Purdue University

Purdue e-Pubs

IWRRC Technical Reports Indiana Water Resources Research Center

The Stochastic and Chronologic Structure Of
Rainfall Sequences--Application To Indiana

M. L. Kavvas

J.W.Delleur

Follow this and additional works at: http://docs.lib.purdue.edu/watertech

Kavvas, M. L. and Delleur, J. W, "The Stochastic and Chronologic Structure Of Rainfall Sequences--Application To Indiana" (1975).
IWRRC Technical Reports. Paper S6.
http://docs.lib.purdue.edu/watertech/56

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fwatertech%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/watertech?utm_source=docs.lib.purdue.edu%2Fwatertech%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iwrrc?utm_source=docs.lib.purdue.edu%2Fwatertech%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/watertech?utm_source=docs.lib.purdue.edu%2Fwatertech%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages







WATER RESOURCES ResEARCH CENTER
Purpue UNIVERSITY
WesT LAFAYETTE., INDIANA

THE STOCHASTIC AND CHRONOLOGIC STRUCTURE OF RAINFALL

SEQUENCES - APPLICATION TO I N ﬁ FANA

M. LeveNT Kavvas AND Jacoues W, DELLEUR

The work upon which this report is based
was supported in part by funds provided by
the United States Department of the Interior,
Office of Water Research and Technolegy., as
authorized by the Water Resources Research Act
of 1964 (PL 88-379 as amended}.

Period of Investigation: . September 1971 - August 1975
Final Report for OWRT-B-~036-IND :
Matching Fund Agreement 14-31-0001-3585

Pyrpue UNIVERSITY WATER Resources ReEsearcH CENTER
Tecunical Report No, 57
Aveust 1975







ACKNOWLEDGMENTS

This research was supported in part by the 0ffice of Water Research and Technology under matching fund
grant OWRR-B-036-IND, in part by the Victor M. 0'Shaughnessy Scholarship Fund and in part by Purdue Uni-
versity.

The authors wish to express their appreciation to Dr. L. Cote of Statistics Departwent at Purdue Uni-
versity for his valuable advice, to Drs. Dan Wiersma, Director of the Water Resources Research Center and
J. F. MclLaughlin, Head of the School of Civil Engineering for their assistance in the administration of the
project.

ii







ABSTRACT

PART 1

This part is concerned with the point stochastic analysis of the daily rainfall occurrences in Indiana.
The point statistical analysis was performed utilizing some statistical functions and some statistical tests
of nypotheses. First, the analysis of trends in the daily rainfall counting process was performed. It was
seen that there are cyclicities both in the first and the second moments of the peint stochastic process.
Physicaily meaningful annual and 15-day cycles were found to be significant. There is also a slight down-
ward trend in the rate of daily rainfall occurvence in Indiana. The data were homogenized under the inde-
pendent counting increments assumption and the Poisson model was tested by formal statistical tests and by
statistical functions. The model was reiected for the daily rainfall counting process in Indiana. From the
behavior of the spectrum and the variance-time function of the daily rainfall counts a clustering of the
daily rainfalls in terms of storms is apparent. The Neyman-Scott cluster process was constructed in the
time dimension to model this physical persistence. Physical concepts were attached te various components
of the model. It is shown that the model fits the data quite weil. Due to its very fiexible spectral
structure and to its physical interpretation of the various compenents of the rainfall occurrence, the
Neyman-Scott cluster model deserves further investigation in different ctimates of the world.

PART 11

The second part of this report is concerned with the time series analysis of the monthly and the annual
rainfall sequences at varicus stations in the Midwestern United States.

First, a theoretical and empirical analysis of the removal of cyclicities was performed on the monthiy
rainfall series. It was seen that differencing camnot be used for the generation purposes although it
removes the cyciicities in the data. Standardization, aithough 1t introduces some spurious nonstationari-
ties into the data, is an acceptable method for the generation purposes.

A spectral and a yariance~time analysis of the ARIMA family of the hydrologic time series models was
done to study their long range dependence characteristics. I was seen that when the models are in the
ARMA(p,q) family, they asymptotically end up in the Brownian domain. Therefore, in the strict mathematical
sense, they cannot preserve the long range dependence characteristics in the form of Hurst's law for the
variance. The ARIMA {1,d,1) family of models, on the other hand, yield infinite variance and are nonsta-
tionary in their generating forms.

The nonseasonal ARMA models wevre appiied to sither differenced or standardized monthly rainfall square
roots. The ARMA{1,1)} model, fitted to the standardized monthly square roots, emerged as the best model in
terms of the statistical diagnostic tests.

The ceasonal multiplicative ARIMA (1,0,0) x {1,1,3.)12 passed all the goodness of fit tests on the
seasonally 4ifferenced monthly rainfall square roots.

forecasting of the monthly rainfall square roots was carried out by the use of ARIMA {(0,0,0), ARIMA
(1,0.,1), ARIMA (1,191)12 and ARIMA (1,0,0) x (1,1,1}12 models. Among these models the ARIMA (1,0,1) or the




ARIMA {0,0,0) models can preserve both the monthly means and the monthiy standard deviations. On the other
hand, the seasonal models could enly preserve the wonthly means. Thevefore, they are inconvenient for
hydrolegic forecasting pursoses.

Far the annual rainfall seriss a white noise model with normelly distributed vesidyals is adequate and
can be used for the hydrologic simulation purposes in the Midwestern United States.
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GENERAL INTRODUCTION TO PARTS 1 AND II

THE PLACE OF THE REPORT IN THE FRAMEWORK
OF WATER RESOURCES DEVELOPMENTS

The development of the water resources of a certain region of the world vequires a number of analytical
planning methedologies. These include the construction of models for the evaluation of the water vesources
systems on the basis of the achievements of certain stated goats under varieus environmental constraints.
Once the objectives and the constraints of the development are stated, the model analysis leads to a set of
hydraulic structures {(such as dams, irrigation canais, flood zones, power plants. groundwater pumps, ague-
ducts), with their leveils of output for the given available water. The analysis aiso leads to operational
procedures for attaining the outputs which best fulfill the stated objectives.

Two types of techniques employed for model analysis are {1) the simulation approach, and {2) the mathe-
matical programming approach. For the multipurpose, multistructure water resources system the interactions
among the system components usually are very complex and may reguire not only numerical computations Trom
algebraic expressions, but also decisien rules based on logical relationships among the design variables
(hydrautic structures, and their targei outputs for various water needs). Furthermore, the employment of
random numbers may be necessary in the description of the interactions among the design variables. This
complexity is not amenable to a rigorous solution by straightforward mathematics. Therefore, the simulation
approach is often preferred. The simylation of a compiex water resources system makes use of mathematical
representations and logical expressions which represent the various complex physical interrelations among
the system components. This simulation enables the planner to obtain an optimal or near optimal combination
of hydraulic structurss, water target Jevels {for irrigation, water supply. energy and various other out-
puts), storage capacitiss for various uses, and an aparation pelicy for the management of water through the
system.

A simulation model is made up of two parts; (1} the system components, and {2} the operation. The
operations constitute the model’'s representation of the internal interactions existing among the system com-
poments. The rules defining these interactions are naturally functions of the system components. These
pules form the operation policy of the water resources system. The system components are of two types; (1)
the state variables that describe the state of the system at any time, (2) the physical functions and con-
stants which do not vary in time. The physical functions for a water resources system are, for example,
the flood routing equations, the head-capacity curves for hydropower, the head-storage curves, and various
other functions of the time-invariant relationships among the elements of the system. A certain combination
of the state variables describes a particular water resources system that will yield a specific response to
specified inflows to the system.

Hufechmidt and Fiering (1966) further classify the state variables of a water resources system as (1)
the physical facilities - the sizes of the various nydrautic structures in service, (2) the operation
policy parameters - the rules for the management of water through the system such as the storage ailocations




for fiood control, dead storage and rules for releasing and routing the water. The state variables of the
simulation model are the design variables of the water resources system. A}1? the components of this physi-
cal system have their limits, such as the reservoir storage allocations and agueduct capacities. These
Timits are induced by the availability of the water, the demand for water services and by the development
measures for adjusting the supply to the demand.

The role of hydrology in the water vesources system analysis through simulation is {1) to provide the
inflows to the system once the design variables of the system are set for a simulation run, and (2) te pro-
vide those physical Tiwmits for the design variables, which are induced by the extreme natural conditicns
and by the risk levels the community is willing to take. The inflows are routed through the water system
which is already bounded by the physical constraints, and a response in terms of the physical outputs and
econoniical and social benefits is obtained. For each pattern of inflow the combinations of design variableés
cent be varied, and a response surface can be obtained afier many trials of simuiation runs. From the re-
sponse surface an optima} design in terms of the stated objectives can be identified as the combination of
those design variables which best fulfill the objectives within the physicel Vimits of the design varidbles.

The first part of this report addresses itself to the second role of hydrology in the water resources
pianning: the extreme hydrclogic phenomena. Floods and draughts determine the critical pericds in the
operation of a water resources system. They are of vital importance in fixing the physical Vimits of the
hydrduiic structures, the Timits of the target outputs for water demands, and the 1imits of the operation
potiey for the predetermined risk levels. A drought of Tong duration would necessitate very large reservoitr
capacities to meet the irrigation, municipal and industrial demands of a community which dasires a small
risk. The preblem is of vital importance in the dry climates where lives and many economical activities
depend basically on water. The countries in the Middle East are examples of this situation. An extreme
flood may necessitate very high'dams, large empty reservoir spaces, and expensive flood zoning measures.
Tharefore, the need for the precise calculation of the stochastic structure of these extreme phenomena be-
comes apparent.

The rainfall occurrences inm & certain region decide the drought and the fiood characteristics of that
region.  Therefore, the rainfall occurrence phenomernon has to be properly modeled. The rainfall occurrence
is the end result of some complex processes in the atmosphere. These complex processes may be modeled to &
certain extent by mathematical expressions. However, the internal relationships amorng the very diverse
atmospheric components are too complicated to be solely described in mathematical terms. The knowledge
abrout the behavior of the atmospheric components towards the production of rainfall is insufficient. This
uncertainty and the above described complexity can most simply be modeled by considering the rainfall
occurrences as a stochastic process.

The rainfall record in the particular region under study is just one realization in the stochastic
process of the rainfall occurrences. The floods and the droughts that are expected to occur in the history
of the rainfall time series may not be represented in the brief record at hand. The physical limits of the
destgn variables that are calculated through this single realization ave obviously not representative and
may lead to catastrophes. It is necessary to construct a model for the point stochastic process of the
rainfall occurrences in order to obtain the probabilities of practical importance in fixing the physical
constraints for the design of the system. Once these prebabilities are known, the planner can determine
the risk measures corresponding to the dimensions of the hydraulic structures, the target water outputs,
and the operation policy parameters.

The classical water resources system simulation studies such as the Havvard Water Program Muzass et al.,
(1962) ysed synthetic streamflows as the hydro]ogic‘infiow to the system. The historical streamfiow is the
hydrolegic idflow to the system. But similar to the rainfall record the historical streamflow record is
just one realization in the stochastic process of the streamflow time series. Just one realization obviousty



cannot represent all of the physical characteristics of the streamflows. The critical periods of floeds anrd
droughts that are expected to occur in the history of the streamflow time series may not be represented in
the brief record at hand. The optimal design, derived through the water resources system response to a
single realization of a stochastic process,can only be good for this single realization which may never
repeat 1tseif. No information can be derived for the vesponse to other equally Tikely realizations, that
{s, to equally Tikely streamflow patterns which have the same statistical characteristics as those of the
nistorical streamflow sequence. It is the job of the hydrotogist to generate synthetic streamflows which
preserve the probability structure of the historical streamfiow sequence and which create the critical flood
and drought conditions to be expected from a sufficiently long hydrologic record. These equally likely sets
of hydrologic sequences will enable the pianner to analyze his system performance under a great variety of
conditions so that he can construct a more thorough response surface for the desion variable combinations.
The more thorough the response surface, the more retiable the optimal design will be. For the accomplish-
ment of this objective the hydrologists have constructed stochastic modeis which preserved the mean, the
variance and the autocorrelation structure of the historical streamflow record and have generated streamfiow
time series 500 years or move in tength. The justification of preserving the mean and the variance was that
the range of the cumulative departures from the mean,which in turn specify the design reservoir capacities,
could best be estimated in terms of these two statistics {(Hufschmidt and Plering, 1966} .

Since the Lime series model, to be employed for the generation of synthetic hydrologic sequences, is
Fitted to the autocovrelation funciion, or, equivaiently, o the spectvum of the stationarized historical
hydrologic record, the first practical probiem is the vemoval of the time trends and circularities from the
historical data. In the first section of the second part of this report various opervations for the removal
of circularities are analyzed to assess their properties. The time series model is then fitted to the sta-
tionary part of the historical data. The stationarity and the invertibility conditions of the ARMA{ R ,q)
family of time series models are studied and the physical meanings of these conditions are attached.

A very important concept to be considered is the Tong range dependence since the hydroiogist ganerates
sequences of the time span of 500 years or more. The classical studies of Huwst (1951, 1956, 1965) pointed
to the long range dependence in the hycrologic records. Long-range dependence is guite an important concept
for the water resources system design since 1t affects the storage capacity reguivements. The long-range
dependence corvesponds to the low frequency components of the spectrum. It can alsc be analyzed through the
variance-time curve. In the first section of part II the Tong-range dependence properties of the cuvrent
hydrologic time series models will be analyzed by the use of their spectral and vartance~-time propeviies
to produce the necessary conditions to simulate the long-range depandence affect. The fit to the spectrum
or to the autocorrelation function does not guavantee a good i% at the low frecuencies, nor does it guaran-
tee the preservation of the various spectral moments. Tharefors, the fit to the spectrum does not guarantee
the preservation of the long-range dependence properiies of the hydrologic record. A study is needed fo
incorpovate these properties intoc the models.

Many parts of the werld do not have sufficiently long historical streamfiow records to be used for the
synthetic streamfiow generation. . In the underdaveicpad regions of the world the historical streamtlow
recovds are often non-existent. 1In such cases the nydrologist will have to generate synthetic vainfall
sequences from the historical rainfall records that often exist snd are guite long. Then, by either using
the convelution technigues or by the physical watershed models he capn obtain the synthetic streamfliow
sequences from the synthstic rainfall sequences. Furthermore, the development of the agricultural resources
of a region requires the prediction of the dry and wet weather sequences in order to determine the irrigation
policies. The time series models and the forecasting procedures for the asnual and the monthly rainfall time
series will be developed in the second section of the second part of this veport.
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CHAPTER 1 -~ INTRODUCTION

1.1 A SURVEY OF THE STOCHASTIC MOBELS ON THE RAINFALL OCCURRENCE PHENOMENON

Hydrologists and meteorologists have been fitting stochastic moedels to the rainfall occurrence data
since the early 1900s. The purpose of these stochastic models is the simulation of the dry and wet sequence
probabilities. The knowledge about the probabilities of the dry and wet pericd lengths, and of the number
of rainfall occurrences renders better decisions on the agricuitural policies and the water resources system
operations. The stochastic models appiied for the daily rainfall occurvences may be broadly classified into
three groups; (1) the Poisson models for the independent rainfall counting increments, {2) the Markov chain
models which account for the persistence in the rainfall counting increments, {3) the alternating renewal
models for the independent, alternating wet and dry periods.

The application of Poisson models for the rainfall occurrences dates back to the work of Grant (1938).
He fitted a simple Poisson model for the number of excessive rainfalls occurring in any single year in the
Midwest. The simple Poisson model for the number of occcurrences Ny in the time interval (.t} is given as

PIN, = n] = (xt)" e M a

with the rate of occurrence M being the sole parameter. Thom {1959) agreed with the resuits of Grant when
he fitted a simple Poisson mode! to the number of excessive rainfalis in a year in Davenport, Minneapolis,
and Omaha, which are again Midwestern cities. Shane (1964) applied the compound Poisson distribution to the
analysis of the rainfall records in the U, S. ZLober: {1967) used Poisson distributed daily rainfall occur-
rences in the wet pericds of his altermating renewal process. He applied his model to the Ailier basin in
France with quite satisfactory results. Todorovic and Yevjevich (1969} treated the daily rainfall occur-
rences with the non-homogeneous Poisson medel which may be described as:

t 3

PN, =n] = exp{-JG A(T)dz}e[fz K(T)ég]n . #T

with the time-dependent rate of occurrence At} being its sole parameter. They fitted the probability dis-
rpibytions derived from the model to Durango and Ft. {ollins,Colorado, Austin, Texas, and Awes,lowa. They
concluded that the number of storms in a time interval is Poisson distributed 17 the storms ave properly
defined. Two definitions that were used for the storm were: {1} each rainy doy is treated as an individual
storm event, whether or not it is preceded or followed by a rainy or non-rainy day, and {2) each storm is
identified as an uninterrupted sequence of rainy days. They observed the annual cyciicities in the rate of
daily rainfall occurrences but failed to account for the longer physical periodicities or the long-term
trends cited by Mitehell (1964). :

Duckstain et ol. (1972) fitted simple Poisson distribution for the'number of rainfalls caused by the
summer precipitation of the continental thunderstorm or of the tocal convective type in Arizona. These
rainfalls were of short duration and:high spatial variance., The basic assumption of the Poisson model is
the independence of the counting increments. In order to fit a Poisson model to the vrainfall counts there
should be no dependence among the rainfall counts. This may be true for the rainfalls which are caused by
+hunderstorms whose life cycle is in the order of hours {Petterssen, 1969). During the summer season there
is a low pressure system over Nevada, Arizona, Northern Mexico and Scuthern California. However, this is
overlaid by a high-level anticyclone with strong subsidence and, therefore, the clouds are absent. Occa-
sionally, this protection is removed and the summer showevrs occur. 1T these summer showers are of short
duration, then the study of Duckstein et al. {1972) wakes physical sense. However, the mechanism of a




thunderstorm consists of a cluster of thunderciocuds. When the downdraft spreads sufficiently far from the
mother cloud, the upward metion ahead of the downdraft often vesults in the formation of a new cell. Thus
the thunderstorm group will be replenished on its front while the oid cells at the back dissipate. Due to
the clustering effect, the 1ife span of the whole group of thunderstorms will be much Tonger than the Tife
of the individual thunderstorms (Peiterssem, 1969}, The presence of a "cluster” of thunderstorms couid
cause dependence in the rainfall counts. This may be the physical explanation of the Markov chain model of
Smith and Schreiber (1973} for the thunderstorm rainfall occuvrences in Arizona.

The dependence of the rainfall cccurrences was shown as early as in 1916 by Fewnhan in the data of the
British Istes. The persistence of the dry day sequences at San Francisca, given by Jorgensen {1949}, and
the persistence in the wet sequences &1l over the world, given by Jennings (1950), indicate the dependence
in the rainfall occurrences. The simpiest model e account for the dependence is the first-order Markov
chain.

Gabriel and Newnanm, in & sequence of papers (Gabriel and Newmann, 1957, Gobriel, 1959, and Gabriel and
Fewmann, 19562) formulated a homogeneous, fTivst-crder Markov chain for the daily rainfall occurrences in Tel-
Aviv. Their basic assumption was that the probability of rainfaill on any day depended only on whether the
previous day was wet or dry. For a two-state first-order Markov chain {n,: n > 0} the transition probabil-
ities may be expressed as:

Plnges =0 [ n, =1l = ?gg) 1.0 = 0,1

That is, the twe states that are considered here are § and 1, denoting, respectively, the dry and the wet
states. In a homogensous Markov chain

0
iy = eld =Py

that is, the transition probabilities stay the same at each stagé. Therefore, the transition matrix of a

homogeneous two-state first-order Markov chain with 0,1 states becomes

Pog Pol

where Pog * Pg1 T 1, Pig ¥ Py3 = 1. Then there are only two parameters for the two-state Markov chain.
They will be taken as Py = Pyg < L~ pyge and Py = Pp1 = 1 - pgg- The n-step transition matrix A{n) for a
homogeneous two-state first-order Markev chain is equal to A" so that the recurrence relation

(ny _ {n-1) {n-1)
Pigt = P51 Pg Y Pig  Pog

follows. Using this relation and some combinatoricsGabriel {1959) derived the probability of exactiy s wet
days among n days following a wet day as

c b a

1 i-p p

_ TR n-s §y (n-s5-1 1 ]

PIN =s[ng=1] = p7(1-py) 1) Cpld {*__J {p ]

c=1 1
where c; = n + %~ [25 - n+ % if s<n
0 if s =n

and a and b are the least integers not smaller than {%){c-1) and {%)c, vespactively. Gabriel also derived
the probability of exactly s wet days following a dry day as




Cq 1-p)2 {p b
PN =sing=01 = p5(1-p)™ T (1) (%) | 12
n 0 1 0 c=1 b-1 a 1 Pg )

where ¢y = n + % - |2s = n =% if s>0
0 if s=0
and a and b are defined as above. Therefore, the prebability of s wet days in n days is
P{%n=s] = P{Nn=s|n0=1] P[nﬁml] + P[Nn=sin0=0} P{n0=G}

The probability of a wet spell of length k is (1~pl)p§"l and the probability of a dry spell of Tength m is

po(i—po)mnl. The lengths chey the geometric law. Gabriel and Newmann {1962) established that the Markov
chain model agreed with the Tel-Aviv daily rainfall observations at the 5% significance level. By estab-
1ishing that the proportions of wet days, given the previous day's weather, are independent of the weather
two or more days earlier at the 5% significance level, they showed that first-order, homogeneous, two-state
Markov chain is adequate for modeling the Tel-Aviv daily precipitation occurrences. Considering that Tel-
Aviv is basically under the fnfluence of the Mediterranean regime, the model makes physicat sense.

Caskey (1963) fitted the first-order, two-state Markov chain to precipitation occurrences in Denver,
Colorada. He observed the annual cycticity within the year and empioyed different transition probabilities
for cach season. Me considered four different Markev chain models for four different seasons. Weiss (1964)
Fitted the Markov chain model to the daily rainfall data in Kansas City, Fort Worth, Montreal, San Francisco
and Moncton. He showed that the model fits the sequences of wet or dry days in records of various length
and for climatically different areas. He observed the seasonal variatiens. However, the most impovtant
feature of his study is the testing of the presence of secular trends in the daily rainfall data. In table
5 of his paper the monthly precipitation probabilities P[Wet|Dry] for two 25-year periods for Kansas City
and Fort Worth are given. Although Weiss concludes that "there is relative secular stability of the prob-
abilities," the differences are large enough to warrant further research on long term trends. Actually
Mitchell (1964} pointed to the physical periodicities of 1l-year sunspot cycles, the hiennial cycles and
80-90 year cycles in the meteorotogical time series. Feyerherm and Bark {1964) fitted higher order Markoyv
chains to the precipitation data in the north central U. S. when the first-order Markov chain proved to be
imperfect., Feyevherm et al. (1965} fitted a non-homogenecus first-order Markov chain to the daily rainfall
occurrence data of 11 locations in Indiana. The transition probabilities were caiculated for every week oT
the year. However, no goodness of fit fest results were given. A persistence model makes physical sense
for Indiana since the state is basically under the infiuence of the Atlantic cycione vegime. During the
winter the zone that separates poiar continental air from an intrusien of arctic air from the north passes
through Indiana in the sast-west direction. This cyclone beit persists during the winter and causes exten-
sive precipitation. In the summer time the belt moves north o Canada (Petierssen, 1969). However, the
disturbances of the polar front te the south cause summer showers and cccasional thunderstorms. These
thunderstorms are basicalily of two types: {a) scatfered type air-mass thunderstorme of short duration, and
(b) frontal thunderstorms in clusters whose 1ife cycle is much longer than the one for the scattered type
{ Wewman, 1975},

During the winter time due to the long memory of the rainfall producing cyclone belt, there is reason
to believe that the probability of rainfall on any day may not only depend on the previcus day but on the
further past. Wiser (1965} stated, with stight mod{fication, that

there are ... several sets of data which have been reported, which are not described properly by
the simple Markov chain model. Among these may pe mentioned several of the results given by
Howiom {1916} for the British Isles, sequences of dry days at San Francisco by Jorgensen (1949)
. and the results cited as fitting a higher order Markov chnain given by Feyerherm and Bark




(1964} in the midwestern states. Oreen (1965) stated that the it of the simple Markov model
was unsatisfactory for several of the cases cited by Weiss (1064). The consistency of the
manher in which the discrepancies occur is indicative that there may be a more general prob-
ability model, of which the Markov chain model is a special case, which will describe in a
move suitable way the behavior of wet and dry sequences.

In table 1 of his paper Wiser cited several locations where the deviations of the simple Markov model from
the data are highly significant. Wiser proposed four modified Markov probability models. From his goodness
of it tests the Polya urn model emerges as the most successful in describing the contagious cases where the
persistence extends over a prolonged period. The extension of the persistence corvesponds to the overdis-
persion of the number of cccurrences. This corresponds to the upward curvature of the log-survivor function
of the rainfall occurrences and will be described in the later chapiers. The curvature of the log-survivor
function of the dry days in San Francisce (Jorgensen, 1948} is shown in the figure 1 of Wiser. The straight
Tine predicted by the Markev model was clearly unsatisfactory. On the other hand, the Polya urn model suc-
cessfully fitted the empirical Tog-surviver function. The Polya urn model consists of & single urn contain-
ing ‘wet' and 'dry' balis. After a ball is randomly drawn and its state is noted, it is replaced with D
other balls of the same state. Wiser introduced the modificaticn that the number of draws with added balls
will not exceed a specified number ¢. After ¢ draws the urn acts as a Bernoulli urn with the number of
‘wet' and 'dry' balls being constant in the Toilowing draws.

Feyerherm and Bark {1967) analyzed the seguences of wet and dry days in Indiana, lowa and Kansas under
the light of Wiser’s (Wicer, 1965) and their earlier {Feyerherm and Bark, 1964) findings. They have con-
cluded that a rainy speil is move likely to terminate after at Teast two wet days than afier one wet day
during early spring. They pointed to the inadequacy of the first-order Markov chain for simulating the
probabilities of long sequences, "especially for prolonged dry spells when a different set of meteorological
forces may be operative." In accordance with their point, at Igquique, in northern Chile, four years have
passed without rain (Petterssen, 1969). It is not possible to simutate such a tong dry period with the
geometric memory of the simple Markov chain.

Romanef (1972) fitted non-homogeneous Markev chains of first and second order for a sequence of wind
gbservations in Bucharest, Rumania., He compared these models with the independent increment {binomial}
modal. He concluded that the Markov models are far better than the independent increment model in the simu-
Tation of the occurrence probabilities. The second-order Markov chain led to an improvement of the results
over the first-order chain. However, the firsi-order Markov model was considered satisfactory in most cases.

Todorovic and Woolhiser (1971) derived the distribution of the total n-day precipitation amount ${n} as

n
PIS(n) < x3 = PIN =0] + 5;1 PIX, < X1 P[N,=V]
\}:

where Np is the number of rainy days and Xv is the total amount of precipitation in v rainy days. However,
they made some fundamental assumptions in their derivation. These assumptions were: {a) {Nnﬂ 0}, {Nn: 1},

os {Nn= ki represent a countable partiticn of the sample space, (b) if gv denotes the daily precipitation
value of the v-th rainy day, 51, 529 vens gn are independent, identically distributed random variables with
finite mean and variance, {c} the information concerning which k days in the n-day period were wet and which
{n-k) days were dry, does not contribute anything to the knowledge concerning the corresponding precipita-
tion quantity Xk‘ Among the three assumptions the last one is doubtful since due to the cyclicities both in
the rainfall guantities and occurrences, the position of the rainy day within the year will definitely tell
something about the corresponding rainfall quantity. However, the above probability distribution was derived
under the basic assumption of stationarity. As long as the n-day time interval is approximately stationary,
assumption {c) seems satisfactory. Todorcvic and Woolhiser gave the probability of the first passage time,
T{u), to the precipitation amount u as

P[T(u) < nl = P[S{n} > u].




They fitted the first-order Markov chain to the daily vainfall occurrences in Austin, Texas for the month of
May and obtainad satisfactory ve;u?%s, Assuming that Xv is gamma distributed, and the daily rainfall counts
obey the first-order Markov chain, they derived the explicit distribution of S{n). They fitted this model
to the n-day vainfall amount in Austin. However, the fit is unsatisfactory. Later, Woolhiser et al. {1872)
regionalized the parameters for the n-day precipitation amount in eastern Colovrado.

Smith and Schreiber (1973} tested the hypothesis of the sequential independence against a first-order
Markov chain alternative for the daily rainfall sequences in the southwestern U. S. for the time interval
from June to September. They showed that the Markov model described the thundevstorm rainfall activity
petter than the independent increment model of Duckstein el al. (1872) for the same region. They showed
that the transition probabilities vary within the season as well as during the year. Their harmonic analy-
sis indicated 4 day and 11 day periodicities. However, their analysis was in the time-series sense while a
spectral analysis of the rainfall counts had to be undertaken. The cumulative distribytion fits of the
number of wet days per seasom by the Binomfal and Markov models in figures 10 to 12 in their paper showed
the inadequacy of these models in describing the counting phencmenon. Swith and Schreiber stated that they
"do not wish to conclude that thunderstorm season daily rainfall occurs as a simple Markov chain. It has
not been demonstrated, for exampie, that the order of dependency may not change within the season or that a
second or higher-order chain may not be superior to a simple chain." They pointed to the vartation of the
meteorclogical conditions from year to year, and to the importance of the description of the annual variance.

crovelli (1972) used the finite-state continuous-time Markov chain to model the precipitation process.
Finite-state coniinuous-time Markov chain is defined as a process which at any time is in one of a finite
set of mutually exclusive, collectively exhaustive states and whose time between transitions is random and
dependent only on the currently cccupied state. A continucus-time precipitation process may be considered
as a continuous-time Markov chain model. There may be two states, state 1: wet or storm and state Z: dry.
Let k12 represent the transition rate of the process from wet €0 dry and hoq represent the transition rate
of the process from dry to wet. The transition rate matrix A where (Crovelli, 1972}

A2 M2

A1 R
describes the two-state continuous-time Markov chain. The transiticn rate XiJ of the process from state i
to state J is defined as

PIN{t+raL) = JlM{E} = 4]
X

ki = Tim
4 At
Foltowing Grace and Eagleson (1966}, Crovelli assumed that the storm duration is exponentialiy distributed
with mean 1/A12, while the time between storms is exponentialiy distributed with mean 1/h21' 1f the time
between storms and the storm duration are assumed independent, the two-state continucus-time Markov chain
yields the alternating renewal process which was emploved earlier by Gresn (1964}, Grace and Eagleson (19686},
and Lobert (1967).

Green {1964) proposed an alternating renewal process with exponential durations for the dry and wet
spells for the rainfall occurrence data of Tal-Aviv. He showed that the model fitted the rainfall data for
Tel-Aviv adequately and vepresented certain conditional probabilities better than the simple Markov chain
of Gabmiel and Newnann (1962). Grace and Hagleson (1966) first separated the time series of point rainfall
observations into statistically independent events and then applied the alternating renewal process with
Weibull distributed storm durations for the data of the northern U. S. However, this procedure
artificially distorted the originally dependent point rainfall process. They applied the model te short
time increment rainfall in the order of minutes and hours. However, even in the hourly scale there s a




very strong diurnal cyclicity in the rainfall occurrences (Mitchell, 1964). This type of a model is quite
inconvenient for the incorporation of the physical cyclicities since it is basically made up of two renewal
processes (the wet and the dry periods) alternating with each other {Cox, 1962). The basic characteristic
of a renewal process is that the collection of the random variabies {T1s Tso ...} ave identically distri-
buted. This means staticnarity. An alternating renewal process can account for the periodicity only if it
is made up of some J components following each other in cyclic order. However, this would tremendously com~
plicate the general representation of the model, its estimation, and its application. Lobers (1967) applied
the alternating renewal process with the exponential storm interarrival times and exponential storm dura-
tions, to daily rainfall data in France. In order to account for the annual cyclicity he separated his data
into months. He then applied the alternating renewal process to each month.
The shortcomings of the previous work done on the stochastic modeling of the rainfall occcurrence proc-
ess may be stated as follows:
1. The constructed stochastic models are black box models. They do not contain the physical components
of the rainfall phenomenon.
2. The work that has been done relies heavily on the circular stationarity for the calibration of the
model parameters. The effect of the biennial and Tonger term cycles (Mitchell, 1964) was ignored
in the practical applications. No rigorous appreach for the analysis of the physically sound
cyclicities in the rainfall counting process was attempted. A statistical methodology for the
detection and the calibration of the cyclicities and trends in the rainfall counting process is
needed.
3. Although the dependence in the rainfall occurrences was accounted by many authors, a rigorous
jdentification of this structure through the correlogram or the spectrum of the rainfall counts
was not undertaken. Hydrologists and meteorologists tried to justify the first-order Markov per-
sistence by overfitting the data by higher order models. The work of Wiger (1965) should be men-
tioned as an exception. The Tog-survivor function was effectively used by Wiser Tor the identifi-
cation of dependence. However, a methodology for the identification and the estimation of the
dependence structure is needed.
4. The stochastic models reported in this survey only considered the occurrence of the "product” of
a complex meteorologic process. The physical dependence characteristics, associated with the
various types of rainfall generating mechanisms were not utilized. This was due to the fact that
all the reported models were one-level models. The rainfall occurrence process is at least a two-
level process. The occurrence of the rainfall generating mechanisms may be considered as the
primary ievel process. The rainfall generating mechanisms are the frants, the thunderstorm clouds,
etc. In the second level there is the rainfall occurrence. The dependence of the rainfall occur-
rences is basically due to the dependence of the rainfall generating mechanisms over the concerned
area. The development of a two-level stochastic model may utilize the meteorologic knowledge
ahoyt the characteristics of the rainfall generating mechanisms for the simulation of the prob-
abilities of the dry and wet sequences. Such a model could form a first bridge between the deter-
ministic seteorologic facts and the characteristics of the random wet and dry sequences.
5. Except for the pioneering work of Wiser (1965), the long-term dependence that was recorded in the
dry and wet sequences around the world was not dealt with. A flexible stochastic model that can
account for the various lTengths of dependence is needed. The wet period duration of 2 years
observed at Cherrapunji, India (Jemninge, 1954) and the dry period duration of 4 years observed
at Iguique, Chile (Petterssen, 1969) cannot be explained by the geometric memory of the popular
first-order Markov chain.
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6. The stochastic models were verified by their goodness of fit to the marginal probability distribu-~
tions obtained from the data. The goodness of fit to the corvelation structure is egually important
since a stochastic process is a collection of random variables.

1.2 THE FRAMEWORK OF THE POINT STOCHASTIC ANALYSIS OF THE DAILY RAINFALL

Part T will be concerned with the stochastic analysis of the daily rainfall occurrences. The method-
ology for the statistical analysis of the occurrences will be the point stechastic amalysis developed by
Cox and Lewis (1966), Parzen (1967}, Lewis et al. (1969), Vere-Jones (1970) and others. For a point sto-
chastic process the occurrences should be instantaneous points on the time axis. Since the rainfall is
observed at equal sampling intervals, a convenient sampling interval has to be chosen. As the time sampling
interval for the rainfall phenomenon is decreased, the rainfall occurrences aventually become points on the
time axis so that the occurrences appear to be instantaneous. The minimum Tength of the time sampling in-
tarval is controlled by the computer storage capacity, and by the goodness of approximation of the stochastic
point process which describes the probability structure of the number of avents in certain intervals. Anoth-
er criterion for the selection of the time interval is the preservation of the characteristics of the phenom-
enon the planner wants to consider. As the time interval is decveased, the approximation to the point proc-
ess may Tmprove but the number of intervals increases and the storage requivements increase. In order to
accommodate the storage requirements short lengths of vecord are usually taken. The shorter the record the
more difficult it is to observe the nonstaticnary characteristics of the hydrologic phenomencn. The preser-
vation of the long term trend characteristics of the record may become impossible.

In this report a sampiing interval of one day was utilized for the analysis of the rainfall occurrences.
the daily sampling interval was large encugh so that the nonstaticnarity effects could still be observed.
This interval was short enough so that the daily rainfall ocourrences could be considered as a stochastic
point process wheve events occur singly or in small groups at the instants of time.

However, there is the guestion of whether the whole day interval should be considered as wet when there
is rain on that day. The distribution of the rainfall during the day was not given in the data. Therefore,
if there was any rain on a day above the depth of .01 in. the rainfall was assumed to eccur in the middle of
the day. This assumption rendered a closer approximation to a point process where the occurrences shouid be
instantaneous. Under this assumption a wet period of n-days consists of n consecutive rainfall points
placed at one-day -intervals. If the whole day was considered wet when there was rainfall at any time during
that day, this alternative would not yield instantansous occurrences on the time axis, especially when there
are n consecutive vainy days. This, in turn, would make the point stochastic analysis on the rainfall
counts quite difficult.

1.3 THE DAYA

The daily rainfall occurrences were analyzed for 17 stations in the state of Indiana. The names of the
17 analyzed stations and their corresponding identification numbers are given in Table 1-1. The locations
of these rainfall stations are shown on the MAP-1 of Indiana. As is seen from tha map, wost of the stations
were taken on the sast-west air front that governs the weather of Indiana during the winter. This front is
the main cause of persistence in the daily rainfall occurrences in Indiana.

The Indiana daily rainfall data were obtained from the U. S. Weather Bureau in the form of magnetic
tapes. The récord length was 10 years covering the period 1950 through 1959. Due to the computer capacity
Timitations only the first seven years of the data were anaiyzed.

The missing data points were filled from the Climatclogic Data Publications of the Y. 5. Weather Bureau
whenever it was possible. For the cases where no vecord could be found in the pubiications the missing daily
rainfall values were fitted by multiple Tinear regression utilizing the data of the neighboring stations.

For further details on the data the reader is referved to Appendix A.
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1.4 QBJECTIVES OF THE PART 1

In the general introduction to parts I and II of this report and in section 1.2 the place of the sio-
chastic analysis of daily rainfalls in the water resources developments, and the short comings of the cur-
rent rainfall stochastic models are discussed. In the tight of these discussions and the framework, the
objactives of the first part of this report may be stated as Tollows:

1. To apply the point statistical analysis to the daily rainfall occurrence process in Indiana in

order o

a. detect the periodicities and trends in the daily rainfall occurrences,

b. detect the dependence structure in the daily rainfall occurrences,

¢. select the proper point stochastic model for the daily rainfall occurrences.

2. To construct a point stochastic model for the daily rainfall occurrences in the 1ight of the results
of the point statistical analysis and based on physical assumptions.

TABLE 1-1

THE RAINFALL STATIONS IM INDIANA USED FOR THE ANALYSIS
OF THE DAILY RAINFALL OGCCURRENCES
YEARS 1950-1959

STATION IDENTIFICATION NUMBER
Alpine 2ZNE 0132
Anderson Quartz Plant 0177
Bedford 0545
Cotumbus 1747
CrawTordsville Power Plant 1882
Frankfort Disposal Plant 3082
Greensbury 3SU 3547
Hartford City 3777
Knightstown Water Works 4642
Lebanon Water Works 4908
Kashville State Park 6056
New -Castle 6164
Noblesville 6338
Portiand 7069
Salamonie 7747
Salem 7755
Seymour 7935
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CHAPTER 2 — ANALYSIS OF TRENDS IN THE DAILY RAINFALL OCCURRENCES

The aralysis of trends in the hydrologic point processes gives the water resources system planner
an indication of the long term and cyciic climatological changes through which he can decide on the long
term and the seasonal strategies. The estabiishment of long term linear or curvilinear time trends would
necessitate the construction of g nonstationary stochastic model and a homogenization procedure through
which the model could be tested in the stationary domain. The presence of long term time trends could
seriously affect the design procedures based on the probabilities derived from the stationarity assumption.

Two approaches will be utilized in the analysis of trends in the daily rainfall counts. The first
will be & graphical method where the behavior of several statistical functions will be analyzed as func-
tions of time. The second method will be & test of stationarity hypothesis of the interarrival times
based on the assumption that the intervals are independent.

2.1 THE GRAPHICAL METHODS

2.1.7 HNumber of Rainy Days Versus Cumulative Time

The first graphical method o be considered is the cumulative plot of the total number of rainfall

occurvences, called the "interval number," versus the total time in days to the last occurrence, dencted
by “cumulative time.® The daily rainfall counts in 17 stations in Indiana were examined for trends in
the mean rate of occurrence of the daily rainfall using the desecribed plots. Plots for the stations 0132,
3082, 3777, 4642, 6056 and 7747 are given in figure 1. The stope of the plot at any time is the inverse
of the mean rate of daily rainfall occurrence at that time. These plots show that the mean rate of daily
rainfall cccurrence is decreasing with time, raising the possibiiities that either there are long cti-
matological cycles whera the period 1950-59 from which the data was taken, is on the dipping portion of
the cycle, or the climate is gradually drying. To answer this speaculation an anatysis of the behavior of

the mean rate of occurrence for a longer time is needed.

2.1.2 The Mean Rate of Daily Rainfall Oceurrence

The mean rate of daily rainfall counts, m{t), was estimated By the statistic Ar(t) where for the in-
terval {t, ttt),

) (t) = M) (2.1)

T

starting at an arbitrary time and taking equal intervals of time length =, which, in this study, was taken
as one month. The starting time t is an integer multiple of 1, and n{t, t+r) is the number of rainy days
in {t, t+r). It was assumed that inside each interval (t, t+r) the process of daily rainfall counts

N(t, t+r) is stationary. Under this stationary assumption 1t can be shown that the above statistic, which
is the ratio of the number of vainfall counts in (t, t+7) and the time interval v, 1s unbiased. That is
(cox and Lewis, 1968),

el (1)) = ERLBEE)] (2.2)

t

In figure 2 the estimated mean rates of occurrence are shown as functions of time. There is a very strong
yearly periodicity and a downward trend in the graphs for the stations 0132, 3082, 3777, 40642, 6056 and
6338 chosen out of the 17 stations in Indiana for demonstration. For a stationary point process the mean
rate of occurrence should plot as a straight horizontal Tine. However, there are obvious cyclicities
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and a long term time trend in the mean rate of occurrence of daily rainfall in Indiana. Therefore, the
point process under consideration is nonhomogenecus. The results of the mean rate of occurrence agree with
those of the cumulative plot of the daily rainfall counts versus time. In figure 2 the harmenic fits to
the sample mean rates of occurrence are shown. Visually the fits are quite good. The analytical details
of these fits will, however, be discussed in the next chapter on the homogenization of the daily rainfall
counts process.

2.1.3 Intensity Function

Gne can define NE as the number of rainy days in the interval (0.t} which starts with an occurrence
at 0 but does not include it. This is the counting process associated with the process of interarrival

times {Xi} such that

P[NE <l ERIX + .t X > t] =12, (2.3)

under stationarity. Let Mf(t) be the expectation of Ni under stationarity. Then the intensity function
mf(t) is (cox and Lewis, 1966)

dm{r} . .
P _ Vim Problevent in {f+t, t+r+at)event at t]
Melt) = = 2 440 AT (2.4)

where event at t $s an arbitrary event in the stationary process. In the renewal theory mf(f) will be
called the renewal density function. Since Mf(t} is the expectation of Ni,

He(t) = P[N: 2l §OPLX v X 2 t] (2.5)
r=1 r=1
(t) S0 I (t) (
Then, mAit) = > = f t z.6)
§ R A

For a renewal process, that is, for a process with independent identically distributed interarrival times
{X}, denoting the Laplace transform of Z by L{Zl, its inverse by L_% and the Laplace transform of fx(x) by
£ls)s

Lingle)y = T LR L W6 = L [fy(s)1"
fyls)
ST Tyls
af s
and mf(t} = | T**_;——_F;(—S‘S‘} . (27)

If the daily rainfall counts is assumed to be a homogeneous Poisson process with parameter A,

fyls) = A {x¥s)

a [ fs)
L = X
{1 - fxlsi>
mf(t) = A, _ {2.8)

Therefore, if the above assumption is true, the intensity or the renewal density function of the daily
rainfall counts should be a straight, horizontal line. If the daily rainfall counts is assumed to be a
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process with gamma-distributed interarrivals with the integer index k and parameter 2,

k f.8)
RN X ) 1
PG Fery BN e MO | S)k - (2.9)
1+ 3y
A
f,(s) 2
" X R A
If k=2, 1= fx(s) ~s{st2n]
2
and mf(t) = Ln]{g“(*é*_}fm) = %‘(1 - E-Z?\t) (210)

for the intensity of the gamma-distributed interarrivals with E(X) = 2/x. Therefere, for this case the in-
tensity or the renewal density will have the exponential shape with the asymptote /2. A point to consider
in the calculation of the intensity function is that one starts at a certain time t where an event occurs
and computes the derivative of the expected number of events mf(r} for the interval {i+v, t+t+at) for At
small. However, if the counting process is nonhomogenzous, the intensity function m-{t) will depend on its
starting point t. In the intensity function computations of this study, since the h;pothesis of station-
arity is tested, all the intensity functicns are functions of 7 and net of the starting time t. However,
any periodicity or trend should be appavént as function of t and the intensity function should yield
valuable information about the nonhomogeneities in the daitly rainfall counts process. Starting with a
rainy day, the daily rainfail counting process will be of the sort shown in Diagram 1. {O’tn} is divided
into equal intervals of length o. There will be t /a intervals in {O’tn)‘ Starting at each event t; and

| o i o 3 i & i i 1 i i Q& 1
L 1 1 § i H
G t1 t2 ts tn-] tﬂ
Diagram 1 Counting Setup No. |
moving onwards until LR the number of events in each interval (re, vata), v = 0, 1, ..., are counted

for each setup which is identified by its starting point ti‘ That s, 1f the counting starts at t1, the
intervals will be as shown in Diagram 2. That is, the first interval of length o« will be the interval

G t1 tZ t3 t

Diagram 2 Counting Setup No. 2

having its starting point at ty. If the counting starts at t,, the intervals will be as shown in Diagram 3.

i i 1 o i t
Lof 1 2 [}
0 t} t2 tq t
Diagram 3 Counting Setup No. 3
There will be r different counting setups due to the n starting points O, tlg t2" v tﬂ_], For each

setup the number of events in the first, second, etc. intervals are counted. Then the sums S of the
avents which fall into (re, rotos) for r =0, 1, ..., are formed by the addition of the number of events
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which fall into (ra, rota) for each of the setups. By dividing S, by n the estimate %f{ru) is obtained.

In this procedure the intervals {ra, rote) Tor r large, will be averaged on a very few cases, especially
when o is large. Therefore, there will be high variation for ﬁf(r) when t is large and near the end of the
rainfall record. The analytical expression for the smoothed estimates by the above procedure is {cox and
Lewis, 1966)

. 1 1 {r+1)a .
felra + & o) =-§J fie(u) v (2.11)
o
. 1 r-1 n-1
where mf(u) == 7Y 6(ti+j -ty - u} where 8(u} is the Dirac's delta function.
i=1 =1

In (2.11) the intervals where L+ re >t do not contribute anything to %f(t) and the %f(t) is biased. In
an analogous fashion to Cox and Lewis (1966) the unbiased estimate for the intensity function of the daily
rainfall counting process is

fielra ~ % a) = Emzmﬂ_—fnﬁf(m ~xa) . (2.12)
n ”(r ) 2]

The graphs of ﬁf(r) versus 1, obtained by a computer program of Zewis et al. (1969}, are shown in figure
3 for the stations 0132, 3082, 3777, 4642, 6056 and 7747. “Time interval" on the abcissa of these plets
denctes the time span in days from the first event in 1950 on. The yearly cycticity is clearly seen in
the intensity fuhction. Although the downward trend is also seen, 800 days for which ﬁf(r) is calculated
is too short a time to claim a Jong teym trend. The high sample fluctuations of the estimate ﬁf(r) for
large © prevented the calculation of ﬁf(r) for very long periods to access the long term time trend. In-
tensity function and the mean rate of occurrence are closely related functions. However, the intensity
function is estimated on the counts which start with an arbitrary count, and is associated with Ni, while
the mean rate of occurrence is estimated on counts which start with arbitrary time t. and is associated with
N(t, t+r), the stationary counting process in (%, t+c).

2.7.4 VYariance-time Function

The variance-time curve V(t) of the counting process N is defined as

2

2
t (

v{t) = Var(Nt) = E{NT) - E°(N (2.13)

t) ’

For & stationary process, the variance-time curve can be expressed in terms of the mean rate of occurrence
m, and the intensity function mf(u) as {cox and Lewis, 1966}

¥(t) t+zftjv(() Jdud (2.14)
= mime{u) - m)dudv . ‘
odo f
t
Differentiating V(L) vty =mf1 + 2 J (mf(u) - m)du] {(2.14a}
4]
and differentiating V'(t), Vi) = Zm(mf(t) -m) . (2.18)

Fxpression (2.15) gives a simple relation between the mean rate of occurrence, intensity function and the
second derivative of the variance-time curve which will be useful in ‘tater computations. Taking the
Laplace transform of both sides of (2.14},
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2n L_im (L)} 4
oon s f 2m
Lvie)y = o —2— - (2.18)
5 5 s
Denoting L {V(t)} by v*(s) and L {mc{£}} by mi(s),
2m rk(s) 2
vr(s) = Tow I A (2.17)

This general expression for any stationary point process can be used to obtain the variance-time properties
for any type of a renewal process. For a renewal process it was earlier shown that

mi(s) = £, (s}/(1 - £ (s)) .

The Laplace transform of the variance-time function can be expressed in tevms of the Laplace transform of
the interarrival times, fx(s), as

2m f
ye(s) - J%_+ m £, (s)

B S PNl {(2.18)
o <% - £,(s) 3

V{t) for a homogeneous Poisson process with parameter » follows from (2.18) as

20 (s)
Ps) = Ay b i B (2.19)
5 s7{1 - fx(s)) S

Since the interarvival times are exponential with parameter 3, fx(s) = x/{a*+s). Then

yr(s) = /5%, and V(1) =it . (2.20)

Therefore, the variance-time curve for a Poisson process is a straight line with slope ». In the case of
stationarity » = 1/E(x), where E{x) is the interarrival time. Therefore, if the process is homogeneous
Poisson

V{t) = t/E(x) . (2.21)

V{t) for the renewal process with gamma distributed interarrival times with E{x) = 2/ can be obtained as
foliows:

B 2 _om P AZ 2m2 _

; y A - Mo oem L =
Since fx(s, = (A+s} , then ¥*(s} 52 + 52 ST 53 , where m = A2 .

Taking the inverse Laplace transform,

[
V(t) = F b f f [ e M qudeda - 2%e%/4 (2.22)
0700
TORES TR N P

The variance-time curve is estimated by a computer program of Lewis et al. {1969) in the standard way
through the use of a moving average procedure devised by cox and Smith (1953). V{t) is a moving average
over the pessible intervals of length t. Assume that the total length of the series is T, Since t 75 a
section in T, take k-= T/t. The rainfall series can be divided into intervals of length & such fhat

t/8 = j. If the number of rainfall occurrences fin the i-th interval of length & is denoted by L then

ng's in j consecutive blocks can be added to yield
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L E L it .t on,
Sik-(3-1) T Mik-(3-1) ik

where each S is the number of rainy days in an interval of length t. Then V(t)} can be estimated from the
sum of squares of the moving sums 5. Under the Poisson assumption the unbiased estimate of the V(t) is
given as {(cox and Smith, 1953)

K K 2
. z
et MACER Y DA
'i“.ﬁ

5 {2.23)
IK(K=-33+37-1 1=

where ¥ = jk-(i-1). The variance of this estimate for the Poisson case was calculated by Cox and Smith
(1653}, It was advised that & should be chosen at most one half the smallest interval for which the
variance-time estimate is to be computed, so that there is a negligibie decrease in the variance of the
estimate. For the non-Poisson case 1ittle is known about the sampling properties of the estimate. Ac-
cording to cox and rewis (1968) the bias can be shown to be negligible for ¢ less than about one-fifth of
T. Therefore, variance-time curve for the daily rainfall counts was computed up to a time which was one-
Fifth of the whole record Tength. This corresponds to approximately iwo years. Two years is not & long
time to notice the development of the transient in the variance behavior in the daily rainfall cccurrences.
ks is seen in the figure 4 for the sample stations 0132, 3082, 3777, 4642, 6056, 7747 out of the 17 ana-
1yzed stations in Indiana, the linear asymptotic poertion of the curve which is going to be important in
the estimation of the spectrum of counts, is not developed. However, just the two years® behavior of the
variance-time curve already indicates the clear pertodicity in the variance of the daily rainfall occur-
rences. When compared to the theoretical variance-time curves for the homogenecus Poisson process which
are also shown on these figures, the variance-time function of the daily rainfall process indicates an
overdispersion, a clustering of events, since an upward deviation from the regular Poisson variance-time
function would indicate a coefficient of variation greater than unity. This is a very imporiani result
since it indicates a grouping mechanism in the daily rainfail occurrence process while also indicating the
nonhomogeneity of the process. As is seen from expression (2.14) the variance-time function is the double
integral of the intensity function, which, in turn, will be shown tc be the Fourier transform of the spec-
tyrum of counts. Furthermore, the estimates of V{t) for different t are highly correlated (cox and Lewis,
1966) so that the conclusions based on V{t) should be taken with caution. Due to these two reasons the
transient effects for short intervals can best be interpreted by the spectrum of counts of the daily rain-
fall.

2.1.5 The Spectrum of Daily Rainfall Counts

The spectrum of counts, g(w), for a stationary point stochastic process is expressed as (cox and
Tewis, 1966),

o .
gla) = %%—+ %%—Jmm {mf(r) ~mb e T, e o < b (2.24)

If the spectrum of counts is defined only for the positive frequencies,

too N

m‘j im(r) - m} e~§MT de , w > 0, {2.25)
T ¥ Z

m,
i

g, {v) = 29(u) =

A very important feature Lo note is that §+{m) is not periodic since the corresponding function in the time
domain, mf(w), is a function in continuous time. Therefore, there is no boundary on the extent of the
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spectrum of counts. The spectral value at the origin g+(0+), as it is approached from the right, becomes

S

oo
J (me(=) - m)de (2.26)
and making use of {2.14a) one obtains

g {0") = %V'(t)itm . (2.27)

Using (2.25} and recailing the Laplace transform definition

m . .
g+(w} = ;-[? + m$(1w) + m;(—1w)] . {2.28)
For any renewal process;
fo{iw) fo(-iw)
_ i X X
g, () = ?{1 TSR T e (2.29)
Using expression {2.29) the theoretical spectrum of counts for any type of renewal process can be derived.
i.  Spectrum of counts for the homogensous Poisson process with parameter ).
For this case fx{iu} = a/{d+iw). The m?(im) becomes A/iw. The expression (2.29) for the spectrum of

counts takes the form

A A
g lv) == (1 # 7=~ ,
so that . g+(m) = 3w, w> 0

Therefore, the positive spectrum of counts for a homogeneous Poisson process is a constant horizontal Tine.
i1. Spectrum of counts for the renewal process with gamma distributed intevarrivals where E{x) = 2/x:
Spectrum of counts for this case was derived by cox and rewis (1966} as

z 2
. Lolw o+ 2X
g(m}?——{—w———_},mf_ﬂ.
N 2 2 4 @?

Positive spectrum of counts increases monotonically from A/ 4m to A/Zm.
For the ordinary time series the periocdogram is estimated by {cote, 1973}

In an analogous fashion to the time series, the spectrum of ceunts for the stationary counting process
N{t) can be estimated as follows (cCox and Lewis, 1968);

T .
1 it
let; He(w) = Vﬁ‘f e i \TEA I
t=0
Since n events occur at times ty, ty. ..., ty in {0,T} for the counting process N{t),
1 0 itjw 1 n N .
H-{(m) = T JZ} e = WJE] COS{tjm) + i Jz] S'In(tjw)

n n
whave Cos(tjm) will be called AT(w) and Sin(tjm) will be called BT(m). In analogy with the above
=1 3= N
periodogram of the time series, the periodogram of the counting process, g, (v}, will be




. 10N T'w(tj—ts) 1 5 5
g, (w) = Hple) B{] = — _E} L e = = (A{w) + Brlw)} . (2.32)
J: s:‘.
For a homogeneous Poisson process with rate » the distributional properties of §+(m) are derived by
Cox and Lewis {1966) as Tollows:

%lﬁ PLG, (w) > y] = e"/2 e, e, L (2.33)
Elg,(w)] = & A=, 2,
3 0 Sm{—;— mT) 2
= 2o 05T 3 otherwise, for w > 0 {(2.34)
?—mT

, 22 1 T

var(g, (w)] = =5 (1 + 5= =12, ... (2.35)
ki

. . 1 w, T wz'f

Corrfg, {uy)s 9, (up}] = 533v = T 2y ey = 1, 20, (2.36)

m1#w2.

From (2.34) it follows that, under the Poisson assumption, §+{w) is unbiased 1f wT/27 is a positive integer. :
From (2.36) if follows that, under the Poisson assumption, the correlation between the two spectrum of
counts estimates decreases as the record length T increases.

Aue to the absence of a simpie Tinear representation of the seguences, the distributional properties
of §+{m), the estimate of the spectrum of counts under the non-Poissonian conditions was not derived.
However, it was shown that (cox and Lewis, 1966)

T g, ()] = g,(u)  forw> 0. (2.37)

Teo

That is, for a large sample size the spectral estimates are approximately unbiased even Ffor a non-Poisson
point process. The bias at the integer values of oT/27 for w > 0, will be the smallest among all the
values of w. Therefore, the spectrum of counts estimate is still quite valid for any point process besides
Poisson,

The normatized spectrum of counts for the point process is obtained by multiplying §+(w) by w/x, the
inverse of the asymptotic standard deviation of §+(w). Under the Poisscn process the normalized spectrum
of counts estimate §N$(wj) will have exponential distribution with (cox and Lewis, 1966)

E[9N+(mj)1 =
= ] ~ J“
Var[9N+(wj)] =14
. . ] ﬂjl Zﬁjz
C ! DY) E e, gl =, W)= iy # S 2.4
orr{9N+(wJ]) gN+(m32)} ER M T N (2.40)

The normalized spectra of the daily rainfall counts for the 17 statfons in Indiana were computed by a com-
puter program (Lewis et al., 1969) at the integer values 6y = al/2n = 1, 2, ... to avoid the bias. On the
abscissa of the plots in figure 5 the freguency index j corresponds to the period 2556/3 days since 7 years
of data was analyzed. The normalized spectrum was then smoothed by averaging groups of k consecutive
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values. Since

Plg flatk >yl =e” ,y> 0,
whk
Iy 1 juk w%- 1
then Fe Y= : , E & = i
1-1u (1-iu}
wik
: 2k —%— K
and Fe = 1/{(1-12u)" . {z.47}

Therefore, the smoothed normalized spectrum @k(mj)a cbtained by averaging groups of k consecutive normaiized
spectrum values g +(w5)5 when multiplied by 2k, has chi-squared distribution with 2k degrees of freedom.
N
That is 2kg, (wi) - 2
Sregd o Kok
under the Poisson hypethesis. Once the distribution of the normaiized, smoothed spectrum of counis esti-

mates 15 known, the 99% confidence limits for the spectrum of counts under the Poisson null hypothesis are
formed. The spectrum of cogntslana1ysis was carried for the 17 rainfall stations in Indiana for the daily

rainfall counts process. The 99% confidence limits were constructed for each of the stations so as to detect —-

the significant periodicities. However, the spectra of the daily rainfall counts not only showed signifi-
cant periodicities but also the dependence structure in the daily rainfall occurvences. Due to this depen-
dence structure, which will be explained in terms of the theoretical spectrum of counts of a dependence mo-
det in a later chapter, there were toc many frequencies cutside the 99% confidence 1imits. This fact ts
shown on the spectra of the daily rainfall counts for the sample stations 0132, 3082, 3777, 4642, 6056 and
7747 in figure 5. Since the dominant yvearly periodicity is at j=7, corvresponding to 2556/7 = 365 days, and
since the spectraé estimates were smoothed by averaging consecutive groups of 20 estimates, the highest
spectral value appeavs at the origin. However, the value at the origin is not estimated since it is high-
1y biased. Although the estimates averaged in groups of 20 show a dependence structure analeogous to that of
the autoregrassive process in the time series analysis, there are still significant periodicities imbedded
into this dependence mechanism. In order to detevmine these periodicities, averaging in smaller groups of
estimates is needed. Therefore, the spectrum of daily vainfall counts estimates were averaged in consecutive
groups of 5 in order to detect these perfodicities. The perjodicity analysis based on the spectral esti-
mates, smoothed in five-membeyr groups and twenty-member groups is given in Table 2-1. As an example to what
is meant by five-membey group smoothing, the spectrum of daily rainfall counts for the five-member group
averaged estimates are shown for the stations 0132, 0545 and 3082 in Figure 6. By comparing the spectra of
counts for 0132 in figures 5 and 6 and the spectra of counts for 3082 in figures 5 and 6 the dominant yearly
periodicity is c¢leariy seen. The striking fact derived from the Table 2-1 is that a periodicity of 11.6-16
days is significant in 13 out of 17 cases analyzed. The period of 2556 days, significant in 4 out of 17
cases, is thelength of the record being analyzed. Therefore, rather than considering it as a significant
period it is believed to indicate to the Jong term time trends, which were shown to exist in the other
graphical analyses. Another interpretation is that the high value is due to being the first value of the
spectrum of a dependence mechanism.

Although the spectrum of daily rainfall counts is very important in the detection of the significant
periodicities in the daily rainfall counts process, the resulis based on this analysis should be taken
with caution. The theory for the spectrum of counts is based on stationarity. It is also accepiable for
the circular stationarity in anajogy with the time series. However, 1t could be seen from the earlier
graphical analysis that there is a significant long term trend in the daily rainfall counts in Indiana.
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Secondly, the significant periods were obtained under the hypothesis that the process is Poisson. The sig-
nificant spectral values may be due to the fact that the daily rainfall counts is a non-Poisson process,
and may just be the deviations from the Poisson hypothesis. In order to construct the spectrum of daily
rainfall counts it had to be assumed that the long term time trends do not have an important effect in the
seven years of daily rainfall vecord under study. The 99% confidence 1imits were constructed on the as-
sumption that the daily rainfall counts is a Poisson process, based on the earifer works of Lobert (19677,
of Todorovie and Yevievich (1969), of Duckstein et al., (1972) and others on the daily rainfail counts pro-
cess. Due to the existing dependence structurve, as is seen from the spectra of counts, the detection of
periodicities is still in & state of art since a general theory for the spectre of the dependent point
stochastic processes does not exist.

Besides the graphical techniques for the analysis of nenhomogenaity in the daily rainfall occurrences,
there are also the tests of the homogeneity hypothesis under certain conditions. In the next section these
tests will be considered.

2.2 TESTS FOR THE STATIONARITY OF THE INTERARRIVAL TIMES IM THE DAILY RAINFALL QCCUPRENCE PROCESS

Based on the assumption that the intervals between the daily rainfall occurrences are independent,
the following tests ave devised.

2.2.1 Test of Trend in the Rate of Gccurrence of Daily Rainfall When the Poisson Process is Assumed
to be the Underlying Stochastic Model

.{..
1¥ the rate of daily rainfall occurrence A{t) is considered to have the function form A{t) = e” Bt,

the Test is for the null hypothesis B=0 against the alternative 8#£0. Given the number of occurrences h,
the positions of the events in a Poisson process are independently, uniformiy distributed over (G,t“).

Then S = ti/ﬂ has the distribution of the sum of n independent uniform vandom variables. cramer (1946)
showed th%%gthe statistic

t
_ i Ve
b= S5 - ""2“‘ /tn/ 12n

is asymptoticaily standard nowmal as roe., By this statistic the centroid of the observed times to evenis
t, 1s compared to the mid-point of the period of observation. A positive value of U means that the cen-
troid of events is greater than the mid-point of (Ogtn} and the rate of occurrence 15 increasing with time.
The results of this test ave given in Table 2-2 for 17 stations in Indiana. The resuits of the test show
that the rate of daily rainfall occurrence, under the Poisson assumption, is decreasing in Indtana. B is
significantly diffevent from zero in 12 out of 17 cases, showing the nonhomogeneity in the daily rainfall

occurvences in Indiana.

2.2.2 Homogeneity of Variance Test Using Bartiett's Statistic

k independent sampies of sizes n., 1 =T, ..., k, can be formed by grouping the successive interar-
rival times into k groups. If it is assumed that these samples ave taken from normai populations of mean
My and variance S and if Bartlett's modification of the likelihocd ratio statistic where the independent
sample sizes n, are replaced by the degrees of freedom vi ® ni—l, is made, the modified Tikelihood ratio
becomes [Kendall and Stuart, 1961),

k sf vi/2

where X 1s the interval length, and & is the parameter space. Then
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2 1 _2 2.1 & 2 K
sf= — 7 ey - %7, 8 = Tovsshsv= ¥,
Ty i3 i Voo 1T i
5 k
Using (2.42), -2 log 2% = v log s° = } vi log s
i=1
i K 1 1 z2 .
and {xendall and Stuart, 1961}, -2 log &x/ |1 + g }_Z] N Y1 (2.43)
Therefore, the null hypothesis H H:ol=ob=.. =ao
’ 0’ 0" M 2 k
can be tested by the use of the XZ statistic. This test gives information about the second-erder station-

arity of the interarrival times.
the normality and the independence of the intervals are assumed.
test results are given for 17 stations in Indiana.
variance of the daily rainfall occurrences at 1% level.

2.3 SUPPLEMENTARY FIGURES

However, it should be remembered that the test is only approximate since

In table 2-3 the homogeneity of variance

A1l the stations have significant nonhomogeneity in the

Plots of the number of rainy days vs. cumulative time, of the mean rate of daily rainfall occurrence,

of the intensity functicn, of the variance-time function, of the spectrum of daily rainfall counts are given

for stations 0177, 0545, 1747, 1882, 3547, 4908, 6164, 6338, 7069,
38, 4A, 48, and HbA, BB.
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TABLE Z-1

SPECTRUM OF DATLY RAINFALL COUNTS AMALYSIS FOR THE DETECTION OF SIGNIFICANT PERIODICITIES
AT 1% LEVEL FOR THE ESTIMATES SMOOTHED IN CONSECUTIVE FIVE~MEMBERS-GROUPS.

Staticn Periods Significant at 1%
{days)

0132 2556, 365, 16, 14.8, 3.7

vy 365, 183, 69, 54.4, 5.7

0545 2556, 365, 71, 16, 12.7

1747 5, 16, 14.9, 114

1882 365, 150, 14.9, 14, 7.7

3082 365, 23.2, 16, 14, 10.2

3547 2556, 365, 150, 1%6, 16, 14, 12.5, i1.8, B8, 6, 3.9
3777 365, 14.6, 12.2, 8.6, 4.4

4642 365, 16, 14.9, 7.7

4908 365, 11.4, 8.6, 5, 3.9

£056 2856, 365, 122, 16, 10.2, 9.6

6164 365, 7.6, 6.3

6338 365, 20.3, 16, 14.9, 14, 8.6
7069 365, 14.9, 14, 11.6, 7.7, 6

7747 365, 67.3, 9.5, 8.6

7755 365, 150.4, 29.4, 16, 14.7, 12.6
7935 366, 16, 14.9, 12.6, 5.7

TABLE 2-2

TEST OF TREND IN THE RATE OF OCCURRENCE (UNDERLYING PROCESS ASSUMED POISSON)

Station Cramer's Statistic U Significant at 5%
0132 -2.339 Yes
0177 -2.289 Yes
0545 -1.108 No
1747 -2.243 Yes
1882 ~2.004 Yes
3082 -3.182 Yes
3542 ~3.65 Yes
3777 ~1.764 No
46472 -3.628 Yes
4908 -2.826 Yes
6056 -4.3%4 Yes
€164 ~1.460 Mo
6338 -2.066 Yes
7069 -2.782 Yes
7747 LA027 No
7755 -3.044 Yes
7935 - 822 Mo

U~ N0, 1)
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TABLE 2-3

HOMOGENETTY OF VARIANCE TEST FOR STATIONARITY OF THE
INDEPENDENT INTERARRIVAL TIMES USING BARTLETT'S STATISTIC

Station Group Size Degrees of Hom. of Variance Significant
Freedom Statistic at 1%

7935 6 107 349.016 Yes
18 35 212.674 Yes
48 12 87.152 Yes
120 4 30.556 Yes
7755 18 39 234.63 Yes
48 14 80.97 Yes
120 5 43.48 Yes
7747 18 42 238.20 Yes
48 15 159.08 Yes
120 5 31.28 Yes
7089 18 43 263,29 Yes
48 15 156.08 Yes
126 5 443,81 Yes
6338 18 41 234.3% Yes
48 14 95.31 Yes
120 5 13.11 No
6164 18 42 241.34 Yes
48 15 147.04 Yes
120 5 30.82 Yes
8056 18 38 615,22 Yes
48 13 E17.32 Yes
120 4 288.72 Yes
4908 18 46 201.12 Yes
48 14 168.3 Yes
120 5 a0.47 Yes
4642 18 42 226.20 Yes
a8 15 147.09 Yes
120 5 44 40 Yes
3777 18 41 263.52 Yes
48 14 89,26 Yes
120 ) 11,84 Yes
3082 18 43 269.07 Yes
48 i5 124.94 Ves
120 5 £4.05 Yes
1882 18 31 183.060 Yes
48 11 93.56 Yes
120 3 33.22 Yes
1747 18 41 277,33 Yes
48 14 186.93 Yes
126 5 70.46 Yes
0545 i8 47 274 86 Yes
48 15 185,590 Yes
120 5 64,47 Yes
0177 18 38 495,96 Yesg
48 13 256.48 Yes
126 4 49,85 Yes
0132 18 43 336.01 Yes
48 15 148,16 Yes
120 5 51.08 Yes
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CHAPTER 3 — HOMOGEMNIZATION OF THE DAILY RAINFALL COUNTS PROCESS

3.7 THE PURPGSE OF HOMOGENIZATION OF THE DAILY RAINFALL COUNTS PROCESS

As it was seen in the analysis of time trends for the daily rainfall occurrences, there are jong term
and cyclic time trends in the daily rainfall counts process. The fitting of a stochastic point process
model to such a nenstationary phenomenon would necessitate the employment of the statistical tests of hypo-
thesis. However, almost all the classical tests of hypothesis ave deviced for the stationary domain.
Therefore, even 1T a noastationary point stochastic model was constructed for the underlying natural pro-
cess, it could only be tested in 1ts stationary form, From the practical peint of view, the stationary
form of the wodel could be employed for small intervals of time wheve stationarity of the natural pro-
cess could be safely assumed. This would mean that in the case of daily rainfall occurvences if a station-
ary stochastic point process model is to be employed, the length of the time span in which this model could
satisfactorily work would at most be four or five months. This span of time would be based on the assump-
tions that the ef fect of the long term time trend is minimal in such a small length of time and that the
only significant periodicity is the yearly cycle.

As was discussed in the Iliterature survey in section 1.2 the simple Poisson process was used by various
hydrolegists to model the rainfall cccurrence phenomencn. The basic advantage of the Poisson model 7s 1ts
simplicity, especially when it is consideved that the practicing hydrologist is not a statistician. The
second advantage of the Poisson medel is that there 15 a well developed and simple theory for 1ts nonsta-
tignary form, the nonhomogenecus Poisson process, which has the rate of occurrence function as its sale
parameter, Therefore, the homogenization scheme will be employed first under the assumpiion that the daily
rainfall counts process can be modeled by a nonhomogeneous Poisson process. Once the data are homogenized,
then the tests of the Poisson hypethesis will be employed in the stationary domain. The homogenization
scheme will then be empicyed for more general cases with the purpose of testing the existence of depandence
in the daily rainfall occurrence phencmena. The homogenized data will also be employed for the calibration
of the parameters of the stochastic models in the stationary domain so as to make inferences about the pro-
perties of the underiying rainfall process.

3.2 HOMOGENIZATION RASED ON THE HYPOTHESIS THAT THE DAILY RAINFALL COUNTS PROCESS IS NONHOMOGENEQUS POISSOM

3.2.1 The Homogenization Method

The homogenecus Poisson process is a renewal process with exponentiaily distributed interarrival times,
L counting process N{t)}, t > 0 is a homogenecus Poisson process if it satisfies the following five axioms
{Parzen, 1967) :
Axiom 1 N{0) = C.
(M), & > 0) has independent increments. That is E[ZMEY = gz (EI-ME g ¢ ME)y,
In any interval h there is a positive probability that an event will occur, ne matier how smail the

Axiom

(PR

fotiom

interval is. From this axiom it follows that, for a constant occurrence rate a of N{t),
Tim P{N(t+hy - M{t) = 17 _ X
h+0 h ' ; .
Tim PIN{#+h) - N{t} > 2]
1]

Axiom 4 In sufficiently small intervals, at most one event can occur. That is w0 PINUTERT T H{E) =

Axiom 5 N(t) has stationary increments. That is, for € > s > 0 and h > 0, the random variables N(t) - Nis
and N(tt+h) - N{s+h)} are identically distributed.

These five axioms lead to the probability generating function y(z;t) of the Poisson process {rarzen, 1967).

szt = ) < (3.1
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for the constant rate of occurrence i,
If the first four axioms are preserved bui the fifth axiom of stationary increments is changed as to
have (Parzen, 1957)

Tim 1= PN(trR) - H(t) = 0] |
0 T = (E)

for a time varying rate of ocecurvence a{t). the counting process M{t) satisfying the new five axioms becomes
the nonhomogeneous Poisson process. The probability genervating function y(z:it) of this process is (Parzen,
1967},

€

¢lzit) = expl{z-1) f; Mrldel . (3.2)

Therefore, the nonhomogenecus Poisson process has only one parameter, its rafe of occurrence function alt).
Any time trends in the datly rainfall counts process would be explained in terms of the behavior of the rate
of occurrence A(t) once it is assumed that the underiying stochastic structure is nonhomogeneous Poisson.
If a method is devised to transform the natural orocass into a new domain where the rate of occurvence Aat)
is a constant, this method would homogenize the nonhomogenacus Poisson process.

The mean function M{t) of the daily vainfall counting process N{z) is

Mit) = Jt a{uldu (3.3)
where Afu) is the rate of occurrence of the nonhomogeneous counting process. The mean function M{t) can he
assumed to be continuous and differentiable with the derivative equal to a(t). Since M(t) {s the integral
of 2{u), a nonnegative function, it is nondecreasing. Actually x{u) is noazero in the case of daily rain-
£all occurrences as is seen from the Figure 2, and may be approximated by a continuous function of time.
Then the mean function M{t) can be ifaken to be strictly increasing in the case of daily rainfall occurrences.
In order to homogenize the rate of occurrence function A(t), the whole process should be transformed into
a new process with a time scale v where, for a constant unit rate of occurrence,

Ter = M{t) (3.4}

so that v is & strictly increasing function of t. On the new time scale the rainfail counting process will
have the mean function r and the rate of cccurrence equal to unity. Combining equation (3.3} and (3.4),

and taking devivative of the both sides

t
d J 2 (u)du
de(t) _dt .0
gt dr dt ’
, . dt .
from which one obtains H?'A(t) =
and dr = a{t)dt . (3.59)

At = a{t)at . {3.5)

Therefora, the interarrival times between the rainfall occurrences are either stretched or squeezed accord-
ing to the time-varying rate of daily rainfall occurrence to cbtain a constant rate of rainfall occurrence
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of the new time scale =. 3Since the rate of rainfall occurrence in the new time scale v s unity, a homo-
geneous Poisson process of unit rate is obtained by the transformation {3.8).

In order to carry out the homegenization of the daily rainfall counts process under the Poisson hypo-
thesis, the rate of daily rainfall occurrence has to be medeled and calibrated. This will be the topic of
the next section.

3.2.2 The Estimation of the Rate of Daily Rainfall Cccurrence Under the Nonhomogeneous Paisson
Hypothesis

The sample estimates for the mean rate of daily rainfall occurrence were obtained in the analysis of

trends. In figure 2 it can be seen that there is cyclicity and a downward long tevm trend in the mean rate
of daily rainfall occurrvence. A model for this type of behavior could be
2

r
}\(t)=oz1+a2t+c¢t + z

3 L R, Sih(mf{t + ei) {3.7)

if it is assumed that there are r significant cycles and the dominant long term trend is quadratic. How-
ever, this form for the rate of occurrence would not ensure the positivity of 2{%}, a condition that has
to he satisfied. The two ways to ensure this condition would be (1) to square the right side of (3.7),
that is

"
- . 2 : ’ .2
ME) = fog +oopt + oottt 4 123 Ry Stn (uft + ei)J . (3.8)
and {i1) to take the right side of {3.7) to an exponential power, that is
5 r
)\(t) = GXP{OH + uzt + CLQt + Z R_: Siﬂ(wf-;t + @1)} (39)
' SO -

Case 1: When there is a singlie significant cycle and no Jong term time trend in the rate of daily rainfall
occurrances, This corresponds to assuming that a{t) is of the form

e
——
i
—
i}

exp{a + R Sin{w"t + g)} (3.10)

o+ R Sin{w"t + )12 . (3.11)

i

or A{t} is of the form A{t)

rewis (1970) obtained a closed form solution for the maximum likelihood estimates of e”, R and o using the
form {3.10). For a nonhomogeneous Poisson process in (0,7T] the joint density that the number of events is

n, and the times to events are (t§, s tﬂ) is
t] t2 tn
f{tTg .., tiny= A(tT) exp(—j auddul - A(tz) exp —J A{u)du} .- A{tn) exp ~J auldu
n 0 t t
1 n-1
T
. exp(J A(u)du} . (3.12)
tﬂ
n T _
Therefore, f(t1, coes B3 n) = & k{ti) exp ~j A(u)du} . {3.13)
i=1 0
Using the open form of A(t) such that
At = exple ¥ R, Sin w't + R, Cos "t} , (3.14)

rewis (1970) obtained the log likelihood function for the nonhomogenecus Poisson process as
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T L(tys wovs t5 ) = na - e” TI4(R) + R Cos(e) - Sin(w"ty) + R Sin(e) -

Cos(w“ti) (3.15)
1 i

W13
Np—1=

i }

where R = (R2 + R2)'/% and & = tan”'(R_/R.) and Ij(R) is the nodified Bessel function of the first kind of
zero ordeyr which is expressed as

T
EO{R) = f expiR Sin{w"t + 8)idt

where " = 2rd/T. By differentiating the Tog likelihood function with respect to «, R, © and setting it
equal to zern, the maximum likeiihood estimates of o, R, and 6 are obtained as (rewis, 1970, 1972}
'ﬂ\ (U.)")
§ = tan” gl (3.16)
e
where AT(m“) and BT{w“) are the normalized periodogram components {Chapter 2};

~

o . I 1
e = 1 Ig 3 (3.17)
and R is the solution of the equation
I,{R}
142 n 20wy /2 . 0
n{A {m)+B(w )} Wa {3.]8)

IT(&) is the modified Bessel function of the first kind of order 1, and is the derivative of Ig(ﬁ}. The
ratio I](ﬁ)/lo(ﬁ) increases monotonicaily from 0 to 1 as R goes from 0 to =. The very important result
based on the maximum Tikelihood estimates for the parameters of the rate of occurrence function A(t), is
that, under the assumption of a single significant cycle and no Tonger term time trend, a{t) can be directly
estimated from the spectrum of daily rainfall counts process when the process is nonhomogeneous Poisson.
The rate of daily rainfall occurrence a{t) is easily calibrated by knowing the observation interval {0,T},
the number of sccurrences, n, in {0,T) and the counts spectrum estimate at the freguency «" of the signifi-
cant cycle.

In the rainfall stations 3777, 65164, 7747 and 7935 the yearly periodicity was much greater than the
other significant cycles. Therefore, for these four stations expression (3.10} was used for modeling the
rate of daily rainfall occurrence and the parameters o, § and R were estimated from the spectra of the
daily rainfall counts. The calibrated modé]s for the rate of occurrence for these stations is given in
Table 3-1. Once the rate of daily rainfall occurrence A{t) is determined, then for this case, the homogen-
ization procedure takes the form

At = expla + R Sin(a"t + 8)}at . (3,19}

The results of the homogenization of the rainfall data in stations 3777, 6164, 7747 and 7935 will be dis-
cussed in a later chapter.
Case 2: When there are long term time trends and more than one significant cycle in the daily rainfall
counts pProcess:

This case would correspond to a A(t) of the form

r
at) = explo) + ayt + )

R, Sin{wlt + 8,01, (3.20}
21 1 1 1

or to the form {3.9) given earlier. The exponential forms (3.20) and {3.%) are quite convenient in the
nandiing of the curvilinear long term time trends. In the Torm (3.20) it is assumed that there are r signi-
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ficant cycles and a curvilinear icng tevm time trend. For the form {3.20) the log likelihcod function under
the nonhomogensous Poisson hypothesis becomes

rT T
x " N -
Ry Sinfufty + 0,0 J explay + apt + J

1n L(t}, vees Loy on) o= )
i=1

n R Sin{w$t + ai}}dt . {3.21)

Hr~123

r
‘(oc-i + aEtJ +i§

] 1 0

3

The solution of the maximum likelihood estimates requires the integration of the exponential integral in
(3.21). However, no simple analytical integration of this integral could be found. Therefore, the esti-
mation of the parvameters of the forms (3.20) and (3.9) were done by .the least squares method.

In this study a computer program written by Marquardt (1966) was used for the least squares estimation
of the parameters of the rate of daily rainfall occurrence model (see Appendix ().

As is seen in Table 2-T1, the specival analysis of the daily rainfall counts process yielded more than
one significant periodicity for each of the 17 staticns analyzed. Also the presence of a long term time
trend was established from the graphical analyses of trends in the rainfall counts, and from the test of
trend in the rate of rainfall occurrence under the Poisson hypothesis. Therefore, the forms (3.20) and
(3.9) of the mocel of the rate of daily rainfall occurrence function, A(t), are appropriate. These exponen-
tial forms can take inte accouni both the linear and the curvilinear long term time trends. Models (3.20)
and (3.9) were fitted fo the rate of daily rainfall occurrence data by Marquardt's algorithm with various
combinations of significant cycies detected by the spectral analysis of counts. The models wers compared
for their RZ values, whers Rz = 5:(?,i - Y)z/z(vi - 7)2 in which ?, Y and ¥ are the estimated, the actual and
the mean value of the dependent variable in the regression, respectively. The models which yielded the
highest Rz values for each station and model (3.310) constructed for the case of a single significant cycle
and no Tong term trend are given in Table 3.1 for each of the 17 stations studied. The Titted rate of oc-
currence functions and the sample rate of occurrence functions are shown in Figure 2 for stations 0132,
3082, 3777, 4642, 6056 and 6338 in Indiana. Model {3.9) yielded a betier fi% than model ({3.20} in the case
of staticons 0545, 3082, 6056 and 6338 as can be seen from Table 3-1. [t is interesting fo note that for
stations 0545, and 6056 the seven-year period which was found significant in the spectral analysis of counts
corresponds to the total time of observation Timited to seven-years by the computer storage size. The gua-
dratic term, introduced tc the rate of cccurrence model, accounts for this period and verified the earlier
speculation that a seven-year periodicity is artificial and only shows the effect af the long term time
trends.

Once the rate of occurrence function Aa{t) for the case 2 of several periodicity and Tong time trends
is determined, the homogenization scheme given by equation (3.6) is rewritien as

At = exp{oeE + azt + astz +

i1y

R. Sin(wft + a,)1at . (3.22)
. i i i

i=1
The daily rainfail counts process for the stations that fall into the second case was homogenized through
the yse of this scheme. The results of the homogenization are analyzed in Section 3.4.

3.3 HOMOGENIZATION OF THE DAILY RATNFALL COUNTS PROCESS UNDER THE ASSUMPTION THAT
THERE IS A DEPENDENCE STRUCTURE UMDERLYING THE COUNTING PROCESS

It was discussed in Section 3.2.%1 that the counting process with independent increments is a Poisson pro-
cess, If the resulits of the statistical tests in the stationary domain disprove the Poisson hypothesis,
then the increments of the counting process are dependent. That is

EEZN(t+h)] " E{ZN(t+h)-N(t)} E[ZN{t}]

when there is dependence in the counting process increments. The two models that could explain the depen-
dence structure in the counting increments are (1) the nonhomogeneous Markov chain model {Parzen, 1967) and
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{ii) the cluster processes (Neyman and Scott, 1958). This study will address itself to the modeling of the
rainfall counts process by the cluster model in the case that the Poisson modet for the daily rainfall
counts process is disproved by the statistical tests in the stationary domain.

It will be shown in a later chapter that the rate of occurrence function for the stationary Neyman-
Scott cluster model is

. defh, ]
dt

= aF{v) (3.23)

where o 15 the rate of occurrence of the rainfall generating mechanisms or the rate of cccurrence of the
"parent” process while v is the cluster or the “group" size or the number of first-generation offsprings.
The transformation (3.6) that was specifically designed for the nonhomogeneous Poisson process would remove
the time trends in the first moment of the ¢luster model since

E[Nt] = of{v}t (3.24)

for the stationary cluster model. However, as it will be seen in the detailed analysis of the cluster model
in a later chapter, nothing can be said about the vemoval of trends in the higher moments. However, even
if only the first moment is homogenized, the specivum of counts can be used effectiveiy Tor the calibration
and the testing of the stationary form of the Neyman-Scott cluster model. 1% will be shown in the detailed
analysis of the Neyman-Scotf model that under the assumption that the cluster members ave negative-exponen-
tially distributed from the ovrigin of the cluster, the spectrum of counts ifakes the form

gy lw) = ot - C s w20 (3.25)

where 8 and v are parameters of the storm structure while o is the rate of occurrence of storms. If it is

no

further assumed that oniy the parent process or “the process of the rainfall generating mechanisms® is non-
homogeneous while the process of the cluster members or "the process af the rvainfalis in a storm" is sta-
tionary, then only the rate of occurrence of the parent process, o, will be time-dependent in the spectrum
of counts. In this case, once the rate of parent cccurvence, a{t}, is homogenized, the spectrum of counts
can be effectively used for the testing of the assumptions and the calibration of the model.

For a complete homogenization scheme under the Neyman-Scott cluster assumption, the nonhomogeneous form
of the model should be known. Since this is Tacking, the best one can do is to analyze the results of the

transformation {3.6) by the use of varicus statistical functions introduced inm the analysis of trends.

3.4 RESULTS OF THE HOMOGEMIZATION OF THE DAILY RAINFALL COUNTS PROCESS

The daily rainfall counts data was homogenized by the use of equation (3.8) with At = 1 day. The howo-
genization scheme reduced the interarrival times in all of the 17 stations analyzed. The record length was
veduced from 2556 days on the average to 750 days on the average. The new time scale t does not have a phys-
ical time meaning. However, 1f there ave any periodicities or trends Teft in the data, thay can be detected
by the following graphical analysis and by the tests of trend hypothesis discussed in the next subsection.
Finally the change in the woments of the interavrival distribution through the use of (2.6) will be given
and the consequenées of the transformation will be discussed.

3.4.1 The Graphical Analysis of Homogenization

3.4.% MNumber of rainy days versus cumulative time

In the analysis of time trends in the daily rainfall occuvrences it was seen in fig. 1 that the piots

1

of the total number of daily rainfall occurrences, denoted by "interval number,” versus the total time in

days to the last occurrence, denoted by "cumulative time," had genevally increasing upward slopes with time.
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The increase in the upward slope indicated a decrease in the rate of daily rainfall occurrence. After homo-
genization, using the scheme (3.6) with the rate of cccurvence modeis 1isted in table 3-1 for the corres-
ponding stations, it was seen that in the transformed time scale, v, the sliopes became constant. Since the
sTope of the plot is the inverse of the mean rate of daily rainfall occurrence a{t), these plots showed that
the scheme (3.6) effectively homogenizes the rate of rainfall occurrence. Figure 7 for the rainfall sta-
tions 0132, 3087, 3777, 4642, 6056 and 7747, when compared to fig. 1, show the change in slope, especially
in the stations 3082 and 4642. Since the number of rainy days versus cumulative time is a cumulative plot,
the changes in the rate of daiiy rainfall are smoothed out, and the effects of the transformation (3.6} on
x{t) are not clearlty apparent.

3.4.7h Intensity function

Figure 8 shows ths intensity functions for the homogenized daily rainfall counts data for stations
0132, 3087, 3777, 4642, 6056 and 7747, After homogenizations the "Time intervai” in the abcissa Tosas its
physical time meaning. However, it is important to note that the original time scale was modified so that
for example 800 in the new time scale corresponds to 800X2556/750 or 2726 days in the natural time scale.
It was shown in equation {2.8) that for the homégenesus Poisson process the intensity function is equal to
the constant rate of rainfall cccurrence, The data weve homogenized so as to obtain a rate of vainfall oc-
currence equal to upity. Therefore, the sample intensity function should be close to unity for all values
of T.

When fig. 8 is compared to fig. 3 for the corvesponding stations, it will be seen that the cyclicities
are, in general, effectively removed. However, a cycticity still appears in the intensity function for the
station 0132 corresponding to about 600 x 2556/75C or 2045 days in the physical time scale. This would cor-
respond to roughly 5.6 years, an artifact. The reason for this artifact is that the values of ﬁf(r) Tor t
large have very high variations because as v is increased ﬁf(T) is estimated from fewer and fewer points.
This effect is clearly seen for large values of t in fig. 8 since all the data Tength was utilized Tor the
computation of ﬁf(f}. Tn a1l the cases studied the intensity function was close to unity, expecially in
the beginning for small vailues of t. It is difficult to conclude from the Tniensity function whether the
deviations from the horizontal line ﬁf(r) = 1 show deviations from the Poisson hypothesis or they are just
due to the increase in the variance of the ﬁf(r) estimates with increasing .

3.4.7¢ VYariance-time function

Variance—time curves for the rainfall stations 0132, 3082, 3777, 4642, 6056 and 7747 are shown in fig.
9. The interval length is in terms of the homogenized process time scale t. The variance-time function
was computed up to & time g which was one-fifth of the time length of the homogenized data, in order to
avoid the increased variance due to the decrease in the number of degrees of freedom in the estimates. As
is seen from the figures, the cyclicity in the variance-time function of the original data was removed,
However, the original variance-time function was distorted.

For a homogeneocus Poisson process it was shown earlier that Y{t) = at. The mean function for the rain-
fall occurrence, E[N 1, would again be Xt under the homogeneous Poisson hypothesis. Therefore, the coeffi-
cient of varilation fuaction C(t) = V(r)/E[NT] can be used to draw inferences about the dispersion of the
homogenized daily rainfall occurrences. In the case of the Poisson process C{r) = 1. If Clt) > 1, this
would indicate te an overdispersion of the occurrences with respect to the Poisson process and would indi-
cate to a grouping of the rainfall events, of the clustering. If C{r) < 1, the occurrences are underdis-
persed and too regular when compared to the Poisson case. C(r) is measured indirectly by comparing the ¥(t)
function plotted for the homogenized daily rainfall counts data with the theoretical y{z} functicn for the
Poisson case plotted on the same graph. Since in the scheme (3.6) r was taken to be unity, y(t) = = under
the Poisson hypothesis. If the V{r) for the homogenized data is above the straight Tine y{<) = 1, then
¢{z) > 1. If the V{r) for the homogenized data coincides with V{t} = t, C(c) = 1, and if it is below
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Vit = 1, ¢z} < 1.

The most common case is for the station 0132 where C{t} > 1. This clustering effect was also noticed
in the stations 0132, 0177, 0545, 1747, 3777, 6086, 6338, 7069, 7755 and 7935 out of the 17 stations whose
data was homogenized. This clustering of the rainfall occurrences in the forwm of storms around the storm-
causing mechanisms can be explicitly modeled with the Neyman-5cott stochastic cluster model. This model will
be described in detail in a later chapter.

In fig. 3 for the station 6056, the plot of V{+) vs. t may be approximated by a straight Tine with a
slope greater than unity. The variance-time function for such a case would covrespond to a compound Poisson
process where a random number of vrafnfall events occur at the instants of a simple Poisson process. This
would correspond to the thunderstorm activity where the interarrival times are much Tonger than the size of
the storm. A stochastic process {N(z), = > 0} for the rainfall counts is a compound Poisson process if it
can be represented by

n(t)
Nx)= 5 Z, .50 (3.26)
i=1

i Z.
where {n{z), v » 0} is a Poisson process ceunting the thunderstorms up to the time v while Zi is the number
of rainfalls at the i-th thunderstorm. I the mean rate of occurrence of the thunderstorms is a, the mean
function and the variance-time function of the homogenized daily rainfall occurrence data are (Parzen,
1967},

E[M{z}] = oE(Z)t , (3.27)

Var[N(0)] = oE(Z%)7 , (3.28)

so that C{z) = E(ZZ)/E(Z), a constant. In the analysis of the Neyman-Scoti cluster model, it will be seen
that the compound Poisscn process is a special case of the cluster model.

In fig. 9 for station 4642 it is seen that the homogenized daily rainfall counts are underdispersed.
The same occurs for stations 1882, 3082 and 4908. This behavior of the variance-time functicn canh be ex-
plained by the equation {2.22) for the V(<) for an ordinary renewal process with camma distributed interar-
rival times, ¥, with E(X) = 2/, However, the intensity function for this model. which was given in equa-
tion (2.10), does not quite correspond to the sample intensity function for the station 4642, given in the
fig. &. The underdispersion may also be due to an over-removal of the dominant yearly periodicity in the
daity rainfall counts process. This hypothesis will be strengthened when the counts spectra of the homo-
genized data is analyzed in the subsequent section.

Only stations 3547, 6164 and 7747 satisfied the Poisson hypothesis in terms of the variance-time be-
navior. The Poisson case is shown on the fig., 9 for the Station 7747.

From equation (2.27) the asymptotic siope of the variance~-time curve gives the value of the spectrum
of the rainfall counts at the origin. Therefore, the asymptotic slope of the variance-time curve yields
important information about the long range dependence properties of the daily rainfall counts process. In
the time series analysis of the hydrologic data the relationship between the autocorreialion structure of
the time sories and the variance-time curve was established. An important statistic in purse’s (1951,
1956, 1965) anaiysis of the long range dependence in geophysical time series was the variance-time curve.
Likewise the variance-time curve for the daily vrainfall counts can expiain the long range dependence in the
rainfall occurrences.

In the calibration of a stochastic model of the daily rainfall counts the long range dependence can
ba preserved by fitting the asymptotic slope of the variance-time curve. However, the data for the analysis
of the daily rainfall counts in Indiana were limited to 7 years due to the computer storage limitations.

In the homogenization process the time scale of the data was further reduced, and in the variance-time
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function ektimation only one~fifth of the homogenized data could be used in order to avoid increased var-
jance. Ths span for which the variance-time function could be calculated is too short te have the transient
in the data to die cut and for cbserving the asymptotic Tinear slops accurately. A record of much larger
size is thus necessary to observe the long range dependence in the daily rainfall counts by means of the
variance-time curve of the homogenized data.

3.4.7d  Spectrum of the homogenized daily vainfall counts

The counts spectrum of the homogenized data is the most important statistical function for the verifi-
cation of the removal of the pericdicities of the scheme of eguation (3.6), for the verification of the
Poisson nypothesis, for the detection of the correlation structure in the daily rainfall counts process, and
for the calibration of the stochastic model that can explain the correlation structure. The spectrum of
counts is defined as the Fourier transform of the covariance density y+(u) af the differential counting pro-
Ccess {ANt}w The differential counting process is defined by Cox and rewis {1966) as the counting process

where ANt is the number of events in (&, t+at), that is, aNt = Nt+at - N, as At ~ 0. It is an instantaneous

t
process with value zero almost everywhere, except at the points of the random occurrences. Then the defi-

nition of Y+(u) is that

1
Cov{ANtﬁ ANt+u’

”
= ' % (3.29)

)= g

{at

50 that the spectrum of counts g(w) is defined as (cox and rewis. 1966)

oo .
a) =R [l e e oo (3.30)

where m/2w is the contribution of the covariance density at lag zeve. cox and zewis (1966) show that

v (u) = mimg(u) -~ m} (3.31)

so that the expression {3.30) becomes identical to {2.24). Expression {3.30) shows that the spectrum of
counts explains the correlation structure of the counting process {N(t)} through the use of the differential
counting process {al{t}}. This property will be used to make inferences about the dependence structure of
the homogenized daily rainfall counts process.

The spectrum of counts analysis for the Poisson hypothesis was done for the homogenized daily rainfall
counts data. In all of the 17 stations, there were significant deviations from the Poisson hypothesis,

For the Poisson hypothesis g+(m} = afn. The normalized spectrum of counts wg+(m)/l is thus & constani hori-
zontal tine with the ordinate equal to unity. The 99% confidence limits for the Poisson hypothesis were
constructed for the estimates smoothed in consecutive groups of 20. The smoothed spectral estimates consis-
tently showed an exponential decay from lower to higher frequencies. They consistently deviated from the
Poisson hypotheésis, even at 1% level. The spectra of the homogenized daily rainfall counts for stations
0132, 3082, 4642, 6056 and 7747 are shown on Fig. 10 together with the theoretical spectra of the Poisson
and ciuster models and the 99% confidence Timits for the Poisson hypothesis.

The immediate conclusion that can be drawn from thess spectra is that the daily rainfall counts pro-
cess does not have independent increments. There is a definite correlation structure in the homogenized
daily rainfall counts process. The Poisson hypothesis of the independent rainfall counts should be rejected.
A stochastic model that can explain the correlation structure in the daily rainfall counts process is ne-
cessary. The Neyman-Scott cluster process is such a medel, which not only can explain the dependence struc-
ture but also can physically describe the grouping of the rainfal) events in the form of storms and the
occurvrence of the storm-generating mechanisms.

If the fig. 10 is compared to its counterpart fig. 5, it will be seen that the yearly periodicity is
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significantly reduced in a1l the cases by the homogenization scheme (3.6). In fact, the spectral component
corresponding to the yeariy pericdicity was cver-removed in the cases of the stations 3082 and 4542. Since
the estimates were smoothed in consecutive groups of 20, the first vaiue of the spectrum after the origin
corresponds to the contributions from the yearly cycle and the longer cycles. It is seen that this contri-
bution is over-removed for staticns 3082 and 4642,

It was speculated in the discussion of the variance-time function results that the homogenized daily
rainfall counts process for the stations 3082 and 4642 could be explained by an ordinary renewal process
with gamma distributed interarrival times, X, and with E(X} = 2/%. The spectrum of counts for this case is
given as (Cox and Lewis, 1966).

- A(mz + ZAE} .
; 2)’ Wz

g, (w)
2r(w” + 4x

s0 that wg+(w) increases monctonically from ﬂg+{0+) = A/4 to ﬂg+(m) = /2. However, the spectra of the
homogenized daily vainfall counts are decreasing rather than increasing. Therefore, the ordinary renewal
process model is rejected. The second possibility of the over-vemoval of the yearly cyclicity seems
plausible from the spectra of the fig. 10.

In the variance-time analysis of the homogenized data the compound Poisson process was considered for
the station 60B6. It will be seen in the analysis of the Neyman-Scott cluster model that the spectrum of
the homogenized daily rainfall counts satisfying the compound Peisson process hypothasis {s a constant
horizontal Tine. The spectrum of counts for the statfon 6056, shown on the fig. 10 is exponentially decay-
ing rather than being a horizental 1ina. Therefore, the homogenized daily rainfall counts at the station
6056 should be modeled with the more general Meyman-Scott model which has the expenentially decaying spec-
trum of counts.

3.4.Te Relative frequency histogram and the log-survivor function for the rainfall interarri-

val times

The relative freguency histograms of the interarrival times between the daily rainfall occurrences
were constructed for the 17 stations in Indiana. I there ave n observed xi's, i=1, ..., n, the relative
fraequency histogram fX{xi) is calculated by

number of xi‘s

fX{xi) e T=1, 2, ... . {3.32)

Since the relative freguency histogram was constructed for the daily rainfall data, the probabilities are
concentrated on the days. The times between the integer days are naturally veid. This is seen in Fig. 11
for the stations 0132, 3082, 3777, 4642, 6056 and 7747 respectively. The shape of the relative frequency
histogram, ignoring the voids, is of the exponential type., which agrees with the Poisson hypothesis of the
exponentially distributed interarrivals.

A second way to look at the probability distrifution of the interarrivals is through the log-survivor
functions, Tn P[X > x]. In the case of the Poisson hypothesis,

n P[X > x1 = -ax (3.33)

which is a straight Tine with slope -». The log-survivor function was calculated from the natural logarithm
of 1 - Fn(x) where {rewis et al., 1969)

Fn(x) =0 X< X(qy
= %- X(io1) S X F Xy i=2,3 ....n {3.34)
Tt Ky s
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In (3.34) x(i) denotes the i-th order statistic in the observed sample. The log-surviver functions were
estimated by a computer program of lewis et al (196%), for the 17 stations in Indiana. Samplie log-survivor
functions are shown on the fig. 12 for the stations 0132, 3082, 3777, 4642, 6056 and 7747. Except for the
outiiers, almost all of the Jog-survivor functions are straight lines with negative slopes, satisfying the
Paisson hypothesis.

After the data were homogenized, the relative frequency histograms and the Tog-survivor functions for
the interarrival times of the rainfall counts process in the 17 stations in Indiana were computed. The
sample relative frequency histograms of the interarrivals for the homogenized daily rainfall occurrences
are shown on fig. 13 for the stations 0132, 3082, 3777, 4642, 6056 and 7747, Except for the outliers, no
voids are left in the relative freguency histograms. However, there is a shift from the negative exponen-
tial shape to, probably, the Weibull distribution for which the log-survivor functicn is

n P[X > x] = - é{ﬁ} s X > e

for the parameters v and k such that v > e and k > 1. Among the 17 stations analyzed stations 0132, 0177,
0545, 1747, 3777, 6056, 6338, 7069, 7747, 7755 and 7935 yielded log-survivor functions which were convex
from the thecretical Poisson log-survivor function. This is seen in fig. 14 for the stations 0132, 3777,
6056 and 7747. The hazard function z(x) is defined as '

2(x) = fy{x)/PIX > x]

for the interarrival times X. The relationship between the log-surviver function Tn P[X > x] and z{x) is
{cox and Lewis, 1966}

X
n PIX > x1 = -JO 2(u)du

d

50 that a4 In (X > x] = -z(x)
dx2 dx ’

Therefore, a concave log-survivor function would correspond t0 a monotone non-increasing hazard function
z{x}. A monotone non-increasing hazard impifes that the coefficient of variation of X is greater than
unity (watson and wells, 1981). Cox and Lewis (1968) have shown that

c?

Vi=) = ¢ XX)

where C{x) is the coefficient of variation of the interarrival times X while V' {«) is the asymptotic slope
of the variance-time curve of the counting process N(t). For a convex log-survivor function

V' () i_gT%T . (3.36)

However, 1/E(x) is the constant siope of the variance~time function for the Poisson case, Therefore, for
a convex log-survivor function the variance-time curve V{t), would be above t/E{x) for large t. The
striking fact is that, except for station 7747 all the other stations with convex log-survivor functions
yielded variance-time curves which Jay above the theoretical Poisson variance-time function t/E{x). This
suggests a clustering of the rainfall occurrences. However, the convexity is not too pronounced in the
sample log-survivor functions. The functions lie comfortably close to the theoretical log-survivor func-
tion Tn P[X » x] = -x, for the exponentially distributed interarrival times.
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3.4.2 Some Statistics eon Homogenization

The effect of the homogenization scheme (3.6) on the daily rainfall counts data can be seen from the
change in the mean, standard deviation, coefficient of skewness and the coefficient of variation. If the
homogenization scheme {3.8) performs properly, the mean interarvival time of the homogenized data should
be ciose to 1,

The statistics of the original data for the 17 stations are shown in the table 3.2. The table shows
that the coefficients of variation in all the 17 stations are greater than 1, the value for the ceefficient
of variation of a Poisson progess. Therefore, the data shows the grouping of the rainfall events. The
coefficients of skewness are all positive, showing skewness to the right. This is expected for the exponen-
tially distributed interarrivals for the Poisson hypothesis.

Table 3-3 shows the statistics for the homogenized daily rainfall data for the 17 Indiana stations.

A11 the mean-arrival times are very close to unity. Therefore, the rate of rainfall nccurrence is unity,

as it is supposed to be after the transformation (3.6}. The coefficients of variation are also quite close
to unity implying that the interarrival times of the homogenized daily rainfall counis are negative exponen-
tially distributed.

3.4.3 Statistical Tests on Homogenization

Two tests for the staticnarity of the interarrival times between rainfall occurrences were employed in
the analysis of trends. The same tests are used for analyzing the effects of the homogenization of the
rainfall data by the scheme (3.6). In order to use these tests the independence of the interarrival times
have to be assumed.

3.4,3.17 Test of trend in the rate of homogenized daily rainfall occurrences under the Poisson
hypothesis

The reader is referred to Section 2 of Chapter I for the discussion of this test. The results of the
test, given in table 3-4, show that the trend in the rate of rainfall cccurrence is removed by the homogen-
ization scheme {3.6).

3.4.3.2 Homogeneity of variance test for the interarrivels of the homogenized daily rainfalt

Dcgurrences

The reader is referred to Sec. 2 of Chapter Il for a discussion of this test. The results, given in
table 3-5, show that the variance of the interarvival times is still nonhomogeneous, although it is consi-
derably reduced when the resuiis are compared to the variance homogeneity statistics of the original data
in table 2~3.

The homogerization scheme (3.8} which homogenized the rate of occurrence in all cases, would also homo-
genize the variance if the stochastic model underiying the daily rainfall counts process was Poisson. The
verification of the removal of trends in the rate of occurrence, coupled by the rejection of the homogeniza-
tion of the variance of the interarrivals, leads to the conclusion that the stochastic model of the daily
rainfail occurrences is not Poisson.

3.5 SUPPLEMENTARY FIGURES

Piots of the number of rainy days versus cumulative time, of the intensity function, of the variance~
time function, and of the counts spectrum for the homogenized daily rainfall data for the stations 0177,
0545, 1747, 1887, 3547, 4908, 6164, 6338, 7069, 7755 and 7935 are given in figures 7A, 7B, 8A, 8B, 9A, 9B
and 10A, 10B. The relative frequency histogram and the log-survivor function for the original daily rain-
fall interarrival times and the relative frequency histegram and the Tog survivor function for the homogen-
ized daily rainfall interarrival times for the above stations ave given in figures 11A, T1B, 12A, 128, 13A,
13B and 14A, 148.
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TABLE 3-2
STATISTICS FOR THE DAILY RAINFALL INTERARRIVAL TIMES

Station Mean Standard Dev. Coefficient of Yariation Skewness Coefficient
0132 3.2232 3.5854 1.1124 3,2998
177 3.5663 4,5706 1.2852 £,4738
0545 3.3182 3.6897 1.1132 2.7794
1747 3.3587 2.6449 1.068% Z.5058
1882 4,3567 4.6453 1.066 2.6325
3082 3.2031 3.4257 1.0678 2.9172
3547 4.1512 4. 7224 1.1377 2.9085
3777 3.3356 3.5637 1.0621 3.1592
4647 3.2938 3.5329 1.G726 2.7681
4908 3.4648 3.7263 1.G755 2.4559
6056 3.627 B.3424 1.4732 7.8724
6164 3.2811 3.6215 1.7041 4,2645
6338 3.349% 3.6525 1.0902 2.8726
7069 3.1962 3.3032 1.0335 2.75%2
7747 3.2615 3.4794 1.0668 2.7644
7755 3.4742 3.815 1.093 2.6724
7935 3.8247 4.2371 1.0766 2.2415

TABLE 3-3 ‘
STATISTICS FOR THE INTERARRIVAL TIMES OF THE HOMOGENIZED DAILY RAINFALL DATA

Station Mean Standard Dev. Coefficient of Variation Skewness Coefficient
0132 .9579 1.0426 1.0448 3.265]
m77 .999 1.1292 1.71298 3.7726
0545 .9594 1.042 1.0427 2.3751
1747 .998 1.6127 1.0147 2.0878
1882 L9507 L9577 .9667 1.8155
3082 1.0000 .97 87 2.076
3547 .9999 1.1069 1.107 3.333
3717 1.0216 1.0422 1.020 2.726
4642 .9987 9964 L9877 2.210
4908 .9982 .9815 .9833 1.973
6056 . 9948 1.269 1.2754 6.592
6164 .9973 1.0311 L0409 2.518
6338 .9996 .990 9903 1.8812
7069 .9939 1.0012 1.010 2.0838
7747 9994 L9818 .9823 2.2123
7755 L9859 1.0068 1.0212 2.3033
7935 .9984 1.024 1.026 2.,8695

TABLE 3-4

TEST OF TREND I¥ THE RATE OF RAINFALL OCCURRENCE FOR THE HOMOGENIZED DATA
{Underlying process is assumed to be Poisson)

Station Cramer's Statistic U Significant at 5% Station Cramer’'s Statistic U Significant at 5%

0132 . 245 No 4308 15607 No
0177 - 008 No 6056 - 0417 No
0545 - .553 No 6164 - .8979 No
1747 L1291 No 6338 .082 No
1882 .344 No 7069 323 No
3082 .07 No 7747 1.0585 No
3547 - .095 No 7755 - .259 No
3777 -1.593 No 7935 - .35 No
4642 .0595 No
U ~ N(OQ])
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Station

0132

0177

0545

1747

1882

3082

3547

4642

4368

6056

6164

6338

7068

7747

7755

7835

TABLE 3-5

HOMOGENEITY OF VARIANCE TEST FOR THE INDEPENDENT
RAINFALL INTERARRIVALS FOR THE HOMOGENIZED DATA

Hom. of Variance Statistic Degree of Freedom
228.24 43
100.15 15

42.01 5
268.700 38
135.62 13

10.34 4
180.92 41
106.85 15

56.51 5
166.69 41

94,44 14

55.73 5

61.95 31

31.566 11

7.63 3
131.35 43

5Z.34 15

14.76 5
152.62 33

70.26 11

42.7 4
121,19 42

46.75 15

12.05 5

87.45 40

40, 31 14

20.84 5
400611 38
290.86 13
175.599 4
156.20 42

72,45 15

29,17 5
117.87 41

28,77 14

5.05 5
143.66 43

66.35 15

16.46 5
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CHAPTER 4 - TESTS FOR THE HYPOTHESIS THAT THE DAILY RAINFALL COUNTS PRGCESS 1S POISSON

4.1 TEST TO BE ACCOMPLISHED

Cnce the data are homogenized by the transformation (3.6), formsl statistical tests of the Poisson hy-
pothesis can be performed. Already, in the section dealing with the hamogenization results, the null hypo-
thesis of the independent counting increments was tested against the alternative of dependence in the incre-
ments through the use of the homogenized daily rainfall counts spectrum. In this section two types of testing
will be accomplished. These are (a) the tests of the null hypothesis of independent interarrival times be-
tween the rainfall occurrences and (b) the general distribution-free tests of the Poisscn hypothesis.

Siace the transformation {3.6) can homogenize the whole process only under the Poisson assumpiion, the
tests of the interarrival time independence will only be considered under the Poisson framewark. For an or-
dinary renewal process it can be shown {cox, 1962) that the taplace transfovm of the renewal function,
E[Ng], is

fr(s
LLE(KD)T = Ha(s) = Eﬁ‘%‘%’ﬂ?

sa that E{Ng] depends specifically on the type of interarrival p.d.f. f(x) whose Laplace transform is f;(s).
The interarrival time p.d.f. may have as many parameters as desired. These parameters may be time-dependent
and there is no guarantee that the transformation {3.5) may homogenize these parameters. As will be seen
below, the interarrival time independence tests ave based on the autocorrelation and the spectrum of the in-
terarvival time saries which depend cn the second moments of the interarrivals. The transformation {3.6)
can homogenize the second moments of the interarrival times only in the case of the Pgisson process. There-
fore, the resylts based on the autocorrelation and the spectrum of the interarrival times of the homogenized
daily rainfall counts are valid cnly under the Poisson hypothesis. o

4.2 TESTS OF THE INTERARRIVAL TIME INDEPENDENCE UNDER THE POISSON HYPOTHESIS

4.2.%7 Test Based on the Autocorrelation Ceefficients of the Interarrival Times

The autocorrelation function of the interarrival times is calculated as

n-J

NP B el (4.1)

where x = %-121 i If n, the number of interarrivals in the data, is large, a?d provided that the inter—ﬂ
arrival time distribution s not highly skewed, then under the null hypothesis Py = 0, =1, 2, ..., the ey
can be considered to be normally distributed with zero mean and the standard deviation equal to 1/vn-d {cox
and Lewis, 1966). The correlation batween the two autocorreiation coefficients at different lags is given

b

by {Bartlett, 1958)

corr(Bys Byy) . (a.2)
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For the independent intervals,

corr(SJ, 5J+k) = 0(1/n) (4.3)

which shows that the autocorrelation estimates are correlated. Therefore, the tests based on the estimates
of the autocorrelation coefficients of the interarrival times are not too reliabte. The autocorrelation
functions of the rainfall interarrival times for the homogenized data are shown in fig. 15, for the stations ;
0132, 3082, 3777, 4642, 6056 and 7747 for the positive Tags. In table 4-1, §J¢ﬁ:3'for =1, ..., 5, are
given for the 17 stations analyzed. In 8 out of 17 cases studied some autocorrelation coefficient among the |
five lags was significant at the 5% level. Thevefore, it is hard to conclude interval independence basad E
on the autocorrelation function of the homogenized daily rainfall interarrival times.

4.2.2 Tests Based on the Spectrum of Interavrival Times

If the interarrival times sequence is considered as a time series, the spectral density function flw)
for this sequence can be represented as

Tw)

= “21;- f} Pk ewﬂ(t0 -1 < W LW {4.4)

after the sequence is homogenized by the transformation (3.6). The spectral density is estimated by
1 n-1 .
flw) = T J:-(gz;-'i) Py Cos du N - < <o, {4.5)
For a process with uncorrelated interarrival times Cox and Lewis (1966) show that
ELF(0}] = £(u)

Var[F(o)] = [F(0)12, 0 cw<n  Varl®(w}l = 20f(e)1% 5 w = 0, =

COV[%(m-I), %(mz)] = 0, iy # wo . {4.6)

The spaciral estimates #(w) are unbiased but inconsistent. To obtain consistency a spectral window is used f
and the estimate takes the form

eca
Bly) = o - i,
flw) = 5 Jz—m ?\J pJCOS Ju o, TS w
where A is a weighting seguence to Secure small variance and thereby consistency. However, as the varianceé
of the estimate i3 decreased the bias is increased and there should be a trade-off between these two sta- '
tistics. Among the various windows, Parzen's window where

2
= = - 6J
Ay =y =] ——rzz{z—) . gl zwes2
%
=21 - L%L}3 . a2 < 3] <2
= 0 . [a] > &

in which & is the cutoff lag of the autocorrelation function in the spectral density estimation, was used
for the estimate of the spectral density in the computations. The expectation and variance of flw), using
Parzen's window, are

2
ELHw)] = Flo) -, Var{R(w)] = Tkt
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where n is the total number of occurrences. For uncorrelated intararrival times the spectral estimates
flw) with the Parzen's window have the expectation and the variance,

ELF(u)] = 5, Var[F(u)] = 2/8:%n (4.7)

The interarrival time spectra for the homogenized daily rainfall occurrences are shown on fig. 16 for
the stations 0132, 3082, 3777, 4642, 6056 and 7747 in Indiana. The cutoff lag of the autocorrelation func-
tion in these spectral density estimates was £ = 40. The “frequency index” on the abcissa of these piots
denotes the integers p =0, 1, 2, ..., {B%l} corraspending to the freguencies by = Zrp/n. There is no de-
finite structure on these spectra. Some spectral values which seem significant do not correspond to any
physical time period since the abcissa scale corrasponds to serial numbers of the occurvences. From these
spectra one can check the statistical characteristics {4.8) for the uncorrelated intervals.

More formal tests are based on the periodogram estimates In(mp) where

1 ¢ N '!pr z n-1
In(mp) Sl ey 5321 )(‘J e s TS wg S, p o= 1, 2, ..., R (4.8)

When the process of interarrival times {X} is made up of uncorrelated increments the periodogram estimates
have the properties {cox and rewis, 1965)

Tim X
PLT () > x] = exp ~{—2—0)
e nep ozf{mp)

BT, (00T = o¥f(u))

Tim I PV
- Var{ln(wp)} =g f (wp) R

Tim ), 1

oo Cov[In(mp1 n(mpz)} =0, for 0 < wy < (4.9}

where 02 is the variance of the interarrival times {X;}. As is seen from the above expressions In(wp) is

not a consistent estimator. At mp = 0;

E[In(o)] = g b 5

where 1 is the expectation of the {Xi}n Therefore, there will be large value at the crigin when the pro-

cess under consideration has a nonzero mean.

4.2.2.1 Test of trend in the periodeogram

The formal tests of the interval independence have the null hypothesis HO that the periodogram esti-
mates I{w_ ) for -7 < w_ < =m, and 5 # G, have asymptotically uncorrelated exponential distributions with
mean c2/2n. The alternative hypothesis HA is that the periodogram estimates ip(wp) have trends instead of

being ciose to the horizontal line In{mp) = 02/2w.
n-1

One can put I{w ), p =1, 2, ..., 2, where ¢ is the integer part of 5 end to end and form an arti-
ficial counting process where the waiting times tf are defined as
i
t, = jzl I(wd} . (£.10)

One can test the time trends in the rate of occurvence of this artificial process in a manner as described
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in the section dealing with the tests of trend in the daily rainfall occurrences. Since the intervals are
exponential and asymptotically uncorrelated, one can assume a Poisson model for the constructed artificial
process. Then, for the test in sec. 2.2.1 the statistic S will become

g i
s= 1 T Hu/e (4.11)
i51 J=1
and U= (S - %-tl)/tl/%TEE

whevre % 1s the integer part of (n-1)/2. If there are trends in the rate of occurvence, this would mean
that there are trends in the periodogram estimates I(mp). This test was performed for the 17 stations un-
der invesiigation. The results are shown in the last column on table 4.1. Three out of 17 cases are sig-
nificant at 5%.

4.72.2.2 Distribution-free tests of the interval independence on the homogenized daily rainfall

OCCUrTences

After the periodogram estimates are computed one can obtain the normaiized cumuiative periodogram
vaiues U, .. as
(1)

i 1
u(i) = 321 I(wd)/dz1 I(wJ} i=1, ..., 8

where & is the integer part of (n-1)/2. Under the renewai process hypothesis the pericdogram estimates ave ;
asymptotically independent, and therefore, the normalized cunulative periodogram values U(i} become the or-
der statistics from a uniformly distributed sample of size & over (0,1} such that

0, ux=

I
<

P[Bi cul=u,0<u=xl

Tou=T.
This is the canonical form for the distribution-free tests of goodness-of-fit for the nuil hypothesis HO;
Hy: Fx(x} = Fa(x}

where FG(x) is the assumed distribution fuaction (which is the uniform distribution in the case under study)é

and FX(X) s the unknown underlying probability distribution. ¥ {(x) will denote the empirical distribution

(
i
function of the random variable X of sample size &. 1In the case under study & is the integer part of
(n-1)/2. The distribution-free tests are thoroughly treated by cox and rewis (1966). One can form three

alternative hypotheses against HO;

HA1: Fx(x) # FG(X)
Hyot FX(X) > Fg(x)
Hygt FX(x) < Fo(x)

A test of H, against HA] is a two-sided test of goodness-of-fit and Hy versus HAE’ HO Versus HA3 are one-
sided tests of the goodness-cof-fit. In velation toe testing the uniformity of Ui’s Kolmogorov~-Smirnov and
Anderson-Dariing statistics will be considered.
i. Ko'lmogorov-Smirnov statistics;

One-sided statistics are
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+ o Sup max i
Dy = Taiyew (F (X} -3 = Teiar T X(i)} and

i

I

- _ Sup _ max _ -1
Dy = Laxew X - B0} = iy <%{1) )
where x(i} is the i-th order statistic from the random sample. The two-sided statistic is

5 = Sup

+ -
£ oo <Y, <o |F’Q’(X) - XE = max(D D ) .

IR}
The asymptotic distribution of one-sided statisiics can be expressed as
P B U P TR IS P
Y300 L= fr00 97 - -
For a significance level o the asymptotic probability limit da such that P[DQ/E'> da] = g, can be obtained

from tables (Cox and Lewis, 1966}, (Box and Jenkins, 1970). I the calculated value of D, is greater than
da, the null hypothesis is rejected at the level o, In the case under study;

HO: FU(u) is uniform in {0,1)
HA: There is a trend in Ui’ that is, U1 ave not uniformly distributed in (0,1).

A two~sided Kolmogerov-Smirnov test follows;

o, = mx{1%, 20l 1 (o) - S5))
where Dz is the first maximum in the brackets and D; is the second maximum, If DQ¢E'> d s or if D;/E'> d;, or if
DE/Z > dZ’ then the hypothesis that the homogenized daily rainfall interarrival times are independent is re-
Jected at the level a.

The Kolmogorov-Swmivnov statistics ave shown on the table 4-1. The interval independence is rejected
in 5 out of 17 cases at the 5% level.
ii. Anderson-Darling Statistic,

It is seen above that the Kolmogorov-Smirnov statistics measure the differences between the empirical
distribution Fﬁ(x) and the assumed probability distribution FO(X}. Another way to measure the difference
between the two distributions is through the Cramer-Von Mises statistic, (cox and rewis, 1966}

+o
W = J RACE Fo )Y (x)

which measures a mean square deviation between Fg(x) and Fg(x}, This statistie is again distribution-free
and gives a consistent test of the two-sided hypothesis. In computational form,

5 1 (2i-1)|2

L
1
wo o= + = ) (Fax ) -
Boqp2 R Ly 0 {1) 25

Anderson and DParling {1952, 1954} gave a tabulation of

Vim P{zwi < w]

e

and the significance points for o = .05 and .01 are given in Cox and Zewis (1966}.

{Fz(u} - u} has mean zero and variantezu(1~u)/£o Therefore, the maximum value of the variance happens
at u = 1/2 and it is expected that Dx and W, are most sensitive to departures in the middle of the range
{0,1) of u. In ovder toc have wi equally sensitive all through (0.1) anderson and Darling (?952é 1954)
weightad wi by the reciprocal of the variance u{1-u)/& to form the Anderson-Darling statistic wg where
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i
2 y a2 %
Wﬁ = fo (l‘g(u) u) mdu .
In the computational form

{{2i-1) Tog Uy + {22 - 2i+1) Tog (1-U:)}

for testing the null hypothesis that Uig i=1, ..., & divide the interval (0,1} at random. If the calcu-
Tated value of WE exceeds the asymptotic significance point at level a, then H0 is rejected at this level.
This, in turn, implies that the interarrival times of the homogenized daily rainfall counts are correlated.
The Anderson-Dariing test for the homogenized daily rainfall intervals rejected the interval independence
hypothesis in 3 out of 17 cases at 5% level,

4,2.3 Results of the Tests for the Interval Independence Hypothesis

The tests considered in this section are all based on the large sample distributions and on certain
approximatéons; The distribution-free tests on the periodogram of the intervals are tests against general
alternative hypotheses. If there were specific alternatives, 1% would be possible to derive more powerful
tasts than the distribution-free tests. For a general alternative such as the dependence of the intervals
one hopes that the distribution-free tests considered above will have a good power on the average. The :
tests were performed on the homogenized daily rainfall data which were obtained under the Poisson hypothesis.
1f the underlying process is not Poisson, the conciusions based on these tests are not necessarily valid. ?

The results of the tests of the interval independence hypothesis for the homogenized datly rainfall
occurrences are given on the Table 4-1. Out of the 17 cases studied the interval independence is reiected
in 5 cases by the distribution free tests. There are 3 more cases where some autocorrelation coefficient
was found significant in the first five lags. However, in the majority of the cases the tndependence of
the homogenized daily rainfall interarrival times is accepted by thé tests constructed on the autocorrela-
tion function and on the periodogram of the interarrival times. Based on these results it can be conc]uéed;
that a point stochastic model with independent intervals can only appreximate the daily rainfall counis prG—@
cess and cannot be taken as a general moded. :

4.3 TESTS OF THE POISSON HYPOTHESIS FGR THE HOMOGENIZED DAILY
RAINFALL COUNTS USING THE DIRECT POISSON CHARACTERISTICS

4.3.17 The Uniform Conditional Test

In the analysis of the homogenized daily rainfall counts the series of occurrences are cbserved up to
the r-th evert where r will be taken to be n+1 for convenience. Consider the waiting times tis i=1,
..., 0 ta the events in the interval (0, tn+1)' given that n events have occurred in (C, tn+1)’ the condi- |

tional p.d.f. that events occur at Ty <ty < ... <t 1s

Aty malty-ty) bt g) Ale L get) At g

a8 re DY e N /e (at

I _ ni '
)/n!—tn ,0§j1<t25”.it <
n+1

n+1 -
where » is the rate of occurrence. The joint p.d.f. of the random variables U(i) = tiltn+1’ o, col, m,
in (0.t 4] "
and uniformly distributed in (D,tn+1). Therefore, the test can be based on the random variables U(i)’ i=

is ni/t2+] since they are the order statistics of n random variables U1, ...y U dindependently

1, ..., n, given that n events have occurred in {0, tn+1)' This test is called the uniferm conditional test

for a Poisson process. U(i)’ i =1, ..., n, can be considered as the order statistics from a random sample %
size n from a uniformly distributed population in (0,7} so that E
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0, u=<0

PIU; sul=u, 0 <u <l
T, u >4

This is the canonical form of the distribution-free tests discussed in the previcus section. Therefore,
Kolmogorov-Smirnov and Anderson-Darling statistics are used to test the Poisson hypothesis by employing the
order statistics U(i)'

These tests are shown on the fable 4-2 for the 17 stations under investigation {n Indiana. The empir-
ical distribution function Fn(u) of the Ui's is proportional to the graph of the cumulative number of events
against cumulative time to the last event which was considered in the trend analysis of the daily rainfall
occurrencas. Therefore, the distribution-free tests based on Ui's wWwill be sensitive basically to trend al-
ternatives in the data. However, the data was homogenized as to vemove the trends under the Poisson hypo-
thesis. It was seen in the graphs of the number of rainy days versus cumulative time in fig. 7 that the
trend which the U{i)'s are testing, is effectively removed. The trend test for the rate of occurreace on
the homogenized daily rainfall data did not show any time dependence either. Therefore, it is reasonable
to expect that the uniform conditional tests based on Kolmegorov-Smirnov and Anderson-Darling statistics
will accept the Poisson hypothesis. As seen from the test vresults on the table 4-2, the Poisson hypothesis
for the daily rainfall counts process was accepted in all of the 17 stations.

If the null distribution Fo{x) was parametric, there is no known modification of the distribution-free
tests based on the Koimogorov-Smirnov and Anderson-Dariing statistics to account for the estimation of the
parameters from the data. purbin {1961) transformed the obsevvations for eliminating the parameters so
that the disiribution-free tests can be safely used. 1In the testing of Poisson hypothesis by Kolmogorov-
Smirnev and Anderson-Darling tests the null distribution Fo(x) is already free of parameters so that the
advantage of Durbin's modification in this case is not clear. The condition that the distribution-free
tests based on Durbin's modification of the data to be more powerful than the same distribution-free tests
based on the untransformed data is that the coefficient of varjation £{X) of the interarrival times ¥ should
be greater than unity (purbin, 1961). This condition is strictly true if there are no evolutionary trends
in the data. It is alsc expected that the tests based on Durbin's modification have more power for
C{X)} < 1 in the uniform conditional test of the Poisson hypothesis (cox and Lewis, 1968). In the homogen-
ized daily rainfall data the coefficient of variation for the interarrivel times is greater than unity in
11 out of 18 cases, as is seen in the tabie 3-3. Therefore, in these 11 cases Kolmogorov-Smirnov and
Anderson-Dariing tests based on Durbin’s modification of the data will be more powerful than their counter-
parts based on the untransformed data. Foliowing the empirical evidence of cox and Lewis (1966} the dis-
tribution-free tests using Durbin's modification are wmore powerful than their counterparts based on the un-
transformed data when the null Poisson hypothesis is tested against stationary general alternatives. This
is the case in the homogenized daily rainfall counts process where the trends are removed under the Poisson
hypothesis.

Durbin's modification of the data corresponding to the uniform conditional test statistic Ui is des-
cribed by Cox and Lewis {1966). Let Xos cues Xn+? be the homogenized daily rainfall interarrival times
under the Poisson assumption. Then X,, 1 =1, ..., n+l, such that X(l) < X(Z} <. X(n+1) are Tormed
from Xi’ i=1, ..., ntl. It can be shown that {X(E) - X{E-l}} for i = 1, ..., ntl are independent,
exponentialtly distributed with mean 1/{{n+1-i+1)}. Then the variables (n+2-1) - {X(i) - X(gmg)} will
be the interarrival tim?s in a Poisson process with the rate of occurrence A, As was shown by Durbin

{1961), the variables U(i) such that

U . P -
u(,l} = T {xm o+ X(z) F L., + (02 1))((1.)}, =7, ...,
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wiil be the order statistics of the random variables U; which are independent, uniformly distributed in
{0,1). Therefore, Kolmogorov-Smirnov and Anderson-Darling tests can again be employed with the 6&1), i= 1,2
.., n. The results of Kelmogorov-Smirnov and Anderson-Darling tests based on Surbin's modification are i
given in the table 4-2. The tests reject the Poisson hypothesis in all of the 17 cases under 1nvestigatisn.@
The test results are in agreement with the tests of the Poisson hypothesis by the spectra of counts and the
variance-time curves which strongly reject the Poisson model for the daily rainfall counts process.

4.3.2. Tests of Poisson Hypothesis Against Renewal Alternatives

The only test which will ba considered in this section is Moran's test. This is a test of the hypo-
thesis of independent, exponentially distributed intervarrival times against the alternative of independent
gamma distributed interarrival times. Based on the Tikelihood function of n independent, gamma distributed
interarrival times Moran (1951} derived the asymptotically most powerful test statistic L for the above
hypothesis as

. 1 B
2n(log X - ~hizi log XT)

where, under the null hypothesis, R is approximately X2 distributed with (n-1) degrees of freedom. The
divisor in the above expressicn for L, was introduced by Bartlett to improve the approximaticn to the chi-
squared distribution. The test results for the homogenized daily rainfall counts are given in the fable
4-7 and favor the exponentially distributed interarrivals against the gamma alternative in all of the

17 cases.

4.4  SUPPLEMENTARY FIGURES

The autocorrelation functions and the spectra for the intervals between homogenized daily rainfall :
counts for the stations 0377, 0545, 1747, 1882, 3082, 3547, 4908, 6164, 5338, 7069, 7755 and 7935 are shown f
on the figures 154, 15B, and 16A, 16B. '
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CHAPTER & ~ DISCUSSION OF THE RESULTS FRCM THE ANALYSIS CF
THE HOMOGENIZED DAILY RAINFALL DATA

Once the data were homogenized by trensformation (3.6} under the Poisson assumption the homegenized
daily rainfali counts process was analyzed in Chapters 3 and 4 by several statistical functions and by
several statistical tests of hypothesis.

The statistical test on the trend of the rate of rainfall occurrence showed that the rate of rainfall
occurrence is homogenized. This result is supported by the plots of the number of rainy days versus
cumulative time shown in fig. 7 and by the plots of the rainfall counts intensity functions shown in fig. 8.
However, the homogeneity of variance test on the homogenized daily rainfall interarrival times rejected
the variance homogeneity of the daily rainfall interarrival times. The variance-time function of the
homogenized daily rainfall counts also strongly rejected the variance homogeneity by significantly
deviating from the Poisson case in all cases. This behavior cast a shadow on the utiiity of the Poisson
process for modeiing the daily rainfall counts. The behavior of the spectra of the homogenized daily
rainfall counts was completely different from the theoretical counts spectra of the Poisson process in all
of the analyzed stations. The deviations from the Poisson hypothesis were significant at 1% level in all
of the rainfall siations.

The behavior of the spectra and of the variance-time curves of the homogenized daily rainfall counts
showed a dependence structure in the counting incremenis which can be explained by the clustering of the
rainfail occurrences around a rainfali-generating mechanism. It will be seen in the following chapter
that the Neyman-Scott cluster mode} has the same type of theoretical behavior as is observed in the spectra
ang in the variance-time functicns of the homogenized daily rainfall counts in Indiana. The log-survivor
functions of the homogenized daily rainfall interarrival times showed convexity in 11 out of
17 cases studied and their behavior was consistent with the resuits of their variance-time and counts
spectrum counterparts.

The tests of the independence of homogenized daily rainfall interarvival times accepted the indepen-
dence hypothesis in the majority of the cases. However, five cases showed dependence of the rainfall
intervals and three cases were doubtful. The uniform conditional tests of the Poisson hypothesis based on
Burbin’s modification of the homogenized daily rainfall data strongly rejected the Poisson hypothesis in
all of the 17 cases.

Based on the behavior of the statistical functions and on the results of the statistical hypothesis
tests, the Poisson process cannot be accepted as a model for the daily rainfall counts process. There is
definite dependence in the counting increments of the daily rainfall occurvences and point stochastic
models that can explain this behavior are necessary.
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CHAPTER 6 ~ CLUSTER MODEL FOR THE RAINFALL COUNTS PROCESS

6.1 DESCRIPTION OF THE CLUSTER MODEL

From the statistical tests of the Poisson hypothesis, and from the behavior of the homogenized daily
rainfall counts spectrum and of the variance-time curve, it was concluded that the counting increments of
the homogenized datly rainfall occurrences were dependent and cannot be moéé]ed by a Poisson process. What
is needed is a point stochastic model that can explain the dependence in the counting increments of the
daily vainfall occurvences. The Neyman-Scott ciuster model (Weyman and Scott, 1958) can explain that depen-
dence, This model assumes that the rainfall events accur in clusters which are the storms and that the oc-
currence of rainfall events in a certain time interval {0,T) is not only caused by the occurrence of the
rainfall generating mechanisms in the time interval {0,T) but is also due to the rainfall generating mechan-
fsms which occurred prior to the interval {0,7). This is due to the fact that a rainfall that belongs to a
storm that was generated by a mechanism which had occurred before (0,T) may still fall in the interval {0,7)
due to the memory of the storm genervating mechanism.

A storm generating mechanism is any meteoroliogical condition that would cause rainfail. For example,
whan a hot and humid air front meets a cold air front and rises, the humidity in the warm air front starts
to condense and a vainfall-generating mechanism is born. As Tong as this mechanism exists over a region,
there is a probability that 1t may cause rainfalls in that region. The existence of this mechanism for a
Tong time would correspond to a long memory or a Tong range dependence. If the mechanism exists for a very
short time and causes a thunderstorm as is seen in the arid regions, the memory is very short and the pro-
cess may be approximated by independent couniing increments.

The rainfall cluster model is described under the following 5 assumptions:
1.  The rainfalls occur in the form of clusters on the time axis.
2. The cluster origins in the counting process {Nt} of the rainfall occurrences are the positions of the
occurrences of the rainfall generating mechanisms. The occurrences of the rainfall generating mechanisms is
another counting process {Pt}. The cluster origins on the time axis are random and quasi-uniform. (In the
time dimension context a distribution 15 quasi-uniform if the following condition is satisfied: considering
two non-overlapping intervals 11 and 12 of egual length At on the time axis, the probability distribution of
the number of cluster centers in I1 iz the same as the probebility distribution of the number of cluster cen-
ters in I, and these twe distributions are independent. The probability generating function of the rainfall
generating mechanisms will be denoted by G_{z).)
3. To each cluster covigin thevre correspc;ds a storm of rainfalls forming the cluster. The structure of
the storm {the cluster) which has its origin at the occurvence time u of the rainfall generating mechanism
is determined by the number of rainfalls vw(u) within that storm and by the time positions T of the rafnfails
within that storm.
4.  The storm sizes v{u) will be mutually independent random variables that may depend on the storm origin
u. The sizes v{u) will also be independent of all other variables of the stochastic process. Their prob-
ability generating function wiil be denoted by Gv(zLu)q
5. The rainfalls within a storm are treated as the members of a cluster. Given the time position u of
the stoym origin, the time pesitions T of the rainfalis within a storm are indenendent Jdentically distri-
huted random variables with the conditional probability density functien fT(T—u), depending only on the dis-
tance ¢ = 1-u from the storm origin. The time positions T ave also independent of all the othey variables
of the stochastic process. A schematic description of the model is given in Diagram 4.

From the above description of the stochastic model it becomes immediately obvious that the model is a
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homogeneous one and can be fitted to the homogenized daily rainfall occurrences. [t seems possible that

the model may be extended to the nonhomogeneous domain (mMoyal, 1972). However, at the present state of the
point stochastic processes atmost all the statistical work was done for the homogeneous domain and no esta-
biished method is available for the fitting of a nonhomogeneous dependence structure by the point stochastic
models. Therefore, the verification of the rainfall cluster model will be handled in the homogeneous domain.

6.2 DEVELOPMENT OF THE NEYMAN-SCOTT CLUSTER MODEL

From the above description of the Neyman~Scott cluster model for the homogenized daily rainfall occur-
rences it foilows that the model under consideration is a compound stochastic counting process with (a) a
primary or a parent process - the rainfall generating mechanisms which are at the cluster origins, and (b}

a secondary or the first generation offspring process - the rainfalls within the particular generated storm.
This compound stochastic counting process is constructed in terms of three random variablies; {1) the counting
random variable T for the cccurrences of the rainfail generating mechanisms in time, {2) the random variable
v(u) that counts the number of rainfalls in a storm that has its origin at the time point u, (3) the random
variable T, for the time positions of the rainfalls within a stom.

The random variable which interests the hydrologist in the daily rainfall counting process is the
counting random variable Nt‘ Let the interval of cbservation of the daily rainfall occurrences at a certain
station be (0,T). let Nt1 be the number of homogenized daily rainfall occurrences in (G§t1) and let th
be the number of homogenized daily rainfall sccurrences in (0,t2}. It is assumed that 0 < t1 < t2 < T so
that the intervals (O,tE} and (O,tz) are overlapping. Standing at the time point t, and Tooking at the in-
finite past, divide {-=, tz) inte the time intervals EJ, J= 1, ..., » of equal length aAt. At may be any
time length in the homogenized daily rainfall occurrence analysis since the domain of analysis is homogan-
eous. Each interval IJ may contribute to the number of vainfalls in regions (O,t} and (O,tz) according to
the number of rainfall generating mechanisms in Iy and the probabilities p]{u) = IGi f_(z-u)dt and

T
pz{u) = IGZ f.(r-u)dr that a rainfall whose rainfall gengrating mechanisms is at the time position u in the

time iﬂtervaTTlé, will fall iato regions (Q,tl} and (Ogtz) respectively. It is obvious that the nature of

the probability density function fT(T"u) is going to determine the memory of the vainfall occurrences. Niy

and th may, therefore ,be represented as the sums of the contributions frem each of the non-overlanping
regions IJ, J =T, ..., ». At each region I theve are Yy rainfall generating mechanisms so that there will be
7y storm originsg in IJ. Therefore, the contribution from IJ may further be divided into contributions from

the rainfall generating mechanisms in 13. Therefore, Nt] and th may be represented as double summations.
Since the cluster origins were assumed to be cuasi-uniform the contribution of any rainfall genevating me-
chanism to Nt1 or to Ntz is independent of the contribution of any other rainfall generating mechanism.
However, the contributions to Nt; and th from the same rainfall generating mechanism in the interval IJ

may be dependent. Therefore, Nti and Ntz may be written as the sum of independent compenents as

w0 YJ w YJ
N, o= 7 7 N and N, = 7 T N
Bpogsy gep 10 by 57 es0 9%
where NTJ@ is the number of rainfalls contributed to (G,ti) from the 2-th rainfall generating mechanism in

the interval I, and NZJQ is the number of rainfalls contributed to (Ogtz) from the 2~th rainfall gensvating

mechanism in IJ. The contribution to (O,t}) from any interval IJ will be

Ty
Moo= LN
i Ly 10

and the expression for NEJ is simitar. Due to quasi-uniformity the bivariate random variables (Nﬁas de)”
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J =1, ..., will be mutuaily independent. Let Gy n (z19 22) be the bivariate probability generating
t

function of (Nt s Nt }, that is 1 2
1 2
Gy oy (295 2p) iy PIN, = %, N, = J]zj zg
ti't J i 1 2
T2

Due to the independenceof (Nié’ NZJ)’ Jd=1, ..., =, one can write

G (z1, 2,) = T & (2. 7} (6.13

I = I RS R

The probability generating function for the bivariate random variable (N?J’ NEJ) is

B N
1d 24
G u (24, z,) = Elz z
Ny gollyy 417 %2 [ 1 %2 ]
NN
- J 2
- e[g(z)"? 2,1y
= PINy, = nos Nooo= nglyy = vlzet 2, Plyy = vl
o lo ke T e Tag T ey 1 % J
2 1
L) o o § E ] n1 ;’]2
= 7 Ply,=r] 7 )3 P[ NyL, = Mg, N = nyly, = r]z ..
L J Lo L LoNge T M 4o Mage T M2lYy 1 %2
=) n2—0 ny 0 L= 1 2=0
Since (Nidz’ dez)’ L0, L, Yys are independent, 1deatiéa11y distributed as (N1J2’ NZJz) and are also

independent of Y3

4 (245 2,) = § Ply, =] G (2., 2,} . (6.2)
Npgsllpg 717 720 (5 70 Nyggollpgy 17 72

1% can be shown that (Neuyman and Scott, 1952, 1872} for quasimuniform'rainfa11 generating mechanisms the
orobability generation function Gr(z) is of the form

5,(2) exp[-At(hO - '§z h zk)} (6.3)
1:

exp{-at h{z}}

0o

where hy = | h, <. Therefore,

k=1
G (2., 2,) = expi{-at n(G (2., z,)) . (6.4)
Nygelpg 1" 72 Niggolag, 17 72
It follows from {6.1) and (6.4} that
G {24, z,) = exp{-at ¥ h[G (z,, 2,01 . (6.5}
Mg oMy, 17 2 351 Nygeolag 17 72

Now the problem is to express GN]JR’NZJQ(ZI’ zz} in terms of the probahility generating function of w(u),
the number of rainfalls generated by a rainfall generating mechanism whose time position is at u. This can
be done by the use of the conditional expectations as follows;
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GN N (Z!s 22) = E{Z~I;J£ 22232] = E[E(z‘l]‘}i’ ZEZJﬁI;U)J
1de*72d2

(6.6)

where U is the random variable for the position of the storm origin. The indicator random variables X and
Y are introduced te¢ show whether the i-th vainfall in a storm whose origin is at U falls into {0, t ) ané

{0 tz) respectively. Therefore, given the number ef rainfalls w(u) in this particular storm

u)

w(y
. Xi R N2 = .Z Y.

v{
NEJE B E i

i
Since Xi and Yi are Tndependent, identically distributed randem variables,

G (z], zzlﬁ) = Gu[GXi,Yé(Zz’ 22]6)]

NaarNoas

where Gy {.s.) is the probabitity generating function of {(Xs Y:). Opening &y (21, zle),
i i* i

XY,
= i 1
exiin(z], z2,|U) = E[z] z, i{

o

= _ a _b
) Z PIX; = a, ¥, = bl%}]zT z

il

a=0 b=0
= PLX; = 0, ¥y = 0JUT + PIX; = 0, ¥y = 1Ulz, + PLX, = 1, ¥, = 0[ule,
+ P0G = 1, ¥y = 1[0z 2, .
In the case under study (O,tz) is included in (O,tz). Therefore,
Y
PIX = 1. Y, =1]:J Fle-u)de = p,
0
P[Xi =1, \(_i =0]=0
ty
UK = 0 ¥y = 11 = | 2 flrude - p
i P4
b
PIX; =0, ¥; = 0] =1 -p, - p,

The Gxi’yi(z}’ z,|U} can be written as
Gxigyi(z}, 2,0U) = 1 - pr(1 = 2725} - p,o{1 - 2,)
Then from {6.6), (6.7), {6.8),

G {z9, z,) = E(G.T1T - py{1 = z72,) - p,(1 - z,0]) .
ng9 NZJE 1 P v 1 172 2 P

{6.7)

(6.9)

The probability density of the pesition u of the storm origin in any interval IJ is 1/at due to quasi-

uniformity of the stomm origins (cluster origins, or the time positions of the rainfall genevating mechan~

isms). Then, from (6.9},

1
5 (24, 2,) = J — G IT - p {1 =~ 272, - p, (1 -~ 2,0 ]du .
N1J£,N2J2 1 T2 IJ At Yy 1 12 2 Z
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Substituting (6.10) into (6.5)

5]

GNt N (245 2,) = exp{}At JZ h(i%—[ 6 L1 - py (1 - zy2,) - p2(1m22)]du)} (6.11)
ty =] IJ

i
It can be shown that {weyman and Scot:, 1958) (11) cbtains the form

T
GNt M (21, 22) = exp<] N h{GU{T - p1(1 - 2322) - p2{1 - 22)])dq> {6.12)
1 2

Expression (6.12) is the general probability generating function for the homogenized daily rainfall counts |
Nt] and th in the intervals {Gst]) and (O,tz). One can then make assumptions about the particular form of ;
the process of rainfall generating mechanisms, the distribution of v(u), and the distribution of T. Assume
that the counting process of the rainfall generating mechanisms obey the Poisson law. Then, from (6.3),

hiz) = = hy + hyz = mho(?wz)

and (6.12) becomes)

6

T
o e %) - exp{ThO [0l n0 -2z - p00 - 22)])d€> (6.13)

N
.

where ho becomes the rate of occcurrence of the rainfall generating mechanisms in time. The random variable
that is of practical concern to the hydrologist is not {Nt1, th} but just NtT or just Ntzn the number of
rainfall occurrences in (0,t.) and (Ogtz) respectively. The probability generating function of the number
of occurrences Ntl in the time interval (0, t1) can be obtained by using arguments similar to above. The

pgf of Ng, can be shown to be

H
GNt](zw) = exp<}h0 f_m {1 - 6,01 - (§~z1} p1(u)])da> {6.14)

t
where p1{u) = IO] F{r-u)dr is the probability that a rainfall from a storm that has 15 origin at g will
cecur in {Dgt1). in {6.14) 1t s again assumed that the rainfall generating mechanisms obey the Poisson

Taw,

6.3 APPLICATION OF THE NEYMAN-3COTT CLUSTER PROCESS IN HYDROLOGY

The Neyman-Scott cluster process for the rainfall occurrences emerges as a general point stochastic :
model for the rainfall point processes that envelopes the models with independent counting increments as its:
special cases. The generalized Poisson process (the compound Poisson process) and the simple Poisson pro-
cess that were fitted to the rainfall occurrences in different climatic regions of the world by various :
hydrologists will be shown to be the special cases of the Neyman-Scott ciuster model for the rainfall occur—}
rences in the form of (6.14). The concept that will yield the special cases is the memory of the rainfall L
process which is manifested by the memory of the rainfall generating mechanisms. This memory is expressed
quantitatively by p1{u), the probability that a rainfall from a stovm that has its origin at u, the occur-
rence time of the particular rainfall generating mechanism that has caused the storm, will occur in (0,t1).
As the time position u is placed further and further to the past from the interval (0,t1) the probability _
for a rainfall, generated by a mechanism at u, to occur in (G,ti) approaches zero. If the rainfall generatiﬁ
machanism had an infinite memory, there would always be a positive probability that a rainfall, generated
by this mechanism, would occur in {0,t1) even if the storm ovigin u was at the infinite past. Of course,
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this is a highly hypothetical situation.
In the case of processes with independent increments, the memory of the rainfall process is zerg. The
probability density function fT(r—u) becomes & delta function that picks up the value at +=u, so that

H

%
p1(u} = J ! fle-u)dr

1ifue {0,t1)
]

]

0 otherwise.

Then (6.14) will become

i

Gy (z7)

exp{-h jtT (-6 {1 - (1-2,)]du
: 0, y 1

However, (6.15} is just the pgf of the generalized Poisson process or the compound Poisson process (Parzen,
1967, or peller, 1968). A generalized Poisson process may be interpreted as an integer-valued counting pro-
cess with stationary independent increments where there exists a probahility that a random number v of
events may occur simultaneously at a given time, given that at least one has occurred. The random number
v of events may be v =1, 2, ..., =, In a generalized Poisson process a group of events cccur at the in-
stants of cccurrence of an event in the primary process which is a simple Poissen process. In the rainfal}
counting process under the generalized Poisson model the rainfall generating mechanisms will occur accovding
to simple Poisson law and at the moment a mechanism occurs it will instantaneously generate a number v of
rainfalls at that moment. Consequently, the memory of the rainfal? process will be zero under the general-
ized Poisson or the compound Poisson modei. The generalized Poisson process may be used toc model the thun-
derstorm rainfall activity in arid regicns. (puckstein, et al., 1972).

Finally, when the number of rainfalls v, generated at the ipstant of occurrence of the rainfall gener-
ating mechanism, is egual to unity, then P{v=1) = 1 and

u

6z} = T Plw=al2 -z,
J=0

and from (6.15) GNt (21) = exp{-hy t(1»21)} . {6.16)

1
Expression {6.15) is the pgf of the simple Poisson process with the rate of cccurvence hy. Thus, the two-
Tevel process is reduced to a one-level simple Peisson process when the rainfall generating mechanisms obey
the simple Poissen law and generate just one rainfall at the instant of their occurvence. The Poisson mo-
del was employed by robert (1967) in modeling the rainfall cccurrence for regions in France and by Todorovic
and Yevievich (1969) in modeling the rainfall occurrence for the stations in {oloradc, Texas and lowa in
U.S.A.

The Neyman-Scott cluster model in the point stechastic processes may play a role analogous o that of
the ARMA famtly in the time series analysis. In both types of analysis the models are classified accerding
to the existing persistence in the analyzed natural process. Lack of dependence among the time series val-
ues would eventually reduce the ARMA family to the white noise process while the lack of dependence in the
counts would reduce the cluster model to the generalized Poisson process.

6.4 STATISTICS FOR THE NEYMAN-SCOTT CLUSTER MODEL

It is possible to derive all the moments of a point stochastic precess from its probability generating
function. In this section various important statistical functions will be obtained for the Neyman-Scott
cluster model through its probability generating function.
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The expectation of the number of rainfalls in {O’tT) is obtained as

E(Nt1) = d6y (21)/dzT[Z -1
t, ]

Using {6.14) as the pgf of N

ty’
T T d6 {-}
£, ) = expi-hy [_w (V- 8,01 - (1-2,) py{w)du} - hy Juw —ar Wl
Taking 6,00 = T pytl - (12y) py(u)y”
v J=0
where p; = P[v=J], so that
de(‘)/d2;E21:1 = E Ipy L1 = (1-z,) m(u}}d"E pi(U)iz]; = pylu) E(v)
E(Nt ) is obtained as
1
t.l'r
£ty ) = g () jo | tlenaue < g 4 EC) (6.17)

Expression (6.17) is the mean~time function of the cluster model {6.14)}. The rate of rainfall occurrence
undeyr the Neyman-Scott model becomes
A(t1) = dE(Nt?)/dt} = h0 Efv} . {6.18)
Therefore, the rate of rainfall occurrence under the Neyman-Scott model 15 the product of the rate of rain-
fall gensrating mechanism occurrences and the expected number of rainfalls generated by each mechanism.
The variance-time function for the rainfall counts may again be derived from {6.14}. In terms of the

derivatives of the pgf of Nt; evaluated at unity, the variance of the number of rainfall counts in {O,t]}
becomes

Yar(N, )
t t

"
£
=l
—
N
]
—r
+
[5]
==
—
™~
—
e
i
™
fred
gt
—
™
—
—
Ld
D™

and after some manipulations

1]

2 T2
Var(N g ty E(9) + hy EGZ - v) J pZ(u)u (6.19)

)
t

where ffw p%(u)du = 2 f;1 IS f{m fT{x—u) fT(y—u)du dy dx. As is seen from (6.19), the variance-time function |
does not depend on the explicit distribution of v, the number of rainfalls in a storm, but only on its first 5
two moments. Only the pdf fT(r—u) of -the rainfall positions with respect to the storm origin has to be de-
fined in order to obtain explicit expressions for the variance-time function of the rainfall caunts under
the Neyman-Scott cluster model.

The covariance function of the rainfall counts in two non-overlapping intervals +« time units apart may
be needed to tast the independence in the counting increments. For this purpose the bivariate pgf of :
(Nt], th) is used. However, GNt1,Nt2(Z;9 22) in {6.13) was for the overiapping intervals (O,t]} and (O,tz)_é
If two non-overlapping intervals (O,ti) and (t}+T, t]+1+t2) of lengths t, and t, are considered, the pgf of |

(Nt . Nt ) takes the form
1 z
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T

X [
GNt A, (215 2,) = expi-hy i -6 L1 = (T-zyd py(u) - (1-2,) p,(u)1du} (6.20)
1 2
t] titT+t
where p](u) =g fT(x-u)dx and pz(u} = ft]+m fT(x—u}dx. Then the covariance function COV[Nt s Nt 5o
for lag v is given as 1 Z
226 (z+. 2,) 3G (zq, z,,) 56 (2., z.,)
N, (71 22 l N N P10 % J N, LN, (210 2
t t
. - 1 "2 ] 2 1 -2
COV[Nt « Ny s ©] = 3z, 8z - 7z z.=1 5z Z,=]
1 z 1 2 z.=] 1 1_ eép 1_
1. 2571 Z,5}
22—1 2 2

After the manipulations, the covariance function for the rainfall counts in two non-cveriapping intervals t
time units apart is obtained as
5 T
Covli o Wy 3 7] = g ELY - 3] f_m po{u) pylu)du | (6.21)
As is seen from {6.21) as long as p](u) and p2(u} are different from zaro, there is a correlation among the
nen-overlapping counting intervals in a Neyman-Scott cluster model. Therefore, the dependence structure
in the rainfall counts can be explained by this model.
The spectrum of counts for the Neyman-Scott cluster model may be obtained by taking the Fourier trans-
form of one-haif the second derivative of the variance-time function. It is given as (Vere~dones, 1970),
_ ] 2 I iwf{t-u}, |2
g+(w) = E'[hG E{v) + he E{v° - v)I fT(r—u) e dul“] , w>0. (6.22}
Expressions (6.17), (6.18), (6.19), (6.21} and (6.22) are general expressions for the statistical functions
studied. Oniy the primary process of the rainfall generating mechanisms was specified tc be Poisson. Fupr-
thermore, the above expressions show that the statistical functions under study need only that the distribu-
tion of the rainfall positions with respect to their storm origin be specified. Since the variance-time
function, the covariance function and the spectrum of counts measure the dependence in the rainfall counting
increments, the measurement of the persistence in tevms of f{r-u) becomes clear. The specific form of
f{x-u) is going to decide the memory of the cluster model and the structure of the stovm. One only needs
to know the first two moments of v, the number of rainfalls in a storm, to completely specify the dependence
structure of the process.
In the following, the distribution of the rainfails from the storm origin is assumed to be negative ex-
ponential. That is
fole-u} = ge¢{m=u) s T XU
=0 . otherwise.

Once this assumption is made the following expressions for the variance-time function and the spectrum of
counts are obtained from {6.19) and {6.22),

2 2
hy E(v - v) hy E(v" = v)
_ 2 0 -8t 0
Var(Nt} = hO E(vo)t + — e e (6.23)
1 2 %
and g+(m) = ;—{ho E(v) + hG E(v - v) - —§—~——?} s w > 0. {6.24)
g7 + 8

The rate of rainfall occurrence and the variance-time function for the rainfall counts under the compound

107




Poisson process were given earlier. The spectrum of the rainfall counts under the compound Poisson model
(which corresponds to thunderstorm activity) follows divectly from (6.22) as

g,(w) = —hy Elv (6.25)

Therefore, the spectrum of counts for the compound Poisson wmodel is a horizontal line as in the case of sim-
pie Poisson model. This behavior is in analogy with the spectral density function of a while noise time
series, In the counts spectrum a horizontal Tine indicates uncorrelated counting increments whereas a hori-
zontal spectral density function indicates uncorrelated time series.

6.5 CALIBRATION OF THE NEYMAN-SCOTT CLUSTER MODEL

In order to test the goodness of it of the Neyman-Scott cluster model for the daily rainfall counting
process, the model was fitted to the counts spectrum and the log-surviver function of the homogenized daily
rainfall occurrences. The fit to the rainfall counts spectrum was performed to see how well the cluster
model can preserve the dependence structure of the daily rainfall counts. The fit to the log-survivor
function was performed to see how weli the cluster model can preserve the empirical probability distribu-
tions related to the daily vainfall cccurrences, The fit to the log-suvviver function of the homogenized
daily rainfall counts by the cluster wode? will be discussed in the nexit section which deals with the prac-
tical probabilities of the dry and wet sequences,

Analyzing expressions (6.18), {6.23) and (6.24), if it is assumed that the only nonhomogeneity in the
daily rainfall counts process is the nonhowmogeneity of the vainfall generating wechanisms, then the homegen-
ization scheme {3.6) is approximately valid for the second order moments of the counts process because the
rate of occurrence, the counts spectrum and the variance-time function are all Tinear functions of ho, the
rate of rainfall generating mechanism occurvence in the homegeneous domain., However, as it can be seen from
(6.23), Var(Nt) is a nonlinear function of time ©. Unless ¢ is Targe, a Tinear homogenization scheme such
as (3.8) will not homgganize the second ovder moments of the process. Therefore, the homogenization scheme
developed under the nonhomogeneous Poisson hypothesis is only approximate undsr the Neyman-Scott cluster
model for the daily rainfall counts. The explicit homogenization scheme under the cluster mode! hypothesis
can only be derived from the nonhomogeneous form of the Neyman-Scott cluster model which s not available.
Further research will deal with the construction of the nonhomogensous form of the Neyman-Scott modei,
Mevertheless, as was discussed in the homogenization results, the scheme (3.6) effectively removed the time
trends in the rainfall occurrence data. Therefore, based on the empirical results obtained from the homo-
genized data, the theoretical counts spectrum and the theoretical log-survivor function for the Neyman-
Scott cluster model were fitted to the homogenized data.

In order to preserve the correlation structure of the homogenized daily rainfall counts process the
stochastic model for the process has to be fitted to the counts spectrum since the counts spectrum is the
Fourier transform of the covariance density of the counts process. The spectrum of the homogenized daily
rainfall counts behaved very consistently in the 17 cases analyzed., Even in the cases of stations 3082 and
4642 where the yearly cyclicity was over-removed the counts specirum was affected only at the very narrow
region near the origin. The general behavior of the higher frequencies, corresponding to the short term
dependencies, remained very consistent through all the cases. Therefore, the Jogical way for the calibra-
tion of the model parameters for the preservation of the correlation structure of the homogenized daily
rainfall counts is to fit the expression (6.24) of the Neyman-Scott cluster model counts spectrum to the
counts spectrum of the homogenized daily rainfall counts data. However, as is seen from the table 6-1, the
parameter values calibrated from the spectral fit are unrealistic in that the pairs of estimates for E(vg)
and E{v) for each case yield negative variance. Howaver, this is basically due to the fact that in the non-
iinear regression scheme employed for the spectral fits no constraint was put on E(vz) and £(v). In table
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6-1 the ratio of E(uz) to E{v) is consistently around 2. The normalized spectrum to which the ¢luster model
is fitted can be obtained from {6.24) as

ﬂg+(m) E(vz 92
hO BT 1 gvY T ! 82 + 82 w> 0.

Using this expression the ratio E(vz}/E(v} was set equal to 2 and the cluster model was again fitted to the
homogenized daily rainfall counts spectra for the stations 0132, 3082, 3777, 4642, 6056 and 7747, The re-
sults are given in the figs. 6.1 through 6.6 and in the table 6-2. As is seen from the figures, the cluster
model satisfactorily fits the empirical spectra of the rainfall counts. 8 vaiues calibrated from the counts
spectra fits are between 3 and 4. A value between 3 and 4 shows a rapid decay of the pdf fT(r—u). There-
fore, the memory of the homogenized daily rainfall counts process is very short. The 8 values for the sta-
tions of 0177, 0545, 1747, 1882, 3547, 4908, 6164, 6338, 7069, 7755 and 7925 are given in table 6-2A.

It was established earlier that g, (0") = -}; V(t)!
so that the origin value of the counts spectrum is equal to the asymptotic slope of the variance-time func-
tion. Therefore, the asymptotic behavior of the variance-time function of the homogenized daily rainfall
counts would determine the long range dependence structure of the rainfall counts process. However, due to
this relation between the varisnce-time function and the counts spectrum, the over-removal of the low fre-
quencies drastically affects the behavicer of the variance-time function. The diversion of the variance-time
behavior in the stations 3082 and 4642 from the general behavior as exemplified in the fig. 9 by the station
0132, is due to the over-vremoval of the yearly periodicity in the daily rainfall counts. Therefore, the
variance~time curves for different stations were quite inconsistent as was seen in the fig. 9. In order to
observe the asymptotic behavicr of the variance-time function a long record is needed. In this study the
record length was 10 years and was not adeguate for the chservation of the asymptotic behavior. Therefore,
the Neyman-Scott model was not fitted to the variance-time function of the homogenized daily rainfall counts
data.

The distribution function for v{u}, the number of rainfalls in a storm, is not discussed in this sec-
tion since 1t was not essential for the correlation structure of the point process. It will be discussed in
the next section dealing with the practical applications of the cluster modei to hydrologic problems. In
the next section various practical probabiiities will be derived and the pdf of v(u) will be determined,

TABLE 6-1% TABLE 6-2
CLUSTER MODEL PARAMETERS CALIBRATED FROM THE CALIBRATION QF THE CLUSTER MODEL PARAMETER s
SPECTRUM OF THE HOMOGENIZED DAILY RAINFALL COUNTS WHEN E(vz)/E(v) IS CONSTRAIMNED 7O BE 2

. - oy 2 - . A 7

Statian E{v) E(v) 8 Station 8 Re
6132 24.1 43.48 3.37 0132 3.470 5817
3082 24.2 48.13 3.44 3082 3.398 L5211
4642 24.2 48.16 3.80 3777 3.709 5427
6056 22.44 52.82 2.72 4642 3.670 .5103
7747 23.95 48.83 2.77 6056 4,003 5768
7147 3.337 L5754
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TABLE 6~2A

CALIBRATION OF THE CLUSTER MODEL PARAMETER @
WHEN E(vz)/E(v) IS CONSTRAINED TO BE 2

Station & BE
0177 3.274 .5198
0545 3.275 L5314
1747 3.523 5857
1882 6.840 L4403
3547 6.122 .6333
4908 3.995 5110
6164 3.405 .5206
6338 3.513 .5368
7069 3.322 .3836
7755 3.677 .5229
7835 3.879 L5613
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CHAPTER 7 - PROBABILITIES RELATED TO DRY AND WET SEQUENCES LINDER THE NEYMAN-SCOTT
CLUSTER MODEL FOR THE STATIONARY DAILY RAINFALL OCCURRENCES

7.1 SEASONAL . MEYMAN-SCOTT CLUSTER MODEL

In chapter 6 it was stated that the present form of the Neyman-Scott cluster model] is homogeneous. In
the time domain this statement means that the point stochastic mode)l s stationary. Therefore, the present
form of the Neyman-Scott cluster model can be of practical use only if the daily rainfail occurrences can be
considered stationary. For a time length of one season the model can be used effectively for the computation
of wet and dry sequence probabilities. When a time interval of one season is considered, then within the
year fluctuations of the daily rainfall occurrences can probably be ignored. The long-term time trend ef-
fects can also be ignered for such time Jength as three months. Therefore, one can calibrate the Neyman-
Scott cluster model for four different seasons, each season having different parameters.

An important point to consider for the separation of the time interval into seasons is the memory of
the daily rainfall counts process. The memory of the process should be very short so that the storm gener-
ating mechanisms that have occurved, say in the spring, do not cause rainfalls in the summer months. As
can be seen from the results of the spectral fit of the cluster model to the rainfall data, the parameter
6 of the pdf fT(T"u) is between 3 and 4 so that the memory of the daily rainfall occurrences is guite short.
Therefore, the storm generating mechanisms that have occurrad prier to the seasonal time interval under con-
stderation have a negligible effect on the cccurrence of rainfails during that season. Consequenily, it is
possible to divide the time into seasonal intervals and consider the Neyman-Scott cluster model for each
season separately.

For any season the random variables of practical hydroicgic concern for the design and the operation of
water resources from the point of view of the daily vainfall occurrences would be (1) the time length of a
dry pericd from an arbitrary time origin to the sccurrence of the first rainfall event, {2) the time Tength
of a dry period from a rainfall cccurrence to the next rainfall occurrence. {3} the return pericd of the
rainfalls, (4) the duration of a wet period, and {5) the number of rainfalls in an interval (0,t). The pro-
babilities related to the above random variables will be derived through the pgf of the Neyman-Scott cluster
mode] for the stationary daily rainfall counts process.

7.2 THE TIME LENGTH OF A DRY PERIOD FROM AN ARBITRARY ORIGIN TO THE FIRST DAILY RAINFALL OCCURRENCE

This time length is known as the "forward recurrence time® in the statistical literature (cox, 1967},
and 1t will be denoted by the letter T. The probability of T exceeding t days is of practical hydrologic
concevn since it will inform the hydrologist about the risk of a drought whose Tength exceeds t days when
the hydrologist looks at the future from an arbitrary time origin onwards.

The probability P(T > 1} is eqguivalent to P[E\It = 0], that is, the probability of no rainfall occurrence
in the time interval (0,t) when the ime origin is set at 0. The probability P[Nt = 7] can be expressed in
terms of the pgf of Nt as

T
PN, =01 = &Nt(o} = expl-hy f_m (1~ 6,0t - plu)jdul . {7.1)
where p(u) is the probability of a rainfall whose origin is at u and hD is the rate of generating mechanism
occurrence. In order to obtain an explicit expression for (7.1), the distribution of the number of rain-
falls in a storm, v, has o be assumed, Basically due to its simplicity, the geometric distribution will be
assumed to be the Taw of v. The probability generating function of the geometric distribution is (swass,
1369},
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8(2) = Tz o l2l < (7.2)

so that there is only one parvameter, p. Due to the change in the behavior of p(u) in the regions (-=, 0)
and (0,t) the pgf of Ny is expressed as

(0 t

6y, () = exp -y | (1= 6,01 - ™1 - ™) )au + J (1- 6 W (7.3)
£ o 0
u -9t
where 6,01 - ™M1~ = pll - e (1 S )}mat ,
“ V- {1-p) [1-e (1 -e7")]
~g{t-u}
and- G ie—e(t“u)] = pe s EETE
v 1 - {i-p) e
Doing the integrations in (7.3), GN {G) is obtained as,
t
-h. /8
~h,t 0% 8
_ 0" /1 - {1-p) e
GNt(G) e { 5 }
~h./8
-hat -6t ¥}
50 that PLT > 2] = PN, =0l =e O {1 - “'p) e } ,t> 0. (7.4)

Expression {7.4) informs the hydrologist about the risk of a dry period whose length may exceed * days whei
the hydrologist investigates the future from the present (which corvesponds to the time origin 0). From the ;
plot of dry period length t versus P[T > t], using the eq. (7.4), one can obtain the dry period lengths cdv- ?
responding to different risk Tevels. ‘

7.3 PROBABILITY FOR THE LENGTH OF A DRY PERIOD BETWEEN TWO RAINFALL OCCURRENCES

This time length is known as the "interarrival time" in the statistical Jiterature {parzen, 1967), and |
it will be denoted by the letter X. The probability of X exceeding t days will inform the hydrologist about !
the risk of a drought whose time length exceeds t days when the hydrologist looks to the future from a rainy {
day onwards. It can be shown that {xhinchin, 1955} 4

PIX > t] = - ﬁa»«ém—fg GNt(O) (7.5)

when Nf, the number of rainy days in (0,t), is modeled by the Neyman-Scott cluster process. The derivative

of Gy (0) can be expressed by
t

0) + ———t (7.6)

The probability, p(u), of a rainfall whose origin is at u, to occur in {(0,t) is

t
gmeli-tly, , foru < 0

t
and’ plu) = J s (-l g, ., for u> 0 . (7.7}
U

From (7.3) it follows that
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(0 36 [1 - p(u)] (b 36 [T - plu}]
Ny | e g }0 ——r—— du + {1 -6 (1 - p(t))] (7.8

where 1 - 6 (1 - p{t}} = 0. After some integrations and manipuiations on (7.8} the derivative of In GN (0)

is obtained as, . t
d in G, (0) 8 (e -1
F— = Mg e - (7.9)
1-e
The expression for Gv(e"et) under the geometric Taw for v, is
-0t
- —
6 (e = — P (7.10)
1 - (1-p) e
Combining (7.10}, (7.9), {7.6), (7.58) and (7.4}, P[X > t] is obtained as
PIX > t]l=e [*’”—‘Lfe‘t] L t>0. (7.11)
1-{1-p) e

Considering the complexity of the cluster model with respect fto the simple Poisson model it is quite satis-
fying tc obtain simple probability expressions {7.11} and (7.4) for the dry pericds.

There ave only 3 parameters to be calibrated for the modeling of the daily rainfall counting process
under the Neyman~Scott cluster model. These three parameters, hO, p, and &, govern not only the nature of
the dry periods but alsc the nature of the wet periods as will be seen later. Given a certain risk level,
the corresponding dry pericd length between two rainy days can be obtained from a plot of the dry period
length t versus P[X > t].

7.4 THE RETURN PERIOD

The return pericd, in days, of the rainfail events is the statistic that is mest often used in the hy-
drologic probiems dealing with the dry pericds. Especially, in the arid regions of the earth, the desigrer
wants to know the expected dry period in the region with which he is concerned. In the rainfall occurrence
process the return pericd is the expected time length between itwo consecutive rainfall events. If the re-
turn period of the rainfall occurrences at a certain region is denoted by Tr’ then

T, = E{X) (7.12)
where X is the time between two consecutive rainfall occurrences. E(X} can be expressed as

E(X) = [Z PIX » t]dt . (7.13)

From the eq. {7.5),

rri

—_

<

—
i

S SR
Fg ET JG {dt Gmtw)}dt ,
= - ot Pt

where T is the time length from an arbitrary origin to the first rainfall occurrence. Then

E(X) = 1/[hg E()T
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and the return period Tr under the Neyman-Scott cluster mode? for the daily rainfall cccurrences, s obtained
as

T, T (7.14)

Therefore, the return period is just the reciprocal of the rate of rainfall cceurrence under the Neyman-
Scott cluster model. In fact it follows from (7.5) that for all stationary point stochastic processes the
return period of an event of certain magnitude is equal to the reciprecal of the rate of cccurrence of that
event.

7.5 LOG-SURVIYOR FUNCYION OF THE DAILY RAINFALL QCCURRENCE UNDER THE NEYMAN-SCOTT CLUSTER MODEL

 The log-survivor function is the Togarithm of P[X > x}. Therefore, the probabiiity distribution of the
rainfall interarrival times can be fitted by the use of the Tog-surviver function. Since the Poisson model
has negative-exponentially distributed interarvival times with some parameter o, the theoretical log-survivor
function for the Poisson model is

InPX>tl=at , t>0

which is a straight Tine with the negative siope -a. Thus, the log-surviver function has the distinct ad-
vantage over the probability distribution funciion that the deviation of the Poisson model from the empirical
data for the interarrival probabiitties can be detected very clearly through the deviation of the data from
the Tinearity in the Togaritimic demain.

In chapter 3 on the homogenization results it was observed that the log-survivor fusctions were convex,
indicating te a clustering of the rainfall occurrences. A good way to compare the capabilities of the sim-
pie Poisson and the cluster models for their preservation of the probability distribution of the rainfatl
tnterarrival times is to it these two models to the empirical log~survivor function obtained from the homo-
genized datly rainfail occurrence data.

The Tog-survivor function Tor the Neyman-Scoit cluster medel is obtained from the expression (7.11) as

hy
th P{X > t] = —hot + {7;-+ q Tn {_”””“WJl““f:ﬁJ , £ >0 {7.156)
1 -{1-p) e

Using the § values estimated from the rainfall counts spectra fits and taking h0 and p as the free parametiers,
the theoretical log-survivor function of the Neyman-Scott model was fitted to the log survivor function of
the homogenized datly rainfall counts in the stations 0132, 0177, Gbds, 3777, 4642, 6056 and 7747. The re-
gression results are given in the table 7-1. The Tog-surviver functions for the Poisson model, the Neyman-
Scott cluster model and the homogenized daily rainfall occurrence data were plotted together for the sta-
tions 0132, 0545, 3777, 4642, 6056 and 7747 as shown in the fig., 17. As is seen from the figure, the cius-
ter model can fit the Tog-surviver function of the rainfall data better than the Poisson model. The differ-
ence is especialiy conspicuous on the Yonger interarrival times. For station 4642 the case of the "under-
dispersion” of the rainfall counts with respect to the Poisson model is shown. As was discussed earlier,
the underdispersion that is noticed in the stations 3082 and 4642 is due to the over-removal of the long
periodicities in the data. The underdispersion is very unrealistic since it leads to a process wmore regular
than the Poissen and can be modeled neither by the simple Poisson nor by the cluster model. The presence of
the underdispersed cases, although they are fsw, points to the need of a more rigorous homegenization scheme
that should be based on the nonhomogenaous form of the Meyman-Scott cluster model. Similar results were ob-
tained for the stations 1474, 1882, 3082, 3547, 4908, 6164, 6338, 7069, 7755 and 7935. The results are given
in the table 7-1A and in the figures 17A and 17B.

From the results of the log-survivor function fits, the Neyman-Scott cluster model emerges as a good mo-
del for the preservation of the probability law of the stationary daily rainfall occurrence interarrival
times. Once the cluster model parameters are calibrated through the spectral and the log-survivor functicn

114




fits the practical probabilities of the dry periods can be obtained from the expressions (7.11) and (7.4).

7.6 DURATION OF A WET PERICD

In the observation of a hydrologic stochastic process the continuous time axis is divided inte equal
time units of length at. In the case under study At was chosen to be one day. A wet pericd of lengih Jat
will be defined as the period of J consecutive rainy intervals of time length at followed by a dry interval
of length at. The probability of a wet period of length Jat from an arbitrary time origin 0 is

PlWet period duration = JAat] = P[NJAt =J N N(J+1)At = 0] (7.16)

provided that the interval size At is small enough so that at mest one event may occur in At,

The solution of {7.16) is not a trivial one since there is a quite general dependence structure govern-
ing the increments of the rainfall counts. A convenient way to solve (7.18) is through the introduction of
the muitivariate pgf ¢(z§, Zos vevs Iy ZJ+1) such that

¢(z1, Zys oens 23+1) = GN (21, Cees zJ+1) . {7.17}

atMoare Mo at
The interval (0, (J+1)at) is divided into (J+1) non-overlapping intervals of equal length at and a counting
random variable N, , is assigned to each interval [(i-1)at, iat]. For 4t small encugh so that at most one

A%
rainfall can occur in A%,

P[Wet period duration = Jat] P[NatZT, NZAt=]’ cees NJAt=1, N(J+1)At=O]

BJ¢(-)/321822 vt 823}21:0, 22*0, eees ZJ=0, z2...=0 . (7.18)

i

3+l

} of the Neyman-Scott clusier model for the non-overlapping intervals

ﬁ%> . {7.19)
iat

where pi(u) = f(i—])at f(r-u)dr, i = 1, 2, ..., J*+1. The presence of dependence in the rainfall counting

1%ethWaﬁaw|mf¢(Q,..w Z341

can be shown 0 be (Neuman and Scott, 1358),

T J+1
¢(z], Zos wres ZJ+T) = exp{#h J-m (1.- Gv[1 - iz1 (1»21) @1(ui

increments complicates the calculation of the wet period duration tremendously. However, it is stili poss-
ible to obtain the wet period duration probabilities although the calculations are lengthy.
As an example, the probability of a wet period duration to be equal to 2at, is calculated as Tollows:

plWet period duration = 2at] = 32¢(z7,22,23)/821azzlz1=0,zzﬂ0,z3=0

T
2 .
= szazz eXp<“h0 (-oa (E'Gv[-l'(-i“Z])P1(lj)"(]'Zz)pz(u}"‘“'f-a)p3(u)])du};1=0922=0,23___0
T 3 T an[-j T aav[-]
= exp{}ho me (1—Gv[1 - &ZE (1~ZJ)QJ(ﬂﬂ du [ha J“m —~§E?w‘d4}[h0 Jmm —~§EE~ d{
T T 61 7,
+ exp<}h0 Jmm (1 - GV[-])dé}[hG J_m T, dQ}1Z1:092220523:0 , (7.20)
. a6, [ ) ppy (u)
where 3z, z1=0,22=0,23:0 o+ (1-0) g pJ(u)]Z
J=1
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96, L]y P, {u)

32, 12.470,2,70,7,=0 3
BZGv[] o 2o(1-p) py{u) pylu)
Zy 2,12,20,2,50,2,=0 3
PRy () §opgw1P
J=1
At 2at 3t
and p,{u) = Jo se”® (), pylu) = J 01 W, pylu) = pat e Wg i e cu <o,

st A

At 2a1
pz(u) = J ee—e(T"u)dT, pz(u) = J ee'e(T'u)d1, 93(“) = ee'a(T"u)dr if 0 <u < at
u

At

28t 3t .
pylu) = 0 s Polu) = J ge~¢ (g, palu) = oo™ it < ou < 2t
H 24t
38t g(emu)
p](u) =0 . pz(u) = (0 . p3(u) = J ge M g, if 2at < u < 3at .
24t

7.7 NUMBER OF RAINFALL OCCURRENCES IN A TIME INTERVAL (0.t)

The probability of a number J of rainfall occurrences in {0,t) can be ohtained from the J-th derivative
of the pgf of the Neyman-Scott cluster model. That is,

J

PN, = 91 = 3p 2%, (2)/az’] (7.21)

t

where GNt{z) = exp{-hy IEW (1 - Gv[1 - {1-z} p{u)I}dut. As an example, the.probability of 2 rainfall occur-
rences in {0,t) will be calculated. Using (7.21),

PN, = 2] = %-aZGNt{z)/azzgz=0
S 1-ex -h {t (u) duy ¢ h {t pp(u) du ?
2 S0 | B el 0 ) b+ [(1-p) p(@) T2
t
* hy f 2p(1-p) p*(u) > du (7.22)
- [p + {1-p) plu)]
t
where plu) = JO ee_e(T"u)dr for -= < 4 < 0

The terms in (7.22) are expressed as

11 + 4

I
=y
oo
T,
1 o
8
o
+
s
—
T e
o
[~
=
=
H
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g Jt ap(u) du = I+ Jy, and hy Jt 20(1:2) W), - I+
~ {p+ (1-p) plu}] ~= [p+ (1-p) plu)]
-h -8t
0 1 - (1-
where I] = 85(T-p) In ( g) £
o e
2 6(1—;)} 1 {‘%"P) e‘“et D

tho { 1 . o . _11
3 6(]-;)) 1 - {'{“P) e—ﬁt 2[-1 - (E"'p) e“‘et]Z 2p

—_
]

h.p

- 0 p
J, = -h t - n
hap
. .0 [ 1 P 2 ]
Jy = —— |- ==+ 6t + - In
N (1-p) [1 = (1-p) ™*F] - (1-p) e”°F
), - 2hgp(1-p) {% (e-g)z for o). 22 0) e"ez ¢ 1n D= (1-p) e“et]}
E p 1 - (1-p) e® g
) Zhgp {;L._ o }
2 - (1ep) e
, 2P [1,29 . 1 ) 3 ]
e{1-p) 2[32 1 - {1-p) e"et 21 - {1-p) e-8t]

From the theoretical and applied analysis of the Heyman-Scotf cluster mode] for the daily rainfall

occurrences it can be conciuded that the medel not only preserves the probability distributions obtatned

from the data but also the dependence structure that is present in the stationary daily rainfall counts

process. However, in its present form the model is still of Timited use since it is stationary.

homogenaous form of the Neyman-Scott cluster model needs to be constructed so as o model the Jong-term

trends, the within-the-year cyclicities and the dependencies in the daily rainfall counts process, whose

presence is established through the point stochastic analysis of the datiy rainfall occurrence data in the

17 stations in the state of Indiana.

TABLE 7-1

CLUSTER MODEL PARAMETERS OBTAINED FROM THE FIT TO THE LOG-SURVIVOR
FUNCTION OF THE HOMOGENIZED DAILY RAINFALL GCCURRENCES

Station ﬁo p R?
0132 85899 .94224 .9863
0177 .B6275 .85043 .9887
0545 Lo0137 .89329 .9907
3777 .93067 .93928 .9927
4642 1.01848 .99964 .988%0
6056 .82674 .80731 .9867
7747 L94417 .93489 9929
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TABLE 7-1A

CLUSTER MODEL PARAMETERS OBTAINED FROM THE FIT TQ THE LOG-SURVIVOR FUNCTION OF THE
HOMOGENIZED DAILY RAINFALL OCCURRENCES IN THE REMAINING 11 STATIONS

Station ﬁG é_ ﬁi
1747 .975 .95% .9927
1882 1.05 1.00 .9945
3082 1.35 .95 .9837
3547 .99 .982 . 5885
4508 1.02 1.00 .9885
6164 .90 .90 9914
6338 1.02 1.00 9892
7069 1.04 1.00 . 9948
7755 .95 .93 .9935
7935 .98 .97 9832
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CHAPTER 8 — DISCUSSION OF THE RESULTS

8.1 LONG-TERM TRENDS AMD CYCLICITIES IN THE DAILY RAINFALL OCCURRENCES

The plots of the cumulative daily rainfall counts versus time indicated a slight downward trend in the
mean rate of daily rainfall occurrences in Indiana. This irend may be interpreted as the dipping portion
of the 80 to 90 year cycle or of the 11 year cycle due to the systematic variation in the sunspot numbers
(mitchell, 1964). These plots extend to two years in time. What is interpreted as a downward trend can
also be interpreted as a two year cycle which is very conspicuous in the tropics (mitchreil, 1964).

To find a more definite answer to these speculations the spectrum of the daily rainfall counts was
computed for the 17 stations in Indiana. Besides the obvious annual cycle, the semi-Tunar cycle of 15 days
was guite conspicuous in the data. In 13 out of 17 cases a periedicity of 11.6 to 16 days was very signi-
ficant in the spectrum of the daily rainfall counts. This periodicity of approximately 15 days has two
physical interpretations; (a} the effect of the Tunar synodical period of 29.53 days on earth, which
emerges as a 15 day cycle, and which is also clearly shown in figure 11 of Mitchel2 (1964}, and (b}
the cycle of 15 days in the atmosphere which has been consistently observed in Indiana and is called an
index cycle {wewman, 1975). This index cycle is due to the 15 day periodicity in the meridional and zonal
air flows over Indiana.

In 12 out of 17 cases periodicites ranging from 3 to 9 days were chserved. Indiana is under the
influence of the Atlantic cyclone regime, The arctic air front that separates polar continental air from an
intrusion of the arctic air from the north passes through Indiana in the winter time. This persistent
front causes extensive and persistent precipitation. The life cycles of cyclone families over Indiana
during the winter may have something to do with the 3 to ¢ day cycles. During the summer the polar front
moves north. However, the frontal disturbances still cause showers and thunderstorms in Indiana during the
summer. These thunderstorms are of two types: {(a) the Tine thunderstorms which pass over Indiana in 1 to
5 days and (b) the scattered type which passes over Indiana in 1 to 10 days (wewman, 1975). As was
mentioned eariier, due to the clustering of the thunderclouds, the life span of a thunderstorm can extend
to durations of the arder of days {retterssen, 1969). visser (1944} has shown that the mean interarrival
time of the rainfall occurrences in Indiana is approximately 3.3 days which explains the 3 to 4 day cycle.
The 3 to 9 day periodicities highly vary among the different stations. Thus their effect may be neglecied
in the prediction of the daily rainfall occurrences.

The rate of occurrence functions for the daily rainfall counts were computed to observe the periodici-
ties and the long~term trends in the first moment of the counting process. As is seen in figure 2, there
are cyclicities and a slight downward trend. The exponential harmonic fits to the mean vate of occurrence
function showed that there is a slight downward trend in the 7-year span analyzed. These results led to
the rejection of the significance of a biennial cycle but strengthened the hypothesis of the presence
of longer cycles due to sunspots. The results obtained from the intensity function confirmed the strong
annual cycle in the datly rainfall occurrences. The periodicities in the second moment of the daily rain-
fall counting process were observed oy the varfance-time curve of counts. As is seen in figure 4 there is a
distinct annual cycle in the variance of the daily rainfall counts. The neglect of the annual periodicity
in the variance may lead to the construction of inadequate stochastic models. smith and Schreiber (1973)
pointed to the insufficient analysis of the counts variance as a cause of the inadequate fit of the Binomial
and Markov models to the cumulative distribution of wet days per season in Arizona.

The detection of the cycles and the long-term frends is quite important for the model calibration.
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The nonhomogenecus Markov chains previously applied to the daily rainfall data were calibrated under the as-
sumption of circular stationarity with yearly circularity. This assumption excludes the effects of longer
cycles which may be quite impertant for the prediction lengths lTonger than a year.

A statistical test of trend in the rate of daily rainfall occurrences basad on Cramer's statistic con- :
Tirmed the nonhomogensity in the first moment of the daily rainfall occurrence process. However, the results :
of this test should be taken with caution since the stochastic process underiying the test is Poisson. A
statistical test of variance homogeneity, using Bartlett's likelihood ratic statistic confirmed the nonhomo-
geneity in the second moment of the daily rainfall occurrence process. However, the results of this test
should also be taken with caution since the samples used for the test are assumed to be normal.

8.2 DLPENDENCE STRUCTURE GF THE DAILY RAINFALL COUNTS

The impoartant statistical functions for the analysis of the persistence of the daily rainfall counting
process are the counts spectrum, the varfance-time function of counts and the Tog-survivor function of the
counts.

The counts spectrum can identify the covariance structure of the daily rainfall counting process since
it is the Fourier transform of the covariance deﬁs?ty function of the respective differential counting pro-
cess. As was shown in Lhapter 2, it is analogous te the spectrum of a time series {Xt}' The difference is
that the counting random variahle Nt replaces the time series value Xt‘ Although, a theory describing the
general behavior of the dependent counting processes is not yet established, it is known that an independent
increment counting process yields a horizontal spectrum. This is in analogy to the white noise spectrum of thg
time series analysis. It was seen in Chapter VI that the Neyman-S5cott cluster model has a very general '
spectral form. The general appearances of the spectrum can easily explain the theoretical behavior of dif- :
ferent types of dependence. For example, an exponentially decaying spectrum of the homogenized daily rainfall;
counts indicates a short memory dependence which could be modeled by a first-order Markov chain if discrete i
time steps were used in analysis. However, for the point stochastic analysis, a special form of the cluster
model with expenentially distributed raintal? positions within a storm, can model the exponential, short-
memory dependence.

The spectra of the Indiana daily rainfail counts data show a definite dependence mechanism which should
be represented by a stochastic model that can preserve dependence. Through the preservation of the empirical
counts spectrum the stochastic model can preserve the explicit covariance structure of the parameters of the
model pertaining to the preservation of the dependence were calibrated by a least squares fit to the homo-
genized datly rainfall counts spectrum.

The asymptotic slope of the variance-time function of counts is equal to the origin value of the counts
spectrum. Therefore, the long term dependence characteristics of the daily rainfall counting process can
be obtained from the asymptotic characteristics of the variance-time function. Unfortunately, due to the
computer storage limitations, the function could not be compuied to a sufficient length 50 as to observe
the asymptotic characteristics.

The variance-time function behavior in the homogenized (stationary) domain can yield valuable informa-
tion avout the dispersion characteristics of the daily vrainfall counting process. When the empirical var-
iance-time curve is above the theovetical variance-time function of the Poisson model, this means that the
rainfall counts arve cverdispersed. Actually it can be shown through the cluster model that overdispersion
may be interpreted as the grouping of the rainfalls in the form of storms. This was the case observed in 10
out of 17 stations. Therefore, the dependence, due o grouping or clustering, was identified from the variance.
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time curve of the data.

The leg-survivor function can be effectively used to assess the dependence structure of the dry days.
In 11 cut of 17 cases there was a sltight convexity in the log survivor functions above the theoretical
Tog-survivor function of the Poisson process. It was discussed in Chapter 3 that convexity implies
overdispersion and thus, clustering of the rainfalls.

from the bshavior of the counts spectrum, the variance time-function of counts, and the log-survivor
function of counts it can be concluded that there is a short term dependence in the daily rainfall counts
in Indiana. This dependence can be explained by the clustering of the rainfalls within a storm. Due to
the comparatively short 1ife of the storm generating mechanisms, the dependence is short and can be
modeled by short memory stochastic models.

8.3. THE NEYMAMN-SCOTT CLUSTER MODEL FOR THE POINT STOCHASTIC
PROCESS OF THE DAILY RAINFALL OCCURRENCES
The stochastic models such as the simple Markov chain, the alternating renewal process, the Poisson

process, etc., used Tor the daily rainfall occurrence process are black box models with very Tittle
physical meaning. They are one level models in that they are concerned only with the occurrence of the
end product, the rainfall occurrence, of a complex atmospheric process. [t is believed that valuable
meteorologic knowledge about the rainfall genmerating mechanisms such as the cyclones or thunderstorms
can be utilized in the prediction of the rainfall occurrences. This can be done by incorporating the
accurrence process of the rainfall generating mechanisms as a primary process into the stochastic model
of the rainfall occurrences. The actual occurrence of the rainfalls will then be at the secondary level
and will be a product of the primary process. The application of the Neyman-Scott cluster model to the
daily rainfall occurrence process is a Tirst attempt is this direction. The Neyman-5coti cluster model
for the rainfall occurrences is based on physical observations. This had not been done by the previous
researchers. As a mode! of the point rainfall occurrences the Neyman-Scott cluster process contains the
physical concepts of (a) the tife length of a rainfall generating mechanism (e.g., a cycldne) that
determines the stovm duration and the dependence of the rainfall counts, (b) the storm structure that

is defined by the number of rainfalls and their time pesitions within that stora.

In this research a storm is defined as the group of rainfalls that are generated by the same rainfatll
generating mechanism. Thus, due to the memory of cyclones over Indiana during the wintepr, two storms may
overlap and contribute ta the number of rainfalls in a time interval. The positions of the vainfalls
within a storm are taken to be random in the cluster modal. If the type of the rainfall generating
mechanism could be identified, the metecrologic characteristics of the mechanism could be used to predict
the time positions of the rainfalis. However, the identification of the mechanisms seems to be a difficult
task in Irdiana. The meteorologic mechanisms over the Great Lakes region are very complex during the
winter. The directions of the Alberta and Colorado cyclone storms converge on the Great Lakes. There is
also the northward movement of the storms formed over the Guif of Mexico towards the Great Lakes. Then
there are the disturbances due to the differential heating of the lakes and the land. A1l these effects
combine to form a high frequency of precipitation during the winter (Petterssen, 1969) .

Actually a three-level cluster process could also be formed (Neyman and Scott, 1958).where in the
primary level there would be the cccurrence of the Atlantic cycione belt which dominates Indiana's weather
during the winter time. This mechanism would generate the cyclones in the second Tevel and the cyclones
would generate the rainfalls on the third level. However, this is not a general description since there
are gther rainfall generating mechanisms besides the cyclones. A three-level model thus seems impractical
for hydrologic applications.

The explicit spactral structure of the Neyman-Scott model is known. This spectrum, as given by the
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expression (6.21), is very general and can fit various types of persistence. As was pointed out by
Gabriel apd Neumann (1962}, Wiser {1965) and others, the first-order Msrkov chain has a fixed geometric
memovy for the dry and wet sequerces. Jorgensen's (1949) data of dry days at San Francisco and wewnham's
{1916} data for British Isles are examples of the inadequacy of the ¢imple Markov chain in fitting the
various dependence structures seen in the dry and wet secuences. On the other hand, and especiaily for the
dry sequences, the Neyman-Scott cliyuster model is very convenient. Te preserve the probability structure
of sequences which are move persistent than the first-order Markov chain's geometric memory, one may use
a suitable probability distribution of the rainfall positions with respect to the storm origin since this
distribution decides the form of the counts spectrum. This can be easily inferred from expression (6.21).

Then there ave the axtremely persistent dry and wet seguences. The two-year wet period at Cherrapunji,
India (sennings, 1950) during the years 1860 and 1861, or the four-vear dry period at Iquique, Chile
(Petterssen, 1969) cannot be modeled by anyone of the current stochastic medels of the rainfall occurrence
process. However, even this type of extreme phenomenon could be modeied by the Neyman-Scott cluster model
by finding a suitable probability distribution for the positions of vainfalls. vere-Jones and Davies (1966)
showed that an inverse power Taw of the form

fw(1~u} = QCO/(C+T—U}p+§ c>0,0<p < 0.5

yietds a very sharp peak at the counts spectrum origin. This means that utilization of such an inverse
power taw for the distribution of the rainfa11 positions within a storm would enable the ¢Tuster model to
preserve a highly dependent rainfall counting process,

The first step in the construction of a time series model involves the computation of the spectrum or
of the autocorrelation function of the time series. Based on the behavior of these functions a suitable
model is then selected and its parameters are calibrated so as to pressrve the covariance structure.

Once the model is constructed, the pdf of the white noise input is obtained.

An analogous methodology based on the general spectrum of the Neyman-Scott cluster process can be
used for the modeling of the point stochastic counting process. In order to preserve the covariance
structure of the rainfall counts the cluster model was first fitted to the counts spectrum. As is seen
from (6.21) the pdf of the time positions, T, of the rainfalls defines the shape of the counts spectrum,
By using the normatized counts spectrum, the vate of occurrences of the rainfall generating mechanisms,
hsg was eliminated from the spectral expression. It was seen from a preliminary spectral fit that the
ratio E(v)E/E(v) of the second moment to the mean of the number of rainfalls within a storm stays as a
constant approximately equal to 2. Thus only the parameter 9 of the exponential distribution of the
rainfall positions was calibrated from the counts spectrum. As is seen from figure 13, the ciuster model
satisfactorily preserves the covariance structure of the homogenized daily rainfall counts.

The remaining parameters ho and p (the parameter of the geometric distribution for the number of
rainfalis within a storm) were then calibrated from the log-survivor function using (7.14). The cluster
model fits the log-surviver function of the daily rainfall occurrences very well as can be seen from the
RZ values in Tabie 7-1.

Since the rate of occurrence function was set to unity in the homogenization scheme (3.8}, ho should
be approximately equal to p. This condition is alsoc satisfied as is seen in Table 7-1. However, there is
a discrepancy between the 5 estimated from the Tog-survivor fit and the ﬁ which was assumed in the
spectral fit. From the Tog-survivor fit p is around .9 while the assumed p was .66 in order to satisfy
(E(vz)/E(v)) = 2 under the geometric law. For p = .66 the normalized counts spectrum is

g+(m) - 62 0
= — W »
RoE) 7z, 7

while for p = .9 the normalized counts spectrum becomes
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vg+(w) 82
=1+ .35 ==, u6>0
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8
50 that the shape of the spectrum stays the same. The discrepancy may be due to fthe geometric law
assumption for the number of rainfalls within & storm. Another possible cause may be the use of an
approximate scheme for the homogenization of the rainfall process under the cluster hypothesis.

It should be emphasized that the application of the cluster model to the rainfall occurrence process
is in the exploratory stage. Future work is needed for the investigation of different probability
distributions for the rainfall positions and the rainfall numbers within a storm. The nonhomogenecus Form
of the cluster model is definitely needed in order to aveid the discrepancies that may occur from an
approximate homogenization scheme.

In the application of the Neyman-Scott cluster model to the point rainfall occurrences on the time
axis only the primary process is fixed to be Poisson. The secondary process of the rainfall occurrences is
very general. The pdf's of the two random variables T and v that decide the storm structure are chosen
according to the climatologic characteristics of the region under study. In this study T was modeled by
a negative exponential distribution and v was modeled by a geometric distribution. OFf course there are
many possible distributions that cculd be used for the modeling of T and v. It was szen in Chapter VI
that the cluster model easily reduces to the gensralized Poisson model in the case that the rainfall
generating mechanisms are memoriless or that the counting process has independent increments. The model is
guite general so that it can be applied to various ciimatologic conditions.

The cluster model presented in this report is a complete model from hydrologic point of view. It
not only accounts for the observed meteoroiogic facts but also preserves both the covariance structure and
the marginal probabilities of the vainfall occurrence phenomenon.

It is to be emphasized that the Neyman-Scott cluster model is a point stochastic model. It models
the occurrences of the point rainfall sequences on the continuous time axis. Since the rainfall observations
are made at equi-spaced time intervals, assumptions are needed in order to analyze the rainfall occur-
rences as a point stochastic process. This may be a shortcoming. On the other hand it the raingages
are recording the rainfall in coentinuous time, the rainfall counting process can be modeled directly hy
a point stochastic process.

8.4. APPLICATIONS OF THE PROPOSED METHODOLOGY FOR PQINT
STOCHASTIC PROCESSES OF DAILY RAINFALL OCCURRENCES

In this report the methodology for the identification and the calibration of the point stochastic
processes developed by Cox and sSmith (1953), Neyman and Scott (1958), Bartlett (1963), Cox and Lewis
(1966}, Lewis et al. (1969}, Lewis (1970, 1971), vere-jones {1370} and various other statisticians is
introduced to hydrology for the objective selection and calibration of the hydrologic point stochastic
modeis. The methodology s also utilized for the detection of Tong term trends and cyclicities in the

point hydrologic data.

Analogous to the approach used in the time series analysis the data are analyzed as an entity.
First, the time trends in the data are identified through the use of the rate of occurrence, the
intensity, the counts spectrum, and the variance time functions, and by the employment of approximate
statistical tests of the trend in the rate of occurrence and in the variance. Once the trends are identi-
fied, a homogenization scheme is needed to fransform the data from the nonstationary domain to the
stationary domain. Such a homogenization scheme 1s developed under the Poisson hypothesis. Under the
assumption that the point hydrologic process is Peisson, this scheme can be effectively used to station-
arize the data and test the Poisson hypothesis by various statistical functions and tests in the stationary
domain. However, a serious problem emerges when the Poisson hypothesis is rejected. The homogenization
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scheme {3.6) émpioyed for Poisson hypothesis is only approximate for other processes. For example, in the
case of the cluster model, the scheme (3.5) can homogenize only the first moment of the counting process.
The second and higher moments of the process are only approximately homogenized.

The covariance structure of the point hydrologic process is obtained from the counts spectrum. The
long range dependence characteristics of the point hydrolegic process are identified from the asymptotic
siope of the variance time curve. The general shape of the log-surviver function also gives valuable
information about the persistence of wetl and dry seguences. This function was already appited to rainfall
counting process by wiser {1965), and by Smith and Schreiber [1973). GOngce the explicit covariance structure
of the point hydrologic counting process is identified, the knowledge about the theoretical counts spectra
of the various point stochastic models enables the hydrologist to choose the most suitable model. The
model whose counts spectrum behaves in the same manner as that of the empirical counts spectrum of the
data is the most suitabie one. The Neyman-Scott cluster model provides & general family of point stochas-
tic models when different distributions are used for the rainfail positions, T, and the number of rainfalls,
v, within & storm. It was shown earlier that generalized Poisson and the simple Poisson models are
special cases of the cluster model. Thus the Neyman-Scott cluster model may assume a role in the point
stochastic processes, analogous to the role of the mixed autoregressive-moving average (ARMA) family in
the time series modeling.

A specific form of the Neyman-Scott clusier model with exponentiaily distributed rainfall positions
and gecmetrically distributed rainfall numbers within a storm, was fitted to the homogenized daily rainfall
counts in this study. From the resuits of the fits to the counts spectra and to the log-survivor functions,
Neyman-Scott cluster model emerges as a very flexible and powerful model for the point stochastic process
of the rainfall counts. However, as was discussed eariier, the model is stationary and, in its present
state, can only be used to model the stationary intervals. A nonhomogensous form of the Neyman-Scott
model is necessary to preserve not only the stationary covariance structure and the marginal probability
distributions of the datly rainfall counts but glsc the long-term trends and the cyciicities in the process,

The practical probabitities of dry period lengths from an arbitrary time origin, and from a rainy
event ars explicitly derived for the specific form of the ¢luster model used in this study. These ax-
pressions are simple to use and give the probability distributions for droughts. Since the theoretical
log-survivor function for the specific form is derived, the cluster model can be calibrated in such a way
as to specifically preserve the drought Tength probabilities. The return period of the rainfalis is the
expected interarrival time between two consecutive rainfall occurrences. It is obtained directly from
the log-survivor function fit since it is given by ho and £ (v) which are calibrated from the log-survivor
function.

The probability distribution of the number of rainfall occurrences Nt within a period (0,t) is
obtained directly from the probability generating function of the cluster model. However, the computations
are lengthy and the utilization of the computer {s necessary to obtain the explicit probability values.

The same thing can be said about the probability distribution of the wet period durations. Due to the
general dependence structure underlying the cluster model, the computations increase at a very fast rate
with Targer durations. The computer becomes a must for the computation of the practical probabilities of
wet-period durations under the cluster model.

The same methodolagy is also applicable to floods exceeding a specified threshold level.

The cluster model can simulate the rainfall occurrences by Tirst generating the primary process of the
storm generating mechanisms and then the storms correspending to each of the mechanisms. However, the
rainfall gquantities should be incorporated to the rainfall counting process in order to obtain a complete
simulation scheme of the point rainfalis. In order o sbtain the runcff sequences, a rainfall-runoff
model is needed.
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APPENDEX Al THE DATA ACQUISITION

The daily rainfall data were acquired from the U. 3. Weather Bureau in Asheville, H. C. The data were
on magnetic tapes which were written in BCD, 7 track, 556 BPI, and even parity. The magnetic tapes con-
tained not only the daily rainfall but also temperature, snow, wind and evaperation data. The record length
was /4 characters and the precipitation data were in columns 23-26. When the precipitation data were miss-
ing the field was blank. The field had a code between 0001 and 8999 when the precipitation depth was 00.01
inches to 99.99 inches. 000X meant that the depth was less than 0.005 inches. The day was considered to
be a rainy day only when the depth was greater than or egual to 0.01 inches.

The missing rainfall data on the magnetic tapes posed an important problem. The missing data were
filled by hand from the climatological data pubiications of the U. S. Weather Bureau whenever it was possi-
ble. For the rest of the missing data a stepwise multiple linear regression was used. The three closest
neighbering rainfall stations were selected and a multiple Tinear regression was run between the station
with the missing data and the neighboring stations. The missing data for a particular date were calculated
by the regression equation from the data of the neighboring stations.

A Tibrary of the daily rainfall data was formed for selected stations in Indiana, Ohio, I11inois and
Kentucky for future use.
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APPENDIX B: DESCRIPTION OF COMPUTER PROGRAMS FOR THE POINT STOCHASTIC
ANALYSIS OF THE DAILY RAINFALL OCCURRENCES

The programs invelved in the point stochastic analysis of the daily rainfall occurrences are mostly
contained in the SASE IV computer program prepared by Lewis et al. (1969). This program, written for the
IBM 260, was translated into CDC 6500 and medified so as to obtain CALCOMP plots of the various statistical
functions. Due to the limitation of the computer capacity at Purdue University, the dimensicns were
reduced from a capability of 1999 events to a capability of 800 events. In its present form, when ail the
subroutines are used, the program requires a field length of 107,000 words and approximately 550 seconds for
execution time. The input data consists either of {ti}’ the times to events, or of {Xi}, the times between
events. The point stochastic analysis of the daily rainfall occurrences was done by the input {Xi}- There
are two options for the analysis: (i) the total time of observation is fixed and the total number of events
is random, (i1) the total number of events is fixed and total time of observation is random. In this
report the first option was used. A homogenization scheme was incorporated into the main program of the
SASE IV by the authors. The other programs used in the point stochastic analysis were (i) ROCC, the computer
srogram which computes the rate of occurrence functicn of the daily rainfalls, and (i1) NONLINR, Mar-
quardt's nonlinear regression program for the calibration of the cyclicities and trends in the rainfail
data, and for the least sguares fitsto the counts spectrum and the log-survivor function of the homogenized
daily rainfall counts. A short description of the programs involved in the point stochastic analysis of
the daily rainfall occurrences will be given below. This description follows the order in which the rain-
fal] data was analyzed. For a detailed description and listing of the SASE IV program the reader is refer-
red 10 Lewis et al. (1969).

B.1 PROGRAMS FOR THE IDENTIFICATION OF LONG-TERM TRENDS AMD CYCLICITIES
IN THE POINT STOCHASTIC PROCESS OF DAILY RAINFALL OCCURRENCES

The programs involved in the trend detection are the subroutines TREND, DENS, VART, BART in the SASE IV,
and the program ROCC for the computation of the rate of occurrence.

B.1.1T TREND

This subroutine emploves both the graphical analysis and the statistical tests for the detection of
trends in the daily rainfall counts. For the graphical analysis it plots the total numbar of cccurrences
versus the time to the last occurrence. The slope of the plot at any time is the inverse of the mean
rate of daily rainfall occurrence at that time.

For statistical test of trend in the rate of occurrence the program computes U where

)
Lod=t i by -
U= ( e - 75)/ tn/ﬂTﬁn .

n

In this expression ti is the time to the i-th vainfall occurrence, tn is the time to the n-th rainfall
occurrance, and n is the total number of daily rainfall occurrences in {o0,T). The total time T is fixed to
be 10 years. A positive U value means that the rate of cccurrence is increasing with time. Since the rate
of occurrence is the stope of the mean time function, positive U would mean that there is an upward trend
in the mean time of the daily rainfall occurvences. Negative U would imply a downward trend.

Bartiett's variance homogeneity statistic is computed (see section 2.2.b in the text) to detect any
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second-order non-stationarity in the interarrival times {Xi} of the daily rainfall occurrences.

B.1.2 ROCC

This program computes the mean rate of daily rainfall occurrences by the statistic A_{t) where, for the

T ;
interval (t,t+r) Ar{t) = ﬂi&igiZL, For further description, the reader is referred to Section 2.1.b in the tex!

B.1.3 DENS

This subroutine computes the intensity function of the daily rainfall occurrences and gives its graph.
The intensity function of the daily rainfall counts is estimated by ﬁf(ru —~% o) for intervals of length o
where

- i t SY‘
mf(ra+?a)=w¥w__ e o= 0, 1, ...
t, - olr +35)

such that Sr is the sum of events which falt into {ra,re +a) for each of the n different counting set-ups
{see section 2.2.c}. The reason that %f(r) has fts first value at © = %-a is that the data was read in
terms of the interarrival times {Xi} so that the first rainfall occurs at time zero.

B.1.4 VART

This subroutine computes the variance-time function of the daily rainfall counts and gives its graph.
The variance-time function V() is computed as a moving average over the possible intervals of length t.
Assume that T is the total observation time and take k = T/t. The rainfall series can be divided intoe interval
of length & such that %.: J. If the number of rainfall occcurrences in the i-th interval of length § is denotec

by ns then ni's in J consecutive blocks can be added to yield

S.o=mn, + ... tn
R i 11

4J
d+1

+ n

Sak-(d-1) = Mgk-(a-1) T o0 F Ry

where K = Jk - (J=1). For further details the reader is referred to cox and Lewis {1966) or t0 Lewis et
al. (1969).

B.1.5 BART

This subroutine computes the spectrum of the daily rainfall counts. Letiing o« = (t - t1)/(n~1), the

n
periodogram components A{J) and B(J) are computed as

n (ti - t])
A{J) =} Cos JB ————,
=2 “

n {t. - ti)
B(d) = | Sin JB —tmtom

where B is taken as 2n/(n-1}. The periodogram estimates I{J) are

() = -2 {A(J)

2
n-1 ¥

B(3)%

and the relation between the freguency index J and the frequency o is given as J = «T/2r. The periodogram
estimates are averaged in consecutive, nonoverlapping groups to obtain the spectral estimates. The program
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gives the periodogram vaiues I(J) and the estimated ccunts spectrum smoothed over groups of 5, 10 and 20
points. A simultanevus plot of these spectra is also given in the subroutine output. For further details
the reader is referred to Bartiett (1963), Cox and Lewis {1966}, Iewis et al. (1969), or to section 2.1.3
in the text.

B.2. HOMOGENIZATION SCHEME

This scheme rescales the time intervals between the daily rainfall occurrences according to the general
equation

5 r
At = expio; + o LA at + ‘Z

’ 3 L R}. Sin (“it A ei)}m:.

In this equation at is the rescaled time increment and At is the original time increment. Ri’ 0 and ei

are respectively the amplitude, the freguency, and the phase angle of the i-th significant periodicity. The
long-term trends are treated by the terms azt and a3t2. This scheme can completely remove the trends only
in the case of the non-homogeneous Poisson process. For further details the reader is referred to section

II1.1 in the text.

3.3 PROGRAMS FOR THE IDENTIFICATION OF THE PERSISTENCE STRUCTURE IN THE
HOMOGENIZED DATLY RAINFALL COUNTS

In the report the subroutines VART, BART and INTER of the SASE IV program weve used for the identifi-
cation of the dependence structure in the daily rainfall counts. Subroutines VART and BART were already
discussed. '

B.3.7 INTER

This subroutine makes a graphical and numerical analysis of the marginal distribution of the inter-
arrival times {Xi}' it also calculates and plots the log-survivor function which can be used for the
detection of clustering of the rainfall events. This is discussed in section IIl.4.1.e. The log-survivor
function is computed from the natural legarithm of 1 - Fn(x) where the distribution function of the inter-
arrival times, Fn{x), is estimated as

Fn(x) =0 X < X

A e

%< x(i) s 12,3, ...

s

(1
“h -
=1 x( <

>

n)

where X(i) is the i-th order statistic in the observed sampie, For further details the reader is referred
to Cox and Lewis {1966}.

B.4 PROGRAMS FOR TESTING THE POISSON HYPOTHESIS

As was discussed in section  3.4.1, the variance-time curve in the subrouting YART, and the counts
spectrum in the subroutine BART already test the Poisson hypthesis. More formal tests of the Poisson
hypothesis are given in the subroutines EXPO and DURB in SASE 1V,

B.4.1 EXPO

In this subroutine the Poisson hypothesis is tested by testing whether the quantities

Yi = ti/tn 1 =1, 2, ... N

are uniformly distributed. This test is cailed the uniform conditional test. However, this test is the
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canonical form of the distribution-free tests of goodness-of-fit. The program computes the one-sided and
the two-sided Kolmogorov-Smirnov statistics, and the Anderson-Darling statistic for the uniform conditicnal
test., For details of the distribution-free tests the reader is referred to section 4.2.2.

EXPO also computes Moran's statistic for testing the nypothesis of independent, exponentially distri-
buted interarrival times against the alternative of independent gamma distributed interarrival times (see
section 4.3.2 for further details}.

B.4.2 DURB

in this subroatine the interarvival times Xys Xps wovs X X4 where x =T - tn,-are ordered. The

+ nt]

order statistics x% such that
Q< X(1) S X2y S oo S Xy 5%y

are obtained. Then the quantities (1) such that

by ' X X,
) J%ll*f?@* e S ) LB -

¥ oy 01

“{
are obtained. As in the case of ¥y in EXPO, “(4) are also uniformly distributed under the null Poisson
hypothesis, and are in the canonical form of the distribution-free tests. Therefore, the Kolmogoroy-
Smirnov and Anderson-Darling statistics are computed for B3 and the uniformity of ©(4) are tested. For

further details on this statistic the reader is referred to cox and Lewis {1966).
B.5.1 RHO

This subroutine computes the autocorrelaticn function of the interarrival times from the formula
n-d _ _
Do) (g, - %)
~ o im i i+d

2

{13 v s

{x,-x)

i=1
- 1 0

where x = v 7 X If n, the number of interavrival times in the data. is large, and provided that the

jnterarriva1 time distribution is not highly skewed, under the null hypothesis pJ=0, ﬂ =1, 2, ..., the

0y are N(0, 1//n=d). RHO prints the quantities /n-d 5J as a function of J and plots pj against J. This
plot is obtained by a minor modification of the original RHO. The null hypothesis of pJ=O against general
alternatives is tested using the computed vh-J 0qs Jd=1,2, ... . Acceptance of 0y F 0 implies that the
interarrival times are uncorrelated.

B.5.2 SPEC

This subroutine computes the spectral density function, the periodogram and the cumulative periodogram
of the interarrival times and tests the renewal process hypothesis. The spectral density estimates are
computed by

AJ Py Cos (Juw), ~m <Sw <

where Parzen's window is used for Ay For uncorrelated interarrival times the spectral estimates with the
Parzen's window have the expectation and the variance

N . 2
ELF(e)] ~ =, Var [Flo)] - el 2
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where ¢ is the integer part of (n-1)/2.
The subroutine plots the spectval estimates so that one can check whether the spectral density function is
around /2w for the case of uncorrelated intervals.

More formal tests are based on the periodogram estimates p{Jd) where p{J) is computed by SPEC in the
form

n . 2
1 § y ew2w1(£~1)J/n§

P(J)“m ,Q,Z'l . d=0,1, ..., n=}

where x stands foy the interarrival time. The formal tests of the interval independence have the null
hypothesis HO that the periodogram estimates p{J) have asymptotically uncorrelated exponential distributions

with mean Var (X)/2x. Then one can form a Poisson process from the p(J} where the waiting times tk are
defined as

5 o)
£ = ).
U

SPEC calls the subroutines EXPO and TREND to test this Poisson process.
SPEC computes the normalized cumulative periodogram P{J} of the interarrival times as

2(k) =

T
g I~
—_

4
p()/ V p(d) L k=1, ..., 1
J=1

whare & is the integer par: of (n-1)/2. Under the renewal hypothesis the normalized cumulative periodogram
values P(k) become the order statistics from a uniform distribution in (0,1}. Since this is the canonical
form of the distribution-free tests, Koimogorov-Smirnov and Anderson-Dariing statistics are computed and
the renewal hypothesis is tested.

For further details the reader is referred to section IV.Z2.2.

B.6 PROGRAMS FOR THE MARGINAL PROBABILITY DISTRIBUTION OF THE TNTERVALS
BETWEEN POINT RAINFALL OCCURRENCES

The non-parametric estimate of the marginal probability distribution of the interarrival times is
done by the subroutine TREND. This subroutine was discussed earlier with respect to the computation of the
tog-survivor Tunction in section B.3. TREND also computes the empirical frequency histogram, the first
four sample moments of the intervals between events, and sample coefficients of variation, skewness and
kurtosis. The freguency histogram fx(xi) is calculated by

number of x%s )
frlegd = =gy s 1= 15 25

The estimated mean u and the estimated variance 02 are computed from

. %)°.

(Xi - %

il E~125

1
X, and o~ = —=
1 1 n-1 i

HI~13

i 1

The coefficient of variation is élﬂ, the third sample moment estimate ﬁ3, is

~y3
1 (X.i - “)

= >
[PE]

#
=

E
o

=3
=

1
[p™
ne-—33

The skewness coefficient is estimated by ;3/;3. The fourth sample moment My is estimated as
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and the kurtosis coefficient estimate is u4/(u2}2 - 3.
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APPENDIX C: MARQUARDT'S ALGORITHM

Consider a general noniinear model te be fitted to the data of the dependent variabie Y with the inde-
pendent variables X1o Xos coes X and with the parameters 815 Bos +uny Oy The model is of the form,

Vo= #{Xgs oo Xy B vees 8,) te (c.1)

where ¢ is the error component. The basic assumptions for the least squares method will be that E(e) = 0,

Yar{e) = a constant, and that the errors ¢ are uncorrelated. Since the independent variables X5 =1,

..s M are not random, the eguation E{Y) = f(x], cees X3 Bys s ek) will be the equation to be used for
the Teast squares method. When there are n observations, there will be n equations of the form
Y. = f(xzi: Xoia vers Xpsd Bps vees ak) toes i=1, ....n. {c.2)
The Teast squares problem is the estimation of the parameters bys "".ek which will minimize
e i S
S(8)y = 7§ o, - f(x1; 8)} (C.3)

where ié = {X?i’ . xmi) and B = {819 eeas ek}. Eq. (C.3) is differentiated with respect to & and the de-

rivatives are set equal to zero to find the least squares estimate %, The eguations thus obtained are

called the normal equations and take the form
n

PRV (s 62

afi

———) =0 5, J=1, ..., ko (C.2)
ile=

However, when the model is noniinear in §'s, the normal equations will alsc be nonlinear. Therefore,

f(ﬁi, E) should be linearized so as to yield a system of linear eguations from which % can be solved. The
tTinearization can be done by assuming an estimate ﬁo for the parameter vector and then by expanding f(?i, 8)
and T,. Thus

0
ko 1of(%,. 8)
> oL > oy 1 n P =
f{x;, 8) = f(x;, 65) + _21 ( T )e =6, (85 -8 ) » =1, v (C.5)
%L E) - 0" 9 ( ) (c.6)
and ey = Y. = f{X;5 6,4} - ( } - - (8, -8 . i=1, .. C.6
. i 1 i* 70 <1 aej 83 eaj N| Dj
L {af(;{’ E)) 0 4 (8 8 ) 60 (€.6) reduce to
etting - = ¥L ., AN ;o = §., 845, B} r
aej aj eﬁj Joi 3 Oj 3
- G 0 G 0
e Yy f(x1, 80) P Tor e T .6]
CH M : - |t : cer S (c.7}
> 0 0 G 0
€, o f(xn, eﬂ) "n T2n o fkn {Gk

Eq. (C.7) in vectorial form is
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(C.8)
The residual sum of squares S(8) becomes equal to ETE} The minimization of S(8) with respect to 6 yields
the estimate of EO as

3y = (Rp R RL(Y - %

o {€.5)

o)
In other words g@ is the solution of the equation

A§0 =3 (C.10)

For A = ﬁg Ry and § = ﬁg(? - ).

>
The estimate 8 which will minimize the sum of squares S(g), is the cor-
rection vector for the estimate ED of the population parameters §. The revised estimates 31 are taken as

5, =8+ 8, . (c.1m)
The iterative process continues until the solution converges in 8. However, it is possible that this jter-
ative feast squares scheme way diverge {praper and smith, 1966). The Ej values may be too big and may cause ;
oscillation, increasing and decreasing the sum of squares values in different iterations.

Theoretically, the gradient or the steepest descent method converges to a solution. In this method one i
moves from the current trial values of Ej to a new value of §j+1 in the direction of the negative gradient
of $(3), that is, along the vector Eg where

T . 35(8)  35(3) 35(8) (c.12)
g““ Y T R N voud I .
1 2 k

The iteration is continued until a convergence in 4 is cbtained. The disadvantage of this model is that it
may converge extremely slowly after a rapid progress {(Draper and smith, 1966). Marguardt (1963) devised a
least squares estimation scheme which combined the best features of the linearization and the steepest des-
cent methods. Any correction vector should be within 90° of Eg. Otherwise, 3(3} will Yocaliy gei larger,
#arguardt (1963) noticed that the direction of the correction vector § obtained by the Tinearization proce-
dure has an angle v with Hg where 80° < v < 90°. S$o he devised a method for interpolating between % and 39
and determining an acceptable step size simultaneously. In his scheme the matrix A and the vector g of

eg, (C.10) are scaled as to have

% = VT a.. * =g /.. .
aty aij/ ST and g% gJ/ 233 {C.13)

ii is i,i-th element of A, g§ is the j-th element of E*, and gj is

where aﬁj is the 1,j-th element of A*, &,
the j-th element of E, Then for the p-th iteration the eguation

[A*,  + a, (116%, \ = &* (€.14)
{p) = Mo} (p) {p)
3
is solved for g*(p)“ The correction vector E(p) is obtained by rescaiing 5*(p) by
S, =48%Va.., , J =1, ..., k c.15
AL T (€.15)
and the revised parameters for the new iteration are obtained as
-+ > >
= + . £.16
541 = 9p 8 ( )

Then the iteration is continued until convergence is achieved. K(p) in eq. (C.14) is a positive constant
which is selected as to satisfy the condition
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S() < S5, - (c.17)

It is shown by Marguardt (1963) that as » + = the angle between 39 and 3 approaches to zero. Therefore, in
order to satisfy (C.17) large values of A should be used. However, X is taken small whenever the lineariza-

tion method converges nicely.
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PART I1

TIME SERIES ANALYSIS OF THE MONTHLY AND ANNUAL

RAINFALL SEQUENCES IN THE MIDWESTERN

UNITED STATES
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CHAPTER 1 - INTRODUCTION

1.1 THE FRAMEWORK OF THE TIME SERIES AMALYSIS OF THE MONTHLY

AND THE ANNUAL RAINFALL SEQUENCES

The second part of this report is concerned with the time series analysis of the monthiy and the anhnual
rainfall occurrences. The ARIMA (p,d,q) family of models is applied to the hydrologic data and the parame-
tric approach of Box and Jemkins (1971) is used as the methodology. However, the spectral analysis is em-
pioyed in the theoretical assessment of certain properties of the ARIMA {p,d,g) time series models.

1.2 A SURVEY OF THE TIME SERIES ANALYSIS OF THE MONTHLY AND ANNUAL RAINFALL SEQUENCES

AND THE APPLICATION OF ARIMA MODELS TO BYDROLOGY

Roesner and Yevdjevich {1966} analyzed the monthly rainfall sequences at 219 stations over various
regions in the United States. They detected the annual cyclicity and removed it through standavrdization.
The standardized monthiy rainfall time series were tested with the null hypothesis that they are a White
Noise seguence. This hypothesis was rejected at the 5% Tevel in 52 out of the 219 stations casting doubts
as to its adequacy. Xieisel and Dellewr (1971) analyzed the square root transformed and standardized month-
ly rainfall sequences at twelve (12) watersheds in Indiana. They suggested that these sequences can be
approximately modeied by White Noise. They also found that the probability distributions of the normalized
square root transformed monthiy rainfall sequences were approximately normal. Shahabion {1973) did a spec-

tral analysis of the sguare root transformed and standardized monthly rainfall data of the Lower Ohic Tribu-
taries. He found a significant first lag correlation coefficient in some of the cases and used a first order
autoregressive process to model these cases. However, since in these cases with the Targe Tag one serial
corralation coefficients, the variance explained by the first order autoregressive process was very low,
Shahabtan concluded that the rainfall sequences may be approximated by White Noise processes.

The application of the ARIMA approach of Bowx and Jenkins (1971) is quite recent in Hydrology. Carison,
MacCormick, and Watts (1970) applied the nonseasonal ARIMA appreach to four annual flow series selected from
a large world-wide sampie. O'Commzll (1971) applied the ARIMA {1,0,1) process as a possible model for the
long range dependance in the hydrologic sequences. Meoss [1972) fitted an ARIMA (1,0.1) model for the annual
streamfliow seguences. ARIMA models were applied to the water iemperature and the river flow time series on
the Ohio River by MeMichael and Hunter (1972) for the forecasting purposes. In a very elaborate applica-
tion of the ARIMA models to monthly and yearly runoff sequences McKerchar and Delleuwr {1572} developed com-
puter programs for a systematic analysis of the hydrologic time series. They successfully applied the non-
seasonal and seasonal ARIMA models to monthly and annual runoffs in the Lower Ohio River Tributaries.

1.3 THE DATA

The watersheds selected for the time series analysis of the monthly and the annual data covresponded
to those whose runoff stations were analyzed by MeKerchar and Dellewr {1972). The geographical region
envelopes the midwestern states of Indiana, I11inois, Ohio and Kentucky. The region covers the tributaries
of the Tower Ohio river and is shown on the MAP-2.

The monthly rainfall data in each watershed was formed by the Thiessen poiygon method from several
point monthly rainfall data of the various stations at that particular watershed.

The annual data were formed by the summation of the corresponding monthly data.

Fifteen watersheds, given in Table 1-1, were used for the time series analysis of the monthly and the
annual vainfall. Watershed areas ranged from 243 to 3955 sguare miles. The record Tengths ranged from 468
tc 684 months.
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TABLE 1-1

THE WATERSHEDS IN THE MIDWEST USED FOR THE ANALYSIS
OF THE MONTHLY AND THE ANNUAL RAINFALL SEQUENCES

U.5.6.5. Drainage Record
Identification Identification Name Area Tength

No. sq. mi. {months)
2535 Licking River at Catawaba, KY 33060 516
2695 Mad River near Springfield, OH 4980 671
2750 Whitewater River near Alpine, IN 539 492
2840 Kentucky River at Lock 10 near Winchester, KY 3955 684
3030 Blue River near White Cloud, IN 461 468
3245 Satamonia River at Dora, IN 553 492
3265 Mississinewa River at Marion, IN 677 528
3280 Eel River at North Manchéster, IN 4186 676
3290 Wabash River at Logansport, IN 3751 528
3445 Embarras River at St. Marie, IN 1513 550
3485 White River near Noblesville, IN 814 492
3655 East Fork White River at Seymour, IN 2333 504
3785 L.ittle Wabash River below (Clay City, ILL 1134 684
3805 Skillet Fork at Wayne City, ILL 464 684
6120 Cache River at Forman, ILL 243 576

1.4 OBJECTIVES OF THE PART II

In the general introduction to parts 1 and I1 the place of the time series analysis of the monthly and
the annual rainfall data in the water resources developments was discussed. In the light of that discussion,
the objectives of the second part of this report may be stated as follows: :

1. To study the various methods for the removal of pericdicities in the monthly rainfall series to

assess their properties,

2. To study the Tong range properiies of the hydrolegic time series models for the monthly rainfall

sequences to determine their advantages and shortcomings in preserving the long range dependence.

3. To apply the nonseasonal and seasonal ARIMA models to the monthly and to the annual rainfall

series to find the most suitable model for the generation and forecasting of monthly and annual
rainfall sequences in the Midwestern United States.
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CHAPTER 2 = GENERAL THEORETICAL CONSIDERATIONS ON THE HYDROLOGIC TIME SERIES

In this chapter the theoretical problems of staticnarity and the invertibility of the hydrologic time
series models, the removal of cyclicities from the hydrologic time series, and the long range dependence
benavior of the ARMA {p,q) family of the hydrologic stachastic models wili be studied.

2.1 A DISCUSSION ON THE STATIONARITY OF THE HYDROLOGIC TIME SERIES MODELS

In stochastic hydrology the stationarity of the hydrologic time series is an important concept. Once
the series are stationarized the stationary time series models can be fitted to these hydrologic time series.

An important concept to clarify is the physical meaning of the staticnarity requirements on the hydro-
logic time series models. In many hydrologic studies it was seen that in order to preserve certain hydro-
logic characteristics the model parameters had to approach the stationarity boundaries. For example, in
order to preserve the Tong range dependence chserved in the hydrologic time series the ARMA {1,1} model
parameters had to 1ie very close to their stationarity Timits {(0'Cormell, 1971). The physical meaning of
1ying beside or on the stationariiy boundary is yet not clarified. It will be the purpose of this section
to clarify the physical meaning of the stationarity on the AR parameters and invertibility on the MA param-
eters of a general ARMA {p,q) model where it will be assumed that p > g.

A stochastic process is strictly statiomary if its probability distribution function is invariant to
shifts in time. In eguation form, Yo ter is strictly stationary if and only if

F (yl,..., y ) =F (yl, A yn)

Yi seoesy ] y
tl tﬂ t1+usq..,tn+u

for every n =1, 2, ...3 tlg e tﬁET; and Yis ween Yy

A second order stationary (s.0.s.) process is one where the first two moments of the probability dis-
tritution of the process are invariant to time shift. This sense of stationarity is the most widely used
concept in stochastic hydrology where many hydrologic time series are transformed so as to obey the normal
probability law. Conformity with the second order stationarity means conformity with strict stationarity
in the case of normal processes. In mathematical form Yis ter s $.0.5. if

1. E[yt} = 1, a Tinite constant,

2. E{y%} < o,
3. E[(yt - u)(yt+k - 1)} = Cov(k}; that is, the covariance function depends only on the lag k.

The ARMA (p,g) model may be defined by the relationship
2 J J
.Y ¢4B } ¥, = [ g 9.8 ] a (2.1)
[J=0 N R

where B is the backward shift operator. For further discussion it will be assumed that p > g. The first
condition to be met for stationarity is that E[yt] = u, a finite constant. Taking the expectation on both
sides of the above equation,

[ § 0,°) E£y1=[§ o8] Elay) (2.2)
L Y v g Y £
Since the random shocks have zerc mean it follows that
[% 589 Ely,1 = 0 (2.3
PEVRC Bt
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0 that E{yt} =0
Thus the first condition for stationarity is that the variance of the process should be finite. The vari-
ance of the ARMA(p.q) model can be represented in terms of its spectrum by

? 5 e-iZﬂwﬁa
2 28 as0 ©
Var(yt) =9, - 5 dw (2,4)
-48 ‘f 5 o 12msB
B
8=0
wherea c§ is the variance of Ay As for complex aumbers
Ial A
|B] B{®
for Yar (yt) to be finite one should have
q ; . s
y Gae 2ﬂw6&1// E ¢B R i2m8B < o, (2.5)
a=0 R=0
The numerator is finite when Ba’ o =0, ..., p, are finite. Therefore, the finiteness of the variance
requires that
1//30 ¢B e~12ww68 (2.6)
5:
is a converging series. The polynomial in the densminator of (2.6} can be factored as
¢(e~127m)(3) - (]50(1 = Clg-Tprﬁ)(}" " C26—12ww6) s (l - Cp@%?muﬁ}’
or
-1 278 K 3 28\ ,
tle } o= 9 _ﬂl (1~ €8 H {(z2.7)
3:
where mys d =1, ..., k, are the muttinlicities of the poiynomial ¢(e”12ﬂw6} which is assumed to have k
distinct roots. The reciprocal of ¢(e"12ﬂw5) can be expanded in partial fractions as
kMg e
1 i J
= 2 , for g<p (2.8)
k s m & Z & -1emwd\y
6 T (1 - e 12ww6) J 0 J=1 r=1 (1 - cse )
J=1

where “rJ are the coefficients in the partial fraction expansion. For the summation in (2.8} to converge

each of the power series 1/{1 - ¢ e12m’°5)r —12Ww53 < 1.
—127th3| = e
i

must converge. This is possible for [cée However,

J

as |cée JE, it is necessary that

]CJI < ] (2.9)

for the series in {2.6) to converge. Since the roots of o(e™ &™)

are of the form l/cé, J=1, ..., P
they should all be cutside the unit circle. Therefore, stationarity of the ARMA (p,q) model depends on the
roots of ¢(8) = 0 to be outside the unit circle. Therefore, stationarity imposes restrictions only on the
autoregressive coefficients.

Consider the case when \CJ} >1 forany Jd =1, ..., k, that is, when any root is inside the unit circie.

Take the ARMA {1,0) model which has just this non-invartible root. This model may be wriltten as

. 1 i
Yy = EBTfﬁtﬁEgngat’ ]CJ[ > 1 (2.10)

The model is, in conventional form, (1 - ¢.B) Yi ®

J when ¢G = 1., Thus, in conventional form

¢
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= 52 +c¢,a, *a
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a, ¥ ¢

3 2
Yian T €3 Ypop O3 3 T Og gy T Bppe BTC

As is seen from this scheme, when 1CJ1 s 1, the effect of the past on the present value of the time series
increases as the series move into the future. When |CJ] = 1 the effect of the past on the present value
stays the same no matter how far into the future the series have moved. Both of the above cases contradict
the hydrologic fact that the effect of the past on the present and future decreases as the series move to
the future.

Although there were no restrictions on the Moving Average operator 6(B) of the ARMA {p.q) model under
the stationarity conditions, the invertibility of 8{B} is reguired to assure hydrologic realizability. The
invertibility of 6(B) is that the roots of &(B) = 0 should be outside the unit circle. The polynomial
8(B) may be written as '

)

(1 ~-c.B

(2.11)
1 J

=

where my, d =1, ..., k, are the multiplicities of the k distinct roots in 8(B). It follows from (2.11)
and the previous discussion that {CJE <1,Jd=1, ..., k, for invertibility of 6(8). Let one of the non-
multiple roots be inside the unit circle. Take ICJE >1 for J = & where 1 < % < k.

s(B)Y = {1 - CQB) 8, ;

k mJ
n {1 - CJS)
J¢

1
L
= {1 - CQB) 82(8)
The ARMA (p.q) model wmay be written as
o(B) y, = 8(B) a,

Let ¢(B) be invertible. Thus Yi can be written as

1 8, (8)
T-cB Yt~ 3@ % (2.12)
and
| 2 2
ToopYe T {EeeB e By )y

which is a divergent series for Ecgi > 1. Consider

S U SRR S
1 - CRB CQB 1 - l/ciB
o1 1
c B~ 7.2 3,3
% CQB CEB
This series converge for [c | > 1. Thus
1 [ 1 1 )
. y, = |- - .l y
I-cB’t ¢,B c383 ]t
. _ 4 1 S -
T Yl T T Y2 T 3 Ve (2.13)
£ <:51 Ty
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converges. (2.13} says that for a root of 8(B} inside the unit circle the future values are used to gene-
rate the present value of Y- This is not a realizable generation. Therefore, to have a hydrologically
realizable generation all the roots of 8(B} = 0 should be outside the unit circle.

2.2 PERIODICITIES IN THE MONTHLY HYDROLGGIC TIME SERIES

In this section the periodicities in the monthiy hydrologic time series will be discussed. A spectral
model for the pericdic hydrologic time series will be introduced. Through the use of this spectral model
the methods of differencing and monthiy mean subtraction will be analyzed. The simulation of the hydrologic !
time series by the nonseasonal and the seasonal ARIMA models will be discussed. ' i

2.2.1 Introduction

fue to the rotation of the earth around the sun, there is a yearly periodicity in the monthly hydrolog-
ic time series. This periodicity 1s manifested in the autocorrelation function which has the appearance of
a sinuscidal function with a 12 month period and in the spectral density function which exhibits a discrete
spactral component of the frequency 1/12 cycle per month. This periodicity is seen in Fig. 1 for the case
of rescaled monthly rainfall data. The monthly hydrologic time series were rescaled by dividing each term
of the series by the monthly standard deviation of the respective month to yield a constant variance through-
out each series. This rescaling was done befere the estimation of the sample spectrum and the fitting of
the corresponding spectral model. It is also assumed that the non-stationarities due to long term time
trends are removed before any operation. ~The foilowing discussion applies fo the rescaled trend-free time
series. _

The time series models currently used in hydrology are fitted to the stationary random component of the
spectrum {or equivalently to the decaying part of the autocorrelation function). The hydrologist is thus

faced with the problem of the removal of the circularly stationary component of the time series. This time
series component corresponds to the discrete spectral component in the spectrum or to the sinusoidal periodéc;
component in the autocorrelation function. The periodicity in the autocovariance is a function of the jag.
The variance, being the value of the autccovariance function at lag zero, is not a function of the lag and
is not subject to this periocdicity.

The speciral model to be constructed and used in the following is strictly within the realm of the cor-
relation thaory stated by Yagiom (1962) and others. Therefore, our interest will be limited to the second-
order stationarity which is obtained by a random function, X(t}, if it has a constant mean and if its autocor-

relation function, A(Tl, Tz), depends only on the Tag difference 1, - 1.

It is worthwhile to emphasize that the periodic hydrologic time series cansidered here are not nonsta-
tionary. What is thought as the nonstationarity due to the yearly periodicity is really the circular sta-
tionarity as was developed by Yaglom (1962}, Homnan (1860), Cote (1973) and others. The definition of
circular stationarity can be stated for the monthly hydrologic time series as follows: the monthly hydro-
logic time series, YO’ is circularly stationary if the multivariate probability distribution of ﬁe = (xil,
Kigs +-- xilz) is the same as the multivariate probability distribution of ;G+12k = (X9, +12Ks +vvs
X112+12k) for k = 1, 2, .... Therefore, the circu]ar_stationarity suggests that the probability distribu-
tion of the hydrologic guantity in a particular month is the same for the different years.

As a physical interpretation, the periodic hydrologic time series with a constant variance {i.e.
rescaled) may be considered to be made up of two components: (a) the monthly means, comprising the c¢ircu-
larly stationary component and (b} the deviations from the monthly means cemprising the stationary random
component. These two components correspond to the discrete and continuous parts of the spectrum of the
series. Each part has its own spectral representation. A periodic time series {XJ}, comprised of & circu-
tarly stationary component and of a stationary random component, sampled at equispaced intervals, has the
following spectral representation {ses Yaglom {1982) or Hanman (1960)}:

146




o i2wade
o= va | TT e gz 4 vE
J Fulg =0

2! &

{t =1
3
,c:|

Cos(Z‘nJéu;OC + @a} {2.14a)

d= oo -, 0,1,

where 3 = sampling time interval
w = frequency, -5 < w < h
) = absolutely continuous component of the spectrat density function
d7(w) = stationary, uncorrelated, complex random increments with E[Z(w)] = 0
r = half period of the circularly stationary time series of perioed length 2r-+l
% = the maghitude of the a-th discontinuity in the spectral distribution function

o

Qa = random variables mutually uncorrelated for o = 0, ..., ¥
wy = discrete frequency which is equal to af{2r+l)

@u = random phase mutually uncorvelated for o = 0, ..., 1.

The first term on the right side of {2.14a) represents the stationary randem component and is written
in complex form since this is very concise. However, if this model is to be used for generation purposes
the real form of the stationary random component can be written as (Yaglom, 1962)

{1/2(‘3

im) Sin(ZﬁJmé)dZZ(m) {2.14b}

i
oo = /% | /TG Cos(2ndud)dz, () + /3
’ G

Yo
where Kl{w) and Zz{m) are real random functions of fhe freguency w with uncorrelated increments. However,
tha representation (2.14a) will be used since it is a more concise form and the physical behavior of the
spectral density function is still clear under the various operations to be considered.

The stationary randem component of the monthly hydrologic series can be interpreted as a process built
up by elementary and mutually crthogonal oscillations with random amplitudes and vandom phases {(Cramer and
Leadbetter, 1967). So the stationary random deviations from the monthly means of the menthly hydrologic
ceries can be modeled as a summation of spectral components, that is, an infinite nurber of uncorrelated
harmonics with random phases and amplitudes.

The second term in the right-hand side of (2.14a) represents the circularly stationary {pericdic) com~
ponent of the time series. The seasonality of the monthly hydrologic time series, treated as a circuiarly
stationary time series and assuming that there is & significant contribution at every multipie of the funda-
mental yearly frequency 1/12, is represented by (Yagliom, 1962 Hamnon, 19603 lote, 1973)

= V8

o

X

B I~1Ch

4. ) VQQQQ COS(ZWJémOc + ®a)’ J= ,,.-1,0,1, ...

where w, = a/125. This representation has the physical interpretation that the circularly staticnary
seasonality of the hydrclogic time series can be medeled as the superposition of seven wutually uncorrelated
ascillations of different freguency with random amplitudes and nhases. The physical reason for considering
all the harmonics that are multiples of the fundamental yearly fregquency 1/12 s that the c¢ircularity in
natyre may not follow an ideal cosine function with a yearly period. Irreqularities or deviations from the
shape of the cosine function with the yearly period will be seen as leakages in the frequencies that are
multiples of 1/12 and can be easily modeled by considering the general superposition of all the possible
harmonics for the case considered.

2.2.2 MNonseasonal Differencing

First, the nonseasonal first lag differencing of the monthly hydrolegic series for the purpose of the
removal of the yearly periodicity will be investigated. Differencing the original series {Xj} gnce corre-
sponds to obtaining the series ij such that
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The spectral representation of the first differenced series, obtained by applying cperation {2.16} to the
spectral representation (2.14a) is:

L5 . . , 6 - .
M, = /s'j AT 2t 12180y ) 47 T e Cos{?wj E&ﬂ?¢u]- COS[Zﬂj Sip -2 W
) a=0

i i2 o 12
ar
s 12138 6 {
- . i2midw e LG r
MY, = Jg-j_péMwai(z Sin wéw) e ¢TI dz{y) + /SQEG /Qaqu CGS[ZHJ TEﬁ-@q} - 505i2ﬂ T§~(J—1)4‘@&I} (z.an

The second term in the right-hand side of equation {2.17) shows that first differencing does not campletely
eliminate the periedic component although it significantly reduces it. The continuous spectral part of the
differenced series is

fﬂ(m) = f{w) {2 Sin Wﬁw)z, hE < < BB, {2.18)

As is seen in egquation (2.18), the original continuous spectral density flw} is distorted to yield fﬂ(m).
Differencing wipes out the value of the original spectral density f(w) at w = 0 and dampens it for 0 < [w]
< 1/68 while it amplifies F{w) for 1/68 < |w| < 1/28, intraducing spurious high frequencies. From the
hydrologic point of view differencing wipes out the Tong run properties while introducing spurious short
run properties by magnifying the high frequency contributions.

The covariances r. and Rj of the stationary random components of the hydrologic series and of the dif-

J
ferenced series, respectively, for the j-th Tag ave related by:
R, = —Azr (2.19)
3 i+l '
and
Rg = 2(r0 - rl). (2.20)

Equations (2.19) and (2.20) show that the covariance of the stationary random part of the differenced sevies
is distorted and that 1ts variance depends on the magnitude of the variance and first lag covariance of the
stationary random part of the original periodic hydrologic series.

2.2.3 Seasonal Differencing

The manthly hydrologic time series is differenced with a seasonality of 12 months using the operation

X; =X

Ao Xy =4y - Ayire

(2.21)

The spectral representation of the seasonally differenced series, obtained by applying the operation {2.21)
to the spectral representation (2.1%a), is:

6 L iemsie i2r(i-12)8m 8
JE) (4T L e ) dZ{w) + V5 § VIO Cos(2min/12 + @)

A x.:,/EE
1273 g =0

- Cos{Znja/12 + o, - 2r§120/128)
or

158 o
Byp Xy = /E‘J y (2 Sin 12008) VFTaT o 2P99 47(4) (2.22)
=3

As 1s seen from expression (Z2.22) the periodic contribution is completely removed and the criginal continu-

Kt is

ous spectrum is distorted. That is, the spectral density fAlz(m) of the stationary random series {AEZ j
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Fipple) = (2 sin 12108) £(u). (2.23)

Therefore, flw) is wiped out at lw] = k/126, k= 0, 1, ..., 6 and amplified in between these frequencies.
The spectral density fﬂlz(“) obtained after 12 lag differencing has a sinusoidal shape which cannot be
fitted by the conventional ARMA [p,q) family of mathematical models.

The covariances, rs and Réz, for the j-th lag of the stationary random component of the hydrologic
series and of the seasonally 12 lag differenced series, respectively, can be shown fo be related by

2 _ 2

SIS VIR
12
Ry~ = 2lrg = rypl-

Therefore, the covariance function of the stationary part is distroted while the periodic part of the co-
variance function is removed since the discrete spectral part is removed.

2.2.4 Model Fitting and Simuiation

As the nonseasonal first lag differencing of the monthly periodic hydrologic series significantly
reduces the peribdic component, a stationary ARMA (p,g) model can be fitted to the differenced hydrologic

series AXt, The general form of the model is {Box and Jenkins, 1971):

#(8) X, = 0(B} &, (2.25)

where B is the backward shift operator, thus BX. =X, 4 and & = 1-8, ¢(B) and 8{B} are polynomiais in B of
ovder p and g respectively, and ay is a random variable. The ARIMA (p.1.q) process, represented by expres-
sion {2.25), can he defined as the stationary ARMA (p,q) model of the first differenced time series. The
stationarity and invertibility conditions are that the roots of ¢(B) = 0 and 5(8) = 0 should lie outside
the unit circle. The spectral density of ARMA {p.q) process is (Jenkina and Watte, 1868):

2
2 E . Z2 o
-i2nwdp 3
¢, & P (2.26)
///‘Bzg £ Ry

where RO i3 the variance of the process and 02 is the variance of the white noise input.

? 5 e~i2ﬂw6a
a=0 ©

Fagmale) = i

First differencing distorts the continuous spectrum of the original series Xj as shown in expression
{2.18) and it is to this distorted spectral density, fﬂ(w), that the ARMA (p,q) model is to be fitted. The
spectral density fﬂ(w) definitely does not represent the sample characteristics of the stationary component
of monthly periodic hydrologic series. Therefore, the ARMA (p,q) model fitted to the autsccovariance struc-
ture corresponding to fﬁ(w) is of no oractical value for generation purposes since it veally does not pre-
serve the original spectral density flw} of the stationary random component of the periodic hydrologic
series.

If an ARIMA {p,1,q) model is intended to be used for generation purposes, the transformation

fC(w) = fA(m)/(Z Sin ﬁwé)z (2.27)

where RO fc(m) is the continuous spectrum of the generated series, has to be performed on the spectral
density fﬂ(m) of the differenced series to retrieve the sample spectral properties of the stationary part
of periodic hydrologic series. In the time domain the above operation corresponds to summing the differ-
enced series ij; thus

T R (D
X3 Lo olBY fer ORI

where the right side of the latter expression is a divergent infinite series.

149




Combining (2.26) and (2.27) the spectral representation

5 lg=g © a i 2108 j
5 (2 Sip md)| e dZ{w) (7.28)
g8 i‘ﬂ] i 2058

gk ¢ 1 §

is obtained for an ARMA (p,q) model fitted to the first difference of the periedic hydrologic series Xj'

r./l ? 9 e~i2wm§a,2 UZ %

The variance of the XC i generated by the above scheme is

2

5 fapualo)
VARLX_ () = 6 Ry o J AR (2.29)
>J ~L& 4 §in” mws
The spectral density at the origin for the ARMA (p.g) model is
q 2
[&ZQ Bu] Ui
Tl = To 7Ry (2.30)
{E A
B=0

1f there is a perfect fit of the ARMA {p,q) model to the distorted speactral density fﬂ(m) of the differenced
hydrotogic series, then

= f,(0) = 0. ‘ (2.31)

Faual0) = il
The generation in the time domain would correspond to dividing the spectrum of the fitted ARMA {p,a} by

{2 Sin pmé)z in the spectral domain. Then the spectrum of the generated series would have the value 5fat
the spectral origin and would be undefined. Then the generation scheme with the ARIMA (p,1,9) model of
perfect fit would be undefined. However, in general, the ARMA (p,q) models have few parameters and not
enough degrees of freedom to render an exact fit. The spectral density of an ARMA {1,1) model at the
origin is fARMA(O) = (oi/RO)(i - 6)2/{1 - ¢)2 = k which has a positive value when the stationarity and the
invertibility conditions are satisfied. As in the vegion (-e, &) around the spectral origin Lig Sin md =
wwd, the spectral density fc(m) of the generation scheme becomes

f {w) = @ {2.32)

But, as the area under I/wz in the region {0, ) is infinite, Var(xcgj) = @ and the conditions for the weak
stationarity are not satisfied. Therefore, the ARIMA (p,1.,q) model yields generation schemes with infinite
variance when it does not satisfy the condition of zero spectral value at the origin.

It was shown earlier that the 12 lag seasonal differencing removes the perjodic component of the
nydrologic time series while distorting the continuous component of its spectrum. Expression {2.23) for
fﬂlz(”) implies that there is a 12-lag correlation in the series as well as a first lag type correlation.
Seasonal ARIMA (P,1,Q) » {p,d,g) for the 12 month seasonality of the monthly hydrciogic series can be
written as {Box and Jenkins, 1971),

12, d . 12
¢P(B) @P(B JA P Xt = eq{B} @Q(B )at (2.33)
where Ad = {1 - B)d, Azz = {1 - 812). Thus
d, _ 12 12 '
B byo Ky = an(B) E}Q(B )/@P(B) q:P(B Hat {2.34}
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is a stationary scheme which can be used for the simulation of Ad bip Xt which has the distorted spectral
density f

AdAlz(w}. However, {Xt} is the series to be simulated. Summing {2.34)
b B
t 3 2 0
-
Y= 1o L L1 {5 12)/05(8) 8,(814) 12 (2.35)
t o L & b p h,+12,
bé-——w bzwum bln-woo jmeco 1 3

This is a divergent series with infinite variance. It increases without bounds as the simulation extends
into the future. The effect of random shocks at the physically infinite past of Xt stays the same as the
Xt values are axtended into the future and the sum of random shocks increases pulling the series out of its
mean level to erratic values.

Differencing, although very effective as a means for the removal of hydrolegic periodicities, yields
distorted spectra which ars inconvenient for hydrologic simulation.

2.2.5 Monthiy Mean Subtraction

Consider monthly hydrologic time series Xp o X129+T which have a perjodicity of 12 months were v = 1,
.. 12 45 the month and p = 0, ..., §=1 is the year. Taking expression (2.14a} derived earlier,
X R R o LA LS LI % ST Cos|2n(12p+r) & + @ (2.36)
12ptr D Lo e NPT T Yy '
2 A

becomes the spectral representation for the monthly periodic hydrologic time series. The mean for a pav-
ticutar month © can be expressed as

55 i2m126uN .
v 8 [® -1 - e i207dw
S IR s vyl dz{w)
I 1 -e
5
JE _
+ %;:uia /I 0. Z COS{:W(IZD%T) 7+ @é] (2.37)

Consider the case of subtracting the monthly means from the original periodic hydrologic time series. Then,
expressions {2.36) and {2.37) yield

FGT [} ) %_8—1W126w(2p+1-N) %%E_%%%%%gﬂ iam{12pte)n 67(w) (2.38)

b

X12p+T B XT =/ J LS
=

which is solely a continuous spectral representation. Therefore, subtracting the monthly means removes
the discrete spectral part representing the pericdic component in the hydrologic time series. The spectral
density ilw) of the series X12p+1 - X_ can be written as:

2 Sin 12mdwi . 1 [Sin 12mSwh Z
]: T i 12,”5 COS 12Tl50}{2p"§‘1“N) + N2 [W]WK}] (2.39}

Therefore, although the first order periodicity represented by the discrete spectral contribution is com-
pletely removed, a different kind of ncnstationarity is introduced into the monthly hydrologic time series
when monthly means are subtracted. This is because A{w) is a function of the year p as well as the fre-
quency. Analyzing expression (2.39) Sin 12wSwN/Sin 1278w has its peaks at w = k/12 where k =0, 1, ..., 6.
However, at exactly these values Cos 1276w{2p+1-N) = Cos 12wSw(1-N}. That is, at w = k/12, k=G, 1, ..., 8,
the spectral density A(w) is independent of p and, therefore, independent of time. For w # k/12, k =0, 1,

, B, Sin 12w8uN/Sin 1278w decreases sharply, theveby minimizing the effect of Cos 12mswm{2p+i-N}, and the
nonstationarity effect due to year p is negligible. Therefore, subtracting the monthly means essentially
removes the periodicity in the autocovariance function and yields a hydrologic time series which satisfies
the weak second order staticnarity conditians for the case under study.

151




2.2.6 Applications

The arnalytical raesults obtained through the manipulation of the spectral representation for the monthly %
periodic hydrologic series were compared to the spectral density estimates of the rescaled monthly rainfall
square roots for 15 Indiana watersheds. Spectral density and the autocorrelation function estimates of the
original square root transformed rescaled monthly rainfails, of the l-lag differenced rescaled monthly rain-
fall square roots, of the seasonal 12-lag differenced rescaled monthly rainfall square rocts and of the
rescaled monthly square roots after the monthly means ave subtracted were obtained for these 15 Indiana
watersheds. In the spectral density computations the Hamming Window was used for smoothing purposes. The :
results obtained consistently verified the analytical conclusicns. As an example, the resultis for the water»%
shed of the Mississinewa River at Marion, Indiana, identified as statiom 3265, are shown in Figure 18a :
through 21t. Figure 18a shows the spectral density estimates of the monthly rainfall square roots. In this
figure the discrete pericdic spectral component at the frequency of 1/12 cycles per month is clearly identi-
fied. Figure 18b shows a definite 12-monthly periodic comporent in the autocorrelation function for the
rescaled monthly rainfall square roots, Figure 19a shows the spectral density of the l-lag differenced
rescalad monthly rainfall square roots. The spectral contribution at the origin and in its neighborhoed
are completely wiped out meaning that the long run properties of the sample are vemoved. At the frequency
1/12, which shows the contribution of the yearly periodicity, the spectral density is reduced from the
original value of 1.05 o 0.20. Because of this significant reduction in the discrete spectral component,
the pericdicity in the avtocorrelation is almost eliminated as can be ssen in Figure 19b. On the other hand
the high freguency contributions are magnified. A spurious significant autocorrelation is introduced at the
first lag of the autocorrelation function estimate. This is explained by equations (2.17} and (2.19), and
the explanation is given in the appendix as to the removal of the discrete spectral component. Figure 20a
shows the spectral density estimate of the seasonally IZ2-Tag differeﬂced rescaled monthly rainfall square
roots. The yeariy spectral component at the frequency 1i/12 is again wiped out. The spectral density func-
tion itself is almost periodic with the frequency period of 1/12. These features were observed through the
analytical treatment also. In Figure 20b it is seen that the periodic component of the autocorrelation is
introduced at 12th lag for the seasonally 12-lag differenced rescaled monthly rainfall square roots. This
result is explained by equations (2.22), (2.24) and the mathematical appendix. Figure 2la shows the spec-
tral density when only the rescaled monthly vainfall square root means are subtracted. At the yearly fre-
quency 1/12 the discrete spectral contribution is effectively decreased from the original value of 1.05 to
.500. The rather high value of .50 is explainabie by equation (2.39) derived earlier. The autocorrelation
function estimate correspending to the spectral density of Figure 21la is shown in Figure 21b. Figure 21b
shows the analytical conclusien, eguation {2.38}, that the periodicity within the autocovariance function
is removed by simply subtracting the monthly means from the monthly rainfall scquare roots.

The rainfall data for each watershed were obtained by weighing the rainfall stations in that watershed
by the Thiessen polygon method.

The modified Fisher test (dndel amd Balek, 1871) for the detection of periodicities in the hydrologic
time series was employed 1o test the effects of the removal of periodicities by the methods under consider-
atien. However, the test proved to be insufficiently sensitive.

2.3 A SPECTRAL AND VARIANCE-TIME LOOK AT LONG RANGE DEPENBENCE

The long range dependence in the hydrologic time series is manifested by the fact that the extreme
events may persist fov a very long time Tike the "seven years of plenty and the seven years of famine" i
the Bihle or the four-year dry period at Iquique, Chile (Petterssen, 1969). In the design of water re-
sources systems through simulation methods, the hydrologic sequence is synthesized for a very long time,

usually extending from 500 to 1000 years. In a 1000 year long record it is very reasonable to expect very
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extreme precipitation and extrasrdinarily high river levels. Mandelbrot amd Wallie {1968) labelled the
gccurrence of such very extreme phenomena as the Noah Effect. On the other hand the occurrence of very
Teng pericds of high precipétatien and of droughts, as is indicated in the Bible, is to be expected, too.
This persistence effect is called the Joseph Effect by Mandelbrot and Wallis (1968). It 1s evident that
the occurrence of a very long periocd of drought or a very long period of flood would necessitate enormously
large reservoir capacities. Therefore, simulation of the long range dependence effect is of vital impor-
tance to the water resources system planner. The immediate questions that the hydrologist, synthesizing
the hydrologic record, has to answer are: (1) just how Tong the span of time dependence should be in order
to simulate the extremes that are expected to occur within the Tife time of the hydraulic struciures under
study; (2) how to incorporate this span of dependence into the time series models to be used for synthesis;
(3) can the time series model simulate the Tong range dependence facts cbserved in the long hydrologic
records? In this section an attempt will be made to answer these questions mainly by the variance time and
spectral analysis of the present time series models.

The T law of the variance for the Brownian Motion domain is:

t+T
Var [W(t+r) - W(t)] = var §  X({u) = kr (2.40)
u=t+l
t+r
where {X{u}} is a white noise sequence with £[X{u)] = 0, and W(t+t} = Wt} + § x{u). W{t) is the
u=t+i

Brownian Motion. The 7 law of variance for the Brownian motion states that the variance of the partial
sums from a white neise sequence {X(u), u = ...1, 0, +1, ...} is proportional to the time span of summation
with a random proportionality constant k (Parzen, 1967).

Burst (1951, 1956, 1965) studied a wide range of natural phenomena with very long records and observed
the long range persistence of the "Joseph Effect" in terms of the variance-time function and the rescaled
range. The Hurst law of variance can be stated as

thr
Tim Yar ) X{u) = ko™, 0.5 <H<1, (2.41)
T u=t+l

that is, the variance of partial sums of a hydrologic time series 13 asymptotically proportional to T2H

where 0.5 < H < 1. The observations of Hurst showed that the dependence structure in the hydrologic proc-
esses 1s very long, or physically infinite.
For the stationary random sequence {X{u}, u = ...1, G, +1 ...} the variance-time function can be ex-
pressed as
T 7 T
Vit) =var | § X(u)i =rry+2 3 {t-2)r (2.42)
u=1 0 " a1 %

where r, i the covariance of {X(u}} at the 2-th lag.
For a non-stationary random sequence the variance-time function ¥(t) is expressed as

v(t)

Yar [Xl + XZ’ St Xt}

£-1 t-i -1 t-i

+ 5y Cov (M, K0+ T} Cov {X X ). (2.43)

t Var (X . e
i21 us1 R R R LALLM

1)

Considering expression {2.42) of a stationary random sequence,

T oo

. 1 . - = @
Tim § Zir, =0 when  limr, =0  orwhen Py <
T 251 oo 121
K B N T . w
So that Tim Yar | ¥ X(uij = tlrg + 2 1y if ‘g P, < (2.44)
e U=l 1 251 Y 251




The spectrum S{w) of the stationary time series {X{u)l is expressed as

Slw) = g+ 2 E v, [e~12ﬁwl . E?val]j/z
£=1

o«

=ry + 2 Qil r, Cos 2mof (2.45)
Thus, the value of the spectrum at the origin, S{0), is
s(0) = s + 2 z vy (2.46}
=1
From (2.44) and {2.46) it follows that
T W] o
Tim Var | X(u}] =« ${0) if ) ory < (2.47)
-8 u=1 WJ 2=1

@

The condition 7§ o < o may be written in terms of the spectrum and the variance of the time series as
4=1
? {0} - r

=1

ry < @y 0 ¢ o (2.48)

However, due to the second-order-stationarity (s.o.s.) conditions the variance o of a stationary random
sequence {X{u)} is finite. Thus

o0

Z ) < o »5(0) < oo, (2.49)
=1

that is,

)

Hme*[% Muﬂ = 1 $(0) if S{0) < =, {2.50)
o u=l
When the variance of partial sums is asymptoticaily proportional to the time span T as 7+ the process ends
Gp inh the Brownian domain and, thus, has finite dependence. Therefore, the statistic to differ the proc-
esses with finite dependence from the processes with infinite dependence, observing expressions (2.49)} and
(2.50), is ${0), the spectrat value of the stationary time series at the zero frequency.

It follows from the above argument thati the current hydrologic simulation models can be classified with;
the help of the spectrum S{w) as: i

1. Models with finite span of dependence and finite variance to simulate the short span hydrelogic
dependence. These would require

' S{0} to be finite and

36
{ ${w) dw < =, 0 <w< ks,
0

2. Models with infinite span of dependence and finite variance to simulate not only the short range
but alsoc the long range dependence in terms of the Joseph effect. These would require

56
S(0) = =, J S{w) dw < =, 0<w< 5.
0

3. Models which will yield infinite span of dependence and infinite variance to simulate not only the
Joseph effect but alsc the Noah effect. These models would require either
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5(0) = =,
or

s
5(0) = =, f S(w) dw < o

and the white noise input to the hydrologic model %o have marginal probability distributions with infinite
variance. The first set of requirements in the models of type 3 would yield a nonstationary series while
the second set of conditions would yield a stationary model with infinite span of dependence. In the second
set the infinite variance of the generated fime series would be obfained by the infinite varjance of the
noise input.

Mamde Throt {1969) observed that the spectra of the hydrologic processes exhibiting the Joseph effect,
are J-shaped and proposed that such processes can be axplained by assuming that Tim S{w) = ». Therefore,
Mandelbrot's proposal takes the span of dependence of the simulation model to bem$gfinite. He proposed the
use of models with hyperbolic spectra, S{w) = mu“z, 1 <o <2, to explain the Joseph effect. He called this
proposal the "Hyperbolic spectrum hypothesis.®

The presence of the Noah and Joseph effects together can cause significant variations in the different
samples of a population since they correspond to extvemely large values persisting for a fong time. Since
"the sample variances are enormously influenced by the precise values of the outliers” (Mandelbrot, 1969),
it becomes impossible to estimate the population variance due to large variation of the sample variance. A
hydrologic sample of "physically infinite® size would quite likely contain many Joseph and Noah effects,
and sometimes both these effects together. This sample would yield infinite variance. Mandelbrot {1969)
proposed the "Infinite Variance Hypothesis" which c¢laims that the popuiation variance of the generating
process is infinite. This infinite variance hypothesis corresponds to having probability distributions
with hyperbolic tails for the genevating process. Mawndelbrot (1969) proposed the use of stsble probability
distributions such as Cauchy’es for this purpose. The infinite variance hypothesis corresponds to having a
spectrum of the form

Slw) = e, o> 1 {2.51)

Tocally around -e < w < £. This would yield not only infinite variance but also infinity at the spectra?l
origin. Thus a model possessing a spectrum of one form (2.51) would be nonstaticnary.
For an ARMA (p,g) process it was discussed in the section on the periodicities that

020 e@}z Gg/{ﬁgo d’sf (2.52)

Thus for any ARMA (p.q) model S(G) is finfte and the ARMA {p,q) family of models is in the Brownian domain.
It follows from [2.50) that the asymptotic variance-time behavior of an ARMA (p.q) model can be expressed as

. z B ~ 2 g 2 p ‘!2
m Var ££1 X(u{l =1 S(0) =1 Ua[aza 606] /[BZO %j . {2.53)

The ARMA (1,1) model was suggested by 0'Conneli {1971) as a model that would preserve the long range
dependence properties. It follows from {2.53), that the asymptotic behavior of the varfance-time function
for ARMA (1,1) is

s{0) =

2
Tim Var r% X(u)-i =1 ﬂ—‘—e—)?cg (2.54)
o0 u=1 (1-¢)

which simply shows that the model has finite dependence span. If the model is forced to preserve the
Hurat's law for the variance, then the condition
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T-+00

S N 24
Vim Var | § x(uzJ = k™, m<H<l (2.55)
u=1

has to be satisfied. From (2.42) it follows that for the ARMA (1,1) model

T 1 T
Var [:E X(U?J =Tt 2r1 ol -8} ¢£"1 {2.56)
u=1 =1
Expanding (2.56) and dividing both sides by <,
T T T T+l T
Lvar | 7 xw)| = rg+ 2r) &%ﬁgﬁ$% - dr ﬂﬁﬁ—flﬂl?r% - 4ry {wmlm:~§§% L (2.57)
u=1 (1 -9) {1-4¢)
and, using (2.55)
T T Tt T
rg + 2r, [ﬁ :‘i) - dr) ﬂﬁiwéiﬂiﬁrl - ar, LJ;JLEL?} N (2.58)
(1 - 9) (1 - ¢}
should be satisfied by the ARMA (1,1) moedel for T large. When T is large
~¢T + ¢T+1 = (O
and
1-97) _ 1YL
ry Erl [1 = J =rg* Erl ﬂrﬁf&ﬂ S{0}. (2.59)
Then, IH-1
S(0) = kT for Targe T and L < H<l. {2.60)

Exprassion (2.60) gives the necessary condition for the ARMA (1,1} to preserve the Hurst's law for the vari-
ance. However, since ${0) is finite, condition {2.80) can not be satisfied by the ARMA (1,1} madel. There-
fore, the ARMA {1,1) model can not satisfy the Furet’s taw for the variance., It follows from {2.58) that
the only way for the ARMA {1,1) to satisfy the Hurst's law is by having time-varying parameters.

Denote the k-th difference of XJ by A(k)XJ where

(k) _ o (k=1) {k-1)
AT X = A Xy -8 LS (2.61)
For any lag i
(k) - alk-1) (k-1)
SRS I Sg-i T AT Ky
and
(k) (k) - alk-1) {k-1) = oalk-1) (k1)
A N R R Xy b Ky~ 4 Kyip B X
{k-1) (k-1) {(k-1) {k-1)
- A Hyy A Xgoq 7 Kyoqop 2 X33 (2.62)
Take Cov [A(i) XJ_1 A(k) XJ] = E[A(k) XJ~1 A(i) Xd] since E[Akxdl = 0. Denote Cov [A(k) XJ—i A(k) XJ] by
ng) and the covariance function of the original time series {XJ} at the f-th lag by r,. From (2.62) it
follows
2
{1) _ 2] ydHl
R = LT Mg
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2) 4 [4]("1)a+2

. H Y.
i J%0 iJ J42-J

2k N
{k} . {2x Jrk
Ry = -7y 2.63
i o U9 J( ) f+k-d { )
Denote the spectrum for the k-th differenced series by S(k)(w). Then
oo .
S(k}(w) - z Rék) eig’ﬂmﬁ, < w <
S
+ 2k ,
~ 2k Jd+k -1 2mmos
- b g Blen™ g e
s{ ) = ale) (2 sin ), s < w< k8 (2.68)

where i{w) is the spectrum of the original series {XJ}.
Following expression (2.64) and the argument given in the subsection on "model fitting and simulation® in
the section 2.2 on the perfodicities, an ARIMA (1.d,1) model, in its generating ferm, has the spectrum

2d

S{w) = k' d=1,2, ..., £ <w<eE {2.65}

for a random constant k. Thus Tim S{w) = « and the ARIMA {1,d,1) family of models have, in their generating
form, an infinite span of dependence and infinite variance. Thus it falls te the third class. The basic
inconvenience of the ARIMA (1,d,1) family of models is that it is nonstationary in its generating form.

As a result of the above analysis it is seen that the ARMA (p,q) models have finite span of dependence.
An important problem is the determination of the length of this span. This problem will be tackled by the
kelp of the autocovariance structure of the ARMA (p,q) and the threshold concept of Mundelbro? (1969). For
any ARMA {p.q) model the autocovariance funciion ry will decay to zero from the lag a = g+l on either
exponentially or in damped sinusoidal form {Boxw and Jenkins, 1971). Set some threshold 0 < s < 1 such that
the condition {rﬂlrol < s leads to ry approximately equal to zero. Then the tag T where the autocovariance
r, passes 5 1y for the first time, becomes the span of dependence. For the first-order autoregressive model
AR(1) the span of dependence T is

T=_InS 0<s<1  ¢] <1 (2.66)

Tni¢| °

This is the span of initial transient where the Hurst's laws hold. For the ARMA {1.1) model, T is

T E” s e ey ] 1% P10 fel<l o<s<1, g < (2.67)

161







CHAPTER 3 ~ ANALYSIS OF THE MONTHLY RAINFALL DATA

3.1 APPLICATION OF NONSEASONAL MODELS TG MONTHLY RAINFALL SERIES

In this section the models fitted to the monthly rainfall series after the series are square root
transformed and then stationarized by nonseasonal first lag differencing or by standardization, will be
considered. There are basically three steps in fitting mathematical models to stationary time series.

These steps are 1) identification of the model, 2) estimation of the parameters of the model, 3) diagnostic
check of the fitted model. In the sections below each of these steps will be described in detail in the
context of the analysis of the monthly rainfall series.

3.1.1 JIdentification

Identification of the time series model is done through the use of the autocorreiation function and of
the partial autocorrelation function. The behavior of these functions is reverse of each other and because
of this property they rendev a quick procedure for the identification of the model and its crder. While the
autocorrelation function of an AR{p) scheme tails off, the partial autocorrelation function for the same
scheme has a cutoff after lag p. On the other hand, for an MA(q) process the autocorrelation functicn has a
cutoff after tag q while the partial autocorrelation function tails off. For ARMA {p,q) model, if q < p,
the autocorrelation function decays from (g-p+l) lag on, and for g > p the autccorrelation function decays
from Yag (g-p+l) Tag on while the partial autocorrelation function decays from lag zero on.

3.1.1a One-lag Differenced Series

Table 3-1 lists the estimated autocorrelation function Ek calculated by

N~k
A CAR L)
A t=l
Py q {3.1)
1 w2
N:E.tzl (yt - )

for the second ovrder stationary time series {yt}° The series {yt} were stationarized through the first lag
nonseasonal differencing and then normalized. Table 3-2 gives the estimated partial autocorrelation func-
tion aik for the same series (Box and Jewkins, 1971). The 322 were calculated by

qjﬂ,ﬂ,:p} 3 =1
=1
T sz 90-1,0 -9
ha TR (5.2)
1- boq1 3P
gty $r-1,0 2
and (’bEJ = ¢£m15§ - (I)Q,Q, ‘53)2_}-’9’_& s J = 1, 2, veo R-1

3.1.1b Standardized Series

Tables 3-3 and 3-4 give the aytocorrelation and the partial autocorrelation functions for the monthly
rainfall series which were stationarized through the standardization procedure.

3.1.1c Statistical Tests and Discussion

Since in the eariier studies by Roesmer ond Yevdjevich, {1966}, 1t was concluded that the monthly
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rainfall time series is a white noise sequence, two statistical tests were applied to secend order station-
ary time series to test the hypothesis of white noise. The first test is based on Anderson’s statistic.
The second test is Box and Plerce's Portemantequ lack of fit test.

If a stationary time series {yt} is independently, normally distributed, for a moderate sample size,
N, dnderson (1942} showed that the first leg correlation coefficient, pye s normaily distributed with mean
«1/(H-1) and variance (NWZ)/(Nol)z.

mally distributed. For N guite Yarge p, can be assumed to be approximately normal with mean O and variance
S8 Py

He also roted that for any lag L the distribution of o 1% again nor-

1/M. Then a test for white noise can be devised at 5% level by considering the 95% confidence interval of
o as

o (95%) = + 1.96 (1/¥N} (3.3)

and considering the null hypothesis: P G for L > 1.

The second test is the Portemantean lack of Fit test utilized by Box and Plerce {1970}. Taking the
first L autocorrelations Si(a), g= 1, ... L of the residuals {gt} from any ARIMA {p,d,a) process, Box and
Piercee (1970) showed that if the fitted wodel is appropriate, then the statistic

is approximatety distributed as x2{2~p“Q) where n = N-d is the number of y's used to fit the model. On the |
nypothesis that the model is a white noise, that is, an ARIMA {0.d,0) model, then the residuals {at} are the :
stationary time series {yt} and 52{3} is the autocorrelation function of the stationary time series. Then, |
it ARIMA (0,d,0) is appropriate, the statistic Q will be approximately distribuied as XE. The tesis for a
white noise model for the monthly rainfail series based on the above iwo statistics are given on tables 3-1
and 3-2.

From tables 3-1 and 3-2 it can be seen that the tests for the {0,1,0) white noise hypothesis fail at
the 5% level. This is expected since the first lag differencing amplifies the high freguency components of
the sample spectrum. As can be seen from table 3~1 all the autocorrelation functions have a cutoff after
iag 1. On the other hand, all the partial autocorrelation functions fail off. This behavior suggests the
theoretical beshavior of an MA(L) model. Therefore, the ARTMA {0,1.1) model was selected for further con-
siderations.

If tables 3-3 and 3-4 are analyzed, it can be seen that white noise hypothesis for square root trans-
formed, standardized monthly reinfall series is accepted at 5% level by Anderson’s test and at 10% level by :
the Portemanteau lack of it test in 5 out of 15 cases. There was one case where the hypothesis was acceptedi
by Anderson’'s test at b% Tevel but was doubtful at 10% with X%O = 16 in the Portemanteau iack of fit test :
since the samplie statistic § was egual to 15.83. There was one case where Anderson's test was doubtful at
5% Tevel since the confidence timit BL {95%) was 1.0785 while there were three autocorrelation coefficients ;
with the value 1.071. The autccorrelation coefficient at 33rd Tag was .08 and the autocorrelation coeffici-
ent at first lag was .09. However, for the same case the Portemanteau lack of fit test was accepted at 10% L
level with X%D = 16.0. Including the doubtful cases as acceptable, the white noise hypothesis was accepted
in 7 cut of 15 cases. Therefore, the white noise model is inadequate to explain the stationary component
of the monthly rainfall time series. If the autocorrelation function is analyzed, it will be seen that the
first lag autocarrelation coefficient is small but significant. This was tested by considering Rartiett's
(1946) approximate statistic for the variance of the estimated autocorrelation function of a normal process
given as

o 2 2 2
2Ry {Dv F Pyap Pyag T B0y Py Pyl 20y pl}
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For a process where 6, = 0 for v » k
k
var [,] = %-{1 2 21 95} (3.4)
V:

Therefore, the standard errors of the estimated autocorrelations based on the hypothesis that D, = 0 for
2> 1 will be

1

EARE SRR (3.5)

Quenouille {194%) showed that on the hypothesis that the process is autoregressive of order p the standard
error of the estimated partial autocorrelation $kk becomes

o (@kk) = 1/ k>p+ 1 (3.6)

Based on the hypothesis that oy = 0 for k > 1, the standard deviation of ER for £ > 1 was calculated from
{3.4) and the auytocorrelation functions of the monthly time series were investigated for the values falling
out of the range % G (62). This test was inconclusive since for almost all the investigated time series,
with the exception of station 2840, there were enough a%’ £ > 0 where |B£| >0 (BQ). However, since the
distribution of £y for the dependent series is not theoretically known, no further analysis could be
applied. Howev v, on the hypothesis that Py = 0 for v > 0, and the time series is a white noise the El Was
significant at 5% level in 10 out of 15 cases by 4ndersoms' test. Therefore, the first lag autocorreiation
coefficient was treated as significant and based on the general behavier of the sampie autocorrelation func-
tion a cutoff was assumed afier the first lag. Then the hypothesis that the monthly rainfail series is
AR(1) was considered by the use of (3.6). Again the test was inconciusive since for all series except sta-
tion 2840, there were %@kkl >4 ($kk) for k » 1. Since the distribution of @kk for dependent series was not
known, a further analysis could not be pursued. If table 3-4 is analyzed, it is seen that the ¢kk has a
cutoff after lag 1 as a general behavior for the 15 time series considered.

The autocorrelation function of ARIMA (1,0,1) model decays from the fivst lag on while the partial
autocorrelation function also decays from the first lag on. The sample autocorrelations generally had only
Bl as significant and $11 is the only significant value for the autccorretation. However, since 51 and $11
are small, the decay that should be observed is not observed. On the other hand neither AR(1) rnor MA(1} can
solely explain both the behavior of the autocorreiztion and the partial autocerrvelation functions. There-
fore, the more general model {1,0,1} was considered for further studies of the standardized monthly rainfali

time series.
3.1.,2 Estimation

3.1.2a Initial Parameter Estimation

The initial estimates of the model parameters were obtained from the autocovariance structures of
ARMA (p.q) models. For square root transformed first lag differenced monthly rainfall series ARIMA (0,1,1)
was identified as a model. This mode?, written in cpen form

yo = (1= B) X = {1-88) 2, (3.7)

has & and oi as its parameters. From the aytocovariance structure of ARIMA (0,1,1}
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STATION

NUMBER
2535
2695
3795
3805
3280
3445
2840
3245
3765
6120
3655
2750
3485
3290
3030

STATION

NUMBER
2535
2695
3795
3805
3280
3445
2840
3245
3265
6120
3655
2750
3485
3290
3030

TABLE 3-1

AUTOCORRELATION FUNCTIONS FOR SQUARE ROOT TRANSFORMED MONTHLY RAINFALL SERIES STATIONARIZED
BY FIRST LAG DIFFERENCING AND TESTS FOR AIRMA (0,1,0) WHITE NOISE MODEL

LAG

LAG

-.43
~.46
-.45
-.43
-.43
-.41
-.45
-.40
-.50
-.44
-.45
-.46
- 44

20
.08

.02
.04

.00
.05

.05
D4
.05
.02
.07

.01

.02
-.01
-.06

.03
.00
.01
.05
.01
.07

21

.02
-.06
-.03
-.02
=04

.06
.04
06

.04
02

3 4
-.08 .09
-.06 .03
-.67 .00
~.04 .00
~.10 =01
-.07 -.00
~.03 .01
.04 -.06
.04 -.05
<03 .05
-.03 .01
.04 -.06
-.03 .02
~.02 -.01
.01 -.03
ESTIMATED
22 23
.04 ~.08
.01 -.05
.08 -.09
.03 -.06
.03 -.08
04 -.06
02 .02
.01 .01
.03 -.06
.03 .04
.04 -.10
.03 -.05
.02 .03
01 -.03
.03 -.04

5

.03
.04
.03
.02

.01
-.06
~.06
-.05
-.03
-.04

.05

6

.03
.01
.03
.02
.02
.02
.02
.01
.07
.a3
.05
.04
08
.03
.01

ESTIMATED AUTGCORRELATION FUNCTION

7
-.04
-.02

.02
.02
.00
-.04
.02
-.06
-, 1G
N
- 07
.06
-.02
.05
.02

8

.05
.04
.03
.00
.02
.01
.02
.02
.05
.08
09
.0%
.01
.02
.04

g

-.05
-.05
-.G4
-.05

.00

-.03
«. 04

.02
.00
.04

~. G4
~.03

.03
02

-.09

AUTOCORRELATION FUNCTION

24 25
L10 =02
03 .05
060 .05
.05 .04
06 .03
06 .09
06 .01
-.02 .04
.04 .03
.00 .09
.09 .00
.06 .03
-.01 -.03
-.06 -.023
-.01 -.02

26
.07
.03
-.04
-.03
-.03
~.05
.01
-.02
-.01
-.10
.0b
.G5
-.01
.01
-.01

27

.12
.06
.00
.02
.02
00
.06
.03
.06
.04
.04
.03
.03
.03
.04

28
.10
.04

-0

.01
.0z

-.03

.04

-.G3

.0z
.03

-.02

01
.05
.02
01
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10
.02
.04
GG
-.03
-.03
~.03
.03
-.01
-, 01
-.04
-.402
.04
~.05
.04
.06

29

.00
.05

.02
~.00
-.03
~.03
-.01
-.02
-.01

.01

11
-.01
-.03

07

.10

.02

.08
-.02
-.01

.03

.05

.03

.02

.08
-.02

.05

30

07

.03

.05
-.04
-.01

04
01
.02
.04
.01

12 13
09 -.02
05 .01
.03 .03
.03 .00
.02 .07
.02 .06
0% -.02
0402
.02 .02
06 .07
.03 .02
.04 .02
L0401
.06 .01
.02 .00
And
at

14 18
-.01 -.04
.02 -.01
-.03 .04
-.03 .07
-.06 .01
-.03 .01
.01 -.06
-.04 .02
-.03 .05
-.01 .0G
-.02 .02
-.01 .02
.02 -.01
.09 -.05
04 10
TEST FOR
erson's
Test
b% Level
FAILS
PASSES
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS

i6
.03
-.02
~-.04
-.06
-.03
-.05
.02
-.03
-.04
-.01
-.05
-.04
.C5
.02
.01

17 18 i
05 .04 -
.02 -.02
04 -.04 -,
0Z2 0 .00 -
.02 -.02 -.
.05 -.07
.02 .03 -
01 .00
.03 .01 -,
04 .03
Do 01 -
.01 -.10
.02 -.05
.01 .03 -
060 .03 -
WHITE NOISE
Portemanteau

Lack of Fit Test

at 5% with

FATLS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS
FAILS

2
ST

9

.05
.00

01
a3
0z

.03
.01
.00

01

.62
.03
.03
.03
.02

a2



TABLE 3-2

PARTIAL AUTOCORRELATION FUNCTION FOR SQUARE ROOT TRANSFORMED MONTHLY RAINFALL
SERIES STATIONARIZED BY FIRST LAG DIFFERENCING

STATION RECORD ESTIMATED PACF

NUMBER LENGTH LAG= 1 2 3 4 5 & 7 8 9 10 11

2535 516 -.41 .24 .25 A0 -7 -3 .16 .11 i .15 .16
2695 671 -.43 <24 .22 14 -14 .15 17 .1z .18 .15 .18
3795 685 -.46  -.26 .24 22 -.14 0 .12 .08 .08 15 .18 .19
3805 684 - 45  -.29 .26 22 =14 -.18 .09 .06 12 19 R
3280 576 -.43 .20 .22 200 -.13 -.13 .12 .13 .12 .16 .14
3445 660 -.43  -.24 .2 .20 =15 -.10 13 11 .14 23 12
284C 684 -.41 -.28 .23 A7 -1 =014 .10 .10 .15 13 (17
3245 492 -.45  -.30 .17 .18 -.15 -.11 17 .16 .12 A1 13
3265 528 -. 40  -.28 .14 4 -1 .08 .21 .15 16 .16 .13
6120 576 -.50 -.29 .24 130 -6 -.22 .07 1 .07 11 LT
3655 504 -.44  -.24 .18 15 -.200 .12 .19 .09 .11 .16 L1
2750 492 -.45  -.25 .23 A7 =19 =17 A5 -2 .16 .14 .16
3485 49z -.46 -.23 .18 200 17 -.15 .14 .14 .13 15 .13
3280 528 -.44  -.25 .24 .23 -1 -.Z21 .15 2 .14 11 .13
3030 468 - 47 -.29 .25 200 =15 =17 .08 .10 .15 .15 .09
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TABLE 3-3

ESTIMATED AUTOCORRELATION FUNCTION

7
.02
L0k

02 -,

.00
.04
.01
01 -
.Gl
.0C
12 -
.05
.08
-.02
.02
11

8

.0z
07

a1

.00
.04
.02
.02
.02
.07
.01
.09
.10
11
07
L1

e
.03
0z

-.03
-.07

.01

-.02

.01
.04
04
01
.02
.0z
.00
.05
.08

AUTOCORRELATION FUNCTICN

AUTOCORRELATION FUNCTIONS
AND

eR/ LAS L2 3 4 s g
2535 .14 .03 .00 .01 -.05 -.01
2695 .09 .00 -.04 -.01 .06 .03
3795 05 .01 -.03 .05 .08 .04
3805 .06 .00 -.02 .03 .04 .01
3280 .12 .03 -.07 .00 .07 .07
3445 .06 -.02 -.07 .02 .05 .05
2840 11 .01 .02 .01 -.01 -.04
3245 .14 -.02 -.01 -.06 -.05 .0%
3265 .14 .01 .01 -.05 -.05 .05
6120 .05 .07 .01 .04 -.04 .01
3655 .13 .04 -.02 -.05 -.04 .03
2750 .13 .05 -.04 -.07 -.04 .02
3485 .10 .00 .00 -.08 -.04 .02
3290 .14 .00 -.02 -.05 -.03 .09
3030 07 .00 -.03 .04 -.01 .04

STATION / 5o ESTIMATED

NUMBER 20 21 22 23 24 25
2535 .03 -,01 -.03 .09 -.07 .00
2695 .01 .03 -.03 -.07 -.04 .07
3795 .02 .00 .03 -.08 -.02 .0l
3805 .02 .00 .00 -.06 .00 .03
3280 .00 .00 .02 -.01 .03 .04
3445 .04 -.01 -.01 -.06 -.01 .06
2840 .02 -.03 -.02 -.04 -.04 .00
3245 .01 .06 .01 -.03 .02 .06
3265 .01 .10 .04 -.02 .01 .09
6120 -.05 «,02 ~.01 .04 .05 06
3655 .01 -.03 ~.08 ~.11 ~.03 .01
2750 02 .02 ~.08 -.10 .05 .03
3485 010 .07 .02 -.03 -.01 .08
3250 00 .08 .02 -.04 .00 .07
3030 .06 .00 ~.06 -.07 -.07 -.07

26
03 -
.04
-.03 -
.00
-.02 -
-.04 -
.03
.05 -
.06 -
.05

-, QL =~
04 -
05 -
.04

27

.02
.01
.01
.01
.01
.04
.01
.01
.05
.03
03 -,
.04
.07
.02
.04

03

28
.04
.04

~.02

.01
.04

-.04

.04

-.05
-.07

.03

-.03
-.03
-.08
-.04

.02
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16
01
.63
.02
.00
.01
-.00
.02
01
.04
.02
-.02
.01
.00
.01
-.03

29

.00

G4

.02
-.03
-.03
-.03
-.02
-.04
-.05

.04

11

.02
.Gl
.06
.08
01
.05
.02
.04
05
.02
.04
.01
.02
.03
.03

30

.07
.02
01
01
.07
.01
.07
.08
.06
.03
.01
.00
.04
.07
.00

12

07
.03
04
.03
Q1
.05
.03
.02
.03
.08
.02
.01
.06
.03
.03

13 14 1
.05 -.08 .
.05 .03
.01 -.01
.03 -.0%
.03 -.03
.03 .00
.04 -.03 -

.0z -.04
.01 -.02
.05 .02
.02 -.05
.67 -.03
.06 -.02
.00 .0C
.08 .01

b
03

.02
.04
.06
.00
.02
.04
.02
.05
.00
.Go
.04
.05
.03
.04

FOR SQUARE ROCGT TRANSFORMED STANDARDIZED MONTHLY RAINFALL
TESTS FOR ARIMA (03,0,0) WHITE NOISE MODEL

16

.06
.02
.00
.04
.01
.00
.03
.02
.03
.03
.06
.03
01
.03

.01

SERIES

1718 19
-.02 .02 .03
Q0 .02 .03
.01 -.06 -.02
-.03 -.063 .04
.04 .03 .00
.03 -.03 .06
-.03 -.01 .02
-.02 .02 .00
01 .04 .03
-.03 .62 .01
A 01 .o
-.04 -.03 .04
-.02 .01 .01
02 .04 .01
.06 .01 .02

TEST FOR WHITE NOISE HYPOTHESIS

Anderson's
Test
at 5% leve

REJECT
DOUBTFUL
REJECT
ACCEPT
ACCEPT
ACCEPT
ACCEPT
ACCEPT
REJECT
ACCEPT
REJECT
REJEET
REJECT
REJECT
ACCEPT

1

La
a

Portemanteau
ck of Fit Tesgt
%t 10% with XIp

ACCEPT
ACCEPT
ACCEPT
ACCEPT
REJECT
ACCEPT
ACCEPT
DOUBTFUL
REJECT
ACCEPT
REJECT
REJECT
DOUBTFUL
REJECT
ACCEPT




STATION RECORD

NUMBER

2535
2695
3795
3805
3280
3445
2840
3245
3265
6120
3655
2750
3485
3290
3030

LENGTH

516
671
684
684
576
660
684
492
528
576
504
492
492
528
468

TABLE 3-4

PARTIAL AUTOCORRELATION FUNCTIONS FOR SQUARE ROOT TRANSFORMED
STANDARDIZED MONTHLY RAINFALL SERIES

LAG =

1

.14
.09
.05
.06
.12
.06
.1l
.14
.14
.05
.13
.13
.10
.14
.07

.01
.01
.01
.01
.01
.02
.00
.04
.01
.07
.02
.03
.01
.03
.01

01
.00
.06
.04
.01
.G3
GO
.C6
.05
.03
.04
.06
.08
.04
.05

01
.00
.06
.04
.01
.03
.00
.06
.05
.03
.04
.06
.08
.04
.05

06
.07
.04
.07
.04

-.03
-.04
-.05
~.02
-.02
-.02
-.02
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.01
.03
.04
A0l
.05
05
.04
07
.06
01
.05
.03
.02
.10
.04

.02
.05
02
.00
.03
01
.01
.01
.62
.13
.04
.05
.02
.01
.11

.01
.06
01
.00
.04
.03
.02
.02
.07
.03
.08
.08
1
.07
01

.03
.01
.04
.07
.01
.62
.01
.03
.02
.00
.01
01
.03
.03
.09

10

.00
.04
02
GG
.62
.00
.02
.61
.04
02
.02
0%
.00
01
.02

11

.02
03
.05
.08
0%

n
o

.03
.04
.04
.02
.05
.02
.02
.04
.02

12

07
.03
.05
.04
.01
.07
.03
.04
.04
.07
.02
.00
.04
.04
.02




Estimated first lag autocorrelation 61 is substituted into (3.8) to obtain the estimate of the MA component

a5
1L
| { 1 1
8% - 52— ¢ -1y, (3.9)
2@1 45? J

Only the solution that satisfies the invertibility condition {8] < 1, will be taken as the value of . The
residual variance estimate 62 is then obtained as

£2
J
52 Loy (3.10)
1+ 8]

For the square root transformed standardized monthly rainfall series ARIMA {1.0,1) model was identi-
fied. This model is

(1 - ¢8) y, = (1-68) a . (3.11)

Substituting the estimated autocorrelation coefficients into the first two values of the autocorrelation
function of ARIMA (1,0,1) & and B can be obiained from

61 = (1 - §1¢1}{¢1 = él)/(l + é

Py = r1¢1 (3.12)

where §¢1§ < 1 and |6} < 1 are the stationarity and invertibility conditions respectively. Once $1 and @1

are evaluated 62 is calculated from
G (I IV I S T DI (3.13)
a 1 / 171 : ‘

The initial estimates of the parameters for both ARIMA {0,1,1} and standardized ARIMA (1,0,1) are given in
table 3-5.

3.1.2b Parameter Estimates from the Sum of Squares Surface

For N = n+d observations assumed to be generated by an ARIMA (p,d,q) model Box and Jenkins (1971) give
the Unconditional Log Liketihood Function as

L(5.3,0,) = £(5,8) - nine, - $(5.8)/207 (3.14)

on the assumption that a, -~ N{O,oi). In (3.14) f(¢,6) is

t

£(3,8) = &n ZQ‘Mgp’Q)r%

where [MQP’Q))"I c§ is the n x n covariance matrix of the stationary time series {Bow ond Jenkins, 1971).
5(9,8) is the unconditional sum of squares function given as
- n — 2
$(6,0) = 1 (a le.8.0)" .

= eon

(3.15)

However, expression (3.15) is just the least squares error criterion. Boz and Jemkine {1971} state that for
mederate and large n {3.14) is dominated by S(%}@)/Zgg and therefore the contours of the Log Likelihood
function (3.14) can be approximated by the contours of ${¢,8). The ARIMA {p,d,q) parameters which are going
to maximize the Loy Likelihood function are obtained by minimizing the sum of squares of residuals. }
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Therafore, for ay being normal, least squares estimetes closely approximate the maximum likelihood esti-

mates. The computer program for the estimation of ARIMA {p,d,q) parameters minimized the sum of squares

of residuals and therefore used least squares estimation which is independent of the distributien of 2y
For an ARIMA {p.d.q) process if Y is the stationary series with E[yt] = 0. That is, if Yy = Vd Xt

where Xt is the original series, using the forward shift operator ¥ such that ¥Xt = Xt+1’ the ARIMA (p,d.q)

is written as

by, - E ¢ylypegl = leyl - g 6leg,yl (3.18)
J=1 J=1
where [y,] is the expectation of y, conditioned on @,6 and {yt}, and {e.] is E{etiﬁ}g}ﬁ). Since e_j,
J=10,1, 2 ... are independent of {yt}, [e_J] =0 for J =0,1,2, .... Then using (3.16) {m_d}, J =
1, 2, 3, ... are backforecasted. Since there is a stationary autoregressive operator, [y_J] at or beyond
some time ~T can be assumed zero. Then beginning at time -T, {at] = E{at&§;6laﬂ for t = -T + 1, ..., 0, 1,

are obtained from
[a,] % 6y [ 1= 1yl E byl ) { }
al = a, 1= [yl = Y, . 3.17
t J51 J Mt-d t 351 JHt-d

where [a.] = C for t < (~T + 1). The unconditional sum of squares ${4,6) is obtained from

n

S5 = 1 (el (3.18)

t=-T+1

For given set of values of [¢1, v ¢p} and {61, cers aq] sum of squares contours for the vesiduals can be
plotted to see what combination of the parameter values yields the least sum of squares. In the identifica-
tion process ARIMA {0,1.1) for the square root transformed then differenced monthly rainfall series and
ARIMA (1,0,1) for the square root transformed then standardized monthiy rainfall series were identified.
The sum of squares surfaces of the residuals for the 15 monthly rainfall series in the state of Indiana
were obtained for the ARIMA {1,1,1) and ARIMA (1,0,1} models. ARIMA (1,1,1) model was considered instead
of ARIMA (0,1,1) for further analysis. The reason is ARIMA (1,1,1) is a more general form of ARIMA {0,1.1).
As an example, the sum of squares surfaces of the residuais of ARIMA {1,0,1) and ARIMA (1,1,1) models for
the monthly rainfall series of Station 3030 are shown on tables 3-6 and 3-7. A computer plot of the sum of
squares contours of table 3-6 is shown in figure 22. The residual variance corresponding to the least
squares estimates is obtained from

52 = - % 5 5(3,6) (3.19)

where § and § are least squares estimates of the autorecressive and moving average parameters respectively.
For judging the precision of the parameter-estimates the approximate confidence region can be determined by
calculating the sum of squares contour bounding this region. This contour is given as (Bow and Jenkins,
1971}

S(6.6) = 5(3,6) 11 + x2(2)/n) (3.20)

where 1 - ¢ is the confidence Tevel and S(@,@) is the mintmum sum of squaves contour corresponding to the
Teast squares estimates of the parameters. Approximate confidence region at 95% level is calculated and
given in table 3-8. In table 3-6 the hatched region shows the approximate 95% confidence region for ARIMA
(1,0,1) of the standardized monthly rainfall series at Station 3030. This region includes a large number of
combinations of {8,8) since the sum of squares surface is very flat. Such a flat surface actually stresses
the need for calculating the sum of squares surface for the residuals of ARIMA (1,0,1) model of the monthly
rainfall series, the least squares estimates for ¢ and & greatly varied from one time series to another,
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This is seen in table 3-8. MNo estimate for Station 6120 could be obtained since the surface was sioping
downwards in the direction of the parameter increase and there wes no local minimum smaller than the sum of
squares value at the boundary ¢ = .5, & = +.4 of the search region -.5 < ¢ < +.5, ~.5 <9 < +.5. For fine ;
parameter estimation & = .99 and & = .99 were taken as the initial values for the time series at station
6120, In table 3-7 the approximate 45% confidence region for ARIMA {1,1,1) is hatched. The region is quite
small showing that the parameter estimates ave stable. As is seen from the table 3-7 the Teast squares
estimate for 6 is equal to unity, that is, the ARIMA (1,1,1) model for the case of Station 3030 becomes

(i« $B)(1 - B)Xt

(1-8la, (3.21)
which 15 equivalent to

B

a {3,22)

(1-¢B)Xt +

which is AR(1) model. This same behavior was chserved at Stations 2750, 3245, and 3485 besides 3030. For
fine estimation 5 was taken as .99.

3.1.2¢ HNonlinear Estimation

Once the approximate Jeast squares estimates for the parameters of ARIMA (p,d.q) model are obtained
from the sum of sguares surface of the residuals, these estimates are used as the initial values of the
nontinear interative estimation of the parameters which minimizes the sum of squares of residuals. There-
fore, the estimation probiem reduces to the minimization of

$(%,8) = [a

1
=1

where

[a {3.23) %

!
m
—
[=1]

s
|
o
=)

¢l =
[a,1"s are nonlinear functions of the model parameters in ARIMA (p.d,q) model due to the presence of the MA |
component {Box and Jemkins, 1971). 1In order to use linear Teast squares technique for estimation Iat] are

linearized by expanding [at} about {at§$5,§b,$] in Taylor series and just considering the linear term; that
is,

il o0

b
[a,3 = laglogabgoyl + L (45 - o5 o) 8lagd/o0, SRCREENNETEN TN (3.24)
t 070 jep o 10T R $;¥05,9 J71 T JE@J*BJ,G

where 0,§b are the vectors of initial parameter estimates for AR and MA components respectively. The par-
tial derivatives are calculated from

ala,]/od, ., = {{atiy, 01,00 - 5,0 " S5r oer Oy 00 By g0 ver Bg g!

$i=¢4 0

. {atgm, <§>1’0, q’l,O’ 9190, e eq,(}l}/ﬁi (3.25)

where 8 is the perturbation (Box and Jenkins, 1971),
Defining § as the vector whose {p+a} elements are the AR and MA parameters ¢ and & and defining Xy 4 @S

S —a[atJ/agi’ , (3.24) becomes

750

ay = ap,g - (By = By gl g - (By = By gl b m 7 B = Boip 0 pequt (3.26)
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Then,

1-T 1-7,0 Ry qur o mm Koeq 1T By - 6150

L ] %n,0 w0 © Ypraan L Pprg T Bpraso

A=hy - (x) - (8- By) (3.27)

S(B) = A'A
LT e o TUT -
= Ay - (B - By XHAO - X(B - By) . (3.28)
Minimization of S(3) will yield
(@ - Fy) = (xx x g (3.29)

Since {at} was not linear fovr the parameters of ARIMA {v,d,q), one mgltipie linear regression trial is not

going to produce the least squares estimates. The parameter estimates found at the end of each iteration
~are substituted as the initial estimafes for the next iteration. Once the convergence is reached, the

covariance matrix of the least squares estimates of the ARIMA {p.d,q) parameters can be obtained as

1

o(#.8) = ELOC X AT IAgx(X' ) 7

¢(3,6) = (xTx)“leIEsgx(xTx)"I

¢(3.5) = (X070 x0T o
¢(3.8) = (X0 &

a

The standard errors of the parameter estimates are then obtained from the diagonal elements of the covariance
ratrix.

The least squares estimates through nonlinear estimation for the parameters of ARIMA (1,1.1) and ARIMA
{1,0,1) models are shown on table 3-2, If the estimates From nonlinear estimation are compared with those
from the sum of squares surface, the results agree quite well considering the flatness of the sum of squares
surface. The results of the parameter estimation for ARIMA (1,1,1) model where § > .99 for all cases sug-
gests that differencing was not necessary since with 8 = 1.00 ARIMA {1,1.,1) reduces to AR(l}. That is,

(1 - ¢B)}{(1 - 8) {1 - 8)a is simply

Xy = "

{1 - ¢B)Xt =y {3.31)

which is AR{1) model. However, the sole purpose of experimenting with nonseasonal first lag differencing
was for removing the periodic compenent of the time series. & =1 suggests that ARIMA {1,1,1) is not a suit-
ahle model for monthly rainfall series. Since the sum of squares surface of the residuals of ARIMA {1.0.1)
model for standardized monthly rainfall series is very flat, it is not surprising that the standard errors
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TABLE 3-5

PREL IMINARY ESTIMATES FOR MODEL PARAMETERS FOR ARIMA (0,1,1) AND ARIMA (1,0,1) MODELS

STATICN
NUMBER
2535
2695
3795
3805
3280
3445
2840
3245
3265
6120
3655
2759
3485
3290
3030

RECORD

LENGTH
516
671
684
684
576
680
685
492
528
576
504
492
492
528
468

ARIMA
8

.523
572
.670
.626
572
572
L5623
626
500
.999
600
.626
.670
600
.700

(0,1,1)

s e pt e 2 S e e

e e i e

~

a
a

.280
. 266
.235
.315
220

.280
.327
.293
272
.942
.228

.230

.245
193
244

173

~

9

.15

c

11

H

.22
15
LG4
.15
.10
988
.20
.50

o

ARIMA (1,0,1)

9

0
.07
-.05
.10
-.30

0
-.30
-.10
.999
.10
.40
-.10
.12
-.02




@

fas))

0
+.
+.
+.
+.

+.

—

[l S PEINE RS 3

.C)l.DOa‘ﬁJG\U"I-th\)i—lO

1
2
3
4
5

SUM

456.

457

488.

517

555.

603

664.
742,
843.
$80.

1176

TABLE 3-6

OF SQUARES SURFACE FOR THE RESIDUALS OF ARIMA {1,0,1) MODEL FOR STANDARDIZED MONTHLY
APPROXIMATE 95% CONFIDENCE REGION IS HATCHED.

RAINFALL SERIES AT STATION 303
B -4 -.3 -.2
000  455.853 467.086 489.698
.372 456,000 454.888 464.036
255 467.333 456.000 454.255
.627  487.867 467.325 456.0C0
748 B17.203 487.730 467.329
.946  556.122 517.416 487.827
732 606.479 557,772 £518.310
279 672.054 $131.605 560.932
518 758.482 683.902 61%.779
605 B76.378 783.835 702.37/
.B28 1045,972 928.176 8Z23.441

0.

-.1

523.689
483.444
462.098
453.893

456.000

467.355
488,134
520.035
£66.111
632.603
731.767

5
5
4
4
4
4
4
4
5
5
6

¢

69.06G
13.112
79.529
§1.003
53.743
56,000
78.424
88.914
22.899
74.314
53.154

TASLE 3-7

1

625.810
553.041
506.549
477 .330
460.559
453,763
456.000
467 .569
490.144
527.509
587.601

.2

693.940
603.229

543.
502
476

157
.875
446

460.642
453.922

456
467
492,
535

.000
.844
188
.110

773.
663.

589

501

476

456

485

3

449
678

.353
537.

638

.406
.639
461.
454,

189
207

.000
468.

352

679

864.
734,
645.
581,
53b.
501
477
462,
454
456
468

337
387
137
618
438

754
.803

189

.bl12
.000
.309

SUM OF SQUARES SURFACE FOR THE RESIDUALS OF ARIMA (1,1,1) MODEL FOR STANDARDIZED MONTHLY
APPROXIMATE 95% CONFIDENCE REGION IS HATCHED

669
657
649,
643
839.
637
634.
631.
626,
620.
707.

RAINFALL SERIES AT STATION 3030.

.5

.093
.819

554

634

715

.028

751
558
248
929
177

669.
649.
633,
.567
807

621
61l

604.
443

597

590,
582.
573.
634,

4

584
560
874

174

439
027
973
120

i

686.
712

656

632.
750
597

612
596

583.
571.
944

559

547.
.b42

536

574.

3
854

457

116

316

208

371

720,
679.
645.
241
593.
573.
370
540.
523.
508.
L4422

617

556

527

2

9063
265
305

783
855

074
851
934

771
717

603

493

.1

729
220
762.
635.
466
575.
552,
§30.
508,
490.
.249

416
04z

391
606
828
976
850

1

833

770.

713

666.
625,
59G.

560

53Z.
506.

482
471

74

0

334
576
791
161
546
723
.023
207
163
390
783

923.
L334
431
710,
680.
616.
578,
209

835
679

544

512,
483,
.049

463

1

718

570
323
852
621

452
555

1024
523
839

707

566

467

.2

879
494
L334
768.

287

ASE
654.
608.

778
401

836
628,
494,

843
343

048

1142
1023
G23
839

649
500

483

.3

820
055
501
L334
767.
704,

167
500

.362
.087
555,
£14.
786

336
746

1277

1138,

1021
923

839,

7646
701

643.

591

544,

513

538
017
933
.680
334
019
505
962
.93z
7582
234

966.605
815.356
710,510
634.816
578.542
535.985
503.7862
479.948
463.68C
455,133
456.000

1429

1021
923

764

.035
1268.
1134,
335
.998
839.
.829
698.
638,
584.
555,

481
628

334

452
629
452
161
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TABLE 3-8

PARAMETER ESTIMATES FOR ARIMA (1,1,1) AND ARIMA (1,0,1) BASED ON SUM OF SQUARES SURFACE
5(§.0) = za2(3.9)

${$,8) FOR S{&,?) FOR
APPROX. 95% APPROA. 95%
T ER e s 2 see WS 9 g s SRR
2535 516 1 .8 1.015 530.79 537 .2 .1 960 494,85 500
2696 671 1 .9 1.020 £86.31 692 g -.1 .965 654.53 658
3795 684 1 .9 1.030 711.38 716 ¢ g L9540 672.00 676
38056 6584 0 .9 1.050 716.39 722 0 .1 .984 671.12 676
3280 576 1 .9 1.061 585.60 589 .2 1 .305 556.08 579
3445 660 1 .9 1.023 682.61 687 0 -.1 L8370 646,95 660
2840 684 1 .9 1.011 709.25 714 .1 .973 664.18 667
3245 462 1 .99 1.040 488.32 494 -2 -3 .94z 470.86 474
3265 528 2 .9 1.001 534.81 53% ¢ -.1 .948 506.47 519
6120 576 0 .9 1.025 597 .45 803
3655 504 1 .9 1.020 514.15 518 .3 2 .960 483.83 487
2750 492 1 .99 1.010 495,77 502 .2 1 .960 472.19 477
3485 492 2 .99 1.015 478.91 484 -.1 -2 870 475.29 479
3290 528 2 .9 1,006 533,14 540 -.1 -.2 .960 506.18 511
3030 468 ] .99 1.030 463.05 470 g -.1 L9565 453,74 457

TABLE 3-9
FINAL LEAST SQUARES ESTIMATES OF THE PARAMETERS FOR ARIMA (1,1,1) AND ARIMA (1.6,1) MODELS

ARTMA (1,1,1) MODEL ARIMA (1,0,1) MODEL

STATION ~ RECORD . X - . 2

NUMBER  LENGTH B e sE 3+ sE 52 Q(230.0.F.) 3+ sE 2 a(23.0.F)
2535 516 .188 ¢ .04 998 0 971 30.17 189+ .33 960 15.81
2605 671 159 + .04 995 % O 578 50.86 04 = 46 977 15.09
3795 684 .105 & .04 .91 = 0 997 35.40 32+ 1.0 983 21.33
305 684 084+ .04 994 :0  1.000  24.29 016+ .81 .98  19.53
3280 576 259 = .05 .990 £ O 083 36.23 169 & .37 968 12.95
3045 660 147 = .06 .995 £ 0 984 5L.79 055+ .79 982 18.12
2840 684 .156 % .04 .996 £ O 080 32.60 099 = .38 974 8.97
3265 492 .103 = .04 992 %0 098 2471 07 5 .30 983 12.47
3265 58 .203 £ .04 .995 = 0 966 45.60 011k 32 960 2Lz
6120 576 .06 + .04 9970  1.000  18.67 756 .30 975 23.84
3655 504 .71 .04 .998 £ 0 976 29.21 248+ .35 963 20.53
2750 492 176 & .06 .999 £ O 982 22.63 242 + .36 963 23.04
3485 492 L1664 .01 .999 & 0 073 45.46 044 = 49 969 22.05
3250 528 214 % .04 996 £ 0 961 45.82 -.013: .31 .90 16.48
1030 468 .109 £ .04 1399 = O 991 16.89 <0125 .13 970 23.40

X5y (95%) = 35.2 X5y (90%) = 32.0
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of the parameter estimates of ARIMA {1,0,1) are large. Therefore, ARIMA {1,0,1) parameter values are very
unstable and there is a large number of parameter combinations which will be inside the 95% confidence
region as was seen in table 3-6 for Station 3030.

3.1.3 Diagnostic Checking

The two tests applied for the diagnostic checking of the fitted models were the Portemanteau Lack of
Fit test =and Cumulative Periodogram test applisd to the residuals.

Portemanteau Lack of Fit test was utilized hy Box and Pierce {1970) as an approximate-test of the model
adequacy. Considering the aufocorrelation function of the residuals Sk(ﬁ} of the fitted ARIMA model and
taking L Tags such that the weights w(B) in the medel

yp = ¥{Bla,

will be smail after the lag L, Box and Pierce {1970) showed that if the model is appropriate, the statistic
G such that

L /\2 ~
Q=n [ pla)
k=1

is approximately distributed as xz(L-p—q). One can check the model adequacy by comparing it with the
theoretical chi-square value for {L-p-q) degrees of freedom.

Cumulative Periodogram test is devised mainly for the detection of the periodicity in the residuals.
The spectrum of white noise is 252 if only the positive side of frequency axis 0 to % is considered. Then:
the cumulative spectral distribution of white noise will be a straight Tine from (0,0} to (.5,1). Bow and:

Jenking (1971) showed that for I(fi) defined as

n 2 n z
I(f;) = (2/n){1 y a, Cos wait] + [tzl a, Sin wait}i},

t=1
J
{1/m) 7§ I(fi) is an unbaised estimate of cumulative spectrum. Therefore, the normalized cumulative
i=1
periodogram C(fJ) such that
dJ
b oI(fy)
i=1
) = ——7—
ns

is the estimate of spectral distribution. For a white noise series, the plot of C(fJ) versus f will be
scattered about a line joining {0,0) to {.5,1). Box and Jenkins (1971) state that "... periodicities in
the a's would tend to produce a series of neighboring values of I(fJ) which were Targe. These large
ordinates would reinforce each other in C(fJ) and form a bump on the expected straight Tine." The non-
parametric Xolmogorov-Smirmow test can be used to test whether 3y series is white noise or not. 1If the
straight Tine joining .(0,0) to (.5,1} is denoted by S(f). then the Kolmogorov-Smivmov Statistic X is
defined as

K = max |S(f} - C(fJ)[

where K has a sampling distributicn which was discussed in the part I of the report. Taking a certain
confidence Jevel e, KE, such that

PI|S(f) - C(fg)[ >K]=e
can be.found from tables. If K < KE, the hypothesis that the residuals of the fitied model is white noise:

is accepted at & level.
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Portemanteau Lack of Fit test is applied to ARIMA (1,1,1) and ARIMA (1,0,1) models taking L = 25 lags
and considering significance levels of 10% and 5%. The Lumulative Pericdogram fest is applied to the above
modals with 95% confidence level. Results are shown on Table 3-10. ARIMA {1,0,1) model fitted to the
standardized monthly rainfall series passes the Portemanteau Lack of Fit test at 5% and 10% levels in all
cases. ARIMA {1,1,1) model passes the test only in 7 out of 15 cases.

ARIMA (1,0,1) passes the Cumulative Periodogram test in 14 out of 15 cases at 5% level while ARIMA
(1,1,1) passes the Cumulative Periodogram test in 13 out of 15 cases. Therefore, standardization of time
series effectively removes the periodic component of the monthly rainfall series. As a result of the
applied tests, ARIMA (1,0,1} model fitted to the square rcot transformed standardized monthly rainfall
series is an adequate model for the hydrologic phencmenon of monthly rainfall.

TABLE 3-18
DIAGNOSTIC CHECKS ON RESICUALS

ARIMA (1,1,1) ARIMA (1,0,1)
STATION RECORD PORTEMANTEAUL  KOLMOGOROV-SMIRNOV PORTEMANTEAU  KOLMOGGROY-SMIRNOV
NUMBER LENGTH STATISTIC @ STATISTIC K STATISTIC Q STATISTIC ¥
2535 516 39.17 045 15.81 040
2695 671 56.86 045 15.09 .045
3795 634 35.40 .055 21.33 .035
3805 684 24,29 .035 19.53 .040
3280 576 36.23 .030 12.95 .025
3445 660 51.79 .025 18.12 .055
2840 684 32.60 .030 8.97 .050
3245 492 24.71 .035 12.47 .630
3265 528 45.60 .040 21.22 .G35
6120 576 18.67 .025 23.84 .035
3655 504 29.21 .025 20.53 .025
2750 492 22.63 045 23.04 .050
3485 492 45.46 .090 22.05 .095
3290 528 45.82 .090 16.48 .040
3030 468 16.8¢ .030 23.40 035
25 s 5
8=n kgl pk(a) Kyq (90%) = 32,0 X5, (95%) = 35.2
K = max [S(f) - C(f)] Kgsg = =22, K =22, q- [ﬁ—g—%}
B /q 2
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3.2 ANALYSIS OF ARMA {1,1) AS A MODEL FOR THE STATIONARIZED MONTHLY RAINFALL SERIES IN INDIANA

The ARMA (1,1) model was successfully fitted to the standardized monthly rainfall series at various
stations in Indiana in the previocus section. In view of the hydrologic significance of the ARMA (1,1)
model, its general properties need to be discussed in detail. In this section the stationarity conditions,
the autocorrelation structure, the spectrum and the impulse response characteristics of the ARMA (1,1} model
will be analyzed. In section 3.3, the long-range dependence characteristics of the ARMA (1,1) model were
analyzed. The reader can refer to that section for the dependence, spectral and variance-time behavior of
the ARMA (1,1} model for long time lags.

3.2.1 Stationarity and Invertibility Conditions

The ARMA (1,1) model is given as

Ve m 0 Ve T3 7 01 3 (3.32)

or
{l - ¢1B} yt = (1 - 618) at (3.33)

The stationarity and the invertibility conditions for a general ARMA (p,g) model were analyzed in
section 2.1. Since the root of (1 - ¢;B) = 0 should be outside the unit circle, 1/f¢1| > 1 and [¢1] < 1.
For hydrologically vealizable generation invertibility of {1 - 918) is sought. This is possible for
]eil < 1 since the power series expansion of 1/(1 - 618) converges only for this region. Therefore, the
parameter region of ARMA (1,1} is

._]_qq;lf.]_, m1<81<1.

3.2.2 Autocorrelation Structure

Boxw and Jewkins {1970) derive the aufocovariance function of the ARMA (1.1) model for lags 0, 1, and

U as
1+ 8 20,6
R, = i r1 2 (3.34a)
G 1 i a
....(f)z
(1 - ¢,8,)(¢5 - 84)
R, = 111 1752 (3.34b)
a
1 -4
R =¢ R ,=o0"lg U2 (2.34¢)
w T 0 Ry T Ry z :

The autscovariance function decays (for the parameter space of stationary, realizable ARMA (1,1)) either
exponentially as for positive ¢1 or in an oscillatory manner for negative ¢1.
The autocorrelation function is given by Rox and Jenkins (1970) as

Py - 5 (3.35a)
1+ 81 - 291¢1
and
_ou-1
o, =01 o > 2 (3.35b}

The behavior of oy in relation to the values of ¢1 and 61 was investigated by 0'Conmell (1871), He stated
that the Jow freguency or long-range effects can be preserved by the proper selection of the value of ¢1
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while the high frequency effects are controiled by the value of oy However, it was seen in section 3.3
that ARMA (1,1) cannot preserve the long-range variance time properties of Hurst'’s observations. 9 is the
only parameter affecting the rate of the autocorrelation decay. As @1 approaches unity the decay rate of
o, decreases. However, as it was seen in section 2.2, when ¢1 becomes unity, the ARMA (1,1} model, in its
generating form, yields infinite variance and generates arratic values.

3.2.3 The Spectrum of the ARMA (1,1)

The spectrum for an ARMA (1,1) model is given as {Jenking and Watts, 1968)

5 |1 - ale“izwwﬁz 1+ e% - 28, Cos 2my
S{uw} = a, 57 = 0, 5 s =kS < < KS (3.36}

1 - 4.8 | 1+ ¢5 - 26, Cos 2me

1 1 1
At w = 0, that is, at the spectral origin
, (1-8)7
MO gy Ttk et (3.31)
1~9
1

3.2.4 Impulsive Response Behavior of the ARMA (1,1}

The ARMA (1,1) model is basicaily a linear filter the transfer function ofrwhich is (1 - 818}/(1 - ¢1B)
with a white noise input ay and an cutput Yy- The memory of the ARMA (1,1} model can be analyzed by study-
ing the behavior of its impulsive response hk and by considering its Fourier transform H{w), which is
related to the spectrum by

Stu) = () [, a6 <w <

Taking the Fourier transform of both sides in egn. {3.32),

[+

Py
=0 "¢

o 12mut -i2mwt _  a eriemt 7 oa -1 gmut

-9 1 yiqe B
=1 Tl t2 ° g=p ool

Letting & = t-1, and denoting the discrete Fourier transform of Y by y(w), and that of a, by alw), the

previous equation becomes

y(w) " ¢ z er"TZTfUJ(»Q'}‘l) - El{ ) - B E aﬂle"i2ﬂw(£+l)
52,20 Q[:G
or . )
ylw) - o e ylu) = a(w) - 8 e a(y)
or
oy = Lo T )
1 - e 12m
from which
1 -oge IR gan
H(UJ) = W = z hJE .
1 - ¢e J=0
Letting P = e"izﬁw, the previous equation becomes
s J_1-8P_ ¢ J J
J hypY= = 7 (1-0P)a"P
30 Y L= 5o
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Expanding both sides of the above equation, one obtains

2

1- 6P - 4P - 8gp® + 6707~ 5g%ed ¢ g% - eyt Mt =g hP h2P2 N h4?4 b (3.38)
Equating the coefficients of P in {3.38},
hD =1
h1 = wf
- . .2
h2 G + ¢
g = <ol 4 o
hk = -e¢k”1 + ¢k (3.39)
Therefore, the impulsive response function of the ARMA (1,1} model 1is expressed as
hk = ] . k=0 (3.403)
O S | (3.405)
for ¢ < 1, |8] < 1. This result Teads to the casting of the ARMA (1,1) model in the form
vp=ap s I(e T ey (3.41)

For ¢ and © significantly different from +1 the impuisive response functiocn decays exponentially and the
mode! has a finite memory. The rate of decay is dependent on both parameters ¢ and 6. However, ¢ is really
the more important paramefer since it is exponentiated to the power eguivalent to the lag. If ¢ is positive,
the decay will be slow and the memory will be longer for & < 0 than for 8 > 0. For ¢ negative the decay

will be oscillatory.

3.3 APPLICATION OF SEASONAL MODELS TO MONTHLY RAINFALL DATA

It was shown earlier that 12-lag differencing removes the annual cycie in the monthly hydrologic time
series. However, 12-lag differencing was shown to introduce periodicities to the continuous spectral dens-
ity. These periodicities can be seen in figure 20 of the section 2.2 on differencing. However, these
periodicities in the spectral density are not due to any discrete spectral components created by certain
natural cycles.

Such a spectral density implies that there is a 12-lag relation in the series as well as a first iag
type relation. 12-%tag relation has the physical meaning that a particular month of this year is related to
the same months in other years. For the 12-Tag differenced series Bow and Jenkins (1971) propose the model

12) o

s By v x. =e (8

12 % 7 9 (3.42)

t

to explain the dependence of the cbservation Xt taken at the particular month to the observations taken at
the same month during previocus years. Since there are 12 months, there will be 12 such models for each
month. In (3.42) the symbol ¥y, Means {1~ Blz)
P-th degree and Ba(Blz)
Although the observation of the monthly rainfall at a certain month, say May, is related fo previous

May rainfalls, it is also related to the other monthly rainfalls during the same year. Then "the error
components, Bps Op g s in these models would not in general be uncorrelated," and "we would expect that
@, would be related to o, 4 and to Qg _ps etc.” {Box and Jenkins, 1971). To take care of the serial corre-
Tatjon within the months Box ond Jenkine {1971) introduced the model

and dp (812} is the seasonal autoregressive operator of
is the seasonal moving average operator of {-th degree.
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o(8) v9 o, = 6(8) a, (3.43)

t

which explains the correlation among Gps Cp_qs cene In expression (3.43) ¢(B) is the autoregressive
operator of p-th degree, 0{B) is the moving average operator of g-th degree, Vd = {1~ B)d and a, is white
noise. Assuming that the parameters @ and © obtained for each month are approximately the same, Boz and
Jentina (1971), by combining {3.43) and (3.42), arrived at the general multiplicative model

#(8) 0p(8™) v X = 8(B) GQ(Blz)at (3.44)

for 12 month seasonality. This is the general seasonal model which was applied to monthiy rainfall process.
The ARIMA (1,1,1)12 and the ARIMA (1,0,0) X(l,l,l)12 models were successfully fitted to monthly rainfall
series. Their autocovariance structures will be analyzed for identification purposes.

3.3.1 Seasonal ARIMA (1,1,2)12 Model

This model is

(1 - o8*%) v 1 - oat?) (3.45)

1% = ( 3

. ) . 2, _ _ 12
where &, is white noise, B Xt = Xt - Xt—iz and vlz =1 -B".

" ARIMA (1,1,1)12 is the short nrotation
meaning that the series have 12 lag seasonality shown by subseript 12, have one seasconal AR parameter shown
by the first 1 in the parenthesas, are once 12 lag differenced shown by the second 1 in the parentheses, and
have one seasonal MA parameter shown by the last 1 in the parentheses.

Denote vlzxt by Yi- The Y serigs is a stationary series. Expression (3.45) can be rewritten as
Ve T Weipp T A 7 Qg (3.46)
Muitiplying both sides by Yig One obtains
Yook Yt 7 Wk Yeoi2 T Yk 3 7 Wik Fgei2 (3.47)

Denoting Ccv[yt_k yt] by v{k) and Cov(yt“k at) by ¥
structure i1s calculated as follows:

ya(k) and remembering that E[y,] = 0, the covariance

vik) = ¢y(k - 12) + Yya{k) - nya(k - 12). (3.48)
and
Y Bpak T ®Ypo1p Bk T 3 ek " O8pa12 G
Yyalk) = 0 k> 1
=t k=0 (3.49)
a
Yo @12 T W2 fpape12 T3 fpapa12 T PPpai2 pek-12
_ 2 =
Ytk - 12) = (0 - e)o k=0
= o° Kk = 12
a
=0 otherwise (3.50}
Then,
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(k) = op(k - 12) + od - el - o)l . k=0
= oyl - 12) - 602 . k=12
= dylk - 12) . k> 13
= 0 . l<k<l1l (3.51)

This is the general autocovariance structure of ARIMA (1,151}12, In particulay, from (3.50) and (3.51)

[H

¥{0) = ((1 - 268 + 6°)/(1 - o%))o”

[H

¥(12) = ((1 - 99} - @)/(1 - &))ol . (3.52)

The stationarity condition of the model is
lol <1
and invertibility conditicn of the model is
lef < 1.
From hydrologic point of view this model attributes all the significant correlation structure to the

serial dependence of the same month on several years and assumes that this serial dependence is same for
all the 12 months of the year, although the true correlation structure is distorted by 12 lag differencing.

3.3.2 Seasonal ARIMA (1,0,0) x(1,1,1}., Model

; 12
For a monthly rainfall series {Xt} this model is fitted in the form

(1 - oB)(1 - a8%2) v, x, = (1 - 0B'%)a (3.53)

127t t

From hydrologic point of view this multiplicative model assumes that the serial dependence in the monthly
rainfall series cannot be compietely explained by ARIMA {1,1,1)12 and there should be & correlation struc-
ture within the months of the same year. This second structure is introduced by correlating the arror terms
of ARIMA (131,1)12 mode! by a nonseasonal ARIMA {p,d,q) model. In the case of monthly rainfall series a
first order autoregressive model was found sufficient to explain this sertal dependence.

Denoting the stationary V;,X. by y,, (3.53) can be written as

Yo T eyt Weigp g3 T A - R (3.54)

where ¢ is the nonseasonal AR operator, ¢ is the seasonal AR operator and © is the seasonal MA operator.
After some manipulations the general autocovariance struciure of this multipiicative model is obtained as

v(k) = ok - 1)+ ey(k - 12) - gey(k - 13) + [1-0(e -0+ 90k . k=0
= ov(k - 1) + oy(k = 12) - goy(k - 13) - 06727 oF s k=1, .12
= gy(k - 1) + &y(k - 12) ~ ¢oy(k - 13) , k> 13 (3.55)

Such a covariance structure is quite difficult to identify from a 12-lag differenced sample autocovariance
function, The autocovariance structures of seasonal mulfiplicative models become impractically complicated
when there are nonseasonal autoregressive components together with the seasonal components in the model.

In such a case the usual procedure for identification and fitting is that first a non-multiplicative
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seasonal model of the form (p,é,q)s is identified and fitted, then a diagnostic check on the residuals is
performed, and if there is a correlation structure in the residuals, an ARIMA {p.d.q} model is fitted to the
reésiduals and a diagnostic check on the overall multiplicative model is performed.

3.3.3 Fit to the Seasonally Differenced Monthly Rainfall Data

Seasonal ARIMA models were considered on 12 lag differenced monthly rainfall series. Fitting procedure
of the seasonal ARIMA models is the same as the procedure for nonseasonal ARIMA models. So as a first step
the autocorrelation functions for 12 lag differenced series were obtained. These are shown on Table 3-1l.
As 1s seen from the table there is a significant correlation at lag 12 in all the cases. In 8 out of 15
cases there is quite a high correlation at Tirst lag.

The drawback in the identification of the seasonally differenced series is that their general autocor-
relation behavior is not thoroughly investigated. The only guide to the identification of a model for the
sample autocovariance 15 the table of autocovariances for some seasonal models given by Boxr and Jenkins
(1971). However, in the case of monthly rainfail time series none of the given autocovariances was suitable.
The problem of fitting a seasonal model to the 12-lTag differenced series became one of trial and ervror.

From the Sections 3.3.1 and 3.3.2, it follows that the seasonal moving average operator @ can singly explain
the significant 12-lag autocovariance. However, to be safe, a seasonal autoregressive component ¢ was added
to have an overfitted model. Thus the seasonal ARIMA (},1,1}12 model was formed. The wost efficient way
for checking the model is fitting the model directly through the least squares estimation program with the
diagnostic checks buiit inte the program. Since this computer program utilizes a gradient search technique,
the optimum model parameters are obtained when the iterations start with any combination of ¢ and © values
inside the region bounded by stationarity and invertibility conditions.

For the general Multiplicative Seasonal ARIMA (p,d.q) X(P,D,Q)S described as

Sy od v
@(B)cp?(g)v vsxt—e

. (8) 84(B')a, (3.56)

q

the least squares procedure for parameter estimation is similar to the one of nonseasonal ARIMA (p.d.q).
The differance is introduced by the seasonal operators and seascnal differencing. Denoting 7d WS Xt by Yy
and (y,t - y) by §£ if just the seasonal part of ARIMA {p,d,q)x {P,D,Q)S is considered, the ARIMA (PgD,Q}s
model will have the open form

- 2
{1- @1 BS - @2 BE e m @P BZ)yt = {1 - 81 Bs - 62 Bs - e - OQ Bg)ut (3.57)

where oy is the residual at time t. The forward shift operator F is used to backforecast y's in the form

p
[yt} - igi @iiyt+isi + ng @J§Ht+ds] = £ﬁt] (3.58)

where brackets denote expectations conditioned on ¢, 8, ¢, ©, y. Consider that {Q_J] =0 ford=0a,1, 2,
and {aJ} = 0. The backforecasting starts by calculating [nde~sD—sP] obtained by setiing the unknown
ini's equal to zero. It is terminated at a point -T in time where Y1 becomes negligible. Then the form

p
[yt} - .21 Qi[ytmis] + ng GJ[at—JS] = {at] {3.59)
i= =

is used to calculate the residuais Oy of the proposed seasonal ARIMA (Z,l,i)lz model. Once the residuals
¢ are calculated, the rest of the procedure for least squares parameter estimation is the same as of non-
seasonal ARIMA (p.,d.q).

For the case of least squares parameter estimation of the multiplicative seasonal ARIMA (p.d.q)x

(P,D,Q)s model, ARMA (p,q) model

o)
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P g
a, =, -~ ) ¢, .+ ) 6.a (3.60)
t % T L %l T gL 0%t

will be fitted to dependent {w} series. This would yield a two stage procedure for the calculation of
residuals a, of {3.86). First the residuais {a} of the seasonal ARIMA (P,D,Q)S are calculated by {3.58)
and (3.59). Then (3.60) is used for obiaining {a} series.

In Table 3«12 the results of the Tit of seasonal ARIMA (1,151)12 model to the square root transformed
monthly rainfall series by the direct use of least squares estimation program, are given. As can be seen
from the results seasonal ARIMA (1,1,1)]
3265, 3290, and 3485. These were the stations where the first Jag autccorrelation coefficient was signifi-

5 madel failed to explain the monthly rainfall series at Stations

cant, as can be seen from Table 3-11. The autocovariance structure for seasonal ARIMA (1,1,1)12 Was
derived earlier as

vo) -« L2 S o

vk} =0 1<kell
z) = 4 "1®?);2 - 9) Ui k > 13
vk} = ey(k - 12)

KWhen the estimated autocorreiation functions in Table 3-11 are analyzed it is seen that seasonal ARIMA
(1,1,1)12 aytocovariance structure explains the behavior of the estimated autccorrelation functions except
at the first Tag. When the first Tag correlation coefficient was small ARIMA (1,1,1)12 could still pass
the Portemanteau Lack of Fit fest.

In order to take account of the significant first tag which appeared at the Stations 3265, 3290, and
3485, ARIMA {1,0,0) was fitted fo the residuais {a} of the seasonal ARIMA (1,1,1}12 model. The results of
this fit are given on Table 3-13. As is seen from this table, seasonal ARIMA (1,0,0)x (1,2,1}12 satis-
factorily fits the square roct transformed monthly vainfall series.

3.4 FORECASTING OF THE MONTHLY RAIWFALL SERIES IN INDIANA

Although the water resources system design 1s based on the generated streamflow sequences, the hydro-
logic forecasting may be an important tool for the modification of the operation policies after the comple-
tion of the water vesocurces development project. As the historical streamfiow vecord is extended into the
future the forecasting model can be updated and used for the modification of the cperation policies to
adjust to the gain of the hydrologic information towards a better accomplishment of the stated objectives.
Another use for forecasting is for testing the performance of the candidate time series models to be usad
for generating synthetic hydrologic sequences. In this section, the monthly rainfall seguences wiil be
forecasted by the candidate modeis and the model parformance will be evaluated by comparing th: forecasts
with the historical hydrologic records.

An observation Zyty at time t+% can be expressed as

i-1

z = 5 WA, 1% L WA, (3.61)
T ko Y0 %o T gL "0 fieend

The second symmation on the right side {s the minimum mean square error forecast of Zygy, at the time origin

t for the lead time %, dencted by zt{x) (Bow and Jenkina, 1871). The forecast error for the lead time &,
denoted by et(ﬁ)s becomes the first summation on the right side of {3.61}. Since E[at+J] =0 for J > 2,
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STATION RECORD

NUMBER LENGTH 1

2535
2695
3795
3805
3280
3445
2840
3245
3265
6120
3655
2750
348b
3290
3030

STATION RECORD
NUMBER LENGTH

2535
2695
3795
3808
3280
3445
28406
3245
3265
61720
3656
2750
3485
3290
3030

516
671
684
684
576
860
684
492
528
576
504
492
492
528
468

516
671
684
684
576
660
584
492
528
576
504
492
432
528
468

.15
.04
.02
.02
A1
.02
.13
.30
.13
.01
.10
05
.39
.31
.00

.08
.02
.02
.06
.02
.01
.05
.00
.02
.07
.00
.04
.05
02
07

TABLE 3-11

ESTIMATED AUTOCORRELATION FUNCTIONS FOR SQUARE;ROOT TRANSFORMED
THEN 12-LAG DIFFERENCED MONTHLY RAINFALL SERIES

B4
.04
01
.00
.06
.00
.01
.12
.00
.06
RY
.04
.18
.14
.00

17

.01
.02
.02
.05
.01
.02
.03
.02
.02
.01
.03
.04
.01
.01
.06

01

-.03
-.02
-.09
-.06
.05
.04

RiH

.08
.06

18
.05

.04

03

.05

.03
.03

.00
.00

.03
03
.05
.05
01
.00
.03
.01
.06
.06
05
.09
.00
.02
.06

19

.05
.02
.00
01
.05
.08
.03
a8
.07
.03
02
.03
.02
.07
.02

.05
.05
.02
.03
.06
.65

-.06
.04
.03

20
.04

.04
.62

01

.G5
-, 10
-.07
-.03
-.05
-.01
-.10

.03

.04
.0z
.00
.03

.06
.00

01
.00
.05
.07
.03

21

-.01

.00
-.02
-.05
-.06
-.12

.01
-.05
-.09
~.11
-.11
-.12

.02
.03
.00
.01
.03
.03
01
.06
.01
.11
.03
.04
.04
07
.09

22

.01
.08
.04
.01
.02
.00
.0l
.05
.02
.00
08
.09
.08
06
01
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LAGS
8

.06
.04
-.04
-.03
.03
.00
-.04
.12
.08
-.01
.10
.07
.12
12
-.05

LAGS
23

-.09
-.08

.00
-.08
-.03
-.07
~.02
-.02
-. 11
-.10
-.08
-.10

.03
.08
01
.05
.07
.04
.00
.08
.01
.02
.05
.08
.04
.05
.10

24

.01
.06
.03
.03
.03
.04
.02
.04
05
.01
01
.01
.04
.01
01

10

.03
.08

=.01

-.01
-.04
.01
.02
-.01
.01
=.05
.02
.05
-.03
-.03
L0t

25

.01
.02
.04
.04
.02
.07
G2
.06
.11
.05
.00
01
.04
.07
-.01

11

-0}
-.01
.07
.07
-.05
.04
-.05
-.06
-.02
.01
.03
.60
-.08
-.06
.07

26

.08
.05

.04
.00
.06

.05
.04

,05

i2

~.48
-.46
-.50
-.51
~.50
-.51
-.49
-.49
-.50
-.51
-.48
-.47
- 42
-.42
-.48

27
.00

.00

.03

-.04

.04
-.04
-.03
~.07
-.02

13

.02
-.02
-.05
-.03
-.03
-.09
-.15
-.12

.01
~.06
-.01
-.18
-.18

28

.02
.00

.Gl
.03

.05

.03
-.05

.06

14

.00
.00

.02

-.03
-.04
.02
-.08
-.05
01

25

.04

.02
.01

OG
-.04
-.03
~.01
-.02
-.01
-.07
-.04

15

.10
.05
.06
.05
.06

G0
03

.01
.06
.03

.06

30

.03
.00

01
-.07
-.043
-.05
-.04

.00
-.01

05




TABLE 3-12

RESULTS OF LEAST SQUARES FIT OF SEASONAL ARIMA {1,1,1)

TO SQ-RT TRANSFORMED MONTHLY RAINFALL SERIES 12

STATISTIC Q

VARIANCE OF v~ SEASONAL ARIMA (1.1,1},, PARAMEYER ESTIMATES FOR PORTEMANTEAY

STATION RECORD  TRANSFORMED X 12 p  LACK OF FIT TEST
NUMBER LENGTH SERIES § = sE 8+ st 5% (28 0.0.F.)
2535 516 235 -.084 = 045 .960 + 008 .203 28.14
2695 671 244 -.006 £ .047 954 + .008 222 26.98
3795 654 291 -.006 % .047 .960 + 005 266 23.3
3805 684 342 ..051 ¢ .038 960 = 005 325 19.15
3280 575 229 -.020 = .048 944 = .009 204 26.14
3445 660 279 -.060 * .039 960 £ .007 243 25.57
2840 684 342 -.051 + .038 .960 005 325 19.155
3245 492 150 074 £ 045 953 = .007 100 149.32
3265 528 254 -.028 = .044 950 = 008 227 35.52
5120 576 386 -.087 & .042 960 = .007 375 26.90
3655 504 270 .008 = 045 950 = 008 255 33.87
2750 492 279 .002 + 050 951 + .008 263 23.32
3485 492 165 118 + .045 963 + .007 110 180. 24
3250 528 765 L060 & .044 957 £ .007 494 164.47
3030 468 362 ~.029 + 047 950 £ 008 348 22.63

Xog (901 =378 2 (989) =413 Q= ?i 58(8)
i

TABLE 3-13

RESULTS OF LEAST SQUARES FIT OF SEASONAL ARIMA {1,0,0} x (1,1,1)

TO SQ-RT TRANSFORMED MONTHLY RAINFALL SERIES 12

STATISTIC @
2 PARAMETER ESTIMATES FOR PORTEMANTEAU
LACK OF FIT TEST

VARIANCE OF v~ SEASONAL ARIMA (1,0,0) x (1,1,1)

STATION  RECORD TRANSFORMED 1

NUMBER  LENGTH  SERIES 3 s sz § s+ st 8+ se 5 (27 D.0.F.)
2535 516 235 (138 + 040 -.044 £ .045 .96 % .008 200 14.87
2695 671 244 078 + .047 -.013 ¢ .047 .985 + 009 221 22,94
3795 684 291 051 + 040 -.062 £ .040 .960 % 005 266 21.95
3805 684 342 .057 + .039 ~.055 £ .039 960 £ .005 325 17.62
3280 576 229 (143 & 047 -.032 £ .048 984 = 009 200 17.53
3445 660 279 .066 £ 040 -.066 + .040 .958 = 007 243 22.71
2840 684 342 .107 £ 040 -.030 £ .040 .967 % .006 195 12.55
3245 492 1150 387 + 040 -.005 = .040 .952 007 089 26. 84
3265 528 254 144 043 -.032 £ .040 .950 = 008 223 20.61
6120 576 386 047 £ 040 -.090 + 040 .959 £ .007 375 25.65
3655 504 270 129 ¢ 040 -.004 + 040 952 % .007 252 20.71
2750 492 279 L0897+ .040 -.004 £ .040 951 £ .007 261 17.68
3485 492 165 425 = 040 074 £ 040 560 + 008 088 30.6
3290 528 765 403 + .040 003 = .040 961 ¢ .007 414 30.0
3030 468 362 045 = .047 -.034 : 047 .95+ .008 .348 21.95

$57(90% = 36.7 xo, (95%) = 40.1  Q=n igl 558)
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E[at(ﬁ)] = () and the forecasts are unbiased. The variance of the forecast error is
f~1
_ 2 N 2 .2
Var [et(ﬁ)] = E{et(i)] = JZO ¥y o) {3.62)

Four models were fitted to the square roots of the menthly rainfalls. For the standardized series the
white noise or ARIMA (0,0,0) and ARIMA (1.0.,1) models were investigated, and for the seasonaily 12 lag dif-
ferenced series ARIMA (1,1,1)12 and ARIMA (1.0,0) x {1,1,1)12 models were fitted.

The standardized series {Zt} have zero mean and unit variance. To retrieve the sguare root transformed
monthly rainfall series which had the seasonal periodic component, a reverse of the standardization procedure
is performed. Letting i be the rainfall square root at time %

~

where j is the month in a 12 month annual cycle. Then

yi (o) = z,{2) Syt Y3 (3.64)
where ﬁt{z) is the forecasted square root transformed periodic monthly rainfall series, s , and }5 are the
standard deviation and the mean of square root transformed rainfall series for the month j. Then the stan-

dard error of the forecast §t{£) is

~

Gy,t(“) = azgt(z) {3.65)

5.3
where 82 () is the standard error of Et(ﬁ) which can be obtained from (3.62).
The ARIMA (0,0,0) or the white noise model, for the square root transformed standardized monthly rain-

fall series, has the forecast functicn

The forecasted square root transformed monthly rainfall series is the monthly mesns. That is,

RORE? (3.66)
with the standard error s . which is the standard deviation for the month j.

The ARIMA {1,0,1) model was also fitted to square root transformed, standardized monthly rainfall
series. The forecasting function and the y-weights are given by Box and Jemkins (1971).

The seasonal ARIMA (1,1,1)12 model was Titted to the square-root fransformed and 12th lag differenced
menthly rainfall series. The forecast function and the ¢ weights are

Et(i) = (o + 1)Zt-12+£ " 82y opig T P24 194g I N V)
2, (1) = (0 + 1)z, {8-12) - 92 oy g =13, ..., 24
Et(z) = (8 + 1)z.(2-12) - 9z (8-24) 2 > 25. (3.67)
v = 1
Pip = (2+ 1) -0
gy =0 1<d<11
= {0+ 1) Uyiqp - Byog J > 12 (3.68)
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Since the series were made stationary by 12th lag differencing, the forecast function for square root trans-
formed periodic monthly rainfall series 9t(£) is simply Et(i) and Gy L8 s 32 L8

it(i) = gz, * (3w 1)zt“11 -+ ¢®)zt_12 - 02 oy ¥ $0Z_gg - 03¢ 4

zt(ﬂ) = ¢zt(z - 1)+ {o+ i)ztm_12 - (¢ + ¢®)Zt+z-12 ~0Zyu0 o Y 002y or m OZyy q5s  EF 2, ..., 12

z,{(13) = ¢Et(12) + {3+ 1) Et(l) <o+ 90)zy - 0z, g+ 002, g,

200y =0z (b= 1) + {8+ 1) 2,0 = 12) = (6 + 02) Z{8 = 13) - @2y 0 o) + 00y 5e 4 L= 14, ..., 24
z,(25) = ¢2t(24} t (o w 1) 2,(13) - (3 + 99) Et(12)-@2t(1} + g0z,

it(z) = ¢Et(z 1)+ (e + 1) Et(g - 12) - (¢ + $3) Et{g - 13) ~ @Et(z - 24} + ¢¢Et(z - 253, L > 26

(3.69)

The forecast function ?t(ﬁ) for the sguare root transformed periodic monthly rainfall series is simply
Et(z}. 8y_t(2) is Ez_t(ﬂ}. The y weights for the model are

vy =1

vy = o
T R CE - . d=1, ..., 1
Y13 T ¥

I TR I S P T I 9 L . J=14, ..., 23

Uog = Bpg + (0 + 1)Uy, = 9(1 + BJyy - @

Ups = By + (24 DYyg - 8(1 % 00,

by = WUyt (0% 10y g = L+ By o - BHog * BBy oes 3> 25 (3.70)

The {1 - €) confidence limits for the minimum mean square error forecast Et(l) of the actual value a
are given by Box and Jenkins (1971} as

t+e

L
Zivo (+) = zt(z) t U, o {1 + le wg} g, (3.731)

where ue/z is the deviate exceeded by /2 of the standard normal distribution. These will be the confidence
Timits for ARIMA (1,1,1), ARIMA (1,1,1)12 and ARIMA (1,0,0}) x (1,1,1)12 models fitted to the sguare root
transformed series, whenever the residuals are normally distributed. For the ARIMA {1,0,1) and ARIMA (0,0,0)
with the forecasts expressed as in equation (3.64), the 1 - ¢ confidence 1imits for Yiyqg are given by

Yeag2) = 9 (0) = (o, (8 sy up - (3.72)
I the actual monthly rainfall data are to be forecasted, denote the monthly rainfall series by Xt+2‘
It can be shown that
~ o 2 ~ 2 _
X (8) = {y (D" + oy (0D (3.73)
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and

5 (0) = 25 (0) 125, (0)F + o

2
, it (£)3°]. (3.74)

¥st

The variance of the differenced models may not reflect the seascnality in the variance of the actual rain-
fall sguare roots and consequently the corresponding rainfall forecasts obtained by eguation (3.73) may be
distorted. The models using the standardized values are free of this bias.

In figure 23 plots of the monthly rainfall square root forecasts, for ARIMA (0,0,0), ARIMA (1,0,1),
ARIMA (1,0,0) x (1,1,1)12 models and the observed vainfall squars roots are given. As can be seen from
thess plots the forecasts of the three different models closely foliow each other. The observed values are
within the confidence Timits of ARIMA {1,0,0} x (1,1,3)12 mode] except the case of Station 3655. Figure 24
shows the monthly rainfall square root forecasts by ARIMA (0,0,0), ARIMA (1,1,1)12 models and the observed
rainfall square voots. ARIMA (2,1,1)12 model closely follows the monthly means represented by ARIMA (0,0,0)
model. The observed values are within the 95% confidence limits except in the case of Station 3655.

In Table 3-14 a comparison of the mean square errvors of the monthly rainfall square root forecasts by
the four medeis is shown. There is not a considerable difference among the models with respect to the mean
square error.

From the results of forecasting, ARIMA (0,0,0) or the white noise model seems to be the most suitable
for monthly rainfall forecasting since it is the simplest model. However, from the parsimony point of view
ARIMA (1,0,0) x (1,1,1)12 or ARIMA {1,3,1)12 models have fewer parameters (3 and 2 respectively) than
ARIMA {0,0,0) (24 parameters) but the forecasting functions and the ¢ weights are considerably more diffi-
cult to determine for the seasonally differenced models.

TABLE 3-14

MEAN SQUARE ERRORS OF MONTHLY RAINFALL SGUARE ROOT FORECASTS
FOR THE LEADS UP TG 24 MONTHS AHEAD

M.S.E. FOR M.S.E. FOR M.S5.E. FOR M.S.E. FOR
STATION ARIMA (0,0,0) ARIMA (1,0,1) ARIMA (1,1,1)12 ARIMA {1,0,0} % (1,1,1)12
3805 4.0181 4.0181 3.9438 3.9287
2840 2.5242 2.5164 2.5895 2.5822
3795 4.6190 4.6075 4.5236 4.5139
3445 4.6760 4.6833 4.8005 4.8174
2750 5.5863 5.5875 5.6947 5,6822
2695 1.9149 1.9141 1.8231 1.8274
3030 4.6694 4.6809 4.,6631 4.6772
6120 4.3317 4.3245 4.5283 4.5252
3655 4.9881 5.049 4.9059 4,9591
2535 2.3104 2.3152 2.2675 2.1877
3280 5.086 5.0898 ‘5.,0786 5.0737
3265 1.8771 1.8663 2.0246 2.0847
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CHAPTER 4 ~ ANNUAL RAINFALL ANALYSIS

Annual rainfall series for the stations in Indiana were analyzed for thair probability distributions
and for the time series model of best fit.

White noise wmodel was assumed for the series. The chi-square goodness of fit test was applied to the
series for the test of normality. The sample distribution was classified into cells which, for convenience,
had equal probability. The selection for the number of cells was arbitrary. However, Markovie (1965} had
suggested the rule that the number of cells should be chosen in such a way that the average expected fre-
quency of each cell is at least five. Since the sample sizes for this study varied from 38 to 57 years, the
number of cells was taken as 8. Since equiprobable cells were considered, the expected value for each cell
wWas

E = W8 (4.1

where N was the sample size. Each cell j had a frequency OBSCJ observed from the sample, The ¢ell Yimits
were found from the standard normal distribution &{-) once the sample was standardized. The chi-square
statistic was formed as

- )2

X = /E. (4.2}

H I3 00

((}BSC‘J - E

J=1

This statistic is asymptotically chi-sguare distributed with seven degrees of freedom. In Table 4-1 the
sample chi-square statistics for the standardized samples are given. In the next column the probabilities
of exceeding the chi-sguare statistic are given. It is concluded that the annual rainfall series obey

normal probability law.
Portemantequ lack of fit test was applied to the autocorrelation function of the actual series fto test

the white noise hypothesis. The results are shown on the Table 4-1. It is seen that all the series satisfy

the white noise hypothesis.
As a result of the above analysis it is concluded that the annual rainfall series is a white noise

process with the normal probability distribution.

TABLE 4-1
ANNUAL RATNFALL ANALYSIS

PORTEMANTEAL
STATION RECORD CHI-SQUARE 2
HUMBER LENGTH STATISTIC X Pz > xl STATISTIC Q
(30 D.0.F.)
3795 57 3.2105 8649 22.47
3045 55 3.0364 3816 23.56
2535 23 51860 6373 1530
3280 38 3.2632 8596 12.52
3265 14 13676 7371 15.18
6120 a8 10,00 1886 13.86
3655 42 6.7619 ‘4541 14.54
3805 57 10,2261 1760 14.37
2640 57 2.6491 19155 20,10
30 2 2
Q= n g;i B 12,90%) = 40.3 X5p(95%) = 43.8
2 et 2iaray w
X7(905) = 12.0 x7(954) = 141

193







CHAPTER 5 - DISCUSSION OF THE RESULTS OF THE TIME SERIES ANALYSIS OF THE MONTHLY
AND ANNUAL, RAINFALL IN THE MIDWESTERN UNITED STATES

From the analysis of the differencing and the standardization as the methods for the removal of the
circular stationarity in the monthly hydrelogic time series it is seen that differencing, although very
effective in the removal of the periodicities, distorts the spectral structure of the original monthly
hydrologic series. This distortion causes inconveniences in the generation schemes of the ARIMA models
fitted to the differenced series. Actually, because the contribution at the spectral ovrigin is completely
wiped out by differencing, it is impossible to regain the original spectral structure in the generation
schema. Therefore, differencing should be abandoned when the hydrologists are constructing models for the
simutation purposes. From the forecasting point of view, seasonal ARIMA models, although they can preserve
the mean, cannot preserve the variance. Therefore, even in forecasting they are quite ineffective.

Standavdization, although it introduces some negligible nonstationarities, is seen to be an effective
method in the removal of the circutarly stationary part of the hydrolegic time series. Furtherwmore, while
removing the discrete spectral component, corresponding to the pericdicities in the data, it distorts the
stationary random comgponent of the spectrum only slightly. The ARMA models fitted to the standardized
monthly rainfalt data can safely be used for generation since the original spectrum can be retrieved in
their generation schemes. They are better than the seasonal ARIMA models for the forecasting purposes
since they can preserve both the means and the standard deviations.

From the spectral and the variance-time analysis of the ARMA (p.q) models it is seen that these models
asymptotically end up in the Brownian domain, and strictly speaking, cannot preserve the Furst's law for the
variance of the long range dependent time series. On the other hand, the ARIMA (1.d,l1) family of models,
although they can satisfy the infinlte variance hypothesis of Mamdelbrot, yield infinite variance in their
generating forms. Due to this nonstationarity they are not suitable for the generation of the long range
dependent hydrologic time series.

From the application of the nonseasonal ARIMA models to the monthly rainfall data the ARIMA (1.0,1) or
the ARMA (1,1} model emerged as the most suitable model for the generation and the forecasting of the month-
Ty vainfall series. This model passed the goodness of fit tests in all the cases studied. However, it
should be remembered that this model is only good for the preservation of the short range dependent time
series. As 7s shown in the long range dependence analysis, this model asymptotically ends up in the
Brownian domain. However, for the practical purposes the time span of dependence that the ARMA (1,1} model
preserves may be adequate. For this purpose the time span of dependence for the ARMA {1,1) model was
derived in the section 1.3.

From the appiication of the seasonal multiplicative ARIMA models o the monthly rainfall data it was
found that the ARIMA (1,0,0} x {1,1,1)12 model passed the goodness of fit tests in all the cases. However,
this model cannot be used Tor generation and has only Timited use in the forecasting of the monthly rainfall
series since it cannot preserve the standard deviations.

The annual rainfaltl analysis showed that a normaily distributed white noise sequence is adequate for
the generation of the annual rainfall series. This result shows that the summation of the monthly vainfalls
in the formation of the annual rainfall series filters out the circularity as well as any dependence struc-
ture that was present in the monthly rainfall series.

184







CONCLUSIONS FROM THE POINT STOCHASTIC AND THE TIME SERIES ANALYSIS
0f THE RAINFALL SEQUENCES IN THE MIDWESTERN UNITED STATES

in Indiana the daily rainfall sequences were handied by the point stochastic analysis and the monthly

and the annual rainfall seguences were handled thvough the time series analysis. The conclusions from the
point stochastic analysis of the daily rainfall occurvences in Indiana may be stated as follows:

1.

An objective methodology for the selection and calibration of a point stochastic model was developed
and was successfully applied to the point daity rainfall occurrences in Indiana.

There is a slight downward long-term trend in the rate of daily rainfall occurrences in Indiana. The
annyal and the 15-day cyclicities are significant in the daily rainfal] occurrences in Indiana.

There is a short memory dependence in the daily rainfall counts in Indiana.

The Neyman-Scott cluster model can preserve the dependence and the marginal probability characteristics
of the point daily rainfall counting process in Indiana.

Through the physical concepts that are attached te the variocus components of the Neyman-Scott cluster
model a first attempt is made in tying the meteorclogic knowledge and the point stochastic analysis
concerning the rainfall occurrence phenomenon.

The Neyman-Scott c¢luster model is most practical for the probability computations associated with the
continental droughis. Although it is pessible to obtain the practical probabilities associated with
wel sequences, & computer program is necessary for the lengthy computations.

The conclusions from the time series analysis of the monthly and annual rainfall sequences in the Mid-

western United States may be stated as follows:

1.

The nonseasonal and the seasonal ARIMA models, fitted to the differenced monthly rainfall series,
should not be used for simulation purposes. One cannot retrieve the original spectral structure of
the monthly rainfall series through the generation schemes of these models.

ARMA (1,1} model, fitted to the standardized monthly rainfall series, is the most suitable model for
the simulation of the monthly rainfalis.

ARMA (p,q) models end up in the Brownian domain when the span of dependence goes to infinity. There-
fore, strictly speaking, they cannot preserve the long-range dependence characteristics of the hydro-
Togic data.

For the forecasting purposes an ARMA (1,1) model or a white noise sequence on the standardized monthly
rainfalls emerge as the most convenient models. The seasonal multiplicative ARIMA models, although
they can preserve the monthly means, cannot preserve the monthly standard deviations and are inconveni-
ent for the forscasting of the monthly rainfalls.

The annual rainfall sequences can be simulated by a white noise model whose random inputs are normally
distributed.
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