
HAL Id: hal-01079206
https://hal.archives-ouvertes.fr/hal-01079206

Submitted on 7 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic Effects and Handlers in Natural Language
Interpretation

Jiří Maršík, Maxime Amblard

To cite this version:
Jiří Maršík, Maxime Amblard. Algebraic Effects and Handlers in Natural Language Interpretation.
Natural Language and Computer Science, Valeria de Paiva and Walther Neuper and Pedro Quaresma
and Christian Retoré and Lawrence S. Moss and Jordi Saludes, Jul 2014, Vienne, Austria. pp.55-66.
�hal-01079206�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49584177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01079206
https://hal.archives-ouvertes.fr

Algebraic Effects and Handlers

in Natural Language Interpretation

Jǐŕı Marš́ık and Maxime Amblard

LORIA, UMR 7503, Université de Lorraine, CNRS, Inria, Campus Scientifique,
F-54506 Vandœuvre-lès-Nancy, France

{jiri.marsik, maxime.amblard}@loria.fr

Abstract

Phenomena on the syntax-semantics interface of natural languages have been
observed to have links with programming language semantics, namely computa-
tional effects and evaluation order. We explore this connection to be able to profit
from recent development in the study of effects. We propose adopting algebraic
effects and handlers as tools for facilitating a uniform and integrated treatment of
different non-compositional phenomena on the syntax-semantics interface.

In this paper, we give an exposition of the framework of algebraic effects and
handlers with an eye towards its applicability in computational semantics. We
then present some exemplary analyses in the framework: we study the interplay of
anaphora and quantification by translating the continuation-based dynamic logic
of de Groote into a more DRT-like theory and we propose a treatment of overt
wh-movement which avoids higher-order types in the syntax.

1 Introduction

In the formal study of the syntax-semantics interface, researchers try to discover a
systematic translation from the syntactic structures of utterances to their denotations.
This translation is often performed indirectly by translating the syntactic structures
into a meta-language of semantic representations. We will be studying the challenges
of translating syntactic structures to formulas of Church’s higher-order logic.

A systematic account of the syntax-semantics interface should be compositional,
i.e. the denotations of complex utterances should be functions of the utterances’ con-
stituents and their manners of composition. In the style of abstract categorial gram-
mars, we take our syntactic structures to be λ-terms and we demand that the translation
from syntax to semantics be a homomorphism. This means that we view the syntactic
structure as a program and our goal is to find suitable definitions/interpretations for the
constructs of the language this program is written in. To describe the process of build-
ing up and gluing together the semantic representation, we will use a meta-language
also. This language is often the same as the language of the semantic representations,
i.e. λ-calculus, which makes the boundary between the two quite blurry.

Work in this paradigm has focused on phenomena that seem to defy the widely
accepted principle of compositionality. We will consider several examples of such work

1

now by looking at the case of a transitive verb. We will focus on in-situ quantifica-
tion and anaphora. However, similar phenomena could also have been demonstrated
on treatments of implicit arguments [Blom et al., 2012] or events [Qian and Amblard,
2011].

(1) Mary read every book.
∀x.book(x) → read(Mary, x)

To handle in-situ quantification, the verb is traditionally assigned the denotation1:

JreadK : ((ι → o) → o) → ((ι → o) → o) → o

JreadK = λso.s(λx.o(λy.read(x, y)))

One way to look at this is to say that NPs denote generalized quantifiers (type
(ι → o) → o) and that transitive verbs are relations on generalized quantifiers. We can
also think of this as introducing control effects (continuations) into our glue language
[Barker, 2002]. NPs can have non-local effects on the construction of the semantic rep-
resentation by taking scope over their continuations. JreadK is the result of (partially)
CPS-transforming the simple λso.read(s, o).

(2) Mary1 read her1 favorite book.
read(Mary, favorite-book(Mary))

In order to interpret (2), we need to link the antecedent with the anaphoric pronoun
since the semantic representation of the latter is dependent on that of the former. In
accordance with dynamic semantics [Kamp and Reyle, 1993], we can analyze this by
positing a store into which discourse referents are introduced and from which they are
later retrieved. This boils down to extending our glue language with state. This is the
strategy employed in the continuation-based dynamic logic of de Groote [2006]. The
type of NP denotations becomes in turn more complex to reflect the fact that NPs can
access the current state and manipulate their continuations:

JnpK = (ι → γ → (γ → o) → o) → γ → (γ → o) → o

The first argument (type ι → γ → (γ → o) → o) corresponds to a continuation
delimited by the containing tensed clause, the second argument (type γ) is the context,
where we find e.g. the available discourse referents, and the third argument (type
γ → o) corresponds to an open-ended discourse-wide continuation. γ lets us access
anaphoric state while the two different continuations serve to enforce DRT accessibility
constraints [Kamp and Reyle, 1993] (e.g. the universal quantifier in everyone provides
a referent for and takes scope over only its containing clause while the existential
quantifier in someone provides a referent for and scopes over even following clauses).

1As in Church’s Simple Type Theory, we use ι for the type of individuals and o for the type of
propositions.

The denotation this theory assigns to the transitive verb is:2

JreadK : JnpK → JnpK → JsK

JreadK : ((ι → o) → o) → ((ι → o) → o) → o

JreadK : ((ι → γ → (γ → o) → o) → γ → (γ → o) → o)

→ ((ι → γ → (γ → o) → o) → γ → (γ → o) → o)

→ γ → (γ → o) → o

JreadK = λso.s(λx.o(λyeφ.read(x, y) ∧ φe))

We interpret the theory several ways. One can say that read is a dynamic relation
(α → β → o) on generalized dynamic quantifiers (type (ι → o) → o). We also
hold another view: instead of considering the dynamic proposition o as a semantic
representation, we see it as an effectful computation3 that accesses some anaphoric
state and manipulates continuations to produce a term of type o, the final semantic
representation.

2 Computation on the Syntax-Semantics Frontier

In the preceding examples, we have seen that seemingly non-compositional phenomena
can be accounted for by admitting some sort of effect into our glue language. If we
go back to the metaphor of our syntactic structures being programs that evaluate to
their semantic representations, it seems that the language these programs are written in
exhibits a lot of effects. In the previous chapters, we have seen state and continuations,
but a look at implicit arguments and events would lead us to also consider partiality
and environment-dependence, respectively.

Our chief motivation is to unite the treatments presented in the previous section
and to start formalizing the interactions between the phenomena treated therein. Since
effects are an intensely-studied topic in formal semantics of programming languages, it
would be convenient to employ a glue language equipped with some notion of effects.

Choosing a language with some fixed set of side effects (such as some general-purpose
programming language) would not be practical since as we have seen, treatments of
newly discovered phenomena often call on new effects. We would therefore prefer a
framework that allows us to abstract over the different effects in our glue language.

One such framework are the notions of computation of Moggi [1991], rendered
as monads in category theory and used heavily in popular functional programming.
chieh Shan [2002] already examined the potential of a monadic framework for studying

2
o, a dynamic proposition, is shorthand for γ → (γ → o) → o, where γ is the anaphoric state, i.e.

the referent store, and γ → o is the continuation.
3In a sense similar to the notions of computation of Moggi [1991], popularized as the monads of

functional programming.

the various effects he observed in existing linguistic analyses. However, in his study,
he points out that combining different monads is a difficult problem which still lacks a
satisfying solution (see references in chieh Shan [2002] and Kammar et al. [2013]).

A compelling alternative to the use of monads for describing effects has gained
popularity recently (Bauer and Pretnar [2012], Kammar et al. [2013], Kiselyov et al.
[2013]). This new approach is rooted in the algebraic study of effects and handlers
by Plotkin and Pretnar [2009] that builds on the notion of Lawvere theory, which pro-
vides a category-theoretical take on universal algebra different from the one offered by
monads [Hyland and Power, 2007]. We argue that algebraic effects can solve some of
our problems in combining multiple effects in a single glue language and that the dual
notion, handlers, can be identified in existing linguistic treatments and is a natural fit
for our task.

3 The Case for Effects and Handlers

In the algebraic effects framework, we use a calculus with abstract effectful operations
as language primitives [Kammar et al., 2013].

(op : A → B) ∈ E Γ ⊢ V : A Γ, x : B ⊢E M : C

Γ ⊢E op V (λx.M) : C

We take op to be an abstract operation with argument type A and result type B. We
can invoke op by providing it with an argument of the correct type and a continuation
which will receive the result of the operation and carry out the rest of the computation.

What is of note in the above judgments is the E subscript. Typing judgments for
computations not only serve to prove that a computation will finish by yielding a value
of some type (given after the colon), but they also guarantee us that the computation
will restrict itself to effectful operations contained in the set E.

Such a type system should be familiar to anyone who has ever used Java. As
goes in the Java language specification [Gosling, 2000], “Methods declare the checked
exceptions that can arise from their execution, which allows compile-time checking
to ensure that exceptional conditions are handled”. We can see the invocation of an
operation as throwing a (checked) exception whose message contains the argument
value and the continuation to be called with the result.

The analogy of operations as exceptions will help us understand the dual notion of a
handler. Handlers behave exactly like exception handlers. Exception handlers intercept
specific types of exceptions to define how they should be resolved, making use of any
content stored in the exception message. General handlers intercept specific abstract
operations to define how they should be executed, making use of the supplied argument
and the callback continuation. Since general handlers have access to the continuation,

they can resume the computation at the point where the abstract operation was invoked,
whereas exception handlers generally do not and thus discard the failed computation.4

3.1 Denotations for Effects

Let us now look at what would be a suitable denotational semantics for a language
with algebraic effects and handlers.

An expression Γ ⊢E M : C can be seen as something that will either compute
directly to the final value of type C or something that will invoke one of the operations
in E, providing the operation’s argument and a continuation.5 Following is a formula
for the type of denotation given to a computation of type C exhibiting effects E.
[Bauer and Pretnar, 2012] [Kiselyov et al., 2013]

JCEK = C +
∑

(op:A→B)∈E

A× JCEKB

We can start appreciating some enticing features of this system in comparison to
the prevalent monadic approach.

First of all, the types of computations are decomposed into two components: the
type of the value being computed and the set of effects the computation can have. This
is in contrast with the monadic approach, where both the result type and the effects
meet in a single type, with the monad functor being applied to the result type.

As an example, let us take a computation of result type α that accesses state of
type γ. In the effects framework, this computation would have type α{get:1→γ,put:γ→1}

where get and put are the abstract operations used to read from and write to the state.
In the monadic framework, this computation would be rendered as Stateγ(α) which is
equal to γ → α× γ.

If we then consider extending this computation to include, e.g., exceptions, we would
get the following developments. In the effects framework, we have α{get:1→γ,put:γ→1,raise:ǫ→0}.
In the monadic framework, we have Excǫ(Stateγ(α)), which is (γ → α×γ)+ǫ, or maybe
Stateγ(Excǫ(α)), which is γ → (α+ ǫ)× γ.

If we look at the type of the denotation of the computation in the effects framework,
we see that the different effects sit side-by-side in an unordered flat collection. The
computation is represented as either a value or a request to perform one of the effectful
operations. Any interactions between these effects are up to the handlers which will
interpret this computation.

On the other hand, in the case of the monadic framework, we are forced to commit
from the start to a specific interaction between the two effects. The representation of the

4The Common Lisp condition and restart system also allows one to resume the computation when
handling an exception. However, the continuation available to the handler is not a first-class function
and cannot be invoked multiple times.

5The idea of seeing a computation as denoting either a value or an effect dates back to at least
Cartwright and Felleisen [1994].

computation is then bound to this specific interpretation. Furthermore, the two modes
of combining the two monadic effects shown above are not exhaustive. Kiselyov et al.
[2013] show an example computation which combines exceptions and non-determinism
and that requires the use of the type Excǫ(List(Excǫ(α))).

The structure of the denotations in the effects framework makes it easy to embed
less expressive computations into contexts that employ a wider palette of effects and to
be polymorphic w.r.t. the effects. If we take the example of a stateful computation in a
context that also permits exceptions, then we can benefit from the fact that Jα{get,put}K
is a subset of Jα{get,put,raise}K (modulo some trivial injection). This means we can take
expressions and denotations from linguistic treatments that ignore some linguistic effect
and we can plug them directly into our richer integrated treatment without having to
do any adaptation, lifting or conversion.

More interestingly, we can also do the converse thanks to effect polymorphism. We
can replace any subterm N1 of some term M with another subterm N2 which has the
same type but that also triggers some new unhandled effects E. The resulting term
M ′ will be still well-typed and the unhandled effects E of N2 will simply propagate to
become the unhandled effects of M ′. This means that if we have a constituent below
which we need to introduce some effect and above which the effect will be handled, we
are not obliged to modify the denotation of the intervening constituent. If it has no
interaction with the effect, it can remain agnostic. This is in contrast with the manual
style of passing around all the contextual arguments, states and continuations.

3.2 Handlers

Now we examine the notion of a handler. If we look back to the definition of JCEK in
3.1, we see that a computation is either a value or an effect. We can think of values as
constants and of effects as algebraic operations. More precisely, an effect op : A → B

can be seen as a family of algebraic operations opa, one for each value a of type A.
Each of these operations opa is a |B|-ary operation on computations, combining the
computations for all the possible outcomes of the effect into a single computation.

To demonstrate on an example, let us consider an operation for writing strings
to some output channel, print : σ → 1. This can be thought of as a family of unary
operations prints for every string s. The meaning of printhello(C) is then a computation
that first prints hello to the output channel and then carries out the computation C.
The operator or : 1 → 2 for non-deterministic choice corresponds to a binary operation
on computations such that or(C1, C2) is a non-deterministic computation that continues
by either evaluating C1 or C2. This formulation in terms of algebraic operations on
computations is what gave this framework the name “algebraic effects”.

In this algebraic view, a handler can be seen as a homomorphism which maps
the computation it handles to another computation by instantiating certain abstract
operations within [Plotkin and Pretnar, 2009] [Pretnar, 2010].

Thinking of handlers as scoped interpretations is instructive. Denotations can be

written using environment-dependent abstract operations such as “introduce a new
discourse referent (in the current DRS)”, “access available discourse referents”, “ac-
cess event under discussion”, “access salient world”, “scope over the current tensed
clause”. . .

Handlers can then be placed at the appropriate junctions in the syntactic tree to
give meaning to these abstract operations. To give several examples: lexical items
that necessitate a fresh DRS (negation, universal quantification) will carry handlers
for introducing and accessing discourse referents; tensed clauses will use handlers to
enforce quantifier scope islands; access to the current event might be handled at the
edge of a scope domain; and modality operators would handle references to the salient
world.

4 Applications of Effects and Handlers to Computational

Semantics

Our first inspiration for adopting effects was to bridge the hierarchical structures of
DRSs and the compositional treatment of anaphora in the continuation-based dynamic
logic of de Groote [2006].

4.1 DRT, Continuations and Effects

In de Groote [2006], and in more detail in Lebedeva [2012], we can see indefinites intro-
ducing some existential quantifier and adding the variable bound by the quantifier into
the store as a new discourse referent. In our effects framework, we can think of this
complex action as an effect, let us call it fresh, whose purpose is to introduce a new
discourse referent at the current point of discourse and whose implementation will intro-
duce a quantifier someplace and record the referent in some store. This decomposition
into an abstract interface (the fresh operation which introduces a discourse referent)
and specific implementations that will realize it (handlers for fresh) is pertinent. It
gives us another way to explain how it is possible that the same indefinite expression
can sometimes contribute an existential quantifier and sometimes a universal one, as is
the case with the famous example of donkey sentences [Kamp and Reyle, 1993].

Besides introducing discourse referents, lexical items in continuation-based dynamic
logic also access the sum total of the available discourse referents to be able to resolve
anaphora by choosing a salient antecedent from their ranks. We model this feature
by an effect, get, which lets computations access the current contents of the discourse
store.

With these two operations in hand, we can start rewriting de Groote’s continuation-
based dynamic logic. In short: the dynamic existential quantifier will essentially boil
down to a call to fresh, dynamic negation will introduce a handler (a new DRS)
and dynamic conjunction will be simple conjunction (with arguments evaluated left-to-
right).

∃ = λP.P (fresh ())

¬ = λPt.{¬(with drs (get ()) handle Pt!)}

∧ = λPtQt.{Pt! ∧Qt!}

The fragments we show are faithful excerpts from our experimental grammar. The
language used is Eff [Bauer and Pretnar, 2012]. As we are dealing with effects, the
order of evaluation matters and since Eff is call-by-value, we use thunks to simulate
call-by-name. For those, we adopt the notation used in Kammar et al. [2013]. {M} is
short for λ().M (i.e. a dummy abstraction serving to build a thunk) and M ! is short
for M () (i.e. applying a thunk to the dummy unit argument). Furthermore, we mark
variables that hold thunks with the subscript t. The exposition could be cleared up by
devising a language which separates strictness from abstraction, in much the same way
as was already proposed by Kiselyov [2008].

We can now move the dynamicity of continuation-based dynamic logic into the
effects, and so instead of having the type (ι → γ → (γ → o) → o) → γ → (γ → o) → o

for NP denotations, we get (ι → oE) → oE for some set of effects E containing fresh

and get.

JsheK = λk.k(sel′she(get ()))

JsomethingK = λk.∃ x.(k x) = λk.k(fresh ())

JeveryK = λnk.∀x.({n x} → {k x})!

JreadK = λSO.S(λs.O(λo.read(s, o)))

We have switched from dynamic propositions (o = γ → (γ → o) → o) to effectful
computations of static propositions (oE), as was hinted at in Section 1.

The NP denotations now have type (ι → oE) → oE . This is still more complicated
than the naive type ι one starts with for proper nouns. We can see this type as
a computation of ι with access to some continuation of result type oE . If we look
at the denotations, this continuation (the argument k) is properly exploited only in
the denotation of every where it serves to mark the scope of the quantifier. This
scope is supplied to the NP by the tensed clause it is contained in. If we were to
take our approach to its logical conclusion, we could turn this into an effect as well.
Quantificational noun phrases could employ a scope over effect to introduce some
quantifier and tensed clauses could be handlers for these effects, delimiting the scope
of these quantifiers.

JsheK = {sel′she(get ())}

JsomethingK = {fresh ()}

JeveryK = λn.{scope over (λk.∀ x.({n x} → {k x})!)}

JreadK = λstot.{with tensed clause handle read(st!, ot!)}

We have now arrived at a type for NP denotations that is ιE , where E is some
set of effects including scope over, get and fresh, the three effects being somewhat
analogous to the three arguments that NP denotations abstract over in continuation-
based dynamic logic. For now, we have restricted our set of effects that NPs can use
to modify the current DRS to just fresh, which lets us only introduce new referents.
However, indefinite expressions such as a good book not only introduce referents but also
assert something about them. We can model this by admitting a new effect, assert,
that will be handled by the same handler as fresh and get, i.e. by a DRS.

JsomeK = λn.{ let x = fresh () in

let () = assert (n x) in

x }

We have arrived at the following system with two kinds of handlers. We have DRSs
as handlers that handle three effects that can be seen as the interface of a DRS: we can
build up a DRS by introducing new discourse referents (fresh) and constraints (assert)
and we can use the information stored inside to resolve anaphora (get). We also have
tensed clauses as handlers. They delimit scope islands which define the scopes of the
quantifiers contained within (scope over).

4.2 Overt Movement and Effects

Overt movement (as in the case of an object extracted from a relative clause by a
relativizer such as who) has in the categorial school been often studied as λ-abstraction
or hypothetical reasoning.

who : (np−◦ s)−◦ n−◦ n

Using linear implication for the arrow type lets us enforce that one relativizer can
only cover one trace. However, overt wh-movement has more restrictions, especially
when it comes to multiple extraction [Pogodalla and Pompigne, 2012].

When we have effects available to us, we can choose an alternative solution. Traces
can be seen as inaudible NPs whose semantic representation is computed through an
effectful operation, move. A relativizer will then handle move events in the relative
clause. The handler will be a shallow handler [Kammar et al., 2013], meaning it will
only handle the first occurrence of the move event that will occur in the relative clause,
which gives correct predictions in the case of multiple extraction.

JwhoK = λrtn.λx. let r = with extract handle rt! in

(n x) ∧ (r x)

JǫK = {move ()}

By making the relativizer handler fail in the case that it does not intercept anymove

effect (i.e. the relative clause contained no free trace), sentences with ungrammatical
uses of the relativizer can be ruled out. With this technique, the type of who becomes
s−◦ n−◦ n, which is interesting because using 2nd order types, such as this one, in the
syntax makes it possible to use efficient parsing algorithms [Kanazawa, 2007].

5 Conclusion

In this paper, we gave a short exposition to the theory of algebraic effects and handlers
and demonstrated how it can be applied to computational semantics. Besides our
principal example of dynamic logic and DRT, we also covered extraction. However, that
is not the full extent of the applicability of effects and handlers. The event argument
under discussion [Qian and Amblard, 2011] and the salient world are both examples
of dynamic binding, which is a special case of a handler. Lebedeva [2012] proposes
modeling presuppositions and proper names using exceptions, which are a trivial case
of handlers. The treatment of implicit arguments in Blom et al. [2012] uses an operator
which is also a simple exception handler.

We have not spent much time defending the position that algebraic effects and
handlers facilitate the analysis of multiple phenomena in the same grammar. However,
compelling evidence for using algebraic effects and handlers in contexts that involve
multiple computational effects at the same time can be found in existing literature
(e.g. Kiselyov et al. [2013], Cartwright and Felleisen [1994]).

For future work, we are interested in developing a simple calculus with effects and
a notion of evaluation order suitable for the study of the syntax-semantics interface.
Having fixed such a calculus, we would aim to study non-compositional semantic phe-
nomena in concert, not in isolation, and to examine their interactions.

References

Chris Barker. Continuations and the nature of quantification. Natural language seman-
tics, 10(3):211–242, 2002. URL http://dx.doi.org/10.1023/A:1022183511876.

Andrej Bauer and Matija Pretnar. Programming with algebraic ef-
fects and handlers. arXiv preprint arXiv:1203.1539, 2012. URL
http://dx.doi.org/10.1016/j.jlamp.2014.02.001.

Chris Blom, Philippe De Groote, Yoad Winter, and Joost Zwarts. Im-
plicit arguments: event modification or option type categories? In
Logic, Language and Meaning, pages 240–250. Springer, 2012. URL
http://dx.doi.org/10.1007/978-3-642-31482-7_25.

http://dx.doi.org/10.1023/A:1022183511876
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://dx.doi.org/10.1007/978-3-642-31482-7_25

Robert Cartwright and Matthias Felleisen. Extensible denotational language specifica-
tions. In Theoretical Aspects of Computer Software, pages 244–272. Springer, 1994.
URL http://dx.doi.org/10.1007/3-540-57887-0_99.

Chung chieh Shan. Monads for natural language semantics. arXiv preprint cs/0205026,
2002. URL http://arxiv.org/pdf/cs/0205026.

Philippe de Groote. Towards a montagovian account of dy-
namics. In Proceedings of SALT, volume 16, 2006. URL
http://elanguage.net/journals/salt/article/download/16.1/1791.

James Gosling. The Java language specification. Addison-Wesley Professional, 2000.

Martin Hyland and John Power. The category theoretic understand-
ing of universal algebra: Lawvere theories and monads. Electronic
Notes in Theoretical Computer Science, 172:437–458, 2007. URL
http://dx.doi.org/10.1016/j.entcs.2007.02.019.

Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In Proceedings
of the 18th ACM SIGPLAN international conference on Functional programming,
pages 145–158. ACM, 2013. URL http://dx.doi.org/10.1145/2544174.2500590.

Hans Kamp and Uwe Reyle. From discourse to logic: Introduction to modeltheoretic se-
mantics of natural language, formal logic and discourse representation theory. Num-
ber 42. Kluwer Academic Pub, 1993.

Makoto Kanazawa. Parsing and generation as datalog queries. In Annual Meeting-
Association for Computational Linguistics, volume 45, page 176, 2007. URL
http://research.nii.ac.jp/~kanazawa/publications/pagadqe.pdf.

Oleg Kiselyov. Call-by-name linguistic side effects. In ESSLLI 2008 Workshop
on Symmetric calculi and Ludics for the semantic interpretation, 2008. URL
http://pobox.com/~oleg/ftp/gengo/gengo-side-effects-cbn.pdf.

Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an
alternative to monad transformers. In Proceedings of the 2013 ACM
SIGPLAN symposium on Haskell, pages 59–70. ACM, 2013. URL
http://dx.doi.org/10.1145/2578854.2503791.

Ekaterina Lebedeva. Expression de la dynamique du discours à l’aide
de continuations. PhD thesis, Université de Lorraine, 2012. URL
http://hal.inria.fr/docs/00/78/32/45/PDF/Thesis-submitted_version.pdf.

Eugenio Moggi. Notions of computation and monads. Information and computation,
93(1):55–92, 1991. URL http://dx.doi.org/10.1016/0890-5401(91)90052-4.

http://dx.doi.org/10.1007/3-540-57887-0_99
http://arxiv.org/pdf/cs/0205026
http://elanguage.net/journals/salt/article/download/16.1/1791
http://dx.doi.org/10.1016/j.entcs.2007.02.019
http://dx.doi.org/10.1145/2544174.2500590
http://research.nii.ac.jp/~kanazawa/publications/pagadqe.pdf
http://pobox.com/~oleg/ftp/gengo/gengo-side-effects-cbn.pdf
http://dx.doi.org/10.1145/2578854.2503791
http://hal.inria.fr/docs/00/78/32/45/PDF/Thesis-submitted_version.pdf
http://dx.doi.org/10.1016/0890-5401(91)90052-4

Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In
Programming Languages and Systems, pages 80–94. Springer, 2009. URL
http://dx.doi.org/10.1007/978-3-642-00590-9_7.

Sylvain Pogodalla and Florent Pompigne. Controlling extraction in
abstract categorial grammars. In Formal Grammar, 2012. URL
http://dx.doi.org/10.1007/978-3-642-32024-8_11.

Matija Pretnar. Logic and handling of algebraic effects. 2010. URL
http://matija.pretnar.info/pdf/the-logic-and-handling-of-algebraic-effects.pdf.

Sai Qian and Maxime Amblard. Event in compositional dynamic se-
mantics. In Logical Aspects of Computational Linguistics. 2011. URL
http://dx.doi.org/10.1007/978-3-642-22221-4_15.

http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1007/978-3-642-32024-8_11
http://matija.pretnar.info/pdf/the-logic-and-handling-of-algebraic-effects.pdf
http://dx.doi.org/10.1007/978-3-642-22221-4_15

	Introduction
	Computation on the Syntax-Semantics Frontier
	The Case for Effects and Handlers
	Denotations for Effects
	Handlers

	Applications of Effects and Handlers to Computational Semantics
	DRT, Continuations and Effects
	Overt Movement and Effects

	Conclusion

