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ABSTRACT

Non-blind deconvolution consists in recovering a sharp latent

image from a blurred image with a known kernel. Decon-

volved images usually contain unpleasant artifacts due to the

ill-posedness of the problem even when the kernel is known.

Making use of natural sparse priors has shown to reduce ring-

ing artifacts but handling noise remains limited. On the other

hand, non-local priors have shown to give the best results in

image denoising. We propose in this paper to combine both

local and non-local priors to handle noise. We show that the

blur increases the self-similarity within an image and thus

makes non-local priors a good choice for denoising blurred

images. However, denoising introduces outliers which are

not Gaussian and should be well modeled. Experiments show

that our method produces a better image reconstruction both

visually and empirically compared to methods some popular

methods.

Index Terms— Image deconvolution, deblurring, non-

local prior, self-similarity, sparsity.

1. INTRODUCTION

Image deblurring consists in reconstructing a true image x

from a degraded image y with a kernel k :

y − x⊗ k = η, (1)

where ⊗ is the convolution operator that we consider spatially

invariant in this paper and η a Gaussian noise. The problem

is called blind deconvolution [1, 2, 3, 4, 5, 6] if both the ker-

nel and the latent image are unknown, or non-blind decon-

volution [7, 8, 9, 10, 11] if the kernel is known. Image de-

convolution is one of the most common operations in image

processing, it is extensively used in computational photogra-

phy [1, 12, 7]. Unfortunately, several disturbing artifacts are

produced even in the non-blind deconvolution case. These ar-

tifacts are mainly due to the near-sparsity of the kernel in the

frequency domain which produces a large magnitude when

performing inverse filtering, resulting in amplified signal and

noise [13]. Ringing is the most noticeable artifact which con-

sists in oscillations near edges. Methods such as [7, 8] use
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natural sparse priors to regularize the problem and have be-

come very popular due to their simplicity. This regulariza-

tion has shown to reduce the ringing artifacts but cannot ef-

ficiently handle high noise levels . On the other hand, non-

local priors [14, 15, 16, 17], which take into account the self-

similarities within images, have shown to be particularly effi-

cient for image denoising.

We propose in this paper to use both non-local and local

priors for image deconvolution. First, we show that the blur

increases the self-similarities within images, which makes

low-rank estimation a favorable choice to denoise blurred im-

ages. However, after denoising, the blur model is no longer

Gaussian. We show that the denoising operation introduces

Laplacian outliers. We propose a MAP formulation with the

l1-norm on the data term to handle outliers and a log(lp) prior

for the derivatives. The log(lp) function promotes more spar-

sity than the lp norm and helps to get rid of artifacts caused

by the outliers. We show that the proposed method improves

the image reconstruction quality.

2. PROBLEM FORMULATION

In the MAP optimization framework, image deconvolution

can be formulated using the Bayes rule :

p(x|y) ∝ p(y|x)p(x). (2)

The likelihood term p(y|x) is based on the convolutional

model (1). The noise η is modeled as a set of independent

and identically distributed random variables for all pixels,

each of which follows a Gaussian distribution. The prior

p(x) regularizes the problem and is usually a sparse prior

modeling the natural distribution of the derivatives of natu-

ral images [7, 8]. The model that we propose introduces an

intermediate denoised image y′ to be deconvolved :

p(x|y′) ∝ p(y′|x)p(x). (3)

A non-local prior is used to produce the image y′ while a local

prior is used to reconstruct the final image x given the inter-

mediate image y′. Note that this time, the likelihood p(y′|x)
is different from the one of model (2). We will see that this

likelihood is in fact Laplacian and no longer Gaussian. The

proposed method consists in two steps : 1) estimating the vari-

able y′ given the blurred and noisy image y, 2) estimating the

latent image x given both y′ and k.



2.1. Step 1 : Estimating the Blurred Noise-Free Image y′

The first step of the method consists in denoising the blurred

and noisy image y to produce a new image y′, which is blurred

but noise-free. In order to perform this task, we might use a

method which takes into account the self-similarities within

the blurred image, without using any specific prior to images

as blurred images are hard to model. Given a set of similar

patches1, we want to extract their noise-free versions using

only the self-similarities within this group of patches. One

way to think about it is to study the singular values ; a group

of similar patches stacked in one matrix Y should minimize

the rank of Y. As the rank is a difficult measure to deal with,

we rather use the nuclear norm which is the convex relaxation

of the rank (||Y ||∗ =
∑K

i=1 λi, where λi are the singular).

Fig. 1 shows the singular values distribution of all the ma-

trices Y (using overlapping patches) within a natural image

(in black) and within its blurred version (in red) with a real

camera shake kernel. As can be seen, the distribution of the

singular values of the matrices Y in the blurred image tends

to be more compact and sparser compared to the natural im-

age in black. This means that the patches within a self-similar

group are much more similar in a blurred image (the distribu-

tion would be Dirac-like in a blank image). As the noise in-

creases the rank of the matrices Y, using this self-similarity as

a prior can help recovering the blurred image from its blurred

and noisy version without using any natural prior specific to

blurred images. Denoising becomes a low-rank approxima-

tion problem :

minimize ||Y′||∗ + τ ||E||22 s.t. Y = Y′ +E, (4)

where Y′ is a matrix containing patches of the image y′ and

the matrix E represents the noise. Low-rank approximation

problems can be solved with iterative singular value thresh-

olding such as the methods in [18]. The operation is repeated

for each group of similar patches and the final image y′ is

reconstructed by averaging overlapping patches. A similar

low-rank approach was recently used to perform restoration

of natural images in [17], where the iterative regularization is

performed on the whole image and not on the patch matrices.

In practice, both methods have shown to work well when used

with the proposed MAP framework.

2.2. Step 2 : Estimating the Deblurred Image x

Once the blurred but noise-free image y′ is estimated, we

want to recover the natural image x, given the kernel k. We

formulate the problem as a MAP estimation :

p(x|y′) ∝ p(y′|x)p(x). (5)

In order to use this model, we need to model both :

1) The distribution of the residual error y′ − x⊗ k.

2) The prior information about the natural image x.
1Similar patches can be found using a simple Block Matching as used in

various non-local methods.
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Fig. 1: Distribution of the singular values of the matrices con-

taining similar patches in a natural image (in black) and its

blurred version (red). The self-similarity in the blurred image

is much more present compared to its natural version.

2.2.1. Modeling the residual error p(y′|x)

Fig 2. shows the distribution of the residual error between the

denoised image y′ and the convolution x⊗k. As can be seen,

the residual error is no longer Gaussian as it was in the blur

model (1) but rather Laplacian. This is due to the fact that

denoising a blurred image reduces the noise but introduces

outliers as the denoising operation does not take into account

the blur kernel. In order to deal with these outliers, we use

the l1-norm on the data term (p(y′|x) ∝ e−γ|x⊗k−y′|). It

can be shown also empirically that the residual of the first

and the second derivatives follow a hyper-Laplacian law

(p(∂y′|∂x) ∝ e−γ|∂x⊗k−∂y′|α<1

). However, using this prior

together with the sparse natural prior p(x) requires solving

a problem with multiple sparse functions which is harder to

solve. Instead, for the derivatives residual error, we use a

Gaussian prior instead of the hyper-Laplacian for the sake of

simplicity.

2.2.2. Modeling the prior p(x)

Due to the ill-posedness of the deconvolution operation, a

prior on the latent image x is necessary. This prior is usu-

ally considered on the derivatives and modeled using a hyper-

Laplacian law [7, 8]. However, due to the outliers in our case,

we found that a norm promoting more sparsity than the lp-

norm is required to get rid of some artifacts while preserving

fine structures. To do so, we use the log(lp) norm. The log is

a concave function that helps promoting more sparsity when

used as a surrogate function on the lp-norm. On the other

hand, solving efficiently a problem using the log(lp) norm is

more challenging. We will see in this paper how to use this

function via a simple proximal method.
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Fig. 2: The Laplacian distribution models well the residual

error between the image y′ and the convolution x⊗ k.

2.2.3. Optimization

The deconvolution method that we propose consists in solving

the following optimization problem :

argmin
x

∑N
i γ|(x⊗ k)i − y

′

i|+
∑T

t ρt log(|(∂tx)i|
p + ǫ)

+
∑S

s
αs

2 ((∂sx⊗ k)i − (∂sy
′)i)

2
,

(6)

where γ, ρt, and αs are positive regularization terms. The

first term consists in the l1 norm to handle outliers due to the

denoising step, the second term consists in the sparse prior

and the third term models the residual error of the derivatives.

As we said before : 1) we use the log (lp) norm which pro-

motes more sparsity in order to get rid of some artifacts due

to the presence of outliers, 2) we use the l2 norm instead of

the lp norm to model the derivatives residual error for the sake

of simplicity. While the l2 norm does not fit the real model

of this residual, we found that it slightly improves the de-

convolution result. As the problem is non-convex, we use a

half-quadratic approach [19] two times :

(p1) : q(l1+1) ← argmin
q

∑N
i |qi|+

β1
2

(

(x(l1) ⊗ k − y′)i − qi
)2

(p2) : x(l1+1) ← argmin
x

∑N
i

γβ1
2

(

(x⊗ k)i − (y
′

i + q
(l1+1)
i )

)2
+

∑T
t=1 ρt log(|(∂tx)i|

p+ǫ)+
∑S

s=1
αs

2
∂s

(

(x⊗ k)i− (y′i + q
(l1+1)
i )

)2
,

(7)

where β1 is a new regularization term. Then problem (p2) is

split into two sub-problems :

(p21) : v
(l2+1)
t ← argmin

vt

∑N
i log(|vt,i|

p + ǫ)+ β2
2

(

∂tx
(l2)
i −vt,i

)2

(p22) : x(l2+1) ← argmin
x

∑N
i γβ1

(

(x⊗ k)i − (y
′

i + q
(l1+1)
i )

)2
+

∑T
t=1 ρtβ2

(

∂txi − v
(l2+1)
t,i

)2
+

∑S
s=1 αs∂t

(

(x⊗ k)i − (y′i + q
(l1+1)
i )

)2
,

(8)

where β2 is another regularization term. Problems (p1) and

(p21) are in the proximal form. The solution of the l1 norm

in the proximal form is known to be a soft-thresholding oper-

ation, thus the solution to problem (p1) is given as follows

q(l1+1) = max

{

0, |(x(l1) ⊗ k − y′)| −
1

β1

}

sign(x(l1)⊗k−y′).

(9)

However solving problem (p21) is not straightforward due to

the non-convexity of the proximal operator. We use a first or-

der approximation to estimate a solution. As the minimization

of vt is in the proximal form :

proxbh(a) = argmin
vt

h(vt) +
1

2b
||vt − a||22, (10)

it can be shown that the first order approximation is given as

follows [20, 21] :

proxbh(a) ≈ a− b∇h(a). (11)

As the shrinkage operator influences only the magnitude, we

rewrite equation (11) as follows :

proxbh(a) = max(0, |a| − b∇h(|a|))sign(a). (12)

Now setting h(|a|) = log(|a|p+ ǫ) and replacing a = ∂tx
(k),

b = 1
β2

, the solution v
(l2+1)
t is given pointwise as follows :

v
(l2+1)
t = max

(

0, |∂tx
(l2)|−

1

β2

p|∂tx
(l2)|p−1

|∂tx(l2)|p + ǫ

)

sign(∂tx
(l2)),

(13)

where ǫ is a small parameter set to 0.001 to offer stability. The

remaining problem (p22) is quadratic and easy to solve using

the Fourier transform F :

x(l2+1) = F−1

{

F(y′+q(l1+1))◦Γ1+
∑

T

t=1 Γ2◦F(v
(l1+1)
t

)

F(k)◦Γ1+
∑

T

t=1 Γ2◦F(∂t)

}

Γ1 = F̂(k) ◦
(

γβ1 +
∑S

s=1 αsF̂(∂s)F(∂s)
)

Γ2 = ρtβ2F̂(∂t),
(14)

where ◦ denotes a pointwise multiplication. In all the exper-

iments, we do not use more than 13 inner iterations of (p2)
and 2 outer iterations of (p1) .

Fig. 3: Dataset from [2] used in our experiments with 5 noise

levels, resulting in 80 test images.



3. EXPERIMENTS

In this section, we evaluate the proposed method and com-

pare it with three methods : two popular methods that use a

hyper-Laplacian sparse gradient prior only [7, 8], and a third

method that uses BM3D [15] regularization instead of the lo-

cal sparse gradient prior, similar to [9, 22]. We use 4 images

and 4 real-world blur kernels from the standard benchmark

dataset of [2] (see Fig. 3) for 5 synthetic Gaussian noise levels

σ = 0.25, 0.5, 1, 2, 5%, resulting in a total of 80 test images.

The PSNR and SSIM [23] of the experiments are presented

in Table 1. As can be seen, the proposed method performs

well in both low and high level noise situations in terms of

the PSNR and SSIM. The improvement is most noticeable

for high noise levels. It is worth noting that even though the

IRLS method [7] leads to higher PSNR and SSIM compared

to the HQ approach of [8], it does not necessarily lead to a

better visual quality. In order to show the visual quality of the

proposed method, we run experiments on a 800 × 800 real-

world image blurred with a 19×19 real camera shake kernel

(both from [8]). The results are presented in Fig. 4. As can

be seen, the proposed method (f) leads to a better reconstruc-

tion result compared to the three other methods (c), (d), (e).

The BM3D regularization (e) seems to perform much better

than the sparse gradient prior methods (c) and (d), but intro-

duces oversmoothing and some visible artifacts. Note that

BM3D regularization is relatively slower compared to sim-

ple sparse gradient regularization. In the latter case, the pro-

cessing consists in simple pixelwise gradient shrinkage opera-

tions. Our method performs denoising only once and benefits

from the computational efficiency of sparse gradient methods.

As we perform only two outer iterations of problem (p2), our

MAP deconvolution method is only around two times slower

than [8]. The low-rank denoising step can be parallelized as

denoising the groups is independent.

Method HQ [8] IRLS [7] BM3Dreg [15] Proposed

σ = 0.25%
PSNR 34.10 dB 34.91 dB 35.02 dB 35.33 dB

SSIM 0.953 0.958 0.959 0.963

σ = 0.5%
PSNR 32.72 dB 33.71 dB 34.02 dB 34.32dB

SSIM 0.932 0.941 0.942 0.947

σ = 1%
PSNR 30.70 dB 32.03 dB 32.18 dB 32.83 dB

SSIM 0.895 0.907 0.909 0.920

σ = 2%
PSNR 28.82 dB 29.45 dB 29.70 dB 30.62 dB

SSIM 0.845 0.852 0.862 0.881

σ = 5%
PSNR 26.11 dB 26.68 dB 26.88 dB 27.85 dB

SSIM 0.752 0.773 0.777 0.805

Mean
PSNR 30.49 dB 31.36 dB 31.56 dB 32.19 dB

SSIM 0.875 0.886 0.890 0.903

Table 1: Experiments results conducted on the dataset Fig. 3. The

proposed method performs well for both low and high noise levels.

(a) Ground-truth (b) Blurred and Noisy (σ = 5%)

(c) HQ [8] (PSNR = 24.00 dB) (d) IRLS [7] (PSNR = 24.23 dB)

(e) BM3Dreg (PSNR = 24.52 dB) (f) Proposed (PSNR = 25.60 dB)

Fig. 4: Various deconvolution results in the case of high noise

level (σ = 5%). The proposed method produces a better re-

construction with less visible artifacts.

4. CONCLUSION

We present a new noise-aware non-blind deconvolution al-

gorithm. The new approach consists in combining non-local

and local priors. We show that the blur increases the self-

similarities within images which makes low-rank approxi-

mation a good tool to perform denoising of blurred images.

However, denoising a blurred image introduces outliers in

the convolution model. We show that the residual error after

denoising is no longer Gaussian but rather Laplacian. We

present a new MAP deconvolution formulation which takes

into account these outliers together with an efficient solver

based on two half-quadratic splits. Experiments show that

the proposed method produces a better image reconstruc-

tion both visually and empirically while benefiting from the

computational efficiency of sparse gradient methods.
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