
HAL Id: inria-00503017
https://hal.inria.fr/inria-00503017v2

Submitted on 5 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal study of Bernstein coefficients and polynomials
Yves Bertot, Frédérique Guilhot, Assia Mahboubi

To cite this version:
Yves Bertot, Frédérique Guilhot, Assia Mahboubi. A formal study of Bernstein coefficients and poly-
nomials. Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2011,
21 (04), pp.731-761. �10.1017/S0960129511000090�. �inria-00503017v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49583275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00503017v2
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. Science

A formal study of Bernstein coefficients and

polynomials

Yves Bertot, Frédérique Guilhot and Assia Mahboubi†

Received 13 December 2010

1. Introduction

Bernstein coefficients provide a discrete approximation of polynomials inside a bounded

interval. As such they are useful tools to solve problems like locating the roots of polyno-

mials, isolating these roots or solving systems of inequations with polynomial members.

In computer aided design, they are also used intensively as they give an efficient tool

to draw curves that are controlled by points that users can grab and drag, with instan-

taneous and intuitive feedback on the curve’s shape. Bernstein coefficients are closely

related to Bézier curves and they have a very simple geometrical interpretation, which

we illustrate in section 4.

Bernstein coefficients are defined for a given polynomial, a given degree, and a given

interval. If the degree is n, then the coefficients form a sequence of size n + 1. In this

paper, we are interested in three important properties of these coefficients:

1 if the coefficients taken in order exhibit exactly one sign change, then the polynomial

is guaranteed to have exactly one root inside the interval.

2 if all coefficients have the same sign, then the polynomial is guaranteed to have no

root inside the interval.

3 there is an easy method to compute new Bernstein coefficients when splitting the

interval in two.

We describe a formal proof of these three properties, concentrating on the first and

third property.

The main plan of the proof of the first property is to describe a sequence of pairs

(I0, p0) to (I3, p3), each pair containing an interval and a polynomial, such that every

root of polynomial pi inside Ii is in bijective correspondence with a root of polynomial

pi+1 in the interval Ii+1. If we study the roots of the polynomial p on the interval (l, r),

then I0 and p0 are respectively (l, r) and p. The last interval I3 is (0,+∞) and the last

polynomial p3 is c0 + c1X + · · ·+ cnX
n, where the coefficients ci have the same sign as

the Bernstein coefficients. Going from pi to pi+1 we apply a given transformation. The

† This work has been partially funded by the FORMATH project, nr. 243847, of the FET program

within the 7th Framework program of the European Commission and by the Galapagos project, of

the French ANR.

Y. Bertot, F. Guilhot and A. Mahboubi 2

first transformation is a change of variable such that I1 is (0, 1) and p1(x) = p0(rx +

l(1 − x)). The second transformation is such that I2 is (1,+∞) and p2(x) = 0 exactly

when p1(1/x) = 0, as long as x 6= 0. The third transformation is a translation such

that I3 = (0,+∞) and p3(x) = p2(1 + x). We will show that the condition on Bernstein

coefficients simply boils down to Descartes’ law of sign (Des69; BPR06) for polynomial

p3 in the case where there is exactly one sign change in this polynomial’s coefficients.

This path from one polynomial to another is described in section 5.

Descartes’ law of signs provides a sufficient criterion for the existence of exactly one

root for a polynomial between 0 and +∞. In its most general form, this law expresses a

relation between the number of roots of a polynomial between 0 and +∞ and the number

of sign changes in the coefficients of this polynomial. The number of sign changes is larger

than the number of roots and the difference between the two numbers is even. Thus, if

the number of sign changes is 1, there is exactly one root between 0 and +∞.

For our development, we only prove the corollary of Descartes’ law of signs for the case

where there is only one sign change. This proof is done in section 3. Expressing Descartes’

law on the coefficients of polynomial p3 yields directly a law expressed in terms of sign

changes for Bernstein’s coefficients of p with respect to the interval (l, r).

Another part of our work is to describe dichotomy. Knowing Bernstein coefficients

for a polynomial and a given interval, it is easy to obtain the Bernstein coefficients for

the two half intervals, using an algorithm due to de Casteljau (dC85). In the process,

we increase the precision of the approximation given by the Bernstein coefficients. De

Casteljau’s algorithm is a simple combinatorial algorithm based on taking arithmetic

means of successive coefficients. To justify this combinatorial process we show in section 4

that Bernstein coefficients actually are the coefficients of the polynomial in a different

basis from the usual monomials, called the Bernstein basis.

In the following, we will assume that we are working with polynomials whose roots

are all simple, called separable polynomials. Starting from an arbitrary polynomial it is

easy to produce a separable polynomial with the same roots by computing the greatest

common divisor of this polynomial and its derivative.

All these results deal with polynomial functions over real numbers. In order to make

this formal study as generic as possible, we abstract from the choice of the subset of real

numbers of interest for the user and only rely on an abstract structure of archimedean

field. We however require this field to be equipped with a decidable comparison: the

process we describe can in turn effectively be used in a decision procedure.

If the field we work in is only guaranteed to be ordered and archimedean, the existence

of roots takes a different meaning: if a polynomial has a single simple real root in an

interval, this root may not belong to the field of its coefficients. However, we can use a

corresponding property which can be expressed in the field of coefficients: there exists a

sub-interval inside which the absolute value of the slope is bounded below, and such that

the values of the polynomial at the sub-interval bounds have opposite signs. In a similar

vein, the intermediate value theorem does not hold within the language we have chosen,

but a corresponding statement, expressed as a bounded-value property, does. Our proof

development relies on this approach. We describe the formal aspects of this approach to

describing roots in section 2.

A formal study of Bernstein coefficients and polynomials 3

The formal work described in this paper has been performed using the Coq system

(BC04; Coq), with the SSReflect extension (GM08). We think some characteristics

of the proof system played a key role in making this development possible. We describe

these key aspects in section 7. The sources of this development are available from

http://hal.inria.fr/inria-00503017/

2. Formalization viewpoints

2.1. A constructive and abstract approach

Our aim is to provide a constructive and effective formalization of the theory of Bernstein

polynomials, and to be as independent as possible from the implementation choices of

rational numbers and real numbers. For this purpose, we eliminate real points from

the formalization. We consider polynomials with coefficients in an abstract ordered and

archimedean field. The axioms of this structure are the ones of a field with decidable

equality, with a decidable order relation which is compatible with the field operations. The

decidability of the equality and order relations are crucial for the algorithms we describe

to be truely effective. Such a field necessarily contains a copy of rational numbers, which

are the carrier of the computations performed in our proofs. We do not provide nor rely

on a general theory of continuous functions but rather prove that such polynomials are

necessarily continuous (and even uniformly continuous on bounded intervals) using ǫ-δ

statements quantified on elements of the coefficient field.

Since such an archimedean field has no reason to be algebraically closed, the roots

of the polynomials are not necessarily elements of this type. We hence need to adjust

the definition of root of a polynomial. In particular, we provide a weak version of the

intermediate value theorem for polynomials, which results in a sufficient criterion for

the existence of a single real root in an interval, expressed in the language of decidable,

ordered archimedean fields. This field of coefficients cannot be directly instantiated by

constructive reals since their comparison is not decidable, but this was not our purpose

since our weak intermediate value theorem is only there to support the further study

of Bernstein polynomials, which have rational coefficients. If coefficients are indeed in-

stantiated by any implementation of rational numbers, for instance the one embedded

in some implementation of constructive numbers, then the conclusion of the intermedi-

ate value theorem is sufficient to implement the modulus of convergence of a Cauchy

sequence, which will be the constructive root of the polynomial. Of course, this work

is readily usable with the “classical real numbers” of the standard Coq library, but it

also complies with the constructive libraries also implemented in the Coq system like

(CFGW04; O’C07; O’C08).

2.2. Small scale reflection libraries

This work is based on the SSReflect libraries (Mat) developed with the SSReflect

extension (GM08) of the Coq system. These libraries cover basic theories (sequences,

natural numbers, finite types, finite sets), infrastructure for notations and theory sharing

http://hal.inria.fr/inria-00503017/

Y. Bertot, F. Guilhot and A. Mahboubi 4

(containers, iterated operators, algebraic hierarchies), and elementary algebra and arith-

metics. They are developed following the path leading to a complete formal proof of a

historical result in finite group theory (namely the Odd Order Theorem), to demonstrate

that a well understood art of formalization leads to modular, reusable formal libraries.

This work addresses theories that are not on this path, it hence challenges the reusabil-

ity of the distributed libraries and demonstrates that they can indeed be reused and

extended.

One of the main characteristics of the methodology deployed in these libraries is small

scale reflection (GM10), a proof methodology which is based on the pervasive use of

computations with symbolic symbols. As a consequence, predicates are formalized as

often as possible as boolean functions and a set of specialized tactics allows the user to

reason on how these functions compute. For instance, it provides powerful automation

for propositional reasoning: in this framework, reasoning in the intutionistically classical

fragment of the Coq logic is almost as convenient as it could be in a fully classical system.

Boolean representations play a role that goes beyond automation. They also affect the

manipulation of dependent types, especially dependent pairs (also called Σ-types). The

SSReflect library on polynomials illustrate this fact as described in section 2.3.

2.3. Representation of polynomials

In SSReflect libraries polynomials are represented by a big endian list of coefficients

in the monomial basis. A polynomial function can easily be defined from such a list

through the Horner evaluation scheme. A bare list of coefficients would however not

provide a canonical representation since the same polynomial can be represented by an

infinite number of coefficient lists, only differing by the number of tail zeroes. The actual

definition is the following one:

Record polynomial R :=

Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.

A polynomial is hence represented by a dependent pair consisting of a list polyseq of

type (seq R) and a proof that the last element of this list is non zero (this proof is not

given a name, hence the use of the character). The type (polynomial R) is used with

the notation {poly R}. The parameter R is the type of the coefficients. It should in fact

be equipped with a ring structure, which provides the zero element used in the test of

the proof component.

The constant zero polynomial is represented by the empty list. A constant non zero

polynomial is represented by a list with a single element. The monomial X is represented

by the list [0, 1], where 1 and 0 are the one and zero constants of the underlying coefficient

ring. More generally, a non zero polynomial of degree n+ 1 is represented by a list with

n + 1 elements. The :> symbol indicates that the polyseq constructor is declared as a

coercion: a polynomial can at any time be seen as a list of coefficients, forgetting about

the proof that it is in normal form.

In this representation, comparing two polynomials seems to amount to comparing

component-wise two dependent pairs: the first components of the two pairs being the

A formal study of Bernstein coefficients and polynomials 5

actual polynomials, and the second components of the pairs being the proofs that they

are in normal form. The calculus of inductive constructions underlying the Coq system

is not proof irrelevant: two proofs of the same statements are not equal in general. Hence

a naive design of these polynomials as dependent pairs would lead to an uncomfortable

situation where two equal lists of coefficients would not necessarily give two equal poly-

nomials because they would be associated with two different proofs of normalization. Yet

if proof irrelevance does not hold in general, two proofs of the same boolean equality

are nonetheless provably equal in the calculus of inductive constructions without axiom.

This is known as boolean proof irrelevance.

If the type R of coefficients is equipped with a boolean equality test, the second compo-

nent of polynomials becomes a proof that a certain boolean is equal to the boolean true,

and hence a proof of a boolean equality. Comparing two polynomials now boils down to

comparing only their first component, and the equality of the proof components is given

by boolean proof irrelevance. This kind of proof irrelevant dependent pairs is widely used

in SSReflect libraries, which therefore provide a generic infrastructure to manipulate

comparisons of their inhabitants. Moreover, again thanks to the infrastructure of SSRe-

flect libraries, polynomials canonically inherit from the boolean comparison available

on coefficients, lifted to the element-wise comparison of lists.

2.4. Criteria for the existence of a unique root

We concentrate on a sufficient criterion for the existence of a root inside an interval. Our

criterion is based on slopes.

Ensuring that the slope is positive or negative in some interval helps making sure that

there are not more than one root in this interval. In our setting, where the polynomials we

consider only have simple roots, we have the stronger property that the slope is separated

from 0 by a given ratio. In the case of positive slopes, we write the slope requirement for

a polynomial p inside a given interval I as follows:

Definition 2.1 (Slope requirement (positive case)). A polynomial p satisfies the

positive slope requirement if:

∃k, (0 < k ∧ ∀x y, [x ∈ I ∧ y ∈ I ∧ x < y ⇒ k(y − x) < p(y)− p(x)])

We also define the analogous requirement for negative slopes.

Depending on the kind of interval that we will consider, we will use two different

sufficient conditions to express the existence of a single root in the interval.

1 If the interval is bounded, we express that the interval can be decomposed into three

parts, the first part I1 where the polynomial’s value is always negative (resp. positive),

the second part I2 where the polynomial’s value goes from negative to positive (resp.

from positive to negative) with a requirement on the slope, and the third part I3
where the polynomial’s value is always positive (resp. negative). This is illustrated in

Figure 1).

2 If the interval is unbounded, we express that the interval can be decomposed into

two parts, the first part I1 where the polynomial’s value is always negative (resp.

Y. Bertot, F. Guilhot and A. Mahboubi 6}
} } }

Fig. 1. A sufficient criterion for the existence of a single root in a bounded interval

positive), and the second part I2 where there is a requirement on the slope with a

positive (resp. negative) slope. This is illustrated in Figure 2.

}

Fig. 2. A sufficient criterion for the existence of a single root in an unbounded

interval

2.5. Finding locations where a polynomial’s value is arbitrarily small

In classical mathematics dealing with real closed fields, once we know that the poly-

nomial takes values of opposite sign at the bounds of an interval, we know that there

is a root for this polynomial in this interval, thanks to the intermediate value theorem.

For this work, we establish a simplified constructive, real point free, replacement of the

intermediate value theorem specialized for polynomials. In our setting with a field that is

only guaranteed to be ordered and archimedean, we can’t be sure to produce a value on

which the polynomial of interest evaluates to zero, but we are able to produce an input

for which the polynomial’s absolute value is arbitrarily close to zero. The statement we

prove has the following form:

A formal study of Bernstein coefficients and polynomials 7

Theorem 2.1 (Weak intermediate value theorem for polynomials).

∀p x y ε, x < y ∧ 0 < ε ∧ p(x) < 0 ≤ p(y)

⇒ [∃x′ y′,−ε ≤ p(x′) < 0 ≤ p(y′) ≤ ε ∧ x ≤ x′ < y′ ≤ y]

Proof. We again rely on reasoning about slopes. Without loss of generality, we can

assume that the two values x and y are positive. Assuming that the polynomial p has

the shape a + X × p1, we construct another polynomial p2 whose coefficients are the

absolute values of the coefficients of p1. This polynomial p2 is increasing so its maximum

value in [x, y] is reached in y. We prove that the slope of the polynomial between any

two points inside [x, y] is smaller than k = p2(y). Thus, we establish that the slope of

any polynomial is bounded in absolute value on any bounded interval. In particular, for

any z, t ∈ [x, y], we have

|p(z)− p(t)| ≤ |k × (z − t)|.

For a given ε, because we work in an archimedean field, we can choose an n such that
k(y−x)

n
< ε We then consider the n + 1 values ai = x + i×(y−x)

n
for i = 0 . . . n and we

solve a discrete problem over the values ai. We simply need to find the largcmpest prefix

a0, . . . , aj−1 such that all values p(ak) in this prefix are negative. We can set x′ = aj−1,

because the next value p(aj) is necessarily non-negative and p(aj) − p(x′) < ε, thus

−ε < p(x′) < 0. In a similar way, we can set y′ = aj because 0 ≤ p(y′) < ε.

Our algorithm is illustrated in Figure 3. The point selected by our algorithm is a8, even

though there are more roots in the vicinity of a1 and a2 but neither a1 nor a2 is a point

where the polynomial takes a positive value.

Fig. 3. Bounding a polynomial’s value

This theorem provides a similar result to theorem 6.1.4 from (TvD88), but the proof in

that book relies on a more complete description of abstract topology than we performed of

our development, where opens and their properties with respect to continuous functions

are not mentioned. The next theorem 6.1.5 from (TvD88) makes it possible to construct

a Cauchy sequence to a root of the continuous function being considered. A variant of

our theorem would also make this possible, but this was not needed for our purposes.

Y. Bertot, F. Guilhot and A. Mahboubi 8

(a)
(b)

(d)

(c)
(e)

(a) non-negative coefficients and a non-zero constant coefficient,

(b) non-negative coefficients and a zero constant coefficient,

(c) a negative constant coefficient and all others non-negative,

(d) one sign change and a zero constant coefficient,

(e) one sign change and a negative constant coefficient

Fig. 4. Classes of polynomials with or without sign change

3. A simple form of Descartes’ law of signs

One of the main results studied in this paper is that having only one sign change in the

sequence of Bernstein coefficients for the square-free polynomial p and the interval (l, r)

ensures that there is only one root of p inside (l, r). The proof of this result relies on a

similar property for the standard coefficients of another polynomial q: if there is only one

sign change in the coefficients of q then q has only one root inside the interval (0,+∞).

In this section, we discuss how this property is proved formally.

3.1. A Geometrical explanation of the proof

Let’s first describe a simple graphical argument based on curves for polynomial functions

between 0 and +∞, as shown in Figure 4. To describe our proof, we rely on an inductive

view of polynomials where new polynomials are built from existing ones by multiplying

them by the polynomial X and adding a constant; this operation is known as “Horner’s

scheme”. Polynomials with one sign change and a positive leading coefficient are obtained

by starting with a positive constant, applying Horner’s scheme a certain number of times

with non-negative constants, then applying it with a negative constant, and then applying

it again a certain number of times with non-positive constants.

Polynomials with only non-negative coefficients have curves which look like the curves

(4-a) or (4-b) depending on whether the first coefficient is 0, adding a positive coefficient

to a polynomial of the form (4-a) or (4-b) yields a polynomial of the form (4-a), multiply-

ing a polynomial of the form (4-a) or (4-b) by the polynomial X yields a new polynomial

of the form (4-b). Thus, Horner’s scheme with non-negative constants keeps polynomials

A formal study of Bernstein coefficients and polynomials 9

in the (a-b) form. Then, when applying Horner’s scheme with a negative coefficient (thus

introducing a sign change), the multiplication by X first builds a polynomial of the (4-b)

form, and adding a negative constant, one obtains a curve whose shape is given by (4-c).

From then on, multiplying a polynomial of the form (4-c), (4-d), or (4-e) by X yields a

polynomial of the (4-d) form; adding a negative constant to a polynomial of the form

(4-d) or (4-e) yields a polynomial of the (4-e) form. Polynomials of the form (4-d) or (4-e)

share the following characteristic: there exists a positive value x, such that the polyno-

mial has a negative value between 0 and x, and the slope of the curve is strictly positive

above x. Because of the slope condition, we can also find a point where the polynomial

is positive.

Let us now give a more precise proof, outlining the concepts that are used in the formal

proof.

3.2. Lemmas for polynomials with non-negative coefficients

Polynomials are simply encoded by their lists of coefficients, evaluating a polynomial at

a given point is done recursively following Horner’s scheme, and recognizing polynomials

with only non-negative coefficients is also done using a simple recursive function, written

in the following form:

Fixpoint all_pos_or_zero (l : seq Q) : bool :=

if l is a::tl then (0 <= a) && all_pos_or_zero tl else true.

The type Q refers to the ordered field parameterizing the development, (0 <= a) is a

boolean value, and the type constructor seq is a type for lists of elements in a type

equipped with a boolean equality test.

We should notice that polynomials satisfying the boolean predicate all pos or zero

may contain no positive coefficients: for this reason, we cannot guarantee that they are

increasing or strictly positive anywhere between 0 and +∞.

We prove easily by induction on lists that if they contain only non-negative coefficients,

then the corresponding polynomial always has a non negative value for inputs in (0,+∞)

and from then, we also prove by induction that any polynomial with only non-negative

coefficients is constant or increasing.

We then prove that for every polynomial p with non-negative coefficients, the product

x× p(x) can be made arbitrarily close to 0 while x stays in (0,+∞).

3.3. Two lemmas on slopes

A first lemma on slopes concerns the existence of points where a polynomial p takes a

value above an arbitrary bound a. If the slope is bounded below by a positive ratio k,

this is guaranteed as it suffices to take an input that is large enough. As the proof is

constructive, we need to be more precise: assuming the slope is larger than k for any

y larger than x1, it suffices to take any input larger than x1 + a−p(x1)
k

. This result is

remembered in our development under the name above_slope.

A second lemma on slopes concerns the slope of a product of the form x × p(x).

Y. Bertot, F. Guilhot and A. Mahboubi 10

This lemma reproduces the known formulas for the derivative of products of derivable

functions, but is expressed solely in terms of lower bounds of slopes: If a function f has

a slope larger than or equal to a non-negative ratio kf when x is larger than a certain

bound a, then the slope of the product x× f(x) is larger than akf + f(x).

This statement requires f to have a positive slope, but it leaves open whether f(x) is

positive or not. In particular, the values a and kr can be fixed for a large interval: we

intend a to be the lower bound of interval I2 as used in the criterion for existence of a

unique root in an unbounded interval (see Figure 2).

3.4. Polynomials with exactly one sign change

We can now address the case of polynomials with exactly one sign change. We want

to show that these polynomials have exactly one root. We exhibit the two intervals

described in the criterion for unbounded intervals (see Figure 2) the positive value x1

and the positive ratio k such that the polynomial is negative in the interval (0, x1) and

the slope between any two values above x1 is larger than k.

To detect polynomials with exactly one sign change, we use two recursive functions. The

first one, which we call alternate 1, recognizes polynomials with at least one positive

coefficient, preceded by any number of non-positive coefficients (possibly 0), and followed

by only non-negative coefficients, as checked by all pos or zero. This function is defined

as follows:

Fixpoint alternate_1 (l:seq Q) : bool :=

if l is a::tl then

if 0 < a then all_pos_or_zero tl else alternate_1 tl

else false.

The second function, which we call alternate, checks for the presence of at least one

negative coefficient and then calls alternate 1.

As we have two recursive functions, alternate 1 and alternate, we actually need to

perform two proofs by induction. Each proof by induction shows that some invariant is

satisfied.

The invariant for alternate 1 must be satisfied by a polynomial p that may or may

not contain a negative coefficient, so that this invariant cannot guarantee the existence

of places where the polynomial takes a negative value. Instead, this invariant guarantees

for any positive ε the existence of a positive x and a k such that:

1 for any y between 0 and x, p(y) ≤ p(x) ,

2 the slope between two points larger than x is guaranteed to be larger than k,

3 the number x× p(x) is between 0 and ε.

The invariant for alternate is exactly the criterion we use to describe the existence

of exactly one root in an unbounded interval as in section 2.4. This proof by induction is

done by induction on the list. The empty list does not satisfy the predicate alternate so

that this case is easily taken care of. The other case is when the polynomial is described by

a list of the form a::l, so that l represents another polynomial pl and p(x) = a+x×pl(x).

Here another case distinction must be studied, depending on whether a is zero or negative.

A formal study of Bernstein coefficients and polynomials 11

If a is negative, we cannot use an induction hypothesis, because in this case l is only

guaranteed to satisfy the predicate alternate 1. On the other hand, the invariant for

alternate 1 guarantees the existence of an x such that x× pl(x) is positive and smaller

than −a, this x is the right witness and the slope is pl(x). Since pl(y) ≤ pl(x) when y < x

it is easy to prove that a + y × pl(y) = p(y) is negative when 0 < y ≤ x. To reason on

the slope, we use our lemma about the slope of x × pl(x), using 0 as a lower bound for

the slope of pl (we only know that it is increasing).

If a is zero, we have by induction hypothesis that there exist x and k such that pl is

negative on the left of x and has a slope larger than k on the right of x. However, this does

not guarantee that x is the right witness for p because the slope of x×pl(x) is only larger

than pl(x)+x×k, and pl(x) is negative. The solution is to note that pl necessary takes a

positive value in some point v1 on the right of x and to use our constructive intermediate

value theorem from section 2.5 to build a new value x1 such that −kv1

2 ≤ pl(x1) ≤ 0 and

x1 < v1. Now pl is still guaranteed to be negative between x and x1, because of the slope

condition, and the slope on the right of x1 is guaranteed to be larger than kv1

2 , which is

positive.

4. Bernstein polynomials, Bernstein coefficients

Bézier curves (Béz86) are parametric curves that are widely used to construct smooth

plane curves whose shapes are governed by a finite finite number of control points. A

Bézier curve controlled by n + 1 points is a polynomial expression of degree n in its

parameter t. For instance, given two points P0 and P1, the corresponding Bézier curve is

the segment B(P0,P1)(t) = tP0 + (1− t)P1. For three control points P0, P1, P2, the Bézier

curve is B(P0,P1,P2)(t) = (1− t)2P0 +2(1− t)tP1 + t2P2. We already see in this case that

a Bézier curve does not meet all its control points. In fact, it is only guaranteed to pass

through the first and the last control point. In the case of the quadratic Bézier curve,

the middle control point P1 is the intersection of the tangents to the curve at P0 and P2.

The general formula giving the Bézier curve with n+ 1 control points is:

B(P0,...,Pn)(t) =

n
∑

k=0

(

n

k

)

(1− t)n−ktkPi

which satisfies the recursive relation:

B(P0,...,Pn)(t) = (1− t)B(P0,...,Pn−1)(t) + tB(P1,...,Pn)(t)

Bézier curves are named after the engineer Paul Bézier who was working in the design

division of a car manufacturing company. These curves have very interesting properties

for interpolation but also for computer graphics: a Bézier curve is contained in the convex

hull of its control points and uniform transformations on the control points like translation

or rotation have the same effect on the curve. Points control the shape of the curve since

the k-th derivative of the curve at its extreme points is governed by the k + 1 nearest

control points.

Computer graphics algorithms usually use piecewise polynomial paths (called splines)

Y. Bertot, F. Guilhot and A. Mahboubi 12

of low degree. Bézier curves are often used to build these splines, resulting in the so-

called Bézier splines. Most modern vector graphics standards, like for instance SVG,

feature support for Bézier splines. TrueType fonts use quadratic Bézier splines, whereas

PostScript or MetaFont (Knu86) use cubic Bézier splines.

Bernstein polynomials are defined as the weight assigned to each control point: the

k-th Bernstein polynomial Pb(n, k) is defined by:

B(P0,...,Pn)(t) =

n
∑

k=0

Pb(n, k)(t)Pk

hence:

Pb(n, k)(t) =

(

n

k

)

(1− t)n−ktk

For arbitrary numbers l and r, we can also consider the following polynomials, called

the Bernstein polynomials for degree n and the interval (l, r) for 0 ≤ k ≤ n

Pb(n, l, r, k) =

(

n

k

)

(x− l)k(r − x)n−k

(r − l)n

These polynomials also constitute a basis of the vector space of polynomials of degree

n, and we will usually call it the Bernstein basis leaving the degree and the values l

and r unspecified. Every polynomial p of degree n hence has a sequence of coefficients

(bi)0≤i≤n, such that p(x) =
∑n

i=0 biPb(n, l, r, i)(x). The coefficients bi are the Bernstein

coefficients of p.

When l < r, the Bernstein polynomials are positive on (l, r) and each polynomial of

index k reaches its maximum at the point dk = l + (r−l)k
n

, so that each coefficient bk
somehow has a dominant influence on the value of the polynomial around dk. Moreover,

the coefficients
(

n
k

)

included in the definition of Pb(n, l, r, k) are chosen in such a way

that the k-th coefficient bk of p would tend to have a value close to the one of p in dk. For

instance, if p1 is the constant polynomial with value 1, then all its Bernstein coefficients

are equal to 1; similarly, if p2 is the identity polynomial, and n is larger than 0, then

the Bernstein coefficients for p2 are l + (r−l)k
n

, as can be verified using the following

computation:

n
∑

i=0

(

l +
(r − l)i

n

)(

n

i

)

(x− l)i(r − x)n−i

(r − l)n

=
n
∑

i=0

l

(

n

i

)

(x− l)i(r − x)n−i

(r − l)n
+

n
∑

i=0

i

n

(

n

i

)

(x− l)i(r − x)n−i

(r − l)n−1

= l
((x− l) + (r − x))n

(r − l)n
+

n
∑

i=1

(

n− 1

i− 1

)

(x− l)i(r − x)n−i

(r − l)n−1

= l + (x− l)

n−1
∑

i=0

(

n− 1

i

)

(x− l)i(r − x)(n−1)−i

(r − l)n−1

= l + (x− l)
((x− l) + (r − x))n−1

(r − l)n−1
= x

A formal study of Bernstein coefficients and polynomials 13

(a) 1, 3, -10, 1, 4, 1 (b) 1, 3, -1, 1, 4, 1 (c) 3, 0, 1, 10, -2, -1

Fig. 5. Bernstein Control points and corresponding polynomial curves

At the first equality sign, we distribute inside the first sum; in the second term, we simplify

the denominator with the numerator (r − l). At the second equality sign, we recognize

that the first term contains a binomial formula corresponding to ((x− l) + (r − x))n; in

the second term, we recognize that the first element of the sum can be removed because

it is 0, also we recognize that i
n

(

n
i

)

is
(

n−1
i−1

)

when i 6= 0. At the third equality sign, we

use the equality (x− l) + (r− x) = r− l for the first term and we factor out (x− l) from

the remaining indexed sum and re-index that sum. We then recognize another binomial

formula and can conclude.

The Bernstein coefficients are related to a broken line (made of contiguous straightline

segments) which gives a rough approximation of the polynomial’s function graph. More

precisely, given the bounds (l, r) of the interval, and the Bernstein coefficients (b0, . . . , bn)

of polynomial p, the n + 1 points with coordinates (l + i r−l
n

, bi) are the control points

for the Bézier curve that coincides with the polynomial’s graph. This is illustrated in

Figure 5.

In Figure (5-a) the illustration shows that a peak in the disposition of the control points

corresponds to an inflexion in the polynomial’s curve (the Bernstein coefficients are 1, 3,

-10, 1, 4, 1 and -10 corresponds to a downward peak). In this case, the peak provokes

two sign changes, which are reproduced in the shape of the curve and correspond to the

existence of two roots inside the interval. In Figure (5-b), the coefficients still exhibit a

downward peak with a negative coefficient, but the polynomial’s curve stays away from

the x-axis and the two sign changes in the Bernstein coefficients do not correspond to

any real root for the polynomial (this is a false alert). In Figure (5-c), there is one sign

change, so that the first and last coefficients have opposite signs. In fact, the first and

the last Bernstein coefficients are equal to the values of the polynomial at the bounds

of the interval, so this imposes the existence of at least one root. But because there is

exactly one sign change in the coefficients, we can be sure that any other bend in the

curve stays away from the x-axis.

Y. Bertot, F. Guilhot and A. Mahboubi 14

5. From Bernstein to Descartes

In this section, we clarify the polynomial transformations that link the problem of finding

the roots of a polynomial inside an arbitrary bounded interval (l, r) successively with the

problem of finding the roots of another polynomial inside the interval (0, 1) and with

the problem of finding the roots of yet another polynomial inside the interval (0,+∞).

These transformations make it possible to compute another collection of coefficients,

which happen to be very simply related to Bernstein coefficients.

5.1. A criterion for the interval (1,+∞)

Descartes’ weak law of signs gives us a sufficient condition to determine when the un-

bounded interval (0,+∞) contains exactly one root for a polynomial. Through a change

of variable, we obtain a similar criterion for the interval (1,+∞).

In the following, we will call θv the transformation that maps any polynomial p to the

polynomial y 7→ p(y + v). If p =
∑n

i=0 aix
i, we have the following formula:

p(y + v) =

n
∑

i=0

ai(y + v)i =

n
∑

k=0

(

n
∑

i=k

ai

(

i

k

)

vi−k)yk

The polynomial p has exactly one root in the interval (v,+∞) if and only if the

polynomial θv(p) has exactly one root in the interval (0,+∞). We proved this lemma.

Thus, if we apply Descartes’s law of signs on the coefficients
∑n

i=k ai
(

i
k

)

we can obtain

a sufficient criterion for the existence of exactly one root of the polynomial p =
∑n

i=0 aix
i

in the interval (1,+∞).

5.2. A criterion for the interval (0, 1)

Descartes’ law of signs works for unbounded intervals. In this section, we see how to

cover also bounded intervals. The trick here relies on reversing the polynomial’s list of

coefficients. Obviously, the number of sign changes in a list of coefficients is the same as

the number of sign changes in the reversed list.

However, the roots of a polynomial on the interval (1,+∞) are in one-to-one corre-

spondence with the roots of the reversed polynomial in (0, 1). This is due to the following

equation:
n
∑

i=0

aix
i = xn ×

n
∑

i=0

aix
i−n

We can now perform another change of variable, here y = 1/x and a change of index

j = n− i in the sum.
n
∑

i=0

aix
i = (

1

y
)n

n
∑

j=0

an−jy
j

The polynomial
∑n

j=0 an−jy
j is exactly the reversed polynomial in y, and the expression

(1
y
)n never becomes 0 for y ∈ (0, 1). Thus, x is a root of the polynomial between 1 and

+∞ if and only if y = x−1 is a root of the reversed polynomial between 0 and 1.

A formal study of Bernstein coefficients and polynomials 15

Fig. 6. Curves of x2 + 3
2x− 1 (solid line) and its reverse −x2 + 3

2x+ 1 (dashed)

Let us note ρ the function that computes the reverse of a polynomial. Here we need

to be precise: the coefficients of a polynomial of degree n actually are the coefficients of

a vector in an n+ 1 dimensional space, whose basis is made of the monomials Xi where

i ∈ {0, . . . , n}. Seen as an operation on this vector space, ρ is an involutive automorphism.

But polynomials of degree less than n are also elements of this vector space and the reverse

operation must be understood as reversing the list of coefficients of length n+1 obtained

by padding the polynomials description with enough 0 coefficients.

To illustrate the correspondence between a polynomial and its reverse, we can consider

the polynomial p(x) = x2 + 3
2x− 1, the reversed polynomial is q(x) = −x2 + 3

2x+ 1 and

after the variable change we obtain the polynomial −x2 − 2x + 1 which exhibits only

one sign change. This predicts that the polynomial has exactly one root between 0 and

1, and indeed the two roots of the initial polynomial are -2 and 1/2. This is illustrated

in Figure 6 where the curve with a solid line is the curve for the polynomial p, while

the curve with a dashed line is the curve for the polynomial q, which has a single root

between 1 and +∞.

As a conclusion, we can establish a correspondence between unique roots in (1,+∞)

of a polynomial p and unique roots in (0, 1) of the polynomial ρ(p). When working in a

field that is only guaranteed to be ordered and archimedean, this correspondence works

by linking the criterion for unbounded intervals with the criterion for bounded intervals.

The proof of this correspondence involves the computation of the slope for xnp(1/x) from

the slope of p, which makes it trickier than other proofs of this section. This is again a

place where our constructive intermediate value theorem plays a role.

5.3. Handling arbitrary bounded intervals

The next step is to relate the roots of any polynomial inside an arbitrary interval (l, r)

with the roots of another polynomial inside the interval (0, 1). This is done with another

change of variable, this time x = (r − l)y + l. In other words, the polynomial function

which maps any x to p(x) has a root between l and r if and only if the polynomial

function which maps any y to p((r − l)y + l) has a root between 0 and 1.

Here again, we can define a generic transformation on polynomials, named χk that cor-

responds to expanding with a given ratio k. For an arbitrary polynomial p =
∑n

i=0 aiX
i,

Y. Bertot, F. Guilhot and A. Mahboubi 16

Fig. 7. Curves of a polynomial inside (2, 4) and the corresponding transformed

polynomial inside (0, 1)

the polynomial χk(p) is defined as follows:

χk(p) =

n
∑

i=0

ai(kX
i) =

n
∑

i=0

aik
iXi

Thus, the change of variable to study the roots of polynomial p is actually represented

by χr−l ◦ θl.

The geometric effect of the polynomial transformation is illustrated in Figure 7, where

the shape of the curve for the polynomial x3

8 − x2

8 + 3x inside the interval (2, 4) is

reproduced by the shape of the curve for the polynomial x3 − 5
2x

2 − 2x + 3
2 inside the

interval (0, 1).

5.4. Recapitulating operations

In our formal development, we defined the three operations for translating (θ), expand-

ing (χ), and reversing the list of coefficients (ρ). We can then compute a sequence of

coefficients by applying the transformation

τ = θ1 ◦ ρ ◦ χr−l ◦ θl.

When the coefficients we obtain have exactly one sign change, we know that the polyno-

mial has exactly one root inside the interval (l, r).

By construction, each of the operation θ, ρ, χ actually is a linear application of the

vector space of polynomials of degree less than n into itself. The inverse of θa is θ−a, and

this is easily proved, so that θa is always bijective. When k is nonzero, the inverse of χk

is χ 1

k

, so this linear application is also bijective. The inverse of ρ is itself. As a result,

the whole transformation is also inversible and its inverse is

τ−1 = θ−l ◦ χ 1

r−l

◦ ρ ◦ θ−1.

We proved that the images of the monomials Xi by this inverse transformation are

multiples of the Bernstein polynomials, in reverse order. Let us first observe the effect of

A formal study of Bernstein coefficients and polynomials 17

ρ ◦ θ−1:

τ−1(xi) = θ−l ◦ χ 1

r−l

◦ ρ

i
∑

j=0

(

i

j

)

(−1)jxi−j

 = θ−l ◦ χ 1

r−l

i
∑

j=0

(

i

j

)

(−1)jxn−i+j

= θ−l ◦ χ 1

r−l

xn−i

i
∑

j=0

(

i

j

)

(−x)j

= θ−l ◦ χ 1

r−l

(

xn−i(1− x)i
)

Then let’s observe the effect of θ−l ◦ χ 1

r−l

.

τ−1(Xi) = θ−l

(

xn−i

(r − l)n−i

(

1−
x

r − l

)i
)

= θ−l

(

xn−i

(r − l)n−i

(r − l − x)i

(r − l)i

)

= θ−l

(

xn−i(r − l − x)i

(r − l)n

)

=
(x− l)n−i(r − l − (x− l))i

(r − l)n

=
1
(

n
i

) (Pb(n, l, r, n− i))

If the transformation τ(p) leads to a sequence of coefficients ci, this means τ(p) =
∑n

i=0 cix
i. Now, using the fact that both τ and τ−1 are linear, we can see that the

polynomial p is

p = τ−1

(

n
∑

i=0

ciX
i

)

=

n
∑

i=0

ciτ
−1(xi)

=

n
∑

i=0

ci
1
(

n
i

)Pb(n, l, r, n− i)

Thus, the Bernstein coefficients are obtained in the following manner:

bi =

(

n

n− i

)−1

cn−i =

(

n

i

)−1

cn−i

Since the number of sign changes does not depend on the order in which the list is ob-

served, we obtain the proof that one sign change in the sequence of Bernstein coefficients

implies the existence of a root in the interval (l, r).

Y. Bertot, F. Guilhot and A. Mahboubi 18

Fig. 8. Bernstein control points for halved intervals

6. Dichotomy

Bernstein coefficients give precise information when they exhibit either zero or one sign

change. In the first case, we have the guarantee that there are no roots of the considered

polynomial in the considered interval. In the second case, we have the guarantee that

there is exactly one root.

When Bernstein coefficients exhibit more than one sign change, no conclusion can be

drawn about the existence and unicity of roots in the interval. For instance, in Fig-

ure (5.b), the Bernstein coefficients exhibit two sign changes, but there is no root inside

the interval. When facing this kind of inconclusive information, the solution is to refine

the approximation given by the control line.

6.1. Geometric intuition for dichotomy

When cutting an interval in two halves, the number of control points is approximately

doubled, because each of the new half-intervals receives a new sequence of n Bernstein

coefficients. As a result, the control points are closer to each other and to the polynomial’s

curve and they give a more accurate account of the curve’s position with respect to the

real x-axis. This is illustrated in Figure 8, where the initial Bernstein coefficients exhibit

two sign changes, which are needed to account for the bend in the first half of the interval

(a positive local minimal, but expressed by a negative Bernstein coefficient). In the halved

interval two more points are added in the vicinity of the bend, and none of the control

points have to be negative anymore.

In Figure 8, the dotted line represents the polynomial’s curve, the solid line links the

control points for the largest interval, marked by round bullets (the Bernstein coefficients

are 1, 3, -1, 1, 4, 1 for this interval). The dashed line links the control points for the two

half intervals, marked by square boxes (the Bernstein coefficients are 1, 2, 1.5, 1, 0.9375,

1.15625 for the first interval, and 1.15625, 1.375, 1.875, 2.5, 2.5, 1 for the second interval).

This figure illustrates that the control line really gets closer to the polynomial’s curve,

and provides a much better approximation of the polynomial.

The formula given in section 4 is useful to compute an initial series of Bernstein

A formal study of Bernstein coefficients and polynomials 19

coefficients, and the correctness of the conditions for existence of roots based on these

coefficients can be justified using the transformation described in section 5.4.

It may seem that computing Bernstein coefficients is a costly process. Around 1950,

while studying Bézier curves, De Casteljau noticed that the coefficients for the sub in-

tervals were easy to compute from the coefficients for the big interval through a simple

recursive process, exploiting the recurrence relation already given in section 4. This sug-

gests another recursive algorithm, starting from a large interval that is guaranteed to

contain all the roots of a polynomial (see section 6.2) and splitting this interval into

smaller pieces until all roots have been isolated (see section 6.3).

6.2. Initialization

Given an arbitrary non constant polynomial p of degree n, defined by p =
∑n

i=0 aiX
i it

is actually possible to bound the absolute values of its roots by a simple constant defined

from the coefficients ai(i = 0 . . . n), called the Cauchy bound (BPR06):

Theorem 6.1 (Cauchy bounds).

∀x ∈ R, p(x) = 0 ⇒ |x| ≤ C(p) with C(p) =

n
∑

i=0

|ai|

|an|

Proof. Let x be a root of p. If |x| ≤ 1, since 1 ≤ C(p), the inequality trivially holds.

Then if |x| > 1, since x is a root, and an 6= 0

xn = −
1

an

n−1
∑

i=0

aix
i

Hence:

|x|n ≤
1

|an|

n−1
∑

i=0

|ai||x|
i ≤

1

|an|

n
∑

i=0

|ai||x|
i

by triangular inequality. Then:

|x| ≤
1

|an|

n−1
∑

i=0

|ai||x|
i−(n−1) ≤

1

|an|

n−1
∑

i=0

|ai|

since |x| > 1 implies that forall i = 0 . . . n− 1, |x|i−(n−1) ≤ 1. Finally since:

1

|an|

n−1
∑

i=0

|ai| ≤
1

|an|

n
∑

i=0

|ai|

we have |x| ≤ C(p).

This means that to start studying the roots of a polynomial p we can restrict the

infinite real line to a bounded interval (−C(p), C(p)). This justifies we can start a real

root isolation process by providing the initial interval of interest. On this first interval,

we compute Bernstein coefficients from the transformations presented in the previous

section. Then in case of more that one sign change, we continue by invoking the splitting

de Casteljau algorithm explained in the next subsection.

Y. Bertot, F. Guilhot and A. Mahboubi 20

6.3. Splitting algorithm

Given three pairwise distinct rational numbers l, r,m, there exists an efficient algorithm

to deduce the two respective lists of Bernstein coefficients of a polynomial p on intervals

(l,m) and (m, r) from the list of Bernstein coefficients of p on interval (l, r).

Let b be the sequence of Bernstein coefficients of a polynomial p of degree n for an

interval (l, r). Let m be a number distinct from l and r. We pose α = m−l
r−l

and β = r−m
r−l

.

The de_casteljau algorithm is defined recursively by:

Variables (alpha beta : Q).

Fixpoint de_casteljau (b : nat -> Q) (n : nat) :=

match n with

| O => b

| i.+1 => fun j =>

(alpha * de_casteljau b i j + beta * de_casteljau b i j.+1)

end.

where the initial sequence of coefficients b is represented by an infinite sequence of rational

numbers, for which only the first n elements are relevant. The following function gives

the Bernstein coefficients of p on the finite interval (l,m).

Definition dicho’ alpha beta c i :=

de_casteljau alpha beta c i 0.

The following function gives the Bernstein coefficients of p on the finite interval (m, r).

Definition dicho alpha beta p c i :=

de_casteljau alpha beta c (p - i) i.

Observing the function de_casteljau more precisely, we see that the algorithm actu-

ally proceeds by creating a succession of lines where the element at rank j in a given line

is obtained by computing a weighted sum of the two elements at rank j and j+1 on the

previous line.

This process can be illustrated geometrically by a succession of broken lines. For the

first line, we take the control line of the initial interval. Then, for each of the segments that

compose this control line, we cut this segment in the same proportion as the proportion

in which the interval is split between (l,m) and (m, r). This gives us a new collection of

points. We started with n+1 control points and thus had n segments, we now have n new

points, defining n−1 new segments. We repeat this process with the new segments, until

we reach a situation where there is only one segment and we again split this segment

into two parts in proportion of (l,m) and (m, r). The last point is guaranteed to lie on

the polynomial’s curve.

Although we actually only use de Casteljau’s algorithm when m is the midpoint of

the initial interval, it works for any relative positions of l, m, and r, as long as they are

pairwise distinct.

The different points computed by the de Casteljau algorithm are represented on Fig-

ure 9. The innermost points are the control points in the two new bases, computed

from the original control points {B0, . . . , B5}. The middle innermost control point, on

A formal study of Bernstein coefficients and polynomials 21

the curve, belongs to the two new lists of control points. Points {C0, . . . , C5} are the

control points in the left half, {D0, . . . , D5} are the control points on the right half.

De Casteljau’s algorithm is extensively used in computer graphics for rasterizing Bézier

curves.

B0 = C0

B1

B2 B3

B4

B5 = D5

C1

C2

C3

C4 C5
 =
D0

D1

D2

D3

D4

Fig. 9. Intermediate points computed by de Casteljau’s algorithm on [B0, B5]

The aim of this section is to prove that this algorithms is correct, i.e. that the dicho and

dicho’ function indeed computes the expected Bernstein coefficients. The correctness

theorems as stated in Coq are:

Lemma dicho’_correct : forall (l r m : Q)(q : {poly Q})(p : nat)

(c : nat -> Q)

(alpha := (r - m) * (r - l)^-1) (beta := (m - l) * (r - l)^-1),

m != l ->

q = \sum_(i < p.+1)(c i) * bernp l r p i ->

q = \sum_(j < p.+1)(dicho’ alpha beta c j) * bernp l m p j.

Lemma dicho_correct : forall (l r m : Q)(q : {poly Q})(p : nat)

(c : nat -> Q)

(alpha := (r - m) * (r - l)^-1) (beta := ((m - l) * (r - l)^-1)),

m != r ->

q = \sum_(i < p.+1)(c i) * bernp l r p i ->

q = \sum_(j < p.+1)(dicho alpha beta p c j) * bernp m r p j.

where (bernp l r p i) is the i-th polynomial in the Bernstein basis of degree p with

parameters l and r.

The properties of computations performed by the de Casteljau algorithm are summa-

rized on Figure 10. Starting from the input list b = (b
(0)
0 . . . b

(0)
p) of coefficients in the

basis with parameters l and r, on the upper side of the triangle, it computes the full

triangle, so that in the end the two expected output lists can be read on the two other

sides of the triangle. The list b′ = b
(0)
0 . . . b

(j)
0 . . . b

(p)
0 is the list of coefficients in the basis

Y. Bertot, F. Guilhot and A. Mahboubi 22

Fig. 10. Properties of de Casteljau computations

with parameters l and m output by dicho’. The list b′′ = b
(p)
0 . . . b

(p−j)
j . . . b0p is the list

of coefficients in the basis with parameters m and r output by dicho. The small triangle

area on Figure 10 shows which values the computation of an arbitrary given point in

the triangle relies on. This structure is imposed by the fixpoint equation of the recursive

definition of the de Casteljau algorithm:

de_casteljau alpha beta b n.+1 i =

(de_casteljau alpha beta b n i) + (de_casteljau alpha beta b n i.+1)

which looks very similar to the recursive relation governing the Pascal triangle.

Let us first notice that the shape of Bernstein polynomials implies that:

Lemma bern_swap :

forall n i l r,

(i <= n) -> r != l -> bernp r l n i = bernp l r n (n - i).

This remark implies that if b is the list of coefficients of the polynomial p in the Bernstein

basis of degree n with parameters l and r, then the reverse of b is the list of coefficients

of the same polynomial p in the Bernstein basis of degree n with parameters r and l:

Lemma bern_rev_coef : forall (n : nat)(l r : Q)(b : nat -> Q),

\sum_(i < n.+1)(b i) * (bernp l r n i) =

\sum_(i < n.+1)(b (n - i)) * (bernp r l n i).

This remark shows that the correctness of the dicho’ function is enough to get a certified

computation of both Bernstein coefficient lists. If b is the initial list of Bernstein coeffi-

cients with parameters l and r, then reversing b gives the coefficients with parameters r

and l. Applying dicho’ on the reverse of b using r, l, and m computes the coefficients

with parameters r and m, hence reversing this output gives the result expected for dicho

A formal study of Bernstein coefficients and polynomials 23

on b using l, r, and m. Using a similar symmetry on the de_casteljau algorithm, we in

fact reduce the proof of the dicho_correct specification to the proof of dicho’_correct.

By linearity, we can also reduce the proof of the dicho’_correct specification to the

case where the input polynomial p is in fact itself a Bernstein polynomial. This means

that the input coefficient list b only contains zeros except at one position where the

coefficient is one.

Let us first compute the expected output of the dicho’ function on such a list. In

other words, for any distinct rational numbers l, r,m and any n ∈ N, given i ≤ n, we

want to compute the coefficients of:

Pb(n, l, r, i) =

(

n

i

)

(X − l)i(X − r)n−i

(r − l)n

in the basis (Pb(n, l,m, i))i=0,...,n. We pose α = r−m
r−l

and β = m−l
r−l

. In the polynomials

of the new basis, formal denominators are of the form (m− l). By noticing that:

X − l

r − l
= β

X − l

m− l
and

r −X

r − l
= α

X − l

m− l
+

m−X

m− l

and by using the binomial identity:
(

n

i

)(

n− i

j − i

)

=

(

j

i

)(

n

j

)

we obtain that:

Pb(n, l, r, i) =
n
∑

j=i

(

j

i

)

αj−iβiPb(n, l,m, j) (∗)

Now to achieve the proof of the dicho’_correct lemma, it is sufficient to prove that the

values output by the dicho’ function coincide with the ones of (∗), which boils down to

an induction on i.

7. Formalization issues

7.1. Sequences, iterations, polynomials

One of the key features of SSReflect libraries is that they devote a substantial effort

to infrastructure. For instance the library about sequences contains as many operators as

one would expect from a functional language standard library: factories, access, filtering,

surgery. . . plus a comprehensive set of specifications for these operators. For instance,

to construct the subdivision used in the proof of the weak intermediate value theorem

proposed in section 2.5, it is enough to use the following tactic line in the proof:

pose sl := map (fun k => x + (y - x) * (k%:R / (n.+1%:R))) (iota 0 n.+2).

The (iota 0 n.+2) operator constructs the sequence of integers between 0 and n.+2.

Then the map generic list operator maps this sequence to the desired subdivision of the

interval [x, y]. The infix +, * and \ operators are the generic notations respectively for

addition, product and division in a field, here used for the ordered archimedean field

that is a parameter to the development. The %:R annotation is a postfix notation for

Y. Bertot, F. Guilhot and A. Mahboubi 24

the embedding of integers in any ring structure (see section 7.2). Now the index of the

first point in this sequence where the polynomial has a negative value is found by the

following definition:

pose a’_index := find (fun x => p.[x] >= 0) sl.

where again the find operator is a generic construction. The theory available on find is

sufficient to prove all the results needed in the proof.

In the SSReflect distribution, the sequence library is extended with a library about

iterated operations (BGOP08). It provides a comprehensive infrastructure to work with

the finite iteration of operators equipped with some known properties like associativity,

commutativity or distributivity. Although the definition of iteration is naturally based on

a sequence, the library includes a variety of indexing facilities. This library is crucial in

the proof of the de Casteljau algorithm presented in section 6.3, both for the initialization

with Cauchy bounds and for proving the correctness of the computation, that is that the

output coefficients indeed provide a correct decomposition of the initial polynomial on

the Bernstein basis. The \sum operator implicitly carries the properties that the iterated

operation is commutative, associative, and that there is a product law which distributes

over the sum. The \sum_(i < n) notation indicates that the iteration is performed on

the sequence of integers from 0 to n.-1 (meaning the sum might be empty). Manipulations

of these expressions are treated in the generic theory of iterated operators.

Sequences are also the core of the definition of polynomials. The definition given in

section 2.3 however provides little facilities to define a polynomial extensionally, by simply

providing the values of its coefficients. This is made possible by the following construction,

and its associated notation:

Notation "\poly_ (i < n) E" := (Poly (mkseq (fun i : nat => E) n)).

The expression (mkseq (fun i : nat => E)n) builds a sequence containing the n first

values of the function E over natural numbers thanks to the generic mkseq operator. The

variable i is bound in the body expression E. The Poly function of type

forall T, seq T -> poly T normalizes the sequence it takes as argument into a poly-

nomial, so that the tail zeroes are erased and a proof of normal form is added to the

obtained sequence. Hence the size of the (sequence contained in the) polynomial \poly_

(i < n)E is only smaller or equal to n, but is only equal to n if E n.-1 is known to be

non zero. This construction is used to define the expansion and translation introduced

in section 5, for instance:

Definition expand (p : {poly Q})(k : Q) :=

\poly_(i < size p)(p‘_i * k ^+i).

where Q is the ordered archimedean field parameterizing the development and ^+ is

the exponentiation operation (see section 7.2). These definitions are accompanied by

correctness lemmas in term of evaluation, like:

Lemma eval_expand : forall p k x, (expand p k).[x] = p.[k * x].

where p.[x] denotes the evaluation of the polynomial p at the point x.

A formal study of Bernstein coefficients and polynomials 25

The list of coefficients defining a polynomial is of course the coefficients of the polyno-

mial in the (countable) infinite basis of monomials. In this development, we also need to

consider polynomials as vectors in the vector space of polynomials of degree less than a

fixed value, again with coordinates in the basis of monomials or in Bernstein bases. More

precisely we only use the fact that monomials and Bernstein polynomials are two families

of generators and not their linear independence. Unfortunately, the linear algebra part

of the SSReflect archive is not yet sufficiently well integrated to get this easily from

an existing infrastructure. We hence only define these linear algebra operations at a low

level: the list of coefficients defining a polynomial is padded with zeroes when the list of

coefficient in a monomial basis of a certain degree is needed, and conversely the list of

coefficients in a monomial basis needs to be normalized when we need to go back to the

actual polynomial. It would certainly be more elegant to use a generic library than to

rely on this ad-hoc solution.

7.2. Algebraic structures

This formalization is structured along the algebraic hierarchy proposed by the SSRe-

flect libraries (GMR+07). This hierarchy builds a graph of algebraic structures based

on types with decidable equalities and implement inheritance and sharing or theories

and notations through the canonical structures type inference mechanism of the Coq

system. We moreover base our proofs on an extension of this hierarchy for ordered struc-

tures(Coh10). This extension allowed to consider ordered unit rings and fields, which are

unit rings and fields equipped with a decidable (total) boolean order relation which is

compatible with addition and product. In the proofs we describe here, the main alge-

braic structures involved are the field of coefficients and the commutative ring structure

that polynomials inherit. This inheritance is completely automated by the infrastructure

already present in the SSReflect libraries. However natural numbers are not equipped

with any such algebraic structure in the SSReflect library and their theory and no-

tations are defined separately. We can still use the same symbols for their algebraic

operations and ordering thanks to the scoping mechanism of the Coq system (Coq),

even if this sometimes require an explicit scoping annotation in theorem statements.

Natural numbers are used to define the (discrete) exponentiation as iterated product in

ring structures: if x belongs to a type equipped with a ring structure and (n : nat) is a

natural number, x^+n denotes x to the n-th power, i.e. x * (x * .. (x * x)...). Since

at the time we write these lines the SSReflect libraries do not feature a formalization

of integers, exponentiation in a field structure can become artificially technical: x^-n

only denotes the inverse of x^+n, with a (positive) natural number exponent. Yet for

this work this defect was not a severe limitation. An other interesting operation is the

iteration of the addition operation in a ring structure: x *+n denotes n times x, i.e.,

x + (x + .. (x + x)...). In a commutative ring structure, the expression developing

the power of a sum is hence:

Lemma exprn_addl : forall x y n,

(x + y) ^+ n = \sum_(i < n.+1) (x ^+ (n - i) * y ^+ i) *+ ’C(n, i).

Y. Bertot, F. Guilhot and A. Mahboubi 26

as available in the SSReflect library. This allows to combine smoothly the binomial

identities also available in SSReflect with operations in a commutative ring, as nec-

essary in the correctness proofs of the de Casteljau algorithm presented in section 6.3.

When the iterated element x is in fact 1 the unit element of the ring, this operation

defines a generic image of the semi-ring of natural numbers in the ring. Note that this

operation need not be injective: this will only be the case if the characterictic is zero. This

embedding is so widely used that a new notation is defined: n%:R denotes 1 *+ n in any

ring structure. Remark that this expression needs a context or an explicit cast to deter-

mine the ring in which the natural number should be injected, i.e. the ring 1 is the unit

of. This injection appears in particular in the hypothesis that the field is archimedean,

which is necessary for the weak intermediate value theorem. This hypothesis is stated as

follows:

Variable Q : oFieldType.

Hypothesis Q_arch : forall x:Q, 0 <= x -> {n : nat | x <= n%:R}.

where the Variable Q declares an ordered field structure parameter, and the Q_arch

hypothesis gives access to the explicit value of an integer larger than a given element

of the ordered field. Again, the SSReflect distribution lacks a library about integers

and rational numbers, the manipulation of the embedding of rational numbers in this

archimedean field is sometimes unnecessarily tedious, though again this was not really

an issue in this development.

7.3. Automation issues

Sadly, a significant part of scripts is devoted to too many atomic rewrite steps to nor-

malize ring expressions, or prove trivial consequences of the properties of order like

transitivity or compatibility with field operations. The SSReflect libraries still lack

the standard automated proof producing decision procedures available in the Coq sys-

tem, like ring normalization or linear arithmetic decision. The SSReflect structures

are indeed still not connected to these mechanisms. The Coq tactics on linear arithmetic

are hardcoding the representation of integers and coefficients and should rely on a more

abstract structure like the one of ordered field. In the case of the automation of ring iden-

tities, it would significantly help the user if normalization could handle simultaneously

the various ring and semi-ring structures that can occur in an expression, like the rings

of polynomial coefficients, polynomials themselves and possibly the semi-ring of natural

numbers. In the case of the automation of ordered arithmetic, proof steps often involve

non linear expressions, for which it is quite difficult to get a truly generic and efficient

proof producing decision procedure. This is in fact part of the long term objectives of

this work, namely to certify a complete decision procedure for the full first order theory

of real closed fields. Yet incomplete but lightweight tools could probably be crafted to

relieve the user from tedious steps when possible.

A formal study of Bernstein coefficients and polynomials 27

7.4. Current state of the formalization

In this section, we recapitulate the main results described in this paper that have a formal

proof in our development.

— The absolute values of the real roots of a polynomial are bounded by the Cauchy

bound, which is expressed only using the absolute values of the coefficients of the

polynomial.

— If a polynomial function p has a negative value in x and a positive value in y, with

x < y, then for any ε one can exhibit x′ and y′ such that −ε < p(x′) < p(y′) < ε.

— If a polynomial only has one sign change in its coefficients for the standard monomial

basis, then this polynomial has exactly one root between 0 (excluded) and +∞.

— If a polynomial only has one sign change in its Bernstein coefficients for a given

interval (l, r), then this polynomial has exactly one root between l and r (excluded).

— The transformation that maps any polynomial to its Bernstein coefficients maps Bern-

stein polynomials to plain monomials.

— De Casteljau’s algorithm computes correctly the Bernstein coefficients for the intervals

(l,m) and (m, r) from the Bernstein coefficients for the interval (l, r).

This work is part of a more ambitious plan, aiming at providing an efficient procedure

to isolate the roots of any polynomial. It remains to develop the connections between

the various results that will constitute this procedure and its proof of correctness. To

certify an algorithmically naive version of such a procedure, we still need to describe the

procedure to reduce any polynomial to a separable polynomial (a polynomial where all

roots have multiplicity 1). The easy approach is to divide by the greatest common divisor

between the polynomial and its derivative. The reduction to separable polynomials should

not require too much effort considering the libraries already available in the SSReflect

package. We also need to describe the termination of a procedure based on successive

dichotomy. This study of termination might however require more substantial work.

Another issue will be to connect the correctness proof of such a naive implementation

with more realistic programs, like an implementation of de Casteljau whose complexity

would be linear in the degree of the input, as implemented in (Mah07) or even more

optimized codes like the ones of (MRR05).

8. Conclusion

Real root isolation methods by sign-change-based methods is a classical topic, extensively

studied (see (RZ03) for a review of the related litterature) after the pioneering work of

Uspensky (Usp48). Bernstein polynomials are used to provide efficient implementations of

these methods (MRR05; RZ03). To our knowledge, this work is the first mechanized proof

of de Casteljau’s algorithm, and of the building blocks of a real root isolation procedure.

The closest work to ours is probably the study of global optimization methods in Coq

lead by Roland Zumkeller (Zum08). Indeed, Bernstein polynomial bases are also used

to approximate continuous functions on a closed domain. This last work results in an

implementation in the Coq system of a tool to bound optima of multivariate continuous

Y. Bertot, F. Guilhot and A. Mahboubi 28

real functions. Yet we could not find mention of a formalization of the correctness proofs

of this tool.

Other work concerned with roots of continuous functions often relies on Newton’s

method. This method has also be described formally using Coq and SSReflect, al-

though in a less constructive setting (Paş10). However, the applicability of the work is

quite different: the work in (Paş10) applies to a wide variety of functions of class C2 and

it guarantees the unicity of a root in an interval using strong constraints on the first and

second derivative of the function inside the interval. It does not provide any tool for the

case when the chosen interval does not satisfy the conditions, while our work provides a

study of a dichotomy approach, but is concerned solely with polynomials.

This work on Bernstein polynomials combines techniques coming from analysis, al-

gebra, and geometry. For instance, the properties of reversing the list of coefficients

of a polynomial are studied by looking at the polynomial as a function from rational

numbers to rational numbers. Similarly, the proof of Descartes’ law of signs works by

looking at functions and bounds on their values in various intervals. On the other hand,

the definition of Bernstein coefficients relies on concepts that come from linear algebra:

vector spaces, bases, or morphisms. Last, de Casteljau’s algorithm relies on geometry

with midpoints or segments. It is particularly exciting that we can now study formally

mathematical algorithms that use all these aspects of mathematics.

This development is not made just for the beauty of it. The initial goal is to provide

one of the basic blocks required for cylindrical algebraic decomposition (BPR06; Mah07).

In the short term, we want to complete this into a full algorithm to isolate the roots of an

arbitrary polynomial. This involves proving the technique to reduce the multiplicity of

roots that we already described in the introduction, initializing the search for roots with

an interval large enough to contain all the roots, programming the recursive dichotomy

process, and proving that this process always terminates.

For the proof of termination, we already know a mathematical argument, described

in (BPR06) under the name “theorem of three circles”. However, this theorem uses

arguments based on complex numbers and we wish to find a more elementary proof, as

we still want to express our result using mainly rational numbers. Our proof of the law

of signs already is more elementary than the ones found in the literature.

In the long run, a good knowledge of Bernstein polynomials and coefficients opens

the door to a wide variety of tools that are commonplace in computer aided design and

robotics. Bézier curves which are often used in drawing tools share a lot of properties

with Bernstein control points. Concerning robotics, splines and Bézier curves can also

be used to describe the trajectory of moving vehicles. Thus, this work may eventually be

useful for the formal verification of critical software in robotics.

9. Acknowledgments

The authors whish to gratefully thank the anonymous referees who have suggested nu-

merous improvements both for the formalization and for its description.

A formal study of Bernstein coefficients and polynomials 29

References

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development,

Coq’Art:the Calculus of Inductive Constructions. Springer-Verlag, 2004.

Pierre Bézier. Courbes et Surfaces. Hermès, 1986.

Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Paşca. Canonical Big Operators. In

Proceedings of the 21st International Conference on Theorem Proving in Higher Order Logics

(TPHOLs 2008), volume 5170 of Lecture Notes in Computer Science, pages 12–16. Springer,

August 2008. http://hal.inria.fr/inria-00331193/.

Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real ALgebraic Geom-

etry, volume 10 of Algorithms and Computations in Mathematics. Springer, second edition,

2006.

Lúıs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN, the Constructive Coq Repos-

itory at Nijmegen. In Andrea Asperti, Grzegorz Bancerek, and Andrzej Trybulec, editors,

MKM, volume 3119 of Lecture Notes in Computer Science, pages 88–103. Springer, 2004.

Cyril Cohen. Formalizing real analysis for polynomials. Technical report, Inria, 2010. http:

//hal.inria.fr/inria-00545778/en/.

Coq team. The Coq System. http://coq.inria.fr/.

Paul de Castleljau. Formes à pôles. Hermès, 1985.

René Descartes. Géométrie (1636). A source book in Mathematics. Harvard University Press,

1969.

Georges Gonthier and Assia Mahboubi. A Small Scale Reflection Extension for the Coq system.

Research Report RR-6455, INRIA, 2008. http://hal.inria.fr/inria-00258384/en/.

Georges Gonthier and Assia Mahboubi. An introduction to small scale reflection in Coq. Tech-

nical report, INRIA, 2010. to appear in Journal of Formal Reasoning.

Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, and Laurent Théry. A

modular formalisation of finite group theory. In Klaus Schneider and Jens Brandt, editors,

TPHOLs, volume 4732 of Lecture Notes in Computer Science, pages 86–101. Springer, 2007.

Donald Knuth. Metafont: the Program. Addison Wesley, 1986.

Assia Mahboubi. Implementing the cylindrical algebraic decomposition within the coq system.

Mathematical Structures in Computer Science, 17(1):99–127, 2007.

Mathematical Components team. The Ssreflect Distribution. http://www.msr-inria.inria.

fr/mathcomp.

Bernard Mourrain, Fabrice Rouillier, and Marie-Françoise Roy. Bernstein’s basis and real root

isolation. Mathematical Sciences Research Institute Publications, 2005.

Russell O’Connor. A monadic, functional implementation of real numbers. Mathematical Struc-

tures in Computer Science, 17(1):129–159, 2007.

Russell O’Connor. Certified exact transcendental real number computation in coq. In TPHOLs,

Lecture Notes in Computer Science, pages 246–261. Springer, 2008.

Ioana Paşca. Formal proofs for theoretical properties of newton’s method. Mathematical Struc-

tures in Computer Science, this issue, 2010.

Fabrice Rouillier and Paul Zimmermann. Efficient isolation of polynomial real roots. Journal

of Computational and Applied Mathematics, 162(1):33–50, 2003.

Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics, an introduction,

volume 1. North-Holland, Amsterdam, 1988.

James Victor Uspensky. Theory of Equations. MacGraw-Hill Bok Company, 1948.

Roland Zumkeller. Global Optimization in Type Theory. PhD thesis, École Polytechnique, 2008.

http://hal.inria.fr/inria-00331193/
http://hal.inria.fr/inria-00545778/en/
http://hal.inria.fr/inria-00545778/en/
http://coq.inria.fr/
http://hal.inria.fr/inria-00258384/en/
http://www.msr-inria.inria.fr/mathcomp
http://www.msr-inria.inria.fr/mathcomp

	Introduction
	Formalization viewpoints
	A constructive and abstract approach
	Small scale reflection libraries
	Representation of polynomials
	Criteria for the existence of a unique root
	Finding locations where a polynomial's value is arbitrarily small

	A simple form of Descartes' law of signs
	A Geometrical explanation of the proof
	Lemmas for polynomials with non-negative coefficients
	Two lemmas on slopes
	Polynomials with exactly one sign change

	Bernstein polynomials, Bernstein coefficients
	From Bernstein to Descartes
	A criterion for the interval (1,+)
	A criterion for the interval (0,1)
	Handling arbitrary bounded intervals
	Recapitulating operations

	Dichotomy
	Geometric intuition for dichotomy
	Initialization
	Splitting algorithm

	Formalization issues
	Sequences, iterations, polynomials
	Algebraic structures
	Automation issues
	Current state of the formalization

	Conclusion
	Acknowledgments
	References

