 2 0, and %, is integer
Cptimal solution x? = (8,2.5) same as the optimal solution
to(P9)

The example problem 3.1 is also solved for pure integer
case.

Initial point, %' = (0,0)

All integer optimal solution te (P8), x2? = (4,3)

Gradient at x2? = (8,-2)

(P11): Max 22 = 8x! - 2Zx,

subject to:

0.1 x,2 - x5 20 x5 +0.338 x, -~ 4.5 50

(4

X, . X3 0, x, and %, are integers

Optimal scolution = (4,2) same as the pure integer solution

to (PB).
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CHAPTER IV

URBAN STORMWATER MANAGEMENT: A DERIVED DISTRIBUTION APPROACH

4.1 Introduction: In this chapter a derived distribution

approach is presented. The stormwabter runoff process along

with the impact on the quality of the downétream receiving

body is analyzed.' Tractzble closed form sclutions are
obtained. An  attempt has been made to model future
urbanizaktion effects on stormwater management. In general

the current data on runoff volume, duration of evenkts, etec.
need to go through a transformabion to account for future

urbanization activities in a developing urban environment.

4.2 Modeling Urbanization Effects: The effects of
urbanization on stormwater management have been well
studied, The increased urbanization has the following

effects on the hydrolozy of the study area (Delleur and
Dendrou ,1980; Delleur,1981).
1) decrease in infiltration storage
(increase in imperviousness)
2) decrease in depression storage

3) increase in volume of runcff
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4) increase in peak [low
5) decrease in time to peal

Volume Increase: The above effects indicate that the volune

of runeff after urbanization X, c¢an be expressed as,
Xy = (1+u)V, (4.1)
where: u = urbanization factor
{fractional volume gain
because of increased imperviocusness
and decreased depression storage}
V. = volume of runoff before urbanization (in)

Reduction in Time to Peak: Urbanization also provides for

rapid drainage, which results in the reduction of time to
peak. Two methods are suggested to model this phenomenon:
(1) Kinematic flow routing
(2) 10 minute unit hydrograph

Kinemztic Flow Routing: The urban watzrshed is viewed as a

single uniform plane catchment with flow length L.
Foilowing Eagleson{i870) two main cases can be considered.

case 1: t£t_ < L < o«

o r

where: t. = time of concentration
t, = rainfall duration
Let | i, = steady uniform effectivé rainfall
then . maximum depth, yn.. = i,t,
maximum discharge per unit width, qn,, = i,L

Therefore for constant net effective rainfall i,,

Tmax = i1,L = @(i,t )m (4.2)
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e = [Li, ¢t m /y]17m . ‘ (4.3)

whera: & and m are the kinematie wave parameters
(for Manning formula m=3/3)
It should be noted that, in this case t. can be treated
time to peak
Assuming the time base of the hydrograph to be given by
Ty = const x ¢
(E.g. As in USBR(1978)'Tb-='2.S7TP_, Te = time to peak)
it can be obtained from.(4.3) that,
Ty /Tyd = tqf/tcu |
=(o, /e y1/m = (n_/n )yi/m
where: Te™ Ty = hydrograph time bases uﬁder rural
and urban conditions, respectively
n_ = Manning n under rural conditions

n

i

" = Manning n after urbanization

Typical values:

n, = 0.08 ( natural channels)
n, = 0.013 (smooth asphalt)
Ty” = (0.06/0.013)1/m T, v

Tp™ = 2.8 T,u
Using lIzzard's retardance coefficients, € in place

Manning n {(Linsley, Kohler and Paulhus, 1978),

C, 0.08 (blue grass turf)

C

it

u 0.007 {smocth asphalt)

it follows that Ty, "

I

(0.08/0.007)/m T, u

i

and Tyt 3.83 T,»

as

of
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case 2: k. < &

il <
Using the expression for time to peak given by
Eagleson(1870),
Time to peak, tp, = t_ + {1/m)(t_* - £.) (4.4)

E* = LIl /(o ya,. (M2 ]
where: Ye, = 1, t, (4.5)
Equation{4.4) canrbe written as,

ty, = [(m=1)t, + £_*1/m _ (4.8)
Dividing both the numerator and the denominator of (4.86) by

t. and using the relation (4.8) it is obtained that,
tp = [{m - 1) + {L/Ca(i, €™ 1 £ )} 1/(m/t,)

The secend term in the numerator can be further simplified
by multiplying and dividing by i, and £ ™
bp = [lm - 1) +{L i,/(a(i, £t 0™}
(£, /t, ™1/ (m/t,) (4.7)
But it is known from (4.2) that i,L = a(i,t_)M™. Hence
egquation (4.7) simplifies to, |
b = [(m ~ 1) + (£_/ )™/ (m/t,) (4.8)
From equation (4.8) it is obtained that,
b/t = {m - 1) + (t.7/t ™)
Jllm ~ 1) + (t_u/t _)m] (4.9)
Because (1) t_ > t_ then t /t_ > 1 |
And (2) (b r/t v = (o, /a,.) = (n./n.)
is about 4.81.
Under conditions (1) and (2) the contribution of (mr - 1)

=0.867, in (4.9) 1is not significant and hence can be
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dropped. Thus (4.9) simplifies %o

(bp/tpr) = (L u/t _m)m ' (4.10)
Hence it is obtained that,
Tp™ = 4.61 Tyu

10 min.unit hydrograph: Following Delleur and Dendrou{1980),

the 10 min. unit hydrograph parameters shown in Figure 4.1
are estimated by means of the following equations:

3,100 235-0.287~.1842.57 (4.11)

T =
Q = 31.82(103SA°“98TRf°'?5 (4.12)
Ty = 125.89(10%)AQ0-95 '- (4.13)
W, = 16.22(103%)A0-23Q-0.92 ' (4.14)
Wos = 3,27(103)A0-79¢Q~.78 ‘ (4.18)
where: L. = the total distance(ft.) along the main

channel from the point being considered

to the u/s boundary

3 = the main channel slope

I = impervious ares

@ = conveyance factor given by ¢ = Py + Py
A = area of watershed

Te = time of rise of unit hydregraph

Q = peak flow

T = time base of hydrograph

Wy = width of hydrograph at 30% of Q

Wog = width of hydrograph at 78% of Q

&y = 0.8 for extensive channel improvemeﬁt.

0.8 for some channel improvement
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Ta
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Figure 4.1 Ten Minute Unit Hydrograph
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= 1.0 for natural conditions
Po = 0.0 for no channel vegetation

= 0.1 for light channel vegetation

= 0.2 for moderate channel vegetation

= 0,3 fot heavy channel vegetation
The regression equations (4.11) through (4.15) were obtained
for the following range of the parameters:

0.0128 < A <158 mi-?

B85 < L <38600 rt

0.008 < 3 <0.0193 ?t/ft

2 < 1 <10b%

0.8 < ¢ «1.28
For the equivalent uniform intensity rectangular
hydrograph(Morris and Wiggert,1972) the time  base of the
hydrograph can be taken as Wg,. Thus equation (4.14) can be
rewrit@en as

w-g i ?B = 18.22{103)AG'QBQ"0'92,

o
Substituting for Q from equation (4.12) and within {(4.10)
substituting for Ty from equation (4.11) the expression for
the time base of the hydrograph becomes
Ty = 1-0-17718241.545508

Using I, and $. as the imperviousness and conveyance
parameters and I, and ¢, as the values of these parameters
after urbanization , the ratic of the egivalent uniform

intensity rectangular hydrographs in rural and urban

conditions is given by,
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Te /Tyt = (I./1,0°1 (¢ /o002

.where: i = -0.177192
b2 = 1.545508
Let I, = 10%
I, = 80%
®y, = 1.0 for natural conditions
P = 0.3 for heavy vegetation
¢, = 1, + ¢5 = 1.3
¢, = 0.6
Te"/Tpu= (10/80)24(1.3/0.8)>2 : (4.18)
Tor = 4.775 T,v

The time base of hydregraph after urbanization is seen to be
a constant fraction of the runoff event before urbanization
Tbr = ClTbu

where: ¢; = ceonstant

4.3 Stormwater Runoff Modeling(after urbanization):

Assumpltions:

1) In the present analysis the eqivalent wuniform intensity
hydrographs(Morris and Wiggert,19872) will be used. Even
though a triangular approximation would be more appropriate,
it does nobt render a c¢closed form tractable solution in the
propesed analysis.

2) The random variables, volume of runoff before
urkanization V.. duration of runcff event before
urtanization T,., and time between successive runoff events
X3 are statistically independent (Di Toro and Small,1879:

Padmanabhan and Delleur,1878) and exponentially distributed
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(Howard, 1978; Smith, 1980).

3) The previous storm completely fiils the storage.

The following notation is used.:

¥, = volume of runoff after urbanization (L%)
X; = duration of runoff eveﬂt {T) |

Xa = time between successive runoff events (T
Y = overflow volume {(L3)

a = treatment rate (L3/T)

b = storage volume {(L32)

~The stormwater runoff process 1s shown in schematically
Fig#re 4.2. The overflow Y can be expressed as,

Y = X; = aKy; ~ min (aX;, b) (4.17)

(for X; = aX, > min ( aXy, b)
= 0 elsewhere

Using relationship (4.17) it is pessible Lo compute the
probability that the overflow volume exceeds some threshold
volume.ie. P(Y > y) < !

4.4 Quality Modeling:

Effluent Pollutant: The overflow can be related Lo the

pollutant loading, by maltiplying by the average
concentration (Mueiler and Anderson,1979).

Total Pollutant Load, L, = C_Y (4.18)
where: €., = average concentration of the pollutant

Using relationship (4.18) it is possible Lo compute the

pollutant exceedence probability.ie. P(Ly, > 2) < a?
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Receiving Body Pollutant: Thus far the analysis is fairly

straight forward. Now there is & difficulty in finding the

correct distribution for the pollutant in the receiving

water body . ;n appreciation of Lthe central Jimit  theorem
the Normal density funetion is used in the literature. In
this regard the remaris of Beckers et al.{(1972) are
rertinent. A correct distribution for a water quality

parameter should have zero value for values of the parameter
less than zero or greater than the specified maxinmum value.
The Gaussian distribution does not fik these requirements.
Becker et =al. suggest the Rayleigh distribution. However
Lhe Rayleigh distribution also does not accurately portray

the actual physical proparties.

The hydrologic variables are mostly described by
exponential families. In general the overflow pollutant

load can be described in terms of the hydrologic variables

and pollutant concentration. The resulting distribution is
quite likely to thave an ex¥ponential related structurs.
Appealing to Lhe emall particle statistics, the natbtural

downstream »ollution process may bhe described by a Lognormal

distributicon. A truncated lognormal distribution may be
used J{or a finite range. However, convelubtion of lognormal
with exponential related families is  cumbersoms. Most

impertantly a tractable closed form solubtion may not be
rossible for the sonvelubion. To overcome some of these

o«

difficultiss the following procedure is proposed. In
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general] some governing body specifies the standards for the

pollutant concentration in the receiving end. Assuming
every user obeys the rule, the pollutant concentration
varies Dbetween zero and some maximum value. Because of the

absence of a widely accepted probability density function
for the polilution variables, a natural recourse is to it an
empirical distribution to the available data. This approach
can be fairlty generalized if some distributien can
approximate just about any empirical distribution. The Beta
distribution is one éuch distribution because of its various
shapes and finite range. In the present analyis the beta
distribution 1is wused for the receiving stream quality
modeling.

4.5 Derivation of the Distribution Functions:

The following notation is used:

X1 = volume of runoeff event after urbanization (in)

g = duration of runoff event after urbanizatioen (hr)
X3 = time between successive runoff events (hr)

a = treatment rate (in/hr)

b = storage volume (in)

V. = volume of runoff event before urbanization (in)
T, = duration of runcoff event before urbanization (hr)

n.,n,= Manning n for rural and urban conditions
C, = limiting concentration of the pollutant (mg/l)
C. = concentration of effluent pollutant {(mg/l)

Cr = concentration of receiving stream poilutant {(mg/1)
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Ve o o= voiumé of receiving stream flow over
eritical duration (in}

S = rescaled pollutant concentration, [CL/C,]

T = critical duration {(critical time in
oxygen sag) {(hr)

v = overf{low volume (in)

u = urbanization facter from (4.1)

The variables V., T Xg are assumed %*o be aexponentially

r ¥

distributed with parameters az, ag and ¥, fespectively.
Thus,

PV, 2 v.) = 1 — exp(-a,v.) (4.19)
P(T, = £ ) =1 — exp(—ast,.) {4,20)
P(X3 2 %3) = 1 = exp{~v¥x3) (4.21)
Using the relatienship, ¥, =. (1+u) V., and (4.12) the

distribution funetion for the volume of runoff after
urbanization is expressed as

F(x,) = P(X, & x,) = P{{1 + WV, = x;) = 1 ~ exp(-ax,)
where: o = ayn/(1 + u)

By differentiating F(x,) with respeect to ®; the density
function for volume of runoff after urbanizabion is obtained

as

F(xy) = o exp (~ux,), %, > O

= 0, x; =20 (4.22)
Similarly using the relationship, ¥, = ¢ T.
whera: ¢ = {n_ /n, )t/m

and (4.20) the density function for the duration of  runoff

events after urbanization is obtained as
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f{xy)= B exp {(~BX,), % Z O

=0 , elsewhere (4.23)
where: B = az/c
Using the density functions for X1, X3 and X5 it is possible
to derive the distribution function for Y.
Let U be the excess of the volume of runoff after
urbanization over the volume that can be treated during the
runoff event, namely

U = X; - a¥X,; ‘ . (4.24)
and let V be the available storage for later treatment. v
is the least of the volume treated between consecutive
runeff events and the whole storage denending upon the
intermittent time. V is expressed as,

V = min {(aX,, b) (4.25)
The overflow volume can then be expressed as,

Y=U-VYV , for U>V
=0 , for US V (4.28)

In order to find the distribution of the overflow volumes Y,
the distribution functions of U and V will be compubed
first.

Distribution of V:

Since V is the least of {aXy; , b} the sxceedence probability
can be written as

P(V > v) = P(aXy > v) P(b > v)

Since X3 is assumed to be exponentially distri#uted with

parameter v , it is obtained that
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P(V > ) exp(—=vyv/a) 1 ,if v < b

0 if v 2 b (4.27)
The distribution of V is expressed as
P(V = v) = 1 ~ exp{~¥v/a), for v < b

= 1 , otherwise “{4.23)
Note that the distribuktion of V has =a point mass at b. The
density function for V is written as

©{v)

it

(v/a) exp(—vv/a) , for v < b

I

exp{(—¥b/a) , for v = b (4.29)
Since only positive overflows are of concern and VvV is
nonnegative ,with regard to Lthe excesdence probability of U,
only a positive threshold value, u > 0, needs be considered.

Exceedence probability for U: P(U > 1) ,u > 0

From the definition of U,(4.24) the exceedence probability
of UJ is expressed as

P(U > ) = P{X; = aXs > u)

]

P(Xl > o a.}‘(e}

li

JP(X, > u + ax,) dF(x,) {4.30)
With the probability distribution of Xy, (4.22) and the
density of X,, (4.23) the expression (4.80) beconmes
P(U > u) = J7 exp(=-g(u + axy)) B exp(—Bu,y) dx,

= { B/(B + wa)} exp(-ou) , for u > 0 {4.31)

Distribution of overflow, ¥:

Since U and V are independent due to the independence
assumption on ¥, ¥, and Xs, the distribution of ¥ = U - V

for U > V can be eypressed as
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P{(O < ¥ ZEy) = P(O <« U=V ZEy) = P(V < U 5 V+y)
P(O <Y S y) = _f° £(v) ,fv*Y f(u) du dv
(for y > 0) , i.e. U >V
With the use of the exceedence probability of U, (4.31) and
the density of V, (4.28) the following expression is
cbtained:
P(O <Y 2z y)= _f°" (v/adexp(-vv/a)
VY aB/(aa + Blexp(—ou) du dv
+ exp(~vb/a){B/(8 + wa)!l
i~ exp(-¢ (b + y)) ~1 + exp(—ub)] {4.32)
The last term in (4.32) results from the point mass at b.
The term exp(—vYb/a) is the jump at b and the other product
term is the value of the integral with respect te u at b,
Thus performing the integration in{(4.32) and rearranging the
expressions (4.33) and (4.34) are cbtained.
P{(O <Y =5 y) = K{(1 ~ exp{-ay)) n _ (4.33)
where: K | ={[B8v/((¥ + aa){B + oa))]
[1 ~ exp(~b(a + ¥/a)) ]}
+ B/(B + aa) [exp(~bl(a + v¥/a))] {4.34)

The probability density of the overflows is expressad as

f{y) = K o exp(-oy) , for v > 0O

= 1 - K, for y = 0 (4.38)
This density is physically meaningful. Consider the case b
= 0 and 'a’' is very,very small. Since storage b is zero and
very little treatment is available, all the runoff will

overflow, That is the probability of overfiows .is the same

as probability of runoff. By substituting b = 0 and a
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T

very,very small value for 'a' in (4.34) it is obtained that
K= 1. When K = 1 expression (4.35) reduces to the density
function for the runoff volumes gEiven by (4.22).

Water Quality Distribution:

In Figure 4.3 the total effluent pollutant load,L,
digscharged inte the recelving stream is given by

Ly = C,Y , where C, is the effluent
concentration.
In BOD analysis Streshkter - Phelps equation provides a
critical distance x_ at which the minimum dissclved oxygen
ocours, The flow travel time to point x, is.called(Figure
4.4) the critical time. The critical time period 1is given
by (Metcalf and Eddy,1972),

T, = 1/(Ks = K In(Ky/K, )}

[ 1 ~{ D (Ky - Ky)}/(K,;BOD,)}] | {(4.38)
where:
BOD, = ultimate BOD {(mg/1}
K, = BOD rate constant {per day)
Key = reéeration constant (per day)
D, = initial oxygen deficit (mg/1)

Let Vo be the volume of flow in the strean during the

critical period.
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Assumption: V, is Gamma distributed with scaling parameter p

and shape parameter 8.
£{vg) =(p8/I(8))v,® texp(~pvy)
(p>0, 6 >0 and ve > 0)

= 0 , for vp £ 0 (4.37)
Letting Cp be the pollutant concentration in the receiving
stream of the overflow point, the concentration eof pellutant
after mixing may be written as

Con = (CY + C Vo) /(Y + V) (4.38)

Assumption: In general, the receiving flow volume is much

larger than the overflow volume during the <c¢ritical time

pericd T_, i.e. Vp >> 7V, Hence we may approximate Y + V,
by V5.
Therefore

Cow = C(Y/V5) + Cp (4.39)
It is desired that the probability that C, exceeds a
timiting threshoid, C,, be very smail, say not larger than
€, i.e. P(C, 2 C,) £ € which, with the use of equation
(4.328), may be rewritten as
PI(C/CH(Y/Vy) + C/C, 2 1] 5 ¢ (4.40)

Assumpticn: There is very little information available on

the probavility distribution of C, but it is expected that
information will gradually become available as the EPA/USGS
Nationwide Urban FPunoff Program (NURP) nears completion. A
flexible probability distribution is therefore chosen for Cg
s0 that it can reasonably be expscted to fit field

observations. For this reason the distribution of C,/C_ is
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assumed to be Beta distributed. There are two reasons feor
rescaling Cp, with respect‘ﬁo Cos First it enables the range
te be (0,1) so that the Beta distribution can be fitted.
The second reason is the rescaling coincidently simplifies
the precedure in finding the‘exceedence probability as shown
in (4.40). To obtain the exceedence probabiiity in (4.40),
the distributions of

Z = (Y/Va), R,Z = (C/C)(Y/Vy) . S = Ce/C, (4.41)
are computed successively.

Distribution of, Z = (¥/V,):

Since the overflow, Y is positive, and Ve is positive, z is
positive.

P(Z = 2)

it

?(Y/“VQ = Z) = P( ¥ = 'ZVQ) y Z 0> 0

It

TRy

A

zvp) £vp) dvg
Using {4.33) and (4.35) it is written as,

P(Z

A
H
S

= oL = K) + K(1 - exp(~azvg))] f{vp) dv,
Which by introduction of the density for V, (4.37) yields,

P(2Z

A

z) = {1/r(8)) _[[®[1-K exp(~azvg)1p? vp®-lexp(-pvy) dvg
The integration yields
P(Z 5 z) =1 —Kp?/(p + az)® , for z > O (4.42)

Distribution of (C_/C_)Z:

Let k; = C_/C, ,k, > 0O o (4.43)
Let T = k,z . (4.44)
P(T 2 £) = P(Z 5 t/k,) Tor ky >0 ; ¢t >0

Substituting (t/k,) for z in {(4.42) it is obtained that

PAT 2 £) = 1 ~ K(pk;)9/(pk, + at)® , for k, > 0 ;: t > 0
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(4.45)

Distribution of Mixed Concentration:

Let 5 = Cp/C, (4.486)
As S is assumed to be beta distributed with parameters p and

g, p >0, g > 9D

(s> = Ky 771 (i-8)9"! | for 0 < s < 1

= 0 . elsewhere | (4.47)
where:
Ke = M'(p + @) /(T {p)r{q)) (4.48)
From‘A the expression (4.40) the eritical exceedence

probabiiity is stated as

P(T+S 21) =1 -P(T+ 8= 1)

i

1 - P(T £ 1~s) , Note: (1 - s) > 0

Using the expression (4.48) it is obtained that

P(T + 82 1) =1~ fl1 - {K(pk;)¢/(pk, + «(1-5))0} f(s) ds
=1~ 1+ K(pk,)?® f*{1/(pk +o—as)®] f(s) ds

let ky, = pk, + o and k; = «/k,

Hence

P(T + S 2 1) = K(pk,;)® ' [1/(k, - ws)®] f(s) ds

Using ks it is obtained |

PIT+ Sz 1) Klpky/k)® Y [1/(1 = kus)8] r(s) ds

it

K(pk, /%)% Ky [1sP=1(1-5)9"1(l-5k,)~® ds

= K(pk,)% F(8,psriky)/(ky)?® (4.49)
where
W, = C./C,
ko = pk, +
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gy = a/k, , Note: 0 < ky <1

r = é + . g

F(8,pir;ks) =K ,fise~1(l-s)r-P-1(1-sky)"¢ ds (4.50)
F(8,piriky){Abramowitsz and Stegun, 1972 ;Johnson and
Kotz ,1963)

F{8,p;r;ky) in (4.80) can be expressaed in terms of an
infinite series. |
F(8,pir;ky) = Z0351 plil g i/ (plil j1) ' (4.51)
whera: P = x{w + 13(x + 2)....,.. (x + j— 1)

This series converges for [kal < 1

These results are summarised in the folloewing theorems.

Theorem 3.1; X1.X2 and X; are exponentially distributed with
¢.8 and ¥ as parameters..
Let ¥ = ¥X; - aXz ~ min (aXz,b) for ¥ > 0

=0 , otherwise

Then Y has the following distribution

f{y) = K & exp{-ay) , for v > 0
=1 -K , for y =0 {4.38)

where: K ={I8y/{{(v + aad(d + wa))]
| [1 ~ exp(-b(x + v/a)) ]}
+ B/{B + aa) [exp{-b(a + v/a))] {(4.34)

Theorem 3.2: Let Y be distributed as in Theorm 3.1. Also

let V, be gamma distributed with parameters & and p and let
k, be some constant. Then T = k,(Y/V,) has the following
sumuiative probability distribution function.

P{T 2 £) = 1 — K(pk,)9/{pk; + at)® , for %, > 0 ; t > O
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Theorem 3.3: Let T have a CPDF as in Theorem 3.2, Also let

S be beta distributed with parameters r,4q. Then the

following result holds.

P(T + 5 2 1) = K(pk,;)? F(B,pir;ky)/(k,)® (4.49)
where:
k, = C,/C,
ko, = pk, + o
It 5 = &/ky , Notke: 0 < ki <1
r =1n + q |
.F(a.p:r;kg} =K [ ['sPm1l(l=-g)r=P-1(1mgk, )"0 ds

Summary of Results:
With reference toe Figure 2.1, the results may be summarized

as follows:

Xy = volume of runoff after urbanization; E(X,) = 1/«
Xz = duration of runoff event after urbanization:
E(X3) = 1/8
X3 = bime between successive runoff events,'E(Xg) = 1/%
Y = overflow volume after urbanizabtion
= X; — a¥Xy, - min(aX,,b)
where: . a = treatment rate

b = storage volume
then f{y)= Ka exp(~ay) for y > 0

= 1 - K for y = 0 (probability of no overflow)
where: K= f{(x,B8,v.a,b) - | {(4.24)
Vo = volume of flow in stream during critical period,

~ Gamma{p,8)
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€, = concentration of pollutant in overflow event
Lo = maximum acceptable concentration of pollutant
Cp = concentration of pollutant in the receiving stream

‘before mixing with overflow; C;/CE ~ Beta(p.q)
Cw = concentration of mixed overflow and receiving water
Pf(Cm/CD) Z 1] £ ¢ = probability of violation‘
KIC, /(C +(aC ) /p)18F(.)

F(.Y = £(8.p,p.q.a,C,,C,) (4.81)

v

il

PI(Cn/C,) 2 1]

Example of An Extreme Caose: Consider the situation wherein

both C, and Cp are very close to Co. There is no or little
dilution possiblé. _ In such circumstances the contreolling
criterion can be none of the pollutant concentrations should
viclate the threshold value C,- Since there is very little
control one can exercise on the pollutant concentration Co,
the only possible alternative is to keep the effluent
concentration €, to a minimum.
Let €y = pollutant accumulation rate per unit of time
The total accumu%atéd poliutant load between runoff events
can be expreésed as,

Total load,L, = CpXy + & (4.82)
where: d =.average leftover pollutant load
Since Xg is exponentially distributed with parameter v, the
density function for Ly can be expressed as,
r(e) = (1/C)vexp(~v((@ - d)/Cp)) ., for 8 = 4

= 0 , ezlsewhere (4.83)

the cencentration is eipressed as
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Ty = load/volume = L. /X, (4.54)

Distribution of T,:

Using (4.%54)
P(T; 5 t)= P(L, = tX,)
= P(¥y £ (tX;, - d)/Cp)
Since X; is exponentially distributed with parameter <«
P(Ty 2 t)= (4, r @1 ~ exp(~v((tx, - d)/Cp))] r£x,) dx,
(4.88)
By (4.22) X; is exponentially distributed with parameter «
it is obtained that
P(T; £ t)= exp(-ad/t) o
(arerf® exp[—xl(a+(vﬁ /Cp))+(vd/cp)}.dx1
= gxp{~ad/t) - (aCp/(aCp+vt)) exp(-ad/t)

Hence it is cbtained that

A

P(Ty = &)= [vt/{auC, + v£)] exp(-ad/t) (4.58)

Concentration in Receiving Water,S,:

From small particle statistical theory lognormal
distribution can alsc be assumed as an alternative to the
beta distribution for the prollutant concentration in the
receiving stream. The preliminary results from NURP also
indicate that -~ the receiving stream pollutant may be
lognormally distributed. Hence in this example case it is
assumed that S, is lognormally distributed.

r{s) = Kg exp(-1/2((8og s — Ug,,.)/00,,5)2)

(for ¢ £ Q)

It

0 , elsewhere L4857
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where: Ks = /(s 05,45, (Bm)172) (4.88)
Mixzed concentration, Cro = max(T,,S,)
Let W = max(T,,3,)

It is desired that P(W = C,) to be small,

P(WzcC,) =1 ~-P(Ty 2C,) P(3, £ C_)
=1 = {[vC,/(aC, + YC,) Jexp(~ad/C, )} #(0og C,)
| o (4.59)
where: @(Qog c,} = corresponding area under standard
Normal curve
"Digression: The special circumstance'considered above‘also
indicates that it is always better to control £he source

than increasing the capacity of the treatment plant or of
the storage facility. In the above analysis the ‘only
controllable parameter is the pollution accumulation rate,
Ce. By implementing better source contrel practices it s

possible to minimize the parameter C There is also

P

another case when the receiving body of water is a lake with

ne  or litbtle outflow. In that case it is the accunulation
of the pollution load that governs, possibly with some
decay.

4.8 Advantages of the Derived Distribution: The newly

developed probability distributions provide a simple but
powerful methodology in solving urban stormwater problems.
These probability functions can be applied t§ stormwater
problems in estimabting the size of the detention basin, and
treatment plant for = given reliability level. Aiso the

degree of control needed to contain the pollution socures can
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be found. Closed form, tractable analytical solutions are
simple bto use and may be viewed as a bshter table teop

technigque in sclving urban water management problems.
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CHAPTER V¥

APPLICATION TO WEST LAFAYETTE

The methedology developed in the previous chaphers is
usedr for West Lafaysbtte. Section 5.1 contains the
development of hydrologic constraints. Section B.2 contains
the whole fofmulation and results,

5.1 Hydrologic Constraints: There are two sets of data used

for the study. The rainfall data fer the study are taken at
the Purdue Agronomy Farm, approximately 5 miles northwest of
the West Lafayette city hall. The rainfal! data fer the
periods 1953 to 1874 and 1977 to 1979 are analysed, The
rainfall values are c¢onverted into runoff vaiues using a
runoeff of coefficient Q.21 and a maximum depression storage
0.18 . inch (Sautier and Delleur,1978). The runoff data for
the period 1983 to 1974 are used only to check the
performance of the analytical model against the simﬁlation
model STORM. The runoff data for 1877 to 1S79 are used for
the whole analysis since this would reflect a more realistie
plcture of current West Lafayette situation. Tables 5.1 and
5.2 contain the information concerning the runoff data. The

river water gquality data are obtained from the Indiana State
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Board of Health yearly publications. BOD concentration is
taken as the c¢criterion for the analysis. Table 5.3 contains
the nezeded water guality information. The average BCD

concantration of combined sewer effluent 1is computed from
the yearly data 1977 to 1879 supplied by the city engineer's
office. This information is shown in Table 5.3. The daily
river flows for the years 1977 to 1879 are obtained from the
USGS Water Resources Data yearly publications. For
consistency in units, the flow values are converted to basin
inches per hour from ¢fs. The mean and variance of the flow

values are listed in Table B.3.



Table 5.1. Runoff Data(1953-1974)
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loéation ' West Lafayette
veriocd of record ' .1953ato 1974
totai number of events! 2538

area? - 3082 acres
" mean runoff volume, E(X.) 0.08 in

mean duration, E(X,) : 2.1 hr

mean intermittent time, E(Xz) | 70 hr

Table B.2. Runoff Data(1977-1979)

location West Lafayette
pericd of record 1977 to 1979
total number of eyentsl - 368
érea2 3062 acres
mean runoff volume, E(V_ ) 0.06 in
mean duration, E(T_.) ' 1.732 hr
mean intermittent time, E(XB) 58.81 hr
1. Runoff events from rainfall using runoff coefficient .21

and depression storage .18 inch.
2. Total sewered area of West Lafayette(Dacember 13881)



Table 5.3 Quality and River Flow Data
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Mean BOD concentration
in river, E(Cy)
EPA limiting BOD
concentration, C
Rescaled poliutant
concentration, 3

Mean rescaled concentration,
Var{(s)

Mean storm runoff
concentration,C,

Mean hourly hourly flow!?

Variance of hourly flow!

E(S)

4.1 mg/Q

35 mg/L

Ce/C,
0.117

0.004

170mg/ &
1.91 in/hr

5.42 (in/hr)?

1.

converted to inches over basin per hour.
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Verificaticon of Assumptions:

The assumptions on the statistical distributiuons of the
runoff data are verified. The exponential distributions for
runoff velume, duration, and intermittent time are checked
by plotting the fog cumulative exceedence probability and
the corresponding threshold values. It must plot as a
straight line. Figures B,1 to 5.3 prove the hypotheses of
exponential distribution for runoff veolume, duration and
intermittent time. The independsnce assumpkbion is tested
using the definition of statistical independence,

ie. P{X; = x;,X; = x5, Xa F x3) = P(X, £ x,) P(Xy = x,)

F{Xg % Xg)

Table B5.4. Statistieal Independence

(Xy.%2,%3) F{x,.,x5.%49) F(x JF{%,)F(x,)
(.04,2,20) . 41925 . 33922
(.08,3,40) . 54868 . 49948
(.08,4,80) . 83354 . 80898
(.1,8,80) L7380z .72874
(.12.6,100) . 80434 78799
(.14,7,120) | .84782 . 84281
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Figure 5.2 Plot of log Exceedence Probability -
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Because, as shown in Table 5.4, the joint probabilities and
product of the marginals are close it is concluded that the
variables are independent. As  a  further anal&sis of
independence the\fbilowing theorem is used.

Theorem 5.1 (Kumar Jogdeo, 1988):

Let F(X],XQ,XQ}%F(XE)F(XQ)F{XSA). Then E{}(in)EEXIEXj, ‘A,ﬂj,
and E(H KaXyo= EXEXLEX,; imﬁiies that ¥,;,¥,.X; are
independant,

In the present analysis

E(XX2X33=9.149 and EX|EX,EX, =8.82

E(X,1X5)=.174 and EX EX,=,126

E(X[X;)=3.408 and EX EXy=4.2

E(X,X3)=92.82 and EX.EXg=147.0

From these valuss and Theoren S.1. it is conciuded that the
the randoﬁ variables, runof f volume, duration, and
intermittent time are statistically independent.

Comparison of the 2natytical and simulation model STORM: In

the follwing secticn the analytical model developed in
Chapter III is compared with the simulation model STORM.
The overflow probability is given by the expression,

PY = 0) = 1 - K

P(O < ¥

fiA

¥y) = K(1 - exp(-uy)) {4.33)
where: K ={LEv/ (v + aa) (8 + wa))]

| (1 « exp(~bla + v/a))}

T OB/(B + wa) [exp{-bla + v/a))} (4.34)

Also from Table 5.1, for 1983 to 1874 data it iz ohtained,
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& = 1/E(X,) = 1/0.06 = 18.7
B = 1/E(Xy) = 1/2.1 = 0.4781
Y = 1/E(X3) = 1/70 = 0.014

Using the equation (4.34) K is computed as
K(a,b) = 4[0.4781 x 0.014 [1 ~ exp{(-b(16.7+0.014/a)}]
/(0.014 + 16.7a)(0.4781 + 16.7a)]
+[0.4761 exp{-b(18.7+0.014/a}/(0.4761 + 16.7a)]
For existing conditions in West Lafayette

a = 0.006 and b = 0; K(.008,0) = 0.8261

H

and P(0 <Y 5 y) 0.8281[1 - exp(~18.7y)]

For wvarying treatment rates and storage capacities the
analytical model results are plotted in Figures 5.4 to 5.7
along with the results of model STORM. The parameters used
in the simulation analysis are shown in Table 35.5. These
parameters are taken from Padmanabhan and Delleur(1978) and

Sautier and Delleur(1978). The model STORM is used only in

quantity analysis mode.



Table 8.5. Parameters for STORM
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computation of runoff by poefficient method
Runoff c§efficient(pervious) = Q.08

Runoff coefficient(impervious) =0.34
IMaximum depression storage = .18 inch
Percentage impervioushness =_50%

Street sweeping ef{ficiency =0.7

Number of land uses = 1

#ashoff decay coefficient = 2.0

Also information in Table 5.1




77

83|NSaY uol RN pue jedARUY Jo uosidedwo) 4G eunBiy

A *3UNjOp MOjJ149A0

cg°® ge° t+a° og¢* 9 21 80° 0"
Gt 1§ H T E T ¥ T ] T ‘s T Y : .
uoi3BInWIg — — -
|83|3A|BUY
60°C = 4 sebranyg )
$0°0 = ® *93vYy juUBWIRII ] P

wﬁ

K= d




78

B1inssy wenyvihuig pue (BO1IA)Ruy Jo uespiedwon grg asnbiy

A *swnpopn mojiiang

0°¢€ 8°2 v'e 02 8’1 2t 80’ +0"
HOIIRINMIG — — - 80°0 = 9 'a6ea03g 6
{e)3h|euy £0°0 = ® ‘eyey WHLIRAL 2
— — I|.|!ll.| L
—— <
B1in8ay uoniBinwig pue [RIRAIRUY J0 U0SLIRdWO) goG Aunby g
£ *wnjop Mopraeagy .
og* gg* ve” 02 9 el 80" Laty X
18-
usfyenwg - - —

jeonfieuy 6"
|||||||||||||||||| I

L0°0 =4 efesoyg
Z20°0 =2 ‘sivy juewieves}

(G FO I




79

*§3|NSa) UOILB|NWIS pue jBOjIAjRUY JO uosidedwo) 2°G 9unby4

A *awnjop mojjiaaQ

0T 82"  p2 02 81* 2I° 80"  vO
o | | | | | | . :ﬂ.vw_:...u_,w o | |
|BOJIAIBUY e
G0°0 =14 ‘abeiolg
10°0 = ® *a3vy judwiedd)

m.

(A = Ld




80

General overflow probability computation:

For the general analysis the 1977 to 1979 data are used.
The parameters are evaluated as shown,

® = ap/{l+u) with a, = 1/E(VR),thus from

Table ©.2, o = (1/.08)x(1/(1+u)

18.7/(1+u)

64
B = ay/(coefft. of time base reduction)

In the case of West Lafayette the total vacant land
available for gréwth from Table 5.9 is €755 acres. Thus the
currenﬁ imperviousness ratio for the urbanized area of 3052
Vacres can be computed, It is obtained that I, = 0.81.
Similarly from Tables 5.7 and 5.8 assuning that the demand
is exactly satisfied, it can be obtained that I, = 0.38.
The conveyance factors are computed as the weighted average
of wurbanized and nonurbanized fractions. For the existing
condition of 0.31 wurbanized and ©0.89 nonurbanized the
compound conveyance fackor, for the values given in section
4.2 may be estimated as
¢ = 0.31x0.8+0.69%1.3 = 1.083
For the conditions after | urbanization ‘the compound
conveyance lactor is computed as,
¢, = 0.39x0.6+0.61x1.3 = 1.027
Using the equation 4.16 the time base reduction factor ecan
be computed.

Te"/Ty¥=(.31/.38)~0-177192 (1.083/1.027)1 545508

= 1.131
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Hence 8 can be computed as follows.

From Table 5.2, a; = 1/E(Ty) = 1/1.73 = 0.578,

thus 8 = .578/1.131 =0.511

Y = $0.0171

Using the above parameters the expression for K beconmes,

K= [0.0087(1+u)2{l~expl-b{(16.7/(1+u))+ (.0171/a)}1}
/(0. 0171 (1+u)+18.7a) (0.511(1+u)+16.7a) } ]
+{.B11/(.811+18.7a/(1+u) )]
exp{~b{{16.7/(1+u)}+ {.0171/a} ]}

Beta Distribution for S: The rescaled river BOD

concentration value is fitted with the beta distribution.
The parameters are computed from the mean and variance of §

éhown in Table 3,3.

£(s) = Kp sP™1(1-8)9"! , for 0 < s < 1

= 0 , elsewhere {4.47)
where:
Ke = I'{p + q)/(r(pIr(q)) ' (4.48)

H

Using the data from Table 5.3 it i3z obtained, E(S) = 0.11%
p/(p + @)

Var(S) = 0.004 = pq/[(p + q@)? (p + q +1)]

From the above relations it is obtained,

p = 2.886, q = 22.088

Computation of critical time for reoxygenation: The

Streeter~Phelps equation is used for the recovery time of
self purification of the river.

TC = 1/(K2 - KI){ 1n(K2/K1)}
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[ 2 = D, (Ky ~ K;)/(K,BOD)}] . (4.38)

The data for West Lafayette siktuation are used. The data
are obtained from Prof. Bell in Environmentsal Engineeriﬁg
at Purdue. The data are K, = 0,19, Kz = 1.99, D, = 0.88(mg/
1), BOD, .= 9.34(mg/1) VUsing the above data in equation
(4.38) it is obtained,
Te = [1/(1.99-0.19)] ¢nl1.99/0.19]

x[1 - 0.88(1.98 ~ 0.18)/(0.19 x 9.34)]

= 0.14 days = 3.4 hrs.

Gamma distribution for river flow volume,V,: The volume of

water passing through the critical time period T . is V,. V¥,
is assumed to be gamma distributed,
flvg) =(p/T(8))ve? texp(-pvy)
(p >0, 8 >0 and Ve > Q)

=0, for vy, 2 0 (4.37)
P and 6 can be estimated from the mean and variance of the
flow wvalues in Table 5.3. Let the river flow rate be
denoted by Qg -
Then, Vo = QpT_, implies E(Vy) = T.E(Qy)
and  Var(Vo) = T,2 vVar(Qg). From these relations the
parameters p and 8 are obtained as folliows.
p = E(Ve)/Var(Vg) = [1/T,1[E(Qg)/Var(Qy) ]

(1/3.4)(1.91/5.42) = 0.104

8 = p x E(V,) =0.872

Computation of crities] exceedence preobability: The eritical

exceedence probability is computed wusing the paramsters

evaluated before.
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P(T+S21) = K(pk,)® F(8,p5rikg)/(ky)® ' {4.48)

k, = C,/C, = 170/35 =4.8

ky = pk, + o = 0.104 x 4.8 + {18.7/(1+u)}
= [0.5(14+u)+18.71/(1+u)
kg = a/ky = 186.7/[18.7+0.8(1+u)]
The function F{.) can be approximated as

follows, {(Abromowitz and Stegun, p556 and p272,1972)
F(8,pir;ky) = M(r)M{r-p-8) /[ (r-68)I(r-p)]
=1,131

P(T+5 2 1) = 1.131K{0.5{14+u)/{0.B(1+u)+16.7)}1} 672

£.2 Formulation and Results: West Lafayette is divided into

four =zones, as shown in Figure 5.8, Dendrou et al.(1978) ,
and Dana Hall at al.(lQ?B}\have analyzed the future growth
of West Lafayette. Based on that information four types of
land use activities are chosen. These activities are shown
in Table 5.8. Based on the population projection of 25,000
by A.D.2000 the required minimum number of land use
activities are determined (Dana Hall et al.,1975). These
are shown in Table 85.,7. The area reguirements of the
different land use activities are shown in table 5.8. Table
8.8 shows the vacant land availability in each zone. The
cost information in 1278 dollars for different land use

types (Dana Hall et al.,1975) are shown in Table B5.10.
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Zone |
N
\ Zone 2
_Sagamore Parkway
-
o
=3
@x
&
2
Zone 3 )

State Road 26

Zone 4 Wabash

Figure 5.8 West Lafayette Zonal Discussion



Table B5.8. Land Usse

Types

Land use i

Description

Commercial centers
Light industries
Institutions and service

Fesidential units

Table B.7. Humber of Activities reguired by A.D.2000

Land use i

Number required, X,

19

12

88



Table B5.8. Area required by Land Use Type

Land use i Area required per

activity, a; (acres) -

1 10
2 2

3 10
4 10

Table B5.9. Area available by Zones

Zone J Area available, Aj
(acres)

1 . 2800

2 258

3 200

4 3800




Tabie 5.10. Cost by Land Use Type and Zone
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Zone Land use Cost{(dollars)
1 1 1187800
1 2 2885000
1 3 T1250
1 4 1425000
2 i 1187006C0
2 2 284874
poA 3 71000
2 4 1423000
3 i 1280000G
3 2 306000
3 3‘ 785000
3 4 18500000
4 i 1187500
4 2 285000
4 3 71250
4 4 1428000

Drainage Cost(Heany et al.,EPA-/B00-2-77-084,1977):

1 in of storage

= 980000C dollars

i in/hr of treatment = 34500000 dollars

(26028C dollars

for 18mgd capacity)
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A critically needed characteristic for apartment wunits is
good water supply and sewar-facility; In Wes£ Lafayette
zone 1 does not meet these requirémenté and hence zone 1
will not be considered | for housing units. The
characteristics of the different zones are shown in table
©.11. The characteristics requirement of different land use
activities are shown in table 5.12.

Designation of characteri#tics:

1)Close to downtown

2)Heavy duty power available

.3)Ciﬁseness to highway

4)Indutrial water available
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Table $.11 . Available Characteristics by Zones ZCy ;™
Zone Characteristics, k
J 1 2 3 4
1 0 1 1 ¢
2 1 0 i 0
3 1 1 1 o
4 0 1 0 1

* 1 means characteristic is present

0 means cha

Table B.12.

racteristic is absent

Required Characteristics by Land Use

Land use Characteristics k*
i 1 2 3 4
1 1 o] 1 Q
2 0 1 1 i
3 1 0 0 0
4 i c 0 0

* used in con

structing the set D,
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Formulation: These data aré used in the formulation .of the

whole problen. In the case of West Lafayette budgetary
limitations, and compatibility are not imposed because of
the restriction on number of laﬁd use activitges ana
widespread boundaries of the zones respectively. Also
because the distance between zénes is small, no minimum
distance requirement is imposed., All oﬁher constraints from
Chapter 2 are included. The . complete problem 1is thus

foermulated as

Min £, = ¢ (risk)

Min £ = £;5; C;5 Xy + Cy(a) + Co(b)
(cost)

Min f3 = Z;%; (d;;*)?

subject to:
Area constraints(constraint 5, Section 2.3):
1OX11+2X21+10X31+10X41 = 2800

255

A

10X 3 +2X 5 ,#10X 4 ,+10X, ,

10X 5+2X, 3+10X52+10%, 4

1A

200

IA

10X 1 442K 54 4+10X 54 +10%, 4 = 3500
Land use requirement{constraint @, Section 2.3):

X12+X22+X32+X‘32 19

tiv

Iy

XigtHos+Xaa+X,, 12
Kygt®gatXa,+¥,, 2 B5
Critically needsd characteristic{constraint 1, Section 2.3):

41 2 0. Zone 1 does not have goed sewer facility. Hence

43 will be zero and no land use type 4 (residential units)
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will be allocated ko zone 4.

Characteristic matching{constraint 2, Section 2.3):

6p1=dytHdyy T = 0

Zone 1 is away f{rom down town. But land use type 1
(commercial center) needs to be close to down town. Hence
if §;, = 1, then there is a mismatch and d,;;* equals 1.
dy,*dy;” 2 ¢ implies d;;- wili be made zero. Similar
restrictions for other zones are {(1,1), (2.1), (3.1);

(2,2): (2.3) }.
Urbanization factor{constraint 4, Section 2.3):
Accoriding to the definition given in <Chapter IV the
urbanization factor can be written as,
u = [Z;Z5w5a:%; /25451 Unmax
where: Umax = mean depression storage/mean runoff volume
By definition,
VYol. of runoff after urbanization
=Vol. of runoff before urbanization + depression
étorage as a fraction of original volume.
For an average depression storage .08 and mean runoff .08,
Umax eguals 1.5. Because of street flooding and related
effects(Haimes et al.,1980) W for an urban area may be
given a higher value compared to a nonurbanized area. Some
zones may not be within the watershed boundary, in such
cases w;s may be made zero because no contribution te runoff
is added from the depression storage.
For the case of West Lafayette, the weights for zones 2 and

3 the weights are w, = wy =1.2 and for zones 1 and 4 the
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waights are w;, = w, =1.0.
Bounds(constraint 10,11 and 12: Section 2.3):
Xijm99996ij £ 0 ,for all i and j

X3

i

;5 .,for all i and j

j ij

Probability constraint:

1.31K[0.8(1+u) /{0.5¢2+u) +18.7)}]-672 = ¢

Results and Discussion: The solubion methodology is the same

as in example 3.2 of Chapter 3, The problem is solved using
Branch and Bound XNonlinear Mixed Integer-'Program code
(BBNLMIP, Gupta,1880). The c¢ode is essentiaily the
superposition  of Branch and Bound procédure on  Lhe
Generalized Reduced Gradient Method. The sﬁarting point for
the analysis is. (.80,88.4,3) where the components are
reliability,total cost and mismabtch value reépectively. The
refiability is defined =s the probability of being 1es§ than
ar eqgual to the safe limit, the cost is measured in milltion
dellars and mismabceh value is the total number of
mismatches. Mr. Chris Burke, graduate student in Hydrology
acted as the Decision Maker. He gave the tradeof vector as
(0.1,0.025,0.02), where the components indicate that the DM

is willing to give up 0285 in reliability provided 100000

dollars can be gained. Similarly the DM is willing to
forego .02 wunits of reliability fer .1 unit of mismabch at
the current point. Hars reliability is considered ko be the

base objective and the second component is measured in
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réliabiiity per dollars, and the third cgmponent is measured
in reliability per mismatches. This tradeoff vector vields,
(0.98,88.82,3) as the final solution. The rest of the
results are tabulated in Table 5.13. Table 5.14 contains
the cost of the system. Table 5.15 presents the treatment
rates and storage values for different reliability levels.

Finally Table 5.168 presents the various land wuse patterns,



Table 5,13,

Summary of Reasults

I' |Ini.Point? Tradeoff? Endpoint
1 (.20,82.4,3) (.1,.025,.02) |(.95,88.82,3)
2 {.985,88,82,3) (.1,.068,.03) |(.98,88.88,2)
3 (.98,88.88,2) {(.1,.07,.0385) (.98.88.88,2)
1. Iteration number
2. (reliability,cost,mismatches)

3. gradient vector with units reliability per reliability,

reiiability per .1 million dollars and reliability

rer .1 mismatch.
Table 5.14. Cost Analysis
11 Drainage Cost (dollars) iLand Use Cost (deollars)
1 L21{108) 88.2(108)
2 ©.BB(108) 88.18(10%)
3 ‘ LT73{108) 88.15(108%)

i. ITteration number



Table 5.15, Treatment Rate and Storage

I' [Treatment Rate, a Storage, b
(in/hr) {in)

1 .008 0

2 .008 . 047

3 . 008 . 088

1. Iteration number




Table B.

Land Use Pattern

It Zone | Land Use

1 1 G 12 (o]
2 18 o 8
3 8 0 0
4 ] o 47

2 1 0 12 0
2 i8 0 18
3 0 O G
< 0 4] 37

3 1 i1 2 0
2 G ) 25
3 G o 0
4 8 10 30

1. Iteration number

g6

In the case of West Lafayette the poliuted water goes to

the Wabash river

The self purification capacity of Wabash

is very high which is also indicated by the small value for

ceritical

Lime

oXygen sag curve.

The statistical

parameters are influenced by these facts and hence a higher

reliability

is the quick convergence.

leval

is acceptable.

Also

The reason is

a point of interest

attributed Lo the
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gradient vector. The fact gradient gives the maximum rate
of increase may be the reason. Also the DM is seemed te be
biased towards 986% reliability level because the tradeocffs
are not widely diflerent. The characteristic deviational
variables for the end point 1 are given as,

for 83y, d;17=1; for 65,4, dyst=1

implying institution and service are not close to down town
and absence of heavy power respectively. Aiso_for 82, dgat
= 1, implying industrial water not available in zone 2.
Similarly for endpoint 2 {(same as endpoint 3)

for 8§31, dey* = 1; for 84,, dy* = 1

implying absence of industrial water and institute and
service are located at a far off place respectively. The
urbanization factors are .17,.174,.175 respectively for the
three iterations. Even though the treatment rate remains

the same the storage increases with the urbanization factor.

The expression for K also indicates for increased
urbanization, more treatment and/or storage would be
necessary for a {ixed reiiability level. Hence it can be

seen that the simultaneous treatment of. urban growth and
storm drainage plannihg provides a feed back loop, which

results in changing land use patterns' and storm drainage

capacity. It is also seen that the land use cost stays
fairly even while the drainage cost varies with the
reliability level. This is due to the stringent,

requirement constraints on land use. activities.
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Difficulties Encountered: The initial point dindicated as

iteration 1 is not arbitrarily chosen. Since the land use
portion of the problem predominantiy contains linear
constraints it is solved using a linear programming code

MFO3. Based on this optimal seolution the initial point is

chosen. The method uses Generalized Reduced Gradient method
tc solve the intermediate continuous problems. The method
is wunable to handle large size problems. The present

- formulation has 68 variables and 74 constraints without
including the bounds. The authér dropped many deviational
and either ér Qariabl@s and reduced the problem size te 40
variables and 61 constraints. That also did not help. The
OPTLIB manual admits that it is possible to have singular
matrik in nonbasic variables and the suggestion is to change
the order of the c§nstraints. That 1is also of no help.

There is a need for an efficient nonlinear programming code.
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CHAPTER VI

CONCLUZIONS AND RECOMMENDATIONS

8.1 Conclusions: The main contribubions in this research are

(a) Development of new probability distribution functions
for overflows and receiving body pollutant concentration
levels.

(b} Development of the algorithm to solve a general MCDM
problem.

These points are briefly elaborated in the following.

(a) Development of the distribution function: The newly

developed probability distributions provide a simple but
powerful methoedology in solving urban stormwabter problems.
The very close matching of results of the analytical model
with the simuiation model STORM provides the Justification.
These distribution functions can be applied to stormwater

problems in estimating the size of the reguired detention

storage, in estimating the reliability of the Lreatment
. system and sizing the treabtment plant for a Eiven
reliability level. Also the need to controi the pollution

source by better abatement practices is brought ocut in the
example of the extreme case. Ciosed form, tractable

analytical sclutions are provided in this analysis. The
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distribution function may be viewed as a better table top
technique in solving the urban water management problen.
The wverification of the statistical independence of the
hydrelogic variables provides the product of the marginals
as the joint densitby. Otherwise the problem is very
complicated. thea verification of the eXponential
distribution provides a strong evidence that the hydrolegic
variabilies runceff volume,duration, and intermittent time are
indeed exponentially distributed,

Development of the algorithm for general MCDM problem: By

their very nature interactive algorithms are iterative. In
such a2 case the most favored aspect of the algoerithm is to
generaté efficient roints atbt each iteration. The new
cutting plane algorithm developed has this desired property.
Unlike other gradient based methods no line search is
necessary.  This also implies that there is oenly one
interaction with ths DM for each iteration: otherwise the
OM's response is needed to pick the favoured point from the
line search. Since tradeoff cuts eliminate part of the
region in easch iteration better rate of convergence is
anticipated,. For certain sbtruyctured problems [ike linear
utility function only one iteration is needed to sclve the
problem. The application of the method to West Lafayette
proves that for rea] life problems Multi Oriteris Decision
Making is & viable tool. It also nesds teo be mentioned that
For large scale preblems an &ffizient neonlinear programming

code is highly necessSary.
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8.2 Recommendations:

(1) The probability distribution for the receiving stream
pollutant concentration is not well established in the
literature. Research in that direction is already in
progress{Athayde,1981) and is necessary.

(2) The pessibility of developing joint distributions for
different hydrologic variables may be studied.

(3) The possibility of incorporating tradeoff intervals

instead of point estimates may be explored.
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MR T |

=

EIT
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MFN=NFH+1
NEN=NCN+]

CHECR FOR NP FEASIBILITY
IF (IFERS.ER.OY GO 7O 102

WRITE (7, 1707
CO ™0 163

[slaYe]

THE ORIGINAL NLP IS FERSIBLE

102 I=FiX0)
HEONT=NCOMT+ 1
BITE (7,171} XD

<FTel?2) 2

glinie]

gF INTEGER FEASIBILITY

B

MIFEAS (XD, 10,1
<AL GO TR Loa

0P =g

WRITE (701730 XOPT
WRITE A7, 178 ZOPT
INTSO N=TNTSL M+ 1
50 70 188

“
DA MR 000 e 0 ST 0D 05 2 T 3 R B T
[
194 TF O (NHMRST.NE.E) GO TO 108
i 0
MEAUL =
105 CRLL HRSTCE (NE.NT MM X0 XHIND XMARD, ¥y ZUPs ITNTSOLN, LBL XOPT, INGDE
Lo NMAN, KMIN ZURLUE . 20 KOUNT NNODE » NSTORE )
C
R L i L L L P P e e e Y T Ty
Comw L X L Lt LR LS R L B L2 LR L LD S

C
106 IF {MNHRST.NE. 1) GO TO 108
C -
Coamsr Fid ALl THTEGER UALUES FOR DORRESPONDING INTEGER UARTABLES
C

HINT={

UG 107 J=1.M

H1=nO (A -RINT (ROLJD)

3 O-RL
HI=AMINLAL, H22
IF (N3.G7..000037 GO 70 107
T (NINT.EQ, 03 TRLL STORE (XOUNT, INODE. X %3, XMAK, XMIN: ¥MIND, XMA

i #0s 20 ZUALUE N, BRODE

HMINDC D =200
AHARDL D =R
MIMT=

107 CONTINJUE

IF (NINT.EQ.O3 MNIMT=1

C
DR e 0 o 3 00 00 50 0 0 0 K8 R B T
C
158 17 (kkLZO.3% GO TO 109
C

I R R AL T T P AR AT AR A ey

CHIOFLP SDLUTION IS5 NOT INTEGER

CT A MOM INTEGER URZIABLE TD BRANCH
CIHUEK- IS THE IMDTX OF THE UARIABLE BECIDED TO BE BRANCHED

[alsisiuletnl

UAGe My TNDE, KK PLLS P XETAR YD
0.0> GO TO 157

(7. 174) INDE®
=INY IADCINDER ) S
m=XMER0{INDER)
03 THDERX Y =XLOH
=1 H

OO T O 8 &5 S 61 83 0 D R 0 D T DD L O 0 D T I DD I D O O O L L R O S T S I I O R S S D T R I S I T B CT S S e I S DY D I I R I e S I s o e e
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L1} SAUKOC D) =X0(1) )
IF (KK.BE, 3.AND.LIFQ.NE.2Y oo TO 112
OLDM =X INaEX )

GLDZ=F %)
C
[ S A T
»

P12 IR (MNMLGEG, 1) HGCINDER ) =xMARD C TNIEX) )
1 EKHHKU(INDEK}.LT.XNIND;IHDEK)) GO TO 127 )
IF ({KHQXD(INDEM)“KHIHS{ENDEX))-LT..003013'XD(IHDEX)=(XﬁRX9(INHEXJ
TeRMINOCINDEX Y )22, 0
Eu»#nﬂ»x;i*&&g;:;uhiu;uaaﬁn*&bu
[
SALL OPT (80, XMAYD SMING, )
PP T SN0 T+ |
=MF ]

SEB.RY GO T o113

(KELNEL 3. aMNDLLIFDLNE 2 B0 T6 r14
PCLUINDEX,EQ. 1) GU TO 114
[110] (M.KK,iNDEX,PCL-PCU,KPCL:KPCU:Z»GLEZ-HO;DLBX)
SONT+1
(70 1753 ROONT XD
L7 1725 7
Ak INTFEAS (XD, 1B M)
Y UIBLEE.LGY G0 TO 1i¥

|
C THTEGER SOLUTION
C

FOUINTSDLN.GE 1 GO T o11B
=R O
115 oat STOQE:(KQUNTaIHDDE»K.XU;XﬁﬁX.RMIHnXHIHB.YHQKB-Z:ZUQLUE-HrHHGD
e,
GO 10 127
1is IF (7.)67.207) €0 1O 127
GO T ilS
ITE (7478 %o
ROITE (7L 1783 2 .
IF CINTSOLN.CE.1} GO TO 198
€
:C1*ih¢:*ikn*.pbﬂsnuﬁi;ﬂwﬁﬂoinnﬁwbnahnnw*ﬂn
C
L SECOND (FIRsT:
FIEST-T1L
FOITE (7.57EY TIN
WRLTE (7, {85) NNODE
NNDET, INTSULN
HF Ny MM
NITORE
C .
CE%**!*k%Ei*%é%ﬂ**ﬂ#*ﬂ*ﬁ*ﬂ%i&niﬁﬁi**ﬁ*ﬂu“

IF {MHRST Q.13 BC TO 113
L™ iNHPST £0, 20 ANDLLBL . HE, 100) GO 1o 1ia
COOTG 120

FIRST INTEGER STLUTION FOUND
THMODE.EQ. 0 G0 TO 12

121 I=].MNODE

FOONDTDECID) NE.2) 00 1o 121
INOBE ¢ 1Y=0
EOUNT =K0UMNT-]

11 COATTMUE

iZg D=z
123 TNTSOLN=INTSOUM+)
B LR S P

112



124 XCPT(I=K0(1)
Z0AT=2
CALL REMOUE (KOUNT. ZUP, INODE, ZUALUE . NNOBE)
WRITE (741817 KOUNT
GO T 127
133 JUP=AMINLLZ, ZUP)
FOLZUGTLZUP) GO TD 1B
oo oTe 183
126 INTSOLI=INTSOLN+ L

SOLUE SECOND BRANCH PPOBLEM

187 IF (KSEIPLZEL 1) 0 10 145
FMIHDCTHDER =X O+, 0

AOCTHDE ) =HIGH

23 T=4.N

128 KO 1 =SaUX0iT)

CRERERREATERERRDE

C

eIy

C

IF ONNNLER. 1) XOCINDEX) =XMINOC INDEX)

IF tXMAXO{INDEX) LT, XMINGCINDEX ) GO TO 128

IF CAMARXOC INDEX ) ~XHINGE INDEX) 3. LT, . 08081 XOCINDEX )= XMAXO ( INDEX
T+RIINGE INDER ) /2,0

e

CALL OPT (XD» XMAXO. XMINDs N)
HNOPT=NNOPT+]

NEN=NE P+ NE

MEHENCNNG

IF <IFERAS.E0.0) GO TD 133

128 KXDUNT=O
IF (N-RST.EQ. 2. AND.LBL.MNE, 100) KKOUNT=1
IF THCUNT.EQUKKOUNTY 60 T 130
GO TO 196

130 IF (INTSOLN.GE.1) GO YO 1328
IF (MHRST.EQ.2.ANDLLBL.NE. 1803 60 10 131
WEITE (7,129}
o0 Ta 168

CREBUTE BN SR RN® s

131 LBL=)
GG TO 103

fol T T T TR RER BT e

o

c

132 WRPITE (7. 1731 %OPT
LRITE (7, 1TE) ZOPT
GO 10 1g8
133 Z=F{x)
IF {KK.HE.3.ANDLLIFG.NE.2) GO TO 134
TF (KBCUCINBZMILED. 1) GO TD 134
kR ERUE mKK

L PSZUDD (M. kK, TNDEX. PCL, PCUs KPCL » KPCU, 20 OLDZ, X0, OLDY

K KK SRUE

Py lTE) NOONT, X0
£ 17 lFEY Z
INTFERS (¥0.i0.M)
CIU.E6.0) GO TD 137
DT {INTSGLML.GE. LY 58 70 138

VLIM=RLOW- LD
L33 unll S70RE FKQUNT-IHDDE.X,KU-XMRN.XHIN'XﬁIND-KﬁQKU-Z-ZUQLUE-NpNHﬂD
ol TO 14de

138 IF (2LLE.ZUF) GO TD 135
IF (KOUNT.GT.0) GO 1O 145
GO 1D lag
T LPITE ¢7,178) RO
WETTE 07,172 2
IF (TNYBOLNLGE. L) GO TG 145

ChﬂEl*1H&4§i*ﬂ*!il*¥“w%*llﬁilii*ﬂ*

c

TELL SECOND (FIRST)
Ti=FIRET~T1

P af o oy e o T Y e

e wtjtfﬁlﬂtﬁtlbtﬂtﬁttd(:CJEJE’D!ﬂtﬁt?t!bljtjt}blmtﬂtﬁClUt:CjCﬁU‘ZCIC!Utﬂﬂ)tﬁtSt’wtjtjciESﬂ!3{3&1t!t5c}tﬁtft}c!ﬂlﬂtﬂt}C
r

c020
2030
2040
2050
2060
2070
2082
2080
2100
2110
2120

2420
2430
2430
2450
2460
2470
2480
2480
2504
2510
2520
293¢
2348
2350
2360
2570
2380
2530
2600
€610
2620
2630
2640
2650
2664
2670
2580
2830
2700
a7l
2720
2730
2740
2750
2760
2770
7B
2790
2800
210
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HRITE (7.173) YIM

REITE (741853 NNODE
1ATSOLN=1

WRITE €7, 185) NROPT, INTSOLN
INTEOLN=D

H E (7.188) NFM, NCN

LT IBSY NSTORE

HRITE (7177

C
D5t 68 e R B
£
IF (NMRST.EQ.2.aMD. LB NE, 1600 6B TO 198
50T 139
£
138 .

C
Cwxzan FIRPST INTEGER SOLUTION FGUND
C

Y39 IF cNNGDELER.OY GO TO 141

My

LG 140 I=1,NMope
IF CIMOURCI)LNE.2) GO TO 140
INGDE ¢ T)=0
KOUNT =KUY - )
140 CONTIMUE

141 Jupa=g
INTSOLN= INESD N+
182 L0 143 1=1,y

143 BTeL KD 1)

g KULPY.Z P TNOBE. 2UALUE - NNODE
[N A e F

CKOUNTLER. 00 GO TN 144

T0 146

TEOEFL 173 HpPT

W IT& (P 173y 2007

[N

IF iz Q_.zupf Co 10 142
IF (XOUNT.EDLG) GO T0 144

C
CQ'QE“')Ql“#ﬂﬁ*i‘**‘ﬁﬁiliﬁ*hwll
148 KSYIP=g
iF CMMRST.EQLL.AND.NINT,EG. 1) NINT=2
Jd=l

1F (NHRST.EQ.2.8MD.LBL, Nf lOD} Jub=2
I OCINTSOLALGE, 1 20 70 )
IF (HHRST.EQ.1) &3 10 l$3
C
Cﬁ*l.l!‘*l‘ii*#“*!iﬂ'*i‘h*iﬂ*!#‘ﬂiil
C
147 IF (LIFO.NE.L13 GO 70 150
\wEHP NSTORE
INGDECLOG(NTEMP) Y, NE. 0 GO TO 148
TZHP~- 1

E#ﬁ*liwtw\+ﬂl&»ﬂ*ﬂﬂﬁuﬂ¢lﬁ*&i#*d

158 IF (LITCLERLDY B0 TO 132
i 1= JJ PﬂDEE

AR F= ¥€1 JI-AINTORIT )
Moy QMINICPCLFJ;”HSTHR(JJ PO 2% 01, 0-XSTAR(D) D)
"NUa

+
b

.

ECTI=ECT el
152 COMTINUE
IS5 CONTIHUE

ke

2185 U= MNGDE
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IF (THODE(J}.EQ.0) GO TOD 188
Lh=d
30 1354 I=LL,MNGDE
IF (INQDE(I}.EQ.0) GO TO 154
IF (ECI)LGELECLLY)Y GD TO 154
LL=1
154 CONTINUE
GO 7D 15%
135 CONTIMUL
C

CRAMZFA AT G R BETRRTR NS AN W DR ER

158 DO 158 J=.J, NNOBRE
IF CIMGUECJ) . EG.OY G0 TD 158
ZLOW=ZUAaLUE )
Lo=J
D0 157 I=li- NMODE
IFOCINODEC(T:,#0.00 GO 70 157
IF (ZLOMLE.ZUARLUELI)Y GO TO 157
ZLOW=ZURLLE(T)
Lh=1
157 CONT INUE
GO TO 1%9
158 CONTINUE

[ 2 PR TR ST R Ny
£
139 IF (PCT.LE,.Q001) GO 10 164
IF CINTSOLN.EQ.BY U TG iB4
B0 181 J=1.NNDDE
IF (INGDECJI.EQ.8) GO TD 181
XZLOH=ZuALUE ()
KFIRGT=}
50 IR0 I=KFIRST.HNOBE
IF (INODECIN.EQ.0) 60 T0 160
IF (AZLOWLLT.2UALUECE)) GO TD 180
KL OW=2UALUE( TS
160 CONT INUE
GO 10 182
181 CONTINUE
IBZ IF (ABS(XZLOVDLLT,.0001) GO TO 154
HyZ=(ZUP-XZE 0y #1030, 0-ABS(XZL0OH)
IF (Xv2,LE.PCT)Y GO TO 156
WEITE (701807 %2
80 To 164
£

Cratumnsamsntnstmnmnsssen LA R

184 Tk MRITCL (X, NNODE. IMODE. LL. NORDER. MW N3
IF CLLLNE.GY GO TO 184
NfR3T=0
Jd=1
GO TG 147

o

[ T T TR T T i A e v

C

184 TT 16% I=l+N

ROMTy=X{Ll. 1)
SMAXDC D) =XMAR (L, 1)
SMINOCT Y=XMIN(LL, [

S CINTINUE

Ll INTFEAS (X0, I5.M

{NRDE(LLY=0

COUNT =K OUNT~ |

(7181 KDUNT

fTeIB2 WOPT
17 183) 20PT.XYZ

NNODE
MNGP T, INTSOLN

+ 1B NFHM, HEN
(7 183 NETORE

BT CONTINUE

EETURN

jeisisfefajaj s nlnlulalolol-lninfeln ol Rl o i T SR o S Rt R ] B OO o O R D D O O I R O O S I S E S S I D O D I C T I O B O ) & T e

il5

387¢
3880
3820
3300
3310
3920
2330
3940
3350
3360
3970
3880
3390
4380
4310
4020
4030
4040
4058
4060
4070
4088
4N
4140
4110
4120
4130

3 4140

4150
4160
4170
4180
4190
4208
4214
4220
4238
42440
42350
4260
4270
4280
4230
4300
4310
4320
4330
4340
4330
4360
4370
43849
4330
4460
4410



[

[$Xnkal

oM

170 FORMAT (X, 314 THE ORIGINAL NLP IS INFERSIBLE)

171 FO7MART O 1H-, 28HTHE ORIGINAL MLP IS FEASIBLE, #5 1Xe L4HTHE ¥ UECT
137= 16510, 3y

1r2 FORMAT (31X, 3GHTHE yalLUE OF THE OBJECTIUE FUNCTION=.F10,3, 2

I¥3 FORMAT t1x, 23HOPTIMAL SOLUTIOM FOUNB, <, 1X, 13MTHE X VECTOR=. 10F10
LLn

174 FOPMAY (Sx,  8H BRANCH +13:, 148 TH  UARIABLE, )

AT C1X 15, 28HTH CONTINUDUS SOLUTION FOUND» 73 3X0 13WTHE % UECT

(5%, 25HAN INTESER SOLUTION FOUND, » 1%, 13HTHE X VECTOR=. 10

177 FORIAT ¢ 1MLy

178 FORMBY ¢ 1Mo, JIHTIME FOR FIRST INTEGER SOLUTION= ,F10,3;

(1%, 33HTHE PROBLEM 15 INTECER INFEASIBLE)

©1HO. 4BWTHE BEST INTEGER SCLUTION FOUND 80 Far IS HITHIN
2, 330 PERCENTAGE OF THE OPTIMAL VALUE)

T B, Z3HTHE TOTAL NUMBER OF ACTIVE NOTESs, 15, )

! IMD, 37kAN APPROXIMATE UPTIMAL SOLUTION FOUNB. -, Srx UE
1oF1n. 3

PRT (1M, 38HTHE UALUE oF TrE OFJECTIVE FUNCTION=,F10.3.5%, 18H]
8 WITHIN,FR,2, 23M PERCENTAGE OF THE OPTIMAL UALUE)

H

1.3

18T (10X, 336N0 BRANCHING VARIARBLE FOUND -SOME ERROR )

GRMRT (14, 2BMTHIS FROBLEM USED AT  MOST, 15, sH HNOOES)

186 FORMAT ¢ 1MO, 4SHTOTAL NUMBER OF CONTINUQUS NONLINEAS PROBLEMS.
idr SOLVED=. 13, /v, 1X, JAHTOTRL. NUMBER OF NISCRETE SOLUTIONS, 10M AC
B I 3

187 HAT € M, LSHERECUTION TIME=, Fi2. 32

138 AT C KO, 3aHTOTAL FUNCTIONAL EVALUATIONS = 2X5 1505 1% 30HTD

1 COMNSTRAINTS £ LURTIONS=, 2%, 15)

189 FO®MAT «  iH0, 33270701 NUMBER OF SQLUTIONS STORED=. I5)

130 FITHST ¢ LMK, 404 TRisS RUN 1S FOR THE STRBTEGY HITH OPTIORS, ~, &x.
LowHRK= o124 10H LIFQ= 412+ 11H HHRST= , 12}

[t

SUBECUTIME INTFERS (X8, IR M)
GIMENSION xXOM)

53 10t J=1.p
HI=ABL I -RINT NG ) )

" %1

=AHIMT (M1 xEs
IF (X3.G7..8001) 5D TO 102
191 CONTINGE

INTEGER SOLUTIAN FoUND

u=g
TTURN

SUERBUTINE SELECT (XD M TNDERs KKo PCL 4 PEUL XSTRR, )
GIMENSION ®OOM, POUNS, FCUIMI, XSTAR(MI, UM
I (EKLEQ. 23 68 1O 103

103 =g f

HE 102 J=l,n
AIAXOC I -AINT K00 )
R2wd O]
HI3=ARTHIL N, K2
IF (M3.LE, . 0061 GO 7O io2
IF (X3.LE.X%MINY GO TO 12
INDER=1
ARFHIN=X3

LGB CONMTINUG
RETURN

182 TC 104 Je=i,.m
Udy=g
HSTARL I3 =X0C J3-ATNT 1 ¥0(J) )
IF (MSTAR(JILLE. ,005]) GO TG 164
i ({IMOWKSTHR(J)J.LE..OOOl) GO TG 104
U(J):QMINlEPCL(J)*NSTRR(J),PCU(J)*(I.G—XSTQR(J)))
NTIPRIE
il
2]

PG1G5 =1
IFOCLD)LLELUS) B0 T 105
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VAR=UC )
INDEY=
105 CONTINUE
If CINDEMLEQ, 0 GO TH 164

BETURM
c

EMD

SUBRODUTINE PSLUDO (Ma KK, INDEX: PCL, PCUs KPCL, KPCUY 2, OLDZ, X0, OLDX )

DIMENSION PCLOM). XO(M), POULHY, KPCLOM), KPCUIM)

IF (KKL,Z0.48) 50 TO 161

FLL CINDEX )= (Z-0L82) # (BLOR~XODC INDEX ) )

FRCLCINDEX =1

RTTURN

10} PLUCINDEX ) =(Z-0LD2 )~ (X0F INDEX 1 ~DL 0

KPCUCENDEX =1

EITURHM
c

£

SUBROUTINE STORE  (KOUNT» INGDE , X» X0y AMAX . XM N, XMIND. XMAXT, 7» 2UALUE »

L0, MNGDE

DIMENSION IMODECLI003, XU100.M)s XO(N3, MMAXCIO0 MY XMINCL06, N3, X

INIBICND . XMAXDON:, ZUALUECI0). LOC(200)

LOMMON /8- THTSOLN. NHRST, XL 1M INDEX, LBL NINT, NSTORE

LOUAL=0
c

191 I7 (KOUNT.EQ.100) ©0.TD 108
D 102 I=1,100
IF (INDDE(I),E0Q.8) GD TO 143
132 CONTINgE

viv TH NHODE INACTIVE

103 MOpE=1
KOUNT=KOUNT+1
I UDE(NTDE 3= g
NSTORE=1STORE+L
LAC(MSTORE ) =NODE

c
c
I7 IMHRST.E0.2.ANS.LBL.NE. 106, AND, NOBE.NEL 1) INUDE (NCDE ) =2
C
C
C STORE THE INFORMATION
[
N3 104 J=iin
AUNODE, Jy=x0(0)
XMAXINODE s Jr=XMARD( 1)
KMINCNODE, JX=xMIND( D)
104 COMTIMUD
SV LT (HODE 322
€
G sttt B M2t s M 0001 B0 2 ST
[of

T O(LOCAL.EQ. 1) GO TO 105
FHRST.ONEL L) G0 TO 106
FONINT.ER.0) GO TO 153
FUINTSDLNLGE, 1) GO 70 108
T O(ABSIKDCINBER ) -XLIMI.GT. 00013 GO TO 106
FOININT.LGE.23 00 TO 103
LSTAL: ¢
G o 101
10S XMAX(NBDE, INDEX)=XLIN
KMIMONIOE, INDE: s =XLIN
INQPE(HGDE » =2

£ b b et 11—

—
T

R it LR T DT T T Y Sy,
C
108 IF (NMOOE,GE.KOUNT) GO T0 107
NNGDE=KDUNT
307 HWRITE (7, 1107 MNNGDE
WRITE (741083 KOUNT
RITURN
108 WRITE (7,111}
STOP

108 FORMAT (35X, 33HTHE TOTAL NUMBER OF ACTIVE NODES=, 15, /)
110 FERMAT (5X. 40HTHE MAXIMUM NUMBER OF NODES USED st FAR=: I5)
LIT FURMAT (1X, 4BHALL THE NODES USED UP. SUPPLY ADDITIONAL NODES)

rrTxTrx I:I3:I:I3:I:Z32ITrﬁfIfEZfI:Eﬁ:1:ZfI:EJfIZIZZI:rI:IZ[QZIZIZIJ?IIIJZI:xj:ZfifI3£IEI:IZIJ:I:IJ:I:ﬁﬁ)mcﬁC!ﬂiﬂf)ﬂc?flﬂ mMm T M
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118

EMD M B30
SUBRDUTINE REMOUE iKDUNT,ZUP1IHGDE¢2URLUErHHGDE) 1 0
JIMENSTON ZUﬂLUE(}GO);'INDDE(lUU) I 20
ETOLKDUNT, ED 0 RETURM I 34

Mri= I 440

o0 L0P I=1.HnGOE I 50

1F (INQBEiI}.Eﬂ«ﬂ!‘Gﬂ 0 ige I B0

IF L2UALUE (1. 6T, 2UP) GO TO 101 I 70

GO 70 joR I 80

i INODELI =0 1 90
HE=pp ) I 60

T INUE I 10

9T IUNT ~MN T 1a0

L THRN T 130

[ I 140
END I 150
SUBROUTING HRSTCR ENE»NE..:N-XD-XMIﬂD.XﬂRXO-YLZUPaINTSULN.LBL—XUPT Jd 14
HDD{,XsXHQX,XMINpZUQLUE»Z»KQUNTrNNQDE-HSTDEE) o 20

MENSTON XOPT(H, WENL XBEN . MMINGCH), XMAXDEN, CONCL) J 30

EHSYON \IRGDE 1003, XCL0WM), HMRX180,M), KMIHC100, 140, ZUALUELY g 40

¥ 4 50

COMNON SHE. TLL NNORT. NFH, NON JoBo

£ J 70
G 4 80
IFOLBLLERLL: 53 To 108 4 20
KOUNTER=g J0 108

DC 10 J=i,M 41l

YOI =RINT RO 4020

1 FOXOCII=Y 04 ) BE.0.5) YD=Y(dI+l.0 S0 13

e Ji40
FEOOVO LT XM Y=Y+l Jo1se

TF YOIV BT M0 Y=y () J1BD

C Jo17o
ITIRLE 4 kBe

HL.EQ.M G0 TO 103 Jo19n

HY 0B J=Meln 4 .2po

YO =x0] 4 2ic

108 COMT FNUE J 220
o <4235
c <4 240
103 CaLL consT ¥ COMY 4 a2se
IF CNELEQ,G) 60 TO 108 < 286

B0 10s =l.NE <4 BT

iF CABSCOMCI)ILGT, . 0001) GO 1o 109 J o280

104 CONTIRLE 4 280
19% FF (NI.E0.0) oo 10 157 J 300
Do tog R4 L NE+NT 40 3

IF (COMC LT, -, 0001) GO 1D 108 S 326

OB COMYInNUE 4 330

C 4 390
c <4 389
187 DALl InTreas Y 18033 <4 380
IF (IDLNELGS GO TQ 110 J 370
ExFry) J 380

ZUP=3 < 380
IHTGOLM=TMTE0LN+1 A 400

- WRITE (P, L8 v J 4
LT g J4 420

J 0 430

o4 A4y

CFeELEY TIN 4450

{7, 128 NHODE W 480

(711 HNOFTINTSOLN 447

E (701180 NFe, NEN J 480

£ 07 1200 NSTORE 4490

(Fy1i7) 4500

L 4 810
C <4 320
00 108 I=1.N J 539
XOPTCIamy () - T]

108 COMNTInE 4 S50
LBL=1G0 4 580

£ 4 g7g
C 4580
RETURM J5R0

[ J Bap
i TES J4 BLO
JERGULDUNTER) J 0 520

C J B30
o 4 Ban




oo a9

IF (KOUNTER.EQ.H) LBL=100
GO T3 163

110 17 {LEL.NE.O) GO TO 111
CaALL STORE (KOUNT. TNODE X Xy KMAXs XMIN, ¥MIND, XMAXGC, Z» ZUALUE, Ny NNOD
1)

111 IF (KOUNTER.EQ.MY GO TO 113
D0 112 J=KGUNTER+{, M
KMINGCII=Y ()
HHARD(DI =Y ) !
2 CONTINUE ) i
300 114 J=1.N
XO(II=Y(J)
114 CONTINUE
A=K OUNTER
RETURN

1l
11

115 FORMAT ¢ 1HO0» SOHUSING HEURISTIC 2 THE FIRST INTEGER SOLUTION FOU
IR, <0 1Xe  SHX VECTOR=, 10F10.3)

118 FORMAT (iX. 36HTHE UALUS OF THE OBJECTIVE FUNSTION=,F10.3)

117 FORMAT ( 1HID

118 FOAMAT { 1M0. 3BHTIME FOR FIRST INTEGER SOLUTION= ,F10.3)

119 FORMAT (  1HO, 30HTOTAL FUNCTIONAL EUALUATIONS = 2. IS, 1%, 30HTO
175 CONSTRAINTS EUNLUATIONS=,2X, I5)

120 TORMAT ¢ 10, 33HTOTSL NUMBER OF SOLUTIONS STORED=.IS)

LZL FORMAT ¢  1H0. 4SHTOTAL NUMBER OF CONTINUDUS NOMLTNEAR PROBLEMS,
184 SOLUED=. 13, #7414, 34HTOTAL NUMBER OF DISCRETE SOLUTIONS, 10H AC
S IEUEDR=, 13)

122 FORMAT ©  1H-,» 2BHTHIS PROBLEM USED AT MOST. 1S, BH MODES)

ENT
SUDROUTINE WRSTCL (. NAODE, INDDE L » NORDER, M, N3
DIMENSION X(130.N)Y, NOPDIZR(1), INODE(L)
MiN=1000
LL=2
80 101 I=1,NMODE
IF (INODECI).EQ.0) =0 TO L0l
IF (INDDE(I}.EC.L1) GO TO 101
CALL ORDER (X.NORDE=,I,M:N)
IF (NORDZR{IJ.GZ.MIM) GO TO 01
MIN=NORDERC(I)
LL=}
1061 CONYTInug
BETURN

END
SUBROUTINE ORDER (X, NORTER, I, M N2
DIMENSION X{300,N)» NORDER(1)
NORDER({13=0
0D 101 K=1.M
A= L -AINT (T KD
wawl,p-X}i
AZ=AMINL (K1, X2
IF (X3.GT..00001) NORDER(IY=NORDFR{I)+1
DONTINUE
RETURN
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