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Filter Performance and Design for Highway Drains

Introduction  
The effectiveness of underdrain filters was 

investigated in order to make recommendations 
on selection criteria, design and installation 
guidelines that would improve the long-term 
performance of drainage systems in Indiana 
highways. Since significant savings in 
construction and maintenance cost can be 
achieved if geosynthetic filters are employed 
successfully, the study was focused on these types 

of filters, rather than on traditional mineral 
filters.The scope of the study was limited to 
hydro-mechanical filtration mechanisms of solid 
particles that is, biological and chemical aspects 
were not addressed to the exception of a test 
using recycled concrete aggregate. The 
investigating approach includes field data 
collection, laboratory experiments and analysis.

Findings  
Soil filtration by geotextiles is a 

complex, multifaceted, process. Its successful 
application depends on physical compatibility 
between the geotextile filter and the soil to be 
retained. Therefore, no successful design can be 
achieved without considering, first the nature and 
characteristics of the soil present at the site, and 
then the range of geotextile products eligible. 
There is no universal solution where a unique 
geotextile filter would be compatible with all 
types of soils or even a broad range of soils. But 
design solutions can be devised where geotextiles 
would be compatible with soil types defined by 
simple parameters such as their particle size and 
state of compaction. 

Geotechnical situations that are 
considered prone to filtration problems with 
highway underdrains and from which soil samples 
were analyzed are characterized by high silt 
content, but the presence of clay together with 
silt, plays also a role in filter clogging. 

At a project site from which samples of 
exhumed filters were obtained, the soil was, 
typically, silty clay. The filter samples from this 
site exhibited variable degree of clogging after 15 
years of service and, when quasi-intact specimens 
were tested in the laboratory, they were found 
incompatible with the soil.  

Video recording of underdrain pipe non-
destructive inspections from different INDOT 
projects show moderate to heavy sedimentation 
within pipes after one year of service, suggesting 
adequate filtration was lacking at this sites.  

Testing in the laboratory suggests 
cement chemicals from recycled (rubbleized) 
concrete aggregates might also affect the integrity 
of geotextile filters, a conclusion already reached 
by  Wukash and Siddiqui (1996) in an earlier 
JTRP study.  

Laboratory testing results were obtained 
using the best available experimentation methods, 
the FWGR and the RRT, for a number of material 
combinations and testing parameters. During 
flexible wall gradient ratio tests, fine migration 
within the filter system could be traced indirectly 
by monitoring the precise pore pressure variation 
at different elevations along the soil column. 
Resulting data, gradient ratios and hydraulic head 
losses through the geotextiles, were consistent 
altogether to identify the different clogging 
mechanisms. In particular, they allowed 
differentiation between surface blocking by 
coarse particles and internal clogging by fines.  

Among the most interesting findings 
from the testing program is the influence of the 
soil state of compaction on the filter response. In 
general, compaction increases interlocking 
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between soil particles, reduces the pore space and, 
consequently, the internal stability of the soil is 
improved. This is contributing to good filter 
performance for soils made of a small to medium 
amount of silt mixed with coarser particles. But a 
positive effect was not observed with soils made 
essentially of silt. However, the effect of 
compaction is more complex if the soil 
surrounding the filter is compacted after the 
getextile has been installed. In this case 
compaction-induced pressure is applied to 
geotextile and can modify the fabric pore 
structure or force soil particles into its openings.  

Another important factor is the geotextile 
thickness in connection with its opening size. The 
thicker is the geotextile, the more likely is a 
particle to encounter a constriction smaller than 
its size. High silt content soils can be effectively 
filtered by thick geotextiles with small FOS rather 
than by thin ones with large FOS. As described 
before, most commercially available non woven 
geotextiles have a FOS larger than silt particle 
size. Therefore, the fines need be filtered within 
the geotextile fabric instead of be retained outside 
To achieve this, a longer infiltration path, 
characteristic of a thick non-woven geotextile, 
will offer to a traveling particle more 
opportunities for small constriction encounter 
than a thin fabric would. If the soil is to be 
compacted, a thick geotextile is also less likely to 
have its porosity decreased and fabric structure 
disturbed by the compaction process than a thin 
geotextile. 

Filtration tests were performed with 
different types of soils, including low silt content 
soil, gap-graded soil and high silt content soil. 
With low silt content soil (10%wt silt) it is 
generally agreed that the filter should be a 
geotextile with large AOS (> 1 mm), but it was 
observed in this study that, if the soil has been 
compacted, a thick geotextile with much smaller 
AOS (0.15 mm) can also be adequate. Gap-
graded soil with 20%wt silt was successfully 
filtered using a geotextile with large opening size 
(0.21 mm) without need for compaction.  

Of paramount importance is the 
relationship between filter opening size and soil 
grain size distribution. Uniformly graded soils 

(Cu<3) can be filtered by the geotextiles with 
large FOS because  a self-filtration zone of soil 
builds itself at the filter interface and forms 
bridges over filter openings that may be larger 
than individual particles. On the other hand, well 
graded or gap-graded soils need to be filtered by 
geotextiles with FOS smaller than the 
representative particle size, D50 or the lower limit 
of the GSD gap DG, respectively.  

Another important relationship is 
between the geotextile manufacturing style 
(producing different modes of fiber bonding and 
fabric porosities) and the soil type of GSD (e.g. 
gap graded, well graded or pure fine). If the soil is 
internally unstable and has small silt content (< 
20%wt silt), an even pattern at the surface of the 
filter facilitates penetration of the loose fines 
through the openings that still left free from 
coarse particle blockage. In case of high silt 
content soil (> 50%wt silt) where particles 
assemblies are more likely to be in a in loose 
state, the geotextile porosity should be large in 
order to limit the risk of plugging by localized 
fine intrusion. For soils that are the most 
problematic with respect to geotextile filter design 
(20% < silt wt < 50%), selection of a geotextile 
style will depend on both grain size distribution 
and state of compaction since these factors control 
the soil internal stability. 
  Presence of small amounts of clay in 
silty soils contributes to filter clogging. It was 
observed from the experiments that the 
cohesiveness of clay mineral plays a role in 
accelerating the filter internal clogging especially 
at low flow rate (below 1.0E-6 cm/sec). A 
solution for filtering silty soils with small clay 
content (< 20%wt) is to associate a thick 
geotextile and a layer of sand placed upstream of 
the filter.  

The magnitude of the hydraulic gradient 
across the filter zone influences the time rate of 
the clogging process but not its result. Application 
of high gradients in filtration tests had the effect 
of accelerating the process, as compared to tests 
performed under smaller gradients, but the 
ultimate state of the system, in terms of gradient 
ratios and hydraulic conductivity at steady state, 
was not significantly different. 

Implementation  
 Detailed recommendations are presented 
in Sections 7.2 and 7.3 of the report. 

Geotextile filter selection guidelines 
The guidelines for selecting geotextile 

filter in function of soil characteristics that are the 
grain size composition of the soil, its Atterberg’s 

limits and for clay soils, the hydraulic 
conductivity, are summarized in Table 7-1 of the 
report which also includes a number of 
explanatory notes. Only non-woven geotextiles are 
recommended. The output consists for each 
situation, in a recommendation of opening size 
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range that would be adequate (defined in function 
of soil grain size), bonding type and fabric 
thickness. An indication of the effect of soil 
compaction is also provided. 

For the solutions recommended, it is 
generally assumed, when a filter is required, that 
the geotextile will be installed as a liner on the 
bottom, sides and top boundaries of the drainage 
trench. A difference between this design and 
current INDOT practice is that, in the present 
recommendation, the geotextile is wrapped over 
the drainage trench top after backfilling. It is 
believed this configuration is better than current 
practice in which the trench top is left without 
filter and allows infiltration of fines or recycled 
concrete chemicals driven by vertical downwards 
gradients. There is one exception, when a 
combination of geotextile and sand filters are 
recommended. In this case, because the sand 
component of the filter has to be located upstream 
of the geotextile, the practical solution is to install 
the geotextile as a wrapping around the drainage 
pipe, and then backfill the lower part of the trench 
with sand, at least up to 4” above the pipe (the 
remaining part can be backfilled with coarser 
aggregate if this is more economical). 

 Survivability criteria 
Selection of geotextile filter based on 

filter criteria addresses the primary function of the 
geotextile where retention and permeability 
requirements are met. Another important criterion 
for the selection of a particular geotextile is based 
on its ability to survive the mechanical constraints 
imposed during installation, construction of the 
roadway and later in service. It has been observed 
that a number of failures of geotextiles occur 
during installation and construction rather than in 
service. This problem was addressed by AASTO 
and FHWA through a Task Force Committee 
mission. The resulting criteria and methodology 
are empirical and are explained in Appendix B of 
the report. Current INDOT Specifications Sect. 
913.19 should be updated accordingly. The 
recommended revisions are listed in Page 178 of 
the report.  

Step-by-step procedure 
 Section 7.3 of the report describes a step-
by-step procedure to help with implementation of 
the recommended guidelines. 
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1. Introduction 
 
1.1 Background 

 
  Adequate filters are critical to the long-term performance of highway drains. The role of 

a filter is to prevent soil and adjacent material particles from entering the drain, while still 

allowing water to flow freely. When the filter does not retain the particles, the drain is at 

high risk of becoming clogged with transported sediments. On the other hand, when the 

filter openings themselves become obstructed, water is unable to reach the drain.  

 

  A traditional technique in civil engineering infrastructures projects such as earth dams, 

retaining walls or roadways has been to use mineral filters made of selected granular 

material such as gravel and sand. A number of filter selection criteria were formulated, 

often in connection with earth dam construction problems, and are currently being used 

for a broad range of applications including roadways. These design criteria are empirical 

formulas relating the required filter grain size to that of the surrounding material (e.g. 

U.S.B.R., 1974, 1994). More recently, the technology of geosynthetic fabrics (i.e. 

geotextiles) has provided a cost-effective alternative to mineral filters. Geotextiles are 

made of plastic polymer fibers or threads and are highly permeable. They can be used to 

wrap drainage pipes or to line drainage trenches and function as filters (e.g. Koerner, 

1998). Geotextiles are available in two broad categories according to their weaving 

process, woven fabrics and non-woven. A woven geotextile has a uniform microstructure 

made of parallel, regularly spaced fibers or threads in two perpendicular directions. Its 

porosity is characterized by openings that are uniform in size and spacing. In contrast, a 

non-woven geotextile has a spatially random microstructure made of a disorderly pattern 
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of non-parallel and tortuous fibers. As a result, its porosity features a broad distribution in 

size and spacing as well as high degree of tortuosity. In a number of cases, geotextiles 

have performed successfully as filters while being easier to install, much thinner and 

more permeable than conventional granular filters (Giroud, 1996). Present practice for 

Indiana highways is to use geotextiles when filters are required. 

 

1.2 Statement of Problem 
 
Current design methods for selecting geotextile filters consider their capacity to (a) 

transmit fluid across the fabric plane, (b) retain solid particles and (c) survive to potential 

damage during and after installation. The first requirement relates to the permeability of 

the fabric, given the quantity of flow expected toward the drain (e.g. Koerner, 1998). 

Design with respect to the retention requirement is typically performed using empirical 

formulas in which index values of the surrounding material particle size and the fabric 

pore size (i.e. the apparent opening size, AOS1, according to ASTM-D4751) are being 

compared (e.g. Carroll, 1983, Giroud, 1988, Luettich et al., 1992). To satisfy the last 

requirement, survivability, the selected geotextile must have adequate mechanical and 

chemical characteristics, given the anticipated construction and site conditions 

(AASHTO, 1991). 

 

                                                 
1 The Apparent Opening Size (AOS) or Equivalent Opening Size (EOS) of a geotextile are defined as the 
U.S. standard sieve number that has openings closest in size to the openings in the geotextile. The ASTM 
D4751 test uses known-diameter glass beads to determine the AOS by standard dry sieving. Sieving is done 
using beads of successively larger diameters until the weight fraction of beads passing through the test 
specimen is 5%. The corresponding opening size (in mm) is O95. Note that this procedure defines only one 
particular void size of the geotextile and not the total void-size distribution (Koerner, 1998). 



 3

According to current guidelines and specifications for Indiana highway projects, a filter is 

needed when the soil adjacent to the drain consists mainly of silt. This means, a soil with 

more than 50% passing by weight the #200 sieve (i.e. particle size lesser than 0.075mm), 

classified as fine-grained soil, but with less than 20% clay particles (i.e. smaller than 

0.002mm). In such situations, a geotextile filter must be installed with the following main 

characteristics (INDOT Technical Specifications, 2000-02, Section 913): 

Texture: Non-woven fabric (needle punched or heat bonded) 

Apparent Opening Size (AOS): Sieve #50 (300 microns) or smaller 

Coefficient of permeability: 0.01 cm/s or greater 

Additional characteristics in chemical composition and mechanical index 

properties are specified in order to ensure survivability of the fabric. 

 

INDOT’s guidelines for typical pavement cross-sections include plans and filter 

installation procedures. A construction detail of interest is that, when the geotextile filter 

is installed as a liner inside the drainage trench, it is not wrapped over the granular 

backfill at the top of the trench, contrary to frequent practice and textbook 

recommendation (e.g. Koerner, 1998).  

 

 Over the past 20 years, design and performance of filters for subsurface drainage of 

highway pavements have been a constant concern to INDOT and have been the subject of 

substantial research effort through JHRP and JTRP. In 1988, a review of geotextile 

functions and selection criteria addressed filtration applications (Karcz and Holtz, 1988). 

The study resulted in selection guidelines adapted from the French Committee of 
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Geotextiles and Geomembranes (1981) recommendations. Another study devoted 

exclusively to prefabricated geocomposite edge drains (Elsharief, 1992) addressed 

installation, structural integrity and filtration aspects of this type of drains that are made 

of a plastic drainage core wrapped in a geotextile filter. A filtration selection criterion 

was proposed as a result. It is noted that the technology of prefabricated geocomposite 

edge drains has since been discarded by INDOT because of problems with the structural 

reliability of these products but information accrued on their filter performance may still 

be relevant. In 1993, a broader-scope research project was completed on pavement 

drainage in Indiana highways (Ahmed et al., 1993, Espinoza et al., 1993). In conclusion, 

it was pointed out that infiltration of fines from base and subgrade soils surrounding edge 

drain trenches often resulted in clogged pipes, and further investigation was needed on 

designing filters to optimize pavement subdrainage performance. Chemical clogging of 

filters related to using recycled concrete aggregate in INDOT’s pavement reconstruction 

projects was also investigated (Wukash and Siddiqui, 1996). Evidence was found that 

effluent from recycled concrete contains calcium hydroxide that can lead to the formation 

of calcium carbonate and its deposition in filters. Still today, a significant part of 

difficulties encountered by INDOT with insufficient drainage performance of highways is 

likely to be related to inadequate filters. The performance of filters installed in Indiana 

highways is often unsatisfactory and fails to meet long-term expectations. 

 

A review of published literature using TRIS and other specialized bibliographic resources 

(see appended list of references) shows that, in spite of research efforts and accumulated 

experience with these techniques, the filtration process using geotextiles is complex  and 
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still not fully understood. For instance, there are experimental evidences that, when 

various types of soil are involved, geotextiles filters may become clogged much faster 

than granular filters (Koerner et al., 1996) and that non-woven fabrics are likely to 

perform better than woven- (Hoffman and Turgeon, 1983), but there is no clearly 

established theory to explain these differences. Such factors as, arching of solid particles 

across the fabric openings, magnitude of the hydraulic gradient (or flow rate) toward the 

drain and pore water pressure, fabric pattern of the geotextile and its thickness, 

magnitude of the confining pressure, have probably a noticeable influence on the filter 

performance, in addition to the soil grain and filter opening sizes. In this list of influence 

factors, the hydraulic and mechanical parameters are related to variations in the pavement 

environment (precipitations and fluctuations of groundwater) and traffic loads. 

   

 In summary, there is strong need for improved guidelines, based on better understanding 

of the filtration process and supported by testing and performance data, in order to select, 

design and construct drainage filters for Indiana highways. This is a necessary condition 

to avoid premature clogging and the resulting failure of highway drains. 

 

1.3 Scope of the Present Study 
 
 The effectiveness of underdrain filters was investigated in order to make 

recommendations on selection criteria, design and installation guidelines that would 

improve the long-term performance of drainage systems in Indiana highways. Since 

significant savings in construction and maintenance cost can be achieved if geosynthetic 

filters are employed successfully, the study was focused on these types of filters, rather 
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than on traditional mineral filters. Because of time frame and budget constraints, the 

scope of the study was limited to hydro-mechanical filtration mechanisms of solid 

particles that is, biological and chemical aspects were not addressed to the exception of a  

test using recycled concrete aggregate. The investigating approach includes field data 

collection, laboratory experiments and analysis. 

 

 Long-term performance and its relationship to design expectation are of particular 

importance. Attempt was made to assess the evolution in time and potential deterioration 

of the filter fabric properties. Several types of experiments (e.g. permeability test, 

filtration test) exist that allow determining in the laboratory the filtration capability of 

geotextiles and the compatibility of a particular combination of filter and interfacing 

material. Through these experimental procedures, it is possible to investigate 

systematically the influence of important soil, geotextile and hydraulic parameters, but 

the duration of one test is limited to a few days. This particular difficulty can be 

overcome by complementing laboratory testing with field information. In collaboration 

with the Study Advisory Committee and INDOT’s district engineers, samples and other 

field information were obtained from sites where inadequate filter performance may have 

been the cause of insufficient drainage.  

  

In order to relate the long-term performance to short-term design parameters, series of 

tests in the laboratory were performed on new, intact, samples of geotextile filters. The 

clogging potential of intact geotextile filters were investigated using the best currently 

available methods, the Flexible Wall Gradient Ratio Test (FWGRT) and the Rapid 
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Retention Test (RRT). Characteristics and relative merits of these techniques are 

discussed in detail in subsequent sections of this report. In order to perform these tests, 

new equipment was developed or existing equipment was modified in the Bechtel 

Geotechnical Laboratories of Purdue University.  

 

Soils that are the most prone to internal erosion and cause filtration problems often 

include significant amount of silt. In Indiana, such subgrade materials would likely be 

sandy silts or silty clays. Because of the preeminent role played by silt particles in filter 

clogging, a systematic study was performed by varying the amount of silt in reconstituted 

samples that were then tested with geotextile filters. This constituted the bulk of the 

experimental study in addition to tests conducted with samples from natural deposits. 

Other parameters whose influence was investigated included geotextile thickness and 

manufacturing style. 

 

1.4 Organization of this Report 
 
The following sections are found in this report: 

- Chapter 1 presents the introduction, background and scope of the research study. 

- Chapter 2 is a synthesis of literature review on geotextile filtration and clogging 

mechanisms, and the physical parameters involved. Current filter design methods 

are reviewed, as well as earlier experimental and field studies. 

- Chapter 3 reports an investigation of field materials and filter performance. It also 

includes the analysis of video inspections of underdrains performed at INDOT 

project sites. 



 8

- Chapter 4 is an assessment, by means of numerical simulation, of subsurface flow 

and hydraulic gradients filters are subjected to. 

- Chapter 5 reports experiments using the Flexible Wall Gradient Ratio Test, with 

emphasis on the influence of soil properties. 

- Chapter 6 reports experiments using the Rapid Retention Test, with emphasis on 

the influence of geotextile properties. 

- In chapter 7, a synthesis of the results is used to develop tentative guidelines for 

filter selection and installation. Design examples are provided. 

 

 

 

 



 9

2. Literature review and synthesis 
 
2.1 General Characteristics of Soil Filtration Using Geotextiles 

 
  Geotextiles have been increasingly used as soil reinforcements, separators, drains or 

filters in various civil and environmental engineering application areas such as, earth 

retaining structures, shallow foundation bases, tunnel liners, embankments, breakwater 

systems, and landfill leachate collection systems and covers. Even when their primary 

usage is not drainage, geotextiles must be very permeable throughout their service life, so 

that they do not prevent free drainage nor contribute to excess pore pressure build-up in 

the adjacent soil. The open porous structure of geotextiles and its permanence is an 

essential property of this type of geosynthetics. It enables geotextiles to filter soil 

particles while allowing free flow of pore fluid. Geotextiles can perform better as filters 

than granular materials, and there is definite advantage provided by their easy installation 

and resulting low cost of construction (Giroud, 1996). Under unfavorable conditions 

encountered on landfill slopes or in breakwater systems, geotextile solutions can be more 

reliable than granular filters because the fiber fabric of geotextiles is less likely to be 

disturbed or destroyed by tensile drag or wave forces than the granular arrangement of 

mineral filters.  However there is ample physical evidence that geotextile fabrics can be 

clogged by non cohesive particles from silty soils (e.g. Bhatia et al, 1998) and, to a lesser 

extent, by clay particles (Gardoni and Palmeira, 1998, Almeida et al, 1995). Clogging 

mechanisms belong to two broad types, related to either physical or bio-chemical 

processes. Often, physical clogging occurs first and then is followed by slower bio-

chemical processes such as iron ochre deposition, carbonate/sulfate precipitation and 

bacterial growth (Rollin and Lombard, 1988). Furthermore, time rates of bio-chemical 
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clogging depend on the pore size and, therefore, are affected by previous occurrence of 

physical clogging (Reddi and Bonala, 1997). 

 

According to Giroud (1996) and Rollin and Lombard (1988) factors influencing the 

filtration performance of geotextiles can be classified into four main categories that are 

(1) properties of  the adjacent subgrade soil or base material such as, coefficient of 

uniformity (Cu), coefficient of gradation (Cc), plasticity index (PI), clay dispersivity (e.g. 

determined using the double hydrometer ratio, DHR, test), particle shape and grain 

hardness for granular soil, state of compaction and degree of saturation, (2) properties of 

the geotextile such as, filtration opening size (FOS2) or apparent opening size (AOS), 

textile bulk density (mass/area), porosity, textile thickness, fiber density and diameter, 

and constitutive polymer(s), (3) hydro-mechanical conditions such as, hydraulic gradient, 

pore pressure and state of stress and (4) bio-chemical properties of the permeating fluid 

such as its pH, hardness (e.g. [Fe], [Mn], [Mg], [Ca]), redox potential (Eh) in case of iron 

ochre, water BOD and COD (substrate type and concentration), osmotic pressure and 

dissolved oxygen. 

 

In this chapter, background knowledge on the mechanism of physical filtration and 

clogging, and the roles played by the most influential factors are reviewed. 

2.2 Mechanism of Geotextile Filtration and Physical Clogging 
 

Soil filtration by geotextiles involves complex interaction between the filter and the 

contiguous soil. Under the action of seepage forces induced by groundwater flow toward 
                                                 
2 The filtration opening size (FOS) of a geotextile is similar in concept to the apparent opening size (AOS) but is determined by wet 
hydrodynamic sieving (see the ISO/DIS 12956 test standard) which is a method more representative of field conditions than the dry 
sieving method used for the AOS.  
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the filter (and the drain), soil particle movement and relocation lead to changes in grain 

size distribution, porosity and permeability within both the soil and the filter. Several 

mechanisms have been identified as piping, bridging, blinding, blocking (or plugging) 

and clogging (Rollin and Lombard, 1988, Lafleur, 1999). The first three are conceptually 

represented in Figure 2.1.   

Piping is a typical case of soil internal erosion. Because a large fraction of soil 

particles is much smaller than the filter openings, they cannot be retained. As a 

result, the fine fraction disappears from the grain size distribution. In the 

affected zone, the soil porosity as well as its hydraulic conductivity increase 

dramatically and quasi-uniformly. 

Bridging is a mechanism by which the soil forms a self-filtration structure at the 

interface with the geotextile. In this case, fine particles smaller than the 

geotextile openings are lost only within a thin layer in contact with the filter. 

Then, coarser particles arching over the geotextile openings prevent the process 

to extend beyond the interface zone. Eventually particle migration is contained 

and a state of equilibrium is reached where only the porosity and hydraulic 

conductivity of the interface zone have been locally increased as compared to 

the initial state. In consequence, the system average hydraulic conductivity 

increases slightly and stabilizes at a value, intermediate between the soil initial 

permeability and that of the geotextile. 

Blinding occurs when fine particles migrating from a distance are retained and 

accumulate in the interface zone close to the geotextile. As porosity in the 

interface zone decreases and flow conduits are filled, hydraulic conductivity 
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increases locally in the zone from where the fines originated but decreases in the 

interface zone with the geotextile. As a result, the system average permeability 

may decrease steadily without a satisfying equilibrium being reached. 

The other two mechanisms, blocking and clogging, involve more locally or internally the 

geotextile. 

 
 
 

 
 

Figure 2.1 Piping(a) , bridging(b) and blinding (c) mechanisms associated with different 
geotextile opening size and soil behaviors (after Lafleur, 1999) – Left hand side: soil 
grain size distribution (GSD) and its variation in the vicinity of the geotextile ( doted 
curve : initial GSD; plain curve : final GSD ; RR=Of/di ; Of :filter opening size; di : 
indicative particle size of protected soil )  – Center-left: schematics of resulting granular 
structure  – Center-right: profile of resulting soil hydraulic conductivity in function of 
distance to geotextile ( Bk  : initial soil hydraulic conductivity (dotted line))    – Right-hand 
side: evolution of system average hydraulic conductivity in function of time, as compared 
to kF (virgin hydraulic conductivity of geotextile). 
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In the case of blocking, coarse particles directly in contact with the  

geotextile surface obstruct the filter openings, preventing fine particles as well as 

fluid to penetrate. 

Internal clogging, instead, occurs when migrating fine particles penetrate the 

filter fabric and encounter fiber constrictions too narrow for traveling farther. 

Fines can then accumulate within the geotextile and obstruct its drainage 

channels. 

In practice, the terminology of clogging is often extended to designate not only internal 

clogging of the geotextile but blocking and blinding as well (Rollin and Lombard, 1988). 

Another form of geotextile blocking, by fine particles instead of coarse ones, can also be 

observed in situations where fine pumping due to pulsing of excess pore pressure takes 

place. This could be the case in roadway or railway construction, for instance, when a 

geotextile is used as separator between aggregate base course or ballast and soft saturated 

silt subgrade (Alobaidi and Hoare, 1999). In the present study, this particular mechanism 

will be referred to as plugging in order to avoid confusion with the classical case where 

blocking is caused by coarse particles larger than the filter opening size. 

 

It is noted that, of the five mechanisms described above, only bridging can be considered 

a highly desirable condition, all the other leading to either sediment being transported to 

the drains (piping) or the system hydraulic conductivity being possibly decreased down to 

a level insufficient for adequate drainage (blinding, blocking and clogging). For well 

graded soils, geotextile blocking or internal clogging are usually considered the most 

sever problems and more investigation of these types of filter failure is needed for various 
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of soil and geotextile conditions.  

 

The time required for physical clogging to stabilize in a particular situation varies with 

the hydraulic gradient magnitude: the greater the gradient, the faster the process. In the 

laboratory this often takes up to 1,000 hours when the gradient ratio test is used (Rollin 

and Lombard, 1988; Bhatia et al, 1995, Bhatia et al, 1998). As will be seen later, reliance 

on such long duration laboratory tests is due, to some extend, to the current lack of a 

general theory to integrating the various filtration mechanisms altogether. 

2.3 Clogging Factors Related with Soil Properties 
 
2.3.1 Non-cohesive Soil 

 
  Causes for physical clogging during filtration are not only related to geotextile 

properties but also to the soil (Bhatia and Huang, 1995). With non cohesive soils in 

particular, internal instability of their granular structure can make it very difficult to 

prescribe an optimal design opening size, Of*, for the geotextile and to formulate filter 

criteria that would help prevent piping, blinding or internal clogging. The internal 

stability of granular soil structure has been investigated in depth by Kenney and Lau 

(1985) and Lafleur et al (1990). Their research focused on developing criteria for the 

internal stability of soil when seepage or vibration is applied. According to Kenney and 

Lau (1985) non-cohesive soils are internally stable if their GSD is such that H>1.3 FD, 

where FD is the cumulative mass fraction relative to a particle size, D, and H=F4D–FD. A 

graphic representation of the criterion is given in Figure 2.2 together with curves 

representative of (a) unstable and (b) stable grading. The reason for these authors to use 

H=F4D–FD as the characteristic particle size interval is that, in a stable granular soil,  
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Figure 2.2 Soil grading influence on internal stability (Kenney and Lau, 1985) WG: soils widely graded in range F=0.2-1.0; NG: 

soils narrowly graded in range F=0.3-1.0 

15
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predominant constrictions of the void network are approximately four times smaller than 

the small particles (Kenney et al, 1985). The resulting granular filter design criterion, D5 

< 4 D50 or D15 < 5 D50 for soils with Cu < 6 is more conservative than Terzaghi’s (1922) 

classical formula. 

  In connection with granular filter design for broadly graded soils Lafleur et al (1989) 

took into account the bridging effect (i.e. self-filtration) which may exist also in this case. 

The behavior of linearly graded soils was compared with a model they proposed, but the 

model underestimated both the amount of fines lost and the bridging zone thickness 

observed in experiments. However, their screen test results indicated that the thickness of 

the self-filtration zone is proportional to the constriction size (Dc) of the granular filter. 

Additionally, these authors suggested the granular filter opening size should be between 

D50 and D80 for linearly graded soil, and within the gap range in the case of gap-graded 

soil. It was also noted that, in absence of vibration, particle interlocking might contribute 

to limiting the loss of fines. 

 

Particle size uniformity (as represented, for instance, by the coefficient of uniformity 

Cu=D60/D10) can affect soil retention. This property plays a role in filter design through 

the ratio Of/Dl where Of is the largest opening size of the filter and Dl is the largest size of 

particle retained. Watson and John (1999) studied the effect of Cu on particle bridging. 

They investigated which were the largest opening sizes compatible with stable granular 

bridging structures, for different cases of particle size gradation. They assumed a 

spherical particle shape and tested their model on the basis of the ratio, O90/D90. They 

found that the uniformity coefficient (Cu) influences the smallest size of the particles that 
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can form the granular bridging structure, and that particles smaller than 0.228 Of  are not 

associated with bridging formations regardless of the soil grain size uniformity. In 

general, as Cu increases, the ratio O90/D90 decreases. In practice, this means for piping be 

prevented the filter largest opening size, Of, should be reduced when the soil is better 

graded. Giroud (1996) considered the selection of Of*/D85 should take into account the 

soil uniformity coefficient (Cu) and state of compaction. Three different density states of 

bridging granular structure were considered: hyperstable (Cu*=3), mesostable (Cu*=6.5) 

and hypostable (Cu*=13), where Cu* are the coefficients of uniformity, characteristic 

values related to soil internal stability. The relationship between Of and the finest size of 

bridging particles was derived for the two case, Cu > Cu* and Cu ≤ Cu*. Both approaches 

outlined above show similar trends such as relatively high values of Of*/D85 obtained in 

dense conditions and relatively low values in loose condition. However, neither model 

was based on consideration of actual particle size distributions. Instead, idealized linearly 

graded soils were assumed. 

 

 The effect of particle shape on soil retention performance has been investigated, but 

without clear, quantitative conclusions being reached. Aberg (1992b) accounted for the 

particle shape in his investigation of void ratio for the various GSD types of soils. His 

experiments led to a linear relationship between the void ratio and the particle angularity.  

He also observed in compacted samples that the small grains were more angular than the 

large ones because, during sample preparation, compaction work had produced particle 

breakage. Lafleur et al (1989) suggested that in soil the angularity of fines particles 

contributes to making thicker the granular bridge formed in successful filtration cases. In 
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connection with this idea, when actual soil was tested in comparison with glass beads, the 

later yielded lower critical ratio, O95/D85, and amount of piping which was more sensitive 

to the opening size when the ratio is close to its critical value (Bhatia and Huang, 1995). 

2.3.2 Cohesive Soils 
 

  Filtration experiments that performed with cohesive (i.e. mainly clay) soils and 

geotextiles consistently show the same variations in system hydraulic conductivity 

(Rollin and Lombard, 1988, Mlynarek et al,1991, Bergado et al, 1996, Haegeman and 

Van,1999). These variations (Figure 2.3) correspond to four main stages: (1) seepage-

induced compression or consolidation, (2) piping of fine particles, (3) build-up of a filter  

 

 
 
 

 
Figure 2.3 Typical variation of system flow rate during cohesive soil filtration (after 

Rollin and Lombard, 1988) 
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cake within the soil layer and (4) steady state. Haegeman and Van (1999) also reported 

that the dry unit weight of soil increases steadily during this sequence and the final steady 

state hydraulic conductivity is intermediate between the values of the soil slurry and the 

geotextile. 

 

  When a clayey soil initially saturated is being partially dried, thin discontinuities or 

cracks are likely to develop. In cohesive soils, particle piping through the pore structure is 

more difficult than in non cohesive soils because of capillary forces, but clay internal 

erosion through discontinuities or desiccation cracks is more likely to occur. This has not 

received much attention as a factor influencing filter designs. Attention should be paid to 

situations where the clay deflocculates easily and/or the fluid velocity within cracks is 

high enough for particle transport to occur. This would require appropriate testing 

methods be developed. From this standpoint, plastic soils are problematic in the case of 

dispersive clay which can be identified by the conditions, DHR > 0.5 and PI > 5 (Luettich 

et al, 1992) where DHR is the double hydrometer ratio. Clay deflocculating is influenced 

by several factors such as, electrolyte concentration, ion valence, temperature, dielectric 

constant, size of hydrate ion, pH and anion adsorption of clay and water system (Lambe 

and Whitman, 1979). More detail on these particular factors can be found elsewhere 

(Almeida et al, 1995, Gardoni and Palmeira, 1998). 

  

 In general, geotextiles intended to filter clay are too permeable for decelerating the 

velocity of flow leaking flow through dessication cracks. In such cases, the use of a 

granular layer between the clay and the geotextile was proposed by Kellner and Matei 
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(1991). This would enable the clay to generate its own natural filter zone within granular 

layer. It was also pointed out by Bourdeaux and Imaizumi (1977) that, at flow velocity 

below 10 cm/sec (20 ft/min), dispersive clay can be adsorbed by granular soil particles 

and form a coating on the grain surface. In sand layers used for filtering clay, the amount 

of clogging depends more on the concentration of fine particles in suspension than on the 

particle size or the flow rate (Reddi et al., 2000). After stabilization has been reached, the 

final flow rate through the soil-filter system is controlled by the self-filtration process 

rather than by fine particle deposition in soil capillary conduits, especially under high 

flow rate.  However, the critical velocity below which fine particles start to deposit in 

filter material is much higher in sand (10-1 cm/sec) than in geotextile (10-3 cm/sec). This 

is an indication that clay particles have the more affinity for granular filter particles than 

for geotextile fiber and seems to validate the concept of sand-geotextile composite filter 

for clay soils. For analysis purpose, it should be noted that in case of a geotextile filter, 

the number-based particle size distribution of fine particles suspended in water is a more 

relevant factor than the mass concentration of fines, while in the case of a granular filter, 

the opposite is true (Xiao and Reddi, 2000).  

2.4 Clogging Factors Related to Geotextile Properties 
 

  According to Rigo et al (1990) geotextile properties playing an important role in 

filtration are: fiber diameter, fabric thickness, fabric density (mass per area), fabric 

porosity and filtration opening size. Among these properties, the opening size has been 

found in various types of laboratory tests a key parameter in control of geotextile filter 

performance. However, the size of constrictions between fibers, which is mainly the 



 21

result of the weaving method (sometimes referred to as the manufacturing style) seems to 

play a more fundamental role than the opening size. 

2.4.1 Filter Opening Size and Constriction Size Distribution 
 

  In a granular filter, a constriction is a narrowed pore space area between particles that 

allows the smaller particle transference between two pores. Given the random nature of 

granular media, the constriction size can only be described statistically. Constrictions can 

control the travel of migrating solid particles within the pore space of a filter. Thus, the 

constriction size distribution (CSD) is often considered to play a more important role in 

the filtration process than the pore size distribution (PSD) itself (Kenney and Lau, 1985). 

A similar concept has been used for describing the porous structure of geotextiles. Here, a 

constriction is a narrowed pore space area between polymer fibers that control passage 

from one pore to another. In nonwoven geotextiles in particular, the CSD influences 

filtration even more importantly than in granular filters (Bhatia and Smith, 1996a). This 

make difficult the formulation of simple retention criteria, alike those formulated for 

granular filters, which would be based on a single representative opening size of the 

geotextile fabric. 

 

 Several experimental methods are available for determining opening size distribution of 

geotextiles (OSD), directly or indirectly, but no method has been yet universally accepted 

for determining the CSD of nonwoven geotextiles. Sieving techniques (dry or wet) are 

indirect methods that are commonly used in engineering practice whereas mercury 

intrusion porometry, bubble point testing and image analysis are direct methods that 

require more sophisticated equipment (Bhatia and Smith, 1996b). The dry sieving method 
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(ASTM D 4751) used for the determination of the apparent opening size (AOS) has been 

the standardized method of choice in United States engineering practice (a description of 

the test and definition of AOS are provided in Chapter 1). However, the dry sieving 

method has several shortcomings. The test results are affected by electrostatic attraction 

between the test beads and geotextile fibers, which is not considered representative of  

subsurface conditions (Sharma and Lewis, 1995, Giroud, 1996), and during dry sieving 

the geotextile fabric yarns can move away from each other, thereby allowing the test 

beads to pass through an enlarged constriction (Koerner, 1998). Because of cyclic 

conditions applied during dry sieving, the AOS (or Of,95) value obtained from the test is 

overestimated as compared to the operating value for the geotextile subjected in the field 

to quasi- steady state flow conditions. For these reasons, the dry sieving method has been 

gradually substituted with a (wet) hydrodynamic test method standardized under ISO/DIS 

12956. The resulting index value representative of opening size is filtration opening size 

(FOS). Among direct methods, the bubble point test (ASTM D 6767) is considered to 

provide reliable information on the number and size of the smallest effective opening 

channels (i.e. the constriction size) in a geotextile sample (Bhatia et al, 1996). However, 

the complexity of the test is a hurdle for its practical implementation.  

2.4.2 Weaving Pattern 
 

  Geotextiles are classified into two broad categories according to their fiber patterns that 

are the woven and nonwoven types. Sub-categories exist, each one corresponding to a 

particular manufacturing process. Typically, a woven fabric has a regular structure 

defined by two orthogonal orientations of fibers and a narrow (in a statistical sense) 

opening size distribution. In contrast, a nonwoven geotextile is characterized by a random 



 23

structure and a wide range of opening size with a broad statistical distribution (Figure 

2.4). These structural differences between the two classes of geotextiles result in different 

filtration responses. For instance, mono-slit woven geotextiles are more effective as 

components of leachate control systems in landfills where there is high potential for 

clogging of drainage layers by organic matter, while the tortuous pore network of thick 

nonwoven geotextile makes them more prone to retention of well graded non cohesive 

soils in transportation infrastructures (Giroud, 1996). Another example of different 

retention responses is the observation, made in coastal applications, that under 

hydrodynamic flow generated by sea waves (with a period shorter than 10sec) greater 

amounts of fines seep through woven textiles than through nonwoven (Chew et al, 2000). 

Other properties of geotextiles are influenced by their manufacturing style and can affect 

their overall performance as filters. Whereas woven geotextiles are in general much 

stiffer than nonwovens under planar tensile stress applied along machine direction of 

weaving, this is not necessarily the case in the transverse-machine direction which is 

weaker. For a particular geotextile, variation in FOS as a function of applied stress is 

strongly linked to the fabric thickness (Fourie and Addis, 1999). This, in turn, influences 

the geotextile cross-flow hydraulic conductivity. The flow rate reduction, consecutive to 

axial loading, is much more severe with a woven geotextile, and also occurs at smaller 

tensile stress level, than with a nonwoven geotextile (Fourie and Kuchena, 1995). 
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Figure 2.4 Different weaving patterns for non woven and woven geotextiles (Te : elementary thickness)
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2.4.3 Porosity 
 

  In general, nonwoven geotextiles have very high porosity (85 to 95%) at atmospheric 

pressure whereas for woven fabrics it is often lesser than 40% (for the area porosity 

POA) according to Giroud (1996). Therefore, the two classes of geotextile differ also by 

their specific surface of fiber per unit area of geotextile ( Sa ). For instance a woven 

textile with POA=10% may have a specific area, Sa=4.3 m2/m2 while a nonwoven with 

porosity, n=0.9, thickness of 2.8 mm the specific area would be Sa=38m2/m2. Porosity is 

closely related to geotextile density (mass per total volume), and to specific density 

(volume of fiber per total volume). These parameters altogether are indicative of how 

tight is the fabric micro-structure. These have been found to be related to the time-rate of 

the clogging process and its acceleration observed with high specific density geotextiles 

(Faure and Kehila, 1998). The porosity seems to play an important role in controlling the 

geotextile ultimate degree clogging by fine particles. If the pore space is large and the 

specific area small, which is the case of geotextiles, the probability of fine deposition or 

adsorption on the fibers will be very low because in such a filter the flow velocity is 

relatively high and thus contact between a fine particle and a fiber is of very short 

duration. As compared with granular filters which have lower porosity and larger specific 

area (e.g. n=0.3, Sa=463m2/m2 for a 74mm thick layer), the deposition rate of fine 

particles on geotextile fibers can be considered negligible (Reddi et al, 2000, Xiao and 

Reddi, 2000)   

2.4.4 Thickness 
 

  The role played fabric thickness in filtration is still a subject of debate, but some trends 

have been identified through experiments and theoretical analysis. Because for a given 
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fabric the FOS decreases linearly with increasing thickness, likelihood for migrating 

particles being retained inside the fabric, and therefore the fabric being clogged, should 

theoretically increase linearly with thickness. This, in principle, applies to both woven 

and nonwoven geotextiles, but in fact, fabric thickness (as well as porosity) has more 

influence on filtration performance of nonwoven than woven geotextiles (Giroud et al, 

1998). For internally unstable soil, filter design is focused on preventing blinding of the 

small openings at the interface between soil and geotextile, independently of fabric 

thickness. But thick geotextiles with large apertures have also the advantage of allowing 

unstable fines to pipe through the filter until bridging can take place. It was found by 

Qureshi et al. (1990) that the clogging by fine particles is less severe for thicker 

geotextiles while the opposite was reported by Mannsbart and Christopher (1997). On a 

theoretical basis, Giroud et al (1998) proposed using two-layer stratified geotextile filters 

for well graded soils. In this type of design, the up-gradient fabric in contact with the base 

soil would have large openings and the down-gradient fabric would have smaller 

openings. This combination would prevent both blinding at the soil-filter interface and 

internal clogging of the filter. Thickness contributes also to the geotextile tensile 

stiffness3 and therefore makes the pore structure less prone to being altered while it is 

subjected to tension (Fourie and Kuchena,1995). Under out-of plane compression, the 

thickness of a woven geotextile remains almost unchanged even in the case of relatively 

large overburden pressure. On the contrary, nonwoven geotextiles, especially needle-

punched fabrics, are compressible and in some cases their thickness can be decreased by 

as much as 50% under high confining pressure of the order of 200kPa (Koerner, 1998). 
                                                 
3 It is noted that nonwoven geotextiles are more ductile than woven geotextiles. Under uniaxial tension, nonwoven fabrics have a 
tensile strain at failure greater than 50%. For woven fabrics, the failure strain is typically smaller than 30%. 
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This, of course, can considerably affect their pore space geometry, including the opening 

size, and reduce their hydraulic conductivity (Giroud, 1996). 

2.4.5 Fiber Material 
 

  Fibers used in manufacturing of geotextiles are made of plastic polymers. Polypropylene 

and polyester are the most frequently used polymers. In the past decade, these two 

materials accounted respectively for 85% and 12% of the production (Koerner, 1998). 

The role played by geotextile fiber material in filtration relates mainly to the interaction 

between fiber and pore fluid. The effect of fiber wettability on geotextile filter 

performance was well documented by Giroud (1996). This property can contribute to 

discrepancy between filter performance observed in wet versus dry conditions. 

Polypropylene and polyester are slightly hydrophilic. In unsaturated conditions, strong 

surface tension restricts water movement and slows the flow inside the geotextile. Then, 

when full saturation is reached there is a very steep rise in flow velocity and flow rates 

can increase by an order of magnitude. If a clay cake is formed at the interface with the 

geotextile, the jump in flow rate may be even greater though it takes more time for 

saturation being achieved. If oil is used as permeate instead of water, the wettability of 

the polymers is somewhat different. Polyester fabrics are more permeable to oil than to 

water while polypropylene fabrics are more permeable to water than oil (Scott et al, 

1991). Another characteristic of polypropylene fibers is that they swell when in contact 

with oil. This can result in significant reduction of permeability of highway drainage 

filters in the eventuality of an oil spill. 

2.5 Hydraulic Conditions and External Loading 
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  Field hydraulic conditions around drains vary from site to site and upon time. The 

conditions relevant to filter performance can be divided into steady-state flow and 

transient flow. Laboratory column filtration tests are most often performed in steady-

state, constant head, or transient, falling head, conditions. Other hydrodynamic situations 

of interest include, for instance, cyclic alternate-direction flow experienced by coastal 

protection revetment systems (Cazzuffi et al, 1999, Chew et al, 2000) and pulsed 

unidirectional flow due to traffic-induced excess pore pressure at the vicinity of pavement 

edge drains (Bhatia and Huang, 1995). Depending on particular site conditions to be 

simulated, testing protocols could involve cyclic transient flow modeled as pulse or 

sinusoidal input. 

 

Field hydraulic gradients relevant to geotextile filter applications are considered to be of 

the order of 1 to 10 (Luettich, 1993). However, the hydraulic gradients applied in 

laboratory filtration tests are usually higher than these values in order to shorten the 

duration of tests. For internally stable soils, applying hydraulic gradients that are higher 

than typical field values does not affect significantly the final hydraulic conductivity of 

the samples in long term flow tests (Kossendey, 1999). On the contrary, with internally 

unstable soils, the hydraulic gradient magnitude influences the final hydraulic 

conductivity because the amount of migrated fine particles depends on flow velocity 

(Wayne and Koerner, 1993, Bhatia and Huang, 1995).  In cyclic transient flow condition, 

the rate of change in hydraulic gradient, Ri=2i/ΔT, where, i, is the maximum gradient 

and, ΔT, the period of sinusoidal variation, is a convenient index parameter. Usually, at 

high value of Ri (i.e. rapid gradient variation), the amount of soil internal erosion is high, 
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and woven geotextiles allow for a larger mass of piping soil to cross the filter than 

nonwoven geotextiles (Chew et al, 2000). Experimental evidence suggests that, when 

gradient variation period is long (e.g. 10sec), the condition can be approximated as 

steady-state flow. 

 

Compression stress in the base soil induced by externally applied load is not a critical 

factor in the case of steady-state flow if the soil skeleton is likely to have already reached 

a stable state prior to the application of the load. However, the mass of piping soil is 

influenced by load-induced effective stress and hydraulic gradient in the case of transient 

flow. According to Cazzuffi et al. (1999), if the geotextile surface is not in tight contact 

with the trench backfill, the interface zone between base soil and geotextile filter can 

easily become internally unstable under the effect of effective stress decreasing or 

hydraulic gradient increasing. This notion is represented graphically in Figure 2.5 where 

U1 represents a negative increment of effective stress and U2 a positive increment of 

hydraulic gradient. 

2.6 Test Methods for Geotextile Clogging Assessments 
 

  Commonly used laboratory testing methods of geotextile clogging potential are 

classified into three types - long term flow (LTF) test, gradient ratio (GR) test and 

hydraulic conductivity ratio (HCR) test (Koerner, 1998). The LTF is a simple test 

designed for detecting the change in flow rate through a soil sample and geotextile filter 

over time, under constant head condition. This type of test requires a long duration of 

sustained flow (sometimes over 200hrs) and, during this time, biological clogging can 

also occur (Figure 2.6 (a)). The GR test (ASTM D5101) was designed to detect local 
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Figure 2.5 Relationship between hydraulic gradient and effective confining stress for soil 
internal stability in transient flow condition(after Cazzuffi et al, 1999) 

 
variations in hydraulic gradient along the soil column and through the filter sample, as a 

result of particle migration (Figure 2.6 (b)). Local gradients are determined from pore 

pressures measured at various port locations along the sample and at the flow boundaries. 
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The U.S. Army Corps of Engineers criterion for soil-geotextile compatibility based on 

this test is that the gradient ratio determined according to the ASTM Standard 

(GRASTM=i0-25/i25-50) be less than 3.  In the above formula (i0-25) and (i25-50) are the 

hydraulic gradients measured between elevations 0 and 25mm above the sample lower 

boundary (including the geotextile) and between elevations 25 and 50mm, respectively 

above the sample base. A gradient ratio larger than 1 indicates that more hydraulic energy 

is lost (due to clogging) through the filter and its interface zone (the bottom 25mm zone) 

than in the base soil (the 25mm thick adjacent layer).  A modified version was proposed 

by Fannin et al. (1994) where the gradient ratio (GRMod=i0-8/i25-50) is used for detecting 

the occurrence of blinding at the geotextile surface. The HCR test was proposed by 

Williams and Abouzakhm (1989) as a mean to reduce testing time for fine soils and to 

simulate in-situ conditions in case of external loading. The outcome of the test is the ratio 

of hydraulic conductivities corresponding to alternate-direction gradients obtained by 

reversing the flow through the sample (Figure 2.6(c)). Though the HCR test has been 

standardized under ASTM D 5567, its shortcoming pointed out by Giroud (1996) is its 

sensitivity to the soil specimen length and to the range of applied flow rates.  

2.7 Filter Design Criteria 
 

  Retention criteria for geotextile filter design are empirical or semi-empirical formulas. 

Most often, these relate the smallest particle size of the base soil associated with bridge 

formation, Di (represented, for instance by D50 or D85) to the geotextile controlling 

opening size Of* (represented, for instance by the filtration opening size, FOS, or the 

apparent opening size, AOS, as index values of Of,90 or Of,95). Most design criteria 

prescribe a range for the ratio (Rr=Of*/Di) either numerically or in function of additional 
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parameters related to soil properties such as grading or soil type (Christopher and Fischer, 

1992). More specific design methods take into account the hydraulic conditions or 

additional geotextile and soil properties (Luettich et al, 1992). Extensive reviews of 

geotextile retention criteria can be found elsewhere (e.g. Palmeira and Fannin, 2002) A 

summary of these is presented in Appendix A and only a few representative examples are 

discussed below.  

 
 
 
 

 
Figure 2.6 Conceptual representation of the main types of geotextile filtration tests 
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2.7.1 FHWA Criteria (Christopher and Holtz, 1985 and Christopher et al, 1995) 

 
  This retention criterion was presented in the 1995 FHWA geosynthetics design and 

construction guidelines. For internally stable soils with less than 50% fines (<0.075mm), 

it is expressed as AOS/D85<B where B is function of the soil uniformity coefficient, Cu. 

For Cu lesser than 2 or greater than 8, coefficient B is equal to 1. Within the interval 

2<Cu<8, coefficient B varies between 1 and 2, with the maximum for Cu=4. This, in 

concept, is similar to the criterion derived by Giroud (1982) for idealized soil made of 

perfectly packed spherical particles and linearly graded. For soil with more than 50% 

fines, Christopher and Holtz recommend AOS<0.3D85 when the soil is internally unstable 

and the flow condition is steady state. When the flow is transient, with alternated 

directions or pulsing, they recommend AOS<D15 irrespectively of internal stability. A 

shortcoming of the method may be the adoption of the dry sieving AOS as the opening 

size index instead of a wet sieving FOS, which is more representative of field conditions. 

2.7.2 Geosyntec Group Criteria (Luettich et al, 1992) 
 

  Luettich et al (1992) presented their retention criterion as part of a design flow chart 

applicable to cohesive or non cohesive soils and steady-state or transient flow conditions. 

In the chart soils are categorized according to their amount of fines and cohesiveness. 

Unless a soil is non dispersive (DHR < 0.5) and plastic (PI > 5), it is categorized as non 

cohesive. In the case of dispersive (DHR > 0.5) and plastic (PI > 5) soil, the authors 

recommend installation of an additional fine sand layer up-gradient, in contact with the 

geotextile filter. In the non cohesive case, they characterize the soil as stable or unstable 

and determine a pseudo-coefficient of uniformity Cu’ in the linear section of the GSD, 
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tangent to the D50 point. Prescribed values of Of,95/D50 values are function of soil relative 

density. It is noted that, in this method, a soil can be characterized as cohesive or non 

cohesive depending on the clay content (30% being the threshold amount) but also the 

flow regime. A shortcoming is in the determination of the soil internal stability which is 

based on a linearized GSD. 

2.7.3 Lafleur’s Criteria (Lafleur, 1999) 
 

Lafleur (1999) focused on retention of non cohesive soils. For internally stable soils, the 

ratio (Rr=FOS/Di) is recommended to be smaller than 1, with Di=D85 when Cu<6, Di=D50 

when Cu>6 and the GSD has a linear shape, Di=Dgap,min when Cu>6 and the GSD is 

gapped, Di=D30 when Cu>6 and the GSD is concave upwards. For internally unstable 

soils, the ratio (Rr=FOS/Di) is to be kept between 1 and 5, with Di=D30 for GSD either 

gapped of concave upwards. However, Lafleur pointed out that, in order to reflect the 

broad range of experimental data available, more information related for instance to the 

opening size distribution or fiber properties would have to be included in filter design. 

2.8 Earlier Experimental Results 
 

  Significant data from filtration tests has been generated by earlier researchers and 

documented in published literature. As part of the present study, this database was 

analyzed. The most important aspects of filtration and influence of major factors were 

identified and discussed in the previous sections of this text.  

 

  In addition, synthesis of these data from Williams and Abouzakhm (1989), Siva and 

Bhatia (1993), Murty et al. (1994), Almeida et al. (1995), Bhatia and Huang (1995) and 

Nishigata et al. (2000) was performed in order to summarize the test results in function of 
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soil GSD and filter opening index parameters.  The geotextile filtration opening size 

(FOS), two  specific particle sizes of the soil (D10 and D85), its uniformity coefficient 

(Cu), and the initial and final system hydraulic conductivities (Ki and Kf) were extracted 

from the database and used for the synthesis. The ratio of Ki over Kf indicates change in 

system (i.e. soil and geotextile) hydraulic conductivity between the start and the end of a 

test. Ratios significantly larger than 1 indicate a serious reduction of hydraulic 

conductivity, consecutive to clogging. These data are shown in Figure 2.7 in function of 

Cu (Figure 2.7(a)) and FOS/D85 (Figure 2.7(b)). From these plots, there is no clear 

evidence of role played by Cu, but there is clear indication of correlation with FOS/D85.  

According to Figure 2.7(b), clogging tends to occur for samples tested with ratios, 

FOS/D85, in the vicinity of 1 or smaller. This observation seems to be in contradiction 

with a number of retention criteria where recommended design values of the ratio are 

close to this region. Further information is presented in Figure 2.8 where the ratio Ki/Kf is 

plotted in function of both FOS/D85 and D10. Here it appears that cases with strong 

reduction in hydraulic conductivity, in the range of   FOS/D85 close to 1 are samples with 

small values of the smaller particles diameter, D10. This confirms the presence of small 

particles, not only the larger ones, controls the filter performance in the tests. A possible 

explanation is that blinding of the filter fabric by fine particles is what occurred in these 

cases.  

 

This would suggest a most critical circumstance is in the combination of a significant 

amount of very fine particles with a small filter opening size prone to blinding.  
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Figure 2.7 Summary of clogging test results in function of material parameters, based on 
literature review. Large values of  Ki/Kf ratio indicates clogging of filter system, where Ki 

and Kf are initial and final system hydraulic conductivities respectively 
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Figure 2.8 Multi -parameter visualization of clogging test results, based on  literature 

review (Ki : initial hydraulic conductivity, Kf : final hydraulic conductivity, FOS : 
filtration opening size of geotextile, D10, D85 : sizes (diameter) of grains at 10 and 85 % in 

cumulative soil GSD  
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2.9 Earlier Field Performance Study 
 

  An extensive field investigation was performed in the 1990s under the auspices of 

FHWA and almost all state DOTs (Indiana did not participate) in order to assess the field 

long-term performance of highway drain geosynthetic filters (Koerner et al,1996, 

Wilson-Fahmy et al, 1996). The study included exhuming geosynthetic filters from at a 

number of sites where these had been in service over a period of time and, through 

examination and testing, find how much clogging and deterioration of their properties 

had occurred. Filters at 41 edge drain locations were examined for soil retention, 

permeability and geotextile clogging assessment. Then, these observations were 

confronted to several current design methods including those proposed by Giroud (1982), 

the French Committee of Geotextiles and Geomembranes (1986), Fischer et al (1990), 

Luettich et al (1992) and Christopher and Holtz (1985) for the FWHA. Results of this 

comparative study are presented in Table 2.1. For each performance criterion and design 

method, the total numbers of cases where the design method would have been able to 

predict the observed performance or would have failed to predict it are indicated with 

symbols S and F, respectively. It is noted that categories defined by symbols S or F do 

not relate to successful or failing performance of the filters themselves, but to success or 

failure of the design methods in predicting performance. Inspection of these statistics in 

Table 2.1 suggests better graded, mixed particle size types of soils (i.e. between 12% and 

50% in fine content) are the most difficult filter design cases while design methods are 

more successful in cases of either mainly fine grained (i.e. more than 50% fines) or 

coarse grained (i.e. less than 12% fines) soils. 
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Table 2.1 Capability of selected geosynthetic filter design criteria to predict filter field 
performance, based on observation of exhumed samples at sites investigated by Koerner 

et al (1996) (after Wilson-Fahmy et al, 1996) 

Criteria Source Coarse Soil 
≤12% fine 

Mixed Soil 
13-49% fine 

Fine Soil 
≥ 50 % fine 

Permeability 
Giroud (1982) 
French (1986) 
FHWA (1985) 

S* – 15 ; F* – 1 
S – 0 ; F – 7 
S – 7 ; F – 9 

S – 44 ; F – 2 
S – 25 ; F – 21 
S – 43 ; F – 3 

S – 10 ; F –1 
S – 15 ; F – 5 
S – 19 ; F –1 

Retention 
French(1986) 
Fisher (1990) 

Luettich(1992) 

S – 16 ; F – 0 
S – 16 ; F – 0 
S – 16 ; F – 0 

S – 38 ; F – 2 
S – 30 ; F – 10 
S – 35 ; F – 5 

S – 19 ; F – 0 
S – 1 ; F – 8 
S – 16 ; F – 3 

GT clogging 
French (1986) 
FHWA (1985) 
Fisher (1990) 

N/A 
N/A 
N/A 

S – 24 ; F – 22 
S – 33 ; F – 13 
S – 28 ; F – 18 

S – 19 ; F –1 
S – 19 ; F –1 
S – 19 ; F – 1 

 
* S : success in predicting filter field performance; F : failure to predict filter field 

performance; numbers indicate corresponding frequencies of cases. 
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3. Investigation of Field Conditions and Long-Term 
Performance 
 

 
3.1 Purpose of the investigation 

 
The purpose of this particular part of the project was two-fold: 

(a) Identify and characterize, using samples provided by INDOT,  several types of 

subgrade soils encountered in Indiana highway construction for which geotextile 

filters would likely be required. These soil types would be later used for filter 

selection and design examples.  

(b) In order to assess long-term field performance of geosynthetic filters already 

utilized by INDOT, it was necessary to sample material (filter and adjacent soil) 

from selected site(s) of Indiana highways where geotextile filters had been in 

service for a significant amount of time. Then, the state of clogging of these 

samples was to be assessed in the laboratory by performing detailed visual 

examination for evidence of fine particles blinding or penetrating the fabric, and 

by performing hydraulic conductivity tests. It was also expected that results of 

underdrain pipes video inspections would be available in order to detect intrusion 

of sediment into the pipes.  

3.2 Study of Soil Samples Provided by INDOT 
 

Four disturbed samples from 4 different locations were delivered to the Purdue 

geotechnical laboratories. These are listed in Table 3-1 together with their origin and 

preliminary description. Sample water contents are also indicated but it should be noted 

that, because of sample disturbance, these are inaccurate representations of field values. 
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Tests performed on these samples included grain size analysis (sieve and hydrometer test 

ASTM D 422) and determination of Atterberg’s limits (ASTM D 4318). As can be 

verified from the grain size distributions (GSD) in Figures 3-1 & 3-2,  

 
 

Table 3-1 Soil samples provided by INDOT 
 

Sample Location Soil description water content (%)
M1 Gibson Co. US highway & CR50S Silt 9.5
S1 SR103 & CR700S Sandy loam 11.8
C1 SR641 & US41 RB23 Silty clay 40.5
C2 Bloomington sub-district Bloomington Clay 6.9  

 

the samples are from essentially fine-grained soils (even the sandy loam S1 sample has 

over 40% in weight passing the No 200 sieve) with broadly distributed size (i.e. silt M1 

and sandy loam S1, Fig. 3-1) or clay with high silt content, over 50% in weight (i.e. silty 

clay C1 and Bloomington clay C2, Fig. 3-2). Plasticity charts are shown in reference to 

the Unified Soil Classification System (USCS) and the American Association of State 

Highway and Transportation Officials (AASHTO) systems in Figures 3-3a & 3-3b 

respectively. Soil classifications based on this information are summarized in Table 3-2. 

 

 

Table 3-2 Soil Classifications for samples provided by INDOT 

Sample Description USCS classification 
(ASTM D2487)

AASHTO classification 
(ASTM D3282, 

AASHTO M145)
M1 Silt CL or ML A-6 (8)
S1 Sandy loam CL or ML A-6 (2)
C1 Silty clay CL A-6 (18)
C2 Bloomington clay CH A-7-6 (29)  
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 It is interesting to note that, if one follows strictly the current INDOT guidelines (see 

Chapter 1), only the soil of sample M1 (fine fraction greater than 50% and clay fraction 

lesser than 20%) would require installation of a filter. The other 3 samples do not meet 

the current INDOT criteria for a filter being required because, for S1 the fine fraction is 

only 40%, and for C1 & C2 the clay fraction is greater than 20% in spite of the fine 

fraction being much greater than 50%. 

 
3.3 Field Evaluation of Filter Long-Term Performance 

 
3.3.1 Site Selection and Sampling 

 
Criteria for sampling site selection were of technical and logistical nature: 

(a) Presence of geotextile filters in service for at least several years at a site was 

required for the site be eligible to. The preferred configuration, in line with the 

project objectives, had to be that of a geotextile lined around edge drain trenches 

and providing filter protection to a perforated drain pipe. Prefabricated 

geocomposite edge drains were not to be considered in priority because this type 

of edge drain is not anymore the technology of choice for INDOT. It is noted, 

however, that a number of such prefabricated geocomposite edge drains are still 

in service in Indiana highways. 

(b) In order for the collected information be of optimal relevance, it was 

anticipated that site at which inadequate filter or drain performance had been 

reported or was suspected by INDOT personnel were much preferable. 

(c) In order to minimize the cost the field work, avoid disrupting traffic, and for 

access to sampling locations be facilitated, candidate sites were likely to be 
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highway reconstruction or rehabilitation project sites. At such sites where old 

underdrains were being removed and replaced by new ones, sampling of the old 

filters and of the soil would be possible in the best conditions. 

 

Requests were sent to all INDOT Districts in order to identify sites that would meet the 

above criteria. As a result of this survey only one site, located in the Vincennes District 

on Sullivan County, along US 41 at its intersection with SR 154, seemed to be a good 

candidate and was selected. This location is the site of a US 41 widening and 

reconstruction project. During the Summer of 2004 old underdrains were removed and 

new ones installed. However the old underdrains installed c. 1990 appeared to be of the 

prefabricated geocomposite edge drains type (i.e. Monsanto Hydraway) made of a 

corrugated plastic drainage core encapsulated with needle-punched nonwoven geotextile 

filter. In spite of this shortcoming and because it was apparent that clogging had occurred 

to the filters, it was decided to take samples of these edge drains and further examine 

their geotextile components in the laboratory. During collection and transport of the 

samples, precautions were taken for preventing disturbance and loss of the fines that were 

present on the surface or within the geotextile fabric. Soil representative of the subgrade 

in contact with the edge drains was also taken from a shallow excavation at the site. Two 

soil samples were collected: one disturbed sample and one low-disturbance sample, the 

latter being obtained using a Shelby tube. In addition to the geosynthetic and soil 

samples, recycled concrete aggregates utilized for the reconstruction project were also 

collected. 
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3.3.2 Analysis of Soil Samples from the Sullivan Co. US 41 Site 
 

On the basis of its grain size distribution (i.e. 13% sand, 55% silt and 27% clay fractions 

in weight), its classification and its appearance, the soil sampled at the site is very similar 

to Sample C2 , Bloomington clay, already provided by INDOT (see Fig. 3-2, Fig. 3-3, 

and Table 3-2). The saturated hydraulic conductivity was determined, in the laboratory, 

using a falling head permeability test performed with a flexible wall permeameter. For 

this test the sample, 37 mm in diameter and 62 mm thick, was reconsolidated at an 

effective confining pressure of 10 kPa, full saturation being achieved by application of 

back pressure. The corresponding void ratio was 0.52. Permeation was performed under 

an average gradient of 30, and the resulting coefficient of permeability was 3.8x10-6 cm/s.  

3.3.3 Analysis of Geotextile Samples from the Sullivan Co. US 41 Site 
 

Once the geocomposite edge drains samples were in the laboratory, their geotextile filter 

layers were carefully separated from the drainage cores for further inspection and testing. 

According to manufacturer’s documentation, this geotextile is a needle-punched 

nonwoven fabric made of polyethylene fibers. It is 2.5mm thick, has a mass per unit area 

of 253 g/m2 and filter opening size, FOS=0.06mm. Visual inspection revealed that most 

fine soil particles had remained within the filter fabric and no sediment was found in the 

drain core. The geotextile degree of blinding or clogging after 15 years of service varied 

from sample to sample, depending probably on local variations in soil and hydraulic 

conditions at the site. Some samples were practically intact while others were covered 

with soil lining their surface and significant clogging was suspected. In Fig. 3-4 are 

shown two pictures of non-clogged (right-hand side) and heavily clogged (left-hand side) 

specimens. In order to quantify the effect of clogging on the capacity of the filters to 
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allow free flow of water to the drainage, the hydraulic conductivity perpendicular to the 

geotextile plane of clogged samples was compared to that of non-clogged samples. The 

hydraulic conductivity was determined on disk-shaped specimens placed in a 

permeameter with no soil sample present. Gradients across the geotextile were kept equal 

to 20.  The non-clogged samples still had a high hydraulic conductivity close to that of an 

intact sample of K= 0.15 cm/sec, but the hydraulic conductivity of the clogged samples 

was only 1.89x10-5 cm/sec that is about 10,000 times smaller than the intact value.  

3.3.4 Analysis of Bloomington Clay Filtration with Geotextile Samples from the 
Sullivan Co. US 41 Site 

 
In order to verify the ability of the exhumed geotextile to still work as a filter for the soil 

conditions encountered on the site, a filtration test was performed in the laboratory using 

a non-clogged geotextile sample and Bloomington clay. The type of test performed is 

known as the Rapid Retention Test (RRT). It is simple but accurate enough for being 

routinely performed on geotextile filters and has been used extensively in this study. 

Greater detail on the RRT development, technique and equipment is provided in a 

subsequent chapter (Chapter 6) of this report. For the sake of the present discussion, only 

the principle is described briefly and results are presented. The test consisted in placing 

the soil specimen, 25 mm (1 in) thick and 100 mm (4 in) in diameter on top of a 

geotextile disk in a flexible wall permeameter. After specimen saturation and 

consolidation had been achieved in the cell, downward flow was induced under a fairly 

high gradient, i=10, with the direction of seepage going from the soil to the geotextile, 

and the overall hydraulic conductivity of the composite system (soil and geotextile) was 

determined. The test was kept running for 8 hours in order to monitor changes in 
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hydraulic conductivity due to soil particle migration. At the start of the test the system 

hydraulic conductivity was 1.2x10-4 cm/s (2.3x10-4 ft/min) and, after 8 hours, had 

decreased to 2.6x10-6 cm/s (5.1x10-6 ft/min) cm/sec. Such a decrease of the soil/geotextile 

interface zone permeability (by a factor 100) is significant enough as the indication that 

clogging occurred during the test. However, it is noted that the gradient applied during 

the test was likely to be higher than typical values occurring in the field. Thus, in the test, 

seepage forces induced to soil particles and their resulting mobility were probably more 

severe than in the field.  

3.3.5 Filtration Test of Recycled Concrete Aggregate from the Sullivan Co US 41 
Project  

 
Filtration testing was also attempted on the aggregates used on the site for reconstructing 

the pavement. These aggregates, produced by rubbleization of the old concrete pavement, 

have been suspected of being a source of contamination for the underdrains at various 

INDOT projects. The rubbleized aggregate is occasionally mixed with chemicals - 

asphalt emulsion (AE) or polymer modified prime (PMP) for purpose of base course 

stabilization. The aggregate sample taken from the site was agglomerated with AE and 

PMP chemicals. It was necessary to break it down to gravel-size grains in order to 

perform tests in standard laboratory equipment. Fractioning also had the effect of 

increasing the specific surface area and enhancing chemical reactions with water. 

Crushed aggregates encrusted with stabilizer were separated from the clean ones (Fig.3-

5) and placed in a transparent plastic cylinder to form a 5 cm (2 in) thick layer resting on 

three geotextile filter disks (Fig.3-6). With this setup shown in Fig. 3-7, a long term 

filtration test was kept running for 2 weeks. A longer duration would have allowed 
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bacteria to grow inside the system and to interfere with the chemical or mechanical 

clogging processes. Untreated tap water was used as permeating fluid. The test was 

conducted in unsaturated condition at constant influent flow rate (100 cc/min) and the 

effluent rate was monitored once a day.  In case of clogging, the effluent rate would be 

observed to decrease with time. But no significant change in effluent rate was observed 

during the test and, therefore, no hydraulic evidence of clogging was obtained. However, 

after the sample was dismantled mottled stains were found on the geotextile layers, with 

their extent decreasing from the top layer to the bottom one (Fig.3-8). Though no 

chemical analysis was performed, their color and odor seem to exclude that these stains 

were made of stabilizer chemicals. More likely suspects are the hardness of tap water and 

cement chemicals present in recycled concrete aggregates. The latter is consistent with 

earlier findings by Wukash and Siddiqui (1996). 

3.3.6 Video Inspection of Subdrainage Pipes 
 

Several VHS tapes of underdrain pipe non-destructive inspections performed using a 

system similar to the borescope (an optical device that can be inserted in the drain and is 

connected to a video recorder) at different sites were made available to the investigators 

by INDOT Vincennes District’s engineers. Although these inspections do not relate to the 

same US 41 project but were performed at other sites, the video tapes contain information 

of interest in the present study. All the underdrains were installed in Fall of 2000 and 

were inspected in 2001 after 8 to 12 months of service. More information on the sections 

inspected is presented in Table 3-3.  
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The tapes were reviewed in detail and important features were noted. However analysis 

of this information and lessons that can be learnt from it are limited because clear, 

unambiguous correspondence between the project sections described in Table 3-3 and the 

video recording sections shown on the tapes is not provided. Also, in a number of 

instances the inspection instrument is used under water or is moved too fast within the 

pipes and, as a result, the recorded pictures are blurred. 

 

 

 

 

Table 3-3 General information on video inspections of drainage pipes 

 

 Following is a summary of observations (dates and times indicated are inspection dates 

and times that are marked on the tapes): 

Sections 1a & 1b (inspected July 27-31, 2001) 
- Water is present in pipe with level varying along section. Light sediment deposit 

Section Project/Location Type of Drain Geotextile Filter Rubbleization

1a R-24635 / SR 37 
Oolitic-50 West

100mm 
perforated pipe No No

1b same as above 150mm 
perforated pipe Yes No

2a R-24844 / SR 37 
Laurence Co.

100mm 
peforated pipe No Yes

2b same as above 150mm 
perforated pipe Yes No

3 R-24881 / US 41 
Sullivan & Knox

100mm 
perforated pipe Yes No
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is present in most of the section of pipes recorded. This sediment has the 
appearance of light silty powder lining about 10% to 20% of the pipe interior 
perimeter but it doest form a cake nor create obstruction or significant reduction 
in cross-section. Structural damage of pipe is observed at several locations. 

 
Sections 2a & 2b (inspected June 18- July 9, 2001)   

- Water is present in pipes with level varying along section. 
- June 18 footage: Along most of the segment, beige sediment forming cake lines 

50% to 70% of pipe perimeter, reducing inflow of water to the pipe. Cross-section 
of pipe is reduced by about 10%. At several locations, pipe has collapsed and 
inspection instrument is blocked. At clock mark, 14:24, heavy accumulation of 
white shining deposit, possibly of chemical origin rather than soil particles. Cross-
section of pipe is reduced by approximately 40%. 

- June 19 footage: Same as previous segment. At clock mark, 10:56, pipe is 
completely obstructed by sediment, blocking inspection instrument. 

- June 20 footage: Sediment cake present, similar to previous section, but no 
obstruction of pipe. Several instances of pipe collapse. 

- June 27 footage: Sediment forming cake lining 30% to 50% of pipe perimeter. 
Cross-section reduced by approximately 10% but no obstruction. From clock 
mark, 17:30 to end of segment, pipe is clean. 

- June 28 footage: Along the first 440’ of this segment, significant sediment 
accumulation forming cake over 30% of perimeter and reducing the cross-section 
by 10% to 20%, then clean pipe. At clock mark, 9:17, intrusion of vegetal 
material and obstruction of pipe combined with structural damage. Starting at 
clock mark, 9:55, presence of light sediment lining 20% of perimeter, with no 
cake formation or obstruction. At clock mark, 11:00, pipe has collapsed. Starting 
at clock mark, 13:04, light sediment lining approximately 60% of perimeter. 

- June 29 footage: Light sediment lining about 30% of perimeter. Between clock 
marks 8:49 and 9:30, pipe is clean, then sediment lining 20% to 50% of perimeter. 

- July 5 footage: Starting at clock mark, 7:46, heavy sedimentation lining 100% of 
perimeter and forming cake. Pipe cross-section is deformed and reduced by 60%. 
At clock mark , 7:47, pipe is obstructed by sediment and instrument blocked. Next 
segment, starting at clock mark, 8:05, is 20% lined by light sediment. At clock 
mark, 8:08, pipe is obstructed by sediment and instrument is blocked. From clock 
mark, 8:22, to the end of the segment, sediment deposits covering between 10%  
and 60% of pipe perimeter, with minor cake formation. 

- July 9 footage: no data because of bad operation of  instrument.   
 
Section 3 (inspected August 8, 2001) 

- This section was completely dry on day of inspection. Starting at clock mark, 
11:16, until 14:30 the pipe is clean or lined with light sediment lining up to 30% 
of its perimeter. No cake formation or obstruction. Next, vegetal material is 
present in pipe with, at 14:34, heavy accumulation of sediment obstructing 50% 
of cross-section. Rats are present in pipe. From clock mark, 14:44, to end of 
segment, pipe is clean or lined with light sediment deposit (up to 30% of 
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perimeter) with no cake formation or obstruction except at 17:07 where vegetal 
material has accumulated. 

 
 
3.4 Summary of Field Studies Findings 

 
Geotechnical situations that are considered prone to filtration problems with highway 

underdrains and from which soil samples were analyzed are characterized by high silt 

content. At the Sullivan Co. US 41 project site where samples of exhumed filters were 

obtained, the soil is similar to Bloomington clay with its grain size distribution dominated 

by the silt fraction. The filter samples from this site exhibited variable degree of clogging 

after 15 years of service. When quasi-intact specimens were tested in the laboratory 

together with Blooomington clay, their tendency to clogging with this soil was 

confirmed. Additional, but very limited, testing in the laboratory suggests chemicals from 

recycled (rubbleized) concrete aggregates might also affect the integrity of geotextile 

filters.  

 

Video recording of underdrain pipe non-destructive inspections from different INDOT 

projects show moderate to heavy sedimentation within pipes after one year of service, 

suggesting adequate filtration was lacking. Heavy sedimentation is characterized by 

formation of a cake around the pipe interior perimeter. This cake is likely to clog the pipe 

perforations and prevent drainage water to enter. It also decreases the pipe cross-section 

and affects its discharge capacity. In several instances, complete obstruction of pipes by 

sediment is observed as well as structural damage or failure. Sediment accumulation was 

found to vary significantly along all the sections inspected irrespectively of the presence 
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or absence of geotextile filters or of pavement rubbleization. These spatial variations are 

likely to be related to spatial variations in soil and hydraulic conditions.  

 

 
 

Figure 3-1 Grain size distribution of the silty soil samples provided by INDOT 
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Figure 3-2 Particle size distribution of the clayey soil samples provided by INDOT 
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Figure 3-3 Atterberg’s limit analysis for soil samples provided by INDOT 
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Figure 3-4 Two samples of the same geotextile filter from the Sullivan Co. US 41 site 
exhumed after 15 years of service: heavily clogged (left-hand side) and almost intact 
(right-hand side) 
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Figure 3-5 Rubbleized concrete aggregates after crushing 
(LHS : with stabilizer, RHS : after stabilizer is removed) 
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Figure 3-6 Installation of 3-layer non woven geotextile filter prior to testing with  
rubbleized concrete aggreagate 
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Figure 3-7 Testing device for chemical clogging of geotextile filters with rubbleized 

concrete aggregate 
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Figure 3-8 Chemical stains or deposits on geotextile filters after 2 weeks of testing with 
rubbleized concrete aggregates 
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4. Numerical Simulation of Hydraulic Conditions in Pavement  
 

4.1 Introduction 
 

Moisture and flow conditions within pavement structures and their drainage systems are 

highly variable with time and space. Like in other physical systems exposed to the 

environment and in contact with atmosphere, the amount of moisture present in the layers 

of a pavement and its movement are subject to seasonal, daily and even shorter term 

variations in function of precipitation and weather patterns. Pavement structures are 

stratified systems made of material layers that are relatively thin (as compared to natural 

soil deposits in general) and have contrasted hydraulic properties. For instance, in a 

particular roadway cross-section the hydraulic conductivity of concrete pavement course, 

aggregate base or subbase layers, and subgrade soil often differ by orders of magnitude. 

Furthermore, the nature of subgrade soil or the groundwater table elevation is not often 

uniform along a highway section and these variations, in turn, affect the hydraulic 

situation in the pavement and drainage system. As a result of such complexity, intuition is 

often deceptive and simple models misleading as to predicting the distribution of 

moisture and its flow patterns in pavement and underdrain systems. In Fig. 4-1a is shown 

a simple model of rainfall water infiltrating through a permeable material overlaying an 

open drainage layer. If the rainfall is of intensity and duration sufficient to produce 

saturation of the upper layer and steady-state vertical flow, the gradient becomes uniform 

and equal to one, which is the typical value suggested by Giroud (1996) for pavement 

edge drains. But when the flow toward a pipe drain is considered (Fig. 4-1b) the simple 

one-dimensional flow model is irrelevant because with this geometry, under saturated, 



 60

steady-state flow regime, the velocity must increase with decreasing distance to the pipe 

and therefore the gradient is neither uniform nor equal to one. 

 

In the present study, one is particularly interested in the magnitude of hydraulic gradients 

in the vicinity of and across geosynthetic filters. The gradient magnitude is an important 

parameter in the filtration process because it controls flow velocity and seepage forces 

that cause fine solid particles to migrate. When planning for the performance of filtration 

tests in the laboratory, which will be presented in the subsequent chapters of this report, it 

is desirable that the gradient applied in the test be at least as strong (or even stronger) 

than the operating field gradient, so that conclusions drawn from test results be on the 

safe side for engineering purpose. Thus a quantitative assessment, or at least a reasonable 

approximation, of flow patterns and resulting gradient distributions are required. The 

practical mean of obtaining this information is through numerical modeling and 

simulation of hydraulic events in a pavement system. The software, PURDRAIN, 

originally developed as part of a JTRP Research Study (Espinoza et al., 1993) was 

utilized for performing this task. Using PURDRAIN it is possible to model the two-

dimensional geometry of a pavement cross-section and its materials hydraulic properties. 

Rainfall events can be simulated and resulting subsurface moisture and flow patterns in 

the system analyzed. The program takes into account changes in degree of saturation, as a 

function of time, and corresponding changes in hydraulic conductivity. The numerical 

solution technique used in PURDRAIN is the finite difference method. It is computer-

intensive but provides reasonably accurate solutions for the governing system of non-
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linear differential equations. Details on the related theory, material constitutive models 

and solution algorithms can be found elsewhere (Espinoza et al., 1993, Espinoza, 1993). 

4.2 Analysis of  Subsurface Flow Patterns Using PURDRAIN 
 

A two-dimensional example case was devised, defined by its geometry, cross-section and 

material hydraulic properties. Then, three hydraulic scenarios were simulated and the 

resulting subsurface flow analyzed. The example characteristics that were considered are 

believed to be, in simplified form, representative of a range of possible situations in 

Indiana highways. Some of the characteristics, such as the boundary conditions or the 

rainfall intensity, may seem restrictive or extreme, but these were selected for the purpose 

of maximizing flow toward the edge drain and generating severe gradients across the 

filter. 

4.2.1 Geometry  
 

A cross-section drawing, obtained from INDOT, of pavement-shoulder joint and edge 

drain area configuration is shown in Fig. 4-2. The cross-section used for numerical 

simulations (Fig. 4-3) is a simplified version of this original. 

4.2.2 Boundary conditions  
 

Also indicated in Fig. 4-3 are impervious boundary conditions at the bottom and sides of 

the model. In fact, the lateral conditions are not physically true impervious boundaries 

but are assumed to be symmetry axis and, because of symmetry, behave hydraulically as 

if they were impervious. At the surface, the concrete pavement layer is assumed 

impervious while the shoulder is assumed open to infiltration from rainfall. In the edge 

drain, the boundary condition for the perforated of slotted pipe is that of a “sink” 

(Espinoza et al. 1993). 
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4.2.3 Material hydraulic properties  
 

When they are partially saturated porous materials exhibit complex behavior with respect 

to their interactions with pore water. Of particular interest for the present analysis are the 

relationship between matric suction (i.e. the capillary pressure head) and degree of 

saturation, and the relationship between hydraulic conductivity and degree of saturation. 

When the degree of saturation increases the matric suction decreases while the hydraulic 

conductivity increases. These two relationships control the material constitutive response 

to boundary-induced moisture movement. A number of constitutive models have been 

proposed to mathematically represent this behavior and several of these are available to 

PURDRAIN users. Detailed discussions on the relative merits of these constitutive 

models can be found elsewhere (e.g. El-Kadi, 1985, Espinoza, 1993a). In the present 

study, the Brooks and Corey (1964) model was selected for its accuracy and still relative 

simplicity. Analytical expressions of the suction-vs-saturation and the permeability-vs-

saturation functions in the Brooks and Corey model are given in Eq. 4-1 and 4-2, 

respectively, and example plots are shown in Fig. 4-4. 

1

e

e

S  = for   PB
PB

S 1 for   < PB

υψ ψ

ψ

−
⎛ ⎞ ≥⎜ ⎟
⎝ ⎠

=       (4-1) 

η
S eK = K S⋅         (4-2) 

In this formulation, Se is the effective degree of saturation, Ψ, the matric suction, PB, the 

bubbling pressure and, ν, the pore size distribution index parameter. K is the hydraulic 

conductivity at partial saturation, Ks the hydraulic conductivity at full saturation and η the 
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hydraulic conductivity factor. The effective degree of saturation is related to the 

volumetric moisture content, θ, or to the degree of saturation, S, as 

Se= (θ - θr ) / ( θs - θr ) = (S - Sr ) / ( 1 - Sr )      (4-3) 

where θs and θr represent the volumetric moisture content at full saturation (equal to the 

porosity) and its irreducible value (i.e. the residual moisture under high suction), 

respectively. The residual degree of saturation, Sr , corresponds to the residual moisture 

content. The difference between the two limiting values of the moisture content (Δθ=θs-

θr) is called volumetric water capacity and is equal to the effective porosity. Data for the 

model parameters used in the analysis are summarized in Table 4-1. These were derived 

from the experimental study performed by Ahmed (Ahmed et al., 1993) on the hydraulic 

properties of Indiana pavement materials. Two cases were considered for the subgrade 

properties, in order to test the influence of its permeability on the flow patterns while the 

properties of the aggregate layers are kept unchanged. The subgrade hydraulic 

conductivity at saturation in Case 2 is one order of magnitude lower than in Case 1. Still, 

in both cases the characteristics are compatible with sandy silt or silt subgrades that make 

filtration such an important issue.  

Table 4-1 Input parameters for the Brooks & Corey partially saturated materials model 
 

Aggregate layers Subgrade Case 1 Subgrade Case 2
Saturated permeability (cm/sec)   

(ft/min)
3.00E-2          
(5.9E-2)

6.00E-3          
(1.2E-2)

6.00E-4         
(1.2E-3)

Irreducible moisture content 0.005 0.01 0.05
Volumetric water capacity 0.4 0.38 0.38

Maximal matric suction* (cm)     
(ft)

15000           
(492)

15000           
(492)

15000          
(492)

Bubbling pressure (cm)         
(in)

12                    
(4.7)

20              
(7.9)

30             
(11.8)

 Pore size index parameter 2.5 2.8 3.2
Hydraulic conductivity parameter 6.5 7.5 9  

* A maximal value is assigned to the matric suction for computational purpose only 
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4.2.4. Simulated scenarios  

 
Three events, each almost 3 hours long, were simulated. These are defined with different 

initial hydraulic conditions (i.e. initial degrees of saturation) and rainfall history sketched 

in Fig. 4-5. With Scenario A, computation starts immediately after the end of a rainfall of 

such intensity and duration that the whole system has been completely saturated. The 

computation simulates the drainage phase which follows. At the opposite, Scenario B 

starts with very dry initial conditions at the time a heavy rainfall occurs. The consecutive 

infiltration and wetting phase is then simulated. Scenario C is an intermediate case in 

terms of initial conditions, with high water table in the subgrade and relatively dry 

aggregate layers. Then, a heavy rainfall occurs and the infiltration and subsequent flow 

are simulated. In simulation B and C, the modeled rainfall characteristics were based on 

statistical records available from the Indiana Department of Natural Resource in 

reference a centennial event of intensity, 72 mm/hr (3 in/hr). This intensity was kept 

constant throughout the whole simulated event duration. 

4.3. Simulation results 
 

Accounting for three hydraulic scenarios (A, B and C), each combined with two 

hypotheses of subgrade permeability (Cases 1 and 2 in Table 4-1), a total of six 

simulations were performed using PURDRAIN. For each of the six simulation cases, A1, 

A2, B1, B2, C1 and C2, outputs were obtained at programmed computation time steps. A 

selection of the most interesting results is presented in Figures 4-6 to 4-10 where equal 

value contours of total hydraulic head (i.e. the equipotentials) and saturation degree are 

plotted. In each case plots for only the two stages, most representative of gradients 
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observed in the vicinity of the edge drain, are shown herein. Plots labeled (a) show the 

distribution of total hydraulic head and allow determination of both flow direction and 

gradient magnitude. At each point in the figure the flow trajectory is normal to the 

equipotential line and goes from high to low hydraulic head location. Plots labeled (b) 

allow visualizing the spatial redistribution of moisture from the initial state and the 

progression of drying or wetting fronts.  

 

With Scenario A (Figures 4-6 & 4-7), drainage from the initially fully saturated state is 

evidenced by flow patterns converging toward the drain and the downward progression of 

a wetting front from the shoulder surface to the subbase-subgrade interface. The drainage 

action is more concentrated in the case of a lesser permeable subgrade A2 (Fig. 4-7) than 

in case A1 (Fig. 4-6), but in both cases the largest gradients take place at the early stage 

of the process. At time, 10 minutes, the largest gradient occurs at the left side boundary 

of the drainage trench, crossing the filter obliquely. The maximal gradient magnitude is 

approximately 0.5 in case A1, but reaches 2.5 in case A2. Thus, for this scenario, larger 

contrast in permeability between subbase and subgrade results in stronger gradient across 

the filter. 

 

With Scenario B (Figures 4-8 & 4-9), rainfall water infiltrates into an initially very dry 

system and a wetting front moves rapidly downwards from the shoulder surface. 

Comparison of cases B1 and B2 shows significant differences in moisture movement and 

gradients. In case B1 (Fig. 4-8) where the ratio between saturated hydraulic 

conductivities of aggregate layers to subgrade is only 5, moisture is able to reach the 
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subgrade below the shoulder infiltration and then migrates laterally toward the drain 

trench. zone. Maximal gradients cross the filter with magnitude, up to 4, after 40 minutes, 

then decrease to approximately 1 after 160 minutes. In contrast, when the subgrade is 50 

times less permeable than the aggregate layers (case B2), moisture must first re-saturate 

the aggregate base/subbase layers in order to buildup enough energy for infiltrating the 

subgrade. This translates (Fig. 4-9) in moisture distributions and flow patterns quasi-

symmetrical with respect to the drainage trench and in gradients that are oriented almost 

vertically downwards. With the assumed design configuration, in this case (B2) water 

would enter the drainage trench directly from above, without crossing the filter lining 

only the sides and bottom of the trench. Maximal values for these vertical gradients are in 

the range, 1 (at 40 minutes) to 1.5 (at 160 minutes). 

 

With Scenario C (Figures 4-9 & 4-11) rainfall infiltrates in a system where the subgrade 

is already saturated. The process of moisture migration is, qualitatively, similar to 

scenario B2 but limited to the region located above the phreatic level in the subgrade. 

Maximal gradients enter the drainage trench vertically through its top boundary. In this 

case their magnitude, practically independent of the subgrade permeability, varies from 

approximately 1 at time, 10 minutes, to 2 at time, 40 minutes. 

4.4. Summary  
 

The series of numerical simulations performed using PURDRAIN for a range of 

hydraulic scenarios indicate maximal gradients can reach values up to 4 across the 

geotextile filter region during a heavy rainfall event following a period of drought. Other 

scenarios result in maximal gradients slightly lesser but generally greater than 1 (Table 4-
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2). However, it should be noted that the peak gradient condition occurs in a state of 

partially saturated soil where the mobility of individual fine particles is restrained by 

surface tensions making the soil apparently cohesive. This somewhat mitigates the severe 

gradient condition with respect to the filter performance. On the other hand, the 

numerical simulations performed using PURDRAIN do not account for dynamic gradient 

pulsing and consecutive fine pumping that could be generated by traffic load in fully 

saturated conditions such as scenario A. Thus, when using these results as guidance for 

selecting the range of gradients to be applied in laboratory tests, significant margins of 

safety should be applied. Another interesting information provided by the numerical 

simulations is related to flow trajectories toward the edge drain. In general, the maximal 

gradients are associated to stream lines entering the drainage trench laterally and crossing 

the filter. But in case of rainfall infiltration with low permeability subgrade or in case of  

fully saturated subgrade the maximal gradient stream lines come directly from the 

aggregate subbase and would lead to the drain without crossing the filter unless the 

geotextile was wrapped over the trench. 

 
Table 4-2 Maximal gradient values from numerical simulations 

 
Subgrade case 1          

Ksaggregate/Kssubgrade =5
Subgrade case 2          

Ksaggregate/Kssubgrade =50
Scenario A             

(drainage after saturation) 0.5 2.5

Scenario B             
(infiltration after dry state) 4 1.5

Scenario C             
(infiltration after wet state) 1 2
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Figure 4-1 Simple flow models in subdrainage: (a) uniform vertical flow toward drainage 
layer and (b) radial flow toward drainage pipe 
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Figure 4-2 Design example cross-section for pavement-shoulder joint area and edge drain 
in Indiana roadways 
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Figure 4-3 Simplified cross-section and boundary conditions used in numerical 

simulations using PURDRAIN  
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Figure 4-4 Brooks and Corey (1964) model for water retention and hydraulic 
conductivity functions 
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Figure 4-5 Simulated initial conditions and rainfall scenarios: (A) Drainage from fully 

submerged condition, (B) Rainfall infiltration following very dry period and (C) Rainfall 
infiltration following wet period with high water table in subgrade 
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Figure 4-6 Simulation results for Scenario A1: drainage from fully submerged condition 

with low permeability contrast between subgrade and aggregate layers  
(a) hydraulic head distribution in cm (the elevation datum plane is at bottom boundary); 

(b) saturation degree distribution 
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Figure 4-7 Simulation results for Scenario A2: drainage from fully submerged condition 

with high permeability contrast between subgrade and aggregate layers  
(a) hydraulic head distribution in cm (the elevation datum plane is at bottom boundary); 

(b) saturation degree distribution 
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Figure 4-8 Simulation results for Scenario B1: rainfall infiltration following very dry 

period with low permeability contrast between subgrade and aggregate layers  
(a) hydraulic head distribution in cm (the elevation datum plane is at bottom boundary); 

(b) saturation degree distribution 
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Figure 4-9 Simulation results for Scenario B2: rainfall infiltration following very dry 

period with high permeability contrast between subgrade and aggregate layers  
(a) hydraulic head distribution in cm (the elevation datum plane is at bottom boundary); 

(b) saturation degree distribution 
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Figure 4-10 Simulation results for Scenario C1: rainfall infiltration following wet period 

with low permeability contrast between subgrade and aggregate layers  
(a) hydraulic head distribution in cm (the elevation datum plane is at bottom boundary); 

(b) saturation degree distribution 
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Figure 4-11 Simulation results for Scenario C2: rainfall infiltration following wet period 
with high permeability contrast between subgrade and aggregate layers  

(a) hydraulic head distribution in cm (the elevation datum plane is at bottom boundary); 
(b) saturation degree distribution 
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5. Laboratory Investigation of Geotextile Filtration by Flexible 
Gradient Ratio Test – Effect of Soil Property 

5.1 Introduction 

The objective of this chapter is to present the results of the flexible wall gradient ratio 

(FWGR) tests performed to investigate the effects of soil properties (fines content and 

degree of compaction) on the internal stability of a soil medium. Section 5.2 presents a 

description of the FWGR test. Then, the material properties of soil and geotextile and test 

hydraulic conditions are described in Section 5.3. Test results are presented and discussed 

in Sections 5.4 and 5.5. Section 5.6 summarizes the key findings presented in the chapter  

5.2 Description of FWGR Test 

The flexible wall gradient ratio (FWGR) test was proposed by Harney and Holtz 

(2001) in order to combine the advantages of the gradient ratio test (GR [ASTM D5101]) 

and the hydraulic conductivity ratio test (HCR [ASTM D5567]). The advantages of the 

GR and HCR tests are described in Section 2.6.  

 

The FWGR test device allows application of an effective overburden stress thus more 

closely simulating actual field conditions. Fully saturated soil conditions can be achieved 

with the application of a back-pressure. Side leaking in a conventional GR test is fully 

prevented by using a flexible membrane and a confining cell pressure. Pore pressure 
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changes in the vicinity of the geotextile (GT) filter are monitored so that the fine particle 

migration at the soil-GT interface can be traced in real time. 

 
The FWGR testing apparatus used in this research is comprised of the following major 

components: the cell; the pressure panel for application and control of the cell and pore 

pressures; the sensors for measuring cell and pore pressures as well as axial and 

volumetric changes; the data acquisition system interfaced with a PC. 

 

The cell, shown in Figure B.2 in appendix, is similar to that employed for triaxial 

testing. It houses a specimen that is 10.2 cm in diameter and 15 to 17 cm in height 

(Figure 5.1). The test soil is seated on top of a geotextile specimen. Wire mesh 

underlying the geotextile supports the weight of the test specimen. A bowl type container 

is installed below the wire mesh to collect the fine particles that migrate through the 

geotextile. The capture capacity of this hollow container is 86 cc.  

 

A pressure panel manufactured by GEOTEST (1994) is used for application of the cell 

pressure and of the back pressure. The panel is equipped with three air pressure 

regulators which control the cell pressure and the pressure heads at the top and bottom of 

the test specimen. Actual back pressure is evaluated from averaging the two pressure 

heads applied to the test column. Four scaled burettes, each with 60 cc capacity, 

connected to each other in parallel, continuously measure the flow rate through system 

Therefore, large flow rates, which are anticipated at the beginning of a test, can be 
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promptly monitored even for soil specimens having high hydraulic conductivity.  A 

reservoir tank with a capacity of 20 L provides deionized water. 

 

While the panel is instrumented with a gage for monitoring the pressures applied, 

sensors are mounted on the cell for direct measurement of the pressures.  Specifically, the 

cell is instrumented with a 100 psi (689 kPa) capacity diaphragm pressure gauge for 

measuring the cell pressure.  Six similar additional transducers are used for monitoring 

the pore pressure at different heights within the soil specimen.  As shown in Figure B.2 in 

appendix, all sensors are mounted on the base of the cell.  The pore pressure transducers 

are connected to the specimen through internal ports specially fabricated on the latex 

membrane. 

 

 Figure 5.1 shows the locations in the specimen where the pore pressure is measured. 

Pore pressure measurements are made at the bottom of the soil specimen and 12.5 mm 

above the specimen base (Figure 5.1). Two independent measurements are performed at 

each of these two elevations to verify repeatability in the data. They provide the means to 

measure the hydraulic head difference across the filtration zone. The data presented in the 

following are obtained by averaging these two independent measurements.  Additional 

ports are located at 25 mm (1 in) and 75 mm (3 in) from the bottom. From these the head 

difference in the portion of the soil that is considered to be free of fine particle migration 

can be determined. The specimen height varies during the various stages of the test 

because of the change in effective stresses and the fine particle migration through the 



 82

filter material. This change is monitored by an external LVDT mounted on the cell 

piston. 

 

Acquisition of the signals from the pressure transducers and the LVDT is achieved 

through a 8 channel data acquisition system manufactured by Geotac of Houston, TX.  

The system relies on a 22 bit A/D converter and is interfaced with a PC. A general 

purpose data acquisition program provided by the manufacturer is used to record the 

voltage signals from all the transducers.  These are then converted to engineering units 

based on calibration curves determined for each of the sensors. 

 

The FWGR tests conducted in this research involved the application of a constant head 

difference across the test specimen (soil + GT), while measuring the resulting flow rate, 

and the pore pressures generated in time throughout the soil specimen.  In the setup used 

for this research a pressure panel equipped with precision regulators was employed to 

apply constant values of the back pressure at the bottom and top of the soil specimen to 

create downward flow through the specimen.   The values of the pressure were selected to 

yield an initial gradient of 5 (see Section 5.2.5 for details).  The resulting flow rate was 

measured through the burettes mounted on the pressure panel. As the water flowed 

through the specimen, readings of the pore pressure were taken at the various pore 

pressure transducers.  Based on these readings the gradients existing across different 

portions of the specimen were determined.  From these values the gradient ratio (GR), 

one of the key parameters used to interpret the test data, was calculated.  Note that in this 

research the GR is defined as GR = i0-12/i25-75, where i0-12 is the value of the hydraulic 
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gradient across the bottom 12.7 mm of the soil specimen, and i25-75 is the gradient in the 

portion of the specimen between 25 and 75 mm elevation. Note that this definition of the 

GR differs from those previously employed by other researchers (e.g. GRASTM = i0-25/i25-75 

[ASTM D 5101] or GRMOD i0-8/i25-75 [modified by Fannin et al, 1994]). Note also that the 

i0-12gradient is restricted to the bottom portion of the soil specimen and excludes the head 

loss across the GT filter. Differences in hydraulic head between the lowest port and the 

base container can be used to determine the head loss across the geotextile (GHL), which 

is expected to be close to zero at the beginning of any test and may increase as a result of 

internal clogging.  

 

At the end of the test the base hollow container, in which all the fine particles that 

penetrated the GT filter were captured, was inspected and the amount of passing soil was 

weighed and compared with the soil mass retained inside the geotextile. At the same time 

the GT specimens were oven-dried and their mass compared to the initial one to 

determine the amount of soil clogged in the GT. 
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Figure 5.1 Port locations and soil column specs in FWGR test 
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5.3 Material Properties and Testing Conditions 

5.3.1 Overview 

  FWGR tests were conducted employing three different soils and two different 

geotextiles. The soil specimens were prepared with different silt contents (10%, 20% and 

50% by weight) at two compaction states. Two geotextile specimens different in 

thickness (3.2 mm and 1.1 mm) and opening size (0.15 and 0.21 mm) were selected for 

testing the filter performance. The following sections cover in detail the preparation of 

the soil specimens (5.3.2), the relationship between limiting void ratios (emax and emin) 

and silt content (5.3.3), the properties of the geotextiles (opening size in 5.3.4 and 

thickness in 5.3.5) and the selection criteria for the hydraulic conditions (5.3.6).    

5.3.2 Soil Specimen Preparation 

The basic material used for all the tests was concrete sand. Silt was added to the sand 

at percentages by dry mass of 10, 20 and 50%.  Figure 5.2(a) shows the grain size 

distribution (GSD) curves of the resulting soil mixtures. Note that as a result of the 

different percentage of silt used the curves display very distinct shapes: upward concave 

(10%), gap graded (20%) and upward convex (50%). As shown by Kenney and Lau 

(1985), the shape of the GSD determines the soil’s internal stability which controls the 

fine particle migration during the filtration process. In Figure 5.2(a) the GSD curves are 

plotted in terms of F and H where F and H are defined in Section 2.3.1. It is shown that 

only the 50 silt GSD satisfies the criterion for soil internal stability (Kenney and Lau, 
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1985) of H >1.3 F up to F=0.2 (Figure 5.2(b)). Note that internal stability analysis charts 

are based on densely compacted soil states. Therefore even a soil that met this criterion 

could be internally unstable under loose conditions.  

 

Soil specimens were prepared using the slurry deposition method (Siva and Bhatia, 

1994) to guarantee uniform particle distribution. The water content of the slurry varied 

between 13 and 15% to limit fine particle segregation. A mold with dimensions of 10.2 

cm (inner diameter) × 18 cm (height) was specially designed to protect the extruding 

ports of the membrane during specimen preparation. 

 

Once poured into the mold the slurry was left to consolidate for a period that varied 

between 12 and 24 hours, depending on the percentage of fines. During this stage dead 

weights (from 0.5 kg to 4.5 kg) were placed on the slurry to reach the target void ratio. 

The following loading increment schedule was applied to the 10% silt specimens: no load 

- 2hr, 0.5 kg – 2hr, 1kg – 1hr, 2kg – 1hr, and 4.5kg – 30 min.. Identical loading schedules 

were employed to the 20% silt and 50% silt specimens but with double and quadruple 

durations, respectively. This type of schedule was selected to limit seepage forces 

associated with excess pore pressure generation. If a denser soil specimen was desired, 

after this phase the mold was tapped following a standard procedure (75 taps evenly 

around the mold side), and an additional mass (15 kg) was placed on top of the specimen. 

Table 5.1 summarizes the test conditions (silt percentage and degree of compaction) 

examined in the investigation program. In this table and thereafter in this chapter, the 

terms “loose” and “dense” are used to refer to compaction states achieved without and  
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Figure 5.2 (a)Grain size distribution (GSD) of soil specimens and (b) internal stability 

evaluation (H’ = 1.3 F where F is cumulative fraction of GSD in percentage after Kenney 
and Lau, 1985) 
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Table 5.1 Void ratio and relative density values of test soil specimens 

silt % d.o.c. 1) e 2) rel. density (%) e min 3) e max 4) 

10 loose 0.42 62.5 0.33 0.57 

10 dense 0.33 100.0 0.33 0.57 

20 loose 0.35 82.8 0.30 0.59 

20 dense 0.29 103.4 0.30 0.59 

50 loose 0.36 86.1 0.39 0.73 

50 dense 0.3 126.5 0.39 0.73 

 1) degree of compaction for soil specimen 
 2) void ratio of soil specimen 
 3) estimation from standard proctor test (ASTM D698) 
 4) estimation from funnel method (ASTM D4253) 
 
 
with tapping, respectively. . Table 5.1 also includes the values of the void ratio measured 

at the end of the FWGR tests, as well as the values of the minimum and maximum void 

ratio for the three sand-silt mixes considered obtained from the standard Proctor test, and 

the funnel method, respectively (see more details in section 5.3.3). 

Following the consolidation process, the porous stone and head cap were positioned on 

top of the soil specimen, and the membrane sealed using O rings.  A suction pressure of – 

5 kPa was then applied to allow removal of the mold and assembly of the triaxial 

chamber.  

 

  Back pressure saturation was conducted in 40 steps raising the back pressure up to a 

maximum value of 400 kPa. All the increase steps were controlled with effective 

confining stress less than 5 kPa. At the final pore pressure B values greater than 0.95 

were measured in all the specimens.  
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 Air bubbles can be trapped inside the tube connecting the membrane port to the external 

pressure transducer during the specimen preparation stage. The air bubbles need to be 

removed at the beginning of the back pressuring stage since the high compressibility of 

the air interferes with the accurate assessment of pore pressure changes inside the soil 

sample. The trapped air bubbles could be successfully removed during the initial back 

pressure stage (when the cell pressure had been increased to 10 kPa) by temporarily 

releasing the pore pressure built within the soil specimen through the external ports. 

 

  Following back pressure saturation the soil specimens were consolidated in hydrostatic 

conditions to an effective confining stress of 10 kPa. This value was selected to reflect 

the typical effective stress level at the depth of a sub surface drainage system (e.g. @ 

1.2m).  The volume change associated with reaching this effective stress was generally 

very small and was the greatest (0.14%) in the case of the 50% silt soil. 

5.3.3 Silt Content and Compaction States 

    The funnel method and the tapping method were used to evaluate the limiting void 

ratios of the soil specimens in the fully dried state (ASTM D 4253). Both the vibration 

method and the standard proctor test (ASTM D 4254 and 698) were employed to assess 

the minimum reference values in the wet state for 10%, 20%, 35% and 50% silt.  Figure 

5.3 summarizes the data obtained.  It is shown that there is a significant difference 

between the values of emin obtained for each silt content with the three methods: both the 

tapping method and the vibration method yield values of emin that are consistently higher 

than the value obtained from the proctor test.  The difference appears to increase with silt 
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content (above 30-35% silt the figure reports data for only the proctor test).  Comparison 

with the void ratio data in Table 5.1 shows that the tapping procedure employed to 

densify the specimens (in wet conditions) in the FWGR test as well as the seepage force 

associated with permeation of the specimen during the test itself, yielded final values of 

the void ratio equal or lower than the emin values from the proctor test.  The difference is 

especially significant for the 50% silt soil. It appears that for such a high fines percentage 

the concept of limiting densities loses significance.  

   

    Despite this, the curves of void ratio versus silt percentage are consistent with those 

reported in the literature for other silt sand mixtures (e.g. Thevanayagam et al, 2002 – 

Figure 5.3 (b)).  The maximum void ratio shows a small decrease with silt percentage up 

to 10% silt, and then increases steadily. In the case of the minimum void ratio the 

decrease is very significant up to a silt content between 20 and 35% (e.g. for 20% silt emin 

is approximately 60% of the value measured on the pure sand).  Again after reaching this 

minimum, emin goes back to increase with further silt addition.  These trends in emin and 

emax have been extensively discussed in the literature (e.g., Lade et al, 1998 and 

Thevanayagam, 2002). These researchers concluded that the content of fines is important 

in determining the sand structure and the consequent limiting void ratios.  Test results 

also support the hypothesis that as the (relative) density of the soil increases, an 

increasing number of fine particles participate in playing the role of the soil skeleton.  In 

other words, with increased degree of compaction, the fraction of the fine particles that 

remains free to migrate across the soil pores decreases while the particle structure 

resisting wash-out increases.  
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5.3.4 Geotextile Apparent Opening Size (AOS) 

There are several filter design methods (or criteria) available in the literature for 

selecting the opening size range (AOS) of a geotextile based on the soil GSD.  Table 5.2 

summarizes the results of applying these criteria to the soils investigated in this research. 

It is shown that both GT used in this research (AOS = 0.15 and 0.21 mm) meet the first 

two criteria for all three soils.  Thus piping (severe soil erosion) is not expected to occur 

in any of the three soil specimens (10%wt, 20%wt and 50%wt silt). The last criterion by 

Lafleur (1999) recommends AOS values larger than 0.4-0.5 mm to reduce the potential of 

blinding in the case of the 10% and 20% silt soils (this opening size is hardly found in 

commercial products of needle punched GT). Therefore, poor hydraulic performance 

(e.g. blinding or clogging) should be expected for the 10% and 20% silt soils with the 

GTs used in this research.  The choice of AOS in the 0.15 -0.21 mm range would instead 

be expected to yield satisfactory result for the 50% silt soil. 

Table 5.2 Opening size values recommended from GT retention criteria 

GT filter criteria 10% silt 20% silt 50% silt 

FWHA 1) (1985) < 2.2 mm <2.7 mm <0.25 mm 

< 1.8 mm (loose) < 1.7 mm (loose) < 0.08 mm (loose) 
Luettich et al (1992) 

<3.6 mm (dense) < 3.4 mm (dense) <0.17 mm (dense) 

Lafleur (1999) 0.5 ~ 2.5 mm 0.4 ~ 2.0 mm 0.1 ~ 0.5 mm 

1) authored by Christopher and Holtz 
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 5.3.5 Geotextile Constrained Compressibility and Thickness 

If geotextiles are stretched by tensile forces along a planar direction, the FOS (see 

Chapter 2 for definition of FOS) is generally reduced by the opening elongation along the 

direction of force (Fourie and Kuchena, 1995). Besides the FOS reduction due to lateral 

load, another type of reduction in opening size can be expected from the vertical 

compression of the thickness due to the overburden pressure. The compressibility of GT 

is also of significant concern in that it will affect the area of contact between the fiber and 

coarse soil particles. In light of the above, the constrained compressibility of the two GT 

specimens employed for the FWGR test as well as of an additional GT with an 

intermediate thickness was measured. This measurement was performed uni-axially 

loading the GT specimens in a displacement controlled load frame using a strain rate of 

0.85%/sec. A stainless steel ring was used to prevent lateral extension of the GT during 

the loading. The axial load and displacement of the loading cap, designed to fit inside the 

remaining ring, were continuously monitored.  

 

 Table 5.3 summarizes the specifications under atmospheric pressure of the three GT used 

while Figure 5.4 presents the results of the uni-axial loading test. It is observed that at the 

stress level employed in this testing program (10kPa) for the FWGR tests, the strain of 

the GT ranges between 4% and 15%, for the thick GT (G1202) and thin GT (G402) 

respectively. The results presented in Figure 5.4 also indicate a lower compressibility of 

the thick GT compared to the thin one. Furthermore, there appears to be no relationship  
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Figure 5.3 (a) Compaction test results for different fine contents by various method types 
and (b) the comparable reference data (Thevanayagam et al, 2002) 
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Figure 5.4 Constrained Compressibility of GT with Different Thickness (higher product 
number indicates larger GT thickness) 
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Table 5.3 Specs of non woven geotextiles in the constraint compression test (GSE, 2003) 

Brand/Product 
Mass/area 

(g/m2) 

Initial 

thickness 

(mm) 

Specific 

density1) 

(kg/m3) 

Permeability 

(cm/sec) 

A.O.S.2) 

(mm) 

GSE 402 135 1.1 123 0.17 0.21 

GSE 1002 333 2.5 134 0.21 0.15 

GSE 1202 405 3.2 127 0.25 0.15 

 
 
 

1) Specific density = mass / area / initial thickness 

2) A.O.S is apparent opening size (estimated by ASTM D4751) 

3) Fiber bonding type is needle punched 

between GT specific density (i.e. mass per area divided by thickness) and GT 

compressibility. 

5.3.6 Hydraulic Conditions 

 Field hydraulic conditions can not be exactly simulated in a laboratory environment, and 

thus the concomitant simplifications must be accepted. While most column tests used to 

examine GT clogging have adopted a constant head condition, the values of the system 

hydraulic gradient employed vary over a wide range.  For example for the GR test 

(ASTM D5101) it is recommended that the gradient be between 0.5 and 10. In the HCR 

test (ASTM D5567) the maximum system gradient is set at 5 for soil specimens with K 

between 1.E-3 and 1.E-5 cm/sec. Giroud (1996) suggested that the appropriate hydraulic 

gradient value for the underdrain near the surface is one.  
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The highest gradient value expected at a site can be applied as the system hydraulic 

gradient in a test to simulate the worst case scenario. Whereas site hydraulic gradient 

values are dependent on initial degree of soil saturation, the ambient hydraulic gradient 

value of a road drainage layer can increase to 17.5 because of the flow convergence 

pattern onto a sink point or a drainage pipe (Mlynarek et al, 1993). From the analysis of 

the hydraulic head distribution around an underdrain pipe presented in Chapter 4, the 

hydraulic gradient levels at the geotextile filter were expected to be 0.25 to 0.5 for 

subgrade soils with K between 6E-4 cm/sec and 6E-3 cm/sec under fully saturated 

conditions (Table 4.2). These hydraulic gradient values would be expected to increase 

under more realistic site conditions, for example if partial leakage through the pavement 

boundary was allowed.  The presence of less pervious subgrade soil (e.g. silty soil with K 

ranging from 1.E-6 cm/sec to 1.E-4 cm/sec) would also lead to higher gradients.  These 

considerations justify the selection of a system hydraulic gradient of 5 for all the tests 

presented in this chapter.  

5.4 Test Results 

5.4.1 Normalized Parameters 

The soils tested in this research exhibit a significant range in hydraulic conductivity 

(6.8E-6 cm/sec to 1.1E-4 cm/sec - see Table 5.4). As a result of this range in K, it is 
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expected that under the same hydraulic gradient, the process of fine particle migration 

will occur over different time scales depending on the fine contents in soil.  

 

To effectively compare the data from experiments conducted on different soils 

characterized by different initial compaction state and often markedly different in initial 

hydraulic conductivity, the following normalized parameters are introduced: relative pore 

volume (r.p.v.) and relative hydraulic conductivity (Krel). 

 

The relative pore volume (r.p.v.) is defined as the flow volume divided by the initial soil 

pore volume, i.e.  

Vndtqvpr ⋅= ∫...          Eq.5.1 

where q is the system flow rate (cc/sec), n the initial soil porosity and V is the initial soil 

volume (cc).   

 

  The relative hydraulic conductivity, Krel is defined as K/Kini where K is the absolute 

system (i.e., soil + GT) hydraulic conductivity at any given time during the test and Kini is 

the initial system hydraulic conductivity.  

 

  The results from any of the FWGR tests can then be presented either in terms of K 

versus testing time or using the normalized parameters.  An example of how the data 

from a single experiment appear in these two representations is presented in Figures 5.5 

(a) and 5.5 (b).  Plotting the data in absolute terms has some advantages.  For example, 

Figure 5.5 (a) highlights the difference in the initial values of K and the marked decrease 
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in K over time of the 10% silt system. It is also shown that at the end of the test the 

measured hydraulic conductivity falls within a very narrow range regardless of silt 

content.  The evaluation and comparison of the hydraulic performance of a GT filter used 

in combination with different soils is, however more effectively performed using the 

normalized scales of Figure 5.5 (b).  This is the representation selected in section 5.4.2 to 

present and discuss the experimental data. 

5.4.2 Filter Hydraulic Performance during Soil Filtration 

FWGR tests were performed on three soils (with 10%, 20% and 50% silt), at two 

different compaction states (“loosely” deposited and “densely” compacted), using two 

types of needle punched GT with different AOS and thickness (i.e. G402 [termed ‘thin”] 

and G1202 [termed “thick”], see Table 5.3). Tests proceeded either until the system flow 

reached a steady state (i.e. the measured flow rates remained constant with time), or when 

the system K fell below 1.0E-6 cm/sec (below this value of k physicochemical clogging 

by fine particles impedes accurate measurement of the system flow rate).  

 

Figure 5.6 presents the data, in terms of Krel versus relative pore volume (r.p.v.), for all 

the FWGR tests conducted, while Table 5.4 summarizes key results obtained from each 

test.  Specifically, for each test the table includes: the test duration; the total flow volume 

permeated through the soil column; the average flow rate (i.e. flow volume divided by 

test duration); the initial and final values of the hydraulic conductivity; the void ratio of 

the soil measured at the end of the test; the relative hydraulic conductivities at r.p.v. =1 
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and at the end of test; the amount of soil trapped inside the geotextile; the amount of soil 

that piped through the geotextile (given by the soil present in the base hollow container). 

 

 The last row of the table summarizes the “filtration result” for each of the tests. In this 

research the distinction between bridging, blinding, clogging is based on the following 

criteria (for descriptions of these phenomena see Chapter 2):  

- bridging is said to occur when a relatively high system K is measured throughout the 

test period (i.e., Krel ≥ 0.1 at r.p.v.=10); 

- blinding is said to occur when the test results show a sharp reduction of the system K 

early in the test (Krel < 0.1 or K < 1.E-6 cm/sec at r.p.v.=1); 

- clogging is said to occur when the test results show a retarded blinding process (Krel ≥ 

0.1 at r.p.v.=1 but Krel < 0.1 at r.p.v.=10).         

 

The discussion that follows relies on the data shown in Table 5.4 and Figure 5.6 to 

present the observations drawn from the tests conducted. First, the test parameters shown 

in Table 5.4 are discussed.  Then, the filtration results (i.e. bridging, blinding, clogging) 

are discussed and their occurrence related to the conditions of the test specimens.  

 

As shown in Table 5.4, test periods ranged from 13 hours to 107 hours. For blinding 

and clogging the test duration cited in Table 5.4 refers to the time required for this 

process to occur.  In the case of bridging the test period refers to the time required to 

reach the steady value of the hydraulic conductivity (or of Krel) (see Figures 5.6(a) and 

(b)). For the three cases in which bridging occurred (Table 5.4) the test duration varied in 
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a fairly narrow range, between 62 and 72 hours. The time associated with blinding 

showed, instead, greater variability.  While in six out of the eight tests it occurred under 

24 hours, in the other tests, the test duration was extended to 47 and 92 hours, 

respectively.  As discussed in more detail in the following, clogging was found to occur 

only in one test (loose 50% silt soil with thick GT), which, not surprisingly, given that 

clogging is essentially a form of delayed blinding, presented the longest test duration of 

107 hours.  

 

The values of the total flow volume and, more importantly, of the average flow rate, 

are useful indicators of the hydraulic performance of filter system.  The greater these 

values, the more effective the filter system.  As indicated in Table 5.4 the measured 

values of the total flow volume and of the average flow rate varied greatly from test to 

test.  The dense 10% silt with thick GT exhibited the best drainage performance (12580 

cc in flow volume), while the dense 50%silt with thin GT exhibited the worst drainage 

performance (136 cc in flow volume) (Table 5.4). Accordingly, the same two test 

specimens showed the best and worst hydraulic performances respectively (i.e. 203 cc/hr 

and 7.6 cc/hr in average flow rate).  

 

Another significant observation that can be made from the data shown in Table 5.4 is 

that the final Krel value correlates well with the value of Krel at r.p.v. =1 (c.f. a correlation 

coefficient equal to 0.87 excluding the case of 10% silt with thin GT). This indicates that 

under constant head conditions the degree of K reduction at the beginning of the test can 

be used to predict the ultimate clogging state.  
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The data on the amount of soil clogged in the GT and collected below it can also 

provide insight into the mechanisms responsible for the observed filtration outcomes.  It 

is worthwhile pointing out that in comparing these data, one must consider the amount of 

flow that occurred during the test, i.e. it is necessary to consider the soil clogged (or soil 

penetrated) per cc of water flowed through the specimen.  For example, in the cases 

where bridging is observed to happen it is expected that the amount of soil collected in 

the GT as well as the amount flushed through it would be small.  Comparison of the data 

shown in the third to last and second to last rows of Table 5.4 does not necessarily reflect 

this observation.  However, the amount of soil normalized by the total flow volume is 

found, in fact, to be the smallest in the case of bridging. 

 

Concluding the remarks on the data reported in Table 5.4, it must be noted that the 

initial hydraulic conductivity data present a discrepancy, which cannot at this time be 

explained. Table 5.4 shows in fact that in four out of the six cases examined (and always 

in presence of a thin GT) the Kinit for the dense specimen exceeds the value measured on 

the loose specimen. 

 

Moving on to discuss the occurrence of the different filtration outcomes in the tests 

performed, Table 5.4 shows that successful filtration, i.e. bridging occurred in only three 

out of the twelve cases considered: when the dense 10% silt and 20% silt soils were 

filtered by the thick GT (G1202), and when the loose 20% silt soil was combined with 

the thin GT (G402). Successful filtration, i.e. bridging is associated with both a good 

hydraulic performance of the filter system as well as with success in retaining the fine 
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particles present in the soil (retention criterion).  In fact, all three cases listed above were 

characterized by large values of the final Krel (the three largest measured in all the tests) 

and by average flow rates over 40 cc/hr (Table 5.4).  Additionally, after normalization by 

the total flow volume the amounts of soil clogged in the GT or penetrated through it GT 

were the three lowest recorded.  

 

  Blinding was the most common filtration result observed in the tests conducted, 

occurring irrespective of the fines content, the degree of compaction and the GT 

thickness (Table 5.4). As shown in Figure 5.6, for low fine content (10% and 20% silt) 

the curve of Krel versus r.p.v. is characterized by an upward convex shape, which 

indicates that the rate of reduction of K steadily increases with time. This would arise if 

blinding occurred as a result of blockage of the GT openings by the coarse particles.  Any 

further migration of the fines on the GT surface would, in fact, be expected to cause the 

K to rapidly decrease.  

 

This trend is not apparent in the case of high fines content (50% silt), suggesting that in 

addition to coarse particle blockage some other mechanism may also be responsible for 

the accumulation of particles on top of the GT surface .The analysis of the test results in 

terms of gradient ratio (GR) and geotextile head loss (GHL) presented in Section 5.4.3 

provides additional insight into the mechanisms responsible for the occurrence of 

blinding. 
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  Clogging was observed only in the case of the loose 50% silt specimen filtered by the 

thick GT. Compared to all other tests conducted on the 50% silt soils, this test showed 

distinctive features: a long test duration (107 hr), a large amount of clogged soil in the 

GT (13.2 g), and a relatively high value of K rel at r.p.v.=1 (0.3) (Table 5.4). Additional 

discussion of this test and hypotheses for the occurrence of clogging under these test 

conditions are presented in Section 5.4.3. 

 

The next section further expands on the discussion of the different clogging processes 

and their relationship with the testing parameters considered.  This is done employing the 

concepts of gradient ratio (GR) and gradient head loss (GHL) which permit to distinguish 

between what is happening in the base soil and what is happening in the immediate 

proximity of the geotextile. 
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Figure 5.5 Conversion of real test outputs into normalized parameters (for the loosely 

deposited soils filtered by a thick GT (GSE1202)) 
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Table 5.4 Operational data and test results of Flexible Wall Gradient Ratio method 

Silt % 10 20 50 

GT type thin GT thick GT thin GT thick GT thin GT thick GT 

Compaction 

degree 
dense loose dense loose dense loose dense loose dense loose dense Loose 

Test period1) (hr) 24 23 62 13 24 62 72 92 18 13 47 107 

Total flow volume 

(cc) 
2278 680 12580 306 340 2550 4420 646 136 340 374 986 

Ave. flow rate 

(cc/hr) 
94.9 29.6 202.9 23.5 14.2 41.1 61.4 7.0 7.6 26.2 8.0 

9.2 

Final soil void 

ratio 
0.30 0.38 0.36 0.46 0.27 0.38 0.31 0.32 0.28 0.35 0.32 0.36 

K rel. at r.p.v. =1 0.74 0.15 0.70 0.04 0.30 0.46 0.35 0.13 N/A 0.04 0.18 0.31 

K init. (cm/sec) 3.0E-4 9.5E-5 6.2E-4 1.6E-4 2.8E-5 1.1E-4 1.6E-4 2.8E-5 6.8E-6 7.5E-5 1.3E-5 1.0E-5 

K final 2)(cm/sec) 7.7E-6* 4.7E-6* 1.4E-4 5.0E-6 2.3E-6* 1.1E-5 2.8E-5 2.2E-6* 1.6E-6* 2.8E-6 2.3E-6* 7.1E-7* 

Soil clogged in GT 

(g) 
1.9 2.1 4.8 3.3 2.0 3.3 6.2 8.2 3.4 2.4 9.2 13.2 

Soil penetrating 

GT (g) 
1.3 3.2 3.0 3.0 2.6 3.9 4.6 5.4 4.6 4.1 6.8 8.0 

Final K rel. 0.03 0.05 0.23 0.03 0.08 0.10 0.18 0.08 0.23 0.04 0.18 0.07 

Filtration result blinding blinding bridging blinding blinding bridging bridging blinding blinding blinding blinding clogging 

All the test specimens are under confining stress of 10 kPa 
1) Test period under the constant head condition of i=5 
2) Value corresponding to the last measurement made before terminating the test 
* in this test values of K below 1.E-6 cm/sec were measured in the final stages of the test, leading to terminate the test 
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Figure 5.6 System Hydraulic Conductivity Variations of the Different Silt Content 
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5.4.3 Gradient Ratio and Geotextile Head Loss 

The filtration processes described in the previous section can be reexamined making 

use of the concepts of gradient ratio (GR) and geotextile head loss (GHL), the definitions 

of which are presented in Section 5.1. Figures 5.7 through 5.12 plot the data of GR and 

GHL versus relative pore volume obtained from the same tests described in the previous 

section.    

 

 The GR represents an indicator of the erodibility of the fines in the soil matrix: the 

higher the GR, the more significant the migration of the fine particles. The GHL is, 

instead, a measure of the clogging state of the GT openings: the greater the GHL, the 

greater the amount of fines that have been transported from the soil into the GT.  

 

Ideally, if the preparation of the soil specimen did not cause any particle segregation, 

the GR and the GHL should have initial values of one and zero, respectively.  As shown 

in Figure 5.7 through 5.10, the initial value of GR was generally found to be close to one 

for most specimens prepared with 10% and 20% silt.  This was not the case for the 50% 

silt soil (Figures 5.11 and 5.12): for this soil the initial GR was found to be greater than 

one when a thick GT was employed, and smaller than one when a thin GT was used.  

These results suggest that during the specimen preparation stage fine particles at the soil 

base penetrated through the thin GT or accumulated on the surface of the thick GT (in 

this case the smaller opening size would have limited penetration of the fines).  In the 

first case the initial GR would be expected to fall below one, while in the second case it 

would be greater than one. 
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  Figures 5.7 through 5.12 also show that for most of the systems examined the initial 

values of the GHL were close to zero.  The exception is represented by the tests 

conducted on specimens with 10% silt (Figures 5.7 and 5.8).  In these tests, while the 

initial GHL was observed to be consistently greater than zero, it quickly decreased during 

the early stage of the test to a value close to zero before increasing once again with 

continued permeation.  It can be hypothesized that the initial GHL values greater than 

zero are caused by the formation of a thin layer of fines on the GT surface. As soon as 

flow is initiated, the layer breaks apart leaving the openings of the GT unblocked. The 

fact that this phenomenon is limited to the 10% silt specimens is most likely a result of 

the weak internal stability of this soil which promotes particle segregation near the GT. 

 

  As shown in Figure 5.7 through 5.12, for all tests conducted on the dense specimens the 

GR was found to remain basically constant during most part of the test, indicating that 

migration of the fines was suppressed. Fine particle migration appears instead to have 

occurred in the loosely deposited specimens, in particular those with 20% and 50% silt. 

For both these soil types, in particular when used in combination with the thick GT, a 

significant increase in GR, evidence of fine particle migration, is observed over the 

duration of the test. 

 

  The following paragraphs discuss the filter clogging behavior observed in each of the 

soil-GT specimens tested based on the GR and GHL profiles. 

 



 109

  Figure 5.7 compares the GR and GHL profiles for the 10% silt, used in combination 

with the thick GT, both in the loose and dense states. The data indicate that the improved 

internal stability of the soil following densification leads to a significant improvement in 

the GT filter performance.  For the loose specimen (Figure 5.7 (a)) a significant increase 

in GHL is observed throughout the test as a result of the accumulation of fines on the GT 

surface (the small opening size of the thick GT is expected to limit the penetration of 

fines). As a result, as summarized in Table 5.4, blinding occurs. For the dense specimen, 

instead, the GHL is observed to remain constant during the test (Figure 5.7 (b)).  This is 

indeed one of the successful occurrences of bridging observed in the tests conducted 

(Table 5.4). What seems to be the controlling factor here is the increased stability of the 

soil fines as a result of densification.  

 

Figure 5.8 reports a similar comparison to that shown in Figure 5.7, this time pertaining 

to the 10% silt specimens filtered by the thin GT.  As summarized in Table 5.4, both the 

loose and dense specimens showed blinding results.  The differences in the GR and GHL 

profiles presented in Figures 5.8(a) and 5.8(b) suggest, however, that blinding resulted 

from different causes.  

 

In the case of the dense 10% silt specimen, no change in GR is observed until the very 

end of the test. This is evidence that densification produced a more stable soil structure, 

limiting the migration of fines. The GHL is instead found to increase. It is hypothesized 

that the increase in GHL is a result of blockage by the coarse particles (which due to the 

low fines content play a dominating role in this soil) of the GT openings (this effect is 
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enhanced by the densification operation and is likely to be more significant in the case of 

the more deformable thin GT, which will tend to conform around the particles). Given the 

small amount of migrating fines, the growth of the GHL is observed to be slow.  Note 

that ultimately, at the end of the test, the increase in GHL drives an increase also of the 

GR, i.e. as no penetration of fines is allowed through the GT, the fines start to “backup” 

in the base soil  

 

In the case of the loose 10% silt soil specimen, there is a sharp increase in GR around 1 

r.p.v., without any significant change in GHL (Figure 5.8 (a)).  While the increase in GR 

is the reflection of the migration of fines through the base soil, it remains unclear why 

this does not translate also in an increase in the GHL.  Differences in the filter 

performance depending on the soil density and the GT employed are observed also in the 

case of the 20% silt specimens.   

 

As seen in the case of the 10% silt soil, the filter performs effectively (i.e. bridging 

occurs) when the 20% silt is compacted to a dense state and associated with the thick GT.  

As shown in Figure 5.9 (b), under these conditions both the GR and GHL remain fairly 

stable throughout the test. Also consistent with the observations reported for the 10% silt 

soil specimen (Figure 5.8(b)) are the GR and GHL trends for the dense 20% silt soil 

filtered by the thin GT (Figure 5.10(b)): while the GR remains constant and essentially 

equal to one throughout the test, the GHL shows a clear growth. This is again thought to 

result from the fact that the large coarse particles block the access to the GT openings.   

 



 111

While, as discussed above, the thick GT proved to perform effectively under the dense 

20% silt soil (leading to bridging), the same is not true if the soil is in a looser state.  This 

is shown by the results presented in Figure 5.9(a). In this case, as already seen for 10% 

silt, a sharp increase in the GHL is observed from very early in the test (r.p.v. ~ 0.1).  As 

discussed above for Figure 5.7(a), this increase in GHL is attributed to the small opening 

size of the GT, and blinding can be considered driven by limited available openings.  

Note that, as already described above for another test, ultimately the increase in GHL 

drives an increase in the GR and results in blinding. 

 

As shown in Figure 5.10(a), the loose 20% silt exhibited instead a very different 

behavior when combined with a thin GT as no change in GR or GHL was measured until 

the very end of the test (and even then quite small).  This is the last of three cases of 

bridging observed in this testing program.   

 

Finally Figures 5.12 and 5.13 compare the results for the 50% silt specimens.  The 

presence of such a high percentage of fines has a significant impact on the filter 

performance and leads to some differences with respect to the observations made for the 

10% and 20% silt soils.  As summarized in Table 5.4 with this soil neither of the GT 

performed effectively, independently of the compaction state (three cases of blinding and 

one of clogging). Note that bridging formation was not expected from the 50% silt soil 

since the tested GT products have larger openings (i.e. AOS > 0.15 mm) compared to the 

fine size (0.075 mm). Under these conditions, internal GT clogging is considered to be 
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the best filtration performance that can be expected, as the clogging process takes place 

throughout the base soil rather than being limited to the surface openings.  

 

For 10% and 20% silt it was shown that bridging occurred when the soil was placed 

dense on top of the thick GT, i.e. the hydraulic performance of this GT was improved 

through densification of the soil above it.  As shown in Figure 5.11(b) this is not the case 

for 50% silt (for high silt contents there is little difference in internal stability between 

loose and dense state). In this test, the GHL (which, as discussed above shows an initial 

value greater than zero due to accumulation of fines on the GT during the specimen setup 

phase) shows a very rapid growth which leads to blinding. This is likely a result of the 

greater percentage of fines available in the soil specimen. 

 

Blinding was also observed in the other test conducted on the dense 50% silt specimen 

but with the thin GT (Figure 5.12(b)).  While in this case the initial GHL value is equal to 

zero, there is a early (at 0.1 r.p.v.) and rapid increase in GHL, which also in this case 

leads to blinding.  This result is consistent with the data obtained under similar conditions 

for 10% (Figure 5.8(b)) and 20% silt (Figure 5.10(b)).  In both these cases it was 

hypothesized that the coarse particles blocked the surface openings leading to fine 

particle accumulation on the thin GT. Given the similarities in the GR and GHL trends, 

the same is expected to be true here, with the greater availability of fines being 

responsible for the more rapid GHL growth.  
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The third case of blinding for 50% silt is shown in Figure 5.12(a) which pertains to the 

soil tested loose with the thin GT.  In this case the increase in GHL is delayed to r.p.v. of 

approximately one, but the subsequent growth is very rapid.  Also significant is the fact 

that, unlike what was observed in all other cases of blinding, the GR starts to increase at 

the same time and also very rapidly.  This suggests that a mechanism different from the 

one so far discussed (blockage of the GT openings by the coarse particles) is responsible 

for the blinding.  Additional discussion on this test is presented in Section 5.5.1. 

 

Finally the single example of clogging occurs in the case of the 50% silt soil tested 

under loose condition with the thick GT (Figure 5.11(b)). In this case the increase in 

GHL is delayed compared to what was observed above for the same soil with the thin 

GT.  It is suggested that it is the smaller AOS of the thick GT (0.15 mm compared to 0.21 

mm for the thin GT) which reduces the migration of fines. 
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Figure 5.7 Gradient ratio and GT head loss responses for 10% silt with thick geotextile 

(GSE1202) 
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Figure 5.8 Gradient ratio and GT head loss responses for 10% silt with thin geotextile 

(GSE 402) 



 116

 

Figure 5.9 Gradient ratio and GT head loss responses for 20% silt with thick geotextile 
(GSE 1202) 
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Figure 5.10 Gradient ratio and GT head loss responses for 20%silt with thin geotextile 
(GSE 402) 
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Figure 5.11 Gradient ratio and GT head loss responses for 50%silt with thick geotextile 

(GSE 1202) 
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Figure 5.12 Gradient ratio and GT head loss responses for 50%silt with thin geotextile 

(GSE 402) 
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5.5 Discussion 

5.5.1 Analysis of GR and GHL Profiles 

  The objective of this section is to relate the GR and GHL profiles shown in Figures 5.7 

through 5.12, to the filtration results presented in Table 5.4.  

 

Successful filtration results (i.e. bridging) were observed for the dense 10% and 20% silt 

soils with the thick GT and for the loose 20% silt soil with the thin GT (see Table 5.4). 

For these tests (Figures 5.7 (b), 5.9 (b) and 5.10 (a)) the GR values remained clearly 

below 5, corresponding to values less than 3 using the GR definition contained in ASTM 

D 5101, and thus satisfying the clogging criterion specified in the standard.  For these 

same tests the GHL showed only a marginal increase in the GHL, slightly more 

significant in the case of the dense 10% and 20% silt soils (Figure 5.7 (b) and 5.9 (b)). 

The curves shown in Figure 5.13 (a) summarize the GR and GHL trends associated with 

the occurrence of bridging.  

 

Two different patterns in the GHL and GR variation were observed to ultimately lead to 

the occurrence of blinding.   

 

In most of the cases (dense 10% and 20% silt soils with thin GT, loose 10% and 20% silt 

soils with thick GT., dense 50% silts with thin and thick GT) a sharp initial growth of the 

GHL was observed ahead of a relatively retarded GR growth (Figure 5.13(b)).  As 

discussed earlier, it is hypothesized that in these cases the coarse particles are blocking 
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the GT openings, while the remaining gap openings are being filled up by the loose fines 

migrated from the base soil. Ultimately the fines “backup” in the base soil and drive an 

increase in the GR. 

 

For the case of the loose 50% silt soil combined with the thin GT (Figure 5.12(a)) the 

GR and GHL trends resemble those shown in Figure 5.13(c).  The distinctive feature in 

this case is the sharp increase of both GR and GHL before the r.p.v reaches a value of 

one.  The speculation is that in this case blinding is a result of the mass migration of fine 

particles through the base soil which end up “crowding” on top of the GT surface.  Given 

the high percentage of fines present and the loose state of the soil, this process is initiated 

as soon as the test starts. 

 

Internal clogging was observed for the loose 50% silt with the thick GT (see Table 5.4 

and Figure 5.11(a)). In this test the growth of the GHL and GR was not only delayed 

(GHL and GR build-up did not initiate until the flow volume reached r.p.v.=1) but also 

showed slower growth compared to the blinding processes. Figure 5.13 (d) show the 

trends in GR and GHL associated with the occurrence of clogging. 

 

The test conducted on the loose 10% silt soil with the thin GT does not fall in any of 

the categories shown in Figure 5.13, and the mechanism responsible for the increase in 

GR and the stationary value of GHL shown in Figure 5.8(a) remains unclear. 
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Figure 5.13 Summary of GR and GHL variations for each different clogging mechanism 

the filtration results are classified in Table 5.4) 
 

5.6 Summary 

Nonwoven geotextiles (GT) have been installed in underdrain systems at many 

construction sites as the filter material. During densification of the drainage layer, 

compaction energy applied to the drainage material (e.g. aggregate) can be delivered to 
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the GT filter. Where geotextiles are employed as a separation layer under railroad ballast 

or a pavement base, the bad hydraulic performance of geotextiles causes subgrade 

deformations because the moisture desiccation of the subgrade soil occurs mainly 

through the upper pervious aggregate.  More severe subgrade deformation is expected in 

high fine content soils, the hydraulic conductivity of which is relatively small. Therefore, 

hydraulic performance of the separation layer is important with regards to long term 

maintenance.  

 

  GT have been used as filtration and separation materials for several decades, but there 

has been no specific research to investigate the impact of compaction work on the 

hydraulic performance of the GT. Compaction usually improves the internal stability of 

soil, but can also generate some initial soil accumulation inside the GT openings, which 

promotes clogging of the GT. This adverse effect can be alleviated through proper 

selection of the GT properties (opening size and thickness) for the specific soil type.  

 

The Flexible Wall Gradient Ratio (FWGR) test (Harney and Holtz, 2001) was 

employed to investigate the migration features of fines at the interface of soil and 

geotextile, associated with soil compaction and geotextile properties (AOS and 

thickness). Soil specimens (10%, 20%, and 50% silt) were used to represent the different 

levels of internal stability (i.e. piping resistance) expected from site soils.    

 

In the FWGR test, the profiles of gradient ratio (GR) and geotextile head loss (GHL) 

can be used to establish the effectiveness of the soil-GT systems employed as well as to 
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explain the different clogging mechanisms, and in particular distinguish between surface 

opening blockage by coarse particles and internal GT clogging by fine particles.  

 

The main conclusions drawn from the tests performed can be summarized as follows: 

- The internally unstable soil (10% silt), vulnerable to opening blockage by coarse 

particles, was filtered successfully by using a thick GT (AOS=0.15 mm) after the soil was 

properly compacted.  

- The gap graded soil (20% silt) was successfully filtered by using a thin GT with large 

opening size (AOS=0.21 mm) in non-compacted state, and by using a thick GT, 

characterized by a stiffer surface, in the compacted state.  

- The high fine content soils (50% silt), vulnerable to internal clogging, was 

successfully filtered using a thick GT provided that it was in a loosely deposited state.  

- There are potential issues in the use of a thin, compressible GT such as the one 

employed in this study as a filter or separator material at construction sites where 

compaction is employed to improve the internal stability of subgrades.   

  - The process of internal GT clogging by fine particles is associated with a much longer 

filtration process compared to opening blockage by coarse particles.  
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6. Laboratory Investigation of Geotextile Filtration by Rapid 
Retention Test – Effect of Geotextile Property 

6.1 Introduction 

 The objective of this chapter is to present the results of rapid retention test (RRT) 

performed to investigate the effects of geotextile properties (opening size, fiber bonding 

type and thickness) on filtration of the soils with different silt and clay contents. Non-

cohesive and cohesive soils are separately prepared for soil specimens. Geotextile 

specimens are selected by fiber boding type and thickness which are related to the filter 

performance. In this part of the study, the rapid retention test (RRT) was employed as an 

efficient method to promptly estimate the compatibility of geotextile with a given soil. 

The forthcoming sections describe the principle of RRT (Section 6.2), preparation of soil 

specimens (Section 6.3), geotextile properties (Section 6.4), and the filtration experiment 

results (Section 6.5). In Section 6.5, analysis of the test results is organized according to 

the following observations: compatibility of the different types of geotextiles with non-

cohesive soils (6.5.1), effectiveness of geotextiles over a range of applied hydraulic 

gradients (6.5.2), sensitivity of the tested geotextiles to soil compaction (6.5.3), influence 

of geotextile thickness on the filtration of soils with high content in fine particles (6.5.4), 

and the performance of double layer filters with cohesive soils (6.5.5).          
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6.2 Description of RRT 

Common fitration testing methods such as the Gradient Ratio (GR) test (ASTM 

D5101) and Hydraulic Conductivity Ratio (HCR) test (ASTM D 5567) require the soil 

specimen height to be greater than its diameter in order to prevent preferential flow paths. 

This typically results in tests of long duration (e.g. 100-1000 hours) because, with such 

volume of soil specimen, observed variables (i.e. gradient ratio in GR test and hydraulic 

conductivity ratio in HCR test) are slow to reach stable values. In order to accelerate the 

tests, the flow rate needs to be increased by raising the hydraulic gradient through the 

soil/geotextile system or by using a shorter specimen. Observations during FWGR tests 

suggest most of the particle migration and clogging mechanisms involve only a thin 

interface zone of thickness lesser than 1cm, especially when non-woven geotextile (GT) 

filters are used. This means filtration tests could be performed much faster by using short 

soil specimens if these can be prepared with high degree of homogeneity so that 

preferential flow paths do not occur. 

 

The Rapid Retention Test (RRT) was proposed by Siva and Bhatia (1994) as a time-

effective method of testing GT filter compatibility with soil. It relies on the application of 

high hydraulic gradients through short specimens of soil. The test consists in placing the 

soil specimen, 10mm in thickness and 100 mm in diameter on top of a geotextile disk in a 

rigid wall or a flexible wall permeameter. After specimen saturation and consolidation 

had been achieved in the cell, downward flow is induced under a fairly high gradient 

(e.g., i=10 to i=40) with the direction of seepage going from the soil to the geotextile, and 

the overall hydraulic conductivity of the composite system (soil and geotextile) is 
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determined. The test is kept running in order to monitor changes in hydraulic 

conductivity due to soil particle migration. Significant decrease of soil/geotextile system 

permeability during the test is indication that filter clogging has occurred. A schematic of 

the rigid wall permeameter used in the present study for performing RRT is shown in 

Figure 6.1.  

 

The earlier utilizations of the RRT by Siva and Bhatia (1994) was with soil slurries, in 

connection with hydraulic fill problems, cracks in earth dam clay cores, and edge drain 

systems that are in poor contact with surrounding soils. In order to meet slurry condition 

for the tested specimens, these earlier investigators had to maintain the soil particles 

continuously suspended in a turbulent flow. However, in the present study laminar flow 

is considered better representative of hydraulic conditions prevailing in highway 

subdrainage systems. Thus we need at first to examine flow rate applied in the present 

testing program in order to verify the high gradients are compatible with laminar flow 

and Darcy’s law is still applicable. Using the equation from Rose (1945), Reynold’s 

number expressed in Equation 6.1 must be smaller than 1 in order for the flow to remain 

laminar.  

5vRe 1D
n ν
⋅

= <
⋅

        Eq.6.1 

 
v : discharge velocity  
D5 : diameter of 5% particle size  
n : porosity  
ν : fluid kinematic viscosity  
 

Application of the above criterion to the present study RRT and material conditions 

(v=1.E-5 m/sec for silty sand, D5 = 1.E-5 to 1.E-4 m for silty sand, n = 0.2 to 0.5, ν = 
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1.12E-6 m2/sec) indicates the gradient of 40 used in the present study is acceptable. This 

value of i=40 was used in all the RRT presented in this chapter, except those discussed in 

Section 6.5.2 where results obtained using i=40 and i=10 are compared.   

 

Another preliminary consideration is on the selection of soil specimen thickness and how 

it affects contrasts between systems with different soil initial properties. In the FWGR 

tests presented in Chapter 5, the system hydraulic conductivity (Ksys) is mainly governed 

by the soil specimen hydraulic conductivity because the soil thickness is over 100 times 

greater than that of the GT and the soil is less permeable than the GT. For instance, in the 

FWGR test results shown in Figure 5.5 (a), the initial system Ksys with 10%wt silt is 10 

times greater than with 50%wt silt. With the most permeable specimen, decrease in 

system conductivity is clearly observed during the test, but with the less permeable soil 

the trend is not so clear in comparison (unless parameters are normalized, Figure 5.5 (b)) 

because when the initial K is already small and the clogging process is slow, Ksys 

decreases slowly too. In contrast, when the soil specimen thickness is reduced to 1cm for 

the series of RRT performed herein, the influence of GT clogging on the variation of Ksys 

is emphasized. In Figure 6.2, such an example is shown. Here, the Ksys profiles are 

clearly differentiated for the soils with different silt contents (i.e. 20%wt silt, 50%wt silt 

and 100%wt silt). With the RRT, quick comparison can be made even without parameter 

normalization.  
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6.3 Soil Specimen Preparation 

Soils used to performed the Rapid Retention Tests (RRT) in this part of the study 

include dune sand, silt (at different content mixed with sand), sandy silt, and clayey silt. 

The main particle size fractions are summarized in Table 6.1 and the particle size 

distributions of the silt specimens are shown in Figure 6.3. For these silt specimens, silt 

contents of 20%wt, 50%wt and 100%wt were chosen to generate gap graded soil, well 

graded soil and pure fine soil, respectively. The test specimens were reconstituted using 

the same silt and fine sand than those previously used for the FWGR test series described 

in Chapter 5. The largest of the silt particles (D90=0.08 mm) were smaller than the AOS 

of the GT specimens (Of = 0.15~0.21 mm) whereas the fine sand particles (0.25 to 0.43 

mm in diameter) mixed with would be retained above the GT during filtration. The 

retained sand particles were also expected to block the GT openings to a degree varying 

with GT surface conditions (i.e. hard or flexible, depending on the GT type). 

 

Experience shows that laboratory soil preparation in wet condition produces better 

regularity in sample quality and better reproducibility in test results than other 

preparation methods (Bhatia et al, 1990, Siva and Bhatia, 1994). For loose condition, the 

specimens were prepared in slurry state with 50% water content. For dense condition, the 

20%wt, 50%wt and 100%wt silts specimens were trampled 25 times using a wood pestle 

at successively 10%, 15% and 30% water contents. Clayey soil specimens were prepared 

in the same way with addition of commercially available kaolinite in proportions as 

indicated in Table 6.1  
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For mounting of the specimens, an acrylic ring (10 cm in diameter; 2.5 cm in height) 

was pre-installed on of the GT specimen supported by the metal screen above the fine 

collector (Figure 6.1). After the soil specimen was successfully seated, the head cap was 

placed on the acrylic ring and all the cell components were sealed together within a latex 

membrane and installed in a confining chamber. After all the effluent valves were closed, 

the test cell was subjected to a back pressure of 140 kPa through the influent ports. 

Pressure increment of 35 kPa were applied at intervals of 30 minutes in order to minimize 

soil particle migration during back-pressuring. A confining pressure corresponding to 70 

kPa in effective stress was found to be adequate for preventing leakage along the vertical 

boundary between the acrylic ring and the specimens. 

Table 6.1 Compositions of soil specimens used in RRT 

 

Soil type 
Sand 

(0.25-0.43 mm) 

Silt 

(manufacture) 

Clay 

(kaolinite) 
Specimen state 

Dune sand 
100% 

(from dune) 
  Loose 

20% silt 80% 20%  Loose/Dense 

50% silt 50% 50%  Loose/Dense 

100% silt  100%  Loose/Dense 

Sandy silt (10% clay) 40% 50% 10% Dense 

Sandy silt (20% clay) 30% 50% 20% Dense 

Clayey silt (10% clay)  90% 10% Dense 

Clayey silt (20% clay)  80% 20% Dense 
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Figure 6.1 Schematic of RRT cell components 
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6.4 Geotextiles Selected for Testing 

  Eight different geotextiles, all belonging to the non-woven category, were selected for 

performing the Rapid Retention Tests (RRT). This selection spans a wide range of 

properties such as thickness, density, AOS, hydraulic conductivity and fiber bonding type 

that are relevant to filtration behavior. These characteristics are summarized in Table 6.2. 

Three different manufacturing processes and resulting fiber bond types are represented in 

this selection of GT specimens: the heat bonded non-woven, needle punched non-woven 

and heat set non-woven types. 

 

Heat bonding geotextile (HB) produces a firm GT surface, not easily deformed or 

indented by coarse soil particle. The typical porosity range of HB is relatively low, 

between 0.5 and 0.6, because as part of the manufacturing process the fabric is pre-

compressed normally to its plane during by thermal calendering. Thus the hydraulic 

conductivity of HB is about 10 times smaller than that of other non-woven GT due to the 

reduced porosity (Table 6.1). In addition, the thermal treatment reduces surface 

wettability as illustrated in Figure 6.4. In consequence the minimum hydraulic head 

necessary for initiating flow through HB is about 10 times larger than for needle punched 

geotextiles. 

 

Needle punched geotextiles (NP) are obtained by mechanically interweaving their 

fibers using high frequency alternated needle movement normal to the fabric plane. The 

resulting GT surface can be deformed or indented easily by coarse particles. 
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Heat set non-woven geotextiles (HS) have attributes of both HB and NP. The fabric is 

initially needle punched and then thermal treatment is applied to only one side of the GT. 

This thermal treatment improves the fabric tensile strength without reducing significantly 

the hydraulic conductivity. 

The thickness of the GT specimens ranges from 0.2 mm (BBA3201) to 4.2 mm (C-

M160). The NP and HS were further separated by thickness (tG) ranges that are, thin GT 

(tG < 1mm), medium thickness GT (1< tG <3 mm) and thick GT (tG >3 mm). Note that 

both HB specimens in Table 6.2 are thin. In general, the thickness and AOS are inversely 

proportional (e.g. AOS=0.21 mm for tG = 1 mm, AOS=0.15mm for tG = 4 mm) for HS 

and NP specimens. Thick GT have smaller AOS than thin GT because they have a higher 

fiber density per fabric area. 
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Table 6.2 Specifications of geotextile specimens used in RRT 

           Property 

 

Product 

unit 

weight 

(g/m2) 

thickness 

(mm) 

density1) 

(kg/m3) 

AOS2) 

(mm) 

KGT 

(cm/sec) 

fiber 

bonding 

type3) 

B3201 71 0.2 355 0.59 0.02 HB 

B3501 180 0.5 400 0.2 0.02 HB 

C-M60 203 1.8 113 0.21 0.24 HS 

G1202 405 3.2 127 0.15 0.29 NP 

L125 130 1.3 100 0.21 0.2 NP 

L140 157 1.5 105 0.21 0.2 NP 

L250 364 2.5 146 0.15 0.25 NP 

L350 543 3.8 143 0.15 0.25 NP 

 
1) Specific density = mass / area / thickness 
2) Apparent opening size 
3) HB : heat bonded; HS : heat set ; NP : needle punched 
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Figure 6.2 Example of system hydraulic conductivity variations during RRT for loose 
soils with different silt contents under gradient, i=40  
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Figure 6.3 Grain size distributions of soil specimens 
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Figure 6.4 Illustration of difference in wettability between needle punched (A) and heat 
bonded (B) geotextiles. A water column of 1 cm stands above the heat bonded GT while 

none remains above the needle punched specimen. 
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6.5 Testing Results 

The program performed using the RRT method is summarized in Table 6.3 where 

tested combinations of soils and geotextile types are indicated. For each test, Table 6.3 

refers to the text section in which it is discussed. All the tests were conducted under a 

hydraulic gradient of 40 except for the tests discussed in Section 6.5.2 where gradients of 

10 and 40 were used for comparison. Observed trends in these results are presented 

herein. 

6.5.1 Compatibility of Tested Geotextiles and Soils  

It has been shown (Watson and John, 1999) that the uniformly sized beads used as 

filter test material have the ability to bridging or arching above a hole of diameter up to 

4.21 times their size. If this also true for real soils, uniformly graded soils (Cu<3) can be 

successfully filtered by GT with AOS greater than their maximum grain size. This was 

verified with RRT on uniformly graded Indiana dune sand (Cu=1.3, D90=0.3mm) used in 

the present study in association with GT of different fiber bonding types (BBA3201, 

3501, C-M60 and Linq125). Of these geotextiles, one (BBA3201) has a AOS of 0.59mm 

which is approximately twice larger than the sand D90 while the other three GT have 

AOS smaller than D90. No piping of sand grains through the GT specimens was observed 

and, as shown in Figure 6.5, good filter performance (i.e. only a small reduction in 

system hydraulic conductivity) was obtained with the HB having the largest AOS 

(0.59mm) as well as with two other GT having AOS smaller than the grain size. Among 

the GT tested, the largest reduction in hydraulic conductivity is observed for an AOS 
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smaller than the grain size. We see here that a uniformly graded soil can be successfully 

filtered by a GT with AOS twice the size of its coarse particles. 

 

  The other types of soil (gap graded, well graded and pure fines) were also tested in 

association with the GT of different fiber bonding types (B3501 as a HB; L125 and 

G1202 as NP; and C-M60 as HS). The results are presented in Figures 6.6(a,b,c). As seen 

in Figure 6.6(a), gap graded soils (20%wt silt) exhibited the best filtration performance 

with HB (B3501) or HS (C-M60) and the worst performance with thick NP (G1202). But 

the thin NP (L125) was also inadequate with this type of soil. The pure fine soil (100%wt 

silt) was best filtered by a thin NP (L125) though an abrupt loss of permeability is 

observed at the end of the curve following a long period of sustained values, as is shown 

in Figure 6.6(c). With this soil, the worst performance is observed when it is associated 

with HS (C-M60) while HB (B3501) and thick NP (G1202) show practically the same 

loss of more than 60% in system permeability. For the well graded soil in Figure 6.6(b), 

(50%wt silt), the best performance was obtained using HS (C-M60) relatively poor 

results were obtained using HB and NP.  

 

  Different compressive stiffness between HB and NP is perhaps a reason for their 

different filtration performances with gap-graded soil (20%wt silt) and pure fines 

(100%wt silt). The mechanism is illustrated with the schematic plots in Figure 6.7 where 

HB is characterized by the firm GT surface that is not easily deformed by coarse particle 

indentation, while having a relatively small porosity (i.e. n = 50 to 60%). In contrast thin 

NP is easily indented by coarse particle contacts, while having a relatively large porosity 
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(i.e. n ≥ 80%). A filter for gap-graded soil should allow passing of fines after coarse 

particles have partially blocked openings. A rigid surface HB is able to satisfy this need 

because it can resist closing of its channels under coarse particle compressive contact 

pressure. A thin NP would be considered acceptable for filtering pure fines (100%wt silt) 

since its many openings can prevent fines to accumulate when the flow initiates. The 

small filter opening size (i.e. AOS= 0.15 mm) of thick NP (G1202) is believed 

responsible for the poor filter performance with loose 20%wt silt soil. With this type of 

GT, similarly rapid clogging induced by coarse particle blockage was also observed with 

gap graded soil (20%wt silt) during FWGR testing.  

6.5.2 Effect of Hydraulic Gradient Magnitude on RRT Outcomes 

In filtration tests of soils with high silt contents (50%wt to 100%wt silt), if clogging 

occurs it typically takes a longer time to develop than with smaller silt fraction soils (e.g. 

20%wt silt). During a FWGR test reported in Chapter 5 clogging of the GT by soil with 

50%wt silt took over a week whereas the same GT clogging by soil with 10%wt silt, 

under the same gradient i=5, was took only a day. In RRT the process is accelerated by 

using a gradient as high as 40, still compatible with laminar condition and the application 

of Darcy’s law as discussed in Section 6.2.  However, the impact of gradients of such 

magnitude on the RRT geotextile overall response is unclear. In order to assess this 

effect, a limited number of RRT were performed under a gradient of i=10 and changes in 

system hydraulic conductivity Ksys were compared to those observed under i=40. It is 

noted that a gradient of 10 is still at least twice greater than field gradients predicted by 
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numerical models of seepage toward roadway edge drains (see Chapter 4). For the tests 

performed under each gradient level, dense soil specimens prepared with 50%wt silt and 

100%wt silt were combined with NP geotextiles of three different in thicknesses, 

Linq125 (1.5mm), Linq250 (2.5mm) and Linq350 (3.8mm). Results are presented in 

Figures 6.8(a,b,c) for the soil with 50%wt silt and Figures 6.9(a,b,c) for the soil with 

100%wt silt. 

 
A first observation is that the general shapes of the curves in Figures 6.8(a,b,c) obtained 

with 50%wt silt are different from those in Figures 6.9(a,b,c) obtained with 100%wt silt 

though, in each of these two groups, there is no very clear difference between the filter 

performances of thin GT (a) , medium thick GT (b) and thick GT (c). Furthermore, for 

both families of results, the flow volume required for clogging of the filter (i.e. at the end 

of the curve) is always larger under the smaller gradient i=10 than under the large 

gradient i=40. For instance the relative hydraulic conductivity is consistently reduced by 

90% after a flow volume of approximately 1000cc under i=10 and 100cc under i=40. 
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Table 6.3 Summary table for test program used in RRT 

  GT type 

Soil type 
B3201 B3501 C-M60 G1202 L125 L140 L250 L350 

Dune sand 6.5.1* 6.5.1* 6.5.1*  6.5.1*    

20% silt  6.5.1* 
6.5.1* 

(6.5.3) 
6.5.1* 

6.5.1* 

(6.5.3) 
   

50% silt  6.5.1* 
6.5.1* 

(6.5.3) 
6.5.1* 

6.5.1* 

{6.5.2} 

(6.5.3) 

{6.5.4} 

{6.5.4} 
{6.5.2} 

{6.5.4} 

{6.5.2} 

{6.5.4} 

100% silt  6.5.1* 
6.5.1* 

(6.5.3) 
6.5.1* 

6.5.1* 

{6.5.2} 

(6.5.3) 

{6.5.4} 

{6.5.4} 
{6.5.2} 

{6.5.4} 

{6.5.2} 

{6.5.4} 

Sandy silt  

(10% clay) 
       {6.5.5} 

Sandy silt 

(20% clay) 
       {6.5.5} 

Clayey silt 

(10% clay) 
       {6.5.5} 

Clayey silt 

(20% clay) 
       {6.5.5} 

- Figures in table present the section numbers with relation to the soil and GT specimens  
- ∗: loose soil specimen only; { }: dense soil specimen only; ( ): loose/dense specimens 
- All the tests were implemented under the system hydraulic gradient of 40. 
- Supplementary hydraulic gradient of 10 was employed at Section 6.5.2
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Figure 6.5 RRT results obtained in filtration (i=40) of uniformly graded dune sand in 

loose state with GT of different types 
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Figure 6.6 RRT (i=40) results for various GT types with loose soils of different silt 

contents (20%wt gap graded, 50%wt well graded and 100%wt silt pure fine)
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Figure 6.7 Schematic plots of different surface properties between heat bonded (HB) and 

needle punched GT (NP). 
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Figure 6.8 RRT results for NP of thicknesses, 1.5mm, 2.5mm and 3.8mm with dense 

50%wt silt soil filtered under hydraulic gradients of 10 and 40 
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Figure 6.9 RRT results for NP of thicknesses, 1.5mm, 2.5mm and 3.8mm with dense 
100%wt silt soil filtered under hydraulic gradients of 10 and 40 
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The significant difference between the two families of results is in the rate at which 

clogging progresses as evidenced by the shapes and slopes of the curves. In Figures 

6.8(a,b,c) obtained using 50%wt silt, the decrease in Krel is, after some fluctuations at the 

start of the curves, almost linear in function of the log of volume flow. In contrast, with 

100%wt silt the slope of the curves is very steep at the start and it takes only a small flow 

volume (i.e. less than 1 or 2cc) for Krel to decrease by about 50%, then the process 

continues much slower. This particular behavior might be related to large amount of fines 

accumulating rapidly close to the filter openings.  

6.5.3 Influence of Soil Compaction on RRT Outcomes 

RRT were performed on dense vs. loose specimens of soils with 20%wt (gap-graded), 

50%wt (well graded) and 100%wt (pure fine) combined to two types of GT of different 

fiber bonding styles but having similar AOS and thicknesses. These GT were the C-M60 

(HS with AOS=0.21mm, TG= 1.8mm) and the L125 (NP with AOS=0.21mm, 

TG=1.3mm); both are considered “thin”.   

 

With the HS filter, contrasted results were obtained both the loose (Figure 6.10a) and 

dense soils (Figure 6.10b). In loose state, both the well graded and gap-graded soils were 

filtered successfully by the HS with only 10% to 20% decrease in system permeability, 

while the pure fine soil could not be filtered and the system permeability was lost at fast 

rate. In dense state, the best result was obtained with the gap-graded soil but was not as 

good as in loose state. The well graded and pure fine soils were not well filtered in this 

case, the system permeability decreasing by 80% over 1000cc of flow. The most 
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important effect of soil compaction with the thin HS is certainly the dramatic 

deterioration of performance with the well graded soil when switching from loose to 

dense specimen. 

 

Performance of NP filter (Figure 6.11a,b) shows progressive deterioration in system 

permeability in all cases except in the case of loose pure fine soil where Krel is sustained 

close to 1 over 1000cc of flow before falling. In dense state, the pure fine soil shows also 

the slowest deterioration of performance but still faster than with the HS filter. Here the 

most interesting observation is that the thin NP fails consistently to filter the gap-graded 

specimen, whether loose or compacted. The more rapid deterioration of the system 

permeability in the dense case than in the loose one confirms the susceptibility of thin NP 

to blinding by coarse particles of gap-graded soils. 
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Figure 6.10 Compaction influence on RRT performance of a thin HS filter (C-M60) with 
soils of different silt contents 
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Figure 6.11 Compaction influence on RRT performances of a thin NP filter (Linq125) 
with soils of different silt content 
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6.5.4 Effect of GT Thickness on the Clogging Process in RRT 

  As the GT thickness increases, the number of constrictions a particle migrating through 

the filter would possibly encounter also increases, and thus the likelihood of this particle 

being captured within the GT increases too. This suggests the GT thickness should 

influence its filtration function. However, RRT reported in Section 6.5.2 with three 

different GT thicknesses did not show clearly a difference in hydraulic behavior related 

to this parameter. This somewhat counterintuitive observation motivates further 

examination on how the filter thickness influences the filtration process. To this purpose, 

dense specimens of soil with 50%wt and 100%wt silt were filtered in RRT, under 

gradient i=40, using NP with different thicknesses ranging from  1.3mm (L125) to 

3.8mm (L350). At the end of each test, the mass of piping particles and clogging particles 

were determined by weighting. Results are summarized in Figures 6.12 and 6.13. Overall, 

the mass of clogging particles is greater (i.e. between 2 and 4 times greater) than the mass 

of piping particles, but these vary in function of the GT thickness. The clogging mass 

increases with increasing GT thickness while the piping mass decreases as the GT 

thickness increases. This was anticipated on the basis of the constriction encountering 

concept discussed above. Similar trends are observed in Figures 6.12, 6.13 for both silt 

contents of well graded or pure fine soils, with respective masses of particles clogging or 

piping being practically independent of the silt fraction size. Note that this particular 

study was not performed using gap-graded soil.   

 

  From the same RRT series, the evolution of system hydraulic conductivity (in relative 

values) vs. log of filtration time is shown in Figures 6.14 and 6.15 for the 50%wt and 
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100%wt silt soils, respectively. Note that, because semi-log scales are used to plot these 

data, apparent shapes of the curves can be misleading. But even with this in mind, it can 

be seen that in the early stages of the tests, the Krel reduction patterns are different, 

depending on the silt contents of the tested soils (Figures 6.14 and 6.15). With 50%wt silt 

(well graded soil) Krel decreases initially at a slower rate than with 100%wt silt. Then, for 

all the cases except the pure fine soil under i=10 (Figure 6.15a) all the curves converge to 

similar values independently of the GT thickness. For the 50%wt silt, the Krel profiles are 

possibly the result of a transition from internal clogging to surface opening blockage. 

This transition would occur faster under higher gradient (Figure 6.14 (a)) than under a 

smaller one (Figure 6.14 (b)). blocking was also accelerated by increase of system flow 

rate. 

 

  For the 100%wt silt soil, the initially rapid reductions in Krel could be due to 

concentrations of fines around the GT openings, especially with high gradients used in 

RRT. In Figure 6.15a, it appears the clogging process is delayed when thick GT is used 

as compared to the faster rate with thinner GT. This effect might be more sensitive here 

because with i=10 and 100%wt silt content, the flow rate is smaller than in the other 

cases. One might conclude that thick NP filter might last longer before being clogged in 

contact with high silt content soils (over 50%wt silt content) especially under lower 

hydraulic gradient level expected in field conditions (i ≤ 5). Except for this particular 

case, the quasi independence of the results from the GT thickness might be due to the 

dominant role of clogging and blocking over piping, as attested by the relatively small 

masses of piping particles observed in these tests.  



 

 

154

 

 
Figure 6.12 Distributions of piping and clogging particle masses in RRT of NP filters, 

different in AOS and thickness with 50%wt and 100%wt silts (Thickness and AOS 
increase from L125 to L350 GT, see Table 6.2) 
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Figure 6.13 Distributions of piping and clogging particle masses in RRT of NP filters, 

different in AOS and thickness (Thickness and AOS increase from L125 to L350 GT, see 
Table 6.2) 
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Figure 6.14 GT thickness effect on rate of Krel change in RRT for 50%wt silt soil under 

different system hydraulic gradients 
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Figure 6.15 GT thickness effect on rate of Krel change for pure fine soil under different 
system hydraulic gradients 
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6.5.5 Influence of Clay Content on GT Clogging 

Whereas INDOT current technical guidelines (Technical Specifications, Sec. 913) for 

highway subdrainage systems do not require installation of a filter for soils with clay 

fraction over 20%wt, there is experimental evidence that clayey soil can induce drainage 

clogging (see Section 2.3.2). It is also noted that filters are required in earth dams at the 

contact between clay core and granular fill. 

 

  In order to investigate this specific point, dense soil specimens with variable silt and 

(kaolinite) clay contents were tested in RRT, under gradient i=40, with a thick NP 

geotextile (L350) which had been found adequate for high silt content soils. As can be 

seen in Figure 6.16, variations in Krel indicate a rapid reduction due to clogging, similarly 

to what was observed with non-clayey soils, though kaolinite is a non dispersive clay. 

The soil specimens with high clay contents (20%wt clay) showed fast clogging regardless 

of the silt contents (50%wt and 80%wt silt). In particular, a faster reduction was observed 

for the well graded soil specimens including a fine sand fraction (between #60 and #40 

ASTM sieves). Again, this abrupt Krel decrease is considered to result from surface 

opening blockage by concentrations of fines, as was noted for non-clayey (50%wt silt) 

soil in the previous section. 

 

  According to Kellner and Matei (1991), filtration of clayey soils can be improved by 

installation of a thin granular layer between the GT and the filtered soil. To examine this 

proposition, an intermediate layer, 1cm thin, of fine sand between #60 and #40 in ASTM 

sieve size was placed above the GT specimen. The RRT result shown in Figure 6.16  
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Figure 6.16 Hydraulic performances in RRT under i=40 of thick NP, alone and in 

association with a fine sand layer, for filtration of dense soils with 10%wt or 20%wt clay 
(c: clay, m: silt and s: fine sand) 

 
 
 
 
indicates this design was very successful in fltrating the clayey soil (i.e. 20%wt clay, 

50%wt silt and 30%wt sand). 

6.6 Summary 

 Uniformly graded soil (Cu<3) can be successfully filtered by geotextiles with AOS 

greater than their largest grain size since the self-filtration zone can be promptly built 
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upon the GT filter. Well graded and gap graded soils should be filtered by geotextiles 

with AOS less than their particle sizes, D50 and Dgap respectively. This should allow for 

larger amounts of coarse particles being retained upstream of the geotextile in order to 

prevent continuing fine migration in unstable base soil. Since the size of soil fines (0.075 

mm) is smaller than the AOS of commercially available geotextiles, most silt particles 

will penetrate the GT filter rather than being retained on the surface, thus the formation of 

self-filtration zone is unlikely for high fine content soils.  

 

  Hydraulic gradient level plays an important role in controlling the rate of the clogging 

process. However, the level of system hydraulic gradient does not influence strongly the 

filter performances as compared to soil and GT properties. The governing soil and GT 

properties are soil gradation type and compaction degree, GT thickness, opening size and 

fiber bonding type. Compatibility between site soil and candidate geotextile can be 

effectively assessed using the RRT as long as the flow rate satisfies laminar conditions. 

The site conditions would likely result in slower clogging than the RRT conditions.  

 

  Depending on base soil type (e.g. gap graded, well graded and pure fines), GT fiber 

bonding type and porosity need to be considered in selection of a filter. Heat bonded GT 

is recommended to filter internally unstable soil (e.g. 20%wt silt) since the GT rigid 

surface will help minimizing blockage by coarse particles and allowing passage of fines. 

Otherwise, needle punched GT is recommended to filter pure fines (e.g. 100%wt silt) 

since the large geotextile porosity can reduce the possibility of opening blockage by fines 

under a severe hydraulic condition. For problematic soils (i.e., between 20%wt silt and 
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50%wt silt), the grain size distribution and compaction degree should be considered in 

the GT filter design because these parameters control the soil internal stability.  

 

 Thick GT is recommended to filter high silt content soils (over 50%wt silt) rather than 

thin GT since the fine migration is suppressed by internal geotextile clogging, not by the 

soil self-filtration process. Thus, the longer the infiltration path extends, the more fine 

particles can be captured by GT constrictions. Therefore, a thick GT is preferable for the 

purpose of fine particle retention. At sites where the geotextile is subjected to compaction 

pressure, a thick GT must be selected. 

 

  Soils with relatively small clay content soils (10 to 20% wt clay) can contribute to GT 

filter clogging. The rate of GT clogging is accelerated by the presence of clay as the 

system flow rate decreases. In presence of silty soil with small clay contents (below 

20%wt clay) it is recommended to use a composite filter consisting of fine sand and thick 

GT. The affinity of clay minerals for sand grains will minimize clay accumulation over 

the opening channels of the GT. 
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7. Conclusions and Recommendations of Geotextile Filter 
Selection Guidelines 
 

7.1 Summary of Findings from this Study 
 

Soil filtration by geotextiles is a complex, multifaceted process. Its successful application 

depends on physical compatibility between the geotextile filter and the soil to be retained. 

Therefore, no successful design can be achieved without considering, first the nature and 

characteristics of the soil present at the site, and then the range of geotextile products 

eligible. There is no universal solution where a unique geotextile filter would be 

compatible with all types of soils or even a broad range of soils. But design solutions can 

be devised where geotextiles would be compatible with soil types defined by simple 

parameters such as their particle size and state of compaction. 

 

Geotechnical situations that are considered prone to filtration problems with highway 

underdrains and from which soil samples were analyzed are characterized by high silt 

content, but the presence of clay together with silt, plays also a role in filter clogging. At 

a project site from which samples of exhumed filters were obtained, the soil was, 

typically, silty clay. The filter samples from this site exhibited variable degree of 

clogging after 15 years of service and, when quasi-intact specimens were tested in the 

laboratory, they were found incompatible with the soil. Video recording of underdrain 

pipe non-destructive inspections from different INDOT projects show moderate to heavy 

sedimentation within pipes after one year of service, suggesting adequate filtration was 

lacking at this sites, though other factors such as incorrect installation or damage to the 

fabrics, may also have played a role.  
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The present study was focused on physical clogging of non-woven geotextile filters by 

migrating solid particles from the surrounding soil. Biological or chemical clogging was 

not within the scope of this study and could not be investigated in detail. In particular, the 

problem of chemical clogging in presence of chemically modified soil would require 

special testing equipment being developed for a future study. Although, in present 

practice, INDOT does not use filter fabrics for underdrains in rubblized subgrade, a very 

limited and simplifeied test performed on only one sample suggests cement chemicals 

from recycled (rubbleized) concrete aggregates would likely affect the integrity of 

geotextile filters, a conclusion already reached by Wukash and Siddiqui (1996) in an 

earlier JTRP study. Because of the similarity in chemistry, this information can be 

considered also as an indication of what could occur with cement modified subgrade. 

 

The two basic requirements for a filter that are, retain solid particles while still allowing 

water to flow to the drain, depend on the same set of properties for a geotextile. These are 

its opening size, porosity and internal fabric structure. For nonwoven geotextiles these, in 

turn, result from the manufacturing style, amount of fibers per unit volume and thickness 

of the fabric. During filtration, migration and spatial relocation of soil particles take place 

in the close vicinity of the geotextile. Some particles penetrate the fabric pores and 

constriction network and may remain trapped inside the geotextile while others cross over 

and can eventually reach the drain. Even in the case of a successful design and 

compatibility of the geotextile with the soil, it should not be expected that all the solid 

particles will be retained. What is expected is that particle migration will reach a steady 
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state after a period of time depending on the volume of flow, and internal stability of the 

soil microstructure will be achieved in an interface zone at the boundary of the geotextile 

and a thin layer of immediately adjacent soil. As a result of particle migration, 

permeability in the adjacent soil, and across the filter and interface zone (i.e. the filter 

system as it was defined in chapters 5 &6), varies during the early stage of the filtration 

process. At steady state, the filter system hydraulic conductivity may have increased as 

compared to that of the base soil (in case of bridging) or may have increased (in cases of 

partial blinding of partial clogging). Thus it is legitimate to use the system hydraulic 

conductivity and its internal variations for monitoring, in laboratory experiments, the 

filtration mechanism. But, because geotextiles are always more permeable, by orders of 

magnitude, than fine-grained soils in which filters are needed, and if the filter design is 

successful, local changes in permeability in the interface zone remain limited, 

permeability is not the critical factor for a geotextile filter selection. In other words, if a 

geotextile filter has been selected adequately for its retention function being fulfilled, 

then automatically its permeability remains sufficient for allowing cross-flow and, 

therefore, should not be of concern. This is why, in the geotextile filter selection method 

proposed in the next section, there is no need for an explicit permeability criterion. 

 

Laboratory testing results obtained using the best available experimentation methods, the 

FWGR and the RRT, for a number of material combinations and testing parameters are 

believed to be realistic enough for serving as the basis of practical design guidelines. The 

testing conditions can be considered more severe than most field conditions with respect 

to particle mobility (because of the high gradients and full saturation imposed in the 
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tests). However, adverse dynamic effects induced by traffic close to the roadway edge 

and the resulting excess pore pressure pulsing in the subgrade near the filter could not be 

simulated in the laboratory. During flexible wall gradient ratio tests, fine migration within 

the filter system could be traced indirectly by monitoring the precise pore pressure 

variation at different elevations along the soil column. Resulting data, gradient ratios and 

hydraulic head losses through the geotextiles, were consistent altogether to identify the 

different clogging mechanisms. In particular, they allowed differentiation between 

surface blocking by coarse particles and internal clogging by fines.  

 

Among the most interesting findings from the testing program, in order to better 

understand the fundamentals of filtration, is the influence of the soil state of compaction 

on the filter response. In general, compaction increases interlocking between soil 

particles, reduces the pore space and, consequently, the internal stability of the soil is 

improved. This is contributing to good filter performance for soils made of a small to 

medium amount of silt mixed with coarser particles. But a positive effect was not 

observed with soils made essentially of silt. However, the effect of compaction is more 

complex if the soil surrounding the filter is compacted after the getextile has been 

installed. In this case compaction-induced pressure is applied to geotextile and can 

modify the fabric pore structure or force soil particles into its openings. In the field, this 

can be the case during compaction or re-compaction of subgrade but also during 

compaction of aggregate in the drainage trench and above. If fine particles are forced into 

the filter fabric by this mechanism, this will contribute to clogging. Thus compaction can 

affect filtration positively or negatively, depending on the soil composition and 
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construction sequence. This can be mitigated by selecting geotextiles with adequate type, 

opening size and thickness.  

 

Another important factor is the geotextile thickness in connection with its opening size. 

The thicker is the geotextile, the more likely is a particle to encounter a constriction 

smaller than its size. High silt content soils can be effectively filtered by thick geotextiles 

with small opening size rather than by thin ones with large opening size. As described 

before, most commercially available non woven geotextiles have a opening size larger 

than silt particle size. Therefore, the fines need be filtered within the geotextile fabric 

instead of be retained outside To achieve this, a longer infiltration path, characteristic of a 

thick non-woven geotextile, will offer to a traveling particle more opportunities for small 

constriction encounter than a thin fabric would. If the soil is to be compacted, a thick 

geotextile is also less likely to have its porosity decreased and fabric structure disturbed 

by the compaction process than a thin geotextile. 

 

Filtration tests were performed with different types of soils, including low silt content 

soil, gap-graded soil and high silt content soil. With low silt content soil (10%wt silt) it is 

generally agreed that the filter should be a geotextile with large AOS (> 1 mm), but it was 

observed in this study that, if the soil has been compacted, a thick geotextile with much 

smaller AOS (0.15 mm) can also be adequate. Gap-graded soil with 20%wt silt was 

successfully filtered using a geotextile with large opening size (0.21 mm) without need 

for compaction. However, thin geotextiles should not be used as filters at sites where 

compaction work is expected to reduce significantly the porosity of subgrades with silt 
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content between 10%wt and 50%wt.  Loose soil with high fine content (50%wt silt) was 

filtered successfully by thick geotextile. The internal clogging of a geotextile by fine 

particles is a relatively slow process as compared to blockage of openings at the surface 

by coarse particles. But when a geotextile with high permittivity is used as filter, a more 

rapid penetration of fines can occur at point-wise locations (instead of distributed 

clogging) where high concentrations of fines can plug the fabric openings and conduits. 

In such cases with high fine contents (>50%wt silt) use of a thick geotextile would reduce 

potential for plugging. The role of constraint compressibility, combined with geotextile 

thickness, was also observed. Needle punched non woven geotextiles are known to be 

more compressible than other manufacturing styles. In the tests, it was observed that 

thinner geotextiles underwent more deformation by localized external load from soil 

grains than thicker ones. 

 

 Of paramount importance is the relationship between filter opening size and soil grain 

size distribution. Uniformly graded soils (Cu<3) can be filtered by the geotextiles with 

large FOS because  a self-filtration zone of soil builds itself at the filter interface and 

forms bridges over filter openings that may be larger than individual particles. On the 

other hand, well graded or gap-graded soils need to be filtered by geotextiles with 

opening size smaller than the representative particle size, D50 or the lower limit of the 

GSD gap DG, respectively. The reason for this requirement is that a larger quantity of 

coarse particles needs to be retained at the interface in order to form the self-filtration 

bridging structure and prevent piping from occurring within the internal unstable soil. 

But, with these types of GSD, if most of the particles are smaller than the geotextile 
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opening size, silt can penetrate easily the filter and the self-filtration zone is unlikely to 

form.  

 

Another important relationship is between the geotextile manufacturing style (producing 

different modes of fiber bonding and fabric porosities) and the soil type of GSD (e.g. gap 

graded, well graded or pure fine). If the soil is internally unstable and has small silt 

content (< 20%wt silt), an even pattern at the surface of the filter faciltates penetration of 

the loose fines through the openings that still left free from coarse particle blockage. In 

case of high silt content soil (> 50%wt silt) where particles assemblies are more likely to 

be in a in loose state, the geotextile porosity should be large in order to limit the risk of 

plugging by localized fine intrusion. For soils that are the most problematic with respect 

to geotextile filter design (20% < silt wt < 50%), selection of a geotextile style will 

depend on both grain size distribution and state of compaction since these factors control 

the soil internal stability. 

      

Presence of small amounts of clay in silty soils contributes to filter clogging. It was 

observed from the experiments that the cohesiveness of clay mineral plays a role in 

accelerating the filter internal clogging especially at low flow rate (below 1.0E-6 cm/sec). 

A solution for filtering silty soils with small clay content (< 20%wt) is to associate a 

thick geotextile and a layer of fine sand placed upstream of the filter. Affinity of clay 

mineral to sand grains and the increased tortuosity of the pore structure would help 

preventing clay accumulation on geotextile openings already partially clogged by silt 

particles. 
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The magnitude of the hydraulic gradient across the filter zone influences the time rate of 

the clogging process but not its result. Application of high gradients in filtration tests had 

the effect of accelerating the process, as compared to tests performed under smaller 

gradients, but the ultimate state of the system, in terms of gradient ratios and hydraulic 

conductivity at steady state, was not significantly different. In addition to being relevant 

to field conditions, this observation is also useful for setting up laboratory experiments by 

allowing performance of faster tests at high gradients provided the flow remains laminar. 

7.2 Recommendations for Filter Selection and Design 
 

Findings of this study and information found in published literature lead to the conclusion 

that current INDOT specifications, sec. 913 (see Chapter 1 of this report) need to be 

modified mainly in two areas: 

- Filter criteria should account more broadly and accurately for the soil 

characteristics than the current criterion specifying only a filter with AOS smaller 

than 0.3mm (sieve #50 or smaller) when the soil is mainly composed of silt; 

- Current mechanical properties requirements should be revised for the filter fabric 

to survive installation and construction operations without being damaged.  

Detailed recommendations follow in the next sections . 

7.2.1 Geotextile filter selection guidelines 
 

In an attempt to formulate criteria that would be simple enough for practical 

implementation, only the most important factors were considered and their possible 

ranges of variation were divided in a small number of cases. Unavoidably, these divisions 

carry some degree of arbitrariness and engineering judgment should be exercised in 

borderline cases. These recommendations should be understood as tentative. They will 
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likely be subject to amendment after some experience with their application has been 

gained.  

 

The guidelines for selecting geotextile filter in function of soil characteristics that are the 

grain size composition of the soil, its Atterberg’s limits and for clay soils, the hydraulic 

conductivity, are summarized in Table 7-1 which also includes a number of explanatory 

notes. Only non-woven geotextiles are recommended. The output consists for each 

situation, in a recommendation of opening size range that would be adequate (defined in 

function of soil grain size), bonding type and fabric thickness. The recommended opening 

size is expressed in terms of the Apparent Opening Size (AOS) instead of the Filtration 

Opening Size (FOS) because the AOS is the filtration index property commonly reported 

by geotextile manufacturers in the United States (IFAI, 2005) and its determination is 

standardized under ASTM D 4751. The FOS determination is standardized under 

ISO/DIS 12956. An indication of the effect of soil compaction is also provided for 

information. However, it is noted that INDOT’s construction practice is to install edge 

drains in trenches that are excavated in compacted subgrade. It should therefore be 

assumed that the compacted soil condition will apply in general. The indication obtained 

from this study that, in some cases, good soil compaction is beneficial to the filter 

performance emphasizes the importance of soil compaction and its quality control. 
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Figure 7-1 Schematic design cross sections for drainage and filter systems (A) General 
design, (B) special case of clay soil (see Table 7-1) 
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Figure 7-2 Example particle size distributions. (A) example 1, (B) example 2  
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For the solutions recommended in Table 7-1 it is generally assumed, when a filter is 

required, that the geotextile will be installed as a liner on the bottom, sides and top 

boundaries of the drainage trench as shown in Fig. 7-1a. A difference between this design 

and current INDOT practice is that, in the present recommendation, the geotextile is 

wrapped over the drainage trench top after backfilling. It is believed this configuration is 

better than current practice in which the trench top is left without filter and allows 

infiltration of fines or recycled concrete chemicals driven by vertical downwards 

gradients. There is one exception shown in Fig. 7-1b, when a combination of geotextile 

and sand filters are recommended. In this case, because the sand component of the filter 

has to be located upstream of the geotextile, the practical solution is to install the 

geotextile as a wrapping around the drainage pipe, and then backfill the lower part of the 

trench with sand, at least up to 4” above the pipe (the remaining part can be backfilled 

with coarser aggregate if this is more economical). 

7.2.2 Examples of filter selection  
 

In order to illustrate the application of the proposed guidelines, two examples are 

presented. The two soils used as examples have already been described in Chapter 3. 

Example 1 

The soil is a well-graded sandy loam represented by Sample S1 in Tables 3-1 & 3-2, 

where it is classified as a A6(2) according to AASHTO. Its grain size distribution is also 

shown in Figure 7-2a. indicates the largest particle size is greater than 2mm and the 

coefficient of uniformity is less than 3. The silt fraction is 30%wt and the clay content is 

less than 20%wt. Entering the silt and clay amounts information in Table 7-1 leads to the 

recommended selection. For more convenience, this is shown in Fig. 7-3a. The filter 
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opening size (AOS) should be between 0.02mm (i.e. the soil D30) and 0.25mm (i.e. the 

soil D50), and either a heat bonded or a needle punched geotextile type would be selected, 

depending on subgrade compaction. A number of products are available that would 

satisfy these requirements. If one considers, for instance, the samples already used in this 

study (Table 5-1), both the BBA3501 (spun bonded type with AOS=0.21 mm) and Linq 

350 (needle punched type with AOS=0.15mm) would be adequate. 

Example 2 

The soil corresponds to Sample C1 in 3-1 & 3-2, where it is classified as a silty clay, 

A6(18) according to AASHTO. The clay content is over 20%wt (Fig. 7-2b). Thus the 

criterion, according to Table 7-1, to decide whether or not a filter is required, is based on 

hydraulic conductivity. The permeability test performed on this sample resulted in 

Ksat=2.7x10 -6cm/sec, a value larger than the 10 -6cm/sec limit of the table. If the 

guideline is strictly followed, a geotextile filter wrapped around the pipe and combined 

with fine sand backfill is required. However, considering typical uncertainty due to 

sample disturbance in hydraulic conductivity assessment, this can be considered a 

borderline case (a difference of an order of magnitude in Ksat would be considered 

meaningfull rather than a factor 2) and engineering judgment suggests the use of a filter 

here is only optional. 

7.2.3 Additional physical requirements for geotextiles: Survivability criteria 
 

Selection of geotextile filter based on Table 7-1 addresses the primary function of the 

geotextile where retention and permeability requirements are met. Another important  

criterion for the selection of a particular geotextile is based on its ability to survive the 

mechanical constraints imposed during installation, construction of the roadway and later 
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in service. It has been observed that a number of failures of geotextiles occur during 

installation and construction rather than in service. This problem was addressed by 

AASHTO and FHWA in the 1980s through the Task Force 25 Committee. The empirical 

criteria and methodology are at the origin of guidelines found in AASHTO-AGC-

ARTBA, Task Force 25 and AASHTO M288.  These are based on the severity of pressure 

load expected to be applied over the geotextile during construction and the quality of 

preparation of surfaces (i.e. the subgrade) on which the geotextile is installed. 

Combination of these two factors leads, for the candidate geotextile, to a required degree 

of survivability and corresponding minimal performance in standardized index tests such 

as the grab test, puncture test, burst test, puncture test. It is noted that, for meeting the 

criterion, a geotextile must pass all the tests, not just one of them.  

 

These guidelines are summarized in Appendix B. For edge drain filter fabrics, it is 

expected that installation is done on well prepared subgrade and low to moderate 

construction equipment pressure is applied to the fabric. Based on these assumptions, the 

Class 3 or Class 2 survivability level is required by AASHTO M288-96 (see also 

Koerner, 1998, sec. 2.1.2). Even when considering the least severe condition, that of 

Class 3, it is noted that the physical properties required by AASHTO M288 (see Table 

2.2a in Appendix B of this report) are higher than the requirements of current INDOT 

specifications, Sec. 913.19, applicable to geotextiles used with underdrains. In order to 

ensure compliance with the AASHTO M288 minimal requirements, it is recommended to 

modify INDOT’s Sec. 913.19 physical requirements as follows: 
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TEST   METHOD  REQUIREMENTS 

      Current  Recommended 
 
Grab Strength  ASTM D 4632 355.8 N (80 lbs) 500 N (112 lbs) 
 
Seam Strength  ASTM D 4632 311.4 N (70 lbs) 450 N (101 lbs) 
 
Puncture Strength ASTM D 4833 111.2 N (25 lbs) 180 N (40 lbs) 
 
Burst Strength  ASTM D 3786 896 kPa (130 psi) 950 kPa (138 psi) 
 
Trapezoidal Tear ASTM D 4533 111.2 N (25 lbs) 180 N (40 lbs) 
 
Apparent Opening ASTM D 4751 Sieve No 50 or Sieve No 50 or 
Size (AOS)     smaller opening smaller opening 
         From Table 7.1 
 
Permeability  ASTM D 4491 0.1 mm/sec   same 
 
U.V. Degrad. (150h) ASTM D 4355 70% strength retained  same 
 

7.3 Implementation: Step-by-Step Procedure 

In order to facilitate implementation of the above recommendations, the following step-

by-step procedure can be applied: 

 

STEP 1 

Determine the following properties of the subgrade soil at the drainage trench location. 

- From the particle size distribution: 

o Silt content (in % passing weight) 

o Clay content (in % passing weight) 

o D30 , D50 and D85 characteristic particle sizes 

o If the particle size distribution shows a gap, determine DGap,Min and 

DGap,Max , respectively the lower and upper limit of the gap.  
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- IF the clay content is less than 20%, determine Atterberg’s consistency limits and 

plasticity index (ASTM D 2487) 

- IF the clay content is greater than 20%, determine the hydraulic conductivity (at 

saturation). 

 

STEP 2 

 IF the silt content is 

(a) Over 50%, then GO TO STEP 3 

(b) Between 15% and 50%, then GO TO STEP 4 

(c) Between 5% and 15%, then a filter fabric is optional but 

recommended. GO TO STEP 5 for selection criteria. 

(d) Less than 5%, then NO FILTER FABRIC IS REQUIRED 

 

STEP 3 (filter selection for case a, silt content > 50%) 

(case a.1) IF the clay content is less than 20%, then SELECT a filter fabric with the 

following characteristics and design recommendation (WHEN DONE, GO TO STEP 6): 

  Style: Needle Punched Non-woven 

  Opening size: AOS < D50 

  Thickness: 3mm (or greater) 

- (a.1.a) If the soil plasticity is low (i.e. the point representative of liquid limit and 

plasticity index in the AASHTO soil plasticity chart, ASTM 2487, is in the A.6 

region), use standard design with filter fabric lining the trench (see Fig. 7-1a) 

- (a.1.b) If the soil plasticity is high (i.e. the point representative of liquid limit and 
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plasticity index in the AASHTO soil plasticity chart, ASTM 2487, is in the A.7.6 

region), the filter fabric should be wrapped around the drainage pipe and the 

trench backfilled with fine sand (see Fig. 7-1b). 

(case a.2) IF the clay content is greater than 20% AND the soil hydraulic conductivity is 

greater than 10-6 cm/sec (or 2 10-6 ft/min), THEN SELECT a filter fabric with the 

following characteristics and design recommendation (WHEN DONE, GO TO STEP 6): 

  Type: Needle Punched Non-Woven 

  Opening size: AOS < D50 

  Thickness: 3mm (or greater) 

The filter fabric should be wrapped around the drainage pipe and the trench 

backfilled with fine sand (see Fig. 7-1b). 

(case a.3) IF the clay content is greater than 20% AND the soil hydraulic conductivity is 

less than 10-6 cm/sec (or 2 10-6 ft/min), THEN NO FILTER FABRIC IS REQUIRED. 

 

STEP 4 (filter selection for case b, 15% < silt content < 50%) 

(case b.1) IF the clay content is less than 20% THEN SELECT a filter fabric with the 

following characteristics and design recommendation (WHEN DONE, GO TO STEP 6): 

Style: Heat Bonded Non-Woven 

 Opening size: D30 (or DGap,Min ) < AOS < D50 

Thickness: Sufficient for meeting mechanical property requirements of INDOT 

Specifications, Sec. 913.19. 

- (b.1.a) If the soil plasticity is low (i.e. the point representative of liquid limit and 

plasticity index in the AASHTO soil plasticity chart, ASTM 2487, is in the A.6 
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region), use standard design with filter fabric lining the trench (see Fig. 7-1a) 

- (b.1.b) If the soil plasticity is high (i.e. the point representative of liquid limit and 

plasticity index in the AASHTO soil plasticity chart, ASTM 2487, is in the A.7.6 

region), the filter fabric should be wrapped around the drainage pipe and the 

trench backfilled with fine sand (see Fig. 7-1b). 

(case b.2) IF the clay content is greater than 20% AND the soil hydraulic conductivity is 

greater than 10-6 cm/sec (or 2 10-6 ft/min), THEN SELECT a filter fabric with the 

following characteristics and design recommendation (WHEN DONE, GO TO STEP 6): 

Style: Heat Bonded Non-Woven 

 Opening size: D30 (or DGap,Min ) < AOS < D50 

Thickness: Sufficient for meeting mechanical property requirements of INDOT 

Specifications, Sec. 913.19.  

The filter fabric should be wrapped around the drainage pipe and the trench 

backfilled with fine sand (see Fig. 7-1b). 

(case b.3) IF the clay content is greater than 20% AND the soil hydraulic conductivity is 

less than 10-6 cm/sec (or 2 10-6 ft/min), THEN NO FILTER FABRIC IS REQUIRED. 

 

STEP 5 ( filter selection for case c, 5% < silt content < 50%) 

(case c.1) IF the clay content is less than 20% THEN SELECT a filter fabric with the 

following characteristics and design recommendation (WHEN DONE, GO TO STEP 6): 

Style: Heat Bonded Non-Woven 

 Opening size: D85 (or DGap,Max ) < AOS < 3D85 

Thickness: Sufficient for meeting mechanical property requirements of INDOT 
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Specifications, Sec. 913.19.  

- (c.1.a) If the soil plasticity is low (i.e. the point representative of liquid limit and 

plasticity index in the AASHTO soil plasticity chart, ASTM 2487, is in the A.6 

region), use standard design with filter fabric lining the trench (see Fig. 7-1a) 

- (c.1.b) If the soil plasticity is high (i.e. the point representative of liquid limit and 

plasticity index in the AASHTO soil plasticity chart, ASTM 2487, is in the A.7.6 

region), the filter fabric should be wrapped around the drainage pipe and the 

trench backfilled with fine sand (see Fig. 7-1b). 

(case c.2) IF the clay content is greater than 20% AND the soil hydraulic conductivity is 

greater than 10-6 cm/sec (or 2 10-6 ft/min), THEN SELECT a filter fabric with the 

following characteristics and design recommendation (WHEN DONE, GO TO STEP 6): 

Style: Heat Bonded Non-Woven 

 Opening size: D85 (or DGap,Max ) < AOS < 3D85 

Thickness: Sufficient for meeting mechanical property requirements of INDOT 

Specifications, Sec. 913.19.  

The filter fabric should be wrapped around the drainage pipe and the trench 

backfilled with fine sand (see Fig. 7-1b). 

(case c.3) IF the clay content is greater than 20% AND the soil hydraulic conductivity is 

less than 10-6 cm/sec (or 2 10-6 ft/min), THEN NO FILTER FABRIC IS REQUIRED. 

 

STEP 6 (verification of mechanical and other physical properties) 

For the geotextile selected on the basis of the above filtration criteria, check that the 

mechanical and other physical requirements of INDOT’s Specification, Sec. 913.19 
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Geotextiles for Underdrains (including the modifications recommended in this report), 

are met. If these requirements are not met, select a geotextile of similar type and AOS, 

but with greater thickness or better mechanical properties so that it will meet the 

requirements. 

 

7.4 Recommendations for Future Study 

Future studies on the subject of filters for highway drainage systems in Indiana should 

address two types of questions: 

(1) How effective are the above recommendations in actual field conditions: this can 

only be assessed after implementation has been done in actual or pilot projects 

and performance is observed, by monitoring/inspecting the drains and exhuming 

fabric filter samples, over a period of several years.  

(2) Particular aspects of the filtration problem that could not be addressed in the 

present study would require further research. Such topics are: 

- The effect of chemicals from chemically modified subgrades; 

- The effect of dynamic pulsing of pore pressure due to traffic; 

- Development of innovative technologies that would facilitate monitoring, 

maintenance and retrofitting of filters. 

It should be kept in mind also that geosynthetic fabric manufacturing is a very dynamic 

and innovative industry. New geosynthetic products will likely be developed in the near 

future that will have potential for improved filter performance as compared to currently 

available fabrics. Evaluation of these new filter geosynthetics will be necessary as they 

become available. 
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Appendix A 
 
 

Geotextile Retention Criteria in Published Literature 
(from Palmeira & Fannin, 2002) 
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Appendix B 
 

Geotextile Survivability Specifications 
AASHTO-AGC-ARTBA, Task Force 25 and AASHTO M288 

(after Koerner, 1998) 
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How to determine geotextile properties required for survivability: 
 
Step A: In table 2.22 next page, enter level of ground pressure applied to geotextile 
through construction equipment (e.g. compaction equipment) and level of subgrade 
preparation prior to geotextile installation. Obtain from the table the required level of 
survivability. 
 
Step B: Find the corresponding survivability class: 
 
 Very high to high survivability level  Class 1 
 High to moderate survivability level  Class 2 
 Moderate to low level of survivability  Class 3 
 
Step C: In the following page, Table 2.2a, enter the survivability class and find the 
corresponding minimal requirements for grab, tear, puncture and burst strength. 
 
 



 

 

203

 
 
 



 

 

204

 

 
 
 
 


	Purdue University
	Purdue e-Pubs
	2006

	Filter Performance and Design for Highway Drains
	Sangho Lee
	Philippe L. Bourdeau
	Recommended Citation


	Return to Table of Contents



