
HAL Id: hal-01079762
https://hal.inria.fr/hal-01079762

Submitted on 4 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning on the response of logical signaling networks
with Answer Set Programming

Torsten Schaub, Anne Siegel, Santiago Videla

To cite this version:
Torsten Schaub, Anne Siegel, Santiago Videla. Reasoning on the response of logical signaling networks
with Answer Set Programming. Logical Modeling of Biological Systems, Wiley Online Librairy, pp.49-
92, 2014, �10.1002/9781119005223.ch2�. �hal-01079762�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49583757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01079762
https://hal.archives-ouvertes.fr

Contents

Chapter 1. Reasoning on the response of logical signaling networks with

Answer Set Programming . 11
Torsten SCHAUB, Anne SIEGEL, Santiago VIDELA

1.1. Introduction . 11
1.2. Answer Set Programming at a glance 16
1.3. Learn and control logical networks with ASP 19

1.3.1. Preliminaries . 19
1.3.2. Reasoning on the response of logical networks 19
1.3.3. Learning models of immediate-early response 26
1.3.4. Minimal intervention strategies . 39
1.3.5. Software toolbox: caspo . 46

1.4. Conclusion . 47
1.5. Acknowledgements . 48
1.6. Bibliography . 48

Index . 55

9

Chapter 1

Reasoning on the response of logical signaling
networks with Answer Set Programming

Logical networks provide a simple yet powerful qualitative modeling approach
in systems biology. In what follows, we focus on modeling the response of logical
signaling networks by means of automated reasoning using Answer Set Programming
(ASP). In this context, the problem consisting of learning logical networks is crucial
in order to achieve unbiased and robust discoveries. Furthermore, it has been shown
that many networks can be compatible with a given set of experimental observations.
Thus, first we discuss how ASP can be used to exhaustively enumerate all these logical
networks. In practice, this is a key step for the design of new experiments in order to
reduce the uncertainty provided by such a family of models. Next, in order to gain
control over the system, we look for intervention strategies that force a set of target
species into a desired steady state. Altogether, this constitutes a pipeline for reasoning
on logical signaling networks providing robust insights to systems biologists. In this
chapter, we illustrate the usage of ASP for solving the aforementioned problems and
discuss the novelty of our approach with respect to existing methods.

1.1. Introduction

Systems biology and signaling networks

Systems biology is an interdisciplinary field aiming at the investigation and un-
derstanding of biology at a system and multi-scale level [IDE 01, KIT 02]. After bio-
logical entities have been identified in a specific environment, it remains to elucidate

Chapter written by Torsten SCHAUB, Anne SIEGEL and Santiago VIDELA.

11

12 Logical Modeling of Biological Systems

how they interact with each other in order to carry out a particular biological function.
Thus, rather than focusing on the components themselves, one is interested in the
nature of the links that connect them and the functionalities arising from such inter-
actions. Notably, advances on high-throughput experimental technologies have been
one of the main driving forces of systems biology. Such technologies have allowed
biologists to study biological systems as a whole rather than as individual components.
Nevertheless, the “reductionist” approach of molecular biology has been fundamental
for the construction of the large catalogues of biological entities available nowadays.
In fact, some authors have considered systems biology not as a new field of research,
but instead as an approach to biomedical research combining “reductionist” and “in-
tegrationist” techniques [KOH 10].

As it is often the case, the application of novel technologies has led to profound
conceptual and philosophical changes in biology. From the early days of molecular
biology existed the idea that the DNA sequence dictates most of cell actions, as do
the instructions in a computer program. Recently, together with the advent of sys-
tems biology, such a mechanistic understanding has been strongly revisited. Instead,
an informatic perspective on the role of the genome has been established. From this
point of view, the focus is on what the cell does with and to its genome products rather
than on what the genome directs the cell to execute [SHA 09]. Then, for any biologi-
cal system, one can envision at least a three-way interaction between DNA products,
the environment and the phenotype [KOH 10]. In this scheme, the group of entities
mediating between such interactions are the so-called biological networks. Decipher-
ing the functioning of these complex networks is the central task of systems biology.
Importantly, in order to cope with the increasing complexity of large-scale networks,
mathematical and computational modeling is required. Hence, the development of
such modeling approaches is a major goal in the field.

From the early millennium, many efforts have been made to develop relevant for-
malisms and modeling frameworks to take into account the specificities of complex
biological systems. Among them, one can distinguish between mathematical and com-
putational modeling approaches [FIS 07]. Essentially, mathematical (or quantitative)
models are based on denotational semantics, that is, models are specified by mathe-
matical equations describing how certain quantitites change over time. On the other
hand, computational (or qualitative) models are based on operational semantics, that
is, models are specified in terms of a sequence of steps describing how the states of
an abstract machine relate to each other (not necessarily deterministically). Notably,
each type of models provides a different level of abstraction enabling to address dif-
ferent kinds of questions. In fact, hybrid modeling precisely aims at exploiting the
best of both worlds whenever possible. In any case, it is clear that intuition is not
enough to face the complexity of large-scale biological systems. Thus, systematic
and elaborated methodological tools are required by (systems) biologists. Moreover,
the development of such modeling frameworks is leading to a hypothesis-driven re-
search in biology [IDE 01, KIT 02]. At first, due to the lack of information, multiple

Reasoning on the response of logical signaling networks with Answer Set Programming 13

hypotheses are usually generated from prior knowledge by either mathematical, com-
putational or hybrid modeling. Next, decision-making methods can be used to suggest
new experiments in order to reduce ambiguous hypotheses [KRE 09]. Finally, new ex-
perimental data is produced to test the generated hypotheses, models are refined, and
the loop is started over again. Interestingly, to some extent, this iterative process could
be automatized allowing an autonomous scientific discovery [SPA 10].

Among the biological networks mediating between genes, the environment, and
the phenotype, signal transduction networks are crucial for the understanding of the re-
sponse to external and internal perturbations. To be more precise, signal transduction
occurs when an extracellular signaling molecule binds to a specific cell surface recep-
tor protein. Such a binding causes a conformational change in the receptor that initi-
ates a sequence of reactions leading to a specific cellular response such as growth, sur-
vival, apoptosis (cell death), and migration. Post-translational modifications, notably
protein phosphorylation, play a key role in signaling. Importantly, signaling networks
are involved in biomedical processes and their control has a crucial impact on drug
target identification and diagnosis. Nowadays, there exist public repositories such
as Pathways Commons [CER 11], Pathways Interaction Database [SCH 09a], and
KEGG [KAN 10] that contain curated knowledge about intracellular causal molecular
interactions, from which canonical cell signaling networks can be retrieved [GUZ 12].
Such biological networks are derived from vast generic knowledge compiled from
different cell types. Nevertheless, little is known about the exact chaining and com-
position of signaling events within these networks in specific cells and specific con-
ditions. For example, in cancer cells, signaling networks frequently become com-
promised, leading to abnormal behaviors and responses to external stimuli. Many
current and emerging cancer treatments are designed to block nodes in signaling net-
works, thereby altering signaling cascades. Thus, advancing our understanding of
how these networks are deregulated across specific environments will ultimately lead
to more effective treatment strategies for patients. In fact, there is emerging experi-
mental evidence that the combinatorics of interactions between cellular components
in signaling networks is a primary mechanism for generating highly specialized bio-
logical systems [PAP 05]. In this context, phosphorylation assays are a recent form
of high-throughput data providing information about protein-activity modifications in
a specific cell type upon various combinatorial perturbations [ALE 10]. Therefore,
moving beyond the aforementioned causal and canonical interactions towards mecha-
nistic and specialized descriptions of signaling networks is a major challenge in sys-
tems biology. Importantly, cellular signaling networks operate over a wide range of
timescales (from fractions of a seconds to hours). Thus, taking this into account often
leads to significant simplifications [PAP 05, MAC 12].

Finally, we conclude this brief introduction to systems biology and signaling net-
works by noting that biological functionality is multilevel [NOB 10]. That is, signal-
ing networks by no means could function in isolation from metabolic and regulatory

14 Logical Modeling of Biological Systems

processes. Hence, integrative modeling approaches considering these multiple levels
of causation pose indeed a long-term goal in the field.

Logical signaling networks: state of the art and current challenges

Among various discrete dynamical systems, Boolean networks [KAU 69] provide
a relatively simple modeling approach yet able to capture interesting and relevant be-
haviors in the cell. Especially in the case of poorly understood biological systems
where quantitative (fine-grained) information is often scarce and hard to obtain. In
fact, numerous successful examples together with comprenhesive methodological re-
views can be found in [RÉK 08, MOR 10, WAN 12, SAA 13]. In particular, it has
been shown that the response in signaling networks can be appropriately modeled with
Boolean networks, as illustrated on several signal transduction pathways involved in
diverse processes such as proliferation, cell cycle regulation, apoptosis, or differen-
tiation [SAE 07, SAM 09, SAE 11, CAL 10]. Nonetheless, a large majority of the
authors working with (Boolean) logic-based models, rely on ad-hoc methods to build
their models. That is, in most cases, Boolean networks are constructed manually based
on information extracted from biological literature and available experimental data.
Notably, the manual identification of logic rules underlying the system being studied
is often hard, error-prone, and time consuming. In this context, researchers typically
aim at modeling a given biological system by means of one Boolean network only.
Afterwards, dynamical and structural analysis (often computationally demanding) are
conducted over the model. Clearly, biological insights and novel hypotheses resulting
from these analysis may be incomplete, incorrect or biased if the model was not pre-
cise enough. Therefore, automated learning of (Boolean) logic models is required in
order to achieve unbiased and robust discoveries.

Reverse engineering in systems biology consists of building mathematical and
computational models of biological systems based on the available knowledge and
experimental data. Towards the construction of predictive models, one can convert
the generic prior knowledge (for instance, canonical cell signaling networks) into a
quantitative or qualitative model (for example, a set of differential equations or a set
of logic rules) that can be simulated or executed. Next, if enough experimental data is
available, the model can be fitted to it in order to obtain the most plausible models for
certain environmental conditions or specific cell type. This is normally achieved by
defining an objective fitness function to be optimized [BAN 08]. Optimization over
quantitative modeling leads to continuous optimization problems. On the other hand,
reverse engineering considering qualitative models typically give rise to combinatorial
(discrete) optimization problems. Such inferences (or learning) of either quantitative
or qualitative models, have been successfully applied for regulatory, signaling, and
metabolic networks. Notably, it represents a very active area of research as illustrated
by the successive “DREAM” challenges [STO 07].

Reasoning on the response of logical signaling networks with Answer Set Programming 15

In the context of logic-based models, the inference of Boolean (genetic) networks
from time-series gene expression data has been addressed by several authors under dif-
ferent hypotheses and methods [LIA 98, AKU 00, IDE 00, LÄH 03]. Recently, a brief
review and evaluation of these methods has been published in [BER 13]. Importantly,
methods for reverse engineering of biological systems are highly dependent on avail-
able (amount of) data, prior knowledge and modeling hypotheses. In particular, re-
verse engineering of Boolean logic models by confronting prior knowledge on causal
interactions with phosphorylation activities has been first described in [SAE 09]. A
genetic algorithm implementation was proposed to solve the underlying optimization
problem, and a software was provided, CellNOpt [TER 12]. Nonetheless, stochastic
search methods cannot characterize the models precisely: they are intrinsically unable
not just to provide a complete set of solutions, but also to guarantee that an optimal so-
lution is found. To overcome some of this shortcomings, mathematical programming
approaches were presented in [MIT 09, SHA 12]. Notably, authors in [SAE 09] have
shown that the model is very likely to be non-identifiable when we consider the experi-
mental error from measurements. Hence, rather than looking for the optimum Boolean
model, one is interested in finding (nearly) optimal models within certain tolerance.
Interestingly, in the context of quantitative modeling, authors in [CHE 09] have elabo-
rated upon the same argument. Clearly, an exhaustive enumeration of (nearly) optimal
solutions would allow for identifying admissible Boolean logic models without any
methodological bias. Importantly, previous methods, namely stochastic search and
mathematical programming, are not able to cope with this question. Moreover, all sub-
sequent analysis will certainly profit from having such a complete characterization of
feasible models. For example, finding “key-players” in signaling networks leading to
potential therapeutic interventions is a highly relevant question for cancer research and
biomedicine in general. In the context of logic-based models for signaling networks,
this question has been recently addressed by [ABD 08, SAM 10, WAN 11, LAY 11].
Despite the specific problem settings and computational approaches in each work, all
of them consider a single logic model describing the system. Moreover, due to com-
putational limitations they are restricted to look for a small number (or even single)
interventions. Notably, interventions allowing for accomplish certain goals in a given
model are very likely to fail in another model which may describe the system similarly
well. Therefore, being able to address the same question but considering a family of
feasible models may lead to more robust solutions. In fact, this is in line with recent
work showing that an ensemble of models often yields more robust predictions than
each model in isolation [KUE 07, MAR 12]. In this context, there is an increasing de-
mand of more powerful computational methods in order to achieve robust discoveries
in systems biology.

Authors contribution

In this chapter, we present a generic, flexible, and unified framework for modeling
logical networks and perform automated reasoning on their response. More precisely,

16 Logical Modeling of Biological Systems

we characterize the response of logical networks under either two- or three-valued
logics based on fixpoint semantics. Furthermore, a representation using Answer Set
Programming (ASP; [BAR 03]) is provided. ASP is a declarative problem solving
paradigm, in which a problem is encoded as a logic program such that its so-called
answer sets represent solutions to the problem. Furthermore, some of the key-aspects
of ASP like its ease to express defaults and reachability are particularly relevant for
dealing with biological networks. Importantly, available systems nowadays provide
a rich yet simple modeling language, high-performance solving capacities, and auto-
mated reasoning modes [GEB 12a]. Altogether, ASP provides a powerful computa-
tional framework for addressing hard combinatorial problems in systems biology by
reasoning over the complete search space. Notably, our ASP representation can be
easily elaborated in order to consider specific problem settings as we illustrate in sub-
sequent sections. In particular, in the context of signaling networks, we address the
problem consisting of learning Boolean logic models of immediate-early response and
the problem consisting of finding minimal intervention strategies in logical networks.

The remainder of the chapter is structured as follows: Section 1.2 introduces ASP
and its main features; Section 1.3 describes our framework for modeling logical net-
works and two specific problems with their corresponding modeling and solving using
ASP systems; and Section 1.4 concludes and poses prospective challenges.

1.2. Answer Set Programming at a glance

Answer Set Programming (ASP; [BAR 03, GEB 12a]) provides a declarative frame-
work for modeling combinatorial problems in Knowledge Representation and Reason-
ing. The unique pairing of declarativeness and performance in state-of-the-art ASP
solvers allows for concentrating on an actual problem, rather than a smart way of
implementing it. The basic idea of ASP is to express a problem in a logical format
so that the models of its representation provide the solutions to the original problem.
Problems are expressed as logic programs and the resulting models are referred to as
answer sets. Although determining whether a program has an answer set is the fun-
damental decision problem in ASP, more reasoning modes are needed for covering
the variety of reasoning problems encountered in applications. Hence, a modern ASP
solver, like clasp [GEB 12b] supports several reasoning modes for assessing the mul-
titude of answer sets, among them, regular and projective enumeration, intersection
and union, and multi-criteria optimization. As well, these reasoning modes can be
combined, for instance, for computing the intersection of all optimal models. This is
accomplished in several steps. At first, a logic program with first-order variables is
turned into a propositional logic program by means of efficient database techniques.
This is in turn passed to a solver computing the answer sets of the resulting program by
using advanced Boolean constraint technology. For optimization, a solver like clasp

uses usually branch-and-bound algorithms but other choices, like computing unsat-
isfiable cores, are provided as well. The enumeration of all optimal models is done

Reasoning on the response of logical signaling networks with Answer Set Programming 17

via the option ––opt–mode=optN. At first an optimal model is determined along with
its optimum value. This computation has itself two distinct phases. First, an optimal
model candidate must be found and second, it must be shown that there is no better
candidate; the latter amounts to a proof of unsatisfiability and is often rather demand-
ing (because of its exhaustive nature). Then, all models possessing the optimum score
are enumerated. Notice that this way one can enumerate all (strictly) optimal solu-
tions. Nonetheless, we are often interested in (nearly) optimal answer sets as well.
For a concrete example on how we address this in practice, we refer the reader to the
encoding provided in Listing 1.8 and its solving in Listing 1.10.

Our encodings are written in the input language of gringo 4 series. Such a lan-
guage implements most of the so-called ASP-Core-2 standard. 1 In what follows, we
introduce its basic syntax and we refer the reader to the available documentation for
more details. An atom is a predicate symbol followed by a sequence of terms (e.g.
p(a,b),q(X,f(a,b))). A term is a constant (e.g. c, 42) or a function symbol fol-
lowed by a sequence of terms (e.g. f(a,b), g(X,10)) where uppercase letters denote
first-order variables. Then, a rule is of the form

h:- b1, . . . , bn.

where h (head) is an atom and any bj (body) is a literal of the form a or not a for an
atom a where the connective not corresponds to default negation. The connectives
:- and , can be read as if and and, respectively. Furthermore, a rule without body
is a fact, whereas a rule without head is an integrity constraint. A logic program
consists of a set of rules, each of which is terminated by a period. An atom preceded
with default negation, not, is satisfied unless the atom is found to be true. In ASP,
the semantics of a logic program is given by the stable models semantics [GEL 88].
Intuitively, the head of a rule has to be true whenever all its body literals are true. This
semantics requires that each true atom must also have some derivation, that is, an atom
cannot be true if there is no rule deriving it. This implies that only atoms appearing in
some head can appear in answer sets.

We end this quick introduction by three language constructs particularly interesting
for our encodings. First, the so called choice rule of the form,

{h1; . . . ;hm}:- b1, . . . , bn.

allows us to express choices over subsets of atoms. Any subset of its head atoms can
be included in an answer set, provided the body literals are satisfied. Note that using a
choice rule one can easily generate an exponential search space of candidate solutions.
Second, a conditional literal is of the form

l : l1, . . . , ln

1. http://www.mat.unical.it/aspcomp2013/ASPStandardization

18 Logical Modeling of Biological Systems

The purpose of this language construct is to govern the instantiation of the literal l
through the literals l1, . . . , ln. In this respect, the conditional literal above can be
regarded as the list of elements in the set {l | l1, . . . , ln}. Finally, for solving (multi-
criteria) optimization problems, ASP allows for expressing (multiple) cost functions
in terms of a weighted sum of elements subject to minimization and/or maximization.
Such objective functions are expressed in gringo 4 in terms of (several) optimization
statements of the form

#opt{w1@l1, t11 , . . . , tm1 : b1, . . . , bn1 ; . . . ;wk@lk, t1k , . . . , tmk
: b1k , . . . , bnk

}.

where #opt ∈ {“#minimize”, “#maximize”}, wi, li, t1i , . . . , tmi
are terms and

b1i , . . . , bni
are literals for k ≥ 0, 1 ≤ i ≤ k,mi ≥ 0 and ni ≥ 0. Furthermore,

wi and li stand for an integer weight and priority level. Priorities allow for repre-
senting lexicographically ordered optimization objectives, greater levels being more
significant than smaller ones.

Answer Set Programming for Systems biology

Our work contributes to a growing list of ASP applications in systems biology.
Almost a decade ago, Baral et al. have proposed applying knowledge representation
and reasoning methodologies to the problem of representing and reasoning about sig-
naling networks [BAR 04]. More recently, several authors have addressed the ques-
tion of pruning or identification of biological networks using ASP. Durzinsky et al.
have studied the problem consisting of reconstructing all possible networks consis-
tent with experimental time series data [DUR 11]. Gebser et al. have addressed the
problem consisting of detecting inconsistencies and repairing in large biological net-
works [GEB 11b, GEB 10]. Fayruzov et al. have used ASP to represent the dynamics
in Boolean networks and find their attractors [FAY 11]. Ray et al. have integrated
numerical and logical information in order to find the most likely states of a biolog-
ical system under various constraints [RAY 12]. Furthermore, Ray et al. have used
an ASP system to propose revisions to metabolic networks [RAY 10]. Papatheodorou
et al. have used ASP to integrate RNA expression with signaling pathway informa-
tion and infer how mutations affect ageing [PAP 12]. Finally, Schaub and Thiele have
first investigated the metabolic network expansion problem with ASP [SCH 09b] and
recently, their work has been extendend and applied in a real-case study by Collet et
al. [COL 13]. Altogether, this series of contributions illustrates the potential of ASP
to address combinatorial search and optimization problems appearing in the field.
Nonetheless, its strictly discrete nature poses interesting challenges for future work
towards hybrid reasoning system allowing for qualitative and quantitative modeling.

Reasoning on the response of logical signaling networks with Answer Set Programming 19

a ∧ b
b

t f

a
t t f

f f f

a ∨ b
b

t f

a
t t t

f t f

a ¬a

t f

f t

Table 1.1. Truth tables for classical (Boolean) logic.

1.3. Learn and control logical networks with ASP

1.3.1. Preliminaries

Propositional logic and mathematical notation

Given a finite set V of propositional variables, we form propositional formulas
from V with the connectives ⊥, ⊤, ¬, ∨, and ∧ in the standard way. Further, we con-
sider (partial) truth assignments over V mapping formulas to truth values {t,f ,u}
according to Kleene’s semantics [KLE 50]. Clearly, two-valued assignments are re-
stricted to range {t,f} according to classical (Boolean) logic semantics. We recall
the truth tables for classical (Boolean) and Kleene’s logics in Table 1.1 and Table 1.2,
respectively.

Let f : X → Y , be a (partial) function mapping values x ∈ X ′ ⊆ X to values y ∈

Y . We denote the set of values x such that f(x) is defined, i.e. X ′, with dom(f). We
sometimes represent mappings extensionally as sets, viz. {x *→ f(x) | x ∈ dom(f)},
for checking containment, difference, etc. To avoid conflicts when composing truth
assignments, we define A ◦B = (A \B) ∪B where B = {v *→ s | v *→ s ∈ B} and
t = f , f = t, u = u.

1.3.2. Reasoning on the response of logical networks

Logical networks

A logical network consists of a finite set V of propositional variables and a (par-
tial) function φ mapping a variable v ∈ V to a propositional formula φ(v) over V .

a ∧ b
b

t f u

a
t t f u

f f f f

u u f u

a ∨ b
b

t f u

a
t t t t

f t f u

u t u u

a ¬a

t f

f t

u u

Table 1.2. Truth tables for Kleene’s logic.

20 Logical Modeling of Biological Systems

i1 i2

a

b

c

∨

d e
∨

f

g

o1 o2

∧∧

(a)

i1 i2

a

b

c

d

e

f

g

o1 o2

(b)

Figure 1.1. Graphical representaion for logical networks and interaction graphs. Vertices rep-

resent biological entities and the interactions among them are represented as follows. Positive

interactions are represented by an arrow (→) whereas negative interactions are represented by

a T-shape (⊣). (a) Exemplary logical network represented as a directed hypergraph. Directed

hyperedges describe logical interactions. (b) Interaction graph underlying the logical network

in (a). Directed edges describe causal interactions.

The logical steady states of (V,φ) are given by truth assignments yielding identical
values for v and φ(v) for all v ∈ dom(φ). Generally speaking, such logical networks
can be seen as synchronous Boolean networks [KAU 69]. However, since we consider
both, two- and three-valued logics, we refrain from using the term “Boolean”. Without
loss of generality, we assume only formulas in disjunctive normal form. 2 For illus-
tration, let us consider the logical network consisting of the set V of species variables
{i1, i2, a, . . . , g, o1, o2} along with the function φ defined as:

φ =

⎧

⎨

⎩

a *→ ¬d
b *→ a ∧ i1
c *→ b ∨ e

d *→ c
e *→ ¬i1 ∧ i2
f *→ e ∨ g

g *→ f
o1 *→ c
o2 *→ g

⎫

⎬

⎭

Note that φ leaves the specification of the variables i1 and i2 undefined. Furthermore,
we represent logical networks as (signed) directed hypergraphs as shown in Fig-
ure 1.1(a). A (signed) directed hypergraph is defined by a pair (V,H) with vertices
V and (signed) directed hyperedges H ; a (signed) directed hyperedge is a pair (S, t)
where S is a finite, non-empty set of pairs (vi, si) with vi ∈ V, si ∈ {1,−1} and
t ∈ V . 3 Then, we say that the (signed) directed hypergraph (V,H) represents the
logical network (V,φ) if and only if for every v ∈ dom(φ) and variable w ∈ V that
occurs positively (resp. negatively) in some conjunct ψ of φ(v), there is a hyperedge

2. Also known as sum-of-products [KLA 06b].

3. More generally, a directed hyperedge is a pair (S, T) with T ⊆ V . We consider the particular case
where T is a singleton. Directed hypergraphs are sometimes referred to as “AND/OR graphs” [GAL 93]

Reasoning on the response of logical signaling networks with Answer Set Programming 21

(Sψ, v) with (w, 1) ∈ Sψ (resp. (w,−1) ∈ Sψ); and vice versa. Following the exam-
ple shown in Figure 1.1(a), if we consider the mapping φ(e) = ¬i1 ∧ i2, we need to
verify the existence of the hyperedge (S¬i1∧i2 , e) with S¬i1∧i2 = {(i1,−1), (i2, 1)}.
Similarly, for the mapping φ(c) = b ∨ e, we need to verify the existence of the hyper-
edges (Sb, c) with Sb = {(b, 1)} and (Se, c) with Se = {(e, 1)}.

Next, we introduce the notion of the interaction graph underlying a logical network
(V,φ). An interaction graph (V,E,σ) is a signed and directed graph with vertices V ,
directed edges E ⊆ V × V and signature σ ⊆ E × {1,−1}. Moreover, we say that
Σ(V,φ) = (V,E,σ) is the underlying interaction graph of (V,φ) if for every edge
(v, w) ∈ E with ((v, w), 1) ∈ σ (resp. ((v, w),−1) ∈ σ), the variable v occurs posi-
tively (resp. negatively) in the formula φ(w). Note that there is a one-to-many relation
in the sense that the same graph (V,E,σ) corresponds to the underlying interaction
graph Σ(V,φ) for possibly many logical networks (V,φ). Now, we can rely on standard
notions from graph theory to capture several concepts on logical networks. Recall that
a path in a graph is a sequence of edges connecting a sequence of vertices. The length
of a path is given by the number of edges whereas its sign is the product of the signs
of the traversed edges. Herein, we consider only paths with length greater than zero.
Thus, an edge (v, v) is required in order to consider the existence of a path from v to
v. We say there is a positive (resp. negative) path from v to w in (V,φ) if and only
if there is a positive (resp. negative) path from v to w in Σ(V,φ). Furthermore, we
say there is a positive (resp. negative) feedback-loop in (V,φ) if and only if for some
v ∈ V there is a positive (resp. negative) path from v to v in Σ(V,φ).

Characterizing the response of the system

Let (V,φ) be a logical network describing a biological system of interest. For
capturing changes in the environment of such a biological system, for instance, due to
an experimental intervention (over-expression or knock-out), we introduce the notion
of clamping variables in the network for overriding their original specification. To this
end, we define a clamping assignment C as a partial two-valued truth assignment over
V . Then, we define the mapping φ|C as

φ|C(v) =

⎧

⎨

⎩

⊤ if v *→ t ∈ C
⊥ if v *→ f ∈ C

φ(v) if v ∈ dom(φ) \ dom(C)

yielding the modified logical network (V,φ|C). Moreover, it is worth noting that
dom(φ) ⊆ dom(φ|C). Let us illustrate this with our toy example in Figure 1.1(a). Let
C be the clamping assignment defined by {i1 *→ t, i2 *→ f , g *→ f}. Then, φ|C is a
complete mapping over V defined as:

φ|C =

⎧

⎨

⎩

i1 *→ ⊤

i2 *→ ⊥

a *→ ¬d
b *→ a ∧ i1
c *→ b ∨ e

d *→ c
e *→ ¬i1 ∧ i2
f *→ e ∨ g

g *→ ⊥

o1 *→ c
o2 *→ g

⎫

⎬

⎭

22 Logical Modeling of Biological Systems

In practice, clamping assignments are usually restricted to a subset of variables X ⊆

V . Moreover, certain variables in X may be further restricted to be clamped either
to a single truth value, viz. t or f , or not clamped at all. These restriction will
be typically related to context-specific application settings, for instance, the kind of
biological entity described by each variable and “real-world” experimental limitations
over such entity.

Next, for capturing the synchronous updates in a logical network (V,φ), we fol-
low [INO 11] and define the single-step operator on either two- or three-valued (com-
plete) truth assignments over V : 4

Ω(V,φ)(A) = {v *→ A(φ(v)) | v ∈ dom(φ)} ∪ {v *→ A(v) | v ∈ V \ dom(φ)} ,

where A is extended to formulas in the standard way. Notice that the definition above
captures the fact that unmapped variables in φ remain unchanged with respect to the
value assigned in A. Furthermore, for capturing the trajectory of state A we define the
iterative variant of Ω(V,φ) as

Ω
0
(V,φ)(A) = A and Ω

j+1
(V,φ)(A) = Ω(V,φ)

(

Ω
j

(V,φ)(A)
)

.

In biological terms, a sequence (Ωj

(V,φ)(A))j∈J captures the signal propagation start-
ing in state A. In particular, we are interested in the fixpoint of Ω(V,φ) reachable from
certain initial assignment A. Importantly, the existence of such a fixpoint is not nec-
essarily guaranteed. In general, it depends on the definition of A and the presence
or absence of feedback-loops in (V,φ). But in case of existence, such a fixpoint de-
scribes a logical steady state which is interpreted as the response of the biological
system described by (V,φ). To be more precise, the choice of A is related to how
we model the absence of information in the context of either two- or three-valued
logics. Hence, when we consider three-valued logic, we use the initial assignment
Au = {v *→ u | v ∈ V }. Interestingly, in this context a fixpoint is reached regard-
less of the presence or absence of feedback-loops in the network. Moreover, such a
fixpoint poses the property that each of its variables is assigned to u unless there is a
cause to assign it to either t or f . On the other hand, when we consider two-valued
logic, we use the initial assignment Af = {v *→ f | v ∈ V }. Unfortunately, in this
context, the presence of feedback-loops typically avoids reaching a fixpoint. Next, let
us illustrate the iterated application of Ω(V,φ|C) for our toy example in the context of
both, two- and three-valued logics. Recall that we have defined φ|C above for clamp-
ing assignment C = {i1 *→ t, i2 *→ f , g *→ f}. The resulting assignments from the
computation of Ωj

(V,φ|C)(A) with either A = Au or A = Af are shown in Table 1.3.

Notably, when we consider three-valued logic, Ω3
(V,φ|C)(Au) = Ω4

(V,φ|C)(Au) results

4. The interested reader may notice the resemblance to single-step operators for logic programs intro-
duced in [APT 82] and [FIT 85] for two- and three-valued assignments respectively.

Reasoning on the response of logical signaling networks with Answer Set Programming 23

in the fixpoint:
⎧

⎨

⎩

i1 *→ t

i2 *→ f

a *→ u

b *→ u

c *→ u

d *→ u

e *→ f

f *→ f

g *→ f

o1 *→ u

o2 *→ f

⎫

⎬

⎭

Meanwhile, under two-valued logic we obtain Ω1
(V,φ|C)(Af) = Ω9

(V,φ|C)(Af) which
leads to an oscillatory behavior for variables a, b, c, d and o1. Notice that these vari-
ables correspond to the ones assigned to u in the fixpoint reached for Ω3

(V,φ|C)(Au).
In this case, the oscillatory behavior is induced by the negative feedback-loop over
the path a, b, c, d. Thus, one can verify that, for example, if we remove the mapping
d *→ c from the definition of φ (leaving d undefined in φ), then Ω

4
(V,φ|C)(Af) would

result in the fixpoint:
⎧

⎨

⎩

i1 *→ t

i2 *→ f

a *→ t

b *→ t

c *→ t

d *→ f

e *→ f

f *→ f

g *→ f

o1 *→ t

o2 *→ f

⎫

⎬

⎭

In fact, whenever we consider a logical network (V,φ) under two-valued logic, we
enforce that (V,φ) is free of feedback-loops. Notably as detailed below, although not
capable of capturing dynamical properties, this simplification guarantees the existence
of a fixpoint while it allows us to characterize the so-called iimmediate-early response

in signaling networks.

Logical networks and their response with Answer Set Programming

Let (V,φ) be a logical network. We represent the variables V as facts over the
predicate variable/1, namely, variable(v) for all v ∈ V . Recall that we assume
φ(v) to be in disjunctive normal form for all v ∈ V . Hence, φ(v) is a set of clauses
and a clause a set of literals. We represent formulas using predicates formula/2,
dnf/2, and clause/3. The facts formula(v,sφ(v)) map variables v ∈ V to their
corresponding formulas φ(v), facts dnf(sφ(v),sψ) associate φ(v) with its clauses
ψ ∈ φ(v), facts clause(sψ,v,1) associate clause ψ with its positive literals v ∈

ψ∩V , and facts clause(sψ,v,-1) associate clause ψ with its negative literals ¬v ∈

ψ. Note that each s(·) stands for some arbitrary but unique name in its respective
context. Listing 1.1 shows the representation of our toy example logical network in
Figure 1.1(a).

Listing 1.1: Logical networks representation as logical facts

1 variable (i1). variable (i2). variable (o2). variable (o1).

2 variable (a). variable (b). variable (c). variable (d).

3 variable (e). variable (f). variable (g).

4

5 formula (a,0). formula (b,2). formula (c ,1). formula (d ,4).

6 formula (e,3). formula (f,6). formula (g ,5). formula (o1 ,4).

7 formula (o2 ,7).

24 Logical Modeling of Biological Systems

8

9 dnf (0,5). dnf (1,6). dnf (1,0). dnf (2,3). dnf (3,7).

10 dnf (4,1). dnf (5,2). dnf (6,4). dnf (6,6). dnf (7,4).

11

12 clause (0,b ,1). clause (1,c,1). clause (2,f,1). clause (3,a,1) .

13 clause (3,i1 ,1). clause (4,g,1). clause (5,d,-1). clause (6,e,1) .

14 clause (7,i2 ,1). clause (7,i1 ,-1).

The representation of clamping assignments is straightforward. Note that in the
following we use 1 and −1 for truth assignments to t and f , respectively. Let C be
a clamping assignment over V , we represent the assignments in C as facts over the
predicate clamped/2, namely, clamped(v,s) with s = 1 if C(v) = t and s = −1
if C(v) = f . The example clamping assignment C = {i1 *→ t, i2 *→ f , g *→ f} is
shown in Listing 1.2.

Listing 1.2: Clamping assignment as logical facts

14 clamped (i1 ,1). clamped (i2 ,-1). clamped (g,-1).

Furthermore, we introduce two rules deriving predicates eval/2 and free/2. The
predicate eval/2 captures the fact that clamped variables are effectively fixed to the

φ|C(v) ⊤ ⊥ ¬d a ∧ i1 b ∨ e c ¬i1 ∧ i2 e ∨ g ⊥ c g
v ∈ V i1 i2 a b c d e f g o1 o2

3-
va

lu
ed

Ω0
(V,φ|C)(Au) u u u u u u u u u u u

Ω1
(V,φ|C)(Au) t f u u u u u u f u u

Ω2
(V,φ|C)(Au) t f u u u u f u f u f

Ω3
(V,φ|C)(Au) t f u u u u f f f u f

Ω4
(V,φ|C)(Au) t f u u u u f f f u f

2-
va

lu
ed

Ω0
(V,φ|C)(Af) f f f f f f f f f f f

Ω1
(V,φ|C)(Af) t f t f f f f f f f f

Ω2
(V,φ|C)(Af) t f t t f f f f f f f

Ω3
(V,φ|C)(Af) t f t t t f f f f f f

Ω4
(V,φ|C)(Af) t f t t t t f f f t f

Ω5
(V,φ|C)(Af) t f f t t t f f f t f

Ω6
(V,φ|C)(Af) t f f f t t f f f t f

Ω7
(V,φ|C)(Af) t f f f f t f f f t f

Ω8
(V,φ|C)(Af) t f f f f f f f f f f

Ω9
(V,φ|C)(Af) t f t f f f f f f f f

Table 1.3. Exemplary iterated application of Ω(V,φ|C) for (V,φ) in Figure 1.1(a), clamping

assignment C = {i1 %→ t, i2 %→ f , c %→ f} and initial assignment Au or Af .

Reasoning on the response of logical signaling networks with Answer Set Programming 25

corresponding evaluation. Finally, we use the predicate free/2 to represent the fact
that every variable not clamped in C, is subject to the corresponding mapping φ(v).
Both rules are shown in Listing 1.3.

Listing 1.3: Clamped and free variables

15 eval(V,S) :- clamped (V,S).

16 free(V,D) :- formula (V,D); dnf(D,_); not clamped (V,_).

Next, we describe how we model either two- or three-valued logics in ASP. In fact,
the rule modeling the propagation of (positive) true values is the same for both logics.
Essentially, we exploit the fact that formulas φ(v) are in disjunctive normal form.
Hence, under both logics we derive eval(v,1) if v is not clamped and there exists a
conjunct ψ ∈ φ(v) such that all its literals evaluate positively. The rule describing this
is shown in Listing 1.4.

Listing 1.4: Positive propagation common to two- and three-valued logics

17 eval(V,1) :- free(V,D); eval(W,T) : clause (J,W,T); dnf(D,J).

Meanwhile, the propagation of (negative) false values depends on the type of logic
under consideration. On the one hand, when we consider two-valued logic, we use the
rule shown in Listing 1.5 to derive eval(v,−1) if it cannot be proved that v evaluates
positively, that is, not eval(v,1).

Listing 1.5: Negative propagation for two-valued logic (with default negation)

18 eval(V,-1) :- variable (V); not eval(V ,1).

On the other hand, when we consider three-valued logic, we use the rules shown in
Listing 1.6. Notice that in this case, we derive eval(v,−1) only if it can be proved
that all clausesψ ∈ φ(v) evaluate negatively. A clause φ evaluates negatively if at least
one of its literals evaluates negatively. Clauses evaluating negatively are represented
with the predicate eval_clause/2.

Listing 1.6: Negative propagation for three-valued logic (with explicit proof)

18 eval_clause (J,-1) :- clause (J,V,S); eval(V,-S).

19 eval(V,-1) :- free(V,D); eval_clause (J,-1) : dnf(D,J).

Interestingly, our ASP representation is relatively simple yet flexible enough to
be extended and adapted for specific applications as we illustrate in the remainder of
this chapter. In what follows, we provide a formal characterization for two very rel-
evant problems over logical networks together with the corresponding modeling and
solving based on the presented ASP encodings. First we extend our representation to
learn logical networks from a given interaction graph confronting their response with

26 Logical Modeling of Biological Systems

experimental observations. Moreover, we consider several clamping assignments (de-
scribing experimental conditions) simultaneously instead of only one. Afterwards, we
adapt our representation again aiming at reasoning over a family of logical networks
and finding clamping assignments (describing therapeutic interventions) leading to
responses satisfying specific goals.

1.3.3. Learning models of immediate-early response

Background

Firstly, we briefly summarize the main biological hypotheses in [SAE 09] pro-
viding the foundation for the concept of Boolean logic models of immediate-early
response. Concretely, a Boolean logic model of immediate-early response is a log-
ical network (V,φ) as defined above, without feedback-loops and using classical
(Boolean) logics. The main assumption under Boolean logic models of immediate-
early response is the following. The response of a biological system to external per-
turbations occurs at several time scales [PAP 05]. Thus, one can discriminate be-
tween fast and slow events. Under this assumption, at a given time after perturba-
tion, the system reaches a state on which fast events are relevant, but slow events
(such as protein degradation) have a relatively insignificant effect. In this context,
we say that the system has reached a pseudo-steady state describing the early events
or immediate-early response. Qualitatively, these states can be computed as logical
steady states in the Boolean network (V,φ) [KLA 06b]. In fact, the discrimination
between fast and slow events has an important consequence. Since we focus on fast
or early events, it is assumed that oscillation or multi-stability caused by feedback-
loops [REM 08, PAU 12] cannot happen until the second phase of signal propaga-
tion occurring at a slower time scale. Therefore, eedback-loops are not included in
Boolean logic models of immediate-early response assuming that they will become
active in a late phase [MAC 12]. Notably, it follows that starting from any initial state,
a Boolean logic model of immediate-early response reaches a unique steady state or
fixpoint in polynomial time [PAU 12]. Thus, such modeling approach, although not
capable of capturing dynamical properties, provides a relatively simple framework for
input-output predictive models.

Based on the assumptions and concepts described above, authors in [SAE 09] have
proposed a method to learn from an interaction graph and phosphorylation activities
at a pseudo-steady state, Boolean logic models of immediate-early response fitting ex-
perimental data. In the remaining of this section we provide a precise characterization
of this problem using the notions introduced in Section 1.3 and adapting our Answer
Set Programming representation accordingly.

Problem

A prior knowledge network is an interaction graph (V,E,σ) as defined above. In
addition, we distinguish three special subsets of species in V namely, the stimuli (VS),

Reasoning on the response of logical signaling networks with Answer Set Programming 27

a b c

d e

f g

(a)

a b c

d e

f g

(b)

a b c

d e

∨

f g

∧ ∧

(c)

Figure 1.2. The green and red edges correspond to activations and inhibitions, respectively.

Green nodes represent ligands that can be experimentally stimulated. Red nodes represent

species that can be inhibited by using a drug. Blue nodes represent species that can be mea-

sured by using an antibody. White nodes are neither measured, nor manipulated. (a) A toy

interaction (directed and signed) graph describing causal interactions. (b) Hypergraph ex-

pansion describing all plausible logical interactions based on the prior knowledge network in

(a). (c) A Boolean logic model derived from the prior knowledge network in (a) describing

functional relationship defined by the mapping {d %→ a; e %→ b ∨ c; f %→ d ∧ e; g %→ e ∧ ¬c}.

the knock-outs (VK) and the readouts (VR). Nodes in VS denote extracellular ligands
that can be stimulated or knocked-in and thus, we assume they have indegree equal to
zero. Nodes in VK denote intracellular species that can be inhibited or knocked-out
by various experimental tools such as small-molecule drugs, antibodies, or RNAi. Fi-
nally, nodes in VR denote species that can be measured by using an antibody. Notably,
species in none of these sets, are neither measured, nor manipulated for the given ex-
perimental setup. Let us denote with VU the set of such nodes. Then, except for VR

and VK that may intersect, the sets VS , VK , VR and VU are pairwise mutually disjoint.
An early simplification consists on compressing the PKN in order to collapse most of
the nodes in VU . This often results on a significant reduction of the search space that
must be explored during learning. Thus, herein we assume a compressed PKN as an

28 Logical Modeling of Biological Systems

input and we refer the interested reader to [SAE 09] for a detailed description on this
subject.

Given a PKN (V,E,σ), the concept of an experimental condition over (V,E,σ)
is captured by a clamping assignment over variables VS ∪ VK . Recall that clamp-
ing assignments were defined above as partial two-valued assignments. To be more
precise, while variables in VS can be clamped to either t or f , variables in VK can
only be clamped to f . Next, if C is an experimental condition and v ∈ VS , then
C(v) = t (resp. f) indicates that the stimulus v is present (resp. absent), while if
v ∈ VK , then C(v) = f indicates that the species v is inhibited or knocked out.
In fact, since extracellular ligands by default are assumed to be absent, for the sake
of simplicity we can omit clampings to f over variables in VS . Therefore, if C is
an experimental condition and v ∈ dom(C) then, either v ∈ VS and C(v) = t, or
v ∈ VK and C(v) = f . Furthermore, the concept of an experimental observation un-
der an experimental condition C is captured by a partial mapping PC : VR *→ [0, 1].
That is, dom(PC) ⊆ VR denotes the set of measured readouts under the experimental
condition C. If v ∈ dom(PC), then PC(v) represents the phosphorylation activity
at a pseudo-steady state of the readout v under C. Notably, it is rather critical to
choose a time point that is characteristic for the fast or early events in the biological
system under consideration [MAC 12]. Since phosphorylation assays represents an
average across a population of cells, the phosphorylation activity for each readout is
usually normalized to [0, 1]. Finally, an experimental dataset ξ is a finite set of pairs
(Ci, PCi

) with experimental conditions Ci and experimental observations PCi
. Fur-

ther, we denote with Nξ the size of ξ given by the number of measured readouts across
all experimental conditions i = 1, . . . , n, i.e., Nξ =

∑n

i=1 |dom(PCi
)|.

Let us illustrate the concepts described above with our toy example. Consider
the PKN (V,E,σ) defined in Figure 1.2(a). From the graph coloring, we have VS =
{a, b, c}, VK = {d} and VR = {f, g}. Furthermore, let ξ = ((C1, PC1), . . . , (C4, PC4))
be an example experimental dataset over (V,E,σ) defined by

C1 = {a *→ t, c *→ t} PC1 = {f *→ 0.9, g *→ 0.0}
C2 = {a *→ t, c *→ t, d *→ f} PC2 = {f *→ 0.1, g *→ 0.9}
C3 = {a *→ t} PC3 = {f *→ 0.0, g *→ 0.1}
C4 = {a *→ t, b *→ t} PC4 = {f *→ 1.0, g *→ 0.8}.

(1.1)

In words, the experimental conditions C1, . . . , C4 can be read as follows. In C1, stim-
uli a and c are present, stimulus b is absent and d is not inhibited; in C2, stimuli a, b, c
are like in C1 but d is inhibited; in C3, only the stimulus a is present and d is not
inhibited; and in C4, stimuli a and b are present, stimulus c is absent and d is not in-
hibited. Experimental observations PC1 , . . . , PC4 give (normalized) phosphorylation
activities for readouts f and g under the corresponding experimental condition.

Next, we introduce the notion of Boolean predictions. Let (V,E,σ) be a PKN.
Further, let ξ = (Ci, PCi

) be an experimental dataset over (V,E,σ) with i = 1, . . . , n.

Reasoning on the response of logical signaling networks with Answer Set Programming 29

As detailed above, a Boolean logic model of immediate-early response is defined by
a logical network (V,φ) without feedback-loops and using classical (Boolean) log-
ics. Hence, now we can define the predictions (output) provided by a Boolean logic
model of immediate-early response with respect to a given set of experimental con-
ditions (input). Towards this end, we characterize the response of logical networks
using fixpoint semantics as detailed above. More precisely, for i = 1, . . . , n let Fi

be the fixpoint of Ω(V,φ|Ci
) reachable from Af . Notice that such a fixpoint always

exists given that (V,φ) is free of feedback-loops. In words, each Fi describe the log-
ical response (starting from Af) of (V,φ) with respect to the experimental condition
or clamping assignment Ci. Next, we define a straightforward transformation from
truth values to binary but numerical values. Such a transformation provides a more
convenient notation in order to compare predictions and phosphorylation activities.
The Boolean prediction of (V,φ) with respect to the experimental condition Ci is a
function πi : V → {0, 1} defined as

πi(v) =

{

1 if Fi(v) = t

0 if Fi(v) = f .

As we see below, during learning we aim at explaining the given experimental dataset
ξ. Therefore, we are particularly interested on predictions with respect to the experi-
mental conditions included in ξ and over the measured variables in each experimental
condition. Nevertheless, predictions with respect to non-performed experimental con-
ditions and/or over non-observed species can be useful to generate testeable hypothe-
ses on the response of the system.

As an example, consider the Boolean logic model (V,φ) from Figure 1.2(c) and
the experimental condition C2 from the dataset given in (1.1). Then, the clamped
logical network (V,φ|C2) is defined by the mapping

φ|C2 = {a *→ ⊤; b *→ ⊥; c *→ ⊤; d *→ ⊥; e *→ b ∨ c; f *→ d ∧ e; g *→ e ∧ ¬c}.

Next, the fixpoint of Ω(V,φ|C2)
reachable from Af can be computed yielding the as-

signment F2 defined as

F2 = {a *→ t, b *→ f , c *→ t, d *→ f , e *→ t, f *→ f , g *→ f}.

Finally, the Boolean prediction for (V,φ) under the experimental conditionC2 is given
by

π2 = {a *→ 1, b *→ 0, c *→ 1, d *→ 0, e *→ 1, f *→ 0, g *→ 0}.

We aim at learning Boolean logic models from a PKN and an experimental dataset.
In fact, any learned model has to be supported by some evidence in the prior knowl-
edge. To be more precise, given a PKN (V,E,σ) we consider only Boolean logic
models (V,φ) without feedback-loops and such that, for each variable v ∈ V , if w

30 Logical Modeling of Biological Systems

occurs positively (resp. negatively) in φ(v) then, there exists an edge (w, v) ∈ E
and ((w, v), 1) ∈ σ (resp. ((w, v),−1) ∈ σ). Towards this end, we consider a
pre-processing step where the given PKN is expanded to generate a (signed) directed
hypergraph describing all plausible logical interactions. For each v ∈ V having non-
zero indegree, let Pred(v) be the set of its (signed) predecessors, namely, Pred(v) =
{(u, s) | (u, v) ∈ E, ((u, v), s) ∈ σ}. Furthermore, let P(v) be the powerset of
Pred(v), namely, 2Pred(v). Then, (V,H) is the (signed) directed hypergraph ex-

panded from (V,E,σ) with nodes V and (signed) directed hyperedges H if for each
v ∈ V , (p, v) ∈ H whenever p ∈ P(v). Next, Boolean logic models must essentially
result from pruning (V,H). Additionally, we impose two constraints related to the
fact that our Boolean logic models essentially aim at providing a framework for input-
output predictions. 5 Firstly, for any variable u defined in φ all variables w ∈ φ(u)
must be reachable from some stimuli variable. That is, we consider only Boolean
logic models (V,φ) such that for every u ∈ dom(φ) and w ∈ φ(u), either w ∈ VS or
there exist v ∈ VS and a path from v to w in the underlying interaction graph Σ(V,φ).
Secondly, every variable u defined in φ must reach some readout variable. That is, we
consider only Boolean logic models (V,φ) such that for every u ∈ dom(φ) there exist
v ∈ VR and a path from u to v in the underlying interaction graph Σ(V,φ). Finally,
let us denote with M(V,E,σ) the search space of Boolean logic models satisfying the
conditions given above: evidence in (V,E,σ), no feedback-loops, and reachability
from/to stimuli/readouts.

In Figure 1.2(a) we show an exemplary PKN and the corresponding expanded
(signed) directed hypergraph in Figure 1.2(b). As already described, (signed) directed
hypergraphs can be directly linked to logical networks. Thus, by considering each
(signed) directed hyperedge in Figure 1.2(b) as either present or absent (and verify-
ing the additional constraints related to feedback-loops and reachability from/to stim-
uli/readouts), one can generate the search space of Boolean logic models M(V,E,σ)

defined above.

For a given PKN (V,E,σ), there are exponentially many candidate Boolean logic
models (V,φ) having an evidence on it. Therefore, authors in [SAE 09] put forward
the idea of training Boolean logic models by confronting their corresponding Boolean
predictions with phosphorylation activities at a pseudo-steady state. In this context,
two natural optimization criteria arise in order to conduct the learning: (1) model
accuracy (biologically meaningful), and (2) model complexity (Occam’s razor prin-
ciple). In fact, this is a typical scenario on automatized learning of predictive mod-
els [FRE 04].

5. The interested reader may notice the analogy with the elimination of nodes neither controllable nor
(leading to) observable during the compression of the PKN described in [SAE 09].

Reasoning on the response of logical signaling networks with Answer Set Programming 31

We now provide the precise formulation for each optimization criteria. Let (V,E,σ)
be a PKN. Let ξ = (Ci, PCi

) be an experimental dataset over (V,E,σ) with i =
1, . . . , n. Let (V,φ) be a Boolean logic model having evidence in (V,E,σ) and let
π1, . . . ,πn be its Boolean predictions with each πi defined under Ci. Firstly, based on
the residual sum of squares (RSS) we define the residual (Θrss) of (V,φ) with respect
to ξ as

Θrss((V,φ), ξ) =
n
∑

i=1

∑

v∈dom(PCi
)

(PCi
(v)− πi(v))

2. (1.2)

Secondly, for a given logical formula φ(v), let us denote its length by |φ(v)|. Then,
we define the size (Θsize) of (V,φ) as

Θsize((V,φ)) =
∑

v∈dom(φ)

|φ(v)|. (1.3)

A popular and relatively simple approach to cope with multi-objective optimization
is to transform it into a single-objective optimization. Towards this end, one usu-
ally combines all criteria by defining a function using free parameters in order to
assign different weights to each criteria. In fact, this is exactly the approach adopted
in [SAE 09]. Therein, a single-objective function is defined that balances residual

and size using a parameter α chosen to maximize the predictive power of the model.
Moreover, it has been shown that “predictive power” is best for α < 0.1. How-
ever, as detailed in [FRE 04], this approach suffers from known drawbacks. First, it
depends on “magic values” for each weight often based on intuition or empirically
determined. Second, it combines different scales of measurements that need to be
normalized. Third, it combines non-commensurable criteria producing meaningless
quantities. On the other hand, the lexicographic approach allows us to assign differ-
ent priorities to different objectives in a qualitative fashion. Notably, in our context
logic models providing high predictive power are significantly more relevant than the
sizes of such models. Thus, the lexicographic approach is very convenient to cope
with the multi-objective nature of our optimization problem. Yet another popular ap-
proach is to look for Pareto optimal models. However, this method will lead to a large
number of models providing either none or very low predictive power. For example,
consider the Boolean logic model (V,φ) with φ = ∅, i.e. the empty model. Such
a model is trivially consistent with any input PKN (V,E,σ) while it minimizes the
objective function size, i.e. Θsize((V,φ)) = 0. Therefore, (V,φ) is Pareto optimal
although it does not provide any valuable information. Similarly, one can show that
many other (non-empty) models will be Pareto optimal as well although they provide
very low predictive power. Hence, Pareto optimality is not well suited for our prob-
lem. Notwithstanding, other multi-objective optimization methods (cf. [MAR 04])
could be investigated in the future. To conclude, our lexicographic multi-objective
optimization consists of minimizing first Θrss, and then with lower priority Θsize:

(V,φopt) = argmin
(V,φ)∈M(V,E,σ)

(Θrss((V,φ), ξ),Θsize((V,φ))). (1.4)

32 Logical Modeling of Biological Systems

Information provided by high-throughput data is intrinsically uncertain due to ex-
perimental errors. Therefore, one is not only interested in optimal models but in nearly

optimal models as well. In this context, authors in [SAE 09] have considered Boolean
logic models minimizing Θrss within certain tolerance, e.g. 10% of the minimum
residual. Next, they argue that all models found can explain the data similarly or
equally well if one take into account the experimental error. Notice that, in the afore-
cited work the optimization is addressed using a genetic algorithm. Hence, “minimum
residual” refers to the minimum found during the execution of the algorithm which is
not necessarily the global minimum. Moreover, due to the incompleteness of stochas-
tic search methods, it is very likely that certain solutions within the allowed tolerance
are not found. In practice, one can execute the genetic algorithm several times in
order to overcome this issue to some extent. Nonetheless, as we show later in this
chapter, a significant number of models may be missing even after several executions.
Similarly but in the context of quantitative modeling (based on ordinary differential
equations) and using a simulated annealing algorithm, authors in [CHE 09] have elab-
orated upon the same argument. Interestingly, despite the fact that the model appears
to be non-identifiable in both contexts, viz. qualitative and quantitative modeling, bi-
ologically relevant insights have been reported in the two aforecited studies. Notably,
minimization over size in (1.4) is based on Occam’s razor principle. On the one hand,
one can consider that larger logic models overfit the available dataset by introducing
excessive complexity [SAE 09, PRI 11]. On the other hand, one can argue that it is
actually necessary to consider such “spurious” links in order to capture cellular robust-
ness and complexity [STE 04]. Therefore, let (V,φopt) be a Boolean logical model
as defined in (1.4). Then, considering that tolerance over residual and size may yield
biologically relevant models, we are particularly interested in enumerating all (nearly)
optimal Boolean logic models (V,φ) such that,

Θrss((V,φ), ξ) ≤ Θrss((V,φopt), ξ)+trss Θsize((V,φ)) ≤ Θsize((V,φopt))+tsize

with trss and tsize denoting the tolerance over residual and size, respectively.

Next, we introduce the notion of logical input-output behaviors. In practice, the
enumeration of (nearly) optimal models often leads to a large number of logical net-
works, namely, (V,φj) with j = 1, . . . ,m and m 1 1. Notably, each φj is a different
mapping from variables to propositional formulas. However, it may happen (and it
often happens) that for all v ∈ VR, several logical networks describe exactly the same
response to every possible experimental condition (clamping assignments over vari-
ables VS ∪ VK). In such a case, we say that those logical networks describe the same
input-output behavior. To be more precise, recall that we consider a PKN (V,E,σ).
Notice that in each experimental condition over (V,E,σ), every stimulus v ∈ VS and
inhibitor v ∈ VK , can be either clamped or not. Thus, let us denote with C the space
of all possible clamping assignments or experimental conditions C over (V,E,σ).
Notably, the number of possible clamping assignments is given by |C| = 2|VS|+|VK |.

Reasoning on the response of logical signaling networks with Answer Set Programming 33

Then, let (V,φj), (V,φj′) be two (nearly) optimal Boolean logic models. Further-

more, let F j
C and F j′

C be the fixpoints of Ω(V,φj|C) and Ω(V,φj′ |C) reachable from Af ,
respectively. We say that (V,φj) and (V,φj′) describe the same logical input-output

behavior if and only if F j
C(v) = F j′

C (v) for all v ∈ VR and C ∈ C. Importantly, this
abstraction allows us to group logical networks regardless of their “internal wirings”
and focus on their input-output predictions. In practice, this also facilitates the anal-
ysis and interpretation of results whereas it provides a way to extract robust insights
despite the high variability.

Encoding

In order to express and solve the multi-objective optimization described in (1.4)
by using ASP, one needs to discretize the function defined in (1.2). A very simple ap-
proach converts numerical data into binary data according to a threshold. Furthermore,
we propose a finer multi-valued discretization scheme. In fact, the only non-integer
variables in (1.2) are the experimental observations PCi

(v). Then, we approximate
these values up to 1

10k
introducing a parametrized approximation function δk (e.g. us-

ing the floor or closest integer functions). Next, we define the discrete residual Θrssk

as

Θrssk((V,φ), ξ) =

n
∑

i=1

∑

v∈dom(PCi
)

[

10kδk(PCi
(v)) − 10kπi(v)

]2
. (1.5)

The minimizations of Θrss and Θrssk may yield different Boolean logic models.
Nonetheless, one can prove that finding all models minimizing Θrssk within a cer-
tain tolerance allows us to find all models minimizing Θrss as well.

Let (V,E,σ) be a PKN and let (V,H) be the directed hypergraph expanded from
it. Recall that with P(v) we denote the powerset of the signed predecessors of v ∈ V ,
namely, 2Pred(v). We represent the directed hypergraph (V,H) using predicates
node/2, hyper/3, and edge/3. The facts node(v,sP(v)) map nodes v ∈ V to their
corresponding sets of signed predecessors P(v), facts hyper(sP(v),sp,l) associate
P(v) with its sets p ∈ P(v) where l denotes their cardinalities, facts edge(sp,v,1)
associate the set p with (v, 1) ∈ p, and facts edge(sp,v,-1) associate the set p
with (v,−1) ∈ p. Note that each s(·) stands for some arbitrary but unique name in
its respective context here. Facts over predicates stimulus/1, inhibitor/1, and
readout/1 denote nodes in VS , VK , and VR respectively. Next, let ξ = (Ci, PCi

)
be an experimental dataset over (V,E,σ) with i = 1, . . . , n. Recall that each Ci

is a clamping assignment over variables in VS ∪ VK . Then, we extend our rep-
resentation of clamping assignments given before in order to consider several ex-
perimental conditions simultaneously. Towards this end, we represent experimental
conditions as facts over predicate clamped/3, namely clamped(i,v,Ci(v)) for all
v ∈ dom(Ci) and i = 1, . . . , n. Finally, let k define the discretization scheme. We
represent discretized experimental observations as facts over predicate obs/3, namely,

34 Logical Modeling of Biological Systems

obs(i,v,10kδk(PCi
(v))) for all v ∈ dom(PCi

) and i = 1, . . . , n. We use the predi-
cate dfactor/1 to denote the discretization factor 10k.

Using the discretization scheme provided by k = 1, Listing 1.7 shows the in-
stance representation for our toy example. That is, the (signed) directed hypergraph in
Figure 1.2(b) and the dataset given in (1.1).

Listing 1.7: Toy example input instance (toy.lp)
1 node(e,1) . node(d,2). node(g,3).

2 node(f,4) . node(a,5). node(b,6). node(c ,7).

3

4 hyper (1,1,1). hyper (2,1,1). hyper (1,8,2). hyper (2,13,2) .

5 hyper (1,2,1). hyper (2,4,1). hyper (1,9,2). hyper (2,11,2) .

6 hyper (1,3,1). hyper (2,5,1). hyper (1,10,2) . hyper (2,12,2) .

7 hyper (3,5,1). hyper (4,6,1). hyper (3,14,2) . hyper (1,16,3) .

8 hyper (3,6,1). hyper (4,7,1). hyper (4,15,2) . hyper (2,17,3) .

9

10 edge(1,b,1). edge(2,c,1). edge(3,g,-1). edge(4,a,1).

11 edge(5,c,-1). edge(6,e,1). edge(7,d,1). edge(8,b,1).

12 edge(8,c,1). edge(9,b,1). edge(9,g,-1). edge(10,c,1).

13 edge(10,g,-1). edge(11,a,1). edge(11,b,1). edge(12,a,1).

14 edge(12,c,-1). edge(13,b,1). edge(13,c,-1). edge(14,e,1).

15 edge(14,c,-1). edge(15,d,1). edge(15,e,1). edge(16,b,1).

16 edge(16,c,1). edge(16,g,-1). edge(17,a,1). edge(17,b,1).

17 edge(17,c,-1).

18

19 clamped (1,a,1). clamped (1,c,1).

20 clamped (2,a,1). clamped (2,c,1). clamped (2,d,-1).

21 clamped (3,a,1).

22 clamped (4,a,1). clamped (4,b,1).

23

24 obs (1,f ,9). obs (1,g ,0). obs (2,f ,1). obs(2,g,9).

25 obs (3,f ,0). obs (3,g ,1). obs (4,f ,10). obs(4,g,8).

26

27 stimulus (a). stimulus (b). stimulus (c).

28 inhibitor (d). readout (f). readout (g).

29

30 dfactor (10).

Next we describe our encoding for solving the learning of Boolean logic models
as described in the previous section. Our ASP encoding is shown in Listing 1.8.

Listing 1.8: Logic program for learning Boolean logic models (learning.lp)
1 variable (V) :- node(V,_).

2 formula (V,I) :- node(V,I); hyper(I,_,_).

3 {dnf(I,J) : hyper(I,J,N)} :- formula (V,I).

4 clause (J,V,S) :- edge(J,V,S); dnf(_,J).

5

6 path(U,V) :- formula (V,I); dnf(I,J); edge(J,U,_).

7 path(U,V) :- path(U,W); path(W,V).

8 :- path(V,V).

Reasoning on the response of logical signaling networks with Answer Set Programming 35

9 :- dnf (I,J); edge(J,V,_); not stimulus (V);

10 not path(U,V) : stimulus (U).

11 :- path(_,V); not readout (V); not path(V,U) : readout (U).

12

13 exp (E) :- clamped (E,_,_).

14 clamped (E,V,-1) :- exp(E); stimulus (V); not clamped (E,V,1).

15 clamped (E,V) :- clamped (E,V,_).

16 free(E,V,I) :- formula (V,I); dnf(I,_); exp(E);

17 not clamped (E,V).

18

19 eval(E,V, S) :- clamped (E,V,S).

20 eval(E,V, 1) :- free(E,V,I); eval(E,W,T) : edge(J,W,T); dnf(I,J).

21 eval(E,V,-1) :- not eval(E,V ,1); exp(E); variable (V).

22

23 rss (D,V, 1, (F-D)**2) :- obs(E,V,D); dfactor (F).

24 rss (D,V,-1, D**2) :- obs(E,V,D).

25

26 #minimize {L@1 , dnf ,I,J : dnf(I,J), hyper (I,J,L)}.

27 #minimize {W@2 , rss ,E,V : obs(E,V,D), eval(E,V,S), rss(D,V,S,W)}.

28

29 :- formula (V,I); hyper(I,J1,N); hyper (I,J2,M); N < M,

30 dnf (I,J1); dnf(I,J2); edge(J2,U,S) : edge(J1,U,S).

31

32 :- formula (V,I); dnf(I,J); edge(J,U,S); edge(J,U,-S).

33

34 #const maxsize = -1.

35 #const maxrss = -1.

36

37 :- maxsize >= 0; maxsize + 1

38 #sum {L,dnf ,I,J : dnf(I,J), hyper(I,J,L)}.

39

40 :- maxrss >= 0; maxrss + 1

41 #sum {W,rss ,E,V : obs(E,V,D), eval(E,V,S), rss(D,V,S,W)}.

42

43 #show formula /2.

44 #show dnf /2.

45 #show clause /3.

Lines 1-4 define rules generating the representation of a logical network as de-
scribed in Section 1.3. Line 1 simply projects node names to the predicatevariable/1.
In Line 2 every node v ∈ V having non-zero indegree is mapped to a formula φ(v).
Next, in Line 3 each set of signed predecessors p ∈ P(v) is interpreted as an abducible
conjuctive clause in φ(v). Then, in Line 4 if p ∈ P(v) has been abduced, predicates
clause/3 are derived for every signed predecessor in p. 6 Let us illustrate this on
our toy example. In order to describe the mappings e *→ b ∨ c and g *→ e ∧ ¬c,
one would generate a candidate answer set with atoms dnf(1,1), dnf(1,2) and

6. Notice that predicates clause/3 are only used for the sake of interpretation. One could simply
replace Line 45 at the end of the encoding with #show clause(J,V,S) : edge(J,V,S); dnf(_,J).

and remove Line 4.

36 Logical Modeling of Biological Systems

dnf(3,14) (from Line 2 we derive formula(e,1) and formula(g,3)). Note that
this also force to have atoms clause(1,b,1), clause(2,c,1), clause(14,e,1)
and clause(14,c,-1). Lines 6-8 eliminate candidate answer sets describing logic
models with feedback-loops. Paths from u to v are represented over predicate path/2
and derived recursively. Thus, the integrity constraint in Line 8 avoids self-reachability
in the Boolean logic models. Next, the constraint in Lines 9-10 ensures that for any
variable u defined in φ all variables w ∈ φ(u) are reachable from some stimuli vari-
able. Whereas the constraint in Line 11 guarantees that every variable u defined in φ

reaches some readout variable. Notice that at this point, we have a representation of
the search space of Boolean logic models M(V,E,σ).

Lines 13-21 elaborate on the rules from Listings 1.3, 1.4 and 1.5 given in Sec-
tion 1.3 in order to consider several clamping assignments simultaneously and com-
pute the fixpoint for each of them accordingly. To be more precise, the response
under each experimental condition is represented over predicates eval/3, namely
eval(i,v,s) for experimental condition Ci if variable v is assigned to s. In Lines
23-24 we compute the possible differences (square of residuals) between Boolean
predictions and the corresponding experimental observations. We denote such differ-
ences over predicate rss/4, namely rss(o,v,t,r) for a residual r with respect to
the experimental observation o if the Boolean prediction for v ∈ V is the truth value
t ∈ {1,−1}. Note that such predicates are independent from every candidate answer
set, that is, they can be deduced during grouding. For our example, due to the exper-
imental condition C2 we have rss(1,f,1,81), rss(1,f,-1,1), rss(9,g,1,1)
and rss(9,g,-1,81). Therefore, if the fixpoint for f under the experimental condi-
tion C2 is 1, the residual would be 81, whereas if the fixpoint is −1, the residual is
only 1. Analogously, but in the opposite way the same holds for g. Next, we describe
our lexicographic multi-objective optimization. In Line 26 we declare with lower pri-
ority (@1) the minimization over the size of logic models (Eq. (1.3)). Meanwhile, in
Lines 27 we declare, with higher priority (@2), the minimization of the residual sum of
squares between the Boolean predictions and experimental observations (Eq. (1.5)).

Lines 29-32 define two relatively simple symmetry-breaking constraints which are
particularly relevant during the enumeration of (nearly) optimal solutions. Essen-
tially, these integrity constraints eliminate answer sets describing “trivially” equiva-
lent Boolean logic models with respect to their logical input-output behavior. The
constraint in Lines 29-30 eliminates solutions by checking inclusion between con-
junctions. For example, for two variables v and w, the formula v∨ (v∧w) is logically
equivalent to v and hence, the latter is preferred. Next, the constraint in Line 31 sim-
ply avoids solutions having mappings in the Boolean logic models of the form v∧¬v.
Notably, other logical redundancies could be considered as well. However, a com-
plete treatment of redundancies would lead to the NP-complete problem known as
minimization of Boolean functions [MCC 56]

Reasoning on the response of logical signaling networks with Answer Set Programming 37

Lines 34-41 define a rather “standard” mechanism in order to enumerate solu-
tions within given boundaries. Lines 34-35 simply define two constants describing the
boundaries for each optimization criterion which are by default set to −1. Lines 37-38
define an integrity constraint in order to eliminate solutions describing Boolean logic
models (V,φ) if maxsize≥ 0 and maxsize+1 ≤ Θsize((V,φ)). Analogously, Lines
40-41 define an integrity constraint in order to eliminate solutions describing Boolean
logic models (V,φ) if maxrss≥ 0 and maxrss+ 1 ≤ Θrss((V,φ), ξ).

Solving

In Listing 1.9 we show the optimum answer set found for the toy instance de-
scribed in Listing 1.7. 7 In this case, the optimum answer set is the thirteenth answer
set inspected by the solver (Answer: 13). Such answer set describes the Boolean
logic model given in Fig. 1.2(c). Furthermore, the values for the optimization crite-
ria are given ordered by their priorities (Optimization: 88 7). That is, 88 for the
discretized residual sum of squares (Eq. (1.5)), and 7 for the model size (Eq. (1.3)).

Listing 1.9: Learning an optimum Boolean logic model
$ gringo toy.lp learning .lp | clasp --quiet =1

clasp version 3.0.2

Reading from stdin

Solving ...

Answer : 13

formula (e,1) formula (d ,2) formula (g,3) formula (f,4)\

dnf (1,1) dnf (1,2) dnf (2,4) dnf (3 ,14) dnf (4 ,15) \

clause (1,b ,1) clause (2,c,1) clause (4,a,1)\

clause (14,e,1) clause (14,c,-1) clause (15,d,1) clause (15,e,1)

Optimization: 88 7

OPTIMUM FOUND

Models : 13

Optimum : yes

Optimization : 88 7

Calls : 1

Time : 0.005s (Solving :0.00s 1st Model :0.00s Unsat :0.00s)

CPU Time : 0.000s

Next, the enumeration capabilities of an ASP solver like clasp [GEB 07] can be
used to find not only one optimal model but all (nearly) optimal models as described
earlier. Considering tolerance trss = 8 (∼ 10% of the optimum residual sum of
squares) and size tolerance tsize = 3, we enumerate all models such that

Θrssk((V,φ), ξ) ≤ Θrssk((V,φopt), ξ) + trss = 96

Θsize((V,φ)) ≤ Θsize((V,φopt)) + tsize = 10.

7. Using the option ––quiet=1 only the last (optimum) answer set is printed. Notice that the solver
prints all the atoms in the answer set in a single line but we have (manually) introduced breaklines to
improve readability.

38 Logical Modeling of Biological Systems

In this example, there are 5 (nearly) optimal Boolean logic models as we show in
Listing 1.10. 8 Interestingly, even for this small example, the symmetry-breaking con-
straints make a significant difference. We note that running the same program but
without the symmetry-breaking constraints, yields 17 Boolean logic models instead of
only 5. Notably, in real-world problem instances, exploiting these symmetries signif-
icantly reduces the number of solutions (without missing any input-output behavior)
and hence, it facilitates their post processing and interpretation. Once we have enu-
merated all (nearly) optimal Boolean logic models with respect to certain tolerances,
we can identify the logical input-output behaviors they describe. Towards this end, we
have developed a simple algorithm that (using ASP) systematically compares all pairs
of models looking for at least one experimental condition, i.e. a clamping assignment,
generating a different response over the readouts nodes. We refrain from showing
here the algorithm and additional encoding. Nonetheless, it is worth noting that the
ASP encoding for deciding whether two Boolean logic models, there exists at least
one experimental condition generating a different response over the readout nodes,
is a rather straightforward extension from the rules given in Section 1.3. Following
with our example, over the 5 (nearly) optimal Boolean logic models enumerated in
Listing 1.10, we found 3 logical input-output behaviors.

Listing 1.10: Enumeration of all (nearly) optimal Boolean logic models
$ gringo toy.lp learning .lp -c maxrss =96 -c maxsize =10 |\

clasp --opt -mode=ignore -n0 --quiet

clasp version 3.0.2

Reading from stdin

Solving ...

SATISFIABLE

Models : 5

Calls : 1

Time : 0.002s (Solving : 0.00s 1st Model: 0.00s Unsat : 0.00s)

CPU Time : 0.000s

Importantly, results on a real-case study [GUZ 13] underscore the importance of
exploring exhaustively the family of models and take into account experimental noise
in order to obtain an adequate picture of the feasible model solutions. Briefly, in the
aforecited work it is shown that if the experimental error is considered, several thou-
sands of Boolean logic models fit the available data similarly well. Nonetheless, such
a large number of models can be grouped into less than a hundred logical input-output
behaviors. Next, these behaviors have been characterized in terms of the number of
Boolean logic models they gather and their fitness to data. Moreover, it was found
that for 30% of the space of possible inputs, all behaviors agree on the given outputs.

8. Option ––opt–mode=ignore tells the solver to ignore optimize statements; option –n0 tells the
solver to enumerate all solutions; and option ––quiet avoids printing enumerated solutions.

Reasoning on the response of logical signaling networks with Answer Set Programming 39

Hence, in practice this approach may provide a way to extract robust insights despite
the high variability. Also, thanks to our exhaustive characterization of these models,
we can determine unambiguously which logical interactions are functional in all or
none of the models and determine groups of mutually-exclusive mechanisms. Hence,
our approach permits the study of the internal combinatorics leading to the variability
of the system functioning and provides a tool to suggest new experiments towards the
discrimination of plausible input-output behaviors given the available experimental
setup. On the computational side, from multiple independent runs (1000 runs with
an average of 1000 seconds per run) of the existing genetic algorithm implementa-
tion [TER 12], only 20% of them have converged to Boolean logic models within the
allowed tolerance. Furthermore, among these runs, the genetic algorithm has retrieved
approximately half of the plausible input-output behaviors identified using ASP with
an evident bias towards the most common ones. Hence, those behaviors described
only by a few logical networks are very unlikely to be found with such stochastic
approaches.

1.3.4. Minimal intervention strategies

Background

Once a biological system has been properly characterized in agreement with prior
knowledge and experimental observations, a major challenge in systems biology is
how to systematically control its state, leading to the field of experimental design.
Importantly, progress in this area may have a crucial impact on bio-medical research,
drug target identification and diagnosis. In fact, the problem of identifying “key-
players” in biological systems has been addressed for metabolic, gene, and signaling
networks. However, the underlying mathematical formalisms for each of these bio-
logical networks allow for different computational approaches.

In the context of logic-based models for signaling networks, this question has
been recently addressed by [ABD 08, SAM 10, WAN 11, LAY 11]. Among them,
in what follows we focus on the problem defined in [SAM 10]. Based on earlier
work [KLA 06a] on metabolic networks, the notion of minimal intervention sets was
introduced and dedicated algorithms were developed to compute them. Intuitively, an
“intervention set” represents a set of knock-ins and knock-outs. Examples for knock-
ins are mutations leading to constitutively activated species or a continuous stimula-
tion with external signals whereas knock-outs may correspond to gene knock-outs or
inhibition of a certain species by various experimental tools such as small-molecule
drugs, antibodies, or RNAi. In fact, our notion of clamping assignments introduced
in Section 1.3 was originally motivated as an abstraction (closer to standard logic ter-
minology) of intervention sets. Then, we aim at identifying possible intervention sets
leading to a logical steady state describing a specific biological outcome of interest.
Furthermore, the aforecited work propose the usage of a three-valued logic which,

40 Logical Modeling of Biological Systems

though not mentioned, it correspond exactly to Kleene’s logic [KLE 50]. It is also ob-
served that under such a three-valued logic, a unique logical steady state follows for
any (clamped) logical network and initial state. Hence, in contrast to the previous sec-
tion where we have restricted ourselves to logical networks under Boolean logic and
without feedback-loops, in this chapter, we consider logical networks under Kleene’s
logic and without any further restrictions. Therefore, the method presented in this sec-
tion is not only relevant for Boolean logic models of immediate-early response, but
for logical networks in general.

Unfortunately, the dedicated algorithms presented in [SAM 10] are computation-
ally demanding due to the highly combinatorial mechanisms in logical signaling net-
works. Therefore, they are limited to compute small intervention sets and fail to scale
over large-scale networks. In general, multiple interventions are necessary to cope
with robustness and cellular complexity [STE 04]. Moreover, authors in [SAM 10]
have considered looking for interventions in a single logical network. However, as
we have shown above, if the inherent experimental noise is considered there are many
logical networks compatible with a given dataset of experimental observations. Thus,
identified interventions should fulfill the desired goals in every possible logical net-
work. Concretely, the mentioned limitations make it hard to prove that the identified
solutions are biologically robust to small perturbations of the system or its environ-
ment. Thus, in order to overcome such limitations, more elaborate and more powerful
computational methods are needed towards large-scale systems and robust solutions.

Problem

Next, we provide a formal characterization of intervention strategies in logical
signaling networks based on the notions introduced in Section 1.3. Given a logical
network, the aim of an intervention strategy is to identify an intervention set that leads
to a steady state satisfying a given goal under some side constraints. In fact, the
concepts of an intervention (I), goal (G), and side constraints (C) can be captured as
partial two-valued assignments. Moreover, both intervention sets and side constraints
are considered clamping assignments as defined in Section 1.3 To be more precise,
given a logical network (V,φ), an intervention scenario is a pair (G,C) of partial two-
value assignments over V where C is considered also as a clamping assignment, and
an intervention set is a clamping assignment I over a set of intervention variables X ⊆

V . Recall that for truth assignments A,B we defined the composition of assignments
A ◦B = (A \B) ∪B where B = {v *→ s | v *→ s ∈ B} and t = f , f = t, u = u.

Let (V,φ) be a logical network, let (G,C) be an intervention scenario, and X ⊆ V
be a set of intervention variables. An intervention set I over X is an intervention

strategy for (G,C) with respect to (V,φ), if for some j ≥ 0, we have that

Ω
j

(V,φ|C◦I)
(Au) = Ω

j+1
(V,φ|C◦I)

(Au) G ⊆ Ω
j

(V,φ|C◦I)
(Au)

Reasoning on the response of logical signaling networks with Answer Set Programming 41

with Au = {v *→ u | v ∈ V }. In words, Ωj

(V,φ|C◦I)
(Au) is a steady state of the

clamped network (V,φ|C◦I) satisfying the goal conditions in G. Notice the composi-
tion of C ◦ I indicating that clampings in the intervention set I overwrite clampings
in the side constraints C. Finally, the intervention set problem consists in deciding
whether there is an intervention strategy for an intervention scenario (G,C) wrt a
logical network (V,φ).

For illustration, let us consider the toy logical network in Figure 1.1(a) along
with the intervention scenarios (G1, C1) = ({o1 *→ f , o2 *→ t}, {i1 *→ t}) and
(G2, C2) = ({a *→ t}, ∅). In this example, the first scenario requires the inhibition
of o1 together with the activation of o2, given that i1 is stimulated. Furthermore, the
second scenario requires the activation of a without any additional side constraints.
Next, the intervention set {b *→ f , e *→ f , f *→ t} where b and e are inhibited and f
is stimulated, satisfies both scenarios yielding the two steady states, respectively:

⎧

⎨

⎩

i1 *→ t

i2 *→ u

a *→ t

b *→ f

c *→ f

d *→ f

e *→ f

f *→ t

g *→ t

o1 *→ f

o2 *→ t

⎫

⎬

⎭

⎧

⎨

⎩

i1 *→ u

i2 *→ u

a *→ t

b *→ f

c *→ f

d *→ f

e *→ f

f *→ t

g *→ t

o1 *→ f

o2 *→ t

⎫

⎬

⎭

Authors in [SAM 10], were particularly interested in enumerating all minimal
(bounded) intervention strategies with respect to a single logical network. However,
as we have illustrated above and other authors have shown by considering real-world
networks and data [SAE 09, CHE 09, GUZ 13], it often happens that the model is non-
identifiable. Therefore, as one can argue that several logical networks can describe a
given biological system equally or similarly well, identified intervention strategies
should fulfill all intervention scenarios in every possible logical network. Towards
this end, herein we extend the problem settings in order to consider a family of logical
networks, for instance, resulting from the enumeration of (nearly) optimal Boolean
logic models described above.

Now, let us define further intervention strategies relying on a finite family
(V,φi)i∈N of logical networks, a finite family (Gj , Cj)j∈J of intervention scenarios
and k some positive integer.

– A multi-scenario intervention strategy for (Gj , Cj)j∈J wrt (V,φi)i∈N is an in-
tervention strategy for each (Gj , Cj) wrt (V,φi) for each j ∈ J and i ∈ N .

– A bounded intervention strategy for (Gj , Cj)j∈J wrt (V,φi)i∈N and k is a multi-
scenario intervention strategy for (Gj , Cj)j∈J wrt (V,φi)i∈N of cardinality k′ ≤ k.

– A minimal bounded intervention strategy for (Gj , Cj)j∈J wrt (V,φi)i∈N and k
is a ⊆-minimal multi-scenario intervention strategy for (Gj , Cj)j∈J wrt (V,φi)i∈N

of cardinality k′ ≤ k.

42 Logical Modeling of Biological Systems

In what follows, we focus on the enumeration of all minimal (bounded) intervention
strategies for given families of intervention scenarios (Gj , Cj)j∈J and logical net-
works (V,φi)i∈N .

Encoding

Again, the representation of the problem instance is an extension from the one
described in Listing 1.1 in order to describe a finite family of logical networks and
clamping assignments. To be more precise, instead of having facts over predicates
formula/2, we consider facts over predicates formula/3 as follows. Let (V,φi)i∈N

be a finite family of logical networks. The facts formula(i,v,sφi(v)) map variables
v ∈ V to their corresponding formulas φi(v) for each i ∈ N . Meanwhile, facts over
predicates variable/1, dnf/2 and clause/3 remain the same as in Listing 1.1. We
use facts over predicate candidate/1 to denote the intervention variables that can be
part of an intervention set. This allows us to control on which variables interventions
are permitted, for example one can exclude interventions over constrained or goal
variables. Next, we represent the family of intervention scenarios (Gj , Cj)j∈J using
predicates scenario/1, goal/3, and constrained/3. The facts scenario(j) de-
note the scenarios to consider. The facts goal(j,v,s) with s = 1 (resp. s = −1) if
Gj(v) = t (resp. Gj(v) = f) and constrained(j,v,s)with s = 1 (resp. s = −1)
if Cj(v) = t (resp. Cj(v) = f) denote the respective intervention goals and side
constraints in each scenario (Gj , Cj).

Listing 1.11 shows the instance representation of our toy example logical network
in Figure 1.1(a) together with the two intervention scenarios (G1, C1) = ({o1 *→

f , o2 *→ t}, {i1 *→ t}) and (G2, C2) = ({a *→ t}, ∅). Notably, for the sake of un-
derstanding, we consider a toy example with a single logical network. But in general,
this instance representation and the logic program given below, support several logical
networks.

Listing 1.11: Toy example problem instance (toy.lp)

1 variable (i1). variable (i2). variable (o2). variable (o1).

2 variable (a). variable (b). variable (c). variable (d).

3 variable (e). variable (f). variable (g).

4

5 candidate (i2). candidate (b). candidate (c). candidate (d).

6 candidate (e). candidate (f). candidate (g).

7

8 formula (1,a,0). formula (1,b,2). formula (1,c ,1). formula (1,d,4).

9 formula (1,e,3). formula (1,f,6). formula (1,g ,5). formula (1,o1 ,4).

10 formula (1,o2 ,7).

11

12 dnf (0,5). dnf (1,6). dnf (1,0). dnf (2,3). dnf (3,7).

13 dnf (4,1). dnf (5,2). dnf (6,4). dnf (6,6). dnf (7,4).

14

15 clause (0,b ,1). clause (1,c,1). clause (2,f,1). clause (3,a,1) .

16 clause (3,i1 ,1). clause (4,g,1). clause (5,d,-1). clause (6,e,1) .

17 clause (7,i2 ,1). clause (7,i1 ,-1).

Reasoning on the response of logical signaling networks with Answer Set Programming 43

18

19 scenario (1). goal(1,o1 ,-1). goal(1,o2 ,1). constrained (1,i1 ,1) .

20 scenario (2). goal(2,a,1).

Next we describe our encoding for solving the minimal intervention set problem
as described earlier. Our ASP encoding is shown in Listing 1.12.

Listing 1.12: Logic program for finding intervention strategies (control.lp)
1 goal(T,S) :- goal(_,T,S).

2 goal(T) :- goal(T,_).

3 constrained (Z,E) :- constrained (Z,E,_).

4 constrained (E) :- constrained (_,E).

5 model(M) :- formula (M,_,_).

6 formula (W,D) :- formula (_,W,D).

7

8 satisfy (V,W,S) :- formula (W,D); dnf(D,C); clause (C,V,S).

9 closure (V,T) :- goal(V,T).

10 closure (V,S*T) :- closure (W,T); satisfy (V,W,S); not goal(V,-S*T).

11

12 { intervention(V,S) : closure (V,S) , candidate (V) }.

13 :- intervention(V,1); intervention(V,-1).

14 intervention(V) :- intervention(V,S).

15

16 eval(M,Z,V,S) :- scenario (Z); intervention(V,S); model(M).

17 eval(M,Z,E,S) :- model(M); constrained (Z,E,S);

18 not intervention(E).

19 free(M,Z,V,D) :- formula (M,V,D); scenario (Z);

20 not constrained (Z,V); not intervention(V).

21

22 eval_clause (M,Z,C,-1) :- clause (C,V,S); eval(M,Z,V,-S); model (M).

23

24 eval(M,Z,V, 1) :- free(M,Z,V,D); dnf(D,C);

25 eval(M,Z,W,T) : clause (C,W,T).

26 eval(M,Z,V,-1) :- free(M,Z,V,D); eval_clause (M,Z,C,-1) : dnf(D,C).

27

28 :- goal(Z,T,S); model(M); not eval(M,Z,T,S).

29

30 #const maxsize =0.

31 :- maxsize >0; maxsize + 1 { intervention(X) }.

32

33 #show intervention/2.

In Lines 1-6 we define auxiliary domain predicates used in the remainder of the encod-
ing. Lines 8-10 deserve closer attention since they allow us to reduce significantly the
search space of candidate solutions. We incorporate a preprocessing step introduced
in [SAM 10] that prunes variable assignments that can never be part of a minimal inter-
vention strategy. The idea is to inductively collect all assignments that could be used
to support a goal. First we gather all assignments that make a literal in a clause true
and associate it with variable of the associated DNF (Line 8). Starting from the assign-
ments that can satisfy a goal literal directly (Line 9), we inductively consider variable

44 Logical Modeling of Biological Systems

assignments (Line 10) that can support the assignments collected so far. Let us illus-
trate this on our toy example. In order to satisfy goal(1,o2,1), one would never
consider to intervene variables f or g negatively. Since both reach o2 positively, only
positive interventions on them could help. The same happens for variable e. However,
since e also reaches o1 positively and we have goal(1,o1,-1), a negative interven-
tion of e could help for this goal. Next, we use a choice rule in Line 12 to generate
candidate solutions. We only choose interventions collected in the preprocessing step
above. The integrity constraint in Line 13 eliminates contradictory interventions, e.g.
intervention(e,1) and intervention(e,-1). Whereas Line 14 simply projects
the intervention set to the intervened variables regardless of their signature. For exam-
ple, one could generate the intervention set consisting of intervention(e,1) and
intervention(c,-1).

In lines 16-26 elaborate on the rules from Listings 1.3, 1.4 and 1.6 given in Sec-
tion 1.3 in order to consider several logical networks simultaneously and compute the
fixpoint for each of them accordingly. To be more precise, we need to describe which
variables are clamped (in all networks) according to the side constraints Cj in each
scenario j and the intervention set I , namely, (V,φi|Cj◦I). Towards this end, we use
the predicate eval/4, namely eval(i,j,v,s) to represent that in the network (V,φi)
and intervention scenario (Gj , Cj) the variable v is clamped to value s. Following the
previous example, this will generate predicates eval(1,1,i1,1), eval(1,1,e,1),
eval(1,2,e,1), eval(1,1,c,-1) and eval(1,2,c,-1). The remaining rules are
adapted accordingly in order to compute for each logical network (V,φi) and inter-
vention scenario (Gj , Cj), the corresponding fixpoint of Ω(V,φi|Cj◦I

). For our ex-
ample, we can see how the positive intervention over e is propagated as follows.
Since variable f is not intervened, its formula (f *→ e ∨ g) described by predicates
formula(1,f,6), dnf(6,4), dnf(6,6), clause(4,g,1) and clause(6,e,1), is
“free” in all scenarios, namely, free(1,1,f,6) and free(1,2,f,6). Furthermore,
given that we have dnf(6,6) related only to clause(6,e,1) and e was intervened
positively, the truth value for f is propagated in all scenarios regardless of g, namely,
eval(1,1,f,1) and eval(1,2,f,1).

Line 28 declares an integrity constraint in order to eliminate answer sets describing
intervention sets that do not satisfy all goals in every logical network and intervention
scenario. Finally, the statements in Line 30 and 31 allows us to optionally bound the
problem by considering only intervention sets up to a given size.

Solving

Normally ASP solvers allow for computing cardinality-minimal solutions whereas
we are interested in finding subset-minimal solutions. In [KAM 13] we have shown
how one can overcome this limitation by means of meta-programming and disjunc-
tive logic programs [GEB 11a] or by using a specialized solver like hclasp [GEB 13].
However, herein we leverage the functionality recently introduced in clasp 3 series

Reasoning on the response of logical signaling networks with Answer Set Programming 45

which allow for computing subset-minimal solutions out-of-the-box by incorporating
the features from hclasp. Importantly, this requires to use very specific command-line
options for clasp. We refer the reader to clasp’s documentation for more details.

In Listing 1.13 we show the intervention strategies found for the toy instance de-
scribed in Listing 1.11.

Listing 1.13: Computing all MISs for the toy instance

$ gringo control .lp toy.lp |\

clasp --dom -pref =32 --dom -mod =6 --heu=domain -n0

clasp version 3.0.2

Reading from stdin

Solving ...

Answer : 1

intervention(e,-1) intervention(f,1) intervention(b,-1)

Answer : 2

intervention(i2 ,-1) intervention(f ,1) intervention(b,-1)

Answer : 3

intervention(e,-1) intervention(g,1) intervention(b,-1)

Answer : 4

intervention(i2 ,-1) intervention(g ,1) intervention(b,-1)

Answer : 5

intervention(d,-1) intervention(f,1) intervention(b,-1)

Answer : 6

intervention(g,1) intervention(d,-1) intervention(b,-1)

Answer : 7

intervention(c,-1) intervention(f,1)

Answer : 8

intervention(g,1) intervention(c,-1)

Answer : 9

intervention(e,1) intervention(c,-1)

SATISFIABLE

Models : 9

Calls : 1

Time : 0.001s (Solving : 0.00s 1st Model: 0.00s Unsat : 0.00s)

CPU Time : 0.000s

Interestingly, experiments over real-world biological networks in [KAM 13] have
shown that our approach outperforms the previous dedicated algorithms [SAM 10] in
up to four orders of magnitude (for small number of interventions (≤ 3) still feasible
for the algorithm). This was not very surprising since such algorithms are based on
a standard breadth-first search using additional techniques for search space reduction.
More importantly, using ASP we are able to search for significantly larger interven-
tion strategies or even solve the unbounded problem (that is, no limit in the number
of interventions). While considering a small number of interventions the number of
solutions (that is, intervention strategies) is in the order of tens, with a larger number
of interventions we have found thousands of feasible solutions. Furthermore, being
able to solve the unbounded problem allows us to completely characterize the set of

46 Logical Modeling of Biological Systems

solutions. Notably, in the light of such a large number of solutions, the way to select
among them arises. Herein, we have introduced an extension of the intervention sets
problem in order to consider a family of plausible logical networks as those identified
in the previous section. This way, we expect to reduce the number of solutions by
selecting the more robust of them. That is, intervention sets satisfying each scenario
in all logical networks.

Listing 1.14: Software toolbox: caspo

$ caspo learn pkn.sif dataset .csv 30 --fit 0.1 --size 2

Wrote networks .csv

$ caspo control networks .csv scenarios .csv

Wrote strategies .csv

$ caspo analyze --networks networks .csv --midas dataset .csv 30\

--strategies strategies .csv

Wrote networks -stats.csv

Wrote networks -mse.csv

Searching input -output behaviors ... \

5 behaviors have been found over 178 logical networks .

Wrote behaviors .csv

Wrote behaviors -mse -len.csv

Wrote variances .csv

Wrote core.csv

Wrote strategies -stats.csv

Wrote summary .txt

caspo analytics summary

=======================

Total Boolean logic networks : 178

Total I/O Boolean logic behaviors : 5

Weighted MSE: 0.0395

Core predictions : 78.12%

Total intervention strategies : 6

1.3.5. Software toolbox: caspo

In practice, interactions graphs, experimental datasets, logical networks, and sim-
ilar knowledge in systems biology is often (publicly) available in different kind of
“standard” formats. Clearly, converting such a knowledge from their corresponding
format to a set of logic facts, e.g. in Listing 1.7 and Listing 1.11, is a tedious and
error-prone task if do it by hand. In fact, this can be easily automated by using any

Reasoning on the response of logical signaling networks with Answer Set Programming 47

popular scripting language, e.g. python. 9 Analogously, the resulting answer sets from
clasp can be converted back to “standard” formats for subsequent analysis with avail-
able tools or even visualized in order to facilitate their interpretations. Hence, towards
this end we have implemented the python package caspo which is freely available for
download. 10 The aim of caspo is to implement a pipeline for automated reasoning
on logical signaling networks providing a powerful and easy-to-use software tool for
systems biologists. In particular, both problems presented herein together with other
related features are available. For the sake of illustration, in Listing 1.14 we show the
usage of caspo over a real-world instance from the “DREAM” challenge [PRI 11].
For more details on the installation, usage, and available features we refer the reader
to the online documentation. More broadly, caspo is part of BioASP, a collection of
python packages leveraging the computational power of ASP for systems biology. 11

1.4. Conclusion

Systems biology is a research field at the crossover of biology, informatics, and
mathematics. Its central task is to decipher the functioning of the so-called biologi-
cal networks mediating between DNA products, the environment, and the phenotype.
Among these networks, signal transduction networks are crucial for the understanding
of the response to extra- and intracellular perturbations. Notably, in order to cope with
the increasing complexity of large-scale networks, the development of mathematical
and computational modeling approaches is a major goal in the field. In this context,
despite their high-level of abstraction, logical networks provide a powerful qualitative
approach for modeling large-scale biological systems. Importantly, several authors
have shown that the response of signaling networks can be appropriately modeled
with (Boolean) logical networks. Nevertheless, several challenging problems remain
open. For example, the question of identifying the precise logic rules underlying the
system being studied or finding appropriate interventions allowing to control it. Ex-
isting approaches implementing dedicated algorithms to address these problems have
been relatively successful. However, they possess certain shortcomings regarding the
scalability and exhaustiveness over large search spaces. In fact, this incompleteness
in the search may significantly compromise the robustness of solutions found while it
limits the insights provided to biologists.

In contrast to previous approaches, herein we propose to look for robust insights
by reasoning over the complete space of feasible solutions. Towards this end, we
strongly rely on methods from the area of knowledge representation and reasoning
such as Answer Set Programming (ASP). Available systems nowadays provide a rich

9. http://www.python.org/

10. http://bioasp.github.io/caspo/

11. http://bioasp.github.io/

48 Logical Modeling of Biological Systems

yet simple modeling language, high-performance solving capacities, and automated
reasoning modes. Thus, ASP provides a powerful framework for addressing hard
combinatorial problems in systems biology by reasoning over the complete search
space. In order to illustrate this, we have shown how the aforementioned problems
on logical networks can be successfully modeled and solved using ASP. Interestingly,
in both cases the computational performance is significantly improved with respect to
dedicated algorithms. But more importantly, the exhaustive nature of ASP allows us to
find feasible solutions that were missing when using the existing methods. Altogether,
our work constitutes a pipeline for automated reasoning on logical signaling networks
providing robust insights to systems biologists.

Finally, as mentioned earlier, integrative modeling approaches considering multi-
ple levels and time-scales of causation pose a very challenging goal in systems biol-
ogy. In order to achieve this goal, we believe that more sophisticated computational
methods are needed in order to integrate qualitative and quantitative knowledge. In
particular, hybrid reasoning systems leveraging the expressiveness of several tech-
nologies and modeling approaches appears as a very promising track for future re-
search and development. Hopefully, advances on this subject will foster the usage of
knowledge representation and reasoning methodologies in systems biology towards a
better understanding of life.

1.5. Acknowledgements

We would like to thank our collaborators: Axel von Kamp, Carito Guziolowski,
Federica Eduati, Jacques Nicolas, Julio Saez-Rodriguez, Martin Gebser, Regina Sam-
aga, Roland Kaminski, Steffen Klamt, Sven Thiele, and Thomas Cokelaer. This work
was partially funded by the projects ANR-10-BLANC-0218 and DFG grant SCHA
550/10-1.

1.6. Bibliography

[ABD 08] ABDI A., TAHOORI M. B., EMAMIAN E. S., “Fault diagnosis engineering of dig-
ital circuits can identify vulnerable molecules in complex cellular pathways”, Science Sig-

naling, vol. 1, num. 42, 2008.

[AKU 00] AKUTSU T., MIYANO S., KUHARA S., “Inferring qualitative relations in genetic
networks and metabolic pathways”, Bioinformatics, vol. 16, num. 8, p. 727-734, July 2000.

[ALE 10] ALEXOPOULOS L. G., SAEZ-RODRIGUEZ J., COSGROVE B., LAUFFENBURGER

D. A., SORGER P., “Networks inferred from biochemical data reveal profound differences
in toll-like receptor and inflammatory signaling between normal and transformed hepato-
cytes”, Molecular & Cellular Proteomics, vol. 9, num. 9, p. 1849-1865, 2010.

[APT 82] APT K. R., EMDEN M. H. V., “Contributions to the Theory of Logic Program-
ming”, ACM, vol. 29, num. 3, p. 841-862, ACM, July 1982.

Reasoning on the response of logical signaling networks with Answer Set Programming 49

[BAN 08] BANGA J., “Optimization in computational systems biology”, BMC systems biol-

ogy, vol. 2, num. 1, Page 47, 2008.

[BAR 03] BARAL C., Knowledge Representation, Reasoning and Declarative Problem Solv-

ing, Cambridge University Press, 2003.

[BAR 04] BARAL C., CHANCELLOR K., TRAN N., TRAN N., JOY A., BERENS M., “A
knowledge based approach for representing and reasoning about signaling networks”, Pro-

ceedings of the Twelfth International Conference on Intelligent Systems for Molecular Biol-

ogy/Third European Conference on Computational Biology (ISMB’04/ECCB’04), p. 15-22,
2004.

[BER 13] BERESTOVSKY N., NAKHLEH L., “An Evaluation of Methods for Inferring
Boolean Networks from Time-Series Data”, PLoS ONE, vol. 8, num. 6, Pagee66031, 2013.

[CAL 10] CALZONE L., TOURNIER L., FOURQUET S., THIEFFRY D., ZHIVOTOVSKY B.,
BARILLOT E., ZINOVYEV A., “Mathematical modelling of cell-fate decision in response
to death receptor engagement”, PLoS Computational Biology, vol. 6, num. 3, February
2010.

[CER 11] CERAMI E. G., GROSS B. E., DEMIR E., RODCHENKOV I., BABUR Ö., ANWAR

N., SCHULTZ N., BADER G. D., SANDER C., “Pathway Commons, a web resource for
biological pathway data.”, Nucleic Acids Research, vol. 39, num. Database issue, p. D685-
D690, Oxford University Press, 2011.

[CHE 09] CHEN W. W., SCHOEBERL B., JASPER P. J., NIEPEL M., NIELSEN U. B., LAUF-
FENBURGER D. A., SORGER P., “Input-output behavior of ErbB signaling pathways as
revealed by a mass action model trained against dynamic data”, Molecular Systems Biol-

ogy, vol. 5, num. 1, January 2009.

[COL 13] COLLET G., EVEILLARD D., GEBSER M., PRIGENT S., SCHAUB T., SIEGEL A.,
THIELE S., “Extending the Metabolic Network of Ectocarpus Siliculosus using Answer
Set Programming”, CABALAR P., SON T., Eds., Proceedings of the Twelfth International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13), vol. 8148
of Lecture Notes in Artificial Intelligence, Springer-Verlag, p. 245-256, 2013.

[DUR 11] DURZINSKY M., MARWAN W., OSTROWSKI M., SCHAUB T., WAGLER A., “Au-
tomatic Network Reconstruction using ASP”, Theory and Practice of Logic Programming,
vol. 11, num. 4-5, p. 749-766, 2011.

[FAY 11] FAYRUZOV T., JANSSEN J., VERMEIR D., CORNELIS C., COCK M. D., “Mod-
elling gene and protein regulatory networks with Answer Set Programming.”, International

Journal of Data Mining and Bioinformatics, vol. 5, num. 2, p. 209-229, 2011.

[FIS 07] FISHER J., HENZINGER T. A., “Executable cell biology.”, Nature biotechnology,
vol. 25, num. 11, p. 1239-1249, November 2007.

[FIT 85] FITTING M., “A Kripke-Kleene Semantics for Logic Programs”, Journal of Logic

Programming, vol. 2, num. 4, p. 295-312, 1985.

[FRE 04] FREITAS A., “A critical review of multi-objective optimization in data mining”,
ACM SIGKDD Explorations Newsletter, vol. 6, num. 2, Page 77, December 2004.

[GAL 93] GALLO G., LONGO G., PALLOTTINO S., NGUYEN S., “Directed Hypergraphs and
Applications”, Discrete Applied Mathematics, vol. 42, num. 2-3, p. 177-201, 1993.

50 Logical Modeling of Biological Systems

[GEB 07] GEBSER M., KAUFMANN B., NEUMANN A., SCHAUB T., “clasp: A Conflict-
Driven Answer Set Solver”, BARAL C., BREWKA G., SCHLIPF J., Eds., Proceedings of

the Ninth International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR’07), vol. 4483 of Lecture Notes in Artificial Intelligence, Springer-Verlag, p. 260-
265, 2007.

[GEB 10] GEBSER M., GUZIOLOWSKI C., IVANCHEV M., SCHAUB T., SIEGEL A., THIELE

S., VEBER P., “Repair and prediction (under inconsistency) in large biological net-
works with answer set programming”, LIN F., SATTLER U., Eds., Proceedings of the

Twelfth International Conference on Principles of Knowledge Representation and Reason-

ing (KR’10), AAAI Press, p. 497-507, 2010.

[GEB 11a] GEBSER M., KAMINSKI R., SCHAUB T., “Complex Optimization in Answer Set
Programming”, Theory and Practice of Logic Programming, vol. 11, num. 4-5, p. 821-839,
2011.

[GEB 11b] GEBSER M., SCHAUB T., THIELE S., VEBER P., “Detecting Inconsistencies in
Large Biological Networks with Answer Set Programming”, Theory and Practice of Logic

Programming, vol. 11, num. 2-3, p. 323-360, 2011.

[GEB 12a] GEBSER M., KAMINSKI R., KAUFMANN B., SCHAUB T., Answer Set Solving in

Practice, Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan and
Claypool Publishers, 2012.

[GEB 12b] GEBSER M., KAUFMANN B., SCHAUB T., “Multi-threaded ASP Solving with
clasp”, Theory and Practice of Logic Programming, vol. 12, num. 4-5, p. 525-545, 2012.

[GEB 13] GEBSER M., KAUFMANN B., OTERO R., ROMERO J., SCHAUB T., WANKO P.,
“Domain-specific Heuristics in Answer Set Programming”, DESJARDINS M., LITTMAN

M., Eds., Proceedings of the Twenty-Seventh National Conference on Artificial Intelligence

(AAAI’13), AAAI Press, p. 350-356, 2013.

[GEL 88] GELFOND M., LIFSCHITZ V., “The Stable Model Semantics for Logic Program-
ming”, KOWALSKI R., BOWEN K., Eds., Proceedings of the Fifth International Conference

and Symposium of Logic Programming (ICLP’88), MIT Press, p. 1070-1080, 1988.

[GUZ 12] GUZIOLOWSKI C., KITTAS A., DITTMANN F., GRABE N., “Automatic generation
of causal networks linking growth factor stimuli to functional cell state changes”, FEBS

Journal, vol. 279, num. 18, p. 3462-3474, Blackwell Publishing Ltd, 2012.

[GUZ 13] GUZIOLOWSKI C., VIDELA S., EDUATI F., THIELE S., COKELAER T., SIEGEL

A., SAEZ-RODRIGUEZ J., “Exhaustively characterizing feasible logic models of a signaling
network using Answer Set Programming”, Bioinformatics, vol. 29, num. 18, p. 2320-2326,
2013.

[IDE 00] IDEKER T. E., THORSSON V., KARP R. M., “Discovery of regulatory interactions
through perturbation: inference and experimental design”, ALTMAN R. B., DUNKER

A. K., HUNTER L., KLEIN T. E., Eds., Pacific Symposium on Biocomputing, vol. 5,
p. 305-316, 2000.

[IDE 01] IDEKER T., GALITSKI T., HOOD L., “A new approach to decoding life: systems
biology.”, Annual review of genomics and human genetics, vol. 2, p. 343-372, 2001.

Reasoning on the response of logical signaling networks with Answer Set Programming 51

[INO 11] INOUE K., “Logic Programming for Boolean Networks”, WALSH T., Ed., Pro-

ceedings of the Twenty-second International Joint Conference on Artificial Intelligence (IJ-

CAI’11), IJCAI/AAAI, p. 924-930, 2011.

[KAM 13] KAMINSKI R., SCHAUB T., SIEGEL A., VIDELA S., “Minimal Intervention Strate-
gies in Logical Signaling Networks with Answer Set Programming”, Theory and Practice

of Logic Programming, vol. 13, num. 4-5, p. 675-690, 2013.

[KAN 10] KANEHISA M., GOTO S., FURUMICHI M., TANABE M., M. HIRAKAWA M.,
“KEGG for representation and analysis of molecular networks involving diseases and
drugs.”, Nucleic Acids Research, vol. 38, num. Database issue, January 2010.

[KAU 69] KAUFFMAN S., “Metabolic stability and epigenesis in randomly constructed genetic
nets”, Journal of Theoretical Biology, vol. 22, num. 3, p. 437-467, February 1969.

[KIT 02] KITANO H., “Systems biology: a brief overview.”, Science, vol. 295, num. 5560,
p. 1662-1664, 2002.

[KLA 06a] KLAMT S., “Generalized concept of minimal cut sets in biochemical networks”,
Biosystems, vol. 83, num. 2-3, p. 233-247, January 2006.

[KLA 06b] KLAMT S., SAEZ-RODRIGUEZ J., LINDQUIST J., SIMEONI L., GILLES E., “A
methodology for the structural and functional analysis of signaling and regulatory net-
works”, BMC Bioinformatics, vol. 7, num. 1, Page 56, 2006.

[KLE 50] KLEENE S. C., Introduction to metamathematics, Princeton, NJ, 1950.

[KOH 10] KOHL P., CRAMPIN E. J., QUINN T. A., NOBLE D., “Systems Biology: An Ap-
proach”, Clinical Pharmacology & Therapeutics, vol. 88, num. 1, p. 25-33, June 2010.

[KRE 09] KREUTZ C., TIMMER J., “Systems biology: experimental design”, FEBS Journal,
vol. 276, num. 4, p. 923-942, January 2009.

[KUE 07] KUEPFER L., PETER M., SAUER U., STELLING J., “Ensemble modeling for anal-
ysis of cell signaling dynamics”, Nature biotechnology, vol. 25, num. 9, p. 1001-1006,
September 2007.

[LÄH 03] LÄHDESMÄKI H., SHMULEVICH I., YLI-HARJA O., “On learning gene regulatory
networks under the Boolean network model”, Machine learning, vol. 52, num. 1-2, p. 147-
167, 2003.

[LAY 11] LAYEK R., DATTA A., BITTNER M., DOUGHERTY E. R., “Cancer therapy design
based on pathway logic”, vol. 27, num. 4, p. 548-555, February 2011.

[LIA 98] LIANG S., FUHRMAN S., SOMOGYI R., “REVEAL, A General Reverse Engineering
Algorithm for Inference of Genetic Network Architectures”, ALTMAN R. B., DUNKER

A. K., HUNTER L., KLEIN T. E., Eds., Pacific Symposium on Biocomputing, vol. 3, p. 18-
29, 1998.

[MAC 12] MACNAMARA A., TERFVE C., HENRIQUES D., BERNABÉ B. P., SAEZ-
RODRIGUEZ J., “State-time spectrum of signal transduction logic models.”, Physical biol-

ogy, vol. 9, num. 4, August 2012.

[MAR 04] MARLER R. T., S.ARORA J., “Survey of multi-objective optimization methods for
engineering”, Structural and Multidisciplinary Optimization, vol. 26, num. 6, p. 369–395,
April 2004.

52 Logical Modeling of Biological Systems

[MAR 12] MARBACH D., COSTELLO J., KÜFFNER R., VEGA N., PRILL R., CAMACHO D.,
ALLISON K., KELLIS M., COLLINS J., STOLOVITZKY G., “Wisdom of crowds for robust
gene network inference”, Nature Methods, vol. 9, num. 8, p. 796-804, July 2012.

[MCC 56] MCCLUSKEY E. J., “Minimization of Boolean functions”, Bell System Technical

Journal, 1956.

[MIT 09] MITSOS A., MELAS I., SIMINELAKIS P., CHAIRAKAKI A., SAEZ-RODRIGUEZ

J., ALEXOPOULOS L. G., “Identifying Drug Effects via Pathway Alterations using an In-
teger Linear Programming Optimization Formulation on Phosphoproteomic Data”, PLoS

Computational Biology, vol. 5, num. 12, Pagee1000591, September 2009.

[MOR 10] MORRIS M., SAEZ-RODRIGUEZ J., SORGER P., LAUFFENBURGER D. A.,
“Logic-based models for the analysis of cell signaling networks”, Biochemistry, vol. 49,
num. 15, p. 3216-3224, 2010.

[NOB 10] NOBLE D., “Biophysics and systems biology.”, Philosophical transactions. Series

A, Mathematical, physical, and engineering sciences, vol. 368, num. 1914, p. 1125-1139,
March 2010.

[PAP 05] PAPIN J. A., HUNTER T., PALSSON B. Ø., SUBRAMANIAM S., “Reconstruction of
cellular signalling networks and analysis of their properties”, Nature Reviews Molecular

Cell Biology, vol. 6, num. 2, p. 99-111, February 2005.

[PAP 12] PAPATHEODOROU I., ZIEHM M., WIESER D., ALIC N., PARTRIDGE L., THORN-
TON J. M., “Using Answer Set Programming to Integrate RNA Expression with Signalling
Pathway Information to Infer How Mutations Affect Ageing”, PLoS ONE, vol. 7, num. 12,
December 2012.

[PAU 12] PAULEVÉ L., RICHARD A., “Static Analysis of Boolean Networks Based on Inter-
action Graphs: A Survey”, Electronic Notes in Theoretical Computer Science, vol. 284,
p. 93-104, June 2012.

[PRI 11] PRILL R. J., SAEZ-RODRIGUEZ J., ALEXOPOULOS L. G., SORGER P. K.,
STOLOVITZKY G., “Crowdsourcing network inference: the DREAM predictive signaling
network challenge”, Sci Signal, vol. 4, num. 189, Pagemr7, September 2011.

[RAY 10] RAY O., WHELAN K., KING R., “Logic-Based Steady-State Analysis and Revision
of Metabolic Networks with Inhibition”, BAROLLI L., XHAFA F., VITABILE S., HSU

H., Eds., Proceedings of the Fourth International Conference on Complex, Intelligent and

Software Intensive Systems (CISIS’10), IEEE Computer Society, p. 661-666, 2010.

[RAY 12] RAY O., SOH T., INOUE K., “Analyzing Pathways Using ASP-Based Approaches”,
HORIMOTO K., NAKATSUI M., POPOV N., Eds., Proceedings of the Fourth International

Conference on Algebraic and Numeric Biology (ANB’10), vol. 6479 of Lecture Notes in

Computer Science, Springer-Verlag, p. 167-183, 2012.

[RÉK 08] RÉKA A., WANG R., “Discrete dynamic modeling of cellular signaling networks.”,
Methods in Enzymology, vol. 467, p. 281-306, December 2008.

[REM 08] REMY E., RUET P., THIEFFRY D., “Graphic requirements for multistability and
attractive cycles in a Boolean dynamical framework”, Advances in Applied Mathematics,
vol. 41, num. 3, p. 335-350, 2008.

Reasoning on the response of logical signaling networks with Answer Set Programming 53

[SAA 13] SAADATPOUR A., RÉKA A., “Boolean modeling of biological regulatory networks:
A methodology tutorial”, Methods, vol. 62, num. 1, p. 3-12, 2013.

[SAE 07] SAEZ-RODRIGUEZ J., SIMEONI L., LINDQUIST J., HEMENWAY R., BOMMHARDT

U., ARNDT B., HAUS U., WEISMANTEL R., GILLES E., KLAMT S., SCHRAVEN B., “A
Logical Model Provides Insights into T Cell Receptor Signaling”, PLOS Computational

Biology, vol. 3, num. 8, August 2007.

[SAE 09] SAEZ-RODRIGUEZ J., ALEXOPOULOS L. G., EPPERLEIN J., SAMAGA R., LAUF-
FENBURGER D. A., KLAMT S., SORGER P., “Discrete logic modelling as a means to link
protein signalling networks with functional analysis of mammalian signal transduction”,
Molecular Systems Biology, vol. 5, num. 331, Nature Publishing Group, 2009.

[SAE 11] SAEZ-RODRIGUEZ J., ALEXOPOULOS L. G., ZHANG M., MORRIS M., LAUFFEN-
BURGER D. A., SORGER P., “Comparing Signaling Networks between Normal and Trans-
formed Hepatocytes Using Discrete Logical Models”, Cancer Research, vol. 71, num. 16,
2011.

[SAM 09] SAMAGA R., SAEZ-RODRIGUEZ J., ALEXOPOULOS L. G., SORGER P., KLAMT

S., “The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-
throughput data”, PLoS Computational Biology, vol. 5, num. 8, August 2009.

[SAM 10] SAMAGA R., KAMP A. V., KLAMT S., “Computing combinatorial intervention
strategies and failure modes in signaling networks”, Journal of Computational Biology,
vol. 17, num. 1, p. 39-53, January 2010.

[SCH 09a] SCHAEFER C. F., ANTHONY K., KRUPA S., BUCHOFF J., DAY M., HANNAY T.,
BUETOW K. H., “PID: the Pathway Interaction Database”, Nucleic Acids Research, vol. 37,
num. Database issue, p. D674–D679, Oxford University Press, 2009.

[SCH 09b] SCHAUB T., THIELE S., “Metabolic Network Expansion with ASP”, HILL P.,
WARREN D., Eds., Proceedings of the Twenty-fifth International Conference on Logic Pro-

gramming (ICLP’09), vol. 5649 of Lecture Notes in Computer Science, Springer-Verlag,
p. 312-326, 2009.

[SHA 09] SHAPIRO J. A., “Revisiting the central dogma in the 21st century.”, Annals of the

New York Academy of Sciences, vol. 1178, p. 6-28, October 2009.

[SHA 12] SHARAN R., KARP R. M., “Reconstructing Boolean Models of Signaling”, Re-

search in Computational Molecular Biology, p. 261-271, Springer-Verlag, Berlin Heidel-
berg, 2012.

[SPA 10] SPARKES A., AUBREY W., BYRNE E., CLARE A., KHAN M. N., LIAKATA M.,
MARKHAM M., ROWLAND J., SOLDATOVA L. N., WHELAN K. E., YOUNG M., KING

R. D., “Towards Robot Scientists for autonomous scientific discovery.”, Automated Exper-

imentation, vol. 2, p. 1-1, January 2010.

[STE 04] STELLING J., SAUER U., SZALLASI Z., DOYLE F., DOYLE J., “Robustness of
Cellular Functions”, Cell, vol. 118, num. 6, p. 675-685, 2004.

[STO 07] STOLOVITZKY G., MONROE D., CALIFANO A., “Dialogue on reverse-engineering
assessment and methods: the DREAM of high-throughput pathway inference”, Annals of

the New York Academy of Sciences, vol. 1115, p. 1-22, December 2007.

54 Logical Modeling of Biological Systems

[TER 12] TERFVE C. D. A., COKELAER T., HENRIQUES D., MACNAMARA A.,
GONÇALVES E., MORRIS M., VAN IERSEL M., LAUFFENBURGER D. A., SAEZ-
RODRIGUEZ J., “CellNOptR: a flexible toolkit to train protein signaling networks to data
using multiple logic formalisms.”, BMC systems biology, vol. 6, num. 1, October 2012.

[WAN 11] WANG R., ALBERT R., “Elementary signaling modes predict the essentiality of
signal transduction network components”, BMC systems biology, vol. 5, Page 44, 2011.

[WAN 12] WANG R., SAADATPOUR A., ALBERT R., “Boolean modeling in systems biology:
an overview of methodology and applications”, Physical biology, vol. 9, num. 5, September
2012.

Index

answer set, 16
Answer Set Programming, 16
ASP encoding, 23, 33, 42
ASP solving, 37, 44
biological network, 12
Boolean model accuracy, 31
Boolean model accuracy (discrete), 33
Boolean model complexity, 31
Boolean network, 14, 20
Boolean prediction, 28
caspo, 46
clamping, 21, 24, 28, 36, 39, 40
clasp, 16, 37, 45
experimental condition, 28
experimental design, 39
feedback-loops, 22, 26, 29, 40
fixpoint, 22, 26, 29, 36, 44
genetic algorithm, 15, 32
gringo 4, 17
hclasp, 44
hypergraph, 20
immediate-early response, 23, 26, 40
inference, 15
input-output behavior, 32, 33, 38
interaction graph, 21, 26
intervention, 15, 39
intervention constraints, 40

intervention goal, 40
intervention set problem, 41
intervention strategy, 40
key-players, 15, 39
knock-in, 27, 39
knock-outs, 27, 39
learning, 14, 27
logical network, 14, 19, 29, 40
multi-objective function for training

Boolean models, 31
nearly optimal models, 32
phosphorylation assays, 13, 30
prior knowledge network, 26
readouts, 27
reasoning mode, 16, 48
reverse engineering, 14
search space, 27, 30, 43
semantics, 19, 40
signaling network, 13, 39
single-step operator for logic program, 22
steady state, 20, 22, 26, 39, 41
stimuli, 26, 39
systems biology, 11, 18, 47
three-valued logic, 19, 22, 25, 40
tolerance, 15, 32
two-valued logic, 19, 22, 25

55

