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Abstract—In many Independent Component Analysis (ICA)
problems the mixing matrix is nonnegative while the sources are
unconstrained, giving rise to what we call hereafter the Semi-
Nonnegative ICA (SeNICA) problems. Exploiting the nonnega-
tivity property can improve the ICA result. Besides, in some
practical applications, the dimension of the observation space
must be reduced. However, the classical dimension compression
procedure, such as prewhitening, breaks the nonnegativity prop-
erty of the compressed mixing matrix. In this paper, we introduce
a new nonnegative compression method, which guarantees the
nonnegativity of the compressed mixing matrix. Simulation
results show its fast convergence property. An illustration of Blind
Source Separation (BSS) of Magnetic Resonance Spectroscopy
(MRS) data confirms the validity of the proposed method.

Index Terms—Blind source separation, independent compo-
nent analysis, nonnegative compression.

I. INTRODUCTION AND PROBLEM FORMULATION

The Semi-Nonnegative Independent Component Analysis
(SeNICA) problem is defined as follows [1]–[3]:

Problem 1. Given M realizations of a real N -dimensional
random vector x, find an (N×P ) full column rank mixing ma-
trixA and the corresponding M realizations of P -dimensional
source random vector s, such that:

x = As (1)

where A has nonnegative components and s has statistically
independent components.

This problem is encountered in many Blind Source Separa-
tion (BSS) applications. For example, in Magnetic Resonance
Spectroscopy (MRS), the mixing matrix contains the positive
concentrations of the source metabolites, while the source
spectra are not necessarily nonnegative (they can become
nonnegative only after a complicated phase shift procedure).

In many ICA algorithms, in order to make the mixing matrix
orthogonal but also to reduce the dimension of the observation
space, the N -dimensional vector x is compressed into a vector
x of dimension P ≤ N as follows [4], [5]:

x= W Tx = (W TA)s =As (2)

where the columns of W ∈ RN×P are the scaled eigenvectors
corresponding to the P largest eigenvalues of the covariance
matrix E[xxT]−E[x] E[xT]. This procedure is known as the
prewhitening of x and W T is called prewhitening matrix.
However, such a compression method can not guarantee the
nonnegativity of the compressed mixing matrix A = W TA,
because generally the unitary matrix W is not nonnegative.
Now, in some practical situations, exploiting the nonnegativity
property of the mixing matrix can improve the ICA result
[1]–[3], [6]–[8]. Therefore, the objective of this paper is to
propose a nonnegative compression method that guarantees
the nonnegativity of the compressed mixing matrixA. To this
end, note that span(W ) = span(A), where the columns of
A form a basis of nonnegative vectors of the signal subspace.
Hence, there exists a nonsingular matrix B ∈ RP×P such that
the columns of matrixW = WB form a basis of nonnegative
vectors of the signal subspace span(A). It means that we can
linearly transform the unitary matrix W into a nonnegative
matrix W multiplying it by B on its right. Now, since B is
full rank, it admits the following QR matrix factorization:

B = QRΛ (3)

where Q ∈ RP×P is a unitary matrix, where R ∈ RP×P is
a (unit) upper triangular matrix whose diagonal elements are
equal to one and where Λ ∈ RP×P is a nonsingular nonneg-
ative diagonal matrix. Due to the fact that a multiplication of
WQR by Λ does not change the subspace span(WQR) or
the sign of the of the column vectors of span(WQR), looking
for B of the form B = QR is sufficient. On the other hand,
every unitary matrix can be factorized as a product of Givens
matrices.

Definition 1. A Givens matrix Q(i,j)(θi,j), with i < j, is
equal to an identity matrix except the (i, i)-th, (j, j)-th, (i, j)-
th and (j, i)-th entries, which are equal to cos(θi,j), cos(θi,j),
− sin(θi,j) and sin(θi,j), respectively.

In addition, every unit upper triangular matrix can be factor-
ized as a product of elementary upper triangular matrices.
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Fig. 1. An illustration of the proposed algorithm. (a) the input prewhitening
matrix W ; (b) the proposed algorithm, left: V is obtained by multiplying W
by a Givens rotation matrix, right: W is obtained by multiplying V by an
elementary upper triangular matrix. The blue circles denote the nonnegative
values and the red circles denote the negative values.

Definition 2. An elementary upper triangular matrix
R(i,j)(ui,j), with i < j, is equal to an identity matrix except
the (i, j)-th entry, which is equal to ui,j .

Note that R(i,j)(ui,j) is also known as the shear matrix where
ui,j is called a shear factor.

Then the nonnegative compression problem is defined as
follows:

Problem 2. Given a prewhitening matrix W ∈ RN×P of an
N -dimensional random vector x, find a sequence of Givens
rotation matrices Q(i,j)(θi,j) and elementary upper triangular
matrices R(i,j)(ui,j), such that the following matrix:

W = W

P∏
i=1

P∏
j=i+1

Q(i,j)(θi,j)︸ ︷︷ ︸
def
=V

P∏
i=1

P∏
j=i+1

R(i,j)(ui,j) (4)

has nonnegative components.

Figure 1 illustrates, in the case of P = 2, the process
of transforming the matrix W into a nonnegative one using
equation (4). Prewhitening makes the axes of the matrix
W orthogonal to each other (figure 1(a)). A Givens matrix
searches for a rotation angle that makes the outputs matrix
V as nonnegative as possible. It is noteworthy that if the
column vectors of W is statistically independent and well-
grounded, only the Givens transformation is sufficient to give
a nonnegative V [9]. However, in practice, generally it is not
the case. As we can see in figure 1(b) left, it still remains some
negative values near the positive orthant boundaries. Then
we use an elementary upper triangular matrix which projects
the remaining negative values of V into the positive orthant
(figure 1(b) right). We thus obtain a nonnegative compression

matrix W, which preserves the nonnegativity property of A.
Indeed, the (P × P ) compressed mixing matrix A = W TA
is yet nonnegative. Then A and the M realizations of s can
be estimated using a SeNICA method such as one of those
described in [1]–[3], [6], [7]. Therefore it is not necessary to
estimate the original mixing matrix A. Now the challenge is
how to compute the Givens and elementary upper triangular
matrices.

II. METHOD

A new two-step NonNegative COMPression method (figure
1), called NN-COMP, is presented in this section.

A. Step 1: estimation of Q(i,j)(θi,j)

The Givens rotation matrix Q(i,j)(θi,j) transforms each pair
of columns (i, j) of W as follows:

[vi,vj ] = [wi,wj ]

[
cos(θi,j) − sin(θi,j)
sin(θi,j) cos(θi,j)

]
(5)

where vi and wi are the i-th columns of V and W , respec-
tively. Now, let us consider the following negativity measure
criterion defined in [9] and [10]:

J(θi,j) =
1

2

N∑
n=1

(V 2
n,i1Vn,i<0 + V 2

n,j1Vn,j<0 ) (6)

where 1α<0 =

{
1, if α < 0

0, otherwise
, vn,i and vn,j are the (n, i)-th

and (n, j)-th elements of V , respectively. The purpose is to
find an angle, θi,j , which minimizes the total sum of squares
of negative elements of V . The global optimum of J(θi,j)
is difficult to obtain analytically due to the existence of the
Heaviside-step-like function 1α<0. We propose to compute
θi,j iteratively by a Newton’s method. For a given iteration
(it), let us consider the second order Taylor expansion,
JT (θi,j), of J(θi,j) around θ(it)i,j :

JT (θ
(it)
i,j+∆θ)=J(θ

(it)
i,j )+

dJ(θ
(it)
i,j )

dθ
(it)
i,j

∆θ+
d2J(θ

(it)
i,j )

2d(θ
(it)
i,j )2

(∆θ)2 (7)

where θ(it)i,j is the solution at the it-th iteration, ∆θ = θi,j −
θ
(it)
i,j , dJ(θ

(it)
i,j )/dθ

(it)
i,j and d2J(θ

(it)
i,j )/d(θ

(it)
i,j )2 are the first and

second order derivatives of (6) with respect to (w.r.t.) θ(it)i,j ,
respectively, which are given by [10]:

dJ(θ
(it)
i,j )/dθ

(it)
i,j =

N∑
n=1

V
(it)
n,i v

(it)
n,j×

(1
v
(it)
n,i <0

1
v
(it)
n,j >0

− 1
v
(it)
n,i >0

1
v
(it)
n,j <0

)

(8)

and:

d2J(θ
(it)
i,j )/d(θ

(it)
i,j )2 =

N∑
n=1

(
(v

(it)
n,j )2 − (v

(it)
n,i )2

)
×

(1
v
(it)
n,i <0

1
v
(it)
n,j >0

− 1
v
(it)
n,i >0

1
v
(it)
n,j <0

)

(9)



with:

[v
(it)
n,i , v

(it)
n,j ]=[wn,i, wn,j ]

[
cos(θ

(it)
i,j ) − sin(θ

(it)
i,j )

sin(θ
(it)
i,j ) cos(θ

(it)
i,j )

]
(10)

Then the minimum of (7) w.r.t. ∆θ can be reached at:

∆θ = −[d2J(θ
(it)
i,j )/d(θ

(it)
i,j )2]−1[dJ(θ

(it)
i,j )/dθ

(it)
i,j ] (11)

d2J(θ
(it)
i,j )/d(θ

(it)
i,j )2 = 0 means that all the elements of v(it)i

and v
(it)
j have the same sign. In this situation it is not

necessary to perform the optimization since it will not decrease
the criterion [10]. The process of all the rotation angles θi,j
is called a rotation sweep.

B. Step 2: estimation of R(i,j)(ui,j)

After the rotation step, the elementary upper triangular
matrix R(i,j)(ui,j) transforms each pair of columns (i, j) of
V as follows:

[wi,wj ] = [vi,vj ]

[
1 ui,j
0 1

]
(12)

where wi is the i-th column ofW, and ui,j is the shear factor.
From (12), wi remains unchanged, the negativity measure
criterion is then defined as follows:

J(ui,j) =
1

2

N∑
n=1

W
2

n,j1Wn,j<0
(13)

Similarly, the second order Taylor expansion JT (ui,j) of
J(ui,j) around u(it)i,j can be expressed as follows:

JT (u
(it)
i,j +∆u)=J(u

(it)
i,j )+

dJ(u
(it)
i,j )

du
(it)
i,j

∆u+
d2J(u

(it)
i,j )

2d(u
(it)
i,j )2

(∆u)2

(14)
where u(it)i,j is the solution at the it-th iteration, ∆u = ui,j −
u
(it)
i,j , dJ(u

(it)
i,j )/du

(it)
i,j and d2J(u

(it)
i,j )/d(u

(it)
i,j )2 are the first

and second order derivatives of (13) w.r.t. u(it)i,j , respectively,
which are given by:

dJ(u
(it)
i,j )

du
(it)
i,j

=

N∑
n=1

W
(it)

n,iW
(it)

n,j 1W
(it)

n,j <0
(15)

and:
d2J(u

(it)
i,j )

d(u
(it)
i,j )2

=

N∑
n=1

(W
(it)

n,i )21
W

(it)

n,j <0
(16)

with:

[W
(it)

n,i , W
(it)

n,j ] = [vn,i, vn,j ]

[
1 u

(it)
i,j

0 1

]
(17)

Then the minimum of (14) w.r.t. ∆u can be reached at:

∆u = −[d2J(u
(it)
i,j )/d(u

(it)
i,j )2]−1[dJ(u

(it)
i,j )/du

(it)
i,j ] (18)

When d2J(u
(it)
i,j )/d(u

(it)
i,j )2 = 0, it means that all the elements

of w(it)
j have the same sign and (18) does not need to be

computed. The process of all the shear factors ui,j is called a
shear sweep.

It is noteworthy that the second order derivatives (9) and
(16) may not exists since the first order derivatives of the
criteria (6) and (13) are continuous but non-differentiable at
any point where wn,j = 0 for some n, j [9]. In this case,
we skip the estimation of the current parameter and continue
to estimate the next one. There may exist a few very small
negative values (less than −1e−20) in the final result, which
can be forced to zeros without affect the effectiveness of the
algorithm. In practice, the new NN-COMP algorithm needs
several rotation sweeps followed by several shear sweeps, in
order to ensure the convergence.

III. SIMULATION RESULTS

In this section, the performance of the proposed NN-COMP
algorithm is evaluated following the SeNICA model. Firstly,
we aim at studying the convergence property of NN-COMP.
Secondly, we test the usefulness of NN-COMP as a prepro-
cessing step of a recent published SeNICA method based on
a Nonnegative Joint Diagonalization by Congruence (NJDC)
method NNLUJ1D [7]. For all the following experiments, a
noisy SeNICA model x = As + ν is considered and the
additive noise ν is modeled as a zero-mean unit-variance
Gaussian vector. In addition, the Signal to Noise Ratio (SNR)
is defined by: SNR = 20 log10(‖As‖F /‖ν‖F ). We repeat the
experiments with 200 independent Monte Carlo (MC) trials.

A. Convergence test

In this experiment, let us generate: the (N × P ) mixing
matrix A with elements independently drawn from a uni-
form distribution between 0 and 1, and the source vector s
with M = 2000 sample points, which are independent and
uniformly distributed between −

√
3 and

√
3. More precisely,

we consider two situations: i) in the first one the number of
observations N equals 20 and the number of sources P is
set to 3, and ii) in the second one N = 150 and P = 20.
For both situations, we vary the SNR from 0 dB to 30 dB
with a step of 5 dB. To evaluate the convergence performance
of the NN-COMP, we define a negativity criterion as a ratio
between the sum of the squared negative entries and the sum of
all the squared components of W: γ(W) = ‖W−‖2F /‖W‖2F .
Figure 2 depicts the mean values of the negativity criterion
over the MC trials for different experiments. More precisely,
the γ(W) values calculated for each rotation sweep are plotted
with blue solid line and those calculated for each shear sweep
are plotted with red dash-dot line. It is interesting to show that
the negativity ratio dramatically decreases thanks to the second
step of NN-COMP: multiplying V with the elementary upper
triangular matrices. The proposed method seems to converge
within a small number of sweeps, about 25 sweeps, whatever
the number of the observations N , the number of sources P
and the SNR values.

B. BSS performance on MRS data

We have recently presented a new NJDC method in [7],
called NNLUJ1D. The SeNICA method based on NNLUJ1D,
namely NNLUJ1D-ICA, outperforms some classical ICA
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Fig. 2. Convergence toward nonnegativity as a function of the number of
sweeps and the SNR values. The blue solid line denotes the rotation sweep
and the red dash-dot line denotes the shear sweep.

methods on SeNICA problem. However, its numerical com-
plexity, which is of order O(N4(P + M)), significantly
increases as the number of observation N increases. Here, we
propose to compare the behavior of the NNLUJ1D-ICA with
and without using NN-COMP as a preprocessing step. For this
purpose, an experiment is carried out on simulated MRS data,
where the nonnegativity constraint on the mixing matrix A is
verified. Two realistic MRS metabolites, namely the Choline
and Creatine, are generated by Lorentzian and Gaussian
functions [11]. The mixing matrix A is similarly generated
as in the previous section. The performances of the two
algorithms (NNLUJ1D-ICA and NN-COMP + NNLUJ1D-
ICA) are studied as a function of the number of observations
N , by varying N from 2 to 30 with a step of 2. We test two
SNR values: 5 dB and 15 dB. The performance criterion is
defined as the error between the source s and its estimate s̃,
as follows [12]:

α(s, s̃) = (1/P )
∑P
p=1 min(p,p′)∈I2p d(sp, s̃p′) (19)

where sp and s̃p′ are the p-th and p′-th components of
s and s̃, respectively. I2p is defined recursively by: I21 =
{1, · · · , P} × {1, · · · , P}, and I2p+1 = I2p−J2

p , where J2
p =

argmin(p,p′)∈I2p d(sp, s̃p′). In addition, d(sp, s̃p′) is defined as
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Fig. 3. An example of MRS metabolites separation with 20 observations
and a SNR of 5 dB. The red lines indicate the original sources, and the dark
lines designate the estimated sources in figures (c) and (d).

the pseudo-distance between two random variables [13]:

d(sp, s̃p′) = 1− (‖sps̃Tp′‖2)/(‖sp‖2‖s̃p′‖2)

The estimation accuracy of the mixing matrix is not provided,
since we just estimate the compressed mixing matrix.

Figure 3 displays an example of the separation results of the
two methods (NNLUJ1D-ICA and NN-COMP + NNLUJ1D-
ICA) with N=20 observations and a SNR value of 5 dB. Both
methods separate the sources quasi-perfectly. We can see that
the NN-COMP algorithm does not deteriorate the separation
quality (α(s, s̃) = 0.0543 and 0.0544 for NNLUJ1D-ICA
and NN-COMP + NNLUJ1D-ICA, respectively). The average
curves of error α(s, s̃), as well as that of the numerical
complexities [14] in terms of floating point operations (flops)
as a function of N are shown in figure 4. It shows that for
both methods, the increase of N yields a better estimation of
s regardless of the tested values of SNR. The two methods
perform quite similarly in terms of the source separation
quality. For each N value and SNR level, the errors α(s, s̃)
generated by the two methods are approximately the same.
However, the numerical complexity of NNLUJ1D-ICA grows
exponentially up to 1010 flops as a function of N . Fortunately,
the burdensome numerical complexity can be reduced to less
than 106 flops, thanks to the NN-COMP method. It confirms
the validity and the effectiveness of the proposed NN-COMP
method as a preprocessing step of SeNICA algorithms.

IV. CONCLUSION

In this paper, we introduced a nonnegative compression
method, called NN-COMP, in order to solve large scale
SeNICA problems. It transforms the classical prewhitening
matrix into a nonnegative matrix, which then preserves the
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nonnegativity of the original mixing matrix. Simulation re-
sults show its fast convergence property. An illustration of a
BSS application on MRS data confirms the validity and the
efficiency of the proposed method.
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