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Abstract

This manuscript presents an approach for studying the abundance of
bug fix patterns. Bug fix patterns capture the knowledge on how to fix
bugs, they are essential building blocks for research areas such as bug
fix recommendation and automatic repair. In this paper, we focus on
the problem of the accurate measurement of bug fix pattern abundance:
how to reliably tell that one pattern is more common than another one?
We propose an approach to formalizing bug fix patterns and an accurate
instance pattern identification process that uses this formalization. Our
technique is based on a tree differencing algorithm working with abstract
syntax trees (AST). A comparative evaluation shows that our approach
improves the accuracy of pattern instance identification by an order of
magnitude.

1 Introduction

Bug fix patterns capture the knowledge on how to fix bugs. Bug fix patterns are
essential building blocks of research areas such as automatic program repair [1,
2]. One such bug fix pattern called Change of If Condition Expression (IF-CC)
has been identified by Pan et al. [3]. Figure 1 presents one instance of this
pattern by showing two consecutive revisions of a source code file. Revision N
(on the left-hand side) contains a bug inside the if condition, a wrong call to
the boolean method isEmpty instead of a call to the method isFull. In revision
N+1 (the right-hand side piece of code) a developer fixed the bug by modifying
the if condition expression.

The notion of abundance of bug fix patterns refers to whether some bug
fix patterns are more important than others. A measure of abundance is the
number of commits in which one observes an instance of the pattern, we call it
the abundance of the pattern. The abundance reflects to what extent those bug
fix patterns are used in practice.

For instance, Pan et al. report [3] that in the history of Lucene1, the bug
fix pattern “Change of if condition expression” (IF-CC) is the most common

1http://lucene.apache.org/core/
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if(myAccount.isEmpty(){
…

}

if(myAccount.isFull() {
…

}

Revision N Revision N+1
VCS Log message:

e.g: Fixed related
to the empty
account….

BUG FIX

Time

Figure 1: Example of a bug fix pattern called Change of If Condition Expression
(IF-CC)[3], in two consecutive revisions of a source code file. The left-hand side
revision contains a bug in the if condition: an incorrect method invocation. On
the right-hand side, the developer fixed it by modifying the if condition, i.e.
updating the method invocation.

pattern with 370 instances (accounting for 12% of all bug fix pattern instances
identified). On the contrary, the pattern “Addition of operation in a operation
sequence of field settings” (SQ-AFO) is the less abundant pattern, with only 5
instances being observed (0.2%).

The abundance of bug fix patterns is important for research on automatic
software repair research [1, 2]. In our previous work [4], we have shown that
knowing the abundance distribution of source code changes is key for repairing
bugs faster. The contraposition holds, it takes longer to repair a bug with
an inaccurate probability distribution than with no distribution at all. Since
some automatic software repair approaches (e.g. [2]) use bug fix patterns to
synthesize patches, one needs accurate abundance measures of bug fix patterns
before embedding abundance in the repair process.

The accuracy of bug fix pattern instance identification refers to whether an
approach yields the correct number of pattern instances. The threat to the
accuracy of the abundance measurement of bug fix patterns is two-fold. First,
one may over-estimate it by counting commits as instances of the pattern while
there are actually not (false positives). Second, one may under estimate it by
not counting commits, i.e. by missing instances (false negatives). The challenge
we address is to provide a mechanism to obtain an accurate measure of bug fix
pattern abundance, by minimizing both the number of false positives and the
number of false negatives.

In this paper, we propose a new approach for specifying bug fix patterns
and identifying pattern instances in commits. Our approach is based on the
analysis of abstract syntax trees (AST) of revisions extracted from the software
history (as recorded by version control systems). We measure and compare its
accuracy against the one of Pan et al.’s pattern instance identifier, which is
based on lines and tokens. This evaluation shows that our approach is more
accurate: it identifies more correct bug fix pattern instances (78 vs 62), reduces
the number of false positives (0 vs 74) and reduces the number of false negatives
(11 vs 27). We explain why Pan et al.’s approach is sometimes inaccurate and
discuss the limitations of our own approach.

To sum up, this paper makes the following contributions:
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• A declarative approach for specifying bug fix patterns;

• An algorithm for accurately identifying pattern instances based on the
analysis of abstract syntax trees;

• A comparative and manual evaluation of the accuracy of bug fix pattern
instance identification of our AST-based approach against Pan et al.’s
token-based approach;

• A formalization of 26 bug fix patterns using our AST-based specification
approach, incl. 6 new patterns complementing those of the literature.

The remainder of this paper is as follows. Section 2 presents an approach to
analyze software versioning history at the abstract syntax tree level. Section 4
presents the evaluation of the approach. Sections 5 and 6 respectively discuss
the limitations of our approach and the related work. Sections 7 concludes the
paper.

2 A Novel Representation of Bug Fix Patterns

based on AST changes.

In the literature, there are catalogs of bug fix patterns [3]. For example, Pan
et al. presented a catalog of 27 bug fix patterns. They describe each bug fix
pattern with a brief textual description and one listing that shows the changes
corresponding to the pattern’s instance (at the source code line level). For
example, the pattern Change of If Condition Expression (IF-CC) from Pan et
al. is described as follows:

Description: “This bug fix change fixes the bug by changing the condition
expression of an if condition. The previous code has a bug in the if condition
logic.”

Listing 1: Pattern Change of If Condition Expression defined by Pan et al.

− i f ( getView ( ) . countSe l e c t ed ( ) == 0)
+ i f ( getView ( ) . countSe l e c t ed ( ) <= 1)

Then, they measure the abundance of each bug fix pattern by mining bug
fix pattern instances from commits of version control systems. For that, the
authors use a tool called SEP to automatically identify pattern instances. We
observe that twos definitions co-exist for the same pattern: the natural language
one and the one that is encoded in the tool.

Our motivation is to introduce a new mechanism to formalize bug fix patterns
declaratively instead of having them hard-wired in tools. In particular, we aim
this formalization be both: a) human comprehensible; and b) used as input of
mining algorithms that search pattern instances.

In this section, we present a methodology to formalize bug fix patterns.
The method is based on AST analysis and tree differencing. In subsection 2.1,
we introduce the terminology used in this paper. Them, in subsection 2.2, we
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present a formalization of source code changes at the AST level. Finally, in
subsection 2.3, we present a formalization of bug fix patterns at the AST level.

2.1 Terminology

A Version Control System (VCS) records the history of software changes during
the development and maintenance of a software system. A bug fix change is an
actual change on source code to fix a bug. A bug fix pattern is a type of change
done to fix a bug. A bug fix pattern identifier classifies a concrete bug-fix change
as an instance of a bug-fix pattern. A revision is a set of source code changes
done over one file and introduced in the SCM. The revision produces a new
version of the modified field. A bug fix commit is a commit containing changes
to fix buggy code. A hunk is a set of co-localized changes in a source file. At the
level of lines, a hunk is composed of a consecutive sequence of added, removed
and modified lines. A hunk pair is a pair of related hunks, one hunk being a
section of code at version n and the other being the corresponding code in the
fixed version n + 1. Hunks are paired through the process of differencing that
computes them.

2.2 Representing Versioning Changes at the AST Level

Our method identifies bug fix pattern instances from version control system
revisions. It works at the abstract syntax tree (AST) level. This means we
represent a source code file revision with one AST. The advantage of this repre-
sentation is it allows us to extract fine-grained changes between two consecutive
revisions by applying an AST differencing algorithm. This involves representing
source code revisions as changes at the AST level. We use ChangeDistiller as
AST differencing algorithm.

if(myAccount.isEmpty(){…
}
else{

myAccount.operate();
}
myAccount.close();

if(myAccount.isEmpty(){…
}
myAccount.close();

Revision N Revision N+1

Bug hunk Fix hunk

Figure 2: A lined-based difference of two consecutive revisions. The bug hunk
in revision N (the left one) contains an “else” branch. The fix hunk in revision
N+1 is empty. The corresponding AST hunk (introduced in section 3.1) consists
of two nodes removal i.e. the ‘else’ node and the method invocation.

Let us take as example the change presented in Figure 2. It shows a lined-
based difference (syntactic) of two consecutive revisions. The bug hunk in revi-
sion N (the left one) contains an “else” branch. The fix hunk in revision N+1 is
empty. The change consists of a removal of code: removal of “else” branch. At
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the AST level, the AST differencing algorithm finds two AST changes: one rep-
resenting the removal of an else node and another for the removal of a method
invocation (i.e. myAccount.operate()) node surrounded by the else block.

ChangeDistiller handles a set of 41 source change types included in an object-
oriented change taxonomy defined by Fluri and Gall [5]. For example, the
taxonomy includes source code change types such as “Statement Insertion” or
“Condition Expression Change”. A code change type affects object-oriented
elements such as “field addition”. These elements are represented by 142 entity
types.

Formally, ChangeDistiller produces a list of “AST source code changes”. We
formalize each change (scc) in a 7-value tuple:

scc = (ct, et, id e, pt, id p, opt, id op)

where ct is one of the 41 change types, et (for entity type) refers to the source
code entity type related to the change. For example, a statement update may
change a method call or an assignment. The field id e is the identifier of the
mentioned entity. As ChangeDistiller is an AST differencing, that field corre-
sponds to the identifier of the AST node affected by the change. The field pt (for
parent entity type) indicates the parent code entity type where the change takes
place. For example, it corresponds to a top-level method body or to an “If”
block. id p is the identifier of the parent entity. For change type “Statement
Parent Change”, which represents source code movement, pt points to the new
parent element. Moreover, opt and id op indicate the parent entity type and the
identifier for the old parent entity. Both fields specify the place the moved code
was located before the change occurs, and they are omitted in tuples related to
changes types different from “Statement Parent Change”.

Let us present two examples of AST source code changes representation.
As first example, a removal of an assignment statement located inside a “For”
block is represented as: scc1 =(“Statement delete” (ct), “Assignment” (et),
node id 23 (id e), “For” (pt), node id 14 (id pt)).

As a second example, a movement of an assignment located in a method body
to inside an existing “Try” block located in the same method is represented as:
scc2 =(“Statement Parent Change” (ct), “Assignment” (et), node id 24 (id e),
“Try” (pt), node id 15 (id p), “Method” (opt), node id 10 (id op)). As this
change is a movement i.e. “Statement Parent Change”, its tuple includes the
identifiers and type from the location the code comes from (opt and id op, both
ignored in scc1) and the new location as well (pt and id p).

The structure contains information necessary to describe pattern’s changes.
In particular, it includes information of the parent entity type (and eventually
the new parent entity type for movement of code) to describe the entity type
where the changed entity is located. Moreover, the structure includes the iden-
tifiers (ids) of each entity involved in the change. This allows us to link the
entities (AST nodes) affected by the change. For instance, let us consider a
pattern that adds an if precondition just before a statement. An instance of
this pattern has two changes: one that corresponds to the addition of the if ;
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the other a movement of the assignment (now the parent entity is the added if
statement). The ids fields are used to validate whether the new location (parent
entity) of the moved assignment is the added if precondition. In the following
section we go deeper in the formalization of change patterns.

2.3 AST-based Pattern Formalization

In this section, we present a structure to formalize a bug fix pattern. This
structure is used to identify bug fix pattern instances from the AST-level rep-
resentation of revisions presented in section 2.2.

We specify a bug fix pattern with a structure composed by three elements:
a list of micro-patterns L, a relation map R, and a list of undesired changes U .

pattern = {L,R,U}

In the following subsection we describe each of those pattern elements.

2.3.1 List of Micro-patterns

A micro-pattern represents a change pattern over a single AST node. It is an
abstraction over ChangeDistiller’s AST changes [6]).

A micro-pattern is a 5-value tuple

mp = (ct, et, pt, opt, cardinality)

where ct, et, pt and opt2 have the same meaning as the source code change
formalization in section 2.2. The ct field is the only mandatory, while fields
et, pt and opt can take a wildcard character “*”, meaning they can take any
value. The field cardinality takes a natural number that indicates the number of
consecutive equivalent (with the same value in fields ct, et and pt) AST changes
it represents. It also can take the value wildcard, meaning that the micro-
pattern can represent undefined number of consecutive equivalent changes. By
default (absence of explicit value in mp tuple), the cardinality is value one. For
example, a micro-pattern (“Statement Insert”,*,*) means that an insertion of
one statement of any type (e.g., assignment) inside any kind of source code
entity, e.g. “Method” (top-level method statement) or “If” block. This micro-
pattern is an abstraction of all AST source code changes corresponding to the
addition of one AST node, whatever the node type and place in the AST.

The list of micro-patterns L represents the changes done by the pattern.
The list is ordered according to their position inside the source code file. It is
not commutative: a pattern formed by micro-pattern mp1 followed by mp2 is
not equivalent to another formed by mp2 followed by mp1. The former means
that mp1 occurs before mp2, while the latter means the opposite.

As example, let us present the AST representation of pattern “Addition of
Precondition Check with Jump” [3]. This pattern represents the addition of an
if statement that encloses a jump statement like return. It is represented by two

2We omit to specify opt in the tuple for addition, updates and removes operations.
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micro-patterns3: mp1 = (“Statement Insert”, “If”, *) and mp2 = (“Statement
Insert”, “Return”, “If”).

2.3.2 Relation Map

The relation map R is a set of relations between entities involved in micro-
patterns of L and U . Each relation links two entities (et, pt or opt) of two
different micro-patterns. The relation r is written as:

r = mp1.entity1 comp mp2.entity2

A relation formalizes a link between two elements (AST) from a pattern
instance. That means, the elements of a pattern instance must fulfill all the
relations from the pattern’s relation map.

Each relation has three elements: two operands and one operator. The
operator comp is used to compare the related entities. In particular, we use two
operators: equal (==) and not equal (!=). For example, the relation written as
mp1.pt == mp2.pt uses the former operator, and relation asmp1.pt != mp2.pt
the latter.

The operands entity1 and entity2 specify which entity field from each micro-
pattern (et, pt or opt) is involved in the relation. For instance, relation mp1.pt
== mp2.pt defines a relation between entity pt from micro-pattern mp1 and
entity pt from micro-pattern mp2. This relation expresses that two changes
affect entities with the same type of parent. Contrary, mp1.pt != mp2.pt
expresses that two changes affect entities with a different type of parent.

Another case of entity relation is expressed as mp2.pt == mp1.et. It defines
that a change (matched with mp1) is done in an entity whose parent entity is
affected by the second change (matched mp2).

As we mentioned, a pattern instance (i.e., a set of AST changes) must fulfill
all the relations defined by the pattern. For example, let us consider a pattern P
composed by micro-patterns mp1 and mp2 and one relation R1 = (mp1.pt ==
mp2.et). Then, let us suppose that a set of changes composed by changes scc1
and scc2, are instances of mp1 and mp2, respectively. Changes scc1 and scc2
form an instance of P iff R1 is fulfilled by them. To verify whether those
changes fulfill relation R1, we compare the identifiers of the entities affected by
the changes. The first term of R1, i.e. mp1.pt, corresponds to the parent of
scc1, i.e. scc1.id p. The second term of R1 (mp2.et) corresponds to the entity
of scc2 (scc.id e). As consequence, the relation R1 is fulfilled when scc1.id p
== scc2.id e.

2.3.3 Undesired Changes

Our bug fix pattern formalization also comprises a second list of micro-patterns.
The list of undesired changes U represents micro-patterns that must not be
present in the pattern instance. For example, the bug fix pattern “Removal of

3to simplify the example, we exclude jump statements ‘break’ and ‘continue’.
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an Else Branch” [3] requires only the “else” branch being removed, keeping its
related “if” branch in the source code. In other word, the related “if” must not
be removed.

As example, let us formalize this pattern. L contains one micro-pattern
mp1 = (“Statement delete”, “else”,“If”), U contains one undesired change
u mp1= (“Statement delete”, “If”,*) and R contains the relation u mp1.et !=
mp1.opt. Generally, relations associated to micro-patterns from U have an
operator “!=” and relate a micro-pattern of U with another from L. Hence, the
relation restricts that no undesired change be related to changes associated to
micro-patterns from L. In the example, the formalization of the pattern specifies
that: a) there is a deletion of a “else” (mp1); b) it does not exist a deletion of
an “if” entity that, in turn, is the parent entity of the deleted “else” (u mp1)).

3 Defining the Importance of Bug Fix Patterns

The notion of abundance of bug fix patterns refers to whether some bug fix
patterns are more important than others.

The “abundance of a bug fix pattern” is the number of commits in which
one observes an instance of the pattern.

The abundance reflects to what extent those bug fix patterns are used in
practice. For instance, Pan et al. report [3] that in the history of Lucene4, the
bug fix pattern “Change of if condition expression” (IF-CC) is the most common
pattern with 370 instances (12% of all bug fix pattern instances identified). On
the contrary, the pattern “Addition of operation in an operation sequence of
field settings” (SQ-AFO) is the less abundant pattern, with only 5 instances
being observed (0.2%).

To measure the abundance of one bug fix pattern we need to identify in-
stances of that pattern. The accuracy of bug fix pattern instance identification
refers to whether an approach yields the correct number of pattern instances.
The threat to the accuracy of the abundance measurement of bug fix patterns
is two-fold. First, one may over-estimate it by counting commits as instances
of the pattern while they are actually not (false positives). Second, one may
under estimate it by not counting commits, i.e. by missing instances (false
negatives). The challenge we address is to provide a mechanism to obtain an
accurate measure of bug fix pattern abundance, by minimizing both the number
of false positives and the number of false negatives.

Before to present an accurate pattern instance identifier in Section 3.2, we
present the notion of AST hunk.

4http://lucene.apache.org/core/

8



3.1 Defining “Hunk” at the AST level

Previous work has set up the “localized change assumption” [3]. This states
that the pattern instances lie in the same source file and even within a single
hunk i.e., within a sequence of consecutive changed lines. For example, Figure
2 shows an example of two consecutive revisions of a Java file and a hunk pair
representing the changes between the two revisions. The differences between
the two files are grouped in consecutive changed lines which are called “hunk”.
In Pan et al.’s work [3], the authors identify pattern instances that necessarily
belongs to only one hunk pair and, by transition, to one revision file.

From our experience, the “localized change assumption” is relevant in the
process of identification of bug fix pattern instances. Since we work at the level
of AST and hunk are the level lines (syntactic level), we define the notion of
“hunk” at the AST level. AST hunks are co-localized source code changes, i.e.,
changes that are near one from another inside the source code.

The notion of hunk is important for searching pattern instances. Our iden-
tifier aims at identifying pattern instances from AST source code changes that
are in the same hunk. That means, a pattern instance never contains AST
instances from different AST hunks.

For us, an AST hunk is composed of those AST changes that meet one
of the following conditions: a) they refer to the same syntactic line-based
hunk; or b) they are moves within the same parent element.

For instance, the two AST changes from the example of Figure 2 are in the
same AST hunk (both changes occur in the same syntactic hunk). By con-
struction, there is no AST hunk for changes related to comments or formatting,
while, at the syntactic, line based level, those hunks show up.

3.2 An Novel Algorithm to Identify Instances of Commit

Patterns from Versioning Transactions

This section presents an algorithm to identify bug fix pattern instances inside
an AST hunk (see Section 3.1). The pattern instance identifier algorithm is
composed of three consecutive phases: a) change mapping (Section 3.2.1);
b) exclusion of AST hunks containing undesired changes (Section 3.2.2); and
c) identification of change relations (Section 3.2.3). Let us explain each phase
in the remain of the section.

3.2.1 Mapping Phase

The pattern instance identification algorithm first processes the phase named
Mapping phase. The goal of the phase is to map each micro-pattern mpj of L
(list of micro-patterns, see section 2.3) with one AST change scci of the hunk.
The output of the phase is a map of micro-patterns and AST changes. The
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result of the mapping phase is successful if all micro-patterns of the bug fix
pattern appear in the AST hunk i.e., they have at least one mapping with AST
changes of the hunk. If this condition is not satisfied, the outcome phase is a
fail, stopping the execution of the following phases. In other words, a pattern
instance could not be identified in the hunk.

The mapping algorithm is explained in Section 10. Before, in Section 3.2.1
we detail the algorithm to match AST changes with micro patterns.

Algorithm 1: Algorithm to verify the matching between a micro-pattern
and an AST change

Input: micro pattern ⊲ Micro-pattern
Input: change ⊲ AST change (scc)
Output: boolean value: true if the AST change change matches with the

micro-pattern micro pattern
1 begin

/* First, comparison of change types */

2 if micro pattern.ct == change.ct then

/* Then, comparison of entity types */

3 if micro pattern.et != “*” and micro pattern.et != change.et then

4 return false;

/* Finally, comparison of parent entity types */

5 if micro pattern.pt != “*” and micro pattern.pt != change.pt then

6 return false;
7 else

8 return true;

9 else

10 return false;

Mapping Creation Criterion A change scc is mapped to the micro-pattern
mp if scc is an instance of the change described by the mp. This relation is
verified by matching the structures scc andmp. Algorithm 1 shows the matching
algorithm pseudo-code. Both match (the matching is true) if their change types
(line 2), entity types (line 3) and parent types (line 5) are the same. Note that if
one wildcard (see Section 2.3) is specified, the field comparison is ignored (lines
3 and 5).

Mapping Algorithm Overview Let us first explain the mapping procedure
and then we detail the algorithm step by step in Section 28.

First, the mapping algorithm tries to find a mapping between list of micro
patterns and a sequence of AST changes of the hunk. The algorithm first
searches all possible beginnings of the pattern in the hunk. A beginning is an
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AST change from the hunk and candidate to be the first element of the pattern
inside the hunk. In other words, it must match with the first micro pattern.

Then, the algorithm tries to search a pattern instance from each of those
beginnings. For each beginning, it proceeds to map the changes that follow
the beginning with the list of micro-patterns. It iterates both the sequence of
changes and the list of micro-patterns at the same time. A matching between a
change and a micro-pattern is done in each iteration (as we explain in Section
3.2.1). If both match, the algorithm continues with the iteration, otherwise it
stops analyzing the sequence and continues with the following beginning. Once
the algorithm maps all micro-patterns with a sequence of changes, it returns
that mapping. This sequence of AST changes is candidate to be a pattern
instance.

It is important to note that the mapping phase defines two restrictions for
the mappings between AST changes in a hunk and the micro-patterns. We
call the first restriction mapping total order. It defines that the mapped AST
changes must satisfy the order defined by L. Let us consider the list of micro
patterns L= {mp1,mp2} and an AST hunk H = {scc1, scc2}. The mapping
scc1 with mp1 and scc2 with mp2 is valid. Let us explain why. The mapped
AST changes respect the order imposed by the pattern i.e., through L, the
first AST element of the hunk mapped with the first micro pattern, and so on.
However, the mapping scc1 with mp2 and scc2 with mp1 is not valid. As mp1
appears before mp2 in L, then scc2 (mapped to mp1) must appear before scc1
in the hunk, and this is not the case. As consequence, this last mapping is not
valid.

We call consecutive mapping to the second restrictions. It defines the
mapped AST changes must be consecutive inside the hunk. In other words,
it cannot exist one no-mapped change between two mapped changes. For in-
stance, given a pattern formalization with 2 micro-patterns mp1 and mp2, and
an AST hunk composed by 3 AST changes scc1, scc2 and scc3. Then, the
mapping mp1, scc1 and mp2, scc3 is invalid due scc2 is not mapped and it is
located between scc1 and scc3, both mapped changes.

Mapping Algorithm Pseudo-code Now, let us analyze the algorithm in
detail. Algorithm 2 shows the pseudo-code of this mapping phase. The input
of the algorithm is the list of micro-patterns L that represents the pattern, and
a list of changes Changes that represents one AST hunk.

The algorithm starts by searching a list initial changes of AST changes.
The list contains “candidates beginning” of the pattern inside the hunk i.e., in
list Changes (line 3). Each change of initial changes matches with the first
micro-pattern (see Algorithm 1 and explanation in Section 10).

Then, for each AST change initial of the mentioned list initial changes, the
algorithm tries to map all micro-patterns of L with the sequence S of consecutive
AST changes that follow initial. The algorithm defines two cursors change i
and micro pattern i to iterate the sequence S and L, respectively. In each
iteration (line 6), the algorithm matches the head of both cursors (line 12)
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using Algorithm 1. If both match, the algorithm maps them and saves the
association (line 13). After that, the cursors are updated (line 14 to 18 and
from 22 to 23). The micro-pattern cursor is only updated once the algorithm
has analyzed as many AST changes as the micro-pattern’s cardinality indicates
(line 16). When the cardinality is “∗” (wildcard), the cursor micro pattern i is
updated (line 22) if at least one change from S is mapped to the current micro
pattern (line 20).

The algorithm finishes successfully when all micro-patterns are mapped to
consecutive AST changes (line 23 and 24).

3.2.2 Undesired Changes Validation Phase

The second phase verifies that no change of the undesired changes U list is
present in the hunk. The algorithm of this phase maps changes for U with
AST changes from the hunk. So it is similar to that one corresponding to the
Mapping phase.

As opposed to the previous phase, an empty set of mappings is a good signal:
no undesired change is present in the hunk. Contrary, in case that the micro-
patterns of U are mapped to changes of the hunk, the relations over them must
be fulfilled by the phase defined in section 3.2.3.

3.2.3 Relation Validation Phase

The change relation validation phase verifies that the relations defined by the
pattern’s relation map are satisfied by the mapped AST changes of the hunk.
For the validation, the maps calculated in the two previous phases (3.2.1 and
3.2.2) are used.

Algorithm 3 shows the corresponding pseudo-code. First, for each relation
the algorithm retrieves the two micro-patterns it relates (lines 3 and 4). Then,
it retrieves the AST changes mapped to those micro-patterns (lines 5 and 6).
After that, the algorithm retrieves the identifiers of the entities related to the
changes. For that, function getIdFromEntityType first determines which kind
of entities (et, pt, or opt) the relation pinpoints. Then, it returns the identifier of
the corresponding entity (lines 9 and 10). Finally, the two entity identifiers are
compared (line 12) according to the operator defined by the relation (line 11).
The comparison involves comparing ids of the entities i.e., AST nodes affected
by the changes. As this phase is the last one from the AST change pattern
identification, a successful validation of all relations means the presence of a
pattern inside the analyzed hunk.

3.2.4 Identification Outcome

Once all phases were executed, the pattern instance identification algorithm
determines the presence of a pattern instance inside the analyzed hunk if the
following conditions are valid: a) all micro-patterns of L are mapped and the
mapped AST changes from L fulfill relations of R; and b) no micro-pattern of
U is mapped or every mapped AST change from U fulfill relation of R.
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3.2.5 Conclusion

In this subsection, we have presented an algorithm to identify bug fix pattern
instance in versioning transactions. This algorithm allows us to measure the
abundance of bug fix patterns. Then, the abundance can be used in the auto-
matic software repair field, for example, to define probabilistic repair models.

In the remain of the section we present two evaluations. In section 4.1, we
evaluate the genericity of our bug fix pattern formalization approach. In section
4.2 we evaluate the accuracy of our approach with a manual analysis of a random
sample of bug fix pattern instances found in commits of an open-source project.

4 Evaluation

In this section, we present a evaluation of our AST-based bug fix pattern iden-
tifier presented in Section 2. First, in section 4.1, we evaluate the genericity of
our bug fix pattern formalization approach. Then, in section 4.2 we evaluate
the accuracy of our approach with a manual analysis of a random sample of bug
fix pattern instances found in 86 commits of an open-source project.

4.1 Evaluating the Genericity of the Pattern Specification

Mechanism

In this section, we focus on the bug fix formalization we presented in section 2
and present an evaluation of its genericity. That means, we evaluate whether it
is possible to specify known and meaningful bug fix patterns using our formal-
ism.

Can our specification format represent known and meaningful bug fix
patterns?

To answer this research question, we first present bug fix patterns from the
literature in section 4.1.1 and a set of new bug fix patterns in section 4.1.2. We
eventually formalize these patterns in section 4.1.3.

4.1.1 Source #1: Bug Fix Patterns from the Literature

Pan et al. [3] have defined a catalog of 27 bug fix patterns divided in 9 cat-
egories. The categories are: If-related, Method Calls, Sequence, Loop, As-
signment, Switch, Try, Method Declaration and Class Field. According to the
number of citations, this is one of the most important papers on bug fix patterns.

Furthermore, we also consider three additional new bug fix patterns proposed
by Nath et al. [7]. The patterns are named as: “method return value changes”,
“scope changes” and “string literals”.

The existing definitions of bug fix patterns are written in natural language
and are sometimes ambiguous. Before formalizing them, we have to clarify four
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bug fix patterns from Pan et al. to facilitate their comprehension and formaliza-
tion. We split four patterns whose definition mixes adding and removing code.
For instance, “Add/removal of catch block” becomes “Add of catch block” and
“Removal of catch block”. Within the 27 original patterns, four of them were
split, this results in a restructured catalog of 31 patterns (27 + 4).

4.1.2 Source #2: New Bug Fix Patterns

In this section, we present new meaningful bug fix patterns that we found our-
selves. We identified them while browsing many commits that were done to
repair bugs [4].

Pattern DEC-RM: Deletion of variable declaration statement This
bug fix pattern consists of the removal of a variable declaration inside the buggy
method body (e.g. after a refactoring to transform a variable as field). This
pattern is a sibling of Pan’s patterns related to Class Field (i.e. Removal of a
Class Field) but at method level.

Pattern THR-UP: Update of Throw Statement This bug fix pattern
corresponds to the update of a throw statement. It includes changing the type
of exception that is thrown, or modifying the exception’s parameter.

Pattern MC-UP-CH: Update of Method Invocation in Catch

Blocks This bug fix pattern consists in modifying the source code inside a
catch body. This bug fix pattern hints that some bug fixes change the error
handling code of catch blocks.

Pattern CONS-UP: Update of Super Constructor Invocation This
bug fix pattern refers to the modification of super statement invocation, e.g., to
change the parameter values. This bug related to incorrect calls to super were
so far not discussed. “Super” is, according to our teaching experience, a hard
concept of object-oriented design.

Pattern IF-MC-ADD: Addition of Conditional Method Invocation

This bug fix pattern adds an if whose block contains one method invocation.
This change could correspond to the addition of a guarded invocation, typically
done in a bug fix to add missing logic in a limit cases. In Pan et al.’s catalog,
there is a pattern “Addition of Precondition Check”, that only adds the guard
around an existing block. In contrast, our pattern also specifies the addition
of both the precondition and the code of the “if block”. Consequently, both
patterns are related, they share the same motivation, but they are conceptually
disjoint.

Pattern IF-AS-ADD: Addition of Conditional Assignment This
bug fix pattern represents the case of adding an if statement and an assignment
inside its block. It corresponds to a modification of a variable value under a
specific condition defined by the if.

4.1.3 Results

In this section, we present a formalization of bug fix patterns, using the formal-
ization presented in section 2.3. We formalize: a) 18 bug fix patterns from Pan
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et al., belonging to the categories If, Loops, Try, Switch, Method Declaration
and Assignment; b) 2 patterns proposed by Nath et al. [7]; c) 6 new bug fix
pattern presented in section 4.1.2.

Table 1 shows the result of the formalization of those bug fix patterns. The
table groups the formalization according the source of the patterns i.e., Pan,
Nath, and the new bug fix patterns presented in section 4.1.2. Column Name
shows the bug fix pattern identifier. The remaining three columns correspond
to the formalization itself: L (Micro-Patterns) the list of micro-patterns, U
(Undesired Micro-Patterns) the list of undesired changes and R (Relational Map
relations between micro-patterns.

The table presents bug fix patterns that are formalized by two or more
sub-patterns. For example, pattern IF-APCJ (Addition of If PreCondition and
Jump statement) is formalized by three sub-patterns. Each of these sub-patterns
identifies pattern instances with a concrete jump statement. One corresponds
to “break” jump statement, the other to “continue” jump statement and the
last one to “return” statement.

The table also shows that the size of the micro-pattern list L varies between
one and three. For those that L has two or three micro-patterns such as TY-
ARTC, it exists a relation in R that defines a relation between micro-patterns
(See Section 2.3.2). For those that U is not empty, a relation from U links a
micro-pattern from R with another U (See Section 2.3.3 ).

In section 5 we discuss the limitations of our approach to formalize the
remaining patterns from Pan et al. bug fix catalog.

4.1.4 Summary

In this section, we have shown that our approach is able to formalize 26 bug fix
patterns. This answers our research question: our approach is flexible enough
to formalize bug fix patterns from the literature and can also be used to specify
new bug fix patterns.
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Algorithm 2: Algorithm to map micro patterns to AST changes

Input: L ⊲ List of micro-patterns
Input: Changes ⊲ List of AST changes of a hunk
Output: boolean value: true if all micro-patterns of the pattern are

mapped to AST changes of the hunk, false otherwise
Output: Mapping of Micro-Patterns and Changes from Changes

1 begin

/* Retrieves the first micro-pattern */

2 micro pattern i ← getMicropattern(L,0) ;
/* Search AST changes of the hunk that matches with

micro pattern i */

3 initial changes ← getFirstMatchingChanges(Changes, micro pattern i) ;
4 if initial changes is null then
5 return false, ∅

6 foreach change initial of the list initial changes do
7 change i ← initial; M ← ∅ ;
8 partialMapping ← true;
9 cardinality iter ← 0 ;

10 while partialMapping and micro pattern i is not null and change i
is not null do

/* cardinality receives a natural number or ∗
(wildcard) */

11 cardinality ← cardinality(micro pattern i);
/* Comparison of AST change and micro-pattern */

12 if match(micro pattern i, change i) then

13 saveMapping(M, micro pattern i, change i) ;
14 change i ← getNextASTChange(Changes, change i);
15 cardinality iter ←cardinality iter +1 ;
16 if cardinality != “*” and cardinality iter == cardinality

then

17 micro pattern i ← getNextMicropattern(L,
micro pattern i);

18 cardinality iter ← 0 ;

19 else

/* if current micro pattern i could be mapped,

analyze next micro-pattern */

20 if cardinality == “*” and isMapped(M, micro pattern i);
21 then

22 micro pattern i ← getNextMicropattern(L,
micro pattern i);

23 cardinality iter ← 0 ;

24 else

25 partialMapping ← false;

/* Return true if all analyzed changes are mapped and

all micro-patterns from L are mapped to changes from

Changes */

26 if partialMapping and allMapped(M, L, Changes) then

27 return true, M

28 return false, ∅
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Algorithm 3: Algorithm to verify the relation between AST changes

Input: R ⊲ List of relations of a pattern
Input: M ⊲ Mapping of Micro-Patterns and Changes
Output: boolean value: true if the mapped AST changes respect the

relations defined by the pattern, false otherwise
1 begin

2 foreach relation relation of the list R do

3 micro pattern 1 ← getFirstMicropattern(relation);
4 micro pattern 2 ← getSecondMicropattern(relation);
5 changes 1 ← getMappedChanges(micro pattern 1, M);
6 changes 2 ← getMappedChanges(micro pattern 2, M);
7 foreach change change 1 of the list changes 1 do

8 foreach change change 2 of the list changes 2 do

9 id entity 1 ← getIdFromEntityType(relation.entity1,
change 1);

10 id entity 2 ← getIdFromEntityType(relation.entity2,
change 2);
/* operator receives values ‘‘==’’ or ‘‘!=’’ */

11 operator ← relation.comp;
/* Applies the comparison operator operator to

id entity 1 and id entity 2 */

12 comparison ← evaluate(id entity 1, id entity 2, operator) ;
/* If the relation is not valid, the phase

returns false */

13 if comparison == false then return false;
14 ;

/* All relations were valid */

15 return true;

/* Return an entity identifier according to the field (et, pt
and opt) that a relation links */

16 Function(getIdFromEntityType( relation, change) : id)
17 begin

18 if relation.entity is a et field then

19 return change.id et;
20 else

21 if relation.entity is a pt field then

22 return change.id pt;
23 else

24 return change.id opt;
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Name L (Micro-Patterns) U (Undesired Micro-Patterns) R (Relational Map)
New bug fix pattens
DEC-RM Delete of Variable decla-

ration statement
mp1 = (Statement delete, Variable declaration, Method)

THR-UP Update of Throw state-
ment

mp1 = (Statement update, Throw, Method)

MC-UP-CH Update of Method invo-
cation in Catch clause

mp1 = (Statement update, Method invocation, Catch
clause)

CONS-UP Update of Super con-
structor invocation

mp1 = (Statement update, Super constructor invocation,
Method)

IF-MC-ADD Addition of precondition
method invocation

mp1 = (Statement insert,If, Method) mp2.pt == mp1.et

mp2 = (Statement insert, Method invocation, If)
IF-AS-ADD Addition of precondition

assignment
mp1 = (Statement insert, If, Method)

mp2 = (Statement insert, Assignment, If) mp2.pt == mp1.et
Pan et al. bug fix pattens
IF-APC Addition of Precondi-

tion Check
mp1 = (Statement Insert, If,*) mp2.pt == mp1.et

mp2 = (Statement Parent Change,*, If)
IF-APCJ

Add
Precondition
Check with
Jump (3
subcases)

mp1 = (Statement Insert, If,*) mp2.pt == mp1.et
mp2 = (Statement Insert, Break, If)
mp1 = (Statement Insert, If,*)
mp2 = (Statement Insert, Continue, If)
mp1 = (Statement Insert, If,*)
mp2 = (Statement Insert, Return, If)

IF-RMV Removal of an If Predi-
cate

mp1 = (Statement Delete, If,*) mp2.pt == mp1.pt

mp2 = (Statement Parent Change,*, If)
IF-ABR Addition of an Else

Branch
mp1 = (Alternative Part Insert, Else Statement,*) u mp1 = (Statement In-

sert, If,*)
u mp1.pt != mp1.pt

IF-RBR Removal of an Else
Branch

mp1 = (Alternative Part Delete, Else Statement,*) u mp1 = (Statement
Delete, If,*)

u mp1.opt != mp1.et

mp2 = (Statement Parent Change,*, Else Statement)
IF-CC Change of If Condition

Expression
mp1 = (Condition Expression Change, If,*)

LP-CC Change of Loop Predi-
cate(3 subcases)

mp1 = (Condition Expression Change, While,*)

mp1 = (Condition Expression Change, For,*)
mp1 = (Condition Expression Change, Do,*)
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SW-ARSB Addition of Switch
Branch

mp1 = (Statement Insert, Switch Case,*) u mp1 = (Statement
Insert, Switch State-
ment,*)

u mp1.et != mp1.pt

SW-ARSB Removal of Switch
Branch

mp1 = (Statement Delete, Switch Case,*) u mp1 = ((Statement
Delete, Switch State-
ment,*)

u mp1.et != mp1.pt

TY-ARTC
Addition of Try
Statement

mp1 = (Statement Insert, Try,*) mp1.et == mp2.pt and
mp1.et == mp3.pt

mp2 = (Statement Parent Change , *, Try)
mp3 = (Statement Insert, Catch Clause,*)

TY-ARTC Removal of Try
Statement

mp1 = (Statement Delete, Try,*) mp1.et == mp2.pt and
mp1.et == mp3.pt

mp2 = (Statement Parent Change, *, Try)
mp3 = (Statement Delete, Catch Clause,*)

TY-ARCB Addition of a Catch
Block

mp1 = (Statement Insert, Catch Clause,*) u mp1 = (Statement In-
sert, Try,*)

u mp1.et != mp1.pt

TY-ARCB Removal of a Catch
Block

mp1 = (Statement Delete, Catch Clause,*) u mp1 = (Statement
Delete, Try,*)

u mp1.et != mp1.pt

MD-CHG

Change of Method
Declaration (7 subcases)

mp1 = (Parameter Insert, Single Variable Declaration,*)
mp1 = (Parameter Delete, Single Variable Declaration,*)
mp1 = (Parameter Type Change, Simple Type,*)
mp1 = (Parameter Type Change, Primitive Type,*)
mp1 = (Parameter Ordering Change, Single Variable Dec-
laration,*)
mp1 = (Return Type Change, Simple Type,*)
mp1 = (Return Type Change, Primitive Type,*)

MD-ADD Addition of a Method
Declaration

mp1 = (Additional Functionality, Method,*)

MD-RMV Removal of a Method
Declaration

mp1 = (Removed Functionality, Method,*)

CF-ADD Addition of a Class Field mp1 = (Additional Object State, Attribute,*)
CF-RMV Removal of a Class Field mp1 = (Removed Object State, Attribute,*)
Nath et al. bug fix pattens
Nath-1 Scope changes

(2 subcases)
mp1 = (Statement Parent Change, *,*,*) u mp1 = (Statement

Delete, *,*)
u mp1.et != mp1.opt

mp1 = (Statement Parent Change, *,*,*) u mp1 = (Statement In-
sert, *,*)

u mp1.et != mp1.pt

Nath-3 Method return value
changes

mp1 = (Statement Update, Return,*)

Table 1: Formalization of bug fix patterns.
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4.2 Evaluating the Accuracy of AST-based Pattern In-

stance Identifier

In this section, we present an experiment to measure the accuracy of our bug
fix pattern instance identifier presented in section 3.2 . This evaluation is built
on the following research question: Is our AST-based pattern instance identifier
more accurate than the state-of-the-art pattern identifier presented by Pan et
al. [3]?

The experiment consists of a manual inspection and validation of bug fix
pattern instances identified in 86 commits of an open-source project. Given a
bug fix commit and an instance of pattern Pi identified by an identifier, the
instance is considered valid if the manual inspection validates that the change
indeed corresponds to pattern Pi. Otherwise, the instance is considered invalid.

4.2.1 Evaluated Pattern Instance Identifiers

4.2.1.1 Baseline Classifier The baseline tool we selected is called SEP5.
SEP is a token-based classifier used to identify bug fix instances from revisions
of Java files (a revision is a pair of file, say Foo.java version 1.1 and Foo.java
version 1.2). According to the code symbols, this tool was used to gather the
results presented in Pan et al.’s study [3].

4.2.1.2 AST-based Classifier We develop a tool that implements the AST
classifier presented in Section 3.2. The tool is implemented in Java and uses
ChangeDistiller [5] to obtain AST-level differences between consecutive revisions
of a file. We use a publicly available implementation of ChangeDistiller6.

We limit both tools to identify instances of 18 bug fix patterns from Pan et
al. bug fix catalog. These patterns are those we are able to represent using our
pattern formalization presented in section 4.1.3.

4.2.2 Analyzed Data

We randomly selected a sample of 86 revisions (pairs of Java files) from the
CVS history of the Lucene open-source project (from 09/2001 to 02/2006). The
sampling strategy is that those revisions contain a small number of source code
changes, less than 5 AST changes (this excludes formatting and documentation
changes). Lucene is one of the six open-source software applications used in Pan
et al.’s work. The dataset is available on [8].

4.2.3 Experimental Results

Table 2 shows the result of the manual inspection for pattern instances from
Lucene’s revisions identified by our AST-based approach and SEP tool. For
each algorithm, the table shows the number of valid pattern instances, i.e. the

5http://gforge.soe.ucsc.edu/gf/project/sep/scmsvn/
6http://www.ifi.uzh.ch/seal/research/tools/changeDistiller.html
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Valid Not Valid Missing
Pan et al’s Token-based Approach 62 74 27
Our AST-based Approach 78 0 11

Table 2: The Results of the Manual Inspection of Bug Fix Pattern Instances.
The row “Token-Based” corresponds to the instances identified by the token-
based classifier. The row “AST-Based” corresponds to the instances identified
by the AST classifier.

true positives (column “Valid”) and the number of invalid instances, i.e., the
false positive instances (column “Not Valid”). Moreover, it shows a number of
missing instances (false negatives) i.e. valid instances that an approach could
identify but the other could not (column “Missing”). This number is not an ab-
solute number of false negatives, it is only relative with respect to the approach.
In the remaining of this section we study the accuracy of both approaches.

4.2.3.1 Accuracy Definition We define the accuracy of a bug fix pattern
identifier as follows:

accuracy =
number of bug fix instance correctly identified

total number of instance identified + missing pattern instance

For instance, a pattern identifier that identifies 5 instances, all correctly, but
misses 2 instances, has an accuracy of 5/(5 + 2) = 0.71. Another example is
an identifier that correctly identifies 4 instances, incorrectly 1 and misses 2. Its
accuracy is 4/(4 + 1 + 2) = 0.57. According to the accuracy values, the first
identifier is more accurate than the second one.

4.2.3.2 Accuracy of Token-based Identification The token-based iden-
tifier finds 136 instances of bug fix patterns in the 86 commits. Table 2 shows
that our manual inspection found 62 valid pattern instances (true positives), 74
invalid (false negatives) and 27 missing instances. The accuracy of the token-
based instance identifier is 62/(62 + 74 + 27) = 0.38.

Let us analyze some cases where the identifier finds invalid instances. For
instance, the token-based identifier identifies from revision 1.4 of class “Fil-
teredQuery”, an invalid instance of pattern “Change of Method Declaration”
(MD-CHG) and another invalid instance of pattern “Addition of precondition
with jump” (IF-APCJ). The actual bug fix pattern in this commit is “Addition
of Method Declaration” (MD-ADD). The first invalid instance is due to a wrong
mapping between the lines of the revision. The added method is “mapped” to
an existing method (with different signature), resulting in the change being in-
terpreted as an update of the method declaration. For the second false positive,
the invalid pattern instance is identified inside the code of the added method.

We also found false positive instances caused by formatting changes be-
tween consecutive revisions. For example, the revision 1.3 of Lucene’s class
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GermanStemmer applies formatting changes in the source code and among the
many modified lines, one local variable is initialized. The token-based identifier
incorrectly identifies from this pair 21 instances of 9 different bug fix patterns.
The formatting changes produce a complex mapping between the revision and
its predecessor in many hunks. Consequently, the code inside these formatting
hunks matching with a bug fix pattern definition is incorrectly identified as an
instance.

4.2.3.3 Accuracy of AST-based Identification The AST-based identi-
fier found 78 bug fix pattern instances. These instances were present in 53 differ-
ent revisions. Moreover, the identifier could not identify 11 instances (missing).
The accuracy of this identifier is 78/(78 + 11) = 0.88.

Our manual inspection found that 100% (78/78) of the pattern instances
were valid (the data is available). This implies all bug fix instances were true
positives. These identified instances correspond to 9 different bug fix patterns.
However, the algorithm also missed some instances, i.e., suffers from false neg-
atives, which are discussed in Section 4.2.3.4.

4.2.3.4 False Negatives A false negative (or missing) instances is a valid
bug fix pattern instance which is not identified by a pattern instance identifier.
To detect those instances from the analyzed data, we cross the results obtained
from both AST and token-based approaches. A missing instance of a pattern
instance identifier A is not identified by A but is identified correctly by the other
approach.

Table 2 presents the classification result. The token-based approach had 27
missing bug fix instances while the AST-based one had 11 false negatives.

Let us now analyze the false negatives of our approach. For 7 of 11 missing
instances, the cause is due to the tree differencing tool (ChangeDistiller) we use
to compute the differences between two consecutive revisions. ChangeDistiller
does not compute changes inside anonymous and inner classes and there were
7 pattern instances in such classes in our data. For example, our algorithm
does not identify an instance of pattern “Removal of if predicate (IF-RMV)” in
revision 1.21 of class IndexSearcher, the instance is in the inner class HitCollec-
tor. Another case is that our approach does not see changes in the specification
of thrown exceptions (keyword “throws” in Java), which are instances of pat-
tern “Change of method declaration (MD-CHG)”. For example, revision 1.4 of
class TestTermVectorsWriter modifies the signature of the method by adding a
clause “throws IOException”. Our tree differencing algorithm does not consider
those changes and this limitation impacts the accuracy of this particular bug
fix pattern.

4.2.4 Conclusion

The manual analysis done in the presented experiment allows us to respond
to our research question: our AST-based identifier is more accurate than the
token-based used by Pan et al. in their experiments.
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#Commits #Revisions #Java Revisions
All 24,042 173,012 110,151

BFP 6,233 33,365 23,597

Table 3: Versioning data used in our experiment. Since we focus on bug fix
patterns, we analyze the 23,597 Java revisions whose commit message contains
“bug”, “fix” or “patch”.

The results of our experiment are summarized in Table 2. It shows that
our AST-based identifier is able to identify: more valid bug fix instances (more
true positives); less invalid instances (less false positives); less number of missing
instances (less false negatives). Consequently, we can say that it is more accurate
(0.88 vs. 0.38) than the token-based approach.

4.3 Learning the Abundance of Bug Fix Patterns

In this section, we use the bug fix pattern instance identifier presented in Section
3.2 to measure the abundance of bug fix patterns. The abundance allows us to
measure the abundance of bug fix patterns. Then, one can define a probabilistic
repair model formed of bug fix patterns and their frequencies [4].

This kind of probabilistic repair model could be used by bug fix pattern-
based repair approaches such as PAR [2]. To create candidate fixes, PAR in-
stantiates 10 bug fix templates, derived from bug fix patterns. Then, PAR
navigates the search space in a uniform random way, that means, it takes ran-
domly one bug fix template to be applied in a buggy location. The pattern
abundance could be used in an extension of the strategy to navigate the search
space. Instead of a random strategy, the extension could start navigating the
space from the most abundant bug fix templates (i.e., the most frequent kind
of fixes applied by developers) to the less abundant. This strategy could help
to find a fix faster, avoiding applying infrequent changes in bug fixing.

4.3.1 Dataset

We have searched for instances of the 18 patterns mentioned in 4.1 in the history
of six Java open source projects: ArgoUML, Lucene, MegaMek, Scarab, jEdit
and Columba. In Table 3 we present the total number of commits (versioning
transactions) and revisions (file pairs) present in the history of these projects.
In the rest of this section, we analyze the 23,597 Java revisions whose commit
message contains “bug”, “fix” or “patch”, in a case insensitive manner (row
“BFP” in Table 3).

4.3.2 Empirical Results

Table 4 shows that our approach based on AST analysis scales to the 23,597
Java revisions from the history of 6 open source projects. This table enables
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Pattern name Abs

Change of If Condition Expression-IF-CC 4,444
Addition of a Method Declaration-MD-ADD 4,443
Addition of a Class Field-CF-ADD 2,427
Addition of an Else Branch-IF-ABR 2,053
Change of Method Declaration-MD-CHG 1,940
Removal of a Method Declaration-MD-RMV 1,762
Removal of a Class Field-CF-RMV 983
Addition of Precond. Check with Jump-IF-APCJ 667
Addition of a Catch Block-TY-ARCB 497
Addition of Precondition Check-IF-APC 431
Addition of Switch Branch-SW-ARSB 348
Removal of a Catch Block-TY-ARCB 343
Removal of an If Predicate-IF-RMV 283
Change of Loop Predicate-LP-CC 233
Removal of an Else Branch-IF-RBR 190
Removal of Switch Branch-SW-ARSB 146
Removal of Try Statement-TY-ARTC 26
Addition of Try Statement-TY-ARTC 18
Total 21,234

Table 4: The Abundance of Bug Fix Patterns: Absolute Number of Bug Fix
Pattern Instances Found in 23,597 Java Revisions.

24



us to identify the abundance of each bug fix pattern. For instance, adding new
methods (MD-ADD) and changing a condition expression (IF-CC) are the most
frequent patterns while adding a try statement (TY-ARTC) is a low frequency
action for fixing bugs. Overall, the distribution of the pattern instances is
skewed, and it shows that some of Pan’s patterns are really rare in practice.
Interestingly, we have also computed the results on all revisions – with no filter
on the commit message – and the distribution of patterns is rather similar. It
seems that the bug-fix-patch heuristic does not yield a significantly different set
of commits.

4.3.3 Summary

In this subsection, we presented the abundance of 18 bug fix patterns from the
analysis of 6 open-source projects. We found that the most frequent changes
to fix bugs are changes in if condition statements. Knowing this distribution
is important in some contexts. For instance, from the viewpoint of automated
software repair approaches: their fix generation algorithms can concentrate on
likely bug fix patterns first in order to maximize the probability of success.

5 Discussion

5.1 Threats to Validity

Our results are completely computational and a severe bug in our implementa-
tion may invalidate our findings. During our experiments, we studied in details
dozens of bug fix pattern instances (the actual code, the fix and the commit
message) found by the tool and they were meaningful.

Another threat is the criterion to manually classify a bug fix pattern instance
as valid or not. It could vary depending on who inspects it (an expert, a
developer, a novice, etc.).

5.2 Limitations

In this section we sum up the limitations of our bug fix pattern formalization
approach.

5.2.1 Context Dependence

We notice that some patterns only describe the nature of change itself, while
others describe the change in a given context. By nature of change, we mean
only the added and removed content; by context, we mean the code around
the added and removed content. For instance, Pan et al. define a pattern
representing the removal of a method call in a sequence of method calls. To us,
this pattern is context-dependent. To observe an instance of removal of a method
call in a sequence of method calls: 1) the change itself has to be a removal of a
method call 2) the context of the removal has to be a sequence of method calls
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on the same object. In total, there is a minority of 8/31 bug fix patterns of the
refined catalog presented in section 4.1.1 that are context-dependent.

We do not consider those context-dependent bug fix patterns. This limita-
tion could probably be overcome with a way to specify the “context” (the code
surrounding the diff) at the AST level.

5.2.2 Limitations Inherited from ChangeDistiller

Another limitation of our pattern formalization approach is due to the change
taxonomy used by tree differencing algorithm. ChangeDistiller misses some
kinds of source code changes. For instance, an update operation in a class field
declaration is not detected. This limitation prevents us to represent pattern
“Change of Class Field Declaration” (CF-CHG) using AST changes as well as 4
other patterns. Those 5 patterns contain at least one change that is not covered
by the change taxonomy of ChangeDistiller.

Another limitation is the granularity of the tree differencing algorithm.
ChangeDistiller works at the statement level. This prevents us to study cer-
tain fine-grain patterns. For example, the addition of a new parameter or the
change of an expression passed as parameter of a method call cannot be de-
tected. Also, as we discussed in Section 4.2.3.4, the tree differencing algorithm
does not detect changes inside anonymous classes. Improvement or replacement
of the tree differencing algorithm could potentially decrease the number of false
negatives.

6 Related Work

6.1 Bug Fix Patterns and Defect Classification

Pan et al. [3] present a catalog of 27 bug fix pattern and a tool to extract
instances of them from source code. In this paper, we present an AST-based
approach to identify bug fix patterns that, according to our evaluation, it is
more accurate than the approach presented in Pan et. al.’s work.

Nath et al. [7] manually measure the abundance of Pan et al. patterns in
CheckStyle java open-source project. They inspect by hand a set of bug fix
changes to calculate this measure and also propose three alternative patterns
discovered from this manual inspection. A difference with their work is that we
automatically identify bug fix instances.

DeMillo and Mathur [9] present a syntactic fault classification scheme. They
use this schema to classify the errors reported by Knuth [10]. The fault classifi-
cation algorithm automatically classifies errors using a top-down strategy. As in
our work, they rely on tree comparison to obtain the differences between them.

Chillarege et al. [11] present an Orthogonal Defect Classification (ODC). It
corresponds to a categorization of defects into classes called Defect Types. This
categorization has 8 defect types. Then, they study the relation between these
classes and the different stages on the software development process. The defect
classification is at a higher level compared to bug fix patterns at the AST level.

26



Duraes et al. [12] present a analysis of a collection of real software faults. They
refine the aforementioned ODC, considering the language construct and program
context surrounding the fault location. Contrary to our automatic approach,
they manually analyze “diff” of several open source programs to classify the
faults.

Ostrand and Weyuker’s [13] present a scheme for categorizing software er-
rors. They characterized an error in distinct areas, including “major category”,
“type”, presence, and use of data. For example, “major category” identifies
what type of code was changed to fix the error. They develop this classification
schema from change reports filled out by developers of an industry software
product. Then, they present the number and percentage of errors of each area.
The main difference with our work is they do not define their schema from
source code artifacts but from written reports of developers.

6.2 Source Code Analysis

Dyer et al.[14] present domain-specific language features for source code mining.
Their language features are inspired by object-oriented visitors and provide a
default depth first traversal strategy. They provide an implementation of these
features in the Boa infrastructure [15] for software repository mining. This work
targets to mine, at a fine-grained level, source code elements of one particular
revision of a program. The authors present an motivation example of discov-
ering a particular change pattern i.e. added a null check between consecutive
revisions. They applied an ad-hoc strategy to get the changes between those
revision. As the author mention, this strategy includes inaccuracy cases i.e.
adding and removing same number of null checkers. As differences, our work
is based and relies on a differencing algorithm to obtain fine-grained changes
between revisions. This gives us more expressibility to describe patterns that
affect to more complex patterns.

Martin et al. [16] present a language called PQL (Program Query Language)
that allows programmers to express such questions easily in an application-
specific context. The authors have developed both static and dynamic tech-
niques to find solutions to PQL queries. In particular, the static analyzer finds
all potential matches conservatively using a context-sensitive, flow-insensitive,
inclusion-based pointer alias analysis. For example, they present as example the
specification of a pattern to check for potential leaks of le handles. In contrast
to this work, our work formalize change patterns i.e. bug fix changes. Our
patterns describe a set of changes between consecutives source code revisions,
while their work consist on match a given pattern with the source code within
a source code file.

Andersen and Lawall [17] as well as Meng et al. [18, 19] worked on approaches
to find generic patches (also referred to as “systematic edits”). For instance,
Meng et al.’s tool – Lase – is given a set of file pairs and learns both a generic
patch and a pointcut matching the places where the patch can be applied. In
other words, Lase works with instances already identified (the file pairs) but
not already formalized. On the contrary, our approach works with no instances
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already identified but with the pattern already formalized. Our tool can then
automatically identify pattern instances.

Instead of mining commits, Negara et al. [20] look for patterns in fine-grain
changes collected in the development environment. Compared to the patterns
discussed in this paper, they are of different nature, at a smaller scale.

6.3 Bug Classification

Kim et al. [21] present an approach to detect potential bugs and suggest cor-
responding fixes. They define BugMem, a database of preprocessed bug fix
hunks. BugMem detects whether a new source code change corresponds to a
known bug and suggests a possible fix given a particular change based in the
stored information. In contrast with our work, they do not use explicit bug fix
patterns in their process as we do.

Nagwani et Verma [22] present a bug classification algorithm, by clustering
textual similarities of bug attributes. As difference with our work, they use
software reports (e.g. Bugzilla), while we work at source code level.

6.4 AST Change Patterns

Fluri et al. [23] use hierarchical clustering of source code changes to discover
change patterns. As in our work, they use ChangeDistiller to obtain fine-grained
source code changes. They concentrate on coarse grain change patterns (such as
development change, maintenance change), while we focus on fine-grain, AST
level bug fix patterns only.

7 Conclusion

In this paper we have proposed a new approach for specifying bug fix pat-
terns and identifying pattern instances in commits. Our approach is based on
the analysis of abstract syntax trees (AST). We have performed a compara-
tive evaluation of the accuracy of bug fix pattern instance identification of our
AST-based approach against Pan et al.’s token-based approach. Our approach
minimizes both the number of false positives and the number of false negatives:
it identifies more correct bug fix pattern instances (78 vs 62), reduces the num-
ber of false positives (0 vs 74) and reduces the number of false negatives (11 vs
27). Moreover, we present 6 new additional bug fix patterns that complement
those from Pan et al. bug fix pattern catalog [3].
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