
HAL Id: hal-00864341
https://hal.inria.fr/hal-00864341v6

Submitted on 10 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Language-Independent Program Verification Using
Symbolic Execution

Andrei Arusoaie, Dorel Lucanu, Vlad Rusu

To cite this version:
Andrei Arusoaie, Dorel Lucanu, Vlad Rusu. Language-Independent Program Verification Using Sym-
bolic Execution. [Research Report] RR-8369, Inria. 2014, pp.28. �hal-00864341v6�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49588449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00864341v6
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
3

6
9

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8369
2013

Project-Team Dreampal

Language-Independent

Program Verification

Using Symbolic

Execution

Andrei Arusoaie, Dorel Lucanu, Vlad Rusu

RESEARCH CENTRE

LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne

40 avenue Halley - Bât A - Park Plaza

59650 Villeneuve d’Ascq

Language-Independent Program Verification

Using Symbolic Execution

Andrei Arusoaie∗, Dorel Lucanu†, Vlad Rusu‡

Project-Team Dreampal

Research Report n° 8369 — 2013 — 28 pages

Abstract: We present an automatic, language-independent program verification approach and
prototype tool based on symbolic execution. The program-specification formalism we consider is
Reachability Logic, a language-independent alternative to Hoare logics. Reachability Logic has a
sound and relatively complete deduction system that offers a lot of freedom to the user regarding
the manner and order of rule application, but it lacks a strategy for automatic proof construction.
Hence, we propose a procedure for proof construction, in which symbolic execution plays a major
role. We prove that, under reasonable conditions on its inputs (the operational semantics of a
programming language, and a specification of a program, both given as sets of Reachability Logic
formulas) our procedure is partially correct: if it terminates it correctly answers (positively or
negatively) to the question of whether the given program specification holds when executing the
program according to the given semantics. Termination, of course, cannot be guaranteed, since
program-verification is an undecidable problem; but it does happen if the provided set of goals
includes enough information in order to be circularly provable (using each other as hypotheses).
We introduce a prototype program-verification tool implementing our procedure in the K language-
definition framework, and illustrate it by verifying nontrivial programs written in languages defined
in K.

Key-words: Program Verification Symbolic Execution, Language Independence.

∗ University of Iasi, Romania
† University of Iasi, Romania
‡ Inria Lille Nord Europe

Vérification de programmes indépendante des langages et

basée sur l’exécution symbolique

Résumé : Nous présentons une méthode automatique pour vérifier des programmes, qui ne
dépend pas du langage de programmation dans lequel les programmes à vérifier sont écrits. Pour
celà nous nous appuyons sur la Reachability Logic, un formalisme de spécification introduit
récemment, qui peut être vu comme une alternative à la logique de Hoare, mais qui, contraire-
ment à cette dernière, ne dépend pas du langage de programmation utilisé. La Reachability
Logic est munie d’un système déductif correct et relativement complet, qui laisse beaucoup de
liberté à l’utilisateur sur la manière d’appliquer les règles de déduction, mais qui n’offre pas
de stratégie pour construire automatiquement des preuves. Par conséquent nous proposons ici
une procédure de construction des preuves, dans laquelle l’exécution symbolique joue un rôle
essentiel. Nous montrons que, moyennant des conditions raisonnables sur la sémantique des lan-
gages de programmation et sur les propriétés des programmes, notre procédure est partiellement
correcte. Ceci dit en substance que, lorsqu’elle termine, la procédure résout correctement le prob-
lème de vérification de programmes à base de Reachability Logic. La terminaison ne peut être
garantie car la véritication de programmes est indécidable, mais la procéndure termine lorsque
les propriétés contiennent suffisamment d’information pour être prouvées de maniêre circulaire,
en s’utilisant mutuellement comme hypothèses. Nous présentons une implémentation prototype
d’un outil de vérification basé sur ces idées, que nous avons implémenté dans la K framework
et que nous illustrons sur des exemples de programmes non triviaux, écrits dans des langages
formellement définis en K.

Mots-clés : Vérification de programmes, Exécution symbolique, Indépendance aux langages.

Language-Independent Program Verification Using Symbolic Execution 3

1 Introduction

Reachability Logic (RL) [27] is a language-independent logic for specifying program properties.
For instance, on the gcd program in Fig. 1, the RL formula

〈〈gcd〉k〈a7→a b7→b〉env〉cfg∧a≥0 ∧ b≥0⇒⇒⇒ ∃M.〈〈·〉k〈M〉env〉cfg∧lookup(x,M)=gcd(a,b) (1)

specifies that after the complete execution of the gcd program from a configuration where the
program variables a, b are bound to non-negative values a, b, a configuration where the variable
x is bound the value gcd(a, b) is reached. Here, gcd is a mathematical definition of the greatest-

x = a; y = b;

while (y > 0){

r = x % y;

x = y;

y = r;

}

Figure 1: Program gcd

common-divisor (gcd(0, 0) = 0 by convention), and lookup is a standard lookup function in
associative maps.

Reachability Logic can also be used for defining the operational semantics of programming
languages, such as that of the language imp in which the gcd program is written. A naive
attempt at verifying the RL formula (1) consists in symbolically executing the semantics of the
imp language with the gcd progam in its left-hand side, i.e., running gcd with symbolic values
a, b ≥ 0 for a,b, and searching for a configuration matched by the formula’s right-hand side.
However, this does not succeed because the symbolic execution gets caught into the infinitely
many iterations of the loop.

Independently of symbolic execution, the proof system of RL [27] is a set of seven inference
rules that has been proved sound and relatively complete, meaning that, in principle, it proves all
valid RL formulas (assuming an oracle that is able to decide the validity of first-order assertions).
It is compact and elegant but, despite its nice theoretical properties, its use in practice on
nontrivial programs is difficult, because it gives the user a lot of freedom regarding the order
and manner of rule application, and offers no strategy for automatically constructing proofs.
Moreover, it is not designed for disproving formulas: since the proof system is relatively complete,
the only way to disprove a formula is to show that there exists no proof-tree for the formula,
which is not practically possible since it requires exploring an infinite set of tentative proof trees.

Contribution. A language-independent procedure and prototype tool for program verification.
The procedure uses symbolic execution as a main ingredient. It takes two inputs that are both
sets of RL formulas: S, the operational semantics of a programming language, and G, the
specification of a program in the given language. The program-verification problem is: does the
given program satisfy the specification G when executed according to the operational semantics
S? We show our procedure is partially correct, in the sense that, when it terminates, it correctly
answers (either positively or negatively) to the question posed by the verification problem. On
the one hand, our procedure does more that what the original proof system of RL (which may
only answer positively when it terminates). On the other hand, unlike the original proof system,
our procedure is not relatively complete, since it may not terminate for situations where the
program does meet its specification, as illustrated by the naive symbolic-execution attempt at
proving (1). In order to terminate our procedure typically requires additional user-provided

RR n° 8369

4 Arusoaie, Lucanu & Rusu

information under the form of additional RL formulas to be proved, such that the whole set of
formulas can be proved in a conductive manner (using each other as hypotheses). The partial
correctness of our procedure (decomposed into soundness, which, ensures that positive answers
are correct, and weak completeness, which ensures correctness for negative answers) are based
on certain mutual-simulation properties relating symbolic and concrete program execution, and
on a so-called circularity principle for reachability-logic formulas, which specifies the conditions
under which goals can be reused as hypotheses in proofs. This is essential for proving programs
with infinite state-spaces induced e.g., by an unbounded (symbolic) number of loop iterations
or of recursive calls. Soundness also requires that the semantics of the programming language
is total ; the behaviour of instructions is completely specified, and weak completeness moreover
requires that the program specifications be precise (in a sense made formal in the paper) and
that the semantics is confluent (in the usual sense of a confluent rewriting system) and live (i.e.,
it does not artificially force programs to terminate). We have implemented the approach as a
prototype tool in the K framework [29]. We illustrate it on programs written in languages that
are also defined in K: a parallel program written in a parallel extension of the imp language,
and an implementation of the Knuth-Morris-Pratt string-searching algorithm [20], written in
Cink [22], a formally specified subset of C++.

Organisation After this introduction, Section 2 presents preliminary concepts for the rest
of the paper: a formal, generic framework for language definitions; the K language-definition
framework as an instance of the proposed generic framework; an example of a simple imperative
language defined in K; and a brief presentation of Reachability Logic [27]. Section ?? contains the
core contribution of the paper. We first present the main ingredients of a novel generic approach
for symbolic execution. We then introduce our procedure for proof construction, whose proper-
ties (soundness, weak completeness) are based on a circularity principle for RL and on specific
properties of symbolic execution (mutual simulation between symbolic and concrete executions)
established in the previous section. Section 4 describes a prototype program-verification tool
based on our language-independent symbolic execution tool [5] and its application to programs
written in languages defined in K. The paper ends with a description of related work. Two
appendices contain, respectively, the proofs of the technical results in the paper, and a detailed
description of applying our prototype tool on an example. The tool can be tried online on the
examples in the paper (as well as other ones), at https://fmse.info.uaic.ro/tools/kcheck.

Acknowledgments This work was supported by the European grant posdru/159/1.5/s/137750

and partially by a BQR grant from the University of Lille.

2 Preliminaries

2.1 Language Definitions

We introduce generic language definitions in an algebraic and rewriting setting, whose main
notions we assume to be known by readers. A language definition L is a triple (Φ, T ,S), where
Φ is a many-sorted first-order signature, T is a Φ-model, and S is a set of semantical rules,
described as follows.

Signature: Φ is a many-sorted first-order signature. It consists of a many-sorted algebraic
signature Σ containing function symbols and of a set Π of predicate symbols. Σ includes at least
a sort Cfg for configurations as well as sorts for the syntax of the language L, e.g., expressions
and statements. Σ may also include other data sorts, depending on the datatypes occuring
in the language L (e.g., Booleans, integers, identifiers, lists, maps,. . .). Let ΣData denote the
subsignature of Σ consisting of all data sorts and their operations. We assume that the sort

Inria

https://fmse.info.uaic.ro/tools/kcheck

Language-Independent Program Verification Using Symbolic Execution 5

Cfg and the syntax of L are not data, i.e., they are defined in Σ \ ΣData. Let TΣ denote the
Σ-algebra of ground terms and TΣ,s denote the set of ground terms of sort s. Given a sort-wise
set of variables Var , let TΣ(Var) denote the free Σ-algebra of terms with variables, TΣ,s(Var)
denote the set of terms of sort s with variables, and var(t) denote the set of variables occurring
in the term t.

Model: T is a Φ-model, i.e., it interprets every function and predicate in Φ. We assume that it
interprets the data sorts and their operations according to a given ΣData-model D. For simplicity,
we write in the sequel true, false, 0, 1,. . . instead of Dtrue ,Dfalse ,D0,D1, etc. T interprets the non-
data sorts as the free Σ \ ΣData-model generated by D, i.e., as ground terms over the signature
(Σ\ΣData)∪D. We denote by ρ |= φ the satisfaction of a Φ-formula φ by a valuation ρ : Var → T .

We use the diagrammatic notation for applying substitutions and valuations, i.e., a substitu-
tion/valuation is written after the term to which it is applied.

Rules: S is a set of semantical rules given as Reachability Logic (RL) formulas, defined below.

Definition 1 (pattern [27]) Patterns ϕ over a set of variables Var are expressions defined by
the the following grammar:

ϕ ::= π | ¬ϕ | ϕ ∧ ϕ | (∃X)ϕ

where π ∈ TCfg(Var), X ⊆ Var . An elementary pattern is a pattern of the form π∧φ, where
π ∈ TΣ,Cfg(Var) is a basic pattern and φ is a Φ-formula called the pattern’s condition. The
satisfaction relation (γ, ρ) |= ϕ, where γ ∈ TCfg and ρ : Var → T , is defined as follows:
(γ, ρ) |= π, where π is a basic pattern iff πρ = e,
(γ, ρ) |= ¬ϕ′ iff (γ, ρ) |= ϕ′ does not hold,
(γ, ρ) |= ϕ1 ∧ ϕ2 iff (γ, ρ) |= ϕ1 and (γ, ρ) |= ϕ2,
(γ, ρ) |= (∃X)ϕ′ iff ∃ ρ′ : Var → T s.t. yρ = yρ′ for y ∈ Var \X and (γ, ρ′) |= ϕ′.
JϕK denotes the set {γ ∈ TCfg | (∃)ρ :Var → T .(γ, ρ) |= ϕ}. We write |= ϕ if (γ, ρ) |= for all γ, ρ.

Other first-order logical connectives (universal quantifiers, disjunction, implication, . . .) may
occur in patterns; they are defined from the basic connectives in the standard way. A basic pat-
tern π defines a set of (concrete) configurations, and the condition φ gives additional constraints
these configurations must satisfy. We identify basic patterns π with elementary patterns π∧true.
Sample patterns are 〈〈I1 + I2 y C〉k〈Env〉env〉cfg and 〈〈I1 / I2 y C〉k〈Env〉env〉cfg∧I2 6=Int 0.

Definition 2 (RL formula [27]) A RL formula (or rule) is a pair of patterns ϕ⇒⇒⇒ ϕ′.

Definition 3 (Transition System) Any set S of rules defines a transition system (TCfg ,⇒S)

such that γ ⇒S γ′ iff there exist α , (ϕ ⇒⇒⇒ ϕ′) ∈ S and ρ : Var → T satisfying (γ, ρ) |= ϕ and
(γ′, ρ) |= ϕ′.

Remark 1 Except when explicitly stated otherwise , in this paper we consider rules of the form
ϕ⇒⇒⇒ (∃X)ϕ′ where ϕ and ϕ′ are elementary patterns, and the variables in X , var(ϕ′) \ var(ϕ)
are existentially quantified. Such rules generate the same transition system as the corresponding
unquantified rules ϕ ⇒⇒⇒ ϕ′, thus, when we discuss transition systems generated by RL formulas
we omit to write the existential quantifiers.

2.2 A Simple Imperative Language and its Definition in K

Our running example is imp, a simple imperative language. The syntax of imp is described in
Figure 2 and is mostly self-explainatory since it uses a BNF notation. The statements of the lan-
guage are either assignments, if statements, while loops, nop (i.e., the empty statement), blocks

RR n° 8369

6 Arusoaie, Lucanu & Rusu

Id ::= domain of identifiers Int ::= domain of integer numbers

Bool ::= domain of boolean constants
AExp ::= Int | Id | (AExp) | AExp / AExp [strict] | AExp * AExp [strict]

| AExp + AExp [strict] | AExp % AExp [strict]
BExp ::= Bool | (BExp) | AExp <= AExp [strict]

| not BExp [strict] | BExp and BExp [strict(1)]
Stmt ::= { } | { Stmt } | Stmt ; Stmt | Id := AExp, [strict(2)]

| while BExp do Stmt | if BExp then Stmt else Stmt [strict(1)]
Code ::= AExp | BExp | Stmt | Code y Code

Figure 2: K Syntax of IMP

of statements, or sequential composition. The attribute strict in some production rules means
that the arguments of the annotated expression/statement are evaluated before the expression/s-
tatement itself. If the attribute strict is followed by a list of numbers then it only concerns the
arguments whose positions are in the list.

The operational semantics of imp is given as rewrite rules over configurations. Configurations
typically contain the program to be executed, together with any additional information required
for program execution. The configuration structure depends on the language being defined; for
imp, it consists only of the program code to be executed and an environment mapping variables
to values: Cfg ::= 〈〈Code〉k〈MapId,Int〉env〉cfg.

Configurations are written in K as nested structures of cells: for imp, a top cell cfg, having
a subcell k containing the code and a subcell env containing the environment. The code inside
the k cell is represented as a list of computation tasks C1 y C2 y . . . to be executed in the
given order. Computation tasks are typically statements and expressions. The environment in
the env cell is a multiset of bindings of identifiers to values.

The semantics of imp is shown in Figure 3. The rules say how configurations change when
the first task from the k cell is executed. Dots in a cell mean that the rest of the cell remains
unchanged. In addition to the rules in Fig. 3 the imp semantics includes rules induced by
strict attributes, which ensure that arguments of strict operators are pre-computed. For the
if statement these are:

〈〈if BE then S1 else S2 y C〉k ···〉cfg ⇒⇒⇒ 〈〈BE yif � then S1 else S2 y C〉k ···〉cfg

〈〈B yif � then S1 else S2 y C〉k ···〉cfg ⇒⇒⇒ 〈〈if B then S1 else S2 y C〉k ···〉cfg

Here � is a special variable, destined to receive the value of BE once it is computed, typically,
by applying the other rules in the semantics.

imp as a Language Definition. We show how the definition of imp fits the theoretical
framework given in Section 2.1. Nonterminals from the syntax (Int,Bool,AExp, . . .) are sorts in
Σ. Each production from the syntax defines an operation in Σ; e.g, the production AExp ::=
AExp + AExp defines the operation _+_ : AExp × AExp → AExp. These operations define
the constructors of the result sort. For the sort Cfg , the only constructor is 〈〈_〉k〈_〉env〉cfg :
Code×MapId,Int → Cfg . The expression 〈〈I1 / I2 y C〉k〈Env〉env〉cfg∧I2 6=Int 0 is an elementary
pattern in which =Int is a predicate symbol, I1, I2 are variable of sort Int, C is a variable of
sort Code (the rest of the computation), and Env is a variable of sort MapId,Int (the rest of the
environment). The data algebra D interprets Int as the set of integers, the operations like +Int

(cf. Figure 3) as the corresponding usual operation on integers, Bool as the set of Boolean values
{false, true}, the operation like ∧ as the usual Boolean operations, the sort MapId,Int as the

Inria

Language-Independent Program Verification Using Symbolic Execution 7

〈〈I1 + I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 +Int I2 ···〉k ···〉cfg

〈〈I1 * I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 ∗Int I2 ···〉k ···〉cfg

〈〈I1 / I2 ···〉k ···〉cfg∧I2 6=Int 0⇒⇒⇒ 〈〈I1 /Int I2 ···〉k ···〉cfg

〈〈I1 % I2 ···〉k ···〉cfg∧I2 6=Int 0⇒⇒⇒ 〈〈I1 %Int I2 ···〉k ···〉cfg

〈〈I1 <= I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 ≤Int I2 ···〉k ···〉cfg

〈〈true and B ···〉k ···〉cfg ⇒⇒⇒ 〈〈B ···〉k ···〉cfg

〈〈false and B ···〉k ···〉cfg ⇒⇒⇒ 〈〈false ···〉k ···〉cfg

〈〈not B ···〉k ···〉cfg ⇒⇒⇒ 〈〈¬B ···〉k ···〉cfg

〈〈{ } ···〉k ···〉cfg ⇒⇒⇒ 〈〈 ···〉k ···〉cfg

〈〈S1;S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1 y S2 ···〉k ···〉cfg

〈〈{ S } ···〉k ···〉cfg ⇒⇒⇒ 〈〈S ···〉k ···〉cfg

〈〈if true then S1 else S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1〉k ···〉cfg

〈〈if false then S1 else S2〉k ···〉cfg ⇒⇒⇒ 〈〈S2〉k ···〉cfg

〈〈whileB doS···〉k···〉cfg⇒⇒⇒〈〈ifB then{S whileB doS}else { }···〉k···〉cfg

〈〈X ···〉k〈M〉env ···〉cfg ⇒⇒⇒ 〈〈lookup(X,M) ···〉k〈M〉env ···〉cfg

〈〈X := I ···〉k〈M〉env ···〉cfg ⇒⇒⇒ 〈〈 ···〉k〈update(X,M, I)〉env ···〉cfg

Figure 3: K Semantics of IMP

multiset of maps X 7→ I, where X ranges over identifiers Id and I over the integers. Predicate
symbols such as =Int ,≤Int are interpreted by the corresponding predicates over integers. The
value of an identifier X in an environment M is lookup(X,M), and the environment M , updated
by binding an identifier X to a value I, is update(X,M, I). Here, lookup() and update() are
operations in a signature ΣMap ⊆ ΣData of maps. The other sorts, AExp, BExp, Stmt, and Code,
are interpreted in the algebra T as ground terms in which data subterms are replaced by their
interpretations, e.g., if 1 >Int 0 then { } else { } is intepreted as if Dtrue then { } else { }.

2.3 Reachability Logic’s Semantics and Proof System

We recall the semantics and proof system of Reachability Logic from [27]. These are essential
for the correctness of our symbolic execution-based verification.

We assume a set S of RL formulas. A configuration γ is terminating if there is no infinite path
in the transition system (TCfg ,⇒S) starting in γ, and an RL formula ϕ1 ⇒⇒⇒ ϕ2 is valid, written
S |= ϕ1 ⇒⇒⇒ ϕ2, if for all terminating configurations γ1 and valuations ρ satisfying (γ1, ρ) |= ϕ1,
there is γ2 such that (γ2, ρ) |= ϕ2 and γ1 ⇒∗

S γ2 in (TCfg ,⇒S). We consider here the version
of the reachability logic proof system described in [27], reduced to the case of unconditional
RL formulas (i.e., RL formulas whose application conditions may include first-order logic (FOL)
formulas, but not other RL formulas). The proof system proves sequents of the form S ⊢G ϕ⇒⇒⇒ ϕ′

where G is a set of formulas called circularities. If G = ∅ then one simply writes S ⊢ ϕ⇒⇒⇒ ϕ′. A
set of rules S is weakly well-defined if for each ϕ ⇒⇒⇒ ϕ′ ∈ S and for all valuations ρ : Var → T
there exists a configuration γ such that (γ, ρ) |= ϕ′. The deductive in Figure 4 is is sound : if S
is weakly well-defined then S ⊢ ϕ⇒⇒⇒ ϕ′ implies S |= ϕ⇒⇒⇒ ϕ′. There is also a theoretical relative
completeness result, which says that all valid formulas can be proved in the presence of an oracle
deciding FOL formulas.

The proof system in Figure 4 leaves a lot of freedom to the user. For example, the Conse-
quence rule allows the user to "invent" a new goal and to replace the current goal by the new

RR n° 8369

8 Arusoaie, Lucanu & Rusu

[Axiom]
ϕ⇒⇒⇒ ϕ′ ∈ S φ FOL formula

S ⊢G ϕ∧∧∧ φ⇒⇒⇒ ϕ′ ∧∧∧ φ

[Abstraction]
S ⊢G ϕ⇒⇒⇒ ϕ′ X ∩ var(ϕ′) = ∅

S ⊢G (∃X.ϕ⇒⇒⇒ ϕ′)

[Reflexivity]
·

S ⊢ ϕ⇒⇒⇒ ϕ

[Consequence]
|= ϕi→ϕi+1, i∈{1, 3} S ⊢G ϕ2 ⇒⇒⇒ ϕ3

S ⊢G ϕ1 ⇒⇒⇒ ϕ4

[CaseAnalysis]
S ⊢G ϕ1 ⇒⇒⇒ ϕ S ⊢G ϕ2 ⇒⇒⇒ ϕ

S ⊢G (ϕ1 ∨ ϕ2)⇒⇒⇒ ϕ

[Transitivity]
S ⊢G ϕ⇒⇒⇒ ϕ′′ (S ∪G) ⊢ ϕ′′ ⇒⇒⇒ ϕ′

S ⊢G ϕ⇒⇒⇒ ϕ′

[Circularity]
S ⊢G∪{ϕ⇒⇒⇒ϕ′} ϕ⇒⇒⇒ ϕ′

S ⊢G ϕ⇒⇒⇒ ϕ′

Figure 4: Proof System for RL.

one, provided some implication holds between the new and old goal’s left and right-hand sides.
The user is not guided in choosing such new goals. Most of the other rules allow such choices
(the user must also choose which rule to apply next). There is currently no strategy for auto-
matically constructing proofs. In the following sections we propose a procedure for automatic
proof construction that, in addition to proving RL formulas is also able to disprove them.

3 Symbolic Execution for Reachability-Logic Verification

Symbolic execution consists in executing programs with symbolic values instead of concrete ones.
A symbolic execution of a given sequence of instructions (or path) in a program evaluates the effect
of the path on the program’s configuration, which may typically contain symbolic variables in
addition to constants. The effect of the path is encoded in a constraint on the symbolic variables
called a path condition. We briefly present a novel approach to language-independent symbolic
execution. We then show how symbolic execution can be used as a key ingredient for formal
verification.

3.1 Symbolic Execution

Consider a language definition L = (Φ, T ,S). In order to symbolically execute programs in L,
one uses symbolic configurations consisting of Matching-Logic patterns of the form π∧φ, with
π a term with variables of sort Cfg and φ a Φ-formula denoting the path condition; and to
apply the semantical rules of the language (possibly after some transformations preserving the
semantics) to symbolic configurations instead of concrete ones. This generates the so-called
symbolic transition relation:

Definition 4 (Symbolic transition relation) Two elementary patterns ϕ,ϕ′ are in the sym-
bolic transition relation ⇒s

S , denoted by ϕ ⇒s

S ϕ′, iff ϕ , π∧φ and there exist: a rule α ,

Inria

Language-Independent Program Verification Using Symbolic Execution 9

ϕ1 ⇒⇒⇒ ϕ2 ∈ S with ϕi , πi∧φi for i = 1, 2, and a substitution σ such that π1σ = π, and
ϕ′ = π2σ∧(φ ∧ φ1 ∧ φ2)σ.

Example 1 Consider the rule for division from the semantics of imp, which we write in full
form, which means replacing the ellipses by variables: 〈〈I1 / I2 y C〉k〈E〉env〉cfg ∧∧∧ I2 6= 0 ⇒⇒⇒

〈〈I1/IntI2 y C〉k〈E〉env〉cfg. Let ϕ , 〈〈X / Y y ·〉k〈Y 7→ A+Int 1〉env〉cfg∧A 6=Int −1. The rule
generates a symbolic transition from ϕ′ to 〈〈X / Y y ·〉k〈Y 7→ A+Int 1〉env〉cfg∧A 6=Int −1 ∧ Y 6=Int 0.

Remark 2 The symbolic transition relation ⇒s

S is finitely branching if S is a finite set of rules.

The two following theorems ensure that the symbolic and concrete transition systems mutually
simulate each other; they are the properties one naturally expects from symbolic execution,
ensuring that analyses based ob symbolic execution carry over to concrete program executions.
They will be used for proving the correctness of our program-verification procedure. They rely
on the following:

Assumption 1 For each rule α , ϕ1 ⇒⇒⇒ ϕ2 ∈ S:

• the left-hand side ϕ1 , π1∧φ1 is linear and all its sub terms of data sorts are variables;

• var(ϕ2) \ var(ϕ1) contains at most variables of data sort.

Remark 3 The first item of the above assumption can always be satisfied after some transfor-
mation of the left-hand side pattern π1∧φ1 into another pattern π′

1∧φ
′
1 satisfying Jπ1∧φ1K =

Jπ′
1∧φ

′
1K, and such that π′

1 is linear and all its data subterms are variables. For this, just re-
place all duplicated variables and all non-variable data subterms in π1 by fresh variables, and add
constraints to equate in φ1 these variables to the subterms they replaced.

Example 2 The basic pattern 〈〈if true then S1 else S2 ···〉k ···〉cfg has the non-variable term
true. It is thus replaced by the following pattern: 〈〈if B then S1 else S2 ···〉k ···〉cfg∧B =Bool true.

Theorem 1 (Coverage) For every concrete execution γ0 ⇒S γ1 ⇒S · · · ⇒S γn ⇒S · · · and
pattern ϕ0 over variables of data sorts such that γ0 ∈ Jϕ0K, there is a symbolic execution ϕ0 ⇒s

S

ϕ1 ⇒s

S · · · ⇒s

S ϕn ⇒s

S · · · such that ϕi only has variables of data sorts and γi ∈ JϕiK for
i = 0, 1,

Theorem 2 (Precision) For every symbolic execution ϕ0 ⇒s

S ϕ1 · · · ⇒
s

S ϕn and every γn ∈
JϕnK there is a concrete execution γ0 ⇒S γ1 ⇒S · · · ⇒S γn such that γi ∈ JϕiK for i = 0, . . . n.

3.2 A Procedure for RL-based Program Verification

We introduce in this section our procedure for program verification. We first define, using the
symbolic transition relation in Definition 4, the derivative operation used in our procedure.

Definition 5 (Derivative) The derivative ∆S(ϕ) of an elementary pattern ϕ for a set S of
rules is ∆S(ϕ) ,

∨
ϕ⇒s

S
ϕ′ ϕ′. We say that ϕ is derivable for S if ∆S(ϕ) is a nonempty disjunc-

tion.

Remark 4 Since the symbolic transition relation is finitely branching (Remark 2), for finite rule
sets S the derivative is a finite disjunction.

RR n° 8369

10 Arusoaie, Lucanu & Rusu

The notion of cover, defined below, is essential for the soundness of RL-formula verification
by symbolic execution, in particular, in situations where a proof goal is circularly used as a
hypothesis. Such goals can only be used in symbolic execution only when they cover the pattern
being symbolically executed:

Definition 6 (Cover) Consider an elementary pattern ϕ , π∧φ. A set of rules S ′ such that
for each π1∧φ1 ⇒⇒⇒ π2∧φ2 ∈ S ′ there exists a substitution σπ1

π such that π1σ
π1
π = π, and satisfying

|= φ →
∨

π1∧φ1⇒⇒⇒π2∧φ2∈S′(φ1 ∧ φ2)σ
π1
π , is a cover of ϕ.

Remark 5 σπ1
π in Definition 6 is a syntactical matcher of π1 onto π, hence it is unique if it

exists.

The notion of total semantics is also essential for the soundness of our approach.

Definition 7 S is total if, for all patterns ϕ derivable for S, S is a cover for ϕ.

Remark 6 The semantics of imp is not total because of the rules for division and modulo. The
rule for division: 〈〈I1 / I2 ···〉k ···〉cfg∧∧∧I2 6= 0⇒⇒⇒ 〈〈I1/IntI2 ···〉k ···〉cfg does not meet the condition of
Definition 7 because the semantics of imp does not cover patterns of the form 〈〈I1 / I2 ···〉k ···〉cfg,
which are derivable (by the division rule). This is due to the condition I2 6= 0, which is not
logically valid. The semantics can easily be made total by adding a rule 〈〈I1 / I2 ···〉k ···〉cfg ∧∧∧
I2 = 0 ⇒⇒⇒ 〈〈error ···〉k ···〉cfg that leads divisions by zero into “error” configurations. We assume
hereafter that the imp semantics has been transformed into a total one by adding the above rule.

We now have almost all the ingredients for proving RL formulas by symbolic execution.
Assume a language with a semantics S, and a finite of RL formulas with elementary patterns
in their left-hand sides G = {ϕi ⇒⇒⇒ ϕ′

i | i = 1, . . . , n}. We say that a RL formula ϕ ⇒⇒⇒ ϕ′ is
derivable for S if the left-hand side ϕ is derivable for S. If G is a set of RL formulas then ∆S(G)
is the set {∆S(ϕ)⇒⇒⇒ ϕ′ |ϕ⇒⇒⇒ ϕ′∈G}, and S |= G denotes

∧
ϕ⇒⇒⇒ϕ′∈G S |= ϕ⇒⇒⇒ ϕ′. The following

theorem is essential for the soundness of our verification procedure. It is a circularity principle
also encountered in other coinductive frameworks, e.g., [28].

Theorem 3 (Circularity Principle for RL) If S is total and G is derivable for S, then S ∪
G ⊢ ∆S(G) implies S |= G.

A Procedure for Systematic Proof Construction. There remains to define our procedure
for proof construction and to establish its partial correctness (i.e., soundness and weak complete-
ness). Given a RL formula ϕ ⇒⇒⇒ ϕ′ such that ϕ =

∨
i∈I ϕi and ϕi is an elementary pattern for

all i ∈ I, we denote by split(ϕ ⇒⇒⇒ ϕ′) the set of formulas {ϕi ⇒⇒⇒ ϕ′ | i ∈ I}. Given a set of RL
formulas G, split(G) ,

⋃
ϕ⇒⇒⇒ϕ′ split(ϕ⇒⇒⇒ ϕ′). We say a rule α , πα∧φα ⇒⇒⇒ ϕ′

α is applicable to a
formula ϕ ⇒⇒⇒ ϕ′ if α covers ϕ and ϕ′

α is derivable for S iff ϕ′ is derivable for S. Our procedure
is shown in Figure 5.

Theorem 4 (Soundness) Assume that for a total semantics S and a set of goals G0 derivable
for S, the call prove(S ∪G0, split(∆S(G0))) returns true. Then S |= G0.

Example 3 We show how the RL formula (1) is proved using our procedure, which amounts
to verifying that the gcd program meets its specification. For this, we consider the following
auxiliary formula, where while denotes the program fragment consisting of the while loop:

〈〈while〉k〈a 7→ab 7→bx 7→xy 7→yr 7→r〉env〉cfg∧gcd(a, b) = gcd(x, y) ∧ x ≥ 0 ∧ y ≥ 0⇒⇒⇒

∃x′, y′, r′.〈〈·〉k〈a 7→ab 7→bx 7→x′
y 7→y′

r 7→r′〉env〉cfg∧gcd(a, b) = gcd(x′, y′) ∧ x′ ≥ 0 ∧ y′ ≥ 0 (2)

Inria

Language-Independent Program Verification Using Symbolic Execution 11

procedure prove(S, G)

if G = ∅ then return true

else choose ϕ⇒⇒⇒ ϕ′ ∈ G

if |= ϕ → ϕ′ then return prove(S, G \ {ϕ⇒⇒⇒ ϕ′}) // Implication Reduction

else if there is α ∈ G0 that is applicable to ϕ⇒⇒⇒ ϕ′ then

return prove(S, G \ {ϕ⇒⇒⇒ ϕ′} ∪ split(∆α(ϕ)⇒⇒⇒ ϕ′) // Circular Hypothesis

else if ϕ is derivable for S then

return prove(S, G \ {ϕ⇒⇒⇒ ϕ′} ∪ split(∆S(ϕ)⇒⇒⇒ ϕ′) // Symbolic Step

else return false.

Figure 5: Verification Procedure.

The rule says that the while loop preserves an invariant: the gcd of the values of a, b equals
the gcd of the values of x, y. We apply our procedure to the set of goals G0 consisting of the
formulas (1) and (2).

• the procedure first performs a number of recursive calls in the branch commented as Sym-
bolic Step, until the lhs of the formula (1) in the current set of goals starts with a while

instruction. This amounts to symbolically executing the code before the while instruction.

• then, a recursive call in the Circular Hypothesis branch is made, by which the goal (2) is
used to derive a new goal, which at the next recursive call is discharged by the Implication
Reduction branch.

• at this point, the current set of goals G consists of the singleton goal (2). The procedure
makes a number of recursive calls in the Symbolic Step branch, until the current goal’s lhs
becomes a disjunction, due to the evaluation of the symbolic condition of an if statement
(generated by the semantics of the while instruction in the goal (2)). By splitting the
disjunction the current set of goals G now contains two new goals:

– a first goal which contains an empty k cell, and which is discharged by a recursive call
in the Implication Reduction branch;

– a second goal, to which, after a few more calls in the Symbolic Step branch, a call in
the Circular Hypothesis branch is made, reducing the currently singleton goal to one
discharged by a subsequent call in the Implication Reduction branch.

• at this point, the current set of goals is empty. The deepest recursive call returns true,
which is propagated upwards and eventually the initial call returns true as well.

Remark 7 For the soundness result it is not mandatory for the validity test |= ϕ → ϕ′ to be
exact; this is essential for implementation purposes, since exact validity checkers do not exist
for first-order assertions due to their undecidability. The validity test can be implemented using
SMT solvers, with the the only property that, whenever it answers "valid", the formula given to
it as input is indeed valid. Specifically, the negation of the formula is given to the solver, and if
the solver says the negation is unsatisfiable then the original formula is valid. The same holds
for the "α covers ϕ" condition, which occurs in the procedure (in "α ia applicable to ϕ ⇒⇒⇒ ϕ′)
and which is also a validity test.

RR n° 8369

12 Arusoaie, Lucanu & Rusu

The weak completeness result, shown below, is concerned with situations when our procedure
returns false. We need the following additional notions. A RL formula ϕ ⇒⇒⇒ ϕ′ is terminating
if all configurations γ ∈ JϕK ∪ Jϕ′K are terminating, and a set of formulas is terminating iff
every formula in it is terminating. For example, the set consisting of formulas (1) and (2) is
terminating. A semantics S is confluent if the rewrite rules in S are confluent in the usual sense.
A semantics S is live if each right-hand side of a rule in S is derivable for S (that is, S does not
artificially force programs to terminate).

Theorem 5 (Weak Completeness) Consider a live and confluent set of RL formulas S, a set
of terminating formulas G0 = {πi∧φi ⇒⇒⇒ π′

i∧φ
′
i|i ∈ I}, and a call prove(S ∪ G0, split(∆S(G0)))

that returns false. Then, S 6|= G0.

The set of formulas G in the above formulas must not have non-terminating instances and must
be pairs of (unquantified) elementary patterns. In essence this says that for weak completeness to
hold the program specification must be very precise: by disallowing quantifiers one needs to say
exactly which values of variables are expected in the right-hand side, and by requiring terminating
goals one needs to give strong enough side-conditions in patterns to ensure termination of all
their instances. The liveness and confluence hypothesis on the semantics must also hold. Weak
completeness moreover requires a sound invalidity test, which can also be implemented by SMT
solvers. Together with the soundness result, weak completeness says that when our procedure
terminates it correctly solves the program-verification problem given to it as input. Termination,
of course, cannot be guaranteed, and it requires users to carefully choose the set of goals G0 so
that they can use each other as hypotheses in a circular manner during their respective proofs.

4 A Prototype Tool

In this section we describe our prototype kcheck that implements an iterative version of the
(tail-recursive) procedure described in the previous section. We illustrate the tool on a parallel
program and on a program implementing the Knuth-Morris-Pratt string-searching algorithm [21].

The kcheck tool is part of the K tool suite [2] and it has been developed on top of our
language-independent symbolic execution tool [5]. K is a rewrite-based executable semantics
framework in which programming languages, type systems, and formal analysis tools can be
defined. Beside some toy languages used for teaching, there are a few real-word programming
languages, supporting different paradigms, that have been successfully defined in K, including
Scheme [24], C [14], and Java [7]. An example of a K definition can be found in Section 2.2.
In terms of implementation, our prototype reuses components of the K framework: parsing,
compilation steps, support for symbolic execution, and connections to Maude’s [23] state-space
explorer and to the Z3 SMT solver [13]. We have used kcheck to prove gcd.imp (Figure 1) as
sketched in Example 3. The tool has also been used to prove all the imp programs from [4]. Since
our approach is parametric in language definitions, it can be applied to programs from other K

language definitions as well, as demonstrated in the following examples.

4.1 Verifying a parallel program: FIND

The example is inspired from [4]. Given an integer array a and a constant N ≥ 1, the program
in Figure 6 finds the smallest index k ∈ {1, . . . , N} such that a[k] > 0. If such an index k does
not exists then N +1 is returned. It is a disjoint parallel program, which means that its parallel
components only have reading access to the variable a they share.

Inria

Language-Independent Program Verification Using Symbolic Execution 13

i = 1;

j = 2;

oddtop = N + 1;

eventop = N + 1;

S1 || S2;

if (oddtop > eventop)

then { k = eventop; }

else { k = oddtop; }

S1 = while (i < oddtop) {

if (a[i] > 0) then { oddtop = i; }

else { i = i + 2; }

}

S2 = while (j < eventop) {

if (a[j] > 0) then { eventop = j; }

else { j = j + 2; }

}

Figure 6: FIND program.

In order to verify FIND, we have defined in K the semantics of a parallel language which
provides assignments, if-statements, loops, arrays, dynamic threads, and the || operator, which
executes in parallel two threads corresponding to S1 and S2. In order to give to threads an
access to their parent’s variables we split the program state into an environment 〈〉env and a
store 〈〉st. An environment maps variable names into locations, while a store maps locations
into values. Each thread 〈〉th has its own computations 〈〉k and environment 〈〉env cells, while
〈〉st is shared among the threads. Threads also have an 〈〉id (identifier) cell. The configura-
tion is shown below. The + on the 〈〉th cell says that the cell contains at least one thread:
〈〈〈Code〉k〈MapId,Int〉env〈Int〉id〉th+〈MapInt,Int〉st〉cfg. The || operator yields a non-deterministic
behavior of FIND. However, in [4] the authors prove that the semantics of the language is con-
fluent.For program verification this observation simplifies matters because it allows independent
verification of the parallel code, without considering all the interleavings caused by parallelism.

The verification of FIND (see Appendix B) is performed by checking only three rules: one
for each of the two loops and one for the main program. This is much simpler than the proof
from [4], where more proof obligations must be generated and checked. Moreover, when using
kcheck to verify FIND, we discovered that the precondition pre must be N ≥ 1 rather than true

as stated in the (non-mechanised) proof of [4], and in p2 the value of j must be greater-or-equal
to 2, a constraint that was also forgotten in [4].

4.2 Verifying the Knuth-Morris-Pratt string matching algorithm: kmp

The Knuth-Morris-Pratt algorithm [21] searches for occurrences of a word P , usually called
pattern, within a given text T by making use of the fact that when a mismatch occurs, the
pattern contains sufficient information to determine where the next search should begin. A
detailed description of the algorithm can be found in [11]. Its code (in the Cink language [22],
a fragment of C++ formally defined in K) is shown in Figure 7.

The kmp algorithm optimises the naive search of a pattern into a given string by using some
additional information collected from the pattern. For instance, let us consider T = ABADABCDA

and P = ABAC. It can be easily observed that ABAC does not match ABADABCDA starting with the
first position because there is a mismatch on the fourth position, namely C 6= D.

The kmp algorithm uses a failure function π, which, for each position j in P , returns the
length of the longest proper prefix of the pattern which is also a suffix of it. For our example,
π[3] = 1 and π[j] = 0 for j = 1, 2, 4. In the case of a mismatch between the position i in T and
the position j in P , the algorithm proceeds with the comparison of the positions i and π[j]. For
the above mismatch, the next comparison is between the B in ABAC and the first instance of D
in ABADABCDA, which saves a comparison of the characters preceeding them, since the algorithm
"already knows" that they are equal (here, they are both A).

An implementation of kmp is shown in Figure 7. The comments include the specifications

RR n° 8369

14 Arusoaie, Lucanu & Rusu

/*@pre: m>=1 */

void compute_prefix(char p[],

int m, int pi[])

{

int k, q;

k = 0;

pi[1] = 0;

q = 2;

while(q <= m) {

/*@inv: 0<=k /\ k<q /\ q<=m+1 /\

(forall u:1..k)(p[u]=p[q-k+u]) /\

(forall u:1..q-1)(pi[u]=Pi(u)) /\

Pi(q)<=k+1 */

while (k > 0 && p[k+1] != p[q]) {

/*@inv: 0<=k /\ k<q /\ q<=m /\

(forall u:1..k)(p[u]=p[q-k+u]) /\

(forall u:1..q-1)(pi[u]=Pi(u)) /\

(forall u:1..m)(0<=Pi(u)<u) /\

Pi(q)<=k+1 */

k = pi[k];

}

if (p[k + 1] == p[q]) {

k = k + 1;

}

pi[q] = k;

q++;

}

}

/*@post: (forall u:1..m)(pi[u]=Pi(u)) */

/*@pre: m>=1 /\ n>=1 */

void kmp_matcher(char p[], char t[], int m, int n)

{

int q = 0, i = 1, pi[m];

compute_prefix(p, m, pi);

while (i <= n) {

/*@inv: 1<=m /\ 0<=q<=m /\ 1<=i<=n+1 /\

(forall u:1..q-1)(pi[u]=Pi(u)) /\

(exists v)(forall u:v+1..i-1)(Theta(u)<m /\

allOcc(Out,p,t,v))/\

(forall u:1..q)(p[u]=t[i-1-q+u]) /\

Theta(i)<=q+1 */

while (q > 0 && p[q + 1] != t[i]) {

/*@inv: 1<=m /\ 0<=q /\ q<m /\

(forall u:1..q-1)(pi[u]=Pi(u)) /\

(exists v)(forall u:v+1..i-1)(Theta(u)<m /\

allOcc(Out,p,t,v))/\

(forall u:1..q)(p[u]=t[i-1-q+u]) /\

(forall u:1..i-1)(Theta(u)<m) /\

Theta(i)<=q+1 */

q = pi[q];

}

if (p[q + 1] == t[i]) { q = q + 1; }

if (q == m) {

cout << "shift: " << (i - m) << endl;

q = pi[q];

}

i++;

}}

/*@post: allOcc(Out, p, t, n) */

Figure 7: The kmp algorithm annotated with pre-/post-conditions and invariants: failure func-
tion (left) and the main function (right). Note that we used Pi, Theta, and allOcc to denote
functions π and θ, and predicate allOcc, respectively.

for preconditions, postconditions, and invariants, which will be explained later in this section
(briefly, they are syntactic sugar for RL formulas, which are automatically generated from them).
The program can be run either using the K semantics of Cink or the g++ GNU compiler. The
compute_prefix function computes the failure function π for each component of the pattern and
stores it in a table, called pi. The kmp_matcher searches for all occurrences of the pattern in the
string comparing characters one by one; when a mismatch is found on positions i in the string
and q in the pattern, the algorithm shifts the search to the right as many positions as indicated by
pi[q], and initiates a new search. The algorithm stops when the string is completely traversed.

For the proof of kmp we use the original algorithm as presented in [11]. Another formal proof
of the algorithm is given in [15] by using Why3 [16]. There, the authors collapsed the nested
loops into a single one in order to reduce the number of invariants they have to provide. They
also modified the algorithm to stop when the first occurrence of the pattern in the string was
found. By contrast, we do not modify the algorithm from [11]. We also prove that kmp finds
all the occurrences of the pattern in the string, not only the first one. We let P [1..i] denote the
prefix of P of size i, and P [i] denote its i-th element.

Definition 8 Let P be a pattern of size m ≥ 1 and T a string of characters of size n ≥ 1. We
define the following functions and predicate:

• π(i) is the length of the longest proper prefix of P [1..i] which is also a suffix for P [1..i], for
all 1 ≤ i ≤ m;

• θ(i) is the length of the longest prefix of P that matches T on the final position i, for all

Inria

Language-Independent Program Verification Using Symbolic Execution 15

1 ≤ i ≤ n;

• allOcc(Out, P, T, i) holds iff the list Out contains all the occurrences of P in T [1..i].

The specification of the kmp_matcher function is the following RL formula:

〈

〈kmp_matcher(p, t,m,n);〉k〈·〉out
〈p7→l1 t7→l2〉env〈l1 7→ P l2 7→ T 〉store

. . .

〉

cfg

∧∧∧ n≥1 ∧m≥1

⇒⇒⇒
〈〈·〉k〈Out〉out〈. . .〉env〈. . .〉store . . . 〉cfg ∧∧∧ allOcc(Out, P, T, n)

This formula says that from a configuration where the program variables p and t are bound
to the values P , T , respectively, the output cell is empty, and the kmp_matcher function has to
be executed, one reaches a configuration where the function has been executed and the output
cell contains all the occurrences of P in T . Note that we passed the symbolic values m and n as
actual parameters to the function which are the sizes of P , and T , respectively. An advantage
of RL with respect to Hoare Logic is, in addition to language independence, the fact that RL
formulas may refer to all the language’s configuration, whereas Hoare Logic formulas may only
refer to program variables. A Hoare Logic formula for the kmp_matcher function would require
the addition of assignments to a new variable playing the role of our output cell.

There are some additional issues concerning the way users write the RL formulas. These may
be quite large depending on the size of the K configuration of the language. To handle that, we
have created an interactive tool for generating such formulas. Users can annotate their programs
with preconditions and postconditions and then use our tool to generate RL formulas from them.

For each annotated loop, the tool generates one RL formula, which states that by starting
with a configuration where the entire loop remains to be executed and the loop invariant INV

holds, one reaches a configuration where the loop was executed and INV ∧ ¬COND holds.
From the annotations shown in Figure 7 the tool generates all the RL formulas that we need

to prove kmp. Since kmp has four loops and two pairs of pre/post-conditions, the tool generates
and proves a total number of six RL formulas. In the annotations we use the program variables
(e.g. pi, p, m) and a special variable Out which is meant to refer the content of the 〈〉out cell.
This variable gives us access to the output cell, which is essential in proving that the algorithm
computes all the occurrences of the pattern.

Finally, every particular verification problem requires problem-specific constructions and
properties about them. For verifying KMP we enrich the symbolic definition of Cink with func-
tional symbols for π, θ, and allOcc, we prove some of their properties independently in Coq [1],
and use them in our verification with kcheck.

5 Conclusion, Related Work, and Future Work

We have presented a language-independent procedure and tool, based on symbolic execution,
for automatically proving properties of programs expressed in Reachability Logic. With respect
to the standard proof system of Reachability Logic our procedure can be seen as an automatic
strategy for constructing proofs. The approach is partially correct, and the tool implementing it
is illustrated on an parallel program example as well as on a complex string-matching program.

Related Work. There are several tools that perform program verification using symbolic
execution. Some of them are more oriented towards finding bugs [8], while others are more
oriented towards verification [10, 19, 25]. Several techniques are implemented to improve the

RR n° 8369

16 Arusoaie, Lucanu & Rusu

performance of these tools, such as bounded verification [9] and pruning the execution tree by
eliminating redundant paths [12]. The major advantage of these tools is that they perform very
well, being able to verify substantial pieces of C or assembly code, which are parts of actual safety-
critical systems. On the other hand, these verifiers hardcode the logic they use for reasoning,
and verify only specific programs (e.g. written using subsets of C) for specific properties such
as, e.g., allocated memory is eventually freed.

Other approaches offer support for verification of code contracts over programs. Spec# [6] is
a tool developed at Microsoft that extends C# with constructs for non-null types, preconditions,
postconditions, and object invariants. Spec# comes with a sound programming methodology
that permits specification and reasoning about object invariants even in the presence of call-
backs and multi-threading. A similar approach, which provides functionality for checking the
correctness of a JAVA implementation with respect to a given UML/OCL specification, is the
KeY [3] tool. In particular, KeY allows to prove that after running a method, its postcondition
and the class invariant holds, using Dynamic Logic [17] and symbolic execution. The VeriFast
tool [18] supports verification of single and multi-threaded C and Java programs annotated with
preconditions and postconditions written in Separation Logic [26]. All these tools are designed
to verify programs that belong to a specific programming language.

An approach closely related to ours is implemented in the MatchC tool [27], which has beed
used for verifying several challenging C programs such as the Schorr-Waite garbage collector.
MatchC also uses the RL formalism for program specifications; it is, however, dedicated to a spe-
cific programming language, and uses a particular implementation of the RL proof system whose
correctness has not been formalized (to our best knowledge). By contrast, we focus on genericity,
i.e., on language-independence: given a programming language defined in an algebraic/rewriting
setting, we automatically generate the semantics for performing symbolic execution on that lan-
guage, and build our proof system and its default program-verification strategy on the resulting
symbolic execution engine. The correctness of our approach has also been proved.

Regarding performance, our generic tool is (understandably) not in the same league as tools
targetting specific languages and/or specific program properties. We believe, however, that
the building of fast language-specific verification tools can benefit from the general principles
presented here, in particular, regarding the building of program-verification tools on top of
symbolic execution engines.

Future Work. Reachability Logic, as a language-independent specification formalism, can be
quite verbose and may not be easy to grasp by users who are more familiar to annotations à
la Hoare logic (pre/post-conditions and invariants). Annotations are by definition language-
specific since the statements that are annotated are specific to languages. However, common
statements found in many languages (conditionals, loops, functions/procedures) can share the
same annotations, from which RL formulas can be automatically generated. We are planning to
explore this direction in order to improve the usability of our tool.

Another future research direction is making our verifier generate proof scripts for Coq [1], in
order to obtain certificates that, despite any (inevitable) bugs in our tool, the proofs it generated
are correct. This amounts to, firstly, encoding our procedure in Coq and proving its soundness.
Secondly, kcheck must be instrumented to return an execution trace of our procedure. From this
information a Coq script is built that, if sucessfully run by Coq, generates a proof term that
constitutes a corectness certificate for the original kcheck execution.

References

[1] The Coq proof assistant reference manual, http://coq.inria.fr/refman/.

Inria

http://coq.inria.fr/refman/

Language-Independent Program Verification Using Symbolic Execution 17

[2] The K tool. https://github.com/kframework/k.

[3] W. Ahrendt. The KeY tool. Software and Systems Modeling, 4:32–54, 2005.

[4] K. R. Apt, F. de Boer, and E.-R. Olderog. Verification of Sequential and Concurrent
Programs. Springer Verlag, 3rd edition, 2009.

[5] A. Arusoaie, D. Lucanu, and V. Rusu. A generic framework for symbolic execution. In 6th
International Conference on Software Language Engineering, volume 8225 of LNCS, pages
281–301. Springer Verlag, 2013. Also available as a technical report http://hal.inria.

fr/hal-00853588.

[6] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: an overview.
In Proc. 2004 international conference on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, CASSIS’04, pages 49–69, 2005.

[7] D. Bogdănaş. Java semantics in K. https://github.com/kframework/java-semantics.

[8] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proc. 8th USENIX conference on Operating
systems design and implementation, OSDI’08, pages 209–224, 2008.

[9] E. Clarke and D. Kroening. Hardware verification using ANSI-C programs as a reference. In
Proceedings of the 2003 Asia and South Pacific Design Automation Conference, ASP-DAC
’03, pages 308–311, New York, NY, USA, 2003. ACM.

[10] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzé. Using symbolic execution for veri-
fying safety-critical systems. SIGSOFT Softw. Eng.Notes, 26(5):142–151, 2001.

[11] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[12] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems rules using rule-directed symbolic
execution. SIGPLAN Not., 48(4):329–342, Mar. 2013.

[13] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS’08, volume
4963 of LNCS, pages 337–340. Springer, 2008.

[14] C. Ellison and G. Roşu. An executable formal semantics of C with applications. In Pro-
ceedings of the 39th Symposium on Principles of Programming Languages (POPL’12), pages
533–544. ACM, 2012.

[15] J. C. Filliâtre. Proof of the KMP string searching algorithm. http://toccata.lri.fr/

gallery/kmp.en.html.

[16] J.-C. Filliâtre and A. Paskevich. Why3 — where programs meet provers. In M. Felleisen
and P. Gardner, editors, Proceedings of the 22nd European Symposium on Programming,
volume 7792 of Lecture Notes in Computer Science, pages 125–128. Springer, Mar. 2013.

[17] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In Handbook of Philosophical Logic,
pages 497–604. MIT Press, 1984.

[18] B. Jacobs, J. Smans, and F. Piessens. A quick tour of the verifast program verifier. In
Proceedings of the 8th Asian conference on Programming languages and systems, APLAS’10,
pages 304–311, Berlin, Heidelberg, 2010. Springer-Verlag.

RR n° 8369

https://github.com/kframework/k
http://hal.inria.fr/hal-00853588
http://hal.inria.fr/hal-00853588
https://github.com/kframework/java-semantics
http://toccata.lri.fr/gallery/kmp.en.html
http://toccata.lri.fr/gallery/kmp.en.html

18 Arusoaie, Lucanu & Rusu

[19] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. Tracer: a symbolic execution tool
for verification. In Proc. 24th international conference on Computer Aided Verification,
CAV’12, pages 758–766. Springer-Verlag, 2012.

[20] D. Knuth, J. Morris, Jr., and V. Pratt. Fast pattern matching in strings. SIAM Journal on
Computing, 6(2):323–350, 1977.

[21] D. E. Knuth, J. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM Journal
of Computing, 6(2):323–350, 1977.

[22] D. Lucanu and T. F. Serbanuta. CinK - an exercise on how to think in K. Technical
Report TR 12-03, Version 2, Alexandru Ioan Cuza University, Faculty of Computer Science,
December 2013.

[23] J. Meseguer. Rewriting logic and Maude: Concepts and applications. In L. Bachmair,
editor, RTA, volume 1833 of LNCS, pages 1–26. Springer, 2000.

[24] G. R. Patrick Meredith, Mark Hills. An Executable Rewriting Logic Semantics of K-Scheme.
In D. Dube, editor, Proceedings of the 2007 Workshop on Scheme and Functional Pro-
gramming (SCHEME’07), Technical Report DIUL-RT-0701, pages 91–103. Laval University,
2007.

[25] D. A. Ramos and D. R. Engler. Practical, low-effort equivalence verification of real code. In
Proceedings of the 23rd international conference on Computer aided verification, CAV’11,
pages 669–685, Berlin, Heidelberg, 2011. Springer-Verlag.

[26] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS ’02, pages 55–74,
Washington, DC, USA, 2002. IEEE Computer Society.

[27] G. Roşu, A. Ştefănescu, Ş. Ciobâcă, and B. M. Moore. One-path reachability logic. In
Proceedings of the 28th Symposium on Logic in Computer Science (LICS’13), pages 358–
367. IEEE, June 2013.

[28] G. Roşu and D. Lucanu. Circular coinduction – a proof theoretical foundation. In CALCO
2009, volume 5728 of LNCS, pages 127–144. Springer, 2009.

[29] G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal of Logic
and Algebraic Programming, 79(6):397–434, 2010.

Inria

Language-Independent Program Verification Using Symbolic Execution 19

A Proofs

We say that two terms t1, t2 are concretely unifiable of there exists a valuation ρ : Var → T such
that t1ρ = t2ρ.

Lemma 1 If t1 and t2 are terms such that t1 is linear, has a non-data sort, and all its data
subterms are variables; all the elements of var(t2) have data sorts; and t1, t2 are concretely
unifiable, then there exists a substitution σt1

t2
: var(t1) 7→ TΣ(var(t2)) such that t1σ

t1
t2

= t2 and

such that for all concrete unifiers ρ of t1, t2, there exists a valuation η such that ρ = σt1
t2
η.

Proof By induction on the structure of t1. In the base case, t1 ∈ Var and σt1
t2

= (t1 7→ t2). Now,

σt1
t2

is obviously such that t1σ
t1
t2

= t2. To show the second conclusion of the lemma, consider

any concrete unifier of t1, t2, say, ρ. Then, (a) t1σ
t1
t2
ρ = t2ρ because σt1

t2
maps t1 to t2, and (b)

t2ρ = t1ρ because ρ is a concrete unifier. Thus, t1σ
t1
t2
ρ = t1ρ. Moreover, for all x ∈ Var \ {t1},

xσt1
t2
ρ = xρ since σt1

t2
only affects t1. Thus, for all y ∈ Var , yσt1

t2
ρ = yρ, which proves the second

conclusion of the lemma (by taking η = ρ).
For the inductive step, let t1 = f(t11, . . . , t

n
1) with f ∈ Σ \ ΣData , n ≥ 0, and t11, . . . , t

n
1 ∈

TΣ(Var) for i = 1, . . . , n. There are two subcases regarding t2:

• t2 is a variable. This is impossible, since t2 should be of a data sort because it is a variable,
and of a non-data sort because of the lemma’s hypotheses.

• t2 = g(t12, . . . , t
m
2) with g ∈ Σ, m ≥ 0, and t12, . . . , t

m
2 ∈ TΣ(Var). Let ρ be a concrete

unifier of t1, t2, thus, t1ρ = f(t11, . . . , t
n
1)ρ = Tf (t

1
1ρ, . . . , t

n
1ρ) = f(t11ρ, . . . , t

n
1ρ) =T t2ρ =

Tg(t
1
2ρ, . . . , t

m
2 ρ), where we emphasize by subscripting the equality symbol with T that the

equality is that of the model T . Since T interprets non-data terms as ground terms, we
have f = g, m = n, and ti1ρ = ti2ρ for i = 1, . . . , n. The respective subterms ti1 and ti2 of
t1 and t2 satisfy the hypotheses of our lemma, except maybe for the fact that ti1 may have
have a data sort. There are again two cases:

– if for some i ∈ {1, . . . , n}, ti1 has a data sort then by the hypotheses of our lemma ti1

is a variable, and we let σ
ti1
ti2

, (ti1 7→ ti2), which satisfy the conclusions of the lemma

(proved as in the base case);

– otherwise, ti1 and ti2 satisfy all the the hypotheses of our lemma. We can then use the

induction hypothesis and obtain substitutions σ
ti1
ti2

that satisfy our lemma’s conclusions.

Let σt1
t2

,
⊎n

i=1 σ
ti1
ti2

. We obtain t1σ
t1
t2

= t2 from ti1σ
ti1
ti2

= ti2 for all i = 1, . . . , n. We only have

to prove the second conclusion of the lemma. For this, we consider any concrete unifier
ρ of t1 and t2, thus, ti1ρ = ti2ρ for i = 1, . . . , n. From the fact (obtained above) that all

the σ
ti1
ti2

satisfy the second conclusion of the lemma, we obtain the existence of valuations

ηi such that σ
ti1
ti2
ηi = ρ|var(ti1), for i = 1, . . . , n. Then, η ,

⊎n
i=1 ηi, has the property that

σt1
t2
η = ρ, which proves the second conclusion of the lemma and concludes the proof.

Remark 8 The substitution σt1
t2

whose existence is stated by Lemma 1 is unique since it is a
syntactical matcher of t1 on t2.

Lemma 2 If γ ⇒S γ′ and γ ∈ JϕK then there exists ϕ′ such that γ′ ∈ Jϕ′K and ϕ ⇒s

S ϕ′.

RR n° 8369

20 Arusoaie, Lucanu & Rusu

Proof Let ϕ , π∧φ. From γ ⇒S γ′ we obtain the rule α , π1∧φ1 ⇒⇒⇒ π2∧φ2 and the valuation
ρ : Var → T such that γ = π1ρ, ρ |= φ1, ρ |= φ2, and γ′ = π2ρ. Without restriction of
generality we can assume var(α) ∩ var(ϕ) = ∅, which can always be obtained by renaming
variables. From γ ∈ JϕK we obtain the valuation ρ′ : Var → T such that γ = πρ′ and ρ′ |= φ.
Since var(α) ∩ var(ϕ) = ∅ we can take ρ′ = ρ. Thus, π1 and π are concretely unifiable (by their
concrete unifier ρ). Using Lemma 1 we obtain the substitution σπ1

π : var(π1) → TΣ(var(π)). Let
then η be the valuation such that σπ1

π η = ρ. We extend σπ1
π to Var by letting it be the identity

on Var \ var(π1), and we can always choose η such that η|Var\var(π1) = ρ. With these extensions
we have x(σπ1

π η) = xρ for all x ∈ Var .
Let ϕ′ , π2σ

π1
π ∧(φ ∧ φ1 ∧ φ2)σ

π1
π : we have the transition ϕ ⇒s

S ϕ′ by Definition 4. There
remains to prove γ′ ∈ Jϕ′K.

• on the one hand, (π2σ
π1
π)η = π2(σ

π1
π η) = π2ρ = γ′; thus, (γ′, η) |= π2σ

π1
π ;

• on the other hand,

η |= ((φ ∧ φ1 ∧ φ2)σ
π1
π) iff

(σπ1
π η) |= (φ ∧ φ1 ∧ φ2) iff

ρ |= (φ ∧ φ1 ∧ φ2) iff

ρ |= φ and ρ |= φ1 and ρ |= φ2

Since the last relations hold by the hypotheses, it follows η |= (φ ∧ φ1 ∧ φ2)σ
π1
π . The

following property was used above: if ρ : Var → T is a valuation and σ : Var → TΣ(Var)
a substitution, then ρ |= ϕσ iff σρ |= ϕ.

The two above items imply (γ′, η) |= π2σ
π1
π ∧(φ ∧ φ1 ∧ φ2)σ

π1
π , i.e., (γ′, η) |= ϕ′, which concludes

the proof. The following theorem is a corollary to Lemma 2 and Assumption 1:

Theorem 1. For every concrete execution γ0 ⇒S γ1 ⇒S · · · ⇒S γn ⇒S · · · and pattern ϕ0

over variables of data sorts such that γ0 ∈ Jϕ0K, there is a symbolic execution ϕ0 ⇒s

S ϕ1 ⇒s

S

· · · ⇒s

S ϕn ⇒s

S · · · such that ϕi only has variables of data sorts and γi ∈ JϕiK for i = 0, 1,

Lemma 3 If γ′ ∈ Jϕ′K and ϕ ⇒s

S ϕ′ then there exists γ ∈ TCfg such that γ ⇒S γ′ and γ ∈ JϕK.

Proof From ϕ ⇒s

S ϕ′ with ϕ , π∧φ and α , π1∧φ1 ⇒⇒⇒ π2∧φ2 we get ϕ′ = π2σ
π1
π ∧(φ ∧ φ1 ∧ φ2)σ

for some matcher σ : var(π1) → TΣ(var(π)) extended to the identify on Var \ var(π1). We
assume without restriction of generality var(α) ∩ var(ϕ) = ∅.

From γ′ ∈ Jϕ′K we get η : Var → T such that γ′ = (π2σ)η and η |= (φ ∧ φ1 ∧ φ2)σ. Let
ρ : Var → T be defined by xρ = x(ση) for all x ∈ var(π1), and xρ = xη for all x ∈ Var \var(π1),
and let γ , π1ρ. From γ′ = (π2σ)η and the definition of ρ we obtain γ′ = π2ρ. From η |=
(φ ∧ φ1 ∧ φ2)σ we get ση |= φ1 and ση |= φ2, i.e., ρ |= φ1 and ρ |= φ2, which together with
γ , π1ρ and γ′ = π2ρ gives γ ⇒S γ′. There remains to prove γ ∈ JϕK.

• From γ = π1ρ using the definition of ρ we get γ = π1ρ = π1(ση) = (π1σ)η = πη = πρ;

• From η |= (φ ∧ φ1 ∧ φ2)σ and (η |= (φσ) iff ση |= φ) we get ρ |= φ.

Since ϕ , π∧φ, the last two items imply (γ, ρ) |= ϕ, i.e., γ ∈ JϕK, which completes the proof.
We call a symbolic execution feasible if all its patterns are satisfiable (a pattern ϕ is satisfiable

if there is a configuration γ such that γ ∈ JϕK). The following theorem is a corollary to Lemma 3.

Theorem 2. For every feasible symbolic execution ϕ0 ⇒s

S ϕ1 · · · ⇒
s

S ϕn and γn ∈ JϕK there is
a concrete execution γ0 ⇒S γ1 ⇒S · · · ⇒S γn ⇒S · · · such that γi ∈ JϕiK for i = 0, . . . n.

Inria

Language-Independent Program Verification Using Symbolic Execution 21

Before we prove the next lemma we need to recapp results about the original RL proof system,
used in the sequel and proved in [27]:

• Substitution: S ⊢G ϕθ ⇒⇒⇒ ϕ′θ, if θ :Var → TΣ(Var) and S ⊢Gϕ⇒⇒⇒ϕ′;

• Logical Framing : S ⊢G (ϕ∧φ)⇒⇒⇒(ϕ′∧φ), if φ is a patternless FOL formula and S ⊢G ϕ⇒⇒⇒ ϕ′;

• Set Circularity : if S ⊢G ϕ ⇒⇒⇒ ϕ′ for each ϕ ⇒⇒⇒ ϕ′ ∈ G and G is finite then S ⊢ ϕ ⇒⇒⇒ ϕ′ for
each ϕ⇒⇒⇒ ϕ′ ∈ G;

• Implication: if |= ϕ → ϕ′ then S ⊢ ϕ⇒⇒⇒ ϕ′;

• Monotony : if S ⊆ S ′ then S ⊢ ϕ⇒⇒⇒ ϕ′ implies S ′ ⊢ ϕ⇒⇒⇒ ϕ′.

Lemma 4 If S ′ ⊆ S is a cover for ϕ, and G is a (possibly empty) set of RL formulas, then
S ⊢G ϕ⇒⇒⇒ ∆S′(ϕ).

Proof Let ϕ , π ∧ φ. By Definition 5, ∆S′(ϕ) ,
∨

ϕ⇒s

S′ϕ
′ ϕ′. Since S ′ is a cover for ϕ,

∆S′(ϕ) is a nonempty disjunction. Using Definition 4 we obtain that each ϕ′ is of the form
ϕ′ = π2σ

π1
π ∧φ ∧ φ1 ∧ φ2)σ

π1
π for some α , (π1∧φ1 ⇒⇒⇒ π2∧φ2) ∈ S, where σπ1

π is the substitution
given by Lemma 1. By a variable renaming we can always assume that var(φ) ∩ var(π1) = ∅,
which means that the effect of σπ1

π on φ is the identity, i.e., φσπ1
π = φ.

Using the above characterisation for the patterns ϕ′, we obtain

∆S′(ϕ) =
∨

π1∧φ1⇒⇒⇒π2∧φ2∈S′

π2σ
π1
π ∧(φ ∧ φ1 ∧ φ2)σ

π1
π (3)

On the other hand, by using the derived rules of the RL proof system: Substitution with the
rule π1∧φ1 ⇒⇒⇒ π2∧φ2 and substitution σπ1

π , and LogicalFraming with the patternless formula
φσπ1

π ∧ φ2σ
π1
π , we get S ⊢G (π1∧φ1)σ

π1
π ∧ φσπ1

π ∧ φ2σ
π1
π ⇒⇒⇒ (π2∧φ2)σ

π1
π ∧ φσπ1

π ∧ φ2σ
π1
π . Using

the Consequence rule of RL, and remembering that FOL patternless formulas distribute over
patterns:

S ⊢G πσπ1
π ∧(φσπ1

π ∧ φ1σ
π1
π ∧ φ2σ

π1
π)⇒⇒⇒ π2σ

π1
π ∧(φσπ1

π ∧ φ1σ
π1
π ∧ φ2σ

π1
π)

Since the effect of σπ1
π on both π and φ is the identity, we further obtain:

S ⊢G π∧(φ ∧ φ1σ
π1
π ∧ φ2σ

π1
π)⇒⇒⇒ π2σ

π1
π ∧(φσπ1

π ∧ φ1σ
π1
π ∧ φ2σ

π1
π)

Next, using CaseAnalysis and Consequence several times we obtain:

S ⊢G π ∧∧∧
∨

(π1∧φ1⇒⇒⇒π2∧φ2)∈S′

(φ ∧ φ1σ
π1
π ∧ φ2σ

π1
π)⇒⇒⇒

∨

(π1∧φ1⇒⇒⇒π2∧φ2)∈S′

π2σ
π1
π ∧(φ ∧ φ1 ∧ φ2)σ

π1
π (4)

We know from (3) that the right-hand side of (4) is ∆S′(ϕ). To prove S ⊢G ϕ ⇒ ∆S′(ϕ) there only
remains to prove (♦): the condition in the left-hand side:

∨
(π1∧φ1⇒⇒⇒π2∧φ2)∈S′(φ∧φ1σ

π1
π ∧φ2σ

π1
π)

is logically equivalent to φ in FOL. Since S ′ is a cover for ϕ, we obtain, using Definition 6, the
validity of φ →

∨
(π1∧φ1⇒⇒⇒π2∧φ2)∈S′(φ1σ

π1
π ∧ φ2σ

π1
π), which proves (♦) and the lemma.

The next lemma is "almost" the Circularity Principle for RL (Theorem 3) except that it
contains an additional hypothesis (weak well-definedness of the semantics). We will later see
that this hypothesis is redundant.

Lemma 5 If S is total and weakly well-defined, and G is derivable for S, then S ∪G ⊢ ∆S(G)
implies S |= G.

RR n° 8369

22 Arusoaie, Lucanu & Rusu

Proof For all i = 1, . . . , n we apply the Transitivity rule of the original RL proof system, with
ϕ′′
i , ∆S(ϕi), and obtain:

S ⊢G ϕi ⇒ ∆S(ϕi) (S ∪G) ⊢ ∆S(ϕi) ⇒ ϕ′
i

S ⊢G ϕi ⇒ ϕ′
i

The first hypothesis: S ⊢G ϕi ⇒ ∆S(ϕi) holds thanks to Lemma 4 and the totality of S. The
second one, (S ∪G) ⊢ ∆S(ϕi) ⇒ ϕ′

i holds by hypothesis. Hence, we obtain S ⊢G ϕi ⇒ ϕ′
i for all

i = 1, . . . , n, i.e., S ⊢G G. Then we obtain S ⊢ G by applying the derived rule Set Circularity
of RL. Finally, the soundness of ⊢ (with the hypothesis that S is weakly well defined) implies
S |= G, which concludes the proof.

We now show how the weak well-definedness hypothesis can be eliminated. We first note as
an example that the semantics of imp is not weakly well-defined, because of the rules for division
and modulo that do not have instances for valuations mapping I2 to 0.

However, due to the introduction of the rule 〈〈I1 % I2 ···〉k ···〉cfg∧I2 =Int 0 ⇒⇒⇒ 〈error〉cfg in
order to make the semantics total (cf. Remark 6), the semantics of division can now equivalently
rewritten using just one (reachability-logic) disjunctive rule:

〈〈I1 % I2 ···〉k ···〉cfg∧I2 6=Int 0⇒⇒⇒ (〈〈I1%IntI2 ···〉k ···〉cfg∧I2 =Int 0) ∨ (〈error〉cfg)

By using this rule instead of the two original ones, and by applying the same transformation
for the rules defining division, the semantics becomes both total and weakly well-defined. This
transformation is formalised as follows.

Definition 9 (S∆) Given a set of semantical rules S, the set of semantical rules S∆ is defined
by S∆ , {π ⇒⇒⇒ ∆S(π) | (π ∧ φ⇒⇒⇒ ϕ′) ∈ S}.

The following lemma establishes that S∆ has both properties (totality and weak well definedness)
required for the soundness of our approach. For this, we need extend the notion of derivative for
rules of the form S∆ (containing disjunctions in their right-hand side) by letting ∆(S∆)(ϕ) ,

∆(ϕ). The derivability of a pattern for S∆ is also, by definition, the derivability for S. The
notion of cover is extended for such rules, of the form π1∧φ1 ⇒⇒⇒

∨
j∈J πj

2∧φ
j
2 by letting ϕ , π∧φ

be covered by a set S ′ of such rules if |= ϕ →
∨

π1∧φ1⇒⇒⇒
∨

j∈J
π
j
2∧φ

j
2∈S′

∨
j∈J(φ1 ∧ φ2

j)σ
π1

π .

Lemma 6 If S is total then S∆ is total and weakly well-defined.

Proof

• Totality of S∆: If S is total then, by definition, S covers all patterns ϕ derivable for S.

We need to prove that for all ϕ that is derivable for S∆, S∆ is a cover for ϕ. Assume
such a ϕ , π∧φ derivable for S∆. We have defined derivability for S∆ as derivability for
S, hence ϕ is derivable for S. The totality of S and the definition of cover then ensures
|= φ →

∨
π1∧φ1⇒⇒⇒π2∧φ2∈S(φ1 ∧ φ2)σ

π1
π .

Now, the rules in S∆ are of the form π ⇒⇒⇒ ∆S(π), for some π occurring in the pattern LHS
of a rule in S. We have ∆S(π) =

∨
π1∧φ1⇒⇒⇒π2∧φ2∈S π2σ

π1
π ∧ (φ1 ∧ φ2)σ

π1
π (implicitly, the

disjunction performed over those rule in S for which σπ1

π exists). Hence, by the notion of
cover applied to S∆, in order to show that S∆ is total, we need to show

|= φ →
∨

(π⇒⇒⇒
∨

(π1∧φ1⇒⇒⇒π2∧φ2)∈S
π2σ

π1
π ∧(φ1∧φ2)σ

π1
π)∈S∆

∨

π1∧φ1⇒⇒⇒π2∧φ2∈S

(φ1 ∧ φ2)σ
π1
π (5)

Inria

Language-Independent Program Verification Using Symbolic Execution 23

in which the second disjunction
∨

π1∧φ1⇒⇒⇒π2∧φ2∈S(φ1 ∧ φ2)σ
π1
π is merely repeated by the

first disjunction
∨

(...)∈S∆ as many times as rules in S∆. Hence, (5) simplifies to |= φ →∨
π1∧φ1⇒⇒⇒π2∧φ2∈S(φ1 ∧ φ2)σ

π1
π , which he have obtained above.

• Weak well-definedness of S∆: we need to show that for π ⇒⇒⇒ ∆S(π) ∈ S∆ and each val-
uation ρ, there exists a configuration γ such that (γ, ρ) |= ∆S(π). We have obtained
above that ∆S(π) =

∨
π1∧φ1⇒⇒⇒π2∧φ2∈S π2σ

π1
π ∧ (φ1 ∧ φ2)σ

π1
π (where implicitly the dis-

junction is performed over those rule in S for which σπ1

π exists). Now, S is total, and
π(= π∧true) is derivable for S. This implies |= true →

∨
π1∧φ1⇒⇒⇒π2∧φ2∈S(φ1 ∧ φ2)σ

π1
π ,

i.e., |=
∨

π1∧φ1⇒⇒⇒π2∧φ2∈S(φ1 ∧ φ2)σ
π1
π . This means that for any ρ there exists in the above

disjunction at least one disjunct, say, (φi
1 ∧ φi

2)σ
π1
π , such that ρ |= (φi

1 ∧ φi
2)σ

π1
π . By taking

the corresponding γ , π2σ
π1
π ρ we obtain (γ, ρ) |= π2σ

π1
π ∧ (φi

1 ∧ φi
2)σ

π1
π , i.e., (γ, ρ) models

one of the disjuncts of ∆S(π). This implies (γ, ρ) |= ∆S(π), which completes the proof.

The next lemma says that the transition systems (TCfg ,⇒S∆) and (TCfg ,⇒S) are the same:

Lemma 7 γ ⇒S∆ γ′ if and only γ ⇒S γ′.

Proof (⇒) γ ⇒S∆ γ′ means that there exists a rule in S∆, say, π ⇒⇒⇒ ∆S(π) obtained from
some rule π∧φ ⇒⇒⇒ ϕ′ ∈ S such that (γ, ρ) |= π and (γ′, ρ) |= ∆S(π). We have ∆S(π) =∨

π1∧φ1⇒⇒⇒π2∧φ2∈S π2σ
π1
π ∧ (φ1 ∧φ2)σ

π1
π (implicitly, the disjunction is performed over those rule in

S for which σπ1

π exists). Thus, (γ′, ρ) |= ∆S(π) implies that there exists π1∧φ1 ⇒⇒⇒ π2∧φ2 ∈ S

such that σπ1

π exists and (γ′, ρ) |= π2σ
π1
π ∧(φ1 ∧ φ2)σ

π1
π holds. Let η , σπ1

π ρ, then we obtain

(γ′, η) |= π2∧φ2 and η |= ϕ1. On the other hand, (γ, ρ) |= π = π1σ
π1

π because σπ1

π a matcher,
and we obtain (γ, η) |= π1 as well. Hence, we have the transition γ ⇒S γ′ generated by the rule
π1∧φ1 ⇒⇒⇒ π2∧φ2 ∈ S and the valuation η, which proves the (⇒) implication.

(⇐) γ ⇒S γ′ means there exists π1∧φ1 ⇒⇒⇒ π2∧φ2 ∈ S and a valuation ρ such that (γ, ρ) |=
π1∧φ1 and (γ′, ρ) |= π2∧φ2. Consider the rule π1 ⇒⇒⇒ ∆S(π1) ∈ S∆ (obtained from π1∧φ1 ⇒⇒⇒
π2∧φ2 ∈ S). Obviously, σπ1

π1
exists (it is the identity) and we have (γ′, ρ) |= π2σ

π1
π1
∧(φ1 ∧ φ2)σ

π1
π1

,
which is a disjunct of ∆S(π1), implying that (γ′, ρ) |= ∆S(π1). From the latter and (γ, ρ) |=
π1∧φ1 we obtain the transition γ ⇒S∆ γ′ generated by π1 ⇒⇒⇒ ∆S(π1) ∈ S∆ and the valuation ρ,
which proves the (⇐) implication and the lemma.

Theorem 3 (Circularity Principle for RL). If S is total and G is derivable for S, then
S ∪G ⊢ ∆S(G) implies S |= G.

Proof By Lemma 6 and the totality of S is both total and weakly well-defined. By definition
derivability w.r.t. S∆ and S are the same, hence, we can apply Lemma 5 with S , S∆ and obtain
that S∪G ⊢ ∆S∆(G) implies S∆ |= G. However, we have defined ∆S∆(G) to be ∆S(G), hence, if
we prove that S∆ |= G iff S |= G then the theorem is proved. For this, use use Lemma 7 to show
that (i) a configuration γ is terminating in the transition system (TCfg ,⇒S∆) iff γ is terminating
in (TCfg ,⇒S), and (ii) ((γ, ρ) |= ϕ implies that there exists γ ⇒∗

S γ′ such that (γ′, ρ) |= ϕ′ if
and only if the same implication holds in (TCfg ,⇒S∆), i.e., (γ, ρ) |= ϕ implies that there exists
γ ⇒∗

S∆ γ′ such that (γ′, ρ) |= ϕ′. (i) and (ii) mean, by definition, that S∆ |= G iff S |= G, which
concludes the proof.

We now proceed towards proving the soundness result. As an intermediary step, we introduce
a proof system and prove its soundness. Then we show that our procedure is an implementation
of the proof system.

Lemma 8 Consider the proof system ⊢ in Figure 8. If S is total, then S ∪G ϕ⇒⇒⇒ ϕ′ implies
S ∪G ⊢ ϕ⇒⇒⇒ ϕ′.

RR n° 8369

24 Arusoaie, Lucanu & Rusu

[SymbolicStep]
ϕ derivable for S

S ∪G ϕ⇒⇒⇒ ∆S(ϕ)

[CircurlarHypothesis]
α ∈ G α covers ϕ

S ∪G ϕ⇒⇒⇒ ∆{α}(ϕ)

[ImplicationReduction]
|= ϕ → ϕ′

S ∪G ϕ⇒⇒⇒ ϕ′

[Split]
S ∪G split(ϕ⇒⇒⇒ ϕ′)

S ∪G ϕ⇒⇒⇒ ϕ′

[Transitivity]
S ∪G ϕ⇒⇒⇒ ϕ′′ S ∪G ϕ′′ ⇒⇒⇒ ϕ′

S ∪G ϕ⇒⇒⇒ ϕ′

Figure 8: Proof System .

Proof We show that every rule in the proof system in Figure 8 is a derived rule w.r.t. the original
proof system of RL. For the SymbolicStep and CircularHypothesis rules this is a direct conse-
quence of Lemma 4. The ImplicationReduction rule is obtained by combining the Consequence
and Reflexivity rules of the original proof system. Split consists in (possibly, several) applications
of theCaseAnalysis of the original proof system and Transitivity is a particular case of the homony-
mous rule in the original proof system (without circular hypotheses - our verification method
uses the Circular Principle instead).

We are now ready to prove the soundness and weak completeness results. They concern our
verification procedure, which we reproduce below.

procedure prove(S, G)

if G = ∅ then return true

else choose ϕ⇒⇒⇒ ϕ′ ∈ G

if |= ϕ → ϕ′ then return prove(S, G \ {ϕ⇒⇒⇒ ϕ′}) // Implication Reduction

else if there is α ∈ G0 such that α is applicable to ϕ⇒⇒⇒ ϕ′ then

return prove(S, G \ {ϕ⇒⇒⇒ ϕ′} ∪ split(∆α(ϕ)⇒⇒⇒ ϕ′) // Circular Hypothesis

else if ϕ is derivable for S then

return prove(S, G \ {ϕ⇒⇒⇒ ϕ′} ∪ split(∆S(ϕ)⇒⇒⇒ ϕ′) // Symbolic Step

else return false.

Theorem 4 (soundness). Assume that for a total semantics S and a set of goals G0 derivable
for S, the call prove(S ∪G0, split(∆S(G0))) returns true. Then S |= G0.

Proof Let S ′ , S ∪G0. We consider more generally any call prove(S ′, G′) that returns true, and
define a relation less than on recursive calls to prove() generated by the call prove(S ′, G′), by
the fact that any call is less than the call that directly generated it. Since the call prove(S ′, G′)
terminates the relation less than is well founded (i.e., there is no infinite chain of recursive calls in
which each call is less than its predecessor). We prove by well-founded induction on this relation
that (♦) if prove(S ′, G′) = true then S ′ G′. Now, prove(S ′, G′) = true may only result from
the following situations:

• either G′ = ∅, in which case S ′ G′ holds trivially;

Inria

Language-Independent Program Verification Using Symbolic Execution 25

• or the recursive call prove(S ′, G′ \ {ϕ ⇒⇒⇒ ϕ′}) returns true: then, we apply the induction
hypothesis and obtain S ′ G′ \ {ϕ ⇒⇒⇒ ϕ′}, and using the Implication rule we obtain from
|= ϕ → ϕ′ that S ′ ϕ⇒⇒⇒ ϕ′, which gives us S ′ G′;

• or the recursive call prove(S ′, G′ \ {ϕ ⇒⇒⇒ ϕ′} ∪ split(∆α(ϕ) ⇒⇒⇒ ϕ′) returns true. Using the
induction hypothesis we obtain S ′ G′\{ϕ⇒⇒⇒ ϕ′}∪split(∆α(ϕ)⇒⇒⇒ ϕ′). In particular, S ′

split(∆α(ϕ)⇒⇒⇒ ϕ′), which thanks to the Split rule of the system implies S ′ ∆α(ϕ)⇒⇒⇒ ϕ′.
Using the CircularHypothesis rule (which can be used, since in this case α is applicable to
ϕ⇒⇒⇒ ϕ′ which implies by definition that α covers ϕ) we obtain S ′ ϕ⇒⇒⇒ ∆α(ϕ) and using
the Transitivity rule we obtain S ′ ϕ⇒⇒⇒ ϕ′, which together with S ′ G′ \ {ϕ⇒⇒⇒ ϕ′} gives
us S ′ G′;

• or the recursve call prove(S ′, G′ \ {ϕ⇒⇒⇒ ϕ′} ∪ split(∆S(ϕ)⇒⇒⇒ ϕ′) returns true. We obtain
by induction hypothesis that S ′ G′ \ {ϕ ⇒⇒⇒ ϕ′} ∪ split(∆S(ϕ) ⇒⇒⇒ ϕ′). In particular,
S ′ split(∆S(ϕ) ⇒⇒⇒ ϕ′), which thanks to the Split rule of the system gives us S ′

∆S(ϕ) ⇒⇒⇒ ϕ′. Using the SymbolicStep rule we obtain S ′ ϕ ⇒⇒⇒ ∆S(ϕ) and using the
Transitivity rule we obtain S ′ ϕ ⇒⇒⇒ ϕ′, which together with S ′ G′ \ {ϕ ⇒⇒⇒ ϕ′} gives us
S ′ G′.

(♦) is now proved. By letting G′ , ∆S(G0) in (♦), and remembering that we denoted S ′ =
S ∪G0, we obtain S ∪G0 ∆S(G0). By using Lemma 8 we obtain S ∪G0 ⊢ ∆S(G0), which, by
Theorem 3 implies S |= G0, which proves our theorem.

Theorem 5 (weak completeness). Consider a live and confluent set of RL formulas S, a set
of terminating formulas G0 = {πi∧φi ⇒⇒⇒ π′

i∧φ
′
i|i ∈ I}, and a call prove(S ∪ G0, split(∆S(G0)))

that returns false. Then, S 6|= G0.

Proof We first prove by induction on the number of calls that in any recursive call generated by
prove(S ∪G0,∆S(G0)), and any formula ϕ⇒⇒⇒ ϕ′ ∈ G, the elementary pattern ϕ is a disjunct of
∆S(∆

∗
S∪G0

(ϕ0)), for ϕ0 being the lhs of a goal in G0. This holds because at each recursive call,
some goals are unmodified, while the others are derived with respect to S or to G0.

From this we obtain that there exists a symbolic execution ϕ0 ⇒s

S ϕ1 ⇒s

S∪G0
· · · ⇒s

S∪G0
ϕ.

Next, we prove that the set of goals G is terminating at each recursive call, also by induction
on the number of calls. This holds initially, and then, for each formula ϕ⇒⇒⇒ ϕ′ in the current set
of goals, the rhs ϕ′ is the rhs of a goal in the original set of goals G0 (since our procedure does
not modify right-hand sides of formulas). Concerning the lhs ϕ, it is:

• either a disjunct of ∆S(ϕ
′′) where ϕ′′ is terminating (by the induction hypothesis). Assum-

ing there is a nonterminating γ ∈ JϕK, using Lemma 3 we would obtain a concrete transition
γ′′ ⇒S γ with γ′′ ∈ Jϕ′′K, hence ϕ′′ would also be nonterminating, a contradiction;

• or ϕ is a disjunct of ∆{α}(ϕ
′′) for some α ∈ G0. But then all γ ∈ JϕK are also instances of

the rhs of α, which is terminating by hypothesis, hence, ϕ is terminating as well.

Hence, the current set of goals G is terminating. We now choose a formula ϕ⇒⇒⇒ ϕ′ ∈ G such that
the procedure directly returns false while processing ϕ ⇒⇒⇒ ϕ′ in the procedure’s loop (i.e., there
are no further recursive calls). We thus have 6|= ϕ → ϕ′, hence, we can choose γ ∈ JϕK \ Jϕ′K.
The above-obtained (feasible) symbolic execution ϕ0 ⇒s

S ϕ1 ⇒s

S∪G0
· · · ⇒s

S∪G0
ϕ is simulated

by a concrete execution γ0 ⇒S γ1 ⇒∗
S∪G0

γ with γ0 ∈ Jϕ0K, γ1 ∈ Jϕ1K thanks to Lemma 3.
Assume now (by contradiction) S |= G0.
First, we show (♦): γ0 ⇒∗

S γ. For this, we show that for every step, say, γi ⇒{α} γi+1 with
α ∈ G0, there is an execution with rules in S, i.e., γi ⇒

∗
S γi+1. Then we replace every such step

RR n° 8369

26 Arusoaie, Lucanu & Rusu

γi ⇒{α} γi+1 in γ0 ⇒∗
S∪G0

γ by the corresponding execution γi ⇒
∗
S γi+1 and obtain the desired

execution γ0 ⇒∗
S γ. We now prove (♠) γi ⇒

∗
S γi+1 from γi ⇒{α} γi+1 and α ∈ G0.

From the assumption S |= G0 we obtain S |= α(= π1∧φ1 ⇒⇒⇒ π2∧φ2 ∈ G0).
From γi ⇒{α} γi+1 we get (γi, ρ) |= π1∧φ1 for some valuation ρ and (γi+1, ρ) |= π2∧φ2.

Thus, γi+1 = π2ρ. From S |= α and (γi, ρ) |= π1∧φ1 (note that γi is terminating, since G0

is terminating) we get that there exists γ′
i+1 such that γi ⇒

∗
S γ′

i+1 and (γ′
i+1, ρ) |= π2∧φ2. In

particular, γ′
i+1 = π2ρ. Thus, γ′

i+1 = γi+1, so γi ⇒
∗
S γi+1. (♠) is now proved, and so is (♦).

We thus have γ0 ⇒∗
S γ, where γ ∈ JϕK \ Jϕ′K, and γ is terminating (since γ ∈ JϕK and G is

terminating as established earlier in the proof). On the other hand, we know from the beginning
of the proof that ϕ is a disjunct of ∆S(∆

∗
S∪G0

(ϕ0)), for ϕ0 the lhs of a goal in G0. Since our
procedure does not modify right-hand sides of goals, we obtain that ϕ0 ⇒⇒⇒ ϕ′ is a goal of G0.

We have assumed S |= G0, in particular, S |= ϕ0 ⇒⇒⇒ ϕ′. This means that from the (termi-
nating) γ0 ∈ Jϕ0K, there is γ′ ∈ Jϕ′K and γ0 ⇒∗

S γ′. Since γ ∈ JϕK \ Jϕ′K and γ′ ∈ Jϕ′K we have
γ 6= γ′.

Note that tϕ is not derivable for S, since otherwise the procedure would not be returning
false on ϕ⇒⇒⇒ ϕ′ but would go on a recursive call There are now two cases:

• if ϕ′ is not derivable for S: then, there is no way that γ and γ′, which are distinct and are
both successors of γ0, may have a common successor, since both ϕ and ϕ′ are non-derivable
for S. This contradicts the confluence hypothesis;

• if ϕ′ is derivable for S: Now, the non-derivable ϕ cannot be a disjoint of the goals G0 since
the goals are derivable for S. ϕ cannot have been generated by earlier recursive call which
applied a rule α ∈ G0 because such rules cannot be applied to generate a non-derivable
pattern ϕ when ϕ′ is derivable (the "applicability" condition in the algorithm prevents
this). And finally, ϕ cannot have been generated by a rule in S since by hypothesis, S
is live, i.e., all the right-hand sides of rules in S are derivable for S. Hence, this case is
impossible.

All cases lead to contradictions, generated by our assumption S |= G0: we conclude S 6|= G0.

Inria

Language-Independent Program Verification Using Symbolic Execution 27

B Verification of the program FIND

Figure 7 shows all the ingredients that we used to prove the correctness of the program FIND

(Figure 6) using our tool. At the figure’s top we show the code macros that we use in our
RL formulas. Below the code macros we include the formulas corresponding to the pre/post
conditions and invariants used by the authors of [4] in their proof. The program is checked by
applying the implementation kcheck of our proof system on the consisting of the three RL formula-
set G = {(♣), (♦), (♠)}. On the bottom lines we show the proofs automatically constructed by
kcheck.

We believe that the number of three proof obligations, given by G, is minimal for verifying
FIND. Initially we started we eight rules describing the proof obligations used in [4]. Then, based
on the gcd examples and others inspired from the same source, we realised that all sequential
program fragment specifications can be removed since they can be automatically proved using
the SymbolicStep rule, which amounts to symbolic execution. Since the configuration for the
new language is more complex, the syntax for these rules is a bit cumbersome, but it can be
generated from the annotations of the program by using symbolic execution to determine the
exact structure of the configuration at the point where such a rule should be applied. We are
developing a tool intended to help the user in writing these rules.

The proof trees for the RL formulas (♣) and (♦) are similar to that of (2) for the gcd program.
However, here the second branch is splitted by a new use of the CaseAnalysis rule, due to the if

statement from the loop’s body. The proof tree for the RL formula (♠), corresponding to the
specification of FIND, has a single branch because it uses circularities (♣) and (♦) that do not
split the proof tree.

The formulas are nontrivial, and it took us several iterations to come up with the exact ones,
during which we used the tool in a trial-and-error process. The automatic nature of the tool, as
well as the feedback it returned when it failed, were particularly helpful during this process. In
particular symbolic execution was fruitfully used for the initial testing of programs before they
were verified.

i = 1;

j = 2;

oddtop = N + 1;

eventop = N + 1;

S1 || S2;

if (oddtop > eventop)

then { k = eventop; }

else { k = oddtop; }

S1 = while (i < oddtop) {

if (a[i] > 0) then { oddtop = i; }

else { i = i + 2; }

}

S2 = while (j < eventop) {

if (a[j] > 0) then { eventop = j; }

else { j = j + 2; }

}

Figure 6: FIND program.

RR n° 8369

28 Arusoaie, Lucanu & Rusu

CODE MACROS

INIT , i = 1; j = 2; oddtop = N + 1; eventop = N + 1;

BODY1 , {if (a[i] > 0) then { oddtop = i; } else { i = i + 2; }}

BODY2 , {if (a[j] > 0) then { eventop = j; } else { j = j + 2; }}

S1 , while (i < oddtop) BODY1

S2 , while (j < eventop) BODY2

MIN , if (oddtop > eventop) then { k = eventop; } else { k = oddtop; }

FIND , INIT S1||S2; MIN

Formula macros

pre , N ≥ 1

p1 , 1 ≤ o ≤ N + 1 ∧ i%2 = 1 ∧ 1 ≤ i ≤ o+ 1
∧(∀1≤l<i)(l%2 = 1 −→ a[l] ≤ 0) ∧ (o ≤ N −→ a[o] > 0)

p′1 , 1 ≤ o′ ≤ N + 1 ∧ i′%2 = 1 ∧ 1 ≤ i′ ≤ o′ + 1
∧(∀1≤l<i′)(l%2 = 1 −→ a[l] ≤ 0) ∧ (o′ ≤ N −→ a[o′] > 0)

q1 , 1 ≤ o′ ≤ N + 1 ∧ (∀1≤l<o′)(l%2 = 1 −→ a[l] ≤ 0) ∧ (o′ ≤ N −→ a[o′] > 0)

p2 , 2 ≤ e ≤ N + 1 ∧ j%2 = 0 ∧ 2 ≤ j ≤ e+ 1
∧(∀1≤l<j)(l%2 = 0 −→ a[l] ≤ 0) ∧ (e ≤ N −→ a[e] > 0)

p′2 , 2 ≤ e′ ≤ N + 1 ∧ j′%2 = 0 ∧ 2 ≤ j′ ≤ e′ + 1
∧(∀1≤l<j′)(l%2 = 0 −→ a[l] ≤ 0) ∧ (e′ ≤ N −→ a[e′] > 0)

q2 , 2 ≤ e′ ≤ N + 1 ∧ (∀1≤l<e′)(l%2 = 0 −→ a[l] ≤ 0) ∧ (e′ ≤ N −→ a[e′] > 0)

post , 1 ≤ k′ ≤ N + 1 ∧ (∀1≤l<k′)(a[l] ≤ 0) ∧ (k′ ≤ N −→ a[k′] > 0)

Map macros for environment and store

Env , a 7→ a i 7→ i j 7→ j oddtop 7→ o eventop 7→ e N 7→ N k 7→ k

St , a 7→ a i 7→ i j 7→ j o 7→ o e 7→ e N 7→ N k 7→ k

St′ , a 7→ a i 7→ i′ j 7→ j′ o 7→ o′ e 7→ e′ N 7→ N k 7→ k′

RL formulas
(♣) 〈〈S1〉k〈Env〉env〉th〈St〉st ∧ i < o ∧ p1 ⇒ 〈〈·〉k〈Env〉env〉th〈St

′〉st ∧ o′ ≤ i′ ∧ p′1 ∧ q1
(♦) 〈〈S2〉k〈Env〉env〉th〈St〉st ∧ j < e ∧ p2 ⇒ 〈〈·〉k〈Env〉env〉th〈St

′〉st ∧ e′ ≤ j′ ∧ p′2 ∧ q2
(♠) 〈〈FIND〉k〈Env〉env〉th〈St〉st ∧ pre ⇒ 〈〈·〉k〈Env〉env〉th〈St

′〉st ∧ post

Corresponding proofs given by kcheck

s(i) , [CaseAnalysis], ([SymbolicStep]) ∨ ([SymbolicStep]),[CircularHypothesis](i)
(♣) [SymbolicStep], [CaseAnalysis], [Implication] ∨ (s(♣), [Implication])
(♦) [SymbolicStep], [CaseAnalysis], [Implication] ∨ (s(♦), [Implication])
(♠) [SymbolicStep] × 5, [CircularHypothesis](1), [CircularHypothesis](2), [Implication]

Figure 7: RL formulas necessary to verify FIND. We use a, i, j, oddtop, eventop, N, k to denote
program variables, a, i, j, o, e, N, k to denote locations, and a, i, j, o, e, N , k for variables
values. We also use s(i) to denote a common sequence in the proofs of (♣) and (♦). CaseAnalysis
splits the proof in two goals separated by ∨, while CircularHypothesis(i) represents the application
of the formula (i) as a circularity. [SymbolicStep]×n is the equivalent of applying [SymbolicStep]
n times.

Inria

RESEARCH CENTRE

LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne

40 avenue Halley - Bât A - Park Plaza

59650 Villeneuve d’Ascq

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	Preliminaries
	Language Definitions
	A Simple Imperative Language and its Definition in K
	Reachability Logic's Semantics and Proof System

	Symbolic Execution for Reachability-Logic Verification
	Symbolic Execution
	A Procedure for RL-based Program Verification

	A Prototype Tool
	Verifying a parallel program: FIND
	Verifying the Knuth-Morris-Pratt string matching algorithm: kmp

	Conclusion, Related Work, and Future Work
	Proofs
	Verification of the program FIND

