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Dynamic optimisation of resource allocation in microorganisms

(extended abstract)

Nils Giordano1,2, Francis Mairet3, Jean-Luc Gouzé3, Johannes Geiselmann1,2, Hidde de Jong2*

Abstract— Bacterial growth is a fundamental process in
which cells sustain and reproduce themselves from available
matter and energy. Optimisation principles have been widely
used to explain and predict the growth behaviour of microor-
ganisms, assumed to be optimized by evolution. This has given
rise, among other things, to bacterial growth laws describing
how the abundance of components of the gene expression
machinery increases with the growth rate. These studies have
mainly focused on the situation where the system is in balanced
growth, a steady state in which all cell components grow at
the same rate. Balanced-growth conditions, however, are far
from natural growth conditions in which the environment is
continually changing. We focus on the optimal allocation of
resources between the gene expression machinery and other
subsystems during growth-phase transitions. We describe an
abstract model of the biochemical reaction processes occur-
ring in the cell, based on first principles and articulated
around two subsystems: the gene expression machinery and
the uptake of nutrients from the environment. Using this so-
called self-replicator model, we investigate the optimal dynamic
reallocation of resources following a rapid change in the
environment. We formulate our question as an optimal control
problem that can be solved using Pontryagin’s maximum
principle. Preliminary results have shown the predominance of
bang-singular control of resource allocation following abrupt
environmental transitions.

One of the fundamental properties of life is the main-

tenance and replication of cells from available matter and

energy. Microorganisms are excellent models for the study

of this autopoetic process, as they undergo a strong selec-

tive pressure for growth. Extensive studies in quantitative

bacterial physiology have yielded a number of important

insights, like the growth-rate dependence of the cell com-

position (DNA, RNA, protein, ...) and the key role of the

gene expression machinery in controlling growth [1], [2],

[3]. This has contributed to the development of empirical

bacterial growth laws, reviewed in [4].

Optimisation theory is important for understanding how

growth laws arise from evolution and physical constraints on

living matter. Indeed, it is widely accepted that microorgan-

isms are mostly optimised for growth [5]. As a consequence,

much theoretical work on bacterial growth has been based

on optimisation principles, with several successes at the

metabolic, genetic or global cell level [6], [7].
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These studies generally focus on the balanced growth

of a bacterial population, that is, a steady state in which

all cell components grow at the same rate [8]. Balanced

growth is a convenient condition to study growth, since it

is experimentally reproducible and leads to mathematically

simple models. However, the constant environmental con-

ditions necessary for balanced growth are easy to simulate

in the laboratory, but hard to find in nature [8]. In most

situations bacterial cells have to continually adapt their

growth rate and their molecular composition, notably the

sets of expressed proteins (proteome), to changes in the

availability of nutrients and other environmental parameters.

Despite the large amount of work on bacterial growth,

as stated in a recent study ”little is known about the

dynamics of proteome change, e.g., whether bacteria use

optimal strategies of gene expression for rapid proteome

adjustments...” [9]. This study and other recent work [10]

have argued that it is important to consider optimisation

principles from a dynamic perspective when studying bac-

terial growth. In this contribution, we extend the above ideas

by focusing on the dynamics of a key proteome component,

the gene expression machinery. More precisely, our aim is

to study the optimal allocation of resources to the gene

expression machinery and to the uptake of nutrients from

the environment during growth-phase transitions, using tools

from optimal control theory.

In order to model bacterial growth and relate it to the

environment and the molecular composition of the cell, we

use the self-replicator model introduced by Molenaar and

colleagues [7]. This abstract model, built from first princi-

ples, articulates self-replication around the gene expression

machinery R and the metabolic machinery M (Figure 1).

While M converts substrate S from the environment into

precursors P, R transforms these precursors into macro-

molecules, including the transporters and enzymes in M and

the RNA polymerases and ribosomes in R.

The self-replicator system is described by the following

two reactions:

S
VM−→ P

nP
VR−→ αR+ (1− α)M

The variables P , R, and M refer to the amount of precur-

sors, gene expression machinery and metabolic machinery

expressed in mole units. The parameters n and α, with

n ≫ 1 and α ∈ [0, 1], represent the reaction stoichiometry.



Fig. 1. Self-replicator model. S, P, M, and R refer to substrate, precursors,
metabolic machinery and gene expression machinery, respectively. VM and
VR are reaction rates. α(t) is the gene regulation control variable.

n moles of precursor metabolites are necessary for the

production of 1 mole of macromolecules, consisting of

metabolic enzymes and components of the gene expression

machinery in the proportions α and 1−α, respectively. The

rates of the reactions are VM and VR (mole min−1).

The following stoichiometry model can thus be written

for the dynamics of the reaction system:

d

dt





P
M
R



 =





1 −n
0 1− α
0 α



 ·

[

VM

VR

]

= N · V, (1)

where N is the stoichiometric matrix (rank 2).

Considering cell volume as proportional to the quantity

of macromolecules, the total cell volume Vol is defined as

follows:

Vol = β(M +R),

with β a conversion constant. Note that P , M , R and Vol

are extensive variables. The growth rate of the population

is given by:

µ =
1

Vol

dVol

dt
=

1

M +R

d(M +R)

dt
.

To simplify this model and introduce convenient expres-

sions for the reaction rates, we introduce the following

intensive variables:

p =
P

Vol
=

P

β(M +R)
,

m =
M

Vol
=

M

β(M +R)
,

r =
R

Vol
=

R

β(M +R)
,

vM =
VM

Vol
=

VM

β(M +R)
,

vR =
VR

Vol
=

VR

β(M +R)
.

p, r,m are molar concentrations, for example expressed in

mole m−3 or mole L−1. Notice that, by definition, 0 ≤

r,m ≤ 1/β. When expressing the growth rate in terms of

the new variables, we have:

µ =
VR

R+M
= βvR.

The systems now writes:

dp

dt
= vM − (n+ βp)vR, (2)

dm

dt
= (1− α− βm)vR, (3)

dr

dt
= (α− βr)vR. (4)

Note that m = (1/β − r) and dm/dt = −dr/dt, so the

variables p and r are sufficient to define the dynamics of

the system.

Finally, we use Michaelis-Menten kinetics for the rates of

the two reactions, the uptake and conversion of substrates

and the synthesis of components of the gene expression

machinery:

vM = kM
s

KM + s
m = eM (1/β − r), (5)

vR = kR
p

KR + p
r, (6)

with rate constants kM , kR and half-saturation constants

KM ,KR. s is the substrate concentration in the environ-

ment. Since s is a (constant) input variable, we define the

parameter eM = kMs/(KM + s) representing the nutrient

richness of the environment.

α is a major control parameter, as it determines the

(relative) distribution of resources over the two subsystems

of the cell, metabolism and the gene expression machinery.

For a constant α, the growth rate µ(p, r, α) converges to a

steady-state value µ∗(p∗, r∗, α). One can easily prove that

µ∗ admits a single maximum for a value α = αopt ∈ [0, 1],
corresponding to a steady-state at r∗(αopt) = αopt/β =
ropt and p∗(αopt) = popt. Our goal is to investigate the

reallocation of resources following a rapid change in the

environment at time t = 0. In other words, what is the

best strategy if, starting from values of p and r that are

non-optimal in the new environment, we want to maximize

biomass production and allow α = α(t) to vary over time,

with t ≥ 0 and α ∈ [0, 1]?
We formulate our question as an optimal control problem,

with the resource allocation variable α(t) as the control

parameter. The objective of this study is to maximize the

growth rate µ(p, r, α, t) on an infinite time interval [0,+∞).
Consider the set of admissible controls

U = {α : R+ → [0, 1]}.

The optimization problem can then be stated as follows:

max
α∈U

J(α) :=

∫ +∞

0

µ(p, r, α, t)dt, (7)

where J(α) represents the biomass (or total population

volume) produced for a given control α ∈ U . Note that
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Fig. 2. Bang-singular versus singular control strategies. Bang-singular control drives the gene expression machinery abundance r faster to the optimal
value ropt than singular control.

since the integral in J(α) diverges, we actually consider

”overtaking optimality”: a trajectory is overtaking optimal

if the performance index catches up to the performance

index of any other trajectory (see Definition 1.2(ii) in [11]

for a rigorous mathematical definition). This allows the

application of the Infinite Horizon Maximum Principle.

Preliminary results, based on a quasi-steady-state assump-

tion for the model (2)-(4), indicate that the optimal strategy

minimizes the time spent far from µopt by producing the

limiting component. For example, if the system has too

much metabolic machinery M and not enough gene expres-

sion machinery R to sustain maximal growth (r < ropt), α
is maximized so as to produce only R until r = ropt. This

is intuitively expected and was previously found in other,

similar problems [9], [12], [13]. In our case, the complete

optimal strategy is the following:

α(t) =











1 if r(t) < ropt,

0 if r(t) > ropt,

βropt if r(t) = ropt,

(8)

a strategy usually called bang-singular control in optimal

control theory [14].

Figure 2 illustrates the optimal solution for a nutrient

upshift experienced by a bacterial population. The bang-

singular solution drives the gene expression machinery

abundance r faster to the target value ropt. The singular-

only solution, which consists in setting α to a constant value

β ropt directly after the upshift, eventually also reaches the

optimal steady-state growth rate, but much slower. As a

consequence, the biomass produced is also lower.

Application of the bang-singular control strategy presup-

poses that the system has perfect knowledge of the values

of each parameter and variable. From a biological point of

view, we can assume that the parameters characterizing the

internal functioning of the cell have been optimized by evo-

lution. But in order to apply the strategy described in (8), the

system additionally needs knowledge of ropt and r(t). Since

ropt depends on eM , which reflects nutrient availability and

other environmental parameters, bacterial cells need to be

able to sense the state of the environment. This optimal state

needs to be compared with the internal state r(t), for which

the cell needs specific sensing systems as well. We believe

that by using the optimal control solution as a benchmark,

we can better understand the role of individual bacterial

sensing systems in bringing about the dynamic adaptation

of the growth rate and the molecular composition of the cell

to abrupt changes in the environment.
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