
HAL Id: hal-01079268
https://hal.archives-ouvertes.fr/hal-01079268

Submitted on 7 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting dependencies and Minimalist Grammars
Maxime Amblard

To cite this version:
Maxime Amblard. Counting dependencies and Minimalist Grammars. Logical Aspects of Computa-
tional Linguistics, student session, Apr 2005, Bordeaux, France. �hal-01079268�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49584121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01079268
https://hal.archives-ouvertes.fr


Counting dependencies and Minimalist Grammars. ∗

Maxime AMBLARD †

Minimalist Grammars (MG) are a formalism which allows a flexible syntactic analysis of natural languages.
It was introduced by Stabler in [St 97]. Its generative capacity has been studies in [Ha 01].

This article describes the existence of a MG generating the counting dependencies Lm = {1n2n · · ·mn,n ∈ IN},
and an algorithm of construction of the lexicon Lexm producing this language. It is a generalization of the Stabler
presentation with n = 5 [St 97].

This class of languages belongs to the context-sensitive languages in the hierarchy of Chomsky. In a linguistic
way, we could find example of this structure in sentence like : "Peter, Mary and Charles had respectively 14, 12
and 6 in math, history and sport".

1 Stabler’s MG
Stabler’s Minimalist Grammars are lexicalised grammars. Therefore the generated language is the transitive

closure of the lexicon under the generating functions. Each lexical entry is a list of features. The features are of
two different natures and take part in the release of two distinct operations.

Different types of feature :
The set of base features is noted BF . The following features are also defined :

– select : {= d | d ∈ BF}.
The set of move features is noted MF . The following features are defined :

– licensors : {+k | k ∈ MF}.
– licensees : {−k | k ∈ MF}.

Generating functions :
– Merge : unification of a base feature with the corresponding selector. The result is the concatenation of the

other feautures.
– Move : unification of a licensor with a licensee. It corresponds to the move of the features to the components

carrying the licensees in front of the structure.
We use the following notation : e stand for a feature of an arbitrary type and E for a sequence of features.
A lexical entry is made of a list of features and the associated phonological form, noted between oblique bars :

e1. . ./z1/. The word generated is recognized by a left-right-hand side reading of the phonological forms in the
analysis.

The phonological form will be called "terminal" and the other elements of the list of features "non-terminal".
Traditionally, the analyses are finite, binary and ordered trees with projections - which preserve the position of

the head of the component. This order is marked on the nodes of the tree by ’< ’ or ’> ’ - for the direction of the
head. In this article, we will use list ordered from left to right. A component will be delimited by an under-brace
and the head of this last will be marked in bold. To simplify the graphical representation, the group containing
only one element and those containing only a phonological form will not be marked by a under-brace and the head
will take back a normal font.

The linear representation contains less information than the tree form but this information is sufficient to
describe the mechanisms of our paper.

Here an example of translation of an analysis in tree form to a linear representation :
>

�� HH
e1 · · ·/ζ1/ <

�� HH
e2 · · ·/ζ2/ <

��� HHH
e3 · · ·/ζ3/ e4 · · ·/ζ4/

⇒ e1 · · ·/ζ1/,e2 · · ·/ζ2/, e3 · · ·/ζ3/,e4 · · ·/ζ4/

∗LACL 2005 - poster for the student session - april.
†SIGNES team, LaBRI, université de Bordeaux 1- INRIA - CNRS



Graphical representation of rules :
– Merge results in an addition of a component into first position in the list during the derivation. Indeed it

occurs between two entities such as in first position in the list of the features of the head one finds a basic
feature in one and a selector in an other element (often a lexical entry).

d E1/ζ1/ =d E2/ζ2/

E2/ζ2/, E1/ζ1/

The element carrying the selector will be the new head.
When a merge occurs between two lexical entries, the head will be placed on the left, in the other cases, it
is the new lexical item which will be placed on the left.

– Move corresponds to placing the list for the component whose the licensee is the head in first position.
S, W, -k E2/ζ2/, X , T

U, +k E1 /ζ1/, V,
... Y

S, T

W, E2/ζ2/, X , U, E1 /ζ1/, V,
... , Y

Only the internal order of the elements and the head of the moved element are modified if : W = ε et X = ε .

2 Example of counting dependencies : 1n2n

To build the word 1n2n,n ∈ IN, we use these lexical entries - a proof will be explain in the next section.

type : 1 2 -2 /2/ type : 4 =1 +2 2 -2 /2/
type : 2 =2 1 -1 /1/ type : 5 c
type : 3 =2 +1 1 -1 /1/ type : 6 =1 +2 +1 c

Sketch of derivation :
The entries of type 1 et 2 start the derivation. They add one of each terminal respectively.
Those of type 3 et 4 form the iterative part by adding a non-terminal and moving the group of this non-terminal

to form a new entity.
The entry of type 5 allows the analysis for n = 0.
The last (6) finishes the derivation while putting the groups of terminals in the right order.

Example derivation :

1. Lexical entry of type 1 : 2 -2 /2/
and one of type 2 : =2 1 -1 /1/

2. Merge : 1 -1 /1/, -2 /2/

3. At this time, there are as many elements /1/ as /2/ elements. We could either finish the derivation with an
entry of type 6 and obtain /1/,/2/, or take on iterative phase to build 1222. Let us continue the derivation with

a lexical entry of type 4 : =1 +2 2 -2 /2/

and merge with the previous element : +2 2 -2 /2/, -1 /1/, -2 /2/

4. Move : /2/, 2 -2 /2/, -1 /1/

5. There have one /2/ too many, it is necessary to add one /1/, which is done by a lexical entry of type 3 :
=2 +1 1 -1 /1/

– second part of the iteration – and a merge : +1 1 -1 /1/, /2/, -2 /2/, -1 /1/,

6. Move : /1/, 1 -1 /1/, /2/, -2 /2/

7. Now, we have the same structure as in stage 2, with one /1/ and one /2/ more. The same choice is proposed :
reiterate or conclude. Let us reiterate once more : lexical entry of type 4 :



=1 +2 2 -2 /2/

and merge : +2 2 -2 /2/, /1/, -1 /1/, /2/, -2 /2/,

8. Move : /2/, /2/, 2 -2 /2/, /1/, -1 /1/

9. Lexical entry of type 3 : =2 +1 1 -1 /1/

and merge : +1 1 -1 /1/, /2/, /2/, -2 /2/, /1/, -1 /1/

10. Move : /1/, /1/, 1 -1 /1/, /2/, /2/, -2 /2/

11. After this new iteration, there are three /1/ and three /2/. Let us finish derivation. Lexical entry of type 6 :
=1 +2 +1 c

and merge : +2 +1 c, /1/, /1/, -1 /1/, /2/, /2/, -2 /2/

12. Move : /2/, /2/, /2/, +1 c, /1/, /1/, -1 /1/

13. Move : /1/, /1/, /1/, /2/, /2/, /2/, c

3 Generalization
This section presents a general algorithm to construct a lexicon generating a language of an N counting de-

pendencies : 1n2n · · ·Nn, and outlines the proof of the language generated by the grammar with this lexicon.

Algorithm Construction of the lexicon.
It will suppose S1 < S2 < · · · < SN−1 < SN where :
– /Si/ are the terminals of the derivation, ordered according to appearance in the word
– Sacc is the accepting symbol of the grammar.

type 1 : 〈SN -SN /SN/〉 type 4 : 〈=S1 +SN SN -SN /SN/〉
type 2 : for i from 1 to (N-1) 〈=Si+1 Si -Si /Si/〉 type 5 : 〈Sacc〉
type 3 : from j from 1 to (N-1) 〈=S j+1 +S j S j -S j /S j/〉 type 6 : 〈=S1 +SN +SN−1 . . . +S1 Sacc〉

Theorem Minimalist Grammars generate all counter languages.

Proof The previous part presents how to obtain 2 counting dependencies. Let us see how to extend it to N
terminals with the algorithm above.

The synopsis of the analysis is done according to three phases : start-iteration-conclusion. We will take a type
of lexical entry according to the different phases :

The first type of lexical entry will combine with the last entry of type 2 (Si+1 = SN pour i = N−1) using merge.
Thereafter this structure will combine with the preceding one of the type 2 and so on, until the start phase is
finished, i.e. until we have accumulated a terminal of each letter. This is made possible by the structure of the ele-
ments of the type 2 because following the selector we find a basic feature with an index decreased by 1 (from where
merge with the precedent). Once this phase is finish, a basic feature S1 is in first position : S1 −S1 /S1/, · · · ,−SN/SN/

The choice is thus either to pass directly to the conclusion phase, or to pursue with an iteration.
Iteration phase : it starts with a merge of a lexical entry of type 4 designed for this purpose. This new head

immediately moves all the elements /SN/ to the front . Then we find the same structure as in the start phase, which
enables us to continue the iteration.

The action, in this phase, is, in addition to accumulating a phonological form, to move all elements carrying the
same phonological form in first position : +SN SN −SN/SN/, · · · , /SN/, · · · , −SN/SN/ becomes : /SN/, · · · , /SN/, SN −SN/SN/, · · ·

At the end of the this phase, the derivation reaches again in the same configuration as at the end of the start
phase. We could either start an iteration again, or conclude.



To conclude, the derivation is merged with an entry of the type 6, which orders all group of the same phonolo-
gical form. +SN . . . +Sinit Sacc, · · · , /S1/, · · · ,−S1 S1, · · · ,/SN/, · · · ,−SN /SN/ Thus, successive moves reorder the derivation

according to each terminal by using the last licensee remaining with phonological forms. As we always added a
series of terminal on each iteration phase, they all occur the same number of times.

This grammar generates exactly the counter languages with N terminals : 1k · · ·Nk because only the analyses
following the synopsis above can succeed. Any variation with in this synopsis will not return an accepting analysis
because this kind of derivations are deterministic except at points that we will discuss :

Starting the iteration phase without completing the start phase.
We can start a derivation by merge between an entry of type 1 and one of type 2, by an entry of the type 1 and

one of type 3. Into this second case, we introduce a feature ’+k ’ into derivation. There is no element in derivation
carrying the equivalent licensee. Therefore, the derivation fails. +SN−1 SN−1 −SN−1 /SN−1/, −SN /SN/

If that occurs later in the start phase, the problem will be the same.

Returning from the iteration phase to the start phase.
The derivation uses a merge with an entry of type 2 instead of one of type 3. In this case, it misses one ’ +k’,

∀k ∈ MF in derivation. But the only moment in a derivation where there are two features ’−k’, is followed by a
merge operation with an entry of type 3, but one of them will be unified immediately with the introduced feature ’
+k’.

In this case, there are two ’−k’ in the derivation, but only one of them can be unified in the conclusion
phase. The analysis will finish with this additional feature ‘−k’ and could not yield a successful derivation :
+SN . . . +S1 Sacc, · · · , /S1/, · · · ,−S1 S1, · · · ,/SN/, · · · ,−SN /SN/,−SN /SN/

All the other stages of derivation are deterministic, therefor we obtain correctly the words on a counter.

Conclusion and prospects
The languages generated by Minimalist Grammars contain the counter languages. This is the point that distin-

guishes these grammars from other linguistic formalisms.
A version of a(2n), ∀n ∈ IN counts is presented in [Mi 05].
An MG of the nested counters is in progress. The nested counters are the sentences of the following shape :

1n2k3n4k · · ·Nk, ∀n ∈ IN, ∀k ∈ IN which is a context-sensitive language, as counter languages with more than two
terminals.

In this respect MG (strongly) differs from other derivational formalizations of NL syntactic structures.
They provide an account for linguistic analysis and we could show these complex syntactic structures by

theoretical exploration. The main open question is whether it is possible to generate languages outside the class of
natural languages.

Références
[Ha 01] Harkema H. (2001). A Characterization of Minimalist Languages. Logical Aspect of Computational Lin-

guistics 2001. Springer-Verlag.

[Mi 05] Michaelis J. (2005). A Note on the Complexity of Constraint Interaction : Locality Conditions and Mini-
malist Grammars. Logical Aspect of Computational Linguistics 2005. Springer-Verlag.

[Mi Mö Mo 00] J. Michaelis, U. Mönnich and F. Morawietz (2000). Algebraic Description of Derivational Mini-
malism. Algebraic Methods in Language Processing. 125-141

[Mö Mo Kep 01] U. Mönnich, F. Morawietz and S. Kepser (2001). A Regular Query for Context-Sensitive Rela-
tions. IRCS Workshop Linguistic Database. 187-195

[St 97] Stabler Ed. (1997), Derivational Minimalism, Logical Aspect of Computational Linguistics 1997. vol
1328, Springer-Verlag.


