
HAL Id: hal-01076918
https://hal.archives-ouvertes.fr/hal-01076918

Submitted on 23 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A secure two-phase data deduplication scheme
Pierre Meye, Philippe Raipin, Frédéric Tronel, Emmanuelle Anceaume

To cite this version:
Pierre Meye, Philippe Raipin, Frédéric Tronel, Emmanuelle Anceaume. A secure two-phase data
deduplication scheme. 6th International Symposium on Cyberspace Safety and Security (CSS), Aug
2014, Paris, France. �hal-01076918�

https://hal.archives-ouvertes.fr/hal-01076918
https://hal.archives-ouvertes.fr

A secure two-phase data deduplication scheme

Pierre Meye∗, Philippe Raipin∗, Frédéric Tronel†, Emmanuelle Anceaume‡

∗Orange Labs, France, {pierre.meye, philippe.raipin}@orange.com
†Supelec, France, frederic.tronel@supelec.fr
‡CNRS / IRISA, France, anceaume@irisa.fr

Abstract—Data grows at the impressive rate of 50% per year,
and 75% of the digital world is a copy1! Although keeping
multiple copies of data is necessary to guarantee their availability
and long term durability, in many situations the amount of
data redundancy is immoderate. By keeping a single copy of
repeated data, data deduplication is considered as one of the most
promising solutions to reduce the storage costs, and improve users
experience by saving network bandwidth and reducing backup
time. However, this solution must now solve many security issues
to be completely satisfying. In this paper we target the attacks
from malicious clients that are based on the manipulation of data
identifiers and those based on backup time and network traffic
observation. We present a deduplication scheme mixing an intra-
and an inter-user deduplication in order to build a storage system
that is secure against the aforementioned type of attacks by
controlling the correspondence between files and their identifiers,
and making the inter-user deduplication unnoticeable to clients
using deduplication proxies. Our method provides global storage
space savings, per-client bandwidth network savings between
clients and deduplication proxies, and global network bandwidth
savings between deduplication proxies and the storage server.
The evaluation of our solution compared to a classic system shows
that the overhead introduced by our scheme is mostly due to data
encryption which is necessary to ensure confidentiality.

Keywords—Cloud storage; Intra-user deduplication; Inter-user
deduplication; Confidentiality; Deduplication proxy;

I. INTRODUCTION

The amount of data to be stored by cloud storage systems
increases extremely fast. It is thus of utmost importance
for Cloud Storage Providers (CSPs) to dramatically reduce
the cost to store all the created data. A promising approach
to achieve this objective is through data deduplication [1],
[2]. Put simply, data deduplication keeps a single copy of
repeated data. When a client wishes to store some piece of
data, and if a copy of this data has already been saved in
the storage system, then solely a reference to this existing
copy is stored at the storage server. No duplicate is created.
There are diverse forms of data deduplication. It can be done
by a client solely on the data he/she has previously stored in
the system, a technique commonly called intra-user dedupli-
cation, or it can be achieved by taking into account the data
previously stored by all the clients. In this case it is designated
as inter-user deduplication. Data deduplication also improves
users experience by saving network bandwidth and reducing
backup time when the clients perform the deduplication before
uploading data to the storage server. This form of deduplication
is termed as client-side deduplication, and when it is handled

1”The digital universe decade. Are you ready?”, by John Gantz and David
Reinsel, IDC information, may 2010

by the storage server it is called server-side deduplication. Due
to its straightforward economical advantages, data deduplica-
tion is gaining popularity in both commercial and research
storage systems [1], [3], [2].

However, several works have recently revealed important
security issues leading to information leakage to malicious
clients [4], [5], [6], [7]. These security concerns arise es-
pecially in systems performing an inter-user and client-side
deduplication which is unfortunately the kind of deduplication
that provides the best savings in terms of network bandwidth
and storage space. Hereafter, we summarize in three categories
the most common types of attacks described in the literature.

Manipulation of data identifiers: A common technique to
deduplicate data is by hashing the content of the data and using
this (unique) hashed value as the identifier of the data. Then
the client sends this identifier to the storage server to deter-
mine whether such an identifier already exists in the system.
An attacker can easily exploit this technique to perform various
types of attacks. The CDN attack [5] turns a cloud storage
system into a Content Delivery Network (CDN). Suppose that
Bob wants to share a file F with Alice. Bob uploads F to
a cloud storage system and sends F identifier to Alice. When
Alice receives it, she tries to upload F to the same cloud
storage system by sending F identifier. The storage system will
detect that this identifier already exists. Consequently, solely
a reference meaning that Alice also owns file F will be stored
in the system which is actually wrong. At this point, when
Alice wants to download F , she just needs to request it from
the cloud storage system. There is also an attack called targeted
collision [7] in which, a malicious client uploads a piece
of data (e.g, a file) that does not correspond to the claimed
identifier. Suppose that Bob wants to cheat Alice. If no control
is made by the cloud storage system, Bob can upload a file F1

with the identifier of a file F2. Then, if Alice wishes to upload
F2 with its real identifier, the system will detect the existence
of F2 identifier in the system and will not store F2. Rather,
the system will store a reference meaning that Alice also
owns file F1 which is the file corresponding to the identifier
of F2 in the system. Later, when Alice will request the file
corresponding to the identifier of F2, the system will send F1

to Alice.

Network traffic observation: Monitoring the network traffic
on the client side gives an attacker the capability to determine
whether an inter-user deduplication has been applied on a given
piece of data. Such an attacker can exploit this knowledge
to identify data items stored in a cloud storage system by
other users or even learn the content of these data items [8],
[5]. For instance, to determine whether a file F is stored in

a system, the attacker just tries to upload F and observes
the network traffic from his/her device toward the storage
server. If F is uploaded, it means that F does not exist in
the storage system. The attacker is not even obliged to upload
the complete file. He/she can prematurely abort the upload,
so that the attack can be repeated later. On the other hand,
if the file is not uploaded, the attacker can conclude that
the file already exists in the system. This fact makes the storage
system vulnerable to brute force attacks on file contents [8],
[5]. For instance, to determine which copies of a movie exist
on a specific cloud storage system, an attacker can upload each
format or version of such a movie, and show that those that
are not uploaded already exist in the storage system.

Backup time observation: Detecting an inter-user dedupli-
cation by observing the backup duration [9] gives an attacker
the ability to perform the same attacks as the ones done with
network traffic observations. However, observing the duration
of a backup operation is less accurate than a network traffic
monitoring as it depends on the size of the file and the state of
the network. For small files, observation may not be accurate,
while for larger ones, it gains in accuracy.

There have been lots of efforts devoted to deal with these
issues and provide a secure and efficient data deduplication [8],
[10], [11], [4], [5], [12], [13], [6], [14], [7], [15], [16].
However, we are not aware of any single solution that is
capable of addressing, at the same time, the three types of
attacks that malicious users can attempt on the deduplication
system. This is the objective of this paper.

A. Our contributions

Our work takes place in the context of an Internet
Service Provider (ISP) providing also the storage system2.
That is to say, the ISP which is also the CSP has strong
economical reasons to (i) save storage space and network band-
width as it masters all the network and storage infrastructure,
and (ii) provide a secure storage service to its consumers.
We propose a deduplication solution to build a storage system
that positively answers the following three questions:

1) Can we guarantee that the identifier used to trigger
deduplication corresponds to the claimed data item?

2) Can we determine that a client actually owns the data
item corresponding to the identifier issued to the sto-
rage system?

3) Can we make the inter-user deduplication transpa-
rent (i.e. unnoticeable even in the case of backup
time or network traffic observation) to clients and still
provide network bandwidth savings?

Our deduplication scheme is simple and robust against
the aforementioned attacks while remaining efficient in terms
of storage space and bandwidth savings for both clients and
the CSP. We consider data deduplication at a file level granu-
larity but our solution can be extended to the block level.

Specifically our approach is a two-phase deduplication that
leverages and combines both intra- and inter-user deduplication
techniques by introducing deduplication proxies (DPs) be-
tween the clients and the storage server (SS). Communications

2For instance the french ISP Orange provides various cloud storage system.

DP

DP SS

DP

C

C

C

Client Deduplication Proxy Storage Server

Intra-user deduplication

on the client side
Inter-user deduplication

on the DP side

Fig. 1: Architecture of the two-phase deduplication scheme.

from clients go through these DPs to reach the SS which allows
to split the deduplication process as illustrated in Figure 1.

The intra-user deduplication: This phase is performed
by clients. It aims at saving clients network bandwidth by
guaranteeing that each client uploads no more than once each
of his/her file to a DP (i.e. per-client savings). In addition,
we strengthen data confidentiality by letting clients encrypt
their files before uploading them. Regarding security, we
exploit the fact that the scope of the intra-user deduplication is
limited to the files previously stored by the client trying to store
a file. It allows the storage system to be protected against both
CDN attacks and network traffic observations ones. Briefly,
in the former case, each client uploads each of his/her files
to his/her associated DP exactly once even if the same files
already exist in the storage system (due to a prior upload
by an other client). This accordingly prevents any client from
determining whether a file already exists in the storage system
through network traffic observations.

The inter-user deduplication: This phase is performed
by the DPs. Alongside the economical benefits offered by
this scheme thanks to global storage space savings (i.e. only
a single copy of a file is stored independently of the number of
owners of this file), it provides also global network bandwidth
savings between DPs and the SS as a single copy of any file
has to be sent to the SS. Note that to make indistinguishable
the upload of a file to the SS from the sending of a reference —
when the referred file already exists in the storage system —
the concerned DP may introduce an extra delay before sending
the notification to the client. The goal of adding this delay is
to make similar the duration of storing a reference and storing
the entire file. This aims to protect the system against attacks
based on backup time observation.

Consistency of files and their identifiers: To protect the sto-
rage system against targeted-collision attacks, consistency be-
tween a file and its identifier is checked by the DPs before
sending the file to the SS and before applying the inter-user
deduplication (i.e. sending only a reference to the SS).

The remainder of the paper is organized as follows. Sec-
tion II details the system model and the assumptions we made
about the system. Section III focuses on the two fundamental
operations that allow to store and retrieve files in the system.
Section IV presents a performance evaluation of our solution,
and Section V a discussion on security issues. Section VI
exposes the related work. Conclusion and future work are
presented in Section VII.

II. SYSTEM MODEL

Our system consists of the following three types of com-
ponents:

Client (C): Any authenticated user accessing the sto-
rage system.

Storage Server (SS): A server in charge of storing and
serving clients files. The storage server also maintains an index
of all the files stored in the storage system and their owners.

Deduplication Proxy (DP): A server associated with
a given number of clients. Clients communicate with the SS
via their associated deduplication proxy. A deduplication proxy
is involved in both the intra-user and the inter-user deduplica-
tion (See Section III).

The orchestration of the proposed architecture is illustrated
in Figure 1. The SS and the DPs are operated by the CSP.

A. Threat model

We suppose that the CSP is trusted to behave correctly to
ensure the clients files availability and long term durability,
however it follows the honest but curious adversary model.
Namely, it may take actions to disclose file contents. Regarding
clients, we assume that some of them are malicious. They may
try to perform the types of attacks mentioned in Section I. We
suppose that there is no coalition between the entities provided
by the CSP (i.e. the SS and the DPs) and the clients. Finally,
we consider that communication channels are reliable through
the use of cryptographic protocols such as Secure Sockets
Layer (SSL) or Transport Layer Security (TLS).

B. Data encryption

We make the hypothesis that entities have access to a hash
function, denoted by hash in the following, that is pre-image
resistant (i.e. given a hash value, it should be hard to find any
file that hashes to that hash value), second pre-image resistant
(i.e. given a file F1, it should be hard to find a different file F2

such that F1 and F2 hash to the same value), and collision
resistant (i.e. it should be hard to find two different files F1

and F2 that hash to the same value).

While the adoption of cloud storage services to outsource
data is steadily growing, its benefits come with some inherent
risks implied by the fact that full control on data is given
to the CSPs [17], [18], [19]. Clients (e.g., individuals, scien-
tists, enterprises, governmental agencies, etc) may want to
restrict the control or access of the CSP to their sensitive
data in order to preserve some confidentiality. We assume
that clients have the ability to encrypt and decrypt data
with both asymmetric (encryptasym and decryptasym)
and symmetric (encryptsym and decryptsym) crypto-
graphic functions and manage their own private and public
personal keys for the asymmetric encryption scheme. In our
approach, clients encrypt their files using a convergent encryp-
tion scheme [8], [10], [20], [13], [15]. Specifically, to encrypt
a file F with this scheme, the hashed value of F is used as an
encryption key to encrypt F using a cryptographic symmetric
function. Thus, the same file encrypted by different clients will
result in equal ciphertexts. This allows the CSP to detect du-
plicates and to apply an inter-user deduplication on encrypted
files without any knowledge of their plaintext contents.

III. SYSTEM DESIGN

This section describes the put and get operations, that
allow clients to respectively store and retrieve their files.

A. The put operation

When a client wishes to store a file in the storage system,
he/she triggers a put operation. This operation, illustrated
in Figure 2, involves two types of interactions, the first one
between the client and a DP, and the second one between
this DP and the SS. In the following, the client invoking
the put operation for a file F is denoted by its identifier Cid.
Before interacting with the DP, Cid builds the different param-
eters of the functions of the put operations. First, it creates
the encryption key by hashing F content as follows,

Fhash ← hash(F).

Then, Cid encrypts the file F by applying a symmetric
encryption function on F using Fhash as a key leading to
the ciphertext {F}Fhash

. We have

{F}Fhash
← encryptsym(Fhash, F).

Finally, Cid creates F identifier Fid as

Fid ← hash({F}Fhash
).

The previous steps allow different clients to create the same
identifier for a given file, and enable to check the consistency
between an encrypted file and its identifier by just compa-
ring the hashed value of the encrypted file and the received
identifier. Once client Cid has created the parameters of
the put operation, he/she sends a checkForDedup request
to the DP to inform it that he/she wants to store F . This request
is directly forwarded to the SS that checks whether a data
deduplication and which kind of deduplication must be ap-
plied (i.e. either an intra-user deduplication or an inter-user
one). This is achieved by looking for Fid and its potential
owners in the file ownership index maintained by the SS.
According to the outcome of this search, the SS sends one
of the following three responses to the DP.

1) (Cid, Fid, Intra-user deduplication). Cid

has already stored the file corresponding to Fid. Thus,
by construction of our deduplication process, the file
upload is not necessary; the DP directly forwards
the response to Cid.

2) (Cid, Fid, File upload). In this case, the file
corresponding to Fid does not exist in the storage
system, which requires that Cid must upload it;
the DP directly forwards the response to the client.

3) (Cid, Fid, Inter-user deduplication).
The file corresponding to Fid has already been
stored in the storage system by a client different
from Cid. Thus, an inter-user deduplication must
be applied by the DP. However, in order to hide
this inter-user deduplication to the client, instead
of directly forwarding this response to Cid, the DP
sends him/her a file upload response, and
memorizes that this upload is requested due to
an inter-user deduplication.

Client (Cid) Deduplication Proxy (DP) Storage Server (SS)

checkForDedup(C , F)

checkForDedupResponse (C , F ,

[intra-user deduplication | file upload | inter-user deduplication])checkForDedupResponse(C , F ,

[intra-user deduplication | file upload])

uploadFile(C , F , {F } , {F})

uploadReference(C , F , {F })

uploadFile(C , F , {F } , {F})

uploadReferenceResponse(C , F , OK)

Encryption key creation + File encryption + File identifier creation

Checking whether deduplication is necessary

checkForDedup(C , F)

IF intra-user deduplication do ELSE do

Intra-user deduplication

File upload to the DP

IF file upload requested because of an inter-user deduplication do ELSE do

Inter-user deduplication

Checking the consistency between file and its identifier

Making the inter-user deduplication transparent
uploadFileResponse(C , F , OK)

uploadFileResponse(C , F , OK)

File upload to the SS

uploadFileResponse(C , F , OK)

3 4

1 2

2

1

3

4

Fig. 2: A PUT operation

Upon receipt of the DP message in response to
a checkForDedup request, client Cid behaves as follows:

1) Receipt of an Intra-user deduplication

response. It ends the put operation.
2) Receipt of a File upload response. The client

uploads to the DP his/her client identifier, the en-
crypted file {F}Fhash

, the file identifier Fid, and
the decryption key encrypted with its public key as
follows,

{Fhash}KCid
← encryptasym(KCid

, Fhash),

which guarantees that {Fhash}KCid
can only be de-

crypted using Cid private key. Client Cid waits for
the response of the DP.

When the DP receives the uploadFile message
from Cid, it applies a consistency check in order to prevent
target-collision attacks. A targeted-collision is detected when
the hash value of the encrypted file is not equal to the identifier
received. In that case, the operation is aborted, and a no-
tification is sent via an uploadFileResponse to client
Cid. This ends the put operation. If the consistency check is
successful and the file upload has been requested because of an
inter-user deduplication, then only a reference (i.e. the client
identifier Cid, the file identifier Fid, and the encrypted de-
cryption key {Fhash}KCid

) is uploaded to the SS to be stored.
Recall that the DP has to ensure that this inter-user dedu-
plication is unnoticeable to the client. Thus, before sending
the notification (i.e. an uploadFileResponse message)

to Cid, the DP delays it to make the duration of the whole
put operation similar to a transmission of the file to the SS.
The added delay is thus a function of the size of the file
and the state of the network. On the other hand, if the file
upload has been requested because that file does not exist in
the storage system, then the uploadFile message is simply
forwarded to the SS in the case where the consistency check
has been successfully passed.

B. The get operation

The get operation is invoked by clients to retrieve their
own files from the storage system. Figure 3 illustrates the pro-
cess of a get operation. Our deduplication scheme pushes
all the complexity to the put operation. In get operations,
the DPs only forward the requests and responses they respec-
tively receives from the clients and the SS. Specifically, upon
receipt of a get request from a client Cid about a file of
identifier Fid, the DP simply forwards it to the SS which
looks for Fid in its file ownerships index. If Fid is not found
among the identifiers of files belonging to Cid, the SS sends
a getResponse message to the DP with an error noti-
fication to terminate the get request. Otherwise, the SS
sends a getResponse containing the ciphertext {F}Fhash

corresponding to the identifier Fid and the encrypted de-
cryption key {Fhash}KCid

corresponding to the client Cid.
In both cases, the DP only forwards the getResponse

to the client Cid who will apply an asymmetric decryption
function on the encrypted key using its private key K−1

Cid
to

Client (Cid) Deduplication Proxy (DP) Storage Server (SS)

get(C , F) get(C , F)

getResponse(C , F , {F } , {F})getResponse(C , F , {F } , {F})

Encrypted key decryption + File decryption

Fig. 3: A GET operation.

recover key Fhash, where

Fhash ← decryptasym(K−1

Cid
, {Fhash}KCid

).

Finally, the plaintext of F is obtained with

F ← decryptsym(Fhash, {F}Fhash
).

IV. IMPLEMENTATION

We have implemented two storage system prototypes to
compare the performance overhead of our proposition with
respect to a classic storage system with no data encryption.
Specifically, we have developed a classic storage system with
a client and a storage server software modules, and one
implementing our proposition with a client, a deduplication
proxy and a storage server software modules. All these soft-
ware modules are implemented in python 2.7.6 and access
the pycrypto library for the cryptographic operations. We use
the SHA256 algorithm as the hash function, RSA1024 for
asymmetric encryption operations, and AES for the symme-
tric encryption operations with keys that are 256 bits long.
The storage servers use the MongoDB3 database to store
the meta-data of the stored files as well as files owners.
The software modules are executed on three different virtual
machines (VMs) running on Ubuntu 12.04.4 LTS with 1GB
of memory and an AMD Opteron(TM) octa-core Processor
6220@3GHz. The network topology is as follows: the VM
executing the DP software is located on the network path
between the VM running the different clients modules and
the one executing the different SSs modules.

Figure 4 and Figure 5 compare the different costs induced
by the put and get operations in a classic storage system
and in the one we propose. Each result regarding both put

and get operations is the average of 1000 experiments run
with files whose sizes range from 2MB to 64MB. The first
straightforward observation that can be drawn from both
figures is that the cost of both operations fully depends on
the size of the stored files. In put operations, the overhead
in our scheme is due to the encryption key creation, the en-
cryption key encryption4, the file encryption, the consistency
check of a file and its identifier performed by the DP mo-
dule, and the communication overhead introduced by handling
the file by the DP. On the other hand, for get operations,
the overhead in our proposition comes from the encryption
key decryption4, the file decryption, and the communication
overhead of the DP. However, this overhead is small, as
it entails around 0.5s on average per file of 64MB length.

3http://www.mongodb.org/
4The encryption key encryption/decryption is negligible (around 0.75 ms)

and is not visible on Figures 4-6 because of the figure scale.

0 2 4 6 8 10 12 14 16 18 20

Classic put (2MB)

Two-phase put (2MB)

Classic put (4MB)

Two-phase put (4MB)

Classic put (8MB)

Two-phase put (8MB)

Classic put (16MB)

Two-phase put (16MB)

Classic put (32MB)

Two-phase put (32MB)

Classic put (64MB)

Two-phase put (64MB)

Time (s)

Communication

File ID creation

Encryption key creation

Encryption key encryption

File and file ID consistency check

File encryption

Fig. 4: Average delays observed during a put operation in
a classic system with no data encryption and in our system
with data encryption. Most of the overhead introduced by our
solution is due to cryptographic operations which are necessary
to ensure data confidentiality.

0 2 4 6 8 10 12 14 16 18 20

Classic get (2MB)

Two-phase get (2MB)

Classic get (4MB)

Two-phase get (4MB)

Classic get (8MB)

Two-phase get (8MB)

Classic get (16MB)

Two-phase get (16MB)

Classic get (32MB)

Two-phase get (32MB)

Classic get (64MB)

Two-phase get (64MB)

Time (s)

Communication

Encrypted key decryption

File decryption

Fig. 5: Average delays observed during a get operation in
a classic system with no data encryption and in our system
with data encryption. Most of the overhead introduced by our
solution is due to cryptographic operations which are necessary
to ensure data confidentiality.

Actually, most of the overhead incurred in our solution is due
to file encryption during a put operation and file decryption
during a get operation. Indeed, up to 12-13s are needed on
average for encrypting/decrypting a file that is 64MB length.

Figure 6 gives a performance comparison between an inter-
user deduplication applied in a classic scheme and the intra-
and inter-user deduplication applied in our proposition.
The inter-user deduplication experiments consist in storing files
at a given client and having one thousand clients accessing
them through the put operation. The intra-user deduplication
experiment consists in storing thousand times the same files
at a single client. The results plotted in Figure 6 represent
the average duration values of the these operations. We observe
that the intra-user deduplication in our scheme consumes more
communication resources than an inter-user deduplication in a
classic scheme due to the use of a DP (around 18ms of over-
head for a file of 64MB length). However most of the overhead

0 2 4 6 8 10 12 14 16 18 20

Classic inter-user deduplication (16MB)

Two-phase intra-user deduplication (16MB)

Two-phase inter-user deduplication (16MB)

Classic inter-user deduplication (32MB)

Two-phase intra-user deduplication (32MB)

Two-phase inter-user deduplication (32MB)

Classic inter-user deduplication (64MB)

Two-phase intra-user deduplication (64MB)

Two-phase inter-user deduplication (64MB)

Time (s)

Added delay

Communication

File ID creation

Encryption key creation

Encryption key encryption

File anf file ID consistency check

File encryption

Fig. 6: Performance comparison between a classic system
with no data encryption where an inter-user deduplication is
applied upon a put operation and our proposition with data
encryption where an intra- and inter-user deduplication are
applied. Most of the overhead introduced by our solution is
due to cryptographic operations which are necessary to ensure
data confidentiality.

comes from the encryption key creation, the encryption key
encryption4 and the file encryption which depends on the file
size. We also observe that operations involving the inter-
user deduplication in our scheme have higher durations than
the ones involving an intra-user deduplication. This is due to
(i) the overhead of communications when applying the inter-
user deduplication because the file has to be uploaded to the
DP and then a reference is uploaded to the the SS and (ii) the
added delay by the DP to make unnoticeable the inter-user
deduplication to client. Actually in our scheme, a put opera-
tion involving an inter-user deduplication has a similar duration
than a file upload from the client to the SS.

V. DISCUSSION

In this section, we discuss the impact of the proposed
solution regarding the data security and the network band-
width savings.

As previously described our solution aims at protecting
the storage system against the manipulation of data identi-
fiers, network traffic observation and backup time observation
(See Section I). This is achieved by placing deduplication
proxies between clients and the storage server, and by running
a two-phase deduplication scheme. Now, by taking advantage
of the intra-user deduplication performed between clients and
their DP, from a client point of view, the visibility of what is
stored in the storage system is limited to his/her own account.
If a client has not previously stored its file then he/she must
upload it to his/her associated DP, which protects the system
against the CDN attacks and the attacks based on network
traffic monitoring. In order to prevent the targeted-collision
attacks, the DP performs a consistency control on both the file
and the identifier received from a client before sending this file
to the storage server or before applying the inter-user dedu-
plication. To make the inter-user deduplication unnoticeable to
clients in order to face the attacks based on backup time ob-
servation, the DP adds some delay before terminating the put
operation (i.e. before sending the uploadFileResponse).
Recall that a delay may be added only when an inter-user
deduplication is applied. In addition, by using a convergent
encryption scheme, the CSP can perform an inter-user dedu-
plication on client data without any access to their plaintext
and achieve global storage space savings.

A. Impact of the localization of the deduplication proxy

The benefits of our proposition regarding the network band-
width savings highly depends on the localization of the DPs
in the storage infrastructure which may also impact the level
of security of the solution. In the following, we briefly discuss
the pros and cons of the DPs localization.

Deduplication proxies collocated with clients devices: If
deduplication proxies are hosted by clients, then both intra- and
inter-user deduplication need to be applied at the client sides,
which provides global network bandwidth savings. However,
this gain comes at the expense of data security. Indeed, clients
may observe the network traffic between the DP and the SS,
or have the opportunity to corrupt or replace the DP software.
Such a solution protects efficiently the storage system solely
against attacks based on backup time observation.

A deduplication proxy collocated with the storage server:
If the DP is physically collocated with the storage server, then
even if clients do not upload more than once the same file to
that location thanks to the intra-user deduplication, duplicates
of a file owned by other clients will still have to be transferred
over the network to reach that location before the inter-user
deduplication can be applied. This is clearly not the most
efficient choice in terms of bandwidth savings. On the other
hand, data security is not affected by this solution.

Deduplication proxies hosted by independent nodes: We
suggest that the two-phase deduplication relies on independent
nodes to host the DPs. We argue that such nodes should be
secure, physically out of reach of clients so that they can not
observe the network traffic between a DP and the SS, but at
the same time close enough to clients in order to improve
the network bandwidth savings. We believe that to locate such
nodes one could adopt a similar strategy to what is done in
the field of Content Delivery Network (CDN) [21]. In order
to minimize data access latencies and network bandwidth con-
sumption toward content servers, cache servers are deployed
in strategic locations in the Internet infrastructure as close
as possible to the clients to satisfy their requests close to
them [22]. For instance, an interesting approach would be to
use the Points of Presence (POPs) of the ISP as secure nodes to
host the DPs and associate them to clients accessing to Internet
through them [23]. This might also allow CSPs to cache files in
the DPs in order to minimize the access latencies of subsequent
get operations on these files.

B. Limitation of allowing the inter-user deduplication

In this section we discuss the potential danger of a true
inter-user deduplication regarding data confidentiality, and
provide insights to deal with them. Allowing the inter-user
deduplication on encrypted files gives the opportunity to de-
termine that two equal ciphertexts originate from the same
plaintext. This can be exploited by the CSP since given a file
or just its identifier, the CSP can determine whether this file
already exists in the storage system and identify the clients
who have uploaded it. Moreover the CSP is able to perform
brute force attacks on file contents even if their files are
encrypted with a convergent encryption [8], [15]. Recall that
in our proposition, the inter-user deduplication is unnoticeable
to clients so these limitations are only applicable to the CSP.
Nevertheless, one may find in such an approach an interesting

property for the CSP to detect illegal files in its storage system
or/and to respond to judicial inquiries for example.

Countermeasure: A strategy to protect files against such
honest but curious CSP would be to encrypt files using private
encryption schemes. For example, individuals may use per-
sonal keys in the file encryption process. In the case of a group
of clients or an enterprise, a key server that does not belong
to the CSP can be used to manage the encryption keys so that
all the clients of the key server will encrypt a given file with
the same specific key [8], [13]. However it will make possible
the inter-user deduplication solely within the members of
the group or the enterprise and would reduce the storage space
savings of the CSP since a given file encrypted with different
keys would result in different ciphertexts. A data deduplication
process independent of the owners (i.e. individuals, groups or
enterprises using different key servers) would be impossible.

VI. RELATED WORK

To deal with the security issues introduced by a client-
side and inter-user deduplication, a method called randomized
solution is proposed in [5]. This solution defines a random
threshold for each file in the storage system which corresponds
to the number of different clients that have uploaded this file.
Each time a client uploads for the first time a file, a counter as-
sociated with this file is created and initialized to 1. As long as
the counter is under the threshold, deduplication is not applied.
When the counter reaches the threshold, the inter-user dedu-
plication is activated and applied to all the subsequent uploads
of that file. This solution protects a file as long as its threshold
is not reached. As soon as the system enables deduplication
on a file, it becomes vulnerable. In [7], the authors propose a
deduplication method that is secure against targeted-collision
attacks. Similarly to our method, a file identifier is a hash value
of the file content so it is simple to check the consistency of
a file and its claimed identifier. However, this method does
not address the others types of attacks mentioned in Section I.
In [12], the authors propose a gateway-based deduplication
scheme which relies on users gateways to run the deduplication
process. In order to mitigate the attacks based on network
traffic monitoring, gateways send a random network traffic
compounded of encrypted packets with a Time-To-Live (TTL)
parameter equal to 1. On the other hand, this method does not
take into account neither backup time observation attacks, nor
the possible corruption of the deduplication software module
by the gateway owner. Several additional works suggest the no-
tion of Proof Of Ownership (POW) [11], [4], [6], [14], [16]
to face the attacks based on manipulation of data identifiers.
A proof of ownership allows a client to prove that he/she
actually owns the file corresponding to the identifier presented
to the storage server. However, it does not address the issues
caused by attacks based on network traffic or backup time
observation that are performed by adversaries that actually own
the files corresponding to the identifiers that they present to
the storage server. Some works rely on specific encryption
schemes to provide data confidentiality and deduplication
against honest but curious CSPs [8], [10], [13], [15]. Table. I
shows a comparison of some related work and our proposition
regarding the storage space and network bandwidth savings,
and the protection against the attacks mentionned in Section I.
Compared to all the previously cited works, our two-phase
deduplication method addresses all the attacks presented in

Section I, and to the best of our knowledge this is the first one
to achieve it.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a two-phase deduplication
scheme that (i) ensures that a client actually owns the file
he/she wants to store by applying an intra-user deduplication
on the client side (ii) ensures that a file corresponds to its
claimed identifier through a control by a deduplication proxy
located between clients and the storage server and (iii) applies
an inter-user deduplication on the deduplication proxy side that
makes this inter-user deduplication unnoticeable to clients by
adding some delay to put operations so that the length of a file
upload is indistinguishable from an upload of its reference.
Our method provides protection against attacks from malicious
clients, global storage space savings to the CSPs thanks
to the inter-user deduplication, per-client bandwidth network
savings between clients and the deduplication proxies, and
global network bandwidth savings between the deduplication
proxies and the storage server.

For future works, we plan to address the confidentiality
issues against attacks that can be performed by the CSP. We
also plan to extend our solution so that encrypted decryption
keys can also be deduplicated without jeopardizing security
properties. We will also consider how to extend the dedupli-
cation in our scheme to a block level granularity.

REFERENCES

[1] M. Dutch, “Understanding data deduplication ratios,” SNIA Data Man-

agement Forum, 2008.

[2] D. Russel, “Data deduplication will be even bigger in 2010,” Gartner,
February 2010.

[3] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication,”
in Proceedings of the 9th USENIX Conference on File and Storage

Technologies (FAST), 2011.

[4] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proceedings of the 18th ACM

Conference on Computer and Communications security (CCS), 2011.

[5] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud
services: Deduplication in cloud storage,” IEEE Security Privacy, vol. 8,
2010.

[6] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl,
“Dark clouds on the horizon: using cloud storage as attack vector and
online slack space,” in Proceedings of the 20th USENIX Conference on

Security (SEC), 2011.

[7] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller, “Secure data
deduplication,” in Proceedings of the 4th ACM International Workshop

on Storage Security and Survivability (StorageSS), 2008.

[8] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dupless: Server-aided en-
cryption for deduplicated storage,” in Proceedings of the 22nd USENIX

Conference on Security (SEC), 2013.

[9] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication
as a threat to the guest os,” in Proceedings of the 4th ACM European

Workshop on System Security (EUROSEC), 2011.

[10] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryp-
tion and secure deduplication,” in Proceedings of the 32nd Annual Inter-

national Conference on the Theory and Applications of Cryptographic

Techniques (EUROCRYPT), 2013.

[11] R. Di Pietro and A. Sorniotti, “Boosting efficiency and security in
proof of ownership for deduplication,” in Proceedings of the 7th ACM

Symposium on Information, Computer and Communications Security

(ASIACCS), 2012.

TABLE I: A comparison between some related works and our proposition.

Approaches Storage space savings
Network bandwidth

savings

Protection against

clients attacks based on

data identifier

manipulation

Protection against

clients attacks based on

network traffic

observation

Protection against

clients attacks based on

backup time observation

Protection against

honest but curious CSP

Harnik et al. [5] Global savings Global savings

No more protection when

the inter-user

deduplication is enabled

No more protection when

the inter-user

deduplication is enabled

No more protection when

the inter-user

deduplication is enabled

NO

Storer et al. [7] Global savings Global savings
Protection only against

targeted collision attacks
NO NO NO

Proof of ownership [11],

[4], [14], [16]
Global savings Global savings YES NO NO NO

Heen et al. [12] Global savings

No bandwidth savings

between the client and the

gateway but global

bandwidth savings

between the client and the

storage server

Limited to the ability of

attackers to monitor the

traffic going through the

gateway

Limited to the ability of

attackers to corrupt or

replace the software

module in the gateway

NO NO

Bellare et al. [8]

Global savings only for

the group of users using

their client solution

Global savings only for

the group of users using

their client solution

NO

Online brute force attacks

are slowed using a

requests rate limitation

Online brute force attacks

are slowed using a

requests rate limitation

YES

Xu et al. [15] Global savings Global savings YES NO NO YES

Liu et al. [13]

Global savings only for

the group of users using

their client solution

Global savings only for

the group of users using

their client solution

NO NO NO YES

Our proposition

with DP on the

client

Global savings Global savings NO NO YES NO

Our proposition with

DP on the storage server
Global savings Per-client savings YES YES YES NO

Our proposition with

DP on an independent

node

Global savings

Per-client savings

between clients and the

DP, and global savings

between the DP and the

storage server

YES YES YES NO

[12] O. Heen, C. Neumann, L. Montalvo, and S. Defrance, “Improving
the resistance to side-channel attacks on cloud storage services,” in
Proceedings of the 5th International Conference on New Technologies,

Mobility and Security (NTMS), 2012.

[13] C. Liu, X. Liu, and L. Wan, “Policy-based de-duplication in secure
cloud storage,” in Trustworthy Computing and Services, ser. Com-
munications in Computer and Information Science. Springer Berlin
Heidelberg, 2013, vol. 320, pp. 250–262.

[14] W. K. Ng, Y. Wen, and H. Zhu, “Private data deduplication protocols
in cloud storage,” in Proceedings of the 27th Annual ACM Symposium

on Applied Computing (SAC), 2012.

[15] J. Xu, E.-C. Chang, and J. Zhou, “Weak leakage-resilient client-side
deduplication of encrypted data in cloud storage,” in Proceedings

of the 8th ACM SIGSAC Symposium on Information, Computer and

Communications Security (ASIACCS), 2013.

[16] Q. Zheng and S. Xu, “Secure and efficient proof of storage with
deduplication,” in Proceedings of the 2nd ACM Conference on Data

and Application Security and Privacy (CODASPY), 2012.

[17] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proceedings

of the 14th International Conference on Financial Cryptography and

Data Security (FC), 2010.

[18] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Computing, vol. 16, 2012.

[19] F. Rocha, S. Abreu, and M. Correia, “The final frontier: Confidentiality
and privacy in the cloud,” Computer, vol. 44, no. 9, pp. 44–50, 2011.

[20] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” in Proceedings of the 22nd IEEE International Conference on

Distributed Computing Systems (ICDCS), 2002.

[21] G. Pallis and A. Vakali, “Insight and perspectives for content delivery
networks,” Communications of the ACM, vol. 49, no. 1, pp. 101–106,
2006.

[22] C. Huang, A. Wang, J. Li, and K. W. Ross, “Understanding hybrid
CDN-P2P: why Limelight needs its own Red Swoosh,” in Proceedings

of the 18th ACM International Workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSSDAV), 2008.

[23] P. Meye, P. Raı̈pin, F. Tronel, and E. Anceaume, “Toward a distributed
storage system leveraging the DSL infrastructure of an ISP,” in Pro-

ceedings of the 11th IEEE Consumer Communications and Networking

Conference (CCNC), 2014.

