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semi-Markov chains for audio-to-score alignment
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Abstract. This paper proposes a novel insight to the problem of real-time alignment with Bayesian
inference. When a prior knowledge about the duration of events is available, Semi-Markov models
allow the setting of individual duration distributions but give no clue about their choice. We propose
a criterion of temporal coherency for such applications and show it might be obtained with the right
choice of estimation method. Theoretical insights are obtained through the study of the prior state
probability of transient semi-Markov chains.
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INTRODUCTION

Many signals are structured as time-contiguous events which generate specific observa-

tions, e.g. music, speech or text. In music, basic events may be notes (pitched sounds)

and silences. To recognize the sequence of events that generates an observed signal,

probabilistic models [1] are relevant when statistical relationships between observation

and events are known. In particular, the Hidden Markov Models (HMM) [2] assume that

the signal is stationary on time-intervals and identify them with the occupancy of a hid-

den state. Once the state-space and the statistical priors are specified, Bayesian inference

can be readily computed to recognize the state-sequence.

Score alignment [3] is a Music Information Retrieval (MIR) task consisting of syn-

chronizing a musical performance with its score, i.e. the sequence of notes. Since or-

dering of events is known, recognition boils down to alignment. Among the numerous

applications of HMM, music has an outstanding property: a music score assigns to each

event its nominal duration, i.e. a prior information on their likely duration.

A crucial and undermined question is about the modeling of nominal duration. This

investigation is built on the framework of hidden semi-Markov models (HSMM) as

it provides explicit choice of the prior duration model. In section 2 we detail this

motivation and briefly introduce HSMM. This generalization of HMM involves many

Bayesian priors whose tuning is a major issue. To this aim, most probabilistic models

rely on learning with training datasets. This paper presents an alternative based on a

theoretical study of prior probability distributions of semi-Markov processes.

In section 3, we state our condition of time-coherency, and explain how the Viterbi

estimation does not fulfill it. In section 4, we investigate how the Forward estimation

may fulfill it or not depending on several distribution properties of the Bayesian priors.



BACKGROUND & MOTIVATION

Semi-Markov models for alignment

Hidden semi-Markov models were introduced in [4] as a generalization of HMM.

Both are defined with two stochastic processes [2]. The process (St)t∈N∗ is a discrete-

time homogeneous Markov chain on a discrete state-space E
def
= {1,2, . . . ,J}, finite

or not (J = ∞). Since its realizations (st)t∈N∗ are not known, they are called hidden

states. The observation (ot)t∈N∗ , e.g. the audio signal, is considered as a realization of

the second process (Ot)t∈N∗ . We denote N
def
= {0,1, . . .}, N∗ def

= {1,2, . . .} and St+u
t

def
=

(St ,St+1, . . . ,St+u).
In such probabilistic models, the duration spent on a state j is a time-homogeneous

random variable. Its law is called the occupancy distribution d j(u)
def
= P(St+u+1 6=

j,St+u
t+2 = j | St+1 = j,St 6= j) for u ∈ N

∗. For a Markov state with self-transition p,

d j would implicitly be a geometric law d j(u) = (1− p)pu−1. Assuming that (St)t is a

semi-Markov chain allows choosing each Bayesian prior d j as any probabilistic mass

function (pmf) on N
∗.

A semi-Markov chain consists of two additional choices per state j: the initial proba-

bility π( j)
def
= P(S1 = j), and the transition probabilities pi j

def
= P(St+1 = j | St+1 6= i,St =

i) with pii = 0. In alignment tasks, left-to-right topologies of transition probabilities con-

veniently model the prior information of ordering. This study exclusively deals with the

simplest topology, the linear semi-Markov chains: ∀i, j, pi j = δi,i+1 and π j = δ1, j (see

figure 3 for an example).

Moreover, the hidden model paradigm describes how states (St) influence observa-

tions (Ot) using observation probabilities b j(o
t+u
t )

def
= P(Ot+u

t =ot+u
t |St+u

t = j).

Modeling prior information of duration with HSMMs

Inference with semi-Markov models requires a careful design of the prior distribu-

tions d j for each state. Usual approaches rely on statistical learning. The Baum-Welch

algorithm, i.e. the HMM version of Expectation-Maximization (EM), has been adapted

to semi-Markov models [5]. But this non-parametric algorithm requires huge training

datasets. Consequently, most implementations prefer a parametric EM [6] to learn the

occupancy distributions over a parametric family of probabilities, e.g. Gamma, Poisson,

log-normal, Negative Binomial laws.

This study aims at elaborating a criterion so as to justify or disqualify such choices.

It is built on an interesting property of our application: musical events are associated

with a reference duration. Indeed a music score provides the prior tempo and prior

durations for all notes.

We denote this quantity the nominal duration l j. Although a few music alignment

systems like [7] willingly discard this prior information, this work considers duration

as an explicit element of modeling and makes the following assumption: two events



with identical nominal duration should get identical occupancy distributions. So the

duration model consists of a set of durations L ⊂ R+ and a duration-indexed family

of pmfs (dl)l∈L such that for all state j, l j ∈ L and d j = dl j
. This framework sharpens the

problematic: are there coherent mappings from nominal durations l to distributions dl?

CRITERION OF COHERENCY FOR PRIORS OF DURATION

Hypothesis of non-discriminative observation

FIGURE 1. Music score of the Mazurka Op. 7 No. 5 by F. Chopin. It begins with a long sequence of

repeated events, i.e. states with identical observation probabilities.

Our definition of time-coherency emerges from the following fact: music scores might

be composed of very long sequences of “repeated events” such that the one in figure 1.

What would happen if all states j ∈ E share the same observation probabilities? We call

non-discriminative observation such a model where b1 = b2 = . . .
def
= b. Note that this

assumption may model other realistic situations of Bayesian inference such as missing

observations [8].

Ideal behavior with non-discriminative observation

We state our criterion of time-coherency. Its rationale is simple: if the observation

probabilities do not discriminate states, then the inference should respect the states

ordering and their nominal durations as these are the only available information.

Time-coherency criterion 1. On a linear chain with non-discriminative observation,

the inference successively decodes states 1,2,3, . . . at time steps 1,1+ l1,1+ l1 + l2, . . .
and assigns to each state j a duration which is equal to its nominal duration l j.

The hypothesis of non-discriminative observations makes the posterior probabilities

equal to the prior probabilities:

∀t ∈ N
∗, P(S1, . . . ,St | O1, . . . ,Ot) = P(S1, . . . ,St).

Indeed, the Markovian assumption implies that P(Ot
1 | St

1) = ∏
t
u=1P(Ou | Su) =

∏
t
u=1 bSu

(Ou). Assuming that bSu
= b gives P(Ot

1 | St
1) = ∏

t
u=1 b(Ou) = P(Ot

1), so

(St) and (Ot) are independent. Thus, the inferred quantities become independent of

the observations. Whether the criterion is fulfilled only depends on the underlying

semi-Markov chain (St)t and the estimation method.



Offline alignments estimate the most likely sequence sT
1 at final time T , using the

so-called Viterbi algorithm. But online alignments make sequential estimations. At each

time t = 1 . . .T , they could either estimate the partial sequence st
1 or the most likely cur-

rent state ŝt . The Viterbi alignment is defined as ŝt such that ŝt
1

def
= argmaxs1,...,st∈Et P(St

1 =
st

1 | Ot
1 = ot

1). The Forward alignment is defined as ŝt = argmaxst∈E P(St = st | Ot
1 = ot

1).
These quantities are obtained using the recursive equations detailed in [5].

Failure of the Viterbi estimation

1 2 3 4 . . .
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FIGURE 2. Example of a linear Markov chain with identical first two states: p11 = p22 = p.

Our first claim is that the Viterbi alignment fails to be time-coherent. Let us illustrate

it with the example in figure 2: a linear Markov chain with identical first two states.

Let S = (S1, . . . ,St+1) be an admissible (i.e. non-decreasing) path. If S ends at St+1 =
1, then P(S) = pt . If St+1 = 2, then P(S) = (1− p)pt−1. So, if p > 1/2 then state 1 is

more likely than state 2 at all times for the Viterbi estimation, whereas if p < 1/2 state

2 is more likely than state 1 at all times t > 1.

This simplistic example could be extended to semi-Markov chains for a wide class

of occupancy distributions, but it is enough to reveal the lack of coherency of Viterbi

alignments: the parameters cannot be tuned to take into account the nominal duration l1.

COHERENCY OF THE FORWARD ESTIMATION

Our second claim is that the Forward alignment may be time-coherent. This section

introduces sufficient conditions on occupancy distributions that imply criterion 1.

Recall that under non-discriminative observation, Fj(t) = P(St = j). Let

F(t)
def
= (F1(t),F2(t), . . .) denote the state probability distribution on E, and

M[Ft ]
def
= argmax j∈E Fj(t) denote its mode.

Criterion 1 has the following translation:

∀t ∈ N
∗, M[Ft ] = j ⇔ 1 ≤ t − (l1 + . . .+ l j)≤ l j+1

On linear chains, the prior state probabilities are given by successive convolutions.

Using the recursive equations detailed in [5, Section 3.2], a simple induction over states

j proves that

Fj(t) =
1

K(t)
·

{

d1 ∗d2 ∗ . . .∗d j−1 ∗D j(t) if j > 1

D1(t) else
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FIGURE 3. Example of a linear semi-Markov chain.

where D j(t) = ∑u≥t d j(u) is the survivor distribution associated to d j, and K(t) =
D1(t)+d1 ∗D2(t)+d1 ∗d2 ∗D3(t)+ . . . is an unimportant normalization constant.

The case of first two states

Since state 1 is the most likely one at first time step t=1, we begin with a comparison

between states 1 and 2 by studying the evolution of the probability ratio
F1(t)
F2(t)

. The

Forward estimation respects the criterion 1 for these two states if and only if

∀ j ∈ E,
F2(t)

F1(t)

{

≤ 1 if t ≤ l1

> 1 if t > l1
.

Proposition 1. Let us denote m[d1]
def
= max{t | D1(t)≥ 1/2} the median of d1. Then for

any distribution d2,

t ≤ m[d1] ⇒ F1(t)≥ F2(t).

Reciprocally there exists a distribution d2 such that t > m[d1]⇒ F1(t)< F2(t).

Proof. Since D2(t)≤1 for all t, ∑
t−1
u=1 d1(u)D2(t −u)≤ ∑

t−1
u=1 d1(u) so F2(t)≤ 1−D1(t)

and F2(t)−F1(t)≤ 1−2D1(t). Since D1 is non-increasing, if t ≤m[d1] then D1(t)≥ 1/2

and 1−2D1(t)≤ 0.

For the necessary condition one may consider the trivial distribution d2(t) = δm[d1](t).

Last proposition tells that the median of d1 is a lower bound for the duration assigned

to state 1. Thus it prescribes choosing every distribution dl such that its median is ⌊l⌋.

But even if this result provides the first half of the criterion 1, the other half may not be

fulfilled in the general case.

Uncoherency of heavy-tailed distributions

First, we give a negative example of distributions that never fulfill the criterion. An

important feature of probability distributions is their asymptotic speed of decay. This



feature is related to the radius of convergence Rd ∈ [1,+∞] of the probability generating

function of d, denoted Z[d](z)
def
= ∑n∈N d(n)zn.

Definition 1. A discrete distribution d is said to be heavy-tailed if Rd = 1, and light-

tailed if not.

Convolutions of heavy-tailed distributions have been thoroughly studied. We borrow

the following non-trivial result from [9].

Proposition 2. If d1 is an heavy-tailed pmf, then

liminf
t→∞

∑
t−1
u=0 d1(u)D1(t −u)

D1(t)
= 1

If the two states have the same heavy-tailed occupancy distribution, then state 1 is

decoded an infinite number of time. So, the criterion is never fulfilled. This fact discards

using such pmfs as Bayesian priors.

Coherency of IHR distributions

Nevertheless, using light-tailed distributions does not guarantee neither the criterion.

But another notion of tail analysis helps checking whether the criterion hold or not.

Definition 2. A distribution d is Increasing Hazard Rate (IHR) if its hazard rate h(n)
def
=

d(n)
D(n) is non-decreasing.

Proposition 3. Let d1 be an IHR pmf. For all distribution d2, d1∗D2
D1

(t) is a non-

decreasing function of t.

Proof. The proof uses simple algebraic computations. Let us define the functions

fu(t)
def
=

{

0 if t ≥ u
d1(t−u)

D1(t)
D2(u) if 0 < t < u

.

With this definition we have d1∗D2
D1

(t) = ∑
t−1
u=1

d1(t−u)
D1(t)

= ∑u∈N∗ fu(t).

Let h be the hazard rate of d1, and u be in N
∗. By definition of h,

d1(t−u)
D1(t)

=
d1(t−u)
D1(t−u)

D1(t−u)
D1(t)

= h(t − u) 1
∏

u
v=1(1−h(t−v)) . Since the function x 7→ 1

1−x
is positive and

increasing on [0,1[, if h is non-decreasing, then t 7→ fu(t) is non-decreasing as a

product of positive and non-decreasing functions. Consequently, t 7→ d1∗D2
D1

(t) is non-

decreasing.

Monotony is a stronger but very interesting requirement: if the ratio is non-decreasing

then the estimation never come back to state 1 after having decode state 2.



Extension to N states

The previous arguments cannot be directly generalized to more than two states without

further assumptions. Our next argument extends the idea of monotony that proposition

3 highlights. This approach turns out to be related to the notions of stochastic orderings

introduced by [10].

Definition 3. Let p1, p2 be two distributions. p1 is said to be locally smaller that p2,

denoted p1 ≤
lr

p2, if n 7→ p1(n)/p2(n) is non-decreasing on supp[p2].

A family (pt)t∈I of pmfs indexed by I ⊂ R is said to be locally increasing if ∀t1, t2 ∈
I, t1 ≤ t2 ⇒ pt1 ≤

lr
pt2 .

Lemma 1. If (pt)t∈I is an increasing family, then the mode M[pt ] of pt is a non-

decreasing function of t.

This straightforward lemma is interesting: if the state probabilities of the semi-Markov

chain (F(t))t∈N∗) constitute an increasing family, then states are decoded with respect to

their ordering – although some states might be skipped. Moreover, checking numerically

the criterion on a given chain becomes very easy: it holds if and only if
Fj+1

Fj
(l1 + . . .+

l j)≤ 1 and
Fj+1

Fj
(1+ l1 + . . .+ l j)> 1 for all j. So, to finish with, next proposition gives

a sufficient condition to obtain an increasing process.

Definition 4. A discrete distribution d is log-concave if for all n in N, d(n)2 ≥ d(n−
1)d(n+1). This is equivalent to d(.)≤

lr
d(.+u) for all u ∈ N.

It is noteworthy that all log-concave distributions are IHR. The main point is that

log-concavity “preserve” stochastic ordering, as the following lemma explains.

Lemma 2 ([10, Theorem 2.1]). Let f ,g,h be three distributions. If f is log-concave,

then g 6
lr

h ⇒ f ∗g 6
lr

f ∗h.

See the reference for its proof, that is an application of the Binet-Cauchy formula.

Proposition 4. If the semi-Markov chain is linear and all occupancy distributions d j are

log-concave, then the process (F(t))t∈N∗ is locally increasing.

Proof. Let j be in N
∗. Since d j−1 is log-concave, it is also IHR and D j−1 6

lr
d j−1 ∗D j.

If j > 1, let us consider
Fj+1

Fj
=

d1∗...∗d j−1∗d j∗D j+1

d1∗...∗d j−1∗D j
The class of log-concave distributions

is stable by convolution [10], so d1 ∗ . . . ∗ d j−1 is log-concave. Then, lemma 2 implies

that t 7→
Fj+1(t)
Fj(t)

is increasing.

The monotony of Markov processes has been largely studied – see [11] for a survey.

Proposition 4 is a first step towards its extension to semi-Markov processes. Moreover, in

locally increasing Markov chains, first-time passages Tj
def
= inf{t | Xt+1 ≥ j,X1 = 1} have

log-concave pmfs [12]. Proposition 4 looks like a “reverse” counterpart of this result for

linear semi-Markov chains, since the pmf of Tj+1 is d1 ∗ . . .∗d j for such chains.



As a conclusion, log-concavity seems to be the most desirable property for prior

distributions of duration. While log-concavity plays an important role in many fields

of statistics, it has been scarcely studied on HSMMs. It is highlighted by [13] for

improving computational efficiency of the Viterbi algorithm. Proposition 4 shows it

also provides theoretical coherency to the Forward estimation. Furthermore, experiments

show that taking into account these prescriptions do improve the performances of real-

time alignment. A comparative test with results and video files can be found on http:

//repmus.ircam.fr/mutant/mlsp14.

CONCLUSION & PERSPECTIVES

This paper introduces a criterion of time-coherent modeling in semi-Markov models

for alignment. This criterion is about estimation coherency under non-discriminative

observation. We show that coherency cannot be obtained with Viterbi estimation but can

be obtained with is the Forward estimation if the chosen probability distributions have

some precise properties. This short study calls for further theoretical and experimental

developments. More necessary and sufficient conditions related to the criterion can

be derived. The framework can be extended to other estimators such as the Forward-

backward algorithms. Moreover the proposed prescriptions lead to constraints on the

learning parameter space; adding these constraints in HSMM training algorithms would

be an interesting issue.

REFERENCES

1. K. P. Murphy, Dynamic Bayesian Networks: Representation, Inference and Learning, Ph.D. thesis,
UC Berkeley, Computer Science Division (2002).

2. L. R. Rabiner, Proc. of the IEEE 77, 257–286 (1989).
3. A. Cont, IEEE Transaction on Pattern Analysis and Machine Intelligence 32, 974–987 (2010).
4. S. E. Levinson, Comput. Speech Lang. 1, 29–45 (1986), ISSN 0885-2308.
5. Y. Guédon, Journal of Computational and Graphical Statistics 12, 604–639 (2003), URL http:

//hal.inria.fr/hal-00826992.
6. C. D. Mitchell, and L. H. Jamieson, “Modeling duration in a hidden Markov model with the

exponential family,” in Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE
International Conference on, 1993, vol. 2, pp. 331–334 vol.2, ISSN 1520-6149.

7. C. Joder, S. Essid, and G. Richard, “An Improved Hierarchical Approach for Music-to-symbolic
Score Alignment,” in ISMIR, edited by J. S. Downie, and R. C. Veltkamp, International Society for
Music Information Retrieval, 2010, pp. 39–45, ISBN 978-90-393-53813.

8. S.-Z. Yu, and H. Kobayashi, Signal Process. 83, 235–250 (2003), ISSN 0165-1684, URL http:

//dx.doi.org/10.1016/S0165-1684(02)00378-X.
9. S. Foss, and D. Korshunov, The Annals of Probability 35, 366–383 (2007), URL http://dx.

doi.org/10.1214/009117906000000647.
10. J. Keilson, and U. Sumita, The Canadian Journal of Statistics / La Revue Canadienne de Statistique

10, pp. 181–198 (1982), ISSN 03195724.
11. M. Kijima, Journal of Applied Probability 35, pp. 545–556 (1998), ISSN 00219002, URL http:

//www.jstor.org/stable/3215630.
12. S. Karlin, Total positivity (1968), URL http://opac.inria.fr/record=b1089884.
13. D. Tweed, R. Fisher, J. Bins, and T. List, “Efficient Hidden Semi-Markov Model Inference for

Structured Video Sequences,” in Visual Surveillance and Performance Evaluation of Tracking and
Surveillance, 2005. 2nd Joint IEEE International Workshop on, 2005, pp. 247–254.


