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The LEAR submission at Thumos 2014

Dan Oneata, Jakob Verbeek, and Cordelia Schmid

Inria⋆

Abstract. We describe the submission of the INRIA LEAR team to the THU-

MOS workshop in conjunction with ECCV 2014. Our system is based on Fisher

vector (FV) encoding of dense trajectory features (DTF), which we also used

in our 2013 submission. This year’s submission additionally incorporates static-

image features (SIFT, Color, and CNN) and audio features (ASR and MFCC) for

the classification task. For the detection task, we combine scores from the clas-

sification task with FV-DTF features extracted from video slices. We found that

these additional visual and audio feature significantly improve the classification

results. For localization we found that using the classification scores as a contex-

tual feature besides local motion features leads to significant improvements.

1 Introduction

This paper describes our entry in the THUMOS Challenge 2014. The goal of the THU-

MOS Challenge is to evaluate action recognition approaches in realistic conditions. In

particular the test data consists of untrimmed videos, where the action may be short

compared to the video length, and multiple instances can be present in each video. For

full details on the definition of the challenge, task, and datasets, we refer to the chal-

lenge website [3].

Below, we describe our systems for classification and detection in Section 2, and

present experimental results in Section 3.

2 System description

We first describe our classification system to recognize untrimmed action videos in

Section 2.1. The localization system presented in Section 2.2 is similar, but trained

to recognize temporally cropped actions instead of complete untrimmed videos. The

detection system also exploits the classification scores obtained for complete videos as

a contextual feature.

2.1 Classification

For our classification system we build upon our winning entry in the THUMOS 2013

challenge. It is based on Fisher vector (FV) [8] encoding of improved dense trajectory

features [9]. As last year we use a vocabulary of size 256, rescale the videos to be at

most 320 pixels wide, and skip every second frame when decoding the video.

⋆ LEAR team, Inria Grenoble Rhône-Alpes, Laboratoire Jean Kuntzmann, CNRS, Univ. Greno-

ble Alpes, France.
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Feature extraction. This year, we have added several new features that complement

the motion-based features. We add static visual appearance information through the

following features:

1. SIFT: we extract SIFT features [6] on a dense multi-scale grid, and encode these

in a FV using a vocabulary of size 1024. We extract SIFT on one frame out of 60,

and aggregate all descriptors in a single FV.

2. Color: we extract color features based on local mean and variance of the color

channels [1] every 60-th frame, and encode them in a single FV with a vocabulary

size 1024.

3. CNN: we extract a 4K dimensional feature using a convolutional network trained

on the ImageNet 2010 Challenge data. We use the CAFFE implementation [2], and

retain the layer six activations after applying the linear rectification (which clips

negative values to zero). We also experimented with using layer seven or eight,

but found worse performance. We extract CNN features in every 10-th frame, and

average them into a single video-wide feature vector.

In addition to the visual features, we also extract features from the audio stream:

1. MFCC: we down-sample the original audio track to 16 kHz with 16 bit resolution

and then compute Mel-frequency cepstral coefficients (MFCC) with a window size

of 25 ms and a step-size of 10 ms, keeping the first 12 coefficients of the final

cosine transformation plus the energy of the signal. We enhance the MFCCs with

their first and second order derivatives. The MFCC features are then aggregated

into a FV with a vocabulary size of 256.

2. ASR: For ASR we used state-of-the art speech transcription systems available for

16 languages [4,5]. The files were processed by first performing speaker diarization,

followed by language identification (LID) and then transcription. The system for

identified language was used if the LID confidence score was above 0.7, else an

English system as used. The vast majority of documents were in English, with a

number in Spanish, German, Russian, French as well as a few in 8 other languages.

Therefore, we only used the English transcripts, and represent them using a bag-of-

word encoding of 110K words.

Classifier training. To train the action classification models, we train SVM classifiers

in a 1-vs-rest approach. We perform early fusion to the dense trajectory features, by

concatenating FVs for the MHB, HOG, and HOF channels. Similarly we early fuse the

two local image features: SIFT and color. We, then, learn a per-class late-fusion of the

SVM classifiers trained on the early fusion channels and the CNN, MFCC, and ASR

features.

We also investigated the effect of using different parts of the training data. The

Train part consists of 13,320 trimmed action clips across the 101 action classes. The

Validation part consists of 1,010 untrimmed videos across the 101 action classes (10

per class), which are representative for the test videos. Finally, the Background part

consists of 2,500 untrimmed videos not corresponding to any of the action classes.
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2.2 Localization

To assess our performance we split the 1010 videos from the Validation split into two

equal parts; we used one of them as train split and the other one as test.

For the temporal action localization task we only use the dense trajectory features,

since the remaining features are more likely to capture contextual information rather

than information that can be used for precise action localization.

We train 1-vs-rest SVM classifiers, albeit using only trimmed action examples from

the Train and Validation sets as positives. As negatives we use (i) all examples from

other classes of the Train part of the data, (ii) all untrimmed videos in the Background

part of the data, (iii) all untrimmed videos of other classes in the Validation part of the

data, and (iv) all trimmed examples of other classes in the Validation part of the data. In

addition we performed one round of hard-negative mining on the Validation set, based

on a preliminary version of the detector, and used these as additional negatives.

For testing we use temporal detection windows with a duration of 10, 20, 30, 40,

50, 60, 70, 80, 90, 100, and 150 frames, which we slide with a stride of 10 frames over

the video. After scoring the windows, we apply non-maximum suppression to enforce

that non of the retained windows are overlapping.

Following [7], we re-score the detection windows by multiplying the detection score

by the duration of the window. This avoids a bias towards detecting too small video

fragments. In addition, we experimented with a class-specific duration prior, estimated

from the training data.

Finally, we combine the window’s detection score with the video’s classification

score for the same action class. This pulls-in additional contextual information from

the complete video that is not available in the temporal window features. We take a

weighted average of these scores; the weight is determined using the Validation set.

3 Results

In this section we present experimental results obtained on the Validation set.

3.1 Classification results

For the classification task we split the Validation set into 30 train/test folds. For each

training fold we select 7 samples from each class, with the test fold containing the

remaining 3 samples. We report the mean and the standard deviation of the mAP score

across these 30 folds.

Table 1 presents an evaluation of the invidual features. The results show that the

visual features are the strongest, in particular the motion features. Combining features

significantly improves the results, e.g . from 52.02% mAP for MBH, to 64.35% for

MBH + HOF + HOG. When combining all features, we obtain 77.84% mAP. Inter-

estingly, the high-level ASR feature brings more than 4% mAP improvement when all

other features are already included.

Next, we evaluate the effect of using different parts of the training data and test

on the held-out part of the validation set, see above descprition of the cross-validation
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(a)

Feature mAP

MBH 52.02 ± 2.4

HOF 50.38 ± 1.9

HOG 48.79 ± 2.3

CNN 48.42 ± 2.0

Color 37.36 ± 1.7

SIFT 37.17 ± 1.8

ASR 20.77 ± 1.0

MFCC 18.97 ± 1.5

(b)

Early fusion mAP

EF1: MBH + HOF + HOG 64.35 ± 2.3

EF2: SIFT + Color 45.78 ± 2.3

Late fusion

LF1: EF1 + EF2 69.62 ± 2.18

LF2: EF1 + EF2 + CNN 71.06 ± 2.00

LF3: EF1 + EF2 + CNN + MFCC 73.65 ± 1.90

LF4: EF1 + EF2 + CNN + ASR 76.26 ± 1.85

LF5: EF1 + EF2 + CNN + MFCC + ASR 77.84 ± 1.70

Table 1. Evaluation of individual features (a) and combinations (b) for the classification task.

Validation Y Y Y Y

Train Y Y Y Y

Background Y Y Y

LF5 mAP 70.40± 1.6 68.74 ± 2.2 77.84 ± 1.7 67.94 ± 1.9 67.90 ± 2.2 77.70 ± 1.8

Table 2. Evaluation of different parts of the training data for the classification task.

procedure. The results in Table 2 clearly show the importance of using both the trimmed

(in Train) and untrimmed (in Validation) examples; untrimmed videos are important

since these are representative of the test set, and the trimmed examples are important

because they are roughly 10 times more of them. The videos in the Background set

were not useful, probably because there are enough negative samples across the Train

and Validation dataset. In conclusion, we used the Train and full Validation sets in our

submitted classification results.

3.2 Localization results

For our localization system we have to compute features and scores for many temporal

windows, and this is much more costly than the classification of entire videos. There-

fore, we first evaluated the effect of using only MBH or all three trajectory features,

and the impact of using a smaller vocabulary of size 64 vs . using the one of size 256

used for classification. In these experiments we follow [7], and rescore the windows

using their duration. The first three rows of Table 3 show that the performance drops

significantly if we use a smaller vocabulary, or use only MBH features. Therefore, we

keep all trajectory features and the vocabulary of size 256 in all remaining experiments.

In the remaining experiments in Table 3 we consider the benefit of including the

classification score as a contextual feature to improve the localization performance. The

trade-off between the classification and detection score is determined cross-validation.

The classification and detection scores are first normalized to be zero-mean and unit-



LEAR-INRIA submission at Thumos 2014 5

System Rescoring Remarks mAP

D1 clip duration K=64, MBH 12.56

D2 clip duration K=64, MBH + HOF + HOG 14.58

D3 clip duration K=256, MBH + HOF + HOG 19.17

D3+C, λ = 0.2 clip duration Run #3 21.63

D3+C, λ = 0.2 class specific prior, Train+Val. 21.57

D3+C, λ = 0.25 class specific prior, Validation Run #1 26.57

D3+C∗, λ = 0.25 class specific prior, Validation Run #2, C∗ visual-only 26.52

D3 class specific prior, Validation 24.43

Table 3. Evaluation of action localization using the detection (D) and classification (C) system.

The combined score is a weighted average which weights the detection score by λ and the clas-

sification score by (1− λ).

variance so that the scores are comparable, and the combination weight has a natural

interpretation. In the first experiment (row 4) we combine the best detector D3 (with

mAP 19.17%) with the classification model using all our channels, which leads to an

improved mAP of 21.63%. This is the system submitted as Run #3.

Instead of rescoring with the clip duration, we also considered rescoring with a

class-specific prior on the duration (obtained using a histogram estimate). This leads to

a similar performance of 21.57% mAP.

We observed a difference in the duration distribution of positive action instances

in the Train and Validation part of the data, see Figure 1. This difference is explained

by different annotation protocols and teams used to annotate these parts of the data.

Therefore, we also considered using a prior estimate based on the validation data only.

This leads to a significantly improved localization mAP of 26.57%. This is the system

we submitted as Run #1.

Finally, submitted Run #2 is similar to Run #1, but is a vision-only run that excludes

the MFCC and ASR audio features in the classification model. The system correspond-

ing to the Run #2 obtains a performance of 26.52% mAP on our test split. Interestingly,

in this case the audio features do not have a signifiant impact. To verify that the detec-

tion still benefits from the classifier when using the stronger prior, we also include a

last run that uses this prior without the classification score (last row). This leads to a

reduction in performance to 24.43%, showing that global video context is useful in the

localization task, even when using the strong prior on duration.

4 Conclusion

In this notebook paper we have described our submission to the THUMOS 2014 Chal-

lenge, and presented an experimental evaluation of its components. Our main findings

are as follows. (i) Additional visual and audio features significantly improve over a sys-

tem based on dense trajectory features only (as we used in our winning entry in the
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Fig. 1. Duration histograms of positive action instances across the 20 classes used for localization

for the Train (left) and Validation (right) part of the data.

2013 THUMOS Challenge). This improved our results from 64.35% mAP to 77.84%

mAP in our evaluation. (ii) For action classification in untrimmed videos it is benefi-

cial to include representative untrimmed training videos in addition to trimmed action

examples. This improved our results from 68.74% mAP to 77.84% mAP in our clas-

sification experiments. (iii) For action localization in untrimmed videos it is beneficial

to use global video features, which we included in the form of the video classification

scores. This improved our results from 19.17% mAP to 21.63% mAP in our localization

experiments. (iv) For action localization it is important to include a rescoring based on

the clip duration, a class specific prior estimated from the validation data worked best

and improved our results from 21.63% mAP to our best result of 26.57%.
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