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Asymptotic description of stochastic neural

networks. I - existence of a Large Deviation

Principle

Olivier Faugeras a, James Maclaurin a

aInria Sophia-Antipolis Méditerranée

Abstract

We study the asymptotic law of a network of interacting neurons when the number
of neurons becomes infinite. Given a completely connected network of neurons in
which the synaptic weights are Gaussian correlated random variables, we describe
the asymptotic law of the network when the number of neurons goes to infinity.
Unlike previous works which made the biologically unplausible assumption that
the weights were i.i.d. random variables, we assume that they are correlated. We
introduce the process-level empirical measure of the trajectories of the solutions to
the equations of the finite network of neurons and the averaged law (with respect
to the synaptic weights) of the trajectories of the solutions to the equations of
the network of neurons. The result is that the image law through the empirical
measure satisfies a large deviation principle with a good rate function. We provide
an analytical expression of this rate function.

Résumé

Description asymptotique de réseaux de neurones stochastiques. I -

existence d’un principe de grandes déviation

Étant donné un réseau complètement connecté de neurones dans lequel les poids
synaptiques sont des variables aléatoires gaussiennes corrélées, nous caractérisons
la loi asymptotique de ce réseau lorsque le nombre de neurones tend vers l’infini.
Tous les travaux précédents faisaient l’hypothèse, irréaliste du point de vue de la
biologie, de poids indépendants. Nous introduisons la mesure empirique sur l’espace
des trajectoires solutions des équations du réseau de neurones de taille finie et la
loi moyennée (par rapport aux poids synaptiques) des trajectoires de ces solutions.
Le résultat est que la loi image de cette loi par la mesure empirique satisfait un
principe de grandes déviations avec une bonne fonction de taux dont nous donnons
une expression analytique.
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Version française abrégée

Nous considérons le problème de décrire la dynamique asymptotique d’un en-
semble de 2n + 1 neurones lorsque ce nombre tend vers l’infini. Ce problème
est motivé par un désir de parcimonie, par celui de rendre compte de l’appari-
tion de phénomènes émergents, ainsi que par celui de comprendre les effets de
taille finie. Nous considérons donc un réseau de 2n+1 neurones interconnectés
dont la dynamique commune (en temps discret) obéit aux équations stochas-
tiques (2). Dans celles-ci apparaissent les poids synaptiques ou coefficients de
couplage notés Jn

ij qui sont des variables aléatoires gaussiennes corrélées. Pour
répondre à la question posée nous considérons la loi notée QVn de la solution à
(2) moyennée par rapport aux poids synaptiques ou plus précisément l’image
Πn de cette loi par la mesure empirique (1). Nous montrons que cette loi satis-
fait un principe de grande déviations avec une bonne fonction de taux H dont
nous donnons une expression analytique dans la définition 3.1 et les équations
(9) et (12). Ce travail généralise au cas des poids synaptiques corrélés ce-
lui d’auteurs comme Sompolinsky [10] et Moynot et Samuelides [8] qui ont
considéré le cas de poids synaptiques indépendants. Dans ce cas, plus simple
d’un point de vue mathématique, mais beaucoup moins plausible d’un point
de vue biologique, on observe le phénomène de propagation du chaos. Nous
montrons dans un second article [4] que la bonne fonction de taux a un mini-
mum unique que nous caractérisons complètement. La propagation du chaos
n’a pas lieu mais la représentation est parcimonieuse dans un sens défini dans
[4].

1 Introduction

1.1 Neural networks

Our goal is to study the asymptotic behaviour and large deviations of a net-
work of interacting neurons when the number of neurons becomes infinite.

Sompolinsky also succesfully explored this particular topic [10] for fully con-
nected networks of neurons. In his study of the continuous time dynamics of
networks of rate neurons, Sompolinsky and his colleagues assumed that the
synaptic weights in neuroscience, were random variables i.i.d. with zero mean
Gaussian laws. The main result obtained by Sompolinsky and his colleagues
(using the local chaos hypothesis) under the previous hypotheses is that the
averaged law of the neurons dynamics is chaotic in the sense that the aver-
aged law of a finite number of neurons converges to a product measure as the
system gets very large.
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The next efforts in the direction of understanding the averaged law of neu-
rons are those of Cessac, Moynot and Samuelides [1,7,8,2,9]. From the tech-
nical viewpoint, the study of the collective dynamics is done in discrete time.
Moynot and Samuelides obtained a large deviation principle and were able to
describe in detail the limit averaged law that had been obtained by Cessac
using the local chaos hypothesis and to prove rigorously the propagation of
chaos property.

One of the next challenges is to incorporate in the network model the fact that
the synaptic weights are not independent and in effect often highly correlated.

The problem we solve in this paper is the following. Given a completely
connected network of neurons in which the synaptic weights are Gaussian
correlated random variables, we describe the asymptotic law of the network
when the number of neurons goes to infinity. Like in [7,8] we study a discrete
time dynamics but unlike these authors we cope with more complex intrinsic
dynamics of the neurons.

1.2 Mathematical framework

For some topological space Ω equipped with its Borelian σ-algebra B(Ω), we
denote the set of all probability measures by M(Ω). We equip M(Ω) with
the topology of weak convergence. For some positive integer n > 0, we let
Vn = {j ∈ ❩ : |j| ≤ n}. Let T = ❘

T+1, for some positive integer T . We
equip T with the Euclidean topology, T ❩ with the cylindrical topology, and
denote the Borelian σ-algebra generated by this topology by B(T ❩). For some
µ ∈ M(T ❩) governing a process (Xj)j∈❩, we let µVn ∈ M(T Vn) denote the
marginal governing (Xj)j∈Vn

. For some j ∈ ❩, let the shift operator Sj : T ❩ →
T ❩ be S(ω)k = ωj+k. We let MS(T

❩) be the set of all stationary probability
measures µ on (T ❩,B(T ❩)) such that for all j ∈ ❩d, µ ◦ (Sj)−1 = µ. Let pn :
T Vn → T ❩ be such that pn(ω)

k = ωk mod Vn . Here, and throughout the paper,
we take k mod Vn to be the element l ∈ Vn such that l = k mod (2n + 1).

Define the process-level empirical measure µ̂n : T Vn → MS

(

T ❩

)

as

µ̂n(ω) =
1

2n+ 1

∑

k∈Vn

δSkpn(ω). (1)

Let (Y j) be a stationary Process on T such that the Y js are independent.
Each Y j is governed by a law P , and we write the governing law in MS(T

❩)
as P❩. It is clear that the governing law over Vn may be written as P⊗Vn (that
is the product measure of P , indexed over Vn).

The equation describing the time variation of the membrane potential U j of
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the jth neuron writes

U j
t = γU j

t−1 +
∑

i∈Vn

Jn
jif(U

i
t−1) + θj +Bj

t−1, j ∈ Vn t = 1, . . . , T. (2)

f : ❘ →]0, 1[ is a monotonically increasing Lipschitz continuous bijection. γ
is in [0, 1) and determines the time scale of the intrinsic dynamics of the neu-
rons. The Bj

t s are i.i.d. Gaussian random variables distributed as N1(0, σ
2) 1 .

They represent the fluctuations of the neurons’ membrane potentials. The θjs
are i.i.d. as N1(θ̄, θ

2). The are independent of the Bi
ts and represent the cur-

rent injected in the neurons. The U j
0 s are assumed to be independent random

variables with law µI .

The Jn
ijs are the synaptic weights. Jn

ij represents the strength with which the
‘presynaptic’ neuron j influences the ‘postsynaptic’ neuron i. They arise from a
stationary Gaussian random field specified by its mean and covariance function

E[Jn
ij] =

J̄

2n+ 1
cov(Jn

ijJ
n
kl) =

1

2n+ 1
Λ ((k − i) mod Vn, (l − j) mod Vn) ,

Λ is positive definite, let Λ̃ be the corresponding (positive) Fourier transform.
We make the technical assumption that the series (Λ(i, j))i,j∈❩ is absolutely
convergent to Λasum > 0 and convergent to Λsum > 0.

We note Jn the (2n + 1) × (2n + 1) matrix of the synaptic weights, Jn =
(Jn

ij)i,j∈Vn
.

The process (Y j) defined by

Y j
t = γY j

t−1 + θ̄ +Bj
t−1, j ∈ Vn, t = 1, · · ·T, Y j

0 = U j
0

is stationary and independent. The law of each Y j is easily found to be given
by

P = (NT (0T , σ
2IdT )⊗ µI) ◦Ψ,

where Ψ : T → T is the following affine bijection. Writing v = Ψ(u), we define











v0 = Ψ0(u) = u0

vs = Ψs(u) = us − γus−1 − θ̄ s = 1, · · · , T.
(3)

We extend Ψ to a mapping T ❩ → T ❩ componentwise.

The application Ψ defined in (3) plays a central role in the sequel we introduce
the following definition.

1. We note Np(m,Σ) the law of the p-dimensional Gaussian variable with mean
m and covariance matrix Σ.
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Définition 1.1 For each measure µ ∈ M(T Vn) or MS(T
❩) we define µ to be

µ ◦Ψ−1.

We next introduce the following definitions.

Définition 1.2 Let E2 be the subset of Ms(T
❩) defined by

E2 = {µ ∈ MS(T
❩) |E

µ
1,T [‖v0‖2] < ∞}.

We define the process-level entropy to be, for µ ∈ MS(T
❩)

I(3)(µ, P❩) = lim
n→∞

1

(2n+ 1)
I(2)

(

µVn , P⊗Vn

)

.

If µ /∈ E2, then I(3)(µ, P❩) = ∞. For further discussion of this rate function,
and a proof that I(3) is well-defined, see [3].

We note QVn(Jn) the element of M(T Vn) which is the law of the solution
to (2) conditioned on Jn. We let QVn = E

J [QVn(Jn)] be the law averaged
with respect to the weights. The reason for this is that we want to study the
empirical measure µ̂n on path space. There is no reason for this to be a simple
problem since for a fixed interaction Jn, the variables (U−n, · · · , Un) are not
exchangeable. So we first study the law of µ̂n averaged over the interactions.

Finally we introduce the image laws in terms of which the principal results of
this paper are formulated.

Définition 1.3 Let Πn and Rn in M(MS(T
❩)) be the image laws of QVn and

P⊗Vn through the function µ̂n : T Vn → MS(T
❩) defined by (1):

Πn = QVn ◦ µ̂n Rn = P⊗Vn ◦ µ̂n

2 The good rate function

We obtain an LDP for the process with correlations (Πn) via the (simpler)
process without correlations (Rn). To do this we obtain an expression for the
Radon-Nikodym derivative of Πn with respect to Rn. This is done in propo-
sitions 2.4 and 2.5. In equation (13) there appear certain Gaussian random
variables defined from the right handside of the equations of the neuronal
dynamics (2). Applying the Gaussian calculus to this expression we obtain
equation (14) which expresses the Radon-Nikodym derivative as a function
(depending on n) of the empirical measure (1). Using the fact that this func-
tion is measurable we obtain equation (15). This equation is essential in a)
finding the expression for the rate function H of definition 3.1, b) proving the
lower-bound for Πn on the open sets, c) proving that the sequence (Πn) is
exponentially tight.

5



The key idea is to associate to every stationary measure µ a certain stationary
Gaussian process Gµ, or equivalently a certain Gaussian measure defined by
its mean cµ and its covariance operator Kµ.

Given µ inMS(T
❩) we define a stationary Gaussian process Gµ, i.e. a measure

Qµ ∈ MS(T
❩

1,T ). For all i the mean of Gµ,i
t is given by cµt , where

cµt = J̄
∫

T ❩
f(ui

t−1)dµ(u), t = 1, · · · , T , i ∈ ❩, (4)

The covariance between the Gaussian vectors Gµ,i and Gµ,i+k is defined to be

Kµ,k = θ2δk1T
†1T +

∞
∑

l=−∞

Λ(k, l)Mµ,l, (5)

where
Mµ,k

st =
∫

T ❩
f(u0

s−1)f(u
k
t−1)dµ(u), (6)

The above integrals are well-defined because of the definition of f and that the
series in (5) is convergent since the series (Λ(k, l))k, l∈❩ is absolutely convergent
and the elements of Mµ,l are bounded by 1 for all l ∈ ❩.

These definitions imply the existence of a Hermitian-valued spectral represen-
tation for the sequence Mµ,k (resp. Kµ,k) noted M̃µ (resp. K̃µ) which satisfies

K̃µ(θ) = θ21T
t1T +

1

2π

∫ π

−π
Λ̃(θ,−ϕ)M̃µ(dϕ).

We also use the partial sums, noted Kµ,k
[n] , k ∈ Vn, in (5), to define another

sequence Aµ,k
[n] which is used to define in the limit n → ∞

Ãµ(θ) = K̃µ(θ)(σ2IdT + K̃µ(θ))−1. (7)

We next define a functional Γ[n] = Γ[n],1 + Γ[n],2, which we use to characterise
the Radon-Nikodym derivative of Πn with respect to Rn. Let µ ∈ MS(T

❩)
and

Γ[n],1(µ) = −
1

2(2n+ 1)
log

(

det
(

Id(2n+1)T +
1

σ2
Kµ

[n]

))

, (8)

where Kµ
[n] the ((2n + 1)T × (2n + 1)T ) covariance matrix of the law Qµ,Vn

Because of previous remarks the above expression has a sense. Taking the
limit when N → ∞ does not pose any problem and we can define Γ1(µ) =
limn→∞ Γ[n],1(µ). The following lemma whose proof is again straightforward
indicates that this is well-defined.

Lemma 2.1 When N goes to infinity the limit of (8) is given by

Γ1(µ) = −
1

4π

∫ π

−π
log

(

det
(

IdT +
1

σ2
K̃µ(θ)

))

dθ (9)
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for all µ ∈ M+
1,S(T

❩).

It also follows easily from previous remarks that

Proposition 2.1 Γ[n],1 and Γ1 are bounded below and continuous on MS(T
❩).

The definition of Γ[n],2(µ) is slightly more technical but follows directly from
proposition 2.4. For µ ∈ MS(T

❩) let

Γ[n],2(µ) =
∫

T
Vn
1,T

φn(µ, v)µVn

1,T
(dv) (10)

where φn : MS(T
❩)× T Vn

1,T → ❘ is defined by

φn(µ, v) =
1

2σ2





1

2n+ 1

n
∑

j,k=−n

†(vj−cµ)Aµ, k
[n] (v

k+j−cµ)+
2

2n+ 1

n
∑

j=−n

〈cµ, vj〉−‖cµ‖2



.

(11)
Γ[n],2(µ) is finite in the subset E2 ofMS(T

❩) defined in definition 1.2. If µ /∈ E2,
then we set Γ[n],2(µ) = ∞.

We define Γ2(µ) = limN→∞ Γ[n],2(µ). The following proposition indicates that
Γ2(µ) is well-defined.

Proposition 2.2 If the measure µ is in E2, i.e. if E
µ
1,T [‖v0‖2] < ∞, then

Γ2(µ) is finite and writes

Γ2(µ) =
1

2σ2

(

1

2π

∫ π

−π
Ãµ(−θ) : ṽµ(dθ) + †cµ(Ãµ(0)− IdT )c

µ+

2E
µ
1,T

[

tv0(IdT − Ãµ(0))cµ
]

)

. (12)

The “:” symbol indicates the double contraction on the indexes.

It is shown in [5] that φn(µ, v) defined by (11) is a continuous function of µ
which satisfies

φn(µ, v) ≥ −β2, β2 =
T J̄2

2σ2Λsum
(σ2 + θ2 + Λasum)

By a standard argument we otain the following proposition.

Proposition 2.3 Γ[n],2(µ) is lower-semicontinuous.

We define Γ[n](µ) = Γ[n],1(µ) + Γ[n],2(µ). We may conclude from propositions
2.1 and 2.3 that Γ[n] is lower-semicontinuous hence measurable.

From these definitions it is relatively easy, and proved in [5], to show that
the measure QVn is absolutely continuous with respect to P⊗Vn with a Radon-
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Nikodym derivative which can be expressed as a function of the functional
Γ.

Proposition 2.4 The Radon-Nikodym derivative of QVn with respect to P⊗Vn

is given by the following expression.

dQVn

dP⊗Vn
(u) = E



exp





1

σ2





∑

j∈Vn

〈Ψ1,T (u
j), Gj〉 −

1

2
‖Gj‖2











 , (13)

the expectation being taken against the N T -dimensional Gaussian processes
(Gi), i ∈ Vn given by

Gi
t =

∑

j∈Vn

JN
ij f(u

j
t−1), t = 1, · · · , T,

and the function Ψ being defined by (3).

Using standard Gaussian calculus we obtain the following proposition.

Proposition 2.5 The Radon-Nikodym derivatives write as

dQVn

dP⊗Vn
(u) = exp(NΓ[n](µ̂n(u)), (14)

dΠn

dRn
(µ) = exp((2n+ 1)Γ[n](µ)). (15)

Here µ ∈ MS(T
❩), Γ[n](µ) = Γ[n],1(µ)+Γ[n],2(µ) and the expressions for Γ[n],1

and Γ[n],2 have been defined in equations (8) and (10).

3 The large deviation principle

We define the function H : (T ❩) → [0,+∞) as follows.

Définition 3.1 Let H be the function M+
1,S(T

❩) → ❘ ∪ {+∞} defined by

H(µ) =











+∞ if I(3)(µ, P❩) = ∞

I(3)(µ, P❩)− Γ(µ) otherwise,

where Γ = Γ1 + Γ2.

We state the following theorem.

Theorem 3.1 Πn is governed by a large deviation principle with a good rate
function H.
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The proof is too long to be reproduced here, see [5]. We only give the general
strategy. First we prove the lower bound on the open sets. For the upper bound
on the closed sets, we simply avoid it by a) proving that (Πn) is exponentially
tight which allows us to b) restrict the proof of the upper bound to compact
sets. The proof of b) is long and technical. It is built upon ideas found in [6].

Note that we have found an analytical form for H through equations (9) and
(12)
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