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Abstract—The current paper explores the applicability of the
Fuzzy c-means (FCM) clustering, using an adaptive cluster
merging, for the problem of detecting the Moroccan coastal
upwelling areas in Sea Surface Temperature (SST) Satellite
images. The process is started with the application of FCM
clustering method to the SST image with a sufficiently large
number of clusters for the purpose of labelling the original SST
image, which constitute the input of the proposed approach.
Then, the number of clusters is reduced successively by merging
clusters that are similar with respect to an adaptive threshold
criterion. The algorithm is applied and validated using the visual
inspection carried out by an oceanographer over a database of 30
SST images, covering the southern Moroccan atlantic coast of the
year 2007. The proposed methodology is shown to be promising
and reliable for a majority of images used in this study.

Index Terms—Upwelling, Sea Surface Temperature, AVHRR,
Clustering, Adaptive cluster merging.

I. INTRODUCTION

In Moroccan Atlantic coast, and under the influence of

northeasterly wind, the upwelling phenomenon take place,

which characterized by the presence of cold and nutrient rich

waters near the coast. The knowledge of upwelling activity is

very important, not only to study the ocean dynamic but also

in the fisheries management and aggregation [7].

The rapid expansion and the increasing demand of satellite

remote sensing data, have allowed the investigators to move

from the labor intensive manual interpretation of satellite

data toward an automatic interpretation [14]. In particular, the

infrared images of the ocean obtained from Advanced Very

High Resolution Radiometer (AVHRR) sensor onboard NOAA

satellite have proven to be valuable tools for the analysis of the

oceanographic structures [14] [6] [21]. Indeed, the visual inter-

pretation made by the oceanographers, for automatic detection

of upwelling area in SST images, is often subjective and will

vary from day-to-day and operator-to-operator. Consequently,

an automated algorithms are a demand in order to overcome

the subjectivity made by the oceanographers and in order to

process a large number of images daily processed.

Several previous studies have been developed to automated

detection of upwelling region in SST images which gener-

ally include the use of the neural networks [8] in order to

labeling and finding the regions of homogenous and uniform

temperatures in the original satellite images; histogram based

separation [6] [19], based on the fact that the fronts are usually

defined as thin contours separating two waters masses of

distinct temperatures.

In the work described in [21], the Fuzzy c-means algorithm

is used to generate a labelled images with homogenous and

non overlapping temperatures. The latter has demonstrated an

effectiveness to detect the thermal upwelling fronts in SST

satellite images.

In this paper we present an upwelling segmentation method-

ology using a Fuzzy c-means algorithm with adaptive cluster

merging. The approach revealed to be a promising technique

for the automatic detection of upwelling areas on infrared

satellite images.

The outline of the paper is as follows. Section II provides

a description of the data and geographic study area used

throughout the study. The algorithm for the segmentation of

the original SST images is described in Section III. Section

IV highlights the analysis of the segmentation results with the

final conclusion.

II. STUDY AREA AND DATA

In this study 30 AVHRR SST images of the year 2007

covering the southern Moroccan Atlantic coast are used. The

images have been acquired and processed at the Royal Centre

for Remote Sensing (CRTS) of Morocco including calibration

and geometric correction. A cloud mask is generated using

the multispectral radiance measurements [20] tested over the

AVHRR satellite images. The size of each SST images is

770×990 pixels, with spatial resolution of 1.1×1.1 km and

each pixel present a temperature in degrees Celsius.

A colour scale of 26 levels is applied to each original SST

images in order to help the users or oceanographers for visual

inspection of upwelling areas.

Fig. 1(a), (b) and (c) shows three SST images selected from

our database of 30 images, which illustrate all the situations of

upwelling variability: well-defined upwelling areas in terms of

sharp boundaries and strong upwelling gradient between the

upwelling classes (Fig. 1(a)); images with smooth transitions
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Fig. 1: SST images obtained on (a) 2007-09-15, (b) 2007-11-

09 and (c) 2007-11-04 showing different upwelling scenarios.

zones between the upwelling areas (Fig. 1(b)); and SST images

where the presence of cloud regions, mask the true underlying

structures of upwelling (Fig. 1(c)).

The gray color region on the right side of each SST images

(Fig. 1) corresponds to Moroccan land, whereas the white

pixels in the ocean correspond to cloud pixels.

III. PROPOSED METHODOLOGY

Clustering [1], [9], [13] is an unsupervised classification

method when the only data available are unlabelled, and no

structural information about it is available [22]. The main aims

of cluster analysis is the classification of objects according to

similarities among them, and organizing data into groups.

Clustering techniques can be considered as either hard [12],

[18] or fuzzy [5], [17], [2] according on whether an object in

data belongs exclusively to a one cluster or to several clusters

with different degrees of membership. In particular, the fuzzy

clustering techniques are widely used to detect the boundaries

between several classes which are not forced to fully belong

to one of the classes.

In this sense, the presented paper uses the Fuzzy c-means

clustering for the purpose of labelling the original SST images

followed by an adaptive cluster merging method to merge the

homogenous regions in the labeled image to obtain a suitable

partitioning.
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Fig. 2: Classification of the original SST images in Fig. 1

using the FCM method with C = 7 clusters.

A. Fuzzy c-means clustering method

the Fuzzy c-means (FCM) algorithm [4] is based on the

minimization of an objective function :

J(X ;U,V ) =
c

∑
i=1

N

∑
k=1

(µik)
m||xk − vi||

2
, (1)

where vi is a vector of cluster prototypes, and ||xk − vi||
2 is

the Euclidean distance norm. The cluster centroids and the

respective membership functions that solve the constrained

optimization problem in Eq. 1 are given by the following

equations :

vi =
∑

N
j=1 (µi j)

m x j

∑
N
j=1(µi j)m

, 1 6 i 6 c , (2)

µik =
1

∑
c
j=1(

||xk−vi||
||xk−v j ||

)
2

(m−1)

, 1 6 i 6 c , 1 6 k 6 N. (3)

The goal of FCM algorithm is to iteratively improve a

sequence of sets of fuzzy clusters in Eq. 1 by a simple iteration

through the Eq. 2 and Eq. 3. For this study, we are applied the

FCM algorithm to the 30 SST images with an over-estimation

of the maximum number of clusters (Cmax = 7).

Fig. 2 show the application of the Fuzzy c-means clustering

respectively to the SST images in Fig. 1 with the number of

clusters fixed to 7.



B. Determining the Number of Clusters

The determination of good number of clusters in data is

important for the successful application of any clustering

methods. In fact, if the number of clusters is larger, one

or more good compact clusters should be broken or if it is

smaller, one separate cluster may be merged.

In the literature two main approaches for determining the

good number of clusters in data can be distinguished: 1)

starting with a large number of clusters, and successively

reducing this number by merging clusters that are similar,

according to some predefined criteria [11], [3]; 2) evaluating a

complete c-partitions and extract the good partition using the

validity measures.

In this study we used the first category with the similarity-

based cluster merging approach defined in [15]. The method

initializes the clustering algorithm with an over-estimation of

the number of clusters (Cmax = 7), and then, similar clusters

are merged if the similarity between clusters is higher than a

threshold α ∈ [0,1].
Given two fuzzy clusters µik and µ jk, of an object Xk, the

fuzzy inclusion similarity measure between two fuzzy clusters

is defined as [10], [16]:

Si j =
∑

N
k=1 min(µik,µ jk)

min(∑N
k=1 µik,∑

N
k=1 µ jk))

(4)

where N is the total number of patterns in a data, and µik

is the membership of pattern Xk to clusters Ci. This measure

takes into account the contribution to similarity from all data

points.

The threshold parameter α ∈ [0,1], defined above which

are used to merge the clusters in a given c-partition, should

be adjusted to obtain the best image segmentation, and it

depends on the characteristics of the data. For the case where

the selection of the threshold is problematic, the authors in

[15] used an adaptive threshold which depend on the number

of clusters in the c-partition at any time. [15] claim that it has

been observed empirically that the adaptive threshold works

best when the expected number of clusters in the data is

relatively small (less than ten).

The adaptive threshold used in this study is defined by [15]:

α
(l) =

1

M(l)−1
(5)

The clusters are merged when the changes of maximum

cluster similarity (Eq. 4) from iteration (l−1) to iteration (l)
is above the threshold α .

Fig. 3 shows the results of the cluster merging algorithm

applied to the labeled images in Fig. 2. The optimal number

of clusters calculated over the images in Fig. 2 are respectively

4, 5 and 5 (Fig. 3).

IV. ANALYSIS OF THE RESULTS AND CONCLUSIONS

The performance of our algorithm has been tested by an

oceanographer. This evaluation was based on the scientific and

technical knowledge of the coastal ocean of Morocco.
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Fig. 3: Segmentation results using the FCM method with the

cluster merging approach applied to the labelled images in

Fig. 2.

Throughout this evaluation, we used 4 grades : ”Bad”,

”Poor”, ”Good” and ”Excellent”, to check if the proposed

segmentation yield to a satisfactory results without losing any

significant upwelling information. ”Excellent” was attributed

when the upwelling areas are correctly identified, and ”Bad”

was assigned when the upwelling areas is not well delimited.

Regarding the segmentation results of the SST images,

Fig. 4 shows that the grade ”Bad” is not attributed at all. For

the grade ”Poor” the value of 8 % was reached, demonstrating

the robustness of our algorithm in terms of detection the

upwelling areas in SST images. Fig. 3 also reveals that respec-

tively 46 % and 44 % of the grades ”Good” and ”Excellent”

was achieved. Overall, 90 % were reached by the two grades

”Good” and ”Excellent” together.

After the evaluation of the FCM method with the adap-

tive cluster merging over this representative database, we

can conclude that the proposed methodology has provided

a satisfactory and promising results. More importantly, the

quality obtained by this very simple and well-known method

suggest that it can be used as an input to a subsequent step in

the analysis of the SST images of the ocean.
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