
HAL Id: hal-01077626
https://hal.inria.fr/hal-01077626

Submitted on 3 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Evolutionary Algorithms Performing Pairwise
Comparisons

Marie-Liesse Cauwet, Olivier Teytaud, Shih-Yuan Chiu, Kuo-Min Lin,
Shi-Jim Yen, David L. Saint-Pierre, Fabien Teytaud

To cite this version:
Marie-Liesse Cauwet, Olivier Teytaud, Shih-Yuan Chiu, Kuo-Min Lin, Shi-Jim Yen, et al.. Parallel
Evolutionary Algorithms Performing Pairwise Comparisons. Foundations of Genetic Algorithms, 2015,
Aberythswyth, United Kingdom. pp.99-113. �hal-01077626�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49585315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01077626
https://hal.archives-ouvertes.fr

Parallel Evolutionary Algorithms Performing Pairwise
Comparisons

Marie-Liesse Cauwet,
Olivier Teytaud

TAO, Inria, Lri, Umr Cnrs 8623
Bat. 650, Univ. Paris-Sud

91405 Orsay Cedex, France
cauwet@lri.fr

Shih-Yuan Chiu,
Kuo-Min Lin,
Shi-Jim Yen

Computer Science
and Information Engineering

National Dong-Hwa University
Hualien, Taiwan

David L. St-Pierre
Industrial Engineering

Univ. du Québec at
Trois-Rivières

Québec, Canada

Fabien Teytaud
Univ. Lille Nord de France,

ULCO, LISIC, Calais, France
fabien.teytaud@lisic.univ-

littoral.fr

ABSTRACT
We study mathematically and experimentally the conver-
gence rate of differential evolution and particle swarm opti-
mization for simple unimodal functions. Due to paralleliza-
tion concerns, the focus is on lower bounds on the runtime,
i.e upper bounds on the speed-up, as a function of the pop-
ulation size. Two cases are particularly relevant: A popula-
tion size of the same order of magnitude as the dimension
and larger population sizes. We use the branching factor as
a tool for proving bounds and get, as upper bounds, a lin-
ear speed-up for a population size similar to the dimension,
and a logarithmic speed-up for larger population sizes. We
then propose parametrizations for differential evolution and
particle swarm optimization that reach these bounds.

Categories and Subject Descriptors
G.1.6 [Optimization]: Unconstrained optimization

General Terms
Theory

Keywords
Differential Evolution, Parallelism, Particle Swarm Opti-
mization

1. INTRODUCTION
Evolutionary algorithms are population-based algorithms
designed to solve black-box optimization problems. An evo-
lutionary algorithm typically (i) generates a population of

search points (ii) selects a candidate solution for the op-
timization problem. The selection is performed thanks to
the ranking/comparisons between the search points. The
population makes parallelization highly relevant when the
population is large: each point can be evaluated on a single
processor [31, 16].

We first introduce parallel black-box optimization in Section
1.1. We then present the convergence rate of an algorithm in
Section 1.2 before explaining what is the branching factor
in Section 1.3. We then focus on parallel black-box opti-
mization algorithms which use only “paired” comparisons,
as explained in Section 1.4. Section 2 applies branching fac-
tor analysis to these algorithms, and provides lower bounds
on runtimes. Sections 3 and 4 confront bounds with exper-
imental rates for differential evolution and particle swarm
optimization respectively.

Throughout the paper, unless stated otherwise, log refers to
the natural logarithm.

1.1 Parallel black-box optimization
Typical optimization problems consist in searching for the
minimum x∗ of some objective function f : RD → R, i.e. x∗

is such that ∀x, f(x∗) ≤ f(x). f is also known as the fitness
function and D represents the dimension of the problem.
A black-box optimization consists in doing so by successive
calls to f only. f is seen as an oracle; no internal property of
f is used, and the goal of the optimization algorithm consists
in finding a good approximation of x∗, within a moderate
number of calls to the objective function.

Parallel synchronous black-box optimization is the setting
in which p simultaneous calls to the objective function are
possible. Therefore, p is the number of processors or cores,
possibly on GPU architectures, which allow large numbers of
cores. When measuring speed-up, i.e. the factor by which
speed is improved when using p processors, there are sev-
eral cases: (i) Cases in which the objective function is fast.
Then, the internal cost of the optimization algorithm and

possibly communication costs are not negligible. (ii) Cases
in which the cost of the objective function is not approxi-
mately constant. Then, asynchronous effects matter. (iii)
Cases in which the computational cost is mainly in the ob-
jective function, and the computational cost of the fitness
function is constant. This leads to a synchronous case.

We focus on case (iii). Additionally, we consider that the
structure of the optimization algorithm is not modified: we
just use an increased population size, so that we can simul-
taneously evaluate one fitness value on each core or each
processor. We will study the speed-up as a function of the
population size, assuming that the population size is the
number of cores. This is a special case, but a very usual one
in practice.

1.2 Convergence Rate
We aim to study the effectiveness and limits of some evolu-
tionary algorithms. As such, we define the convergence rate
of an algorithm.
At each iteration n, the evolutionary algorithm provides an
approximation xn of the optimum x∗. We consider the fol-
lowing convergence measure:

lim
n→∞

1

n
log ‖xn − x∗‖ → −Cλ,D (1)

where Cλ,D is a positive constant, depending on the pop-
ulation size λ and the dimension D only. Both theoretical
and empirical results ([4, 5, 6, 27]) show that a wide range
of evolutionary algorithms may converge in the sense of Eq.
1 when the objective function is unimodal and reasonably
smooth. Our purpose is to exhibit some bounds on this con-
vergence rate Cλ,D when it is well defined. We also get lower
bounds on the corresponding lim inf.

From the definition of the convergence rate (Eq. 1), it is
straightforward that the speed-up of an evolutionary algo-
rithm is equal to the convergence rate up to a multiplicative
constant. Hence, in the following, results on the convergence
rate also hold for the speed-up.

We have some extra informations available on the conver-
gence rate Cλ,D, as follows [13].

(i) Convergence with a population size equal to the dimen-
sion, at best:

Linear scalability: lim
λ→∞

Cλ,λ = Clinear. (2)

Eq. 2 is written for Cλ,λ. Indeed, Eq. 2 may also hold for
Cλ,D(λ) where λ → D(λ) is an approximately linear func-
tion, i.e. D(λ)/λ = Θ(1). [13, Section 5] has shown that
general classes of comparison-based algorithms can not do
better than such a convergence.

This equation means that we “cancel” the curse of dimen-
sionality thanks to

• A parallel implementation with one individual evalu-
ated on each processor.

• A linear number of processors (linear in the dimen-
sion).

(ii) Convergence with a large population size:

Logarithmic speed-up: lim
λ→∞

Cλ,D = Clarge,D log(λ) (3)

with lim
D→∞

D × Clarge,D = Clarge (4)

For a wide class of comparison-based algorithms, including
evolution strategies and pattern search methods, no algo-
rithm can do better than this bound ([13, Fig. 2 and Prop.
8]).

We here show that these results also hold in the case of
differential evolution and particle swarm optimization. Ex-
plicit bounds on Clinear and Clarge are available thanks to
the branching factor analysis sketched in Section 2.

The convergence rate above (Eq. 1) is a convergence rate in
the search space; we can also consider the convergence rate
in the fitness space:

lim
n→∞

1

n
log

(

f(xn)− inf
x

f(x)
)

= −C′
λ,D. (5)

On the sphere function, C′
λ,D = 2Cλ,D. We will use this

convergence rate C′
λ,D (in fitness space) in all our experi-

ments.

1.3 Branching factor
Many evolutionary algorithms, after having evaluated the
population, keep only a concise representation of the evalu-
ations they have performed. This concise representation is
typically:

• The ordered list of the indices of the µ best among the
λ generated individuals. There are

(

λ

µ

)

× (µ!) possibil-
ities.

• The family (unordered) of the indices of the µ best
among the λ generated individuals. There are

(

λ

µ

)

pos-
sibilities.

A crucial property of such algorithms is that the number
of possibilities is finite. The branching factor is this num-
ber. For evolution strategies, the branching factor can be
strongly reduced, by assuming some regularity of the ob-
jective function (VC-dimension assumption on the objective
function [35, 12]).

The branching factor is then used to prove that comparison-
based algorithms have usually convergence rate increasing at
most logarithmically with the population size λ as in Eq. 3.
This upper bound is proved for evolution strategies in [13,
Fig. 2]. Moreover, this bound is tight: ad hoc variants of
evolutionary algorithms match it. Thanks to some specific
tuning, [32] shows empirically that this logarithmic speed-
up can be reached by some evolutionary algorithms, namely
CMSA, EMNA and CMAES. Similarly, the branching fac-
tor leads to finding a lower bound on the convergence rate
provided that the population size is limited. Here again,
this bound is tight, hence Eq. 2 holds for comparison-based
algorithms (see [13, Section 5]).

1.4 Differential evolution and particle swarm

optimization
Two families of evolutionary algorithms are studied in the
present paper, namely Particle Swarm Optimization (PSO)
and Differential Evolution (DE). They share several common
points. They both are population based optimization algo-
rithms and do not require heavy calculations for gradient or
Hessian updates. Furthermore, the run of these algorithms
depends on “paired” comparisons only: instead of compar-
ing or sorting most of the population, these two algorithms
compare each individual to only one possible mutation. This
leads to specific mathematical properties, discussed in Sec-
tion 2.

Among evolutionary algorithms, Differential Evolution was,
from the very beginning [31], presented as a tool with high
relevance for parallel optimization in continuous domains.
Particle Swarm Optimization [16, 30] is also a general pur-
pose black-box optimization algorithm, aimed at finding
quickly approximate solutions to optimization problems.

In the implementation of these algorithms (see Algorithms
1 and 2), we use two loops per generation: one loop for
computing fitness values of candidate vectors; one loop for
updating “best” points (best search point so far, and best
point so far for each given particle for PSO). One can im-
plement variants of PSO and DE in which this is done in
one loop only. However, such variants are less parallel, be-
cause the mutations, which depend on “best” points, might
change during the loop and therefore cannot be computed
simultaneously.

Choosing the right parameters for these algorithms is a chal-
lenging task. In this paper, we define rules for choosing
these parameters in a parallel black-box optimization set-
ting. We restrict this experimental part of the study to the
case of unimodal well conditioned fitness functions. We val-
idate our empirically developed formula for the parameters
in front of both (i) standard values used for DE and PSO
and (ii) theoretically known bounds.

Differential evolution. Differential evolution (DE) [31] is
one of the main evolutionary algorithms for continuous op-
timization. It performs well on optimization testbeds [31,
3, 2, 24]. At each iteration, each point pi of the population
undergo mutations of some of its components, then com-
parisons are performed between the old point and its cor-
responding mutated version. The best of the two points is
selected for the next iteration. Different parameters are in-
volved in the mutation step. A classical version of DE is pre-
sented in Algorithm 1. Many variants exist, including self-
adaptive parameters [8, 17, 37, 25] and meta-heuristics for
choosing parameters [23]. In some variants [31] (DE/best/1,
DE/best/2), we need to compute at each generation the best
search point so far. When this property is required, we set
parameter best to 1 in Algorithm 1, and to 0 otherwise.
Henceforward, when best = 1, we denote this version of DE
by DE/best, and when best = 0, this version of DE is named
DE/rand.

On the technical side, the large scale parallelization of the
evaluations is performed with CUDA in [26]. [21] focuses on
the asynchronous parallelization, which is not considered in

Algorithm 1 Pseudo-code of basic differential evolution.
The first loop on the population contains the fitness eval-
uations, supposed to be the key part of the computational
cost; it is fully parallel. For j ∈ {1, . . . , D}, xi,j denotes the
jth coordinate of a vector xi ∈ R

D. U(a, b)D stands for an
uniform random variable in the domain (a, b)D.

Require: D: Dimension, N : Number of generations, F ∈
[0, 2]: Differential weight, Cr ∈ [0, 1]: Crossover probabil-
ity, λ: Population size, best ∈ {0, 1}
for each i ∈ {1, . . . , λ} do

Initialize pi ∼ U(−500, 500)
D

Compute f(pi)
end for

if best = 1 then

g ← argmin
p1,...,pλ

f(pi)

end if

n = 1
while n<N do

for i ∈ {1, . . . , λ} parallel loop do

Randomly draw a, b and c distinct
in {1, . . . , i− 1, i+ 1, . . . λ}

Define p′i ← pa + F (pb − pc)
Randomly draw R ∈ {1, . . . , D}
for each j ∈ {1, . . . , D} do

p′′i,j ← p′i,j if rand < Cr or if j = R
p′′i,j ← pi,j otherwise

end for

Compute f(p′′i)
end for

for i ∈ {1, 2, . . . , λ} do
if f(p′′i) < f(pi) then

pi ← p′′i
if best = 1 & f(pi) < f(g) then

g ← pi
end if

end if

end for

n← n+ 1
end while

if best = 0 then

g ← argmin
p1,...,pλ

f(pi)

end if

Return g

the present paper; they combine DE and simulated anneal-
ing. [36] considers a ring topology and focuses on avoiding
premature convergence. [38] considers the problem of multi-
ple populations from the point of view of global convergence
and maintaining diversity, while we, in the present paper,
consider mainly (at least for experimental rates - our lower
bounds on runtime are for arbitrary functions with unique
global optimum) local convergence. Consistently with [1],
we consider the performance as a function of the population
size; we also prove lower bounds and discuss the optimal
parametrization of DE with large population size.

Particle Swarm Optimization. Particle Swarm Opti-
mization (PSO) is another classical evolutionary algorithm
for continuous domain. Let P be a population of particles;
for each i ∈ P, xi ∈ R

D is in the search space and the parti-

cle has a velocity vi ∈ R
D. Let pi be the best known position

of the particle i and g be the best found solution so far. Al-
gorithm 2 presents a basic PSO following this notation.

Algorithm 2 Basic PSO. The first loop on the population
contains the fitness evaluations, supposed to be the key part
of the computational cost; it is fully parallel. Notations are
the same as in Algorithm 1, ie. xj (resp. xi,j) is the jth

component of vector x (resp. xi).

Require: D: Dimension, N : Number of generations, P:
Population, bl: Lower bound of the search space, ul: Up-
per bound of the search space, w,φp,φg: Parameters
for each particle i ∈ P do

Initialize its position xi from a uniform distribution:
xi ∼ U(bl, bu)

D

Initialize its best known position: pi ← xi

Initialize its velocity: vi ∼ U(−|bu − bl|, |bu − bl|)
D

end for

Initialize best solution: g ← argmin
xi, i∈P

f(xi)

n = 1
while n < N do

for each i ∈ P parallel loop do

Pick rp, rg ∼ U(0, 1)
for each j ∈ {1, . . . , D} do

vi,j ← wvi,j +φprp(pi,j −xi,j)+φgrg(gj −xi,j)
end for

Update xi ← xi + vi
Compute f(xi)

end for

for each i ∈ P do

if f(xi) < f(pi) then
pi ← xi

if f(pi) < f(g) then
g ← pi

end if

end if

end for

n← n+ 1
end while

Return g

It has several parameters leading to complicated dynamics;
for example w (see Algorithm 2) is often thought of as an
inertia, but it can be negative or greater than 1. There-
fore, many works are devoted to choosing optimally these
parameters [22, 34, 11].

As explained before, PSO is relevant for parallelization. [14]
uses speculative parallelization. Speculative parallelization
is known to ensure an asymptotic logarithmic convergence
rate (i.e. the optimal rate as described in Eq. 3), but it
does not, in the general case, ensure optimality in large
dimension (Eq. 2). They use the topology for defining a
parallel variant of PSO, without necessarily increasing the
population size. We will here consider the simple increasing
of the population size. [20] focuses on the implementation
part of a parallel PSO, in particular taking care of node
failure and communication costs, thanks to MapReduce -
we will here assume that communication costs can be ne-
glected, e.g. due to expensive fitness functions. [18] uses a
fuzzy controller for a parallel PSO, applied to a power dis-

patch problem; the fuzzy part generates rules for the simu-
lations. Other experimental works on parallel-PSO include
[29] (focusing on parallel global optimization, whereas we
focus on unimodal functions) and [9] (detailing communica-
tion strategies, which are beyond the scope of the present
paper, because we focus on the case in which most of the
cost is in the fitness evaluations).

Outline of this paper. The branching factor methodology
has never been applied to differential evolution and particle
swarm optimization. This is the purpose of the theoretical
part of this paper. In this paper:

• We show mathematically that, whatever may be the
parametrization, differential evolution and particle
swarm optimization can not do better than a loga-
rithmic speed-up (Eq. 3) and a linear scalability (Eq.
2).

• We estimate empirically the convergence rate, in the
case of the sphere function. These convergence rates,
in the easy considered setting, match the lower bounds.

• We propose some variants designed to reach a good
convergence rate when the population size is large.

2. MATHEMATICAL ANALYSIS
In [13], the branching factor was identified as a crucial com-
ponent of a comparison-based algorithm. We present a gen-
eral framework of optimization in Alg. 3.

Algorithm 3 General framework of algorithms with
bounded branching factor K.

Initialize some state S
while not finished do

Generate (possibly randomly) a family E of individu-
als, using S only.

Let I be the extracted information, which depends on
(i) the fitness function (ii) S (iii) E ; we assume that I has
values in a finite set {1, . . . ,K}.

Update: S ← update(S, I).
Recommend: let x = recom(S) be the approximation

of the optimum proposed by the algorithm.
end while

Define, for the theorem below, xm the approximation of the
optimum that it recommends after m iterations in Algo-
rithm 3. It is known, by the following theorem [33] that the
runtime necessary for hitting the optimum with probability
1 − δ and precision ǫ is lower bounded by a function of the
branching factor.

Theorem 1 (Branching factor theorem).
Assume that an optimization algorithm has branching
factor K. Let D be the search domain. We define F , nǫ,δ

and N(ǫ) as follow:

• We denote by F the set of objective functions on D,
i.e. functions from D to R. Each function in F has a
unique minimum x∗(f) in D. We assume that for each
x ∈ D, there is at least one objective function f ∈ F
with optimum x∗(f) = x.

• Let nǫ,δ be the minimum number of iterations in the
While loop in Algorithm 3 such that, for any f ∈ F ,
with probability 1− δ, ‖xnǫ,δ

− x∗(f)‖ ≤ ǫ.

• We define N(ǫ) the maximum integer n such that there
exist n points (x1, . . . , xn) ∈ D

n satisfying ‖xi−xj‖ ≥
2ǫ for any i 6= j.

Then, nǫ,δ ≥
log(1− δ)

logK
+

logN(ǫ)

logK
. (6)

N(ǫ) is the so-called packing number. In [13], bounds on
the branching factor are computed for evolution strategies
based either on a full ranking of the population or on a
selection of the µ best individuals. The bounds are improved
when the objective function is simple, e.g. has bounded VC-
dimension. The purpose of this section is to show a bound
on the branching factor in the case of differential evolution
(Algorithm 1) and particle swarm optimization (Algorithm
2). Lemma 1 exhibits such a bound.

Lemma 1. If the objective function is f(x) = ‖x − x∗‖2

over D = (0, 1)D for some x∗ ∈ D, or any composition
x 7→ m(‖x − x∗‖2) with m increasing, then the branching
factor of DE/rand (see Algorithm 1, best = 0) is at most:

K ≤ min{(λ+ 1)D, 2λ}. (7)

With the same assumptions, the branching factor of DE/best
(see Algorithm 1, best = 1) and PSO (see Algorithm 2) is
at most:

K ≤ min{λ(λ+ 1)D, λ2λ}. (8)

Proof. First, let us give the proof when DE/rand is used.
The right hand side of the min corresponds to the branching
factor of λ comparisons; there are λ comparisons, hence 2λ

possible comparison results, hence the 2λ bound. We just
have to show the left hand side of the min. There are λ com-
parisons at each iteration, each of them between two points.
This does not follow the scheme in [13] because, there, the
branching was directly a ranking of the µ best among λ or
a selection (without ranking) of the µ best among λ. Here,
one of two points is selected, λ times. When p1 and p′′1 are
compared, p1 is selected if ‖p1 − x∗‖ < ‖p′′1 − x∗‖. Simi-
larly, the result of the comparison of pi and p′′i depends on
the position of x∗ w.r.t the median hyperplane of pi and p′′i .
Therefore, the final comparison result depends on in which
cell, among the cells obtained by the arrangement of λ hy-
perplanes, contains x∗. The branching factor is therefore
upper-bounded by the number of cells obtained by λ hyper-
planes in R

D. By Zaslavsky’s Theorem (see e.g. [28, Th 4,

p. 27]), this number of cells is upper bounded by
∑D

i=0

(

λ

i

)

;

this is upper bounded by (λ+ 1)D, hence the expected result
for DE/rand.

We now extend to DE/best and PSO, as follows:

• When DE/best is used, the best point is one of the λ
selected points; hence the additional λ factor: beyond
the 2λ possible results of the pairwise comparisons, we

have λ possibilities for the best of the λ selected points.
Hence the expected result for DE/best.

• When PSO is used, the “global” best so far g is one
of the λ “best so far per particle” pi. Hence, there are
λ possibilities; and the expected result for PSO with
best particle.

Please note that if φg = 0, then the branching factor of PSO
verifies the same bound as DE without best (e.g. DE/rand).

Lemma 2. For an arbitrary family F of objective func-
tions, the branching factor of DE/rand is at most

K ≤ 2λ, (9)

and the branching factor of PSO and of DE/best is at most

K ≤ λ2λ.

Proof. The 2λ and λ2λ parts of Lemma 1 do not use
any property of F .

Property 1 (Runtime of DE/rand). If the objec-
tive function is f(x) = ‖x−x∗‖2 over D = (0, 1)D for some
x∗ ∈ D, or any composition x 7→ m(‖x − x∗‖2) with m
increasing, for DE/rand, the runtime nǫ,δ is lower bounded:

nǫ,δ ≥
log(1− δ)

D log (λ+ 1)
+

log (⌈1/(2ǫ)⌉)

log (λ+ 1)
. (10)

Again when applying DE/rand, but with an arbitrary family
F of objective functions, if λ = D, the runtime nǫ,δ is lower
bounded:

nǫ,δ ≥
log(1− δ)

λ log(2)
+

log (⌈1/(2ǫ)⌉)

log 2
. (11)

Proof. Just plug the bound (Eq. 7, 8 and 9) on the
branching factor above in Theorem 1, Eq. 6, and use
logN(ǫ) ≥ D log (⌈1/(2ǫ)⌉) when ǫ → 0 if the domain D
is bounded with non-empty interior.

Property 2 (Runtime of PSO and DE/best). If
the objective function is f(x) = ‖x− x∗‖2 over D = (0, 1)D

for some x∗ ∈ D, or any composition x 7→ m(‖x − x∗‖2)
with m increasing, for PSO and DE /best, the runtime nǫ,δ

is lower bounded:

nǫ,δ ≥
log(1− δ)

log(λ) +D log (λ+ 1)
+

D log (⌈1/(2ǫ)⌉)

log(λ) +D log (λ+ 1)
.

(12)

Again when applying PSO or DE/best, but with an arbitrary
family F of objective functions, if λ = D, the runtime nǫ,δ

is lower bounded:

nǫ,δ ≥
log(1− δ)

log(λ) + λ log(2)
+

log (⌈1/(2ǫ)⌉)

1 + log 2
. (13)

Proof. See proof of Property 1.

Remarks: Eq. 10, 11, 12, 13 imply that if DE and PSO
algorithms converge in the sense of Eq. 1 then

lim
λ→+∞

Cλ,D = O(log(λ)). (14)

lim
λ→+∞

Cλ,λ = O(1). (15)

We have therefore proved that the differential evolution al-
gorithm can not do better than O(log(λ)) speed-up, when
using λ fitness evaluations per iteration. Eq. 11 and 13 do
not prevent a linear speed-up until λ = D. In the case of
evolution strategies, it is known that such a linear speed-up
is possible; for DE and PSO, we are not aware of such a
result. We will investigate this empirically in Sections 3 and
4.

3. EXPERIMENTS: SPEED-UP AND

SCALABILITY OF PARALLEL DIF-

FERENTIAL EVOLUTION
We have shown mathematical lower bounds on the runtime
when using differential evolution; hence, if Eq. 1 holds, this
implies lower bounds on CR = −C′

λ,D (see Eqs. 5, 14 and
15). We now check if these bounds are reached or approx-
imately reached; we will see that this is approximately the
case, as far as we can tell on (necessarily finite) experiments.

In all this section, experiments are performed on the sphere
function x 7→ ‖x‖2. We use 1000 iterations for evaluating
the convergence rate. So now on, the convergence rate CR
is estimated as (see Eq. 5):

CR =
1

1000
(log(best fitness at 1000 iterations)

− log(initial best fitness)) .

Differential evolution depends on two parameters that take
place in the mutation step of the algorithm: the differential
weight F and the crossover probability Cr. We are inter-
ested in finding the parameters F and Cr which enable to
reach these lower bounds. We first do experiments with the
baseline differential evolution DE/rand (Algorithm 1 with
best = 0) in Section 3.1. We then perform additional exper-
iments with large population sizes and extreme values of the
parameters (Section 3.2). Finally, we test adaptive variants
of differential evolution (Section 3.3).

3.1 Experiments with standard differential

evolution

3.1.1 Testing D = 5 and large population size λ.
The purpose of this section is to experimentally check Eq.
3 by considering a fixed dimension D = 5. We increase the
population size λ, and check if the convergence rate reaches
the optimal C′

λ,D = Θ(log(λ)) rate. Section 2 has shown
that it can not be better (see Eq. 14) than this log(λ) rate.
Results presented in Figure 1 are averaged over 15 runs and
the number of generations N is fixed to 1000. The x-axis
is the base-10 logarithm of the population size, and the y-
axis shows the convergence rate CR, multiplied by D, as

suggested in Eq. 4. Hence, if Eq. 3 holds, we should observe
curves decreasing linearly with log(λ).

We first experiment differential evolution with various con-
stant parametrizations (i.e. parametrizations which are
independent from the population size λ). Different pa-
rameters F and Cr are tested in Figure 1a. It appears
that (i) the parameter Cr seems to have no impact on
the convergence rate CR; (ii) when the population size in-
creases, a smaller parameter F is better. For example, when
log 10(λ) ∈ [1, 1.3], F = 0.41 is a good parameter choice.
Then when log 10(λ) ∈ [1.3, 1.5], F = 0.24 becomes a better
choice. Finally, when log 10(λ) ∈ [2.7, 4.4], F = 0.07 appears
to be a better parametrization. That is why from now on
we experiment with some differential evolution parametriza-
tions with F decreasing when the population size λ increases.
In Figure 1b, we investigate the case of parameter F equal to
.5 log(λ)−A for various parameters A. Parameter A fixed to
0.76 is seemingly a good choice, as the corresponding curve
is linear for log 10(λ) large enough; whereas other choices of
parametrizations lead to plateauing curves. Figure 1c dis-
plays results for various values of F when F = .5λ−A. For
several values of A (A = 0.4, A = 0.11), the curves have
the expected behavior: quasi-linear, when log 10(λ) is large
enough. The slopes seem also better than in the case of
F = .5 log(λ)−0.76. Specifically, F = .5λ−0.4 reaches the
best slope of these experiments. Hence, a detailed look at
results shows that, for population sizes as in these experi-
ments,

Cr = .44, F = .5λ−0.4 (16)

is a reasonable tuning - though only mathematics could vali-
date the (expected) logarithmic asymptotic convergence rate
(≃ log(λ)) for λ large.

3.1.2 Testing D = λ/2, large population size λ.
The purpose of this section is to experimentally get Eq. 2.
We set D = λ/2, and we observe what happens when λ goes
to infinity. Results are presented in Figure 2. Each exper-
iment is launched 15 times and the number of generations
N is set to 1000. The x-axis is the base-10 logarithm of the
population size, and the y-axis shows the convergence rate
CR. We expect a negative constant convergence rate if Eq.
2 holds in the case of differential evolution (see Eq. 15).

First, various constant parameters F and Cr are tested (see
Figure 2a); in this case, none of the results are satisfac-
tory as the curves converge toward 0: the algorithm does
not converge. Figure 2b exhibit experiments when F is in-
versely proportional to an exponent of log(λ). All but one
converge toward 0 and the last one decreases linearly as a
function of log(λ), which is also not the expected behavior.
Last, parameter F decreasing as an exponent of λ is investi-
gated (see Figure 2c). A seemingly good behavior happened
when F = .5λ−0.4; with this value, the curve approximately
converges toward a constant value −0.005. With other tun-
ings, either the curves converge toward 0 or decrease lin-
early. Crossover probability Cr has seemingly no impact on
the convergence rate CR. Experiments suggest that for λ
large and 1000 iterations the best performing tested variant
is Eq. 16 (Cr = .44 and F = .5λ−0.4), independently of the
dimension.

-1

-0.5

0

0.5

1 1.5 2 2.5 3 3.5 4 4.5

D
 x

 C
R

log10(pop size)

F=0.41 Cr=0.86
F=0.83 Cr=0.68
F=0.24 Cr=0.44
F=0.66 Cr=0.96
F=0.07 Cr=0.81

(a) F independent of λ. Seemingly, the convergence rate
reaches a plateau.

-1

-0.5

0

0.5

1 1.5 2 2.5 3 3.5 4 4.5

D
 x

 C
R

log10(pop size)

F=0.5/pow(log(lambda),0.76) Cr=0.86
F=0.5/pow(log(lambda),3.6) Cr=0.68
F=0.5/pow(log(lambda),0.4) Cr=0.44
F=0.5/pow(log(lambda),1.7) Cr=0.96

F=0.5/pow(log(lambda),0.11) Cr=0.81

(b) F inversely proportional to an exponent of log(λ). Results
are better than above.

-1.5

-1

-0.5

0

0.5

1

1 1.5 2 2.5 3 3.5 4 4.5

D
 x

 C
R

log10(pop size)

F=0.5/pow(lambda,0.76) Cr=0.86
F=0.5/pow(lambda,3.62) Cr=0.68
F=0.5/pow(lambda,0.4) Cr=0.44

F=0.5/pow(lambda,1.67) Cr=0.96
F=0.5/pow(lambda,0.11) Cr=0.81

(c) F inversely proportional to an exponent of λ. Results are

better, in particular with Cr = .44 and F = 1
2
λ−0.4.

Figure 1: Experiments in dimension 5. Here we plot the conver-
gence rates CR (Eq. 5) of various parametrizations of differential
evolution (estimated on 1000 iterations). All experiments are av-
eraged over 15 runs. Standard deviations are very small and not
presented. We essentially see that F should decrease when λ in-
creases. Figure 3 will experiment with a few variants with larger
population sizes.

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1 1.5 2 2.5 3 3.5

C
R

log10(pop size)

F=0.41 Cr=0.86
F=0.83 Cr=0.68
F=0.24 Cr=0.44
F=0.66 Cr=0.96
F=0.07 Cr=0.81

(a) F independent of λ

-0.03

-0.02

-0.01

0

0.01

0.02

1 1.5 2 2.5 3 3.5

C
R

log10(pop size)

F=0.5/pow(log(lambda),0.76) Cr=0.86
F=0.5/pow(log(lambda),3.62) Cr=0.68

F=0.5/pow(log(lambda),0.4) Cr=0.44
F=0.5/pow(log(lambda),1.67) Cr=0.96
F=0.5/pow(log(lambda),0.11) Cr=0.81

(b) F inversely proportional to an exponent of log(λ)

(c) F inversely proportional to an exponent of λ

Figure 2: Here we plot the convergence rates (Eq. 5) of various
parametrizations of differential evolution in the case D = λ/2
with D the dimension. All experiments are averaged over 15 runs.
Standard deviations are very small and not presented. Figure
3 presents experiments with a few selected variants with larger
population sizes.

3.2 Extension: the case F = 0 and larger pop-

ulation sizes
Section 3.1 shows some surprisingly good results with F very
small. We investigate then the specific case F = 0. When we
set F = 0, DE can still perform optimization, through the
use of coordinate-wise mutations. This optimization does
not converge asymptotically, because it is restricted to a
finite set; yet, unless the number of iterations is huge, this is
quite effective on the empirically measured convergence rate.
This is shown in Figure 3, with a number of iterations N set
to 1000. Each result is the average of 15 runs. We present
here experiments with larger population size, including F =
0.

Figure 3a displays the Convergence Rate in y-axis and the
population size λ in x-axis. Dimension D is fixed to 3. Fig-
ure 3b presents experiments of Figure 3a with the Conver-
gence Rate divided by log(λ) in y-axis and the population
size λ in x-axis. Hence, if Eq. 3 holds, we should observe a
negative plateau if λ is large enough. We notice that F = 0
is a bad parameter choice - even with a moderate number
of iterations (1000)- as the convergence rate remains in 0
(the algorithm does not converge). Two parametrizations
appear to perform well when the population size is large:
(F = .1, Cr = .5) and (F = .5λ−0.4, Cr = 0.44).

Figure 3c exhibits results when population size and dimen-
sion are linked. Dimension D is here λ/2. We see that F = 0
is very satisfactory in such a case, and F = .5λ−0.4 (which is
also satisfactory in Figures 3a and 3b with fixed dimension)
has the same performance in this D = λ/2 setting.

As a result, these experiments show that (i) F = 0 is suit-
able in the important case λ proportional to the dimension
and a fixed number of iterations. (ii) However, F = 0 is
strongly suboptimal for a fixed dimension and λ goes to in-
finity. (iii) F decreasing such as F = .5λ−0.4 independently
of the dimension is seemingly a reasonably good idea in all
cases. It is not clear whether it succeeds asymptotically for
our two parallelization criteria (Eqs. 2 and 3 for λ → ∞),
but the behavior was better than other methods as far as
we have seen on a simple sphere function problem.

We see on these experiments that for a fixed total budget,
when the dimension and/or the population size increase, the
effect of the F parameter is much more important than the
Cr value.

3.3 Adaptive DE
We here test adaptive variants of DE, aimed at choosing
adaptively the Cr and F parameters. Experiments are per-
formed with F = 0.5, Cr = 0.9, for DE/rand/1, DE/rand/2,
DE/best/1, DE/best/2. The variants JADE and MDE pBX
are adaptive and choose their parameters themselves. We
refer to [40, 15, 19] for more on the parametrization of dif-
ferential evolution and the adaptive variants. Experimental
results are presented in Figure 4 with 50 iterations. The
adaptive variants of DE fail in preserving the log(λ) speed-
up in case of large population size for a fixed D: the conver-
gence rate decreases and is lower than for our non-adaptive
variant (see Figure 4a). For D = λ/2, JADE succeeds rea-
sonably well (see Figure 4b).

(a) Dimension D = 3, D × CR as a function of λ.

(b) Dimension D = 3, D × CR/ log(λ) as a function of λ.

(c) Dimension D = λ/2, D × CR as a function of λ.

Figure 3: Convergence rate in the fitness space (Eq. 5) for
large population sizes, including a parametrization with F = 0,
some classical parametrizations, and our proposed formula F =
0.5λ−0.4. Each point is averaged over 15 runs. These experi-
ments performed in different settings are aimed at validating our
proposed formula for large population sizes and checking that it
is better than (i) some usual parametrizations (ii) the limit value
F = 0. We see that F = 0 is not efficient for a fixed dimension:
the algorithm does not converge. When the dimension is huge,
then the case F = 0 performs well, whereas one can show math-
ematically that it does not converge. F prescribed by .5λ−0.4

performs well.

(a) Variants of DE with D = 10

(b) Variants of DE with D = λ/2

Figure 4: Experiments aimed at comparing our proposed vari-
ants with small values for F as λ → ∞ to adaptive variants of
DE. In these experiments, variants of DE are tested with D = 10
and with D = λ/2 respectively, as the population size λ goes to
infinity. These results are convergence rates in the fitness space.
Figure 4a shows that adaptive variants of DE can not compete
with the standard DE (e.g. DE/best/1), which could not com-

pete with our variants with F = 1
2
λ−0.4 in previous experiments.

Figure 4b shows that JADE performs reasonably well when the
population size is proportional to the dimension.

4. EXPERIMENTS: SPEED-UP AND

SCALABILITY OF PARALLEL PAR-

TICLE SWARM OPTIMIZATION
We now try to reach the previous theoretical bounds in the
case of PSO. The problem investigated in this section is the
possibility to find parameters of PSO such that we get ap-
proximately these two good properties, namely linear scal-
ability (Eq. 2) and logarithmic speed-up (Eq. 3). Since
asymptotically everyone dies, we focus on the following non-
asymptotic versions:

PRD(λ) =
D

100
(log(best fitness at 100 iterations)

− log(initial best fitness)) (17)

PRlin(λ) =
1

100
(log(best fitness at 100 iterations)

− log(initial best fitness)) with D = λ/2 (18)

where PR stands for Progress Rate. Implicitly, here, fitness
values depend on λ, which is the population size.

We do experiments on simple unimodal functions, the sphere
function f(x) = ‖x‖2, plus a validation on the cigar function.

The parameters of PSO are w, φg and φp (see Algorithm
2). We evaluate the impact of each parameter. For the
sake of comparison, we need a standard PSO [39, 10, 7] as
a baseline. We choose ω = 1/(2 log(2)) ≃ 0.72, φp = φg =
0.5 + log(2) ≃ 1.2.

In Section 4.1, we investigate the case of large population
size and logarithmic speed-up. Population size of the same
order as the dimension and linear scalability are studied in
Section 4.2.

4.1 Asymptotic scalability: large population

size, fixed dimension
In this section we check if Eq. 3 holds. The fitness function
used in these experiments shown in Figure 5 is f(x) = ‖x‖2.
We limited the search space to an upper bound bu = 1 and
a lower bound bl = −1. The number of generations N is
fixed to 100 and the dimension D to 30. In Figure 5, the
x-axis shows the natural log of the population size. Figure
5a displays PR30(λ) in order to show progress rate whereas
Figure 5b displays PR30(λ)/ log(λ) to check if PSO reaches
the optimal asymptotic behavior PR30(λ) = Θ(log(λ)). If it
is the case, the curves should show a plateau. Each experi-
ment is repeated 10 times. Figure 5 seems to indicate that
there exist different parameter values for which PSO reaches
the optimal convergence rate (within a constant factor), at
least as far as we can see in dimension 30. This comes a
bit as a surprise as other algorithms struggle with such con-
vergence rates (see [32] for efforts aimed at making some
classical algorithms verify this optimal behavior) - standard
PSO appears to be more naturally parallel than most exist-
ing evolutionary algorithms, from the point of view of the
convergence rate as the population size grows to infinity, for
simple unimodal functions. However, we will see below that
for lower dimensions, things are not so nice for standard
PSO.

Choosing φg and φp in PSO: Figures 6a, 6b and 6c look
at the impact of φg and φp for different ω around these
standard values. The x-axis still shows the population size
expressed as log(λ) and the y-axis displays the progress rate.
From Figure 6, it appears that φp and φg can only slightly
change the convergence rate in our simple unimodal setting,
which is in line with the current literature. From several
empirical tests, in the following experiments we choose 0.9
instead of the recommended 0.5 + log(2) as it seems to give
better results regardless of the ω for the unimodal function
under study in this paper.

Choosing w in PSO: Figure 7 evaluates the impact of dif-
ferent ω for a given dimension D = {2, 3, 5, 10}, respectively
Figures 7a, 7b, 7c ,7d, to see whether a dynamic ω could
yield better results. As such, we are looking for curves that
crosses one another. The x-axis still shows the population
size expressed as log(λ) and the y-axis displays the progress
rate. The first conclusion we can infer from Figure 7 is that
the parameter ω clearly varies in relation to λ. Especially

2 4 6 8 10 12 14
−7

−6

−5

−4

−3

−2

−1

0

log(λ)

(P
ro

g
re

s
s
 r

a
te

:D
 =

 3
0

)

ω:0.7 φ
p
:0.16 φ

g
:0.74

ω:0.042 φ
p
:0.32 φ

g
:0.99

ω:0.72 φ
p
:1.2 φ

g
:1.2

ω:0.6 φ
p
:0.9 φ

g
:0.9

ω:0.8 φ
p
:0.9 φ

g
:0.9

(a) Progress rate PR30(λ)

2 4 6 8 10 12 14
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

log(λ)

(P
ro

g
re

s
s
 r

a
te

:D
 =

 3
0
)

/
lo

g
(λ

)

ω:0.7 φ
p
:0.16 φ

g
:0.74

ω:0.042 φ
p
:0.32 φ

g
:0.99

ω:0.72 φ
p
:1.2 φ

g
:1.2

ω:0.6 φ
p
:0.9 φ

g
:0.9

ω:0.8 φ
p
:0.9 φ

g
:0.9

(b) Progress rate divided by log(λ), i.e. PR30(λ)/ log(λ)

Figure 5: The progress rate, expressed as variants of Eq. (17),
for different set of parameters ω, φp, φg , including the values of
standard PSO (black dash line with values ω = 0.72 and φp =
φg = 1.2). We observe that standard PSO performs well and even
seems to reach the optimal convergence rate as λ grows. For small
λ a higher value of ω is slightly more appropriate and eventually
(around a population λ = 80k) smaller values of ω outperform
standard PSO. Standard deviations are of order 0.01.

on lower dimensions (Figures 7a,7b, 7c and 7d), we observe
patterns that emerge. For instance, in dimension D = 5,
when the population size log(λ) is between [2, 3], the best
ω is 0.7. As the population size increases to log(λ) ∈ [3, 4],
the best ω is equal to 0.6. At log(λ) ∈ [4, 5], the best ω
becomes 0.5, etc. The rate at which the different curves
crosses one another gives an important indication that there
is a dependency of ω over both λ and the dimension D.

Figure 8 compares 3 different sets of parameters across di-
mensions D = {2, 3, 5, 50}, respectively Figures 8a, 8b, 8c,
8d. The first set of parameters are those provided by stan-
dard PSO. As we observe in Figure 7, as the population size
λ grows, smaller ω yields better performance. Thus, we can
suppose that when λ→∞, ω = 0 could be the best parame-
ter. This is the second set of parameters with φp = φg = 0.9.
The third one ωλ is a set of parameters that depends on both

2 4 6 8 10 12
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

(P
ro

g
re

s
s
 r

a
te

:D
 =

 3
0

)

ω:0.621 φ
p
:0.6 φ

g
:0.6

ω:0.621 φ
p
:0.75 φ

g
:0.75

ω:0.621 φ
p
:0.9 φ

g
:0.9

ω:0.621 φ
p
:1.05 φ

g
:1.05

ω:0.621 φ
p
:1.2 φ

g
:1.2

(a) ω = 1
2∗log(2)

− 0.1

2 4 6 8 10 12
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)
(P

ro
g

re
s
s
 r

a
te

:D
 =

 3
0

)

ω:0.821 φ
p
:0.6 φ

g
:0.6

ω:0.821 φ
p
:0.75 φ

g
:0.75

ω:0.821 φ
p
:0.9 φ

g
:0.9

ω:0.821 φ
p
:1.05 φ

g
:1.05

ω:0.821 φ
p
:1.2 φ

g
:1.2

(b) ω = 1
2∗log(2)

+ 0.1

2 4 6 8 10 12
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

(P
ro

g
re

s
s
 r

a
te

:D
 =

 3
0

)

ω:0.721 φ
p
:0.6 φ

g
:0.6

ω:0.721 φ
p
:0.75 φ

g
:0.75

ω:0.721 φ
p
:0.9 φ

g
:0.9

ω:0.721 φ
p
:1.05 φ

g
:1.05

ω:0.721 φ
p
:1.2 φ

g
:1.2

(c) ω = 1
2∗log(2)

Figure 6: PR30(λ) for different values of ω. In this figure, dif-
ferent values of φg and φp for values around those proposed in
standard PSO are applied to the study of the (unimodal) sphere
function x 7→ ‖x‖2. We see that ω smaller (than standard PSO)
is better for λ large and ω larger is better for λ small. The im-
pact is, however, moderate in this case (dimension 30). Standard
deviations are of order 0.01.

λ and the dimension D; this formula is extrapolated from
the empirical results of Figure 7. It is given by:

ωλ = max

(

0.025 + 4 ∗ exp

(

−
λ

70

)

, 0.9− log

(

λ

2.5 ∗D

))

.

(19)

From Figure 8, it appears that using ωλ instead of standard

2 4 6 8 10 12
−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 2

ω:0 φ
p
,φ

g
:0.9

ω:0.025 φ
p
,φ

g
:0.9

ω:0.05 φ
p
,φ

g
:0.9

ω:0.075 φ
p
,φ

g
:0.9

ω:0.1 φ
p
,φ

g
:0.9

ω:0.2 φ
p
,φ

g
:0.9

ω:0.3 φ
p
,φ

g
:0.9

ω:0.4 φ
p
,φ

g
:0.9

ω:0.5 φ
p
,φ

g
:0.9

(a) Dimension 2, φg = φp = 0.9

2 4 6 8 10 12
−6

−5

−4

−3

−2

−1

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 3

ω:0 φ
p
,φ

g
:0.9

ω:0.025 φ
p
,φ

g
:0.9

ω:0.05 φ
p
,φ

g
:0.9

ω:0.075 φ
p
,φ

g
:0.9

ω:0.1 φ
p
,φ

g
:0.9

ω:0.2 φ
p
,φ

g
:0.9

ω:0.3 φ
p
,φ

g
:0.9

ω:0.4 φ
p
,φ

g
:0.9

ω:0.5 φ
p
,φ

g
:0.9

(b) Dimension 3, φg = φp = 0.9

2 4 6 8 10 12
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 5

ω:0 φ
p
,φ

g
:0.9

ω:0.1 φ
p
,φ

g
:0.9

ω:0.2 φ
p
,φ

g
:0.9

ω:0.3 φ
p
,φ

g
:0.9

ω:0.4 φ
p
,φ

g
:0.9

ω:0.5 φ
p
,φ

g
:0.9

ω:0.6 φ
p
,φ

g
:0.9

ω:0.7 φ
p
,φ

g
:0.9

ω:0.8 φ
p
,φ

g
:0.9

ω:0.9 φ
p
,φ

g
:0.9

ω:1 φ
p
,φ

g
:0.9

(c) Dimension 5, φg = φp = 0.9

2 4 6 8 10 12
−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 1

0

ω:0 φ
p
,φ

g
:0.9

ω:0.1 φ
p
,φ

g
:0.9

ω:0.2 φ
p
,φ

g
:0.9

ω:0.3 φ
p
,φ

g
:0.9

ω:0.4 φ
p
,φ

g
:0.9

ω:0.5 φ
p
,φ

g
:0.9

ω:0.6 φ
p
,φ

g
:0.9

ω:0.7 φ
p
,φ

g
:0.9

ω:0.8 φ
p
,φ

g
:0.9

ω:0.9 φ
p
,φ

g
:0.9

ω:1 φ
p
,φ

g
:0.9

(d) Dimension 10, φg = φp = 0.9

Figure 7: In dimension D = {2, 3, 5, 10} we check the progress
rate PRD(λ) for different values of w. In all cases, as λ becomes
large, smaller ω yield better results. The effect is more exacer-
bate on lower dimensions {2, 3, 5, 10}. The different values of ω
produce curves that cross one another which indicate that there
is a dependency over the population size λ for the parameter ω.
We use these curves for designing rules for choosing w as a func-
tion of the population size and the dimension (Eq. 19). Standard
deviations are of order 0.01.

PSO yields results more robust in relation to different di-
mensions. In lower dimensions D = {2, 3, 5, 10}, the factor
of improvement oscillates between 7 and 8. This means that
using ωλ instead of standard PSO in a parallel environment
is up to 8 times more efficient. The parameters of standard
PSO are essentially optimal for a dimension D = 30. It
is important to note that ωλ performs at least as good as
standard PSO. As the dimension increases D = 50, ωλ be-
comes again more efficient than standard PSO by a small
margin. The special case ω = 0 gives very good results in
small dimensions {2, 3, 5}, improving over standard PSO by
an average factor of 5, but never equals to ωλ and rapidly be-
comes irrelevant in higher dimension D > 10 for the tested
population sizes λ.

Figure 9 presents the same study as Figure 8 but using an-
other unimodal fitness function, the Cigar. This fitness is
defined as f(xi) = x2

i,0 + 106
∑D

d=1 x
2
i,d. The use of ωλ also

appears to yield better results in relation to different dimen-
sions. We observe the same behavior for ω = 0 as in Figure
8.

4.2 Linear scalability: population size linear

in the dimension
In this section we check if, for different variants of PSO, Eq.
2 holds. As a reminder, the fitness function used in these
experiments is still f(x) = ‖x‖2. We limit the search space
to an upper bound bu = 1 and a lower bound bl = −1. The
number of generations N is fixed to 100. The dimension
D is given by λ/2. Each experiment is repeated 10 times.
Figure 10 presents the results for different parametrizations
of ω, φp and φg.

From Figure 10 it appears that again ωλ yields the best
progress rate. Standard PSO is following closely (in this
setting; not in other settings as mentioned previously). The
case where ω = 0 is by far the worst setting of the 3 tested.
Thus, we conclude that ωλ seems to be a good parametriza-
tion for a parallel PSO environment, in terms of convergence
rates.

5. CONCLUSION
We have studied the speed-up of PSO and DE, as a function
of the number of simultaneous function evaluations - a model
of synchronous parallelism in which the main computational
cost is in the objective function.

We have investigated (i) theoretically the lower bound on
runtime for a large class of objective functions and (ii) em-
pirically on the sphere function (i.e. a model of unimodal
well conditioned function) the convergence rate of differen-
tial evolution and particle swarm optimization when the
population size λ is large. Roughly speaking, the present
paper extends [13] in the sense that it gives more precise
bounds for DE and PSO, and it extends [32] in the sense that
it provides (unproved) formulas for approximately optimal
speed-ups for DE and PSO. The improvement compared to
standard parametrizations grows seemingly indefinitely for
DE, whereas it is rather limited for PSO where the standard
parametrizations perform well even with huge values of λ.

We have identified a similarity between PSO and DE: both

2 4 6 8 10 12
−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 2

standard PSO
ω=0 φ

p
,φ

g
=0.9

ω=ω
λ

(a) Dimension 2

2 4 6 8 10 12
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 3

standard PSO
ω=0 φ

p
,φ

g
=0.9

ω=ω
λ

(b) Dimension 3

2 4 6 8 10 12
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 5

standard PSO

ω=0
ω=ω

λ

(c) Dimension 5

2 4 6 8 10 12
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 5

0

standard PSO
ω=0 φ

p
,φ

g
=0.9

ω=ω
λ

(d) Dimension 50

Figure 8: In dimension D = {2, 3, 5, 50} respectively, we check
the progress rate PRD(λ) for different values of w. At dimension
D = 2, the use of ωλ over standard PSO for parallelization yield
an improvement by a factor of 7. At dimension D = 3, ωλ im-
proves over standard PSO by a factor of 8. At dimension D = 5,
the factor is also 8. At dimension D = 10 (unpresented), the fac-
tor is 7.5. The case of dimension D = 30 (unpresented) provides
no improvement, standard PSO is equal to ωλ. At dimension
D = 50, there is a small advantage to use ωλ over standard PSO.
Standard deviations are of order 0.01.

2 4 6 8 10 12
−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 2

standard PSO
ω=0 φ

p
,φ

g
=0.9

ω=ω
λ

(a) Dimension 2

2 4 6 8 10 12
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 3

standard PSO
ω=0 φ

p
,φ

g
=0.9

ω=ω
λ

(b) Dimension 3

2 4 6 8 10 12
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 5

standard PSO
ω=0 φ

p
,φ

g
=0.9

ω=ω
λ

(c) Dimension 5

2 4 6 8 10 12
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(λ)

P
ro

g
re

s
s
 r

a
te

:
D

 =
 5

0

standard PSO
ω=0 φ

p
,φ

g
=0.9

ω=ω
λ

(d) Dimension 50

Figure 9: In dimension D = {2, 3, 5, 50} respectively, we check
the progress rate PRD(λ) for different values of w. At dimen-
sion D = 2, the use of ωλ over standard PSO for parallelization
yield an improvement by a factor of more than 5. At dimension
D = 3, ωλ improves over standard PSO by a similar factor. At
dimension D = 5, the factor is around 9. At dimension D = 10
(unpresented), the factor is 2.5. The case of dimension D = 30
(unpresented) provides no improvement, standard PSO is essen-
tially equal to ωλ. At dimension D = 50, there is a small ad-
vantage to use ωλ over standard PSO. Standard deviations are of
order 0.01.

2 3 4 5 6 7 8 9 10
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

log(λ)

P
ro

g
re

s
s
 r

a
te

 :
 D

 =
 (

λ
/2

)

standard PSO
ω=0 φ

p
,φ

g
=0.9

ω=ω
λ

Figure 10: The performance (progress rate) for different popu-
lation size λ where the dimension is given by λ/2. Three sets of
parameters are tested. The first set is the values given by stan-
dard PSO. The second test is given by ω = 0, φg ,φp = 0.9. The
third and last set is the formula given by ωλ, φg ,φp = 0.9. Again,
we observe that ωλ gives the best progress rate - though standard
PSO is almost equivalent. Standard deviations are of order 0.01.

are based on pairwise comparisons. We have shown that DE
and PSO:

• can not be faster than − log(‖xn−x∗‖)
n

= Θ(log(λ)),
with xn the best individual at iteration n, a fixed di-
mension, and x∗ the optimum;

• can not do better than − log(‖xn−x∗‖)
n

= Θ(1) when the
dimension is proportional to λ, e.g. D ≃ λ/2.

This mathematical lower bound on the runtime is for arbi-
trary families of fitness functions, provided that the opti-
mum can be anywhere in the domain (i.e. for all x in the
domain, the family of functions contains at least one func-
tion with optimum x). The detailed bounds are improved
when we consider the sphere function.

Interestingly, these rates are exactly the known limits for
evolution strategies [13]. In the case of DE or PSO, we have
no mathematical proof that these limits are reached. We
checked experimentally whether some parametrization can
be as fast as allowed by the mathematical bounds. Runtimes
are estimated experimentally.

Parametrization of differential evolution for large

population sizes. Experimentally, for differential evolu-
tion, a good parametrization might be F ≃ .5λ−0.4 and some
fixed Cr (Eq. 16). Maybe such a parametrization reaches
the bounds above. The improvement compared to standard
parametrizations seemingly (on experiments) grows indefi-
nitely as the population size goes to infinity.

Parametrization of particle swarm optimization for

large population sizes. The ω parameter should decrease,
whereas other parameters can be chosen close to those of
standard PSO; for large population sizes, we get a factor 8 on

the progress rate in dimension 5 thanks to the parametriza-
tion proposed in Eq. 19. Furthermore, standard PSO per-
forms well on the important case λ proportional to the di-
mension D, as well as when the dimension is 30; we had only
minor improvements in these cases. Overall, PSO, under its
standard forms, except for moderate dimensions (roughly
from 2 to 10), performs well in a parallel setting with a
large population size.

We certainly do not claim that Eq. 19 (for PSO) and Eq.
16 (for DE) are universal solutions for choosing parameters
in PSO and DE respectively. They are relevant formulas
for a clearly defined setting, namely a unimodal well condi-
tioned setting with λ large. Let us discuss limitations. First,
this work is limited to unimodal well conditioned functions.
Another limitation of this work is the choice of the number
of iterations. We checked the convergence rates on limited
numbers of iterations, which might be misleading. However,
we believe that in a practical world, our population sizes
(corresponding to parallelization on hundreds of thousands
of cores - quite a big number even for clusters of machines
equipped with GPU) and iteration numbers make sense.

Further work. We have shown runtime lower bounds for a
class of algorithms including differential evolution and parti-
cle swarm optimization, for large population sizes. We have
shown empirically that the runtime is close to that bound,
for simple problems. This suggests that the runtime lower
bounds are tight. Proving a corresponding upper bound on
the runtime, matching the lower bound, is the main further
work.
Designing adaptive rules which provide good rates for a
wide class of fitness functions, beyond the simple unimodal
scenario in the present paper, is also part of the agenda.
Parametrization of ω (resp. F) proposed for PSO (resp.
DE) might be improved, using some information on the bud-
get, or maybe parameters depending on the iteration index;
mathematical analysis of these formulas and/or improved
variants is an interesting challenge.
Another natural extension is to adapt the bound for differ-
ential evolution variants with topology (e.g. [36]).

6. REFERENCES
[1] J. Arabas, O. Maitre, and P. Collet. Parade: A

massively parallel differential evolution template for
easea. In L. Rutkowski, M. Korytkowski, R. Scherer,
R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors,
Swarm and Evolutionary Computation, volume 7269 of
Lecture Notes in Computer Science, pages 12–20.
Springer Berlin Heidelberg, 2012.

[2] D. Ardia, J. O. Arango, and N. G. Gomez.
Jump-diffusion calibration using Differential
Evolution. Wilmott Magazine, 55:76–79, 2011.

[3] D. Ardia, K. Boudt, P. Carl, K. M. Mullen, and B. G.
Peterson. Differential Evolution with DEoptim: An
application to non-convex portfolio optimization. The
R Journal, 3(1):27–34, 2011.

[4] A. Auger. Convergence results for (1,λ)-SA-ES using
the theory of ϕ-irreducible Markov chains. Theoretical
Computer Science, 334(1-3):35–69, 2005.

[5] A. Auger, M. Jebalia, and O. Teytaud. (x,sigma,eta) :
quasi-random mutations for evolution strategies. In
EA, page 12p., 2005.

[6] H.-G. Beyer. The Theory of Evolution Strategies.
Natural Computing Series. Springer, Heidelberg, 2001.

[7] D. Bratton and J. Kennedy. Defining a standard for
particle swarm optimization. In IEEE Swarm
Intelligence Symposium, pages 120–127, 2007.

[8] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and
V. Zumer. Self-adapting control parameters in
differential evolution: A comparative study on
numerical benchmark problems. Trans. Evol. Comp,
10(6):646–657, Dec. 2006.

[9] J.-F. Chang, S.-C. Chu, J. F. Roddick, and J.-S. Pan.
A parallel particle swarm optimization algorithm with
communication strategies. J. Inf. Sci. Eng.,
21(4):809–818, 2005.

[10] M. Clerc. Beyond standard particle swarm
optimisation. IJSIR, 1(4):46–61, 2010.

[11] M. Clerc and J. Kennedy. The particle swarm -
explosion, stability, and convergence in a
multidimensional complex space. Evolutionary
Computation, IEEE Transactions on, 6(1):58–73,
2002.

[12] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic
Theory of Pattern Recognition. Springer, 1997.

[13] H. Fournier and O. Teytaud. Lower Bounds for
Comparison Based Evolution Strategies using
VC-dimension and Sign Patterns. Algorithmica, 2010.

[14] M. Gardner, A. W. McNabb, and K. D. Seppi. A
speculative approach to parallelization in particle
swarm optimization. Swarm Intelligence, 6(2):77–116,
2012.

[15] S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N.
Suganthan. An adaptive differential evolution
algorithm with novel mutation and crossover
strategies for global numerical optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part
B, 42(2):482–500, 2012.

[16] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proceedings of the IEEE International
Conference on Neural Networks, pages 1942–1948,
1995.

[17] J. Liu and J. Lampinen. A fuzzy adaptive differential
evolution algorithm. Soft Comput., 9(6):448–462, June
2005.

[18] B. Mahdad, K. Srairi, T. Bouktir, and M. Benbouzid.
Fuzzy Controlled Parallel PSO to Solving Large
Practical Economic Dispatch. In IEEE, editor,
Proceedings of the 2010 IEEE International
Conference of the IEEE Industrial Electronics Society,
pages 2695–2701, Phoenix, United States, Nov. 2010.
IEEE.

[19] R. Mallipeddi, P. Suganthan, Q. Pan, and
M. Tasgetiren. Differential evolution algorithm with
ensemble of parameters and mutation strategies.
Applied Soft Computing, 11(2):1679 – 1696, 2011.
<ce:title>The Impact of Soft Computing for the
Progress of Artificial Intelligence</ce:title>.

[20] A. McNabb, C. Monson, and K. Seppi. Parallel pso
using mapreduce. In Evolutionary Computation, 2007.
CEC 2007. IEEE Congress on, pages 7–14, 2007.

[21] J. Olensek, T. Tuma, J. Puhan, and Á. Bürmen. A
new asynchronous parallel global optimization method
based on simulated annealing and differential

evolution. Appl. Soft Comput., 11(1):1481–1489, 2011.

[22] K. E. Parsopoulos and M. N. Vrahatis. Parameter
selection and adaptation in unified particle swarm
optimization. Mathematical and Computer Modelling,
46(1-2):198–213, 2007.

[23] M. E. H. Pedersen. Tuning & simplifying heuristical
optimization. January 2010.

[24] P. Poš́ık and V. Klemš. Jade, an adaptive differential
evolution algorithm, benchmarked on the bbob
noiseless testbed. In Proceedings of the fourteenth
international conference on Genetic and evolutionary
computation conference companion, GECCO
Companion ’12, pages 197–204, New York, NY, USA,
2012. ACM.

[25] K. V. Price, R. M. Storn, and J. A. Lampinen.
Differential Evolution - A Practical Approach to
Global Optimization. Natural Computing.
Springer-Verlag, January 2006. ISBN 540209506.

[26] A. K. Qin, F. Raimondo, F. Forbes, and Y. S. Ong.
An improved cuda-based implementation of
differential evolution on gpu. In Proceedings of the
14th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’12, pages 991–998, New York,
NY, USA, 2012. ACM.

[27] I. Rechenberg. Evolutionstrategie: Optimierung
Technischer Systeme nach Prinzipien des Biologischen
Evolution. Fromman-Holzboog Verlag, Stuttgart, 1973.

[28] E. Samansky. Zaslavsky’s theorem. Univ. Rice website,
2002.

[29] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T.
Haftka, and A. D. George. Parallel global optimization
with the particle swarm algorithm. JOURNAL OF
NUMERICAL METHODS IN ENGINEERING,
61:2296–2315, 2003.

[30] Y. Shi and R. C. Eberhart. A Modified Particle
Swarm Optimizer. In Proceedings of IEEE
International Conference on Evolutionary
Computation, pages 69–73, Washington, DC, USA,
May 1998. IEEE Computer Society.

[31] R. Storn and K. Price. Differential evolution: A simple
and efficient heuristic for global optimization over
continuous spaces. J. of Global Optimization,
11(4):341–359, Dec. 1997.

[32] F. Teytaud and O. Teytaud. Log(lambda)
Modifications for Optimal Parallelism. In Parallel
Problem Solving From Nature, Krakow, Pologne, Sept.
2010.

[33] O. Teytaud and S. Gelly. General lower bounds for
evolutionary algorithms. In 10th International
Conference on Parallel Problem Solving from Nature
(PPSN 2006), 2006.

[34] I. C. Trelea. The particle swarm optimization
algorithm: convergence analysis and parameter
selection. Information Processing Letters, 85(6):317 –
325, 2003.

[35] V. N. Vapnik. The Nature of Statistical Learning.
Springer Verlag, 1995.

[36] M. Weber, F. Neri, and V. Tirronen. Parallel random
injection differential evolution. In C. Di Chio,
S. Cagnoni, C. Cotta, M. Ebner, A. EkÃa֒rt,
A. Esparcia-Alcazar, C.-K. Goh, J. Merelo, F. Neri,
M. PreuÃY, J. Togelius, and G. Yannakakis, editors,

Applications of Evolutionary Computation, volume
6024 of Lecture Notes in Computer Science, pages
471–480. Springer Berlin Heidelberg, 2010.

[37] M. Yang, J. Guan, Z. Cai, and L. Wang. Self-adapting
differential evolution algorithm with chaos random for
global numerical optimization. In Z. Cai, C. Hu,
Z. Kang, and Y. Liu, editors, Advances in
Computation and Intelligence, volume 6382 of Lecture
Notes in Computer Science, pages 112–122. Springer
Berlin Heidelberg, 2010.

[38] W.-j. Yu and J. Zhang. Multi-population differential
evolution with adaptive parameter control for global
optimization. In Proceedings of the 13th Annual
Conference on Genetic and Evolutionary
Computation, GECCO ’11, pages 1093–1098, New
York, NY, USA, 2011. ACM.

[39] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas.
Standard particle swarm optimisation 2011 at
cec-2013: A baseline for future pso improvements. In
IEEE Congress on Evolutionary Computation, pages
2337–2344. IEEE, 2013.

[40] J. Zhang and A. C. Sanderson. Jade: adaptive
differential evolution with optional external archive.
Trans. Evol. Comp, 13(5):945–958, Oct. 2009.

