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Abstract. We address the problem of predicting SPARQL query per-
formance. We use machine learning techniques to learn SPARQL query
performance from previously executed queries. We show how to model
SPARQL queries as feature vectors, and use k -nearest neighbors regres-
sion and Support Vector Machine with the nu-SVR kernel to accurately
(R2 value of 0.98526) predict SPARQL query execution time.

1 Query Performance Prediction

The emerging dataspace of Linked Data presents tremendous potential for large-
scale data integration over cross domain data to support a new generation of
intelligent application. In this context, it increasingly important to develop effi-
cient ways of querying Linked Data. Central to this problem is knowing how a
query would behave prior to executing the query. Current generation of SPARQL
query cost estimation approaches are based on data statistics and heuristics.
Statistics-based approaches have two major drawbacks in the context of Linked
Data [9]. First, the statistics (e.g histograms) about the data are often miss-
ing in the Linked Data scenario because they are expensive to generate and
maintain. Second, due to the graph-based data model and schema-less nature
of RDF data, what makes effective statistics for query cost estimation is un-
clear. Heuristics-based approaches generally do not require any knowledge of
underlying data statistics. However, they are based on strong assumptions such
as considering queries of certain structure less expensive than others. These
assumptions may hold for some RDF datasets and may not hold for others.
We take a rather pragmatic approach to SPARQL query cost estimation. We
learn SPARQL query performance metrics from already executed queries. Re-
cent work [1, 3, 4] in database research shows that database query performance
metrics can be accurately predicted without any knowledge of data statistics
by applying machine learning techniques on the query logs of already executed
queries. Similarly, we apply machine learning techniques to learn SPARQL query
performance metrics from already executed queries. We consider query execution
time as the query performance metric in this paper.

2 Modeling SPARQL Query Execution

We predict SPARQL query performance metrics by applying machine learning
techniques on previously executed queries. This approach does not require any
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statistics of the underlying RDF data, which makes it ideal for the Linked Data
scenario. We use two types of query features: SPARQL algebra features and
graph pattern features. We use frequencies and cardinalities of the SPARQL al-
gebra operators 1, and depth of the algebra expression tree as SPARQL algebra
features. Regarding graph patterns features, transforming graph patterns to vec-

Fig. 1. Example of extracting SPARQL feature vector from a SPARQL query.

tor space is not trivial because the space is infinite. To address this, we create
a query pattern vector representation relative to the query patterns appearing
in the training data. First, we cluster the structurally similar query patterns in
the training data into Kgp number of clusters. The query pattern in the cen-
ter of a cluster is the representative of query patterns in that cluster. Second,
we represent a query pattern as a Kgp dimensional vector where the value of a
dimension is the structural similarity between that query pattern and the cor-
responding cluster center query pattern. To compute the structural similarity
between two query patterns, we first construct two graphs from the two query
patterns, then compute the approximate graph edit distance – using a subop-
timal algorithm [7] with O

(

n
3
)

computational complexity – between these two
graphs. The structural similarity is the inverse of the approximate edit distance.
We use the k -mediods [5] clustering algorithm to cluster the query patterns of
training data. We use k -mediods because it chooses data points as cluster centers
and allows using an arbitrary distance function. We use the same suboptimal
graph edit distance algorithm as the distance function for k -mediods. Figure 1
shows an example of extracting SPARQL algebra features (left) and graph pat-
tern features (right) from SPARQL query string.

1 Algebra operators: http://www.w3.org/TR/sparql11-query/#sparqlAlgebra
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3 Experiments and Results

We generate 1260 training, 420 validation, and 420 test queries from the 25
DBPSB benchmark query templates [6]. To generate queries, we assign randomly
selected RDF terms from the DBpedia 3.5.1 dataset to the placeholders in the
query templates. We run the queries on a Jena-TDB 1.0.0 triple store loaded
with DBpedia 3.5.1 and record their query execution time. We exclude queries
which do not return any result (queries from template 2, 16, and 21) and run
more than 300 seconds (queries from template 20). We experiment with k -nearest
neighbors (k -NN) regression [2] and Support Vector Machine (SVM) with the
nu-SVR kernel for regression [8] to predict query execution time. We achieve an
R

2 value of 0.9654 (Figure 2(a)) and a root mean squared error (RMSE) value
of 401.7018 (Figure 2(b)) on the test dataset using k -NN (with Kgp = 10 and
k = 2 selected by cross validation). We achieve an improved R

2 value of 0.98526
(Figure 2(c)) and a lower RMSE value of 262.1869 (Figure 2(d)) using SVM
(with Kgp = 25 selected by cross validation). This shows that our approach can
accurately predict SPARQL query execution time.
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(a) k−NN using algebra and graph pattern features (R2=0.9654)
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(b) RMSE for k−NN using algebra and graph pattern features
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(c) SVM using algebra and graph pattern features (R2=0.98526)
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(d) RMSE for SVM using algebra and graph pattern features
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Fig. 2. Predictions for the test dataset with SPARQL algebra features and graph pat-
tern features using k -NN (Kgp = 10 and k = 2) and SVM (Kgp = 25).
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4 Conclusion and Future Work

We present an approach to predict SPARQL query execution time using ma-
chine learning techniques. We learn query execution times from already executed
queries. This approach can be useful where statistics about the underlying data
are unavailable We discuss how to model SPARQL queries as feature vectors,
and show highly accurate results. In future, we would like to compare our ap-
proach to the existing SPARQL query cost estimation approaches in the context
of Linked Data query processing.
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