
HAL Id: hal-01080634
https://hal.archives-ouvertes.fr/hal-01080634

Submitted on 6 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory Monitoring in a Multi-tenant OSGi Execution
Environment

Koutheir Attouchi, Gaël Thomas, André Bottaro, Gilles Muller

To cite this version:
Koutheir Attouchi, Gaël Thomas, André Bottaro, Gilles Muller. Memory Monitoring in a Multi-tenant
OSGi Execution Environment. CBSE ’14 -17th international ACM Sigsoft symposium on Component-
based software engineering, Jun 2014, Marcq-en-Baroeul, France. �10.1145/2602458.2602467�. �hal-
01080634�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49583167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01080634
https://hal.archives-ouvertes.fr


Memory Monitoring in a Multi-tenant OSGi Execution
Environment

Koutheir Attouchi
Orange Labs.

Grenoble, France.
koutheir@gmail.com

Gaël Thomas
Inria & LIP6.

Paris, France.
gael.thomas@lip6.fr

André Bottaro
Orange Labs.

Grenoble, France.
andre.bottaro@orange.com

Gilles Muller
Inria & LIP6.

Paris, France.
gilles.muller@lip6.fr

ABSTRACT

Smart Home market players aim to deploy component-based
and service-oriented applications from untrusted third party
providers on a single OSGi execution environment. This
creates the risk of resource abuse by buggy and malicious
applications, which raises the need for resource monitoring
mechanisms. Existing resource monitoring solutions either
are too intrusive or fail to identify the relevant resource
consumer in numerous multi-tenant situations. This paper
proposes a system to monitor the memory consumed by each
tenant, while allowing them to continue communicating di-
rectly to render services. We propose a solution based on a
list of configurable resource accounting rules between tenants,
which is far less intrusive than existing OSGi monitoring sys-
tems. We modified an experimental Java Virtual Machine
in order to provide the memory monitoring features for the
multi-tenant OSGi environment. Our evaluation of the mem-
ory monitoring mechanism on the DaCapo benchmarks shows
an overhead below 46%.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Performance mea-
sures; D.2.11 [Computer Systems Organization]: Per-
formances of systems—Measurement techniques, Reliability,
and availability

Keywords

memory monitoring; multitenancy; software platform; smart
home; home gateway; OSGi technology

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CBSE’14, June 30–July 4, 2014, Marcq-en-Baroeul, France.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2577-6/14/06 ...$15.00.

http://dx.doi.org/10.1145/2602458.2602467.

1. INTRODUCTION
A new world of smart home services emerges thanks to the

growing variety of sensors and actuators available. Many ap-
plication domains are involved, e.g., security, energy efficiency,
ambient assisted living, multimedia, communication. Conse-
quently, different software editors, called here tenants, are
developing applications that take advantage of the multitude
of devices in the smart home. The smart home ecosystem,
as conceived by the Home Gateway Initiative [6], is based
on OSGi [14] and Java, in an effort to support the openness
of a multi-tenant execution environment hosting component-
based applications collaborating to render services. Figure 1
illustrates this component-based and service-oriented archi-
tecture [15]. Java and OSGi provide sharing and isolation
mechanisms between OSGi components called bundles, which
are also OSGi deployment units. Components interact via
service method calls to each other exported interfaces. Differ-
ent tenants deploy their components on the same execution
environment. This sharing by untrusted competing tenants
raises the need to “protect the box against badly written
bundles” [16, 4]. Here, a badly written bundle is a component
that consumes resources, such as CPU usage and memory
and network, far above a normal expected level. Therefore,
mechanisms that regulate resource consumption at compo-
nent granularity are necessary, and in particular, resource
monitoring mechanisms.

Resource monitoring provides essentially two information:
(1) counting, i.e., how much of the resource is consumed,
and (2) accounting, i.e., which entity should be charged
for using that quantity of the resource. Existing work per-
formed in component-based and service-oriented platforms
[11, 3, 10, 8, 4] enable resource accounting at component
level in only two cases: (1) when a component calls a service
method implemented by a component belonging to the oper-
ator platform, or (2) when the opposite happens. Still, there
is a third case that occurs when a component from a given
tenant calls a service method implemented by a component
belonging to another tenant. None of the cited existing work
provide a correct way to account for resources consumed
during the third case, because such an accounting requires
information related to the business logic implemented in the
components of the tenants. The first approach adopted to
deal with the third case is avoiding it entirely, by forbidding
interaction between tenants, which is too restrictive, as ten-
ants need to communicate to render integrated services to the



end-user. The second solution requires explicit declaration
of the component that is accounted for resources consumed
during each interaction via a defined API [2]. However, this
API cannot be granted to untrusted components, because a
buggy or malicious component can use this API to declare
resource consumption to the wrong entity, causing resource
miscounting. A first challenge is implementing a component-
level monitoring system that accounts for resources consumed
during interactions between tenants.
A second challenge in designing a monitoring system in

a multi-tenant environment is the expression of resource
accounting rules during interactions between monitored ten-
ants. Declarations of accounting rules should be precise and
expressive enough for all cases, without requiring developers
to write and maintain long rules lists.
A third challenge is implementing a sufficiently accurate

monitoring system with a minimal performance overhead.
Previous methods are not accurate enough, mainly because
accounting is either (1) always direct, i.e., resources consumed
during a method call are always accounted to the called en-
tity, or (2) always indirect, i.e., resources consumed during a
method call are always accounted to the caller entity. This
inaccuracy is more frequent and more critical when untrusted
tenants interact via method calls in multi-tenant environ-
ments, which are often service-oriented and component-based.
For example, Miettinen et al. [11] perform indirect monitor-
ing by attaching every thread to a component and accounting
resources consumed by that thread to the attached compo-
nent no matter what code the thread executes. This method
produces inaccurate monitoring statistics in some cases, e.g.,
components managing a thread pool, and components that
notify about events by calling event handlers.
In this paper we describe an OSGi-aware memory moni-

toring system that is mostly transparent to application devel-
opers, and that allows collaboration between distinct tenants
sharing the same OSGi execution environment, therefore
preserving the service-oriented nature of OSGi. The system
monitors interactions between tenants and provides snap-
shots of memory usage statistics on demand.

The monitoring subsystem has predefined implicit resource
accounting rules that describe correctly most interactions
between tenants. We purposely focused on the types of in-
teractions that are very common in component-based and
service-oriented design, e.g., calls to service methods and
event handlers. Because implicit rules cannot accurately
account for all cases, the platform operator and each tenant
provide configuration files loaded by the monitoring system
at start-up, and containing explicit rules for resource account-
ing between tenants. The configuration files are written in
a Domain-Specific Language (DSL) that we defined, which
is tailored to service-oriented applications, as it allows, for
example, to specify the component implementing the inter-
face containing the method called during an interaction. Our
prototype requires the resource accounting rules to remain
constant during the lifetime of the JVM. Each configuration
file lists (1) the components belonging to a specific tenant,
and (2) the resource accounting rules, each of which describes
which tenant is accounted for resources consumed during a
specific interaction. At runtime, the monitoring system ap-
plies those rules to correctly account for memory used by
components, e.g., local variables, loaded classes, and created
objects. In most of the cases, component developers do not
need to write accounting rules because implicit rules han-

Hardware & Operating System

Java Virtual Machine & RuntimeTenant 0

Operator PlatformTenant 1

Tenant 10 Tenant 30Tenant 20

OSGi framework

B1 B2 B3

B10 B11

B13

B20

B21

B30 B31

B32 B33

Figure 1: A multi-tenant OSGi execution environment.
B1...B33 are OSGi components, i.e., bundles.

dle their interactions correctly. Components that need to
write explicit accounting rules are mainly those that gener-
ate asynchronous activity, such as those that publish events.
Examples include the OSGi framework, and components
exposing data of home sensors in real time.

We implemented the monitoring system inside J3, a Java
Virtual Machine based on VMKit [5], LLVM [9] and MMTk [1].
Even though we slightly change the native object struc-
ture, the changes are invisible to the Java code, which helps
preserve the component model of OSGi. We validate our
implementation of the monitoring system using a set of
micro-tests that mimics common communication patterns
in a component-based and service-oriented micro-structure
composed of seven tenants. We evaluate the overhead gen-
erated by the system based on the real life applications of
the DaCapo benchmark, in addition to highly focused micro-
benchmarks. The performance overhead of monitoring is
always below 46% for DaCapo applications, which is still
reasonable for development and testing environment, and
tolerable in low-pace production environments.

This paper is organized as follows. We begin by discussing
the design of the monitoring mechanism in Section 2. In
Section 3, we illustrate our prototype implementation of
the design. Section 4 measures the overhead of monitoring
and reveals the parts of the system that cause most of it.
Previous work related to resource management are described
in Section 5. Finally, Section 6 concludes the paper and
discusses future directions.

2. DESIGN
In this section, we present the design of a memory mon-

itoring subsystem that is intended to be a part of a more
complete system for resource management inside a long run-
ning JVM running OSGi. The memory usage information
reported by this subsystem would indicate memory leaks and
too high memory usage patterns.

Motivating example 1: Service method.
In practice, a tenant would often require the caller of the

service it provides to be accounted for resources consumed
by that service. For example, a tenant providing a service
playRingTone() would require the tenant calling that service
to be accounted for memory consumed to play the ring tone.
No rules should be needed in order to fulfill this accounting,
i.e., it should be the default behavior of resource accounting.



Motivating example 2: Event handlers.
Less often, a tenant A provides an interface to notify

observers about an event. Another tenant B subscribes to
the event and expects to be called when the event occurs.
When the event occurs, A calls B as contracted. In this case,
implicit rules (see the step 3(d) in Section 2.4) specify that
A should be accounted for resources consumed during the
call. However, this is unfair given the fact that A calls B
only because B asked for that by subscribing to the event.
In this case, A needs to write an accounting rule for the
notification interface, accounting resources for the called
entity (see Section 2.3).

2.1 Assumptions
We assume a number of preconditions on the system where

our monitoring subsystem runs.

No need for isolation.
We do not suppose any form of isolation beyond what

is provided by OSGi. Therefore, all tenants are able to
communicate via service method calls. This enables different
tenants to collaborate to create integrated services and user
experience, even when the user is using sensors and actuators
and applications from different manufacturers and editors.

Constant monitoring, infrequent reporting.
It is typical for a long-running system to have a resource

manager subsystem that periodically requests memory usage
statistics from a memory monitoring subsystem. In the smart
home gateway, memory usage statistics would be requested
once or twice a day in relatively stable configurations, and
the period can be as frequent as every hour when hardware or
software configurations change. The memory usage statistics
enable detecting abnormal memory usage situations, e.g.,
memory leaks. When such abnormal activity is detected, the
resource manager subsystem carries out actions to restore
the system to a normal state by making memory available
again, such as terminating some applications. The resource
manager subsystem can be human driven or autonomous.

Our memory monitoring subsystem runs continuously, col-
lecting raw memory usage data on running applications.
This generates a persistent overhead that must be kept to a
minimum. Furthermore, in order to report relevant memory
statistics, raw data need to be aggregated and filtered, gener-
ating an overhead every time a memory monitoring report
is requested. We target systems where memory monitoring
reports will be requested sparingly in time, in order to check
for abnormal resource usage. This is the case of the smart
home gateway, where memory monitoring reports would be
generated from once per hour to once per day. Therefore,
we tolerate the aggregation and filtering overhead needed to
generate memory monitoring reports, and we rather focus
on the persistent overhead caused by continuous monitoring.

Constant resource accounting configuration.
In order to simplify our prototype and keep performance

overhead acceptable, we require that resource accounting
rules and tenants list remains constant during the JVM
lifetime. This allows performing early calculations in order
to accelerate inference of accounting rules.

2.2 Goals
We designed our monitoring subsystem in order to fulfill

the following goals.

Detailed memory monitoring.
Our prototype monitors memory usage of every tenant in

call stack space and heap space. Call stack space is where
most methods variables and parameters are stored. The
subsystem reports the number of bytes accounted to each
tenant, in the call stacks of all running threads. Heap memory
is used to store Java classes and objects, particularly their
static fields and object fields. The subsystem reports the
number of classes loaded by each tenant and the number
of bytes used by those classes. It also reports the number
of reachable objects that are accounted to each tenant, in
addition to the number of bytes used by those objects.

Expressive resource accounting rules.
The tenants and the platform operator are required to

provide accounting rules that describe how accounting should
occur when two tenants interact. We designed a Domain-
Specific Language (DSL) to enable expression of resource
accounting rules.

Only specify special cases.
We want our subsystem to require the smallest configura-

tion possible. The default configuration should work well for
most of the cases, and developers and platform administra-
tors should configure and maintain only the special cases of
interactions. For this, we armed our subsystem with a list of
implicit rules to handle most cases correctly. We also defined
a resource accounting algorithm that decides which tenants
to account for resources, so that:

• Explicit rules always override implicit rules.

• The order of processing rules is from the most specific,
to the most generic.

2.3 Domain-specific language for resource ac-
counting rules

We defined a DSL that enables developers and platform
administrators to specify the rules to decide which tenant
should be accounted for resources consumed during an in-
teraction. Illustrated in Figure 2, the DSL allows rules of
varying levels of precision, which allows factoring the rules,
thus writing and maintaining less of them. It also allows cor-
rect handling of all possible cases of component interactions.
The DSL describes separately two aspects: a list of ten-

ants, then a list of rules. Each element in the tenants list
describes the identifier assigned to a tenant, and the names
of components it deploys. Each element in the rules list
describes a method call between two tenants, and which
tenant should be accounted for resources consumed during
that call. We reserve 0 as the tenant ID of the Java runtime
and the JVM native code, and we reserve 1 as the tenant
ID of the platform operator (see Figure 1). A rule starts
with the caller tenant ID (an integer), which can be * to
indicate that any caller tenant matches this rule. Then, the
called site is specified, followed by the accounting decision.
The called site is (1) a method of (2) an interface defined in
(3) a tenant and implemented by (4) a component. The four
components are optional, and omitting a component matches



configuration tenant rule end

tenant tenant tenantID {
bundle
name

,

} end

rule account { tenantID

*

, tenantID

*

/
bundle
name

_

/
interface
name

/
method
name

,

caller

called

} end

Figure 2: DSL of resource accounting configuration

tenant 1 { org.knopflerfish.framework }
tenant 20 { tests.A }
tenant 200 { j3mgr }

account { 0, 0/_/java.lang.Runnable/run, called }
account { *, 200/j3mgr/j3.J3Mgr, caller }
account { *, 20/tests.A/tests.A.A, caller }

Figure 3: Sample resource accounting configuration

all possible values, e.g., specifying “_” as the implementation
component name matches any components implementing
the specified interface or method. Finally, the accounting
decision specifies which tenant is accounted for resources
consumed during the call. Note that when the called tenant
should be accounted for resources, it is the tenant holding
the implementation of the called method that is accounted,
not the tenant defining the interface.
Figure 3 shows an example of resource accounting config-

uration. It first associates components with tenants, then
it declares rules, each of which specifies which tenant is
accounted for resources consumed during a given method
call. So, first it declares the platform operator as tenant 1,
holding the main framework component of the Knopflerfish
OSGi implementation. It declares two other tenants whose
identifiers are 20 and 200, with one component for each ten-
ant. Then it declares that a call from the Java runtime to
the method run of the java.lang.Runnable interface imple-
mented by any component will be accounted to the tenant
of the called component, i.e., the tenant of implementation
component. Next, a call from any tenant to a method of
the interface j3.J3Mgr implemented in the component j3mgr
of the tenant 200 is accounted to the tenant of the caller.
Finally, a call from any tenant to a method of the interface
tests.A.A implemented in the component tests.A of the
tenant 20 is accounted to the tenant of the caller.
Back to the Motivating example 2: Event handlers previ-

ously described, all what the developer needs to write is the
following accounting rule:
account(42, 42/_/notify.event/happened, called)

This rule specifies that a call from the tenant 42 (the ten-
ant ID of A) to the method happened() of the interface
notify.event defined in the tenant 42 (in A) and imple-
mented by any tenant (the _) is accounted to the called

tenant implementing the interface, i.e., the tenant subscribed
to the event published by A.

2.4 Resource accounting algorithm
This section describes the resource accounting algorithm

that decides which tenant is accounted for resources con-
sumed during an interaction.

Algorithm.
The list of tenants described in Section 2.3 is stored in the

following data structure associating each tenant ID with the
list of components it is responsible of:

map = {..., (TenantIDi → {...,ComponentNamej , ...}), ...}

The list of resource accounting rules is stored in the follow-
ing data structure associating accounting rules with decisions:

map ={..., (CallConfigi → caller|called), ...},where:

CallConfigi =([CallerTenantID],CalledSite),where:

CalledSite =(TenantID, [ComponentName],

[InterfaceName], [MethodName ])

where: [x] means x is optional

Given a call configuration λi (a.k.a. CallConfigi in the
map expression above) as an input, the algorithm proceeds
as follows:

1. The accounting rules map is searched for an exact
match for the key λi. If that is found, then its associ-
ated value indicates explicitly which tenant is accounted
for the resource usage, and the process ends.

2. If λi is totally generic, i.e., if its method name and
interface name and component name are all missing,
then continue to 3, otherwise, continue to 4.

3. No rules are defined for this interaction. Apply the
following implicit rules:

(a) If the call is an internal operator platform call,
then account resource usage to the caller, i.e., the
platform operator.

(b) If the platform operator is calling a tenant, then
account resource usage to the called entity, i.e.,
the tenant.

(c) If a tenant is calling the platform operator, then
account resource usage to the caller, i.e., the ten-
ant.

(d) Otherwise, account resource usage to the caller.

And the process ends here.

4. Make λi more generic, i.e., remove one non-missing
piece on information from it, in the following order:
method name, then interface name, then component
name.

Loop to 1.

The illustrated decision algorithm ensures that:

• Accounting rules order is unimportant, i.e., rules are
always matched from the most specific, to the most
generic.



• Implicit accounting rules account the platform opera-
tor only when the interaction is an internal operator
platform call.

• Implicit accounting rules between two tenants accounts
the caller.

3. IMPLEMENTATION
This section describes our implementation of the design we

promote in the previous section. We divided the monitoring
subsystem into three major components that run inside the
JVM:

• OSGi state tracker that acts as a bridge between the
JVM subsystems and the OSGi framework.

• Accounting configuration manager that parses account-
ing rules and performs accounting decisions.

• Monitoring manager that generates, on-demand, snap-
shots of detailed memory statistics.

The monitoring subsystem implementation is around 2000
lines of C++ code mostly inside the J3 JVM based on
VMKit [5], LLVM [9] and MMTk [1]. The OSGi framework
used is Knopflerfish 5.0.

3.1 OSGi state tracker
In resource accounting rules, each component is identified

by its name. But, at runtime, each OSGi component instance
is identified by a unique framework-assigned ID that is not
reused even if that instance is uninstalled. The link between
the component name and the component ID enables the
monitoring subsystem to know which rule to apply when two
components interact. The OSGi state tracker component
makes the links between the static component information
(e.g., component names) given in the resource accounting
rules and the dynamic states of OSGi components at runtime
(e.g., component ID, component class loaders). It tracks the
OSGi states (e.g., resolved, uninstalled) of components
installed in the OSGi framework running on top of the JVM,
by listening to events of component state changes from the
JVM and from the OSGi framework.

This component associates component identifiers with their
respective component information. The component infor-
mation includes the component name, and its current and
previous class loaders. The association map is expressed as:

map ={..., (CompIDi → CompInfoi), ...},where:

CompInfoi =(CompName, {...,ClassLoaderj , ...})

In order to discover component state changes, this compo-
nent places two hooks in the Knopflerfish 5.0 OSGi frame-
work, which makes it dependent on that particular OSGi
implementation. However, those hooks need no more than
10 lines of code inserted into the framework code. Therefore,
the dependency is fairly limited.
This component encapsulates all the logic necessary to

interact with the OSGi framework. Therefore, porting the
monitoring subsystem to another OSGi framework implemen-
tation only requires porting this component. This makes the
major part of the subsystem independent of any particular
OSGi framework implementation.

3.2 Accounting configuration manager
When the JVM starts up, the accounting configuration

manager component loads the resource accounting config-
uration, before loading the OSGi framework code. The
configuration is stored in memory in the data structures
described in Section 2.4, and it remains constant during the
execution of the JVM. We implemented a parser inside this
component, in order to load the configuration from any text
file (e.g., disk files, names pipes, sockets) that conforms to
the DSL described in Section 2.3.
At runtime, each time a component calls a method via

direct invocation (i.e., invoke*) or object construction (i.e.,
new), this component decides which tenant should be ac-
counted for resources consumed during that call. The de-
cision is based on the algorithm described in Section 2.4,
which takes into account the resource accounting configu-
ration, default accounting rules, and runtime information.
Some runtime information, e.g., states of components, is
provided by the OSGi state tracker component previously
described. The accounting decision concerns solely resources
consumed in the thread running the called method, and
it remains effective until another method is called in that
thread.
For each Java thread, we set a thread-local variable γi

holding the thread’s currently accounted tenant ID. Initially,
γi is set to 0: the special tenant ID reserved to the Java
runtime. Before every method call, the resource accounting
algorithm decides which tenant is accounted for the resources
consumed during the call. If the algorithm decides that
the called tenant shall be accounted for resources, then γi
is set to the tenant ID of the called method. Otherwise,
γi remains unchanged. In all cases, the tenant identified
by γi is accounted for resources consumed by the thread.
Most changes needed to track method calls and to invoke
the decision algorithm are implemented in the Just-In-Time
(JIT) subsystem of the JVM.

The monitoring subsystem adds, in every Java object,
a hidden field that holds the tenant ID accounted for the
object. Every time the JVM creates a new object, i.e.,
executes a new instruction, it reads γi to determine which
tenant is accounted for the newly created object. The object
is consequently tagged with the tenant ID set in of γi.

This mode of operation regarding γi ensures that resources
are accounted to the caller tenant, unless otherwise specified
by an implicit or declared accounting rule. The notion of
the caller tenant is transitive. Consider the example call
sequence:

S1 = ...→M1 →M2 →M3 →M4 → ...

where Mi is a method belonging to a tenant Ti, and arrows
indicate method calls. In each method call, before entering
the called method Mi, the decision algorithm makes the
decision Di, which determines the new value of γi. An
example of decisions follows:

D1 = ...→M1: the called tenant is accounted.⇒ γi =T1

D2 = M1 →M2: the caller tenant is accounted.⇒ γi =T1

D3 = M2 →M3: the caller tenant is accounted.⇒ γi =T1

D4 = M3 →M4: the called tenant is accounted.⇒ γi =T4

This example implies that resources consumed during the
execution of M1, M2 and M3 are all accounted to T1, whereas
resources consumed in M4 are accounted to T4.



tenant 1 { org.knopflerfish.framework }
tenant 50 { tests.A }
tenant 60 { tests.B }
tenant 70 { tests.C }
tenant 80 { tests.D }
tenant 90 { tests.E }

Figure 4: Tenants declarations in functional tests.

It is worth noticing that γi is restored to its previous value
in any scenario that makes the method return to one of its
callers, e.g., when a method returns, or when an exception is
caught outside the method where it is thrown. The previous
values of γi are stored in the call stack, as hidden local
variables.

This frequent execution of the decision algorithm in every
method call is the primary source of the permanent overhead
added to the normal execution of Java code.

3.3 Monitoring manager
The monitoring manager component generates, on-demand,

snapshots of detailed memory statistics. In order to do so,
this component triggers a special garbage collection cycle,
during which it scans the object graph and call stacks of run-
ning threads, while accumulating statistical counters. This
scan is performed by placing hooks in the garbage collector
code which scans objects and threads. The counters accu-
mulate the following information, grouped by tenants (see
Section 2.2):

• Number of reachable objects and their size.

• Number of loaded classes and their size.

• Amount of used stack space.

It is worth noting that the modifications performed on the
garbage collector do not depend on the algorithm used for
collection, and do not modify the accessed objects and classes
and threads. We only depend on the fact that the garbage
collector can perform a collection cycle during which it scans
the whole objects graph, and during which all threads are
suspended. Otherwise, this component is independent of the
garbage collector implementation.

4. EVALUATION
The benchmarks were executed on a computer running

the 32-bits version of the Linux 3.12 kernel, on an Intel
Xeon CPU running at 2.7 GHz, with 12 megabytes of cache,
12 gigabytes of RAM1 and 1 terabyte of disk space.

4.1 Functional tests
In order to ensure that the monitoring subsystem works

as intended, we performed functional unit tests. To verify
correct accounting, we ask the monitoring system to output
detailed accounting calculations.

4.1.1 Operator platform internal accounting

A part of the detailed accounting calculation is shown
in Figure 5, consisting of a thread call stack prefixed with
monitoring information, i.e., T: identifier of the tenant that is
accounted for resources consumed during the method frame,

1The kernel allowed addressing the whole RAM via Physical
Address Extensions.

T Size MethodFrameName
1 480 java.lang.VMObject.wait
1 128 java.lang.Object.wait
1 240 org.knopflerfish.framework.Queue.removeWait
1 272 org.knopflerfish.framework.StartLevelController.run
0 96 java.lang.Thread.run
0 304 java.lang.VMThread.run
0 1056 <native>

Legend:

T: Currently accounted tenant ID, i.e., γi.
Size: Stack size, in bytes, of the method frame.

Figure 5: Detailed memory accounting calculations on a call
stack of a thread internal to the OSGi framework.

and Size: the total size, in bytes, of the method frame. For
example, in Figure 5, 1456 bytes of stack space are accounted
to the Java runtime (tenant 0), and 1120 bytes of stack space
are accounted to the operator platform (tenant 1). The pack-
age java.lang belongs to the Java runtime. The line 1 in Fig-
ure 4 states that the package org.knopflerfish.framework

belongs to the operator platform.
The choice of which tenant is accounted for a particular

method frame is based on the algorithm described in Sec-
tion 2.4. As specified in Section 3.2, γi denotes the currently
accounted tenant ID. In fact, γi corresponds to T in Figures 5
and 6. Initially, γi ← 0: the tenant ID of the Java runtime.
If the algorithm decides that the called tenant shall be ac-
counted for resources, then γi is set to the tenant ID of the
called method. Otherwise, γi remains unchanged. In all
cases, the tenant identified by γi is accounted for resources
consumed by the method frame.

In Figure 5, the <native> frame is the first code to run in
the thread, consisting of operating system thread initializa-
tion routine and JVM routines that prepares for Java code
execution. Initially, the native frame is accounted to the
Java runtime, i.e., the tenant 0 (γi ← 0). The native code
calls the java.lang.VMThread.run() method implemented in
Java runtime, which makes it an internal Java runtime call.
Step 3(a) in the algorithm described in Section 2.4 accounts
the call to the caller, i.e., tenant 0 (γi = 0) which is the Java
runtime. The same accounting goes for the next method
frame.

Next, the Java runtime calls the method run() of the class
org.knopflerfish.framework.StartLevelController defined
in the operator platform (tenant 1), and implementing the
interface java.lang.Runnable defined in the Java runtime
(tenant 0). This call matches the predefined explicit rule:
account {0, 0/_/java.lang.Runnable/run, called}. This
is why the called, i.e., the operator platform (tenant 1) is
accounted for the call, and γi ← 1. The next call is inter-
nal to the tenant 1, so the caller, i.e., tenant 1 (γi = 1) is
accounted for it.

Later, the operator platform calls the Java runtime method
java.lang.Object.wait(). The step 3(c) in the algorithm
implies that the caller, i.e., tenant 1 (γi = 1), is accounted
for the call. The rest of the calls are internal Java runtime
calls, for which the caller tenant, i.e., the tenant 1 (γi = 1)
is accounted for the resources consumed during the calls.

4.1.2 Implicit and explicit accounting

To test monitoring of other types of interactions between
different tenants, we define five components tests.A through
tests.E, each belonging to a tenant, as declared in Figure 4



T Size MethodFrameName
50 480 java.lang.VMObject.wait
50 64 java.lang.Object.wait
50 256 java.lang.VMThread.sleep
50 112 java.lang.Thread.sleep
50 224 tests.D.D.sleep
50 160 tests.D.D.handler
50 144 tests.B.C.someProcessing
50 256 tests.B.C.e
50 144 tests.A.Activator.heavyInitialization
50 128 tests.A.Activator.start
1 384 org.knopflerfish.framework.Bundle.start0
1 272 org.knopflerfish.framework.BundleThread.run
0 272 java.lang.VMThread.run
0 1056 <native>

Tenant Stack Objects Classes HeapStatic HeapVirtual
0 14816 7964 129 1600 167336
1 4176 35908 154 1597 1107636
50 1968 55525 16 313 666500
60 0 15 13 104 316
80 0 19 14 104 384

(a) Only implicit accounting used.

T Size MethodFrameName
80 480 java.lang.VMObject.wait
80 64 java.lang.Object.wait
80 256 java.lang.VMThread.sleep
80 112 java.lang.Thread.sleep
80 224 tests.D.D.sleep
80 160 tests.D.D.handler
50 144 tests.B.C.someProcessing
50 256 tests.B.C.e
50 144 tests.A.Activator.heavyInitialization
50 128 tests.A.Activator.start
1 384 org.knopflerfish.framework.Bundle.start0
1 272 org.knopflerfish.framework.BundleThread.run
0 272 java.lang.VMThread.run
0 1056 <native>

Tenant Stack Objects Classes HeapStatic HeapVirtual
0 14816 7964 129 1600 167336
1 4176 35906 154 1597 1107592
50 672 5525 16 313 66496
60 0 15 13 104 316
80 1296 50019 15 168 600388

(b) Implicit and explicit accounting used.

Legend: T: Currently accounted tenant ID, i.e., γi. Size: Stack size, in bytes, of the method frame.

Figure 6: Detailed memory accounting calculations on a thread call stack.

and illustrated in Figure 7. Then we examine a thread
that executes methods from these different components. We
execute the thread without defining explicit rules (except a
few predefined explicit rules, such as the one shown in the
previous subsection), and we show the accounting results in
Figure 6a, then we execute it after adding one explicit rule,
and we show the accounting results in Figure 6b.

The Figure 6 describes the call stack of a thread that is cre-
ated by the operator platform in order to start and stop com-
ponents. A generic description of the thread activity goes as
follows. The thread begins running operator platform code in
method org.knopflerfish.framework.BundleThread.run().
Later, it starts the component tests.A by calling the event
handler tests.A.Activator.start() that indirectly calls
the method e() of the class tests.B.C which implements
the interface tests.C.C, as shown in Figure 7. tests.B.C

performs some processing before notifying the component
tests.D of an event by calling the event handler method
handler() of the class tests.D.D which implements the in-
terface tests.E.E. Next, handler() calls a Java runtime
service to sleep.
In Figure 6a, and starting from the first frame executed

by the thread, i.e., <native>, the three following frames are
accounted as previously described for Figure 5. Then, the op-
erator platform (tenant 1) calls method start() of the class
tests.A.Activator (tenant 50) which implements the opera-
tor platform interface org.osgi.framework.BundleActivator.
Step 3(b) of the algorithm described in Section 2.4 states
that the called tenant, i.e., tenant 50, is accounted for re-
sources consumed in the method frame, which sets γi to
50. In the next five call frames (up to tests.D.D.sleep()),
step 3(d) of the algorithm states that the caller tenant, i.e.,
tenant 50 (γi = 50), is accounted for resources consumed in
method frames. Then, step 3(c) of the algorithm accounts
consumed resources to the caller, i.e., tenant 50 (γi = 50).
The remaining method frames are internal Java runtime calls,
so step 3(a) of the algorithm accounts consumed resources
to the caller, i.e., tenant 50 (γi = 50).

Java Virtual Machine & RuntimeTenant 0

org.knopflerfish.frameworkTenant 1

tests.A

Tenant 50

tests.D

Tenant 80

tests.E

Tenant 90

tests.B

Tenant 60

tests.C

Tenant 70

Legend:

Service method call.

Event handler call.

Implements an interface.

Figure 7: Functional tests components.

The problem observed in Figure 6a is that tenant 50 is
held accounted for resources consumed during execution of
the event handler method handler() and all the methods
the latter executes, even though handler() is being executed
only because the component tests.D requested it. Due to
this issue, the monitoring system inaccurately accounts to
tenant 50 the following amounts of memory: 1296 bytes of
stack space, and 50 000 objects totaling 600 004 bytes of heap
space, even though that memory was consumed by the event
handler. To correct this inaccuracy, we add the following ex-
plicit rule: account {*, 90/_/tests.E.E, called}, which
indicates that tests.E.E is an event handling interface (for
any caller tenant, for any implementation component, and
for any method in the interface).
Figure 6b shows the accounting results after adding the

explicit rule and restarting the JVM. Adding the explicit
rule effectively solves the problem by accounting the resource
consumed by tests.D.D.handler() to the called tenant, i.e.,
tenant 80, which accordingly sets γi to 80. This boost in
accuracy is also visible in the final statistics, as the monitor-
ing system now accounts tenant 80 for the stack and heap
memory that was wrongly accounted to tenant 50.



-2%

0%

2%

4%

6%

8%

10%

Object
tag added

No memory
access in
invoke

Complete
implemen-

tationA
v

e
ra

g
e
 r

e
la

ti
v

e
 o

v
e
rh

e
a
d

 (
lo

w
e
r 

is
 b

e
tt

e
r)

Figure 8: Execution overhead of the method call micro-
benchmark when run on partial implementations of the mon-
itoring subsystem, compared to the “Zero implementation”.
Overhead is an average of 10 runs.

4.2 Performance micro-benchmarks
In order to show the details of the performance overhead

of monitoring, we made four versions of the monitoring
subsystem implementation, as follows:

1. Zero implementation, i.e., a JVM without monitoring.

2. Object tag added, i.e., the only thing modified in the
JVM is adding 4 bytes to every Java object to hold the
ID of the tenant accounted for the object.

3. No memory access around invoke, i.e., the whole mon-
itoring subsystem is implemented in the JVM, except
that we do not generate code to save and restore the
thread’s currently accounted tenant ID (6 store and
2 load instructions, see γi in Section 3.2) around the
invoke bytecode instruction.

4. Complete implementation of the monitoring subsystem,
i.e., the same as the previous version, in addition to 6
store and 2 load instructions generated around every
invoke bytecode instruction.

We also performed some micro-benchmarks that test very
specific aspects of execution.

4.2.1 Method call micro-benchmark

This benchmark performs numerous calls to the same Java
method. The method itself does nothing special. We are
only interested in the overhead of calling a method, with and
without the monitoring subsystem.

Figure 8 illustrates the results of this benchmark. A com-
parison of the results of running this micro-benchmark on the
“No memory access around invoke” version and the “Com-
plete implementation”version reveals that method invocation
performance decreases by 9%. We did not observe a signifi-
cant additional loss in performance with other versions, i.e.,
less than 1%. Therefore, method invocation performance is
only affected by the additional memory access performed by
the monitoring subsystem around every invoke instruction.

4.2.2 Object creation micro-benchmark

This benchmark performs numerous creations of objects
of the class java.lang.Integer. The objects themselves are

-10%

0%

10%

20%

30%

40%

50%

60%

Object
tag added

No memory
access in
invoke

Complete
implemen-

tation

A
v

e
ra

g
e
 r

e
la

ti
v

e
 o

v
e
rh

e
a
d

 (
lo

w
e
r 

is
 b

e
tt

e
r)

Figure 9: Execution overhead of the small objects micro-
benchmark when run on partial implementations of the mon-
itoring subsystem, compared to the “Zero implementation”.
Overhead is an average of 10 runs.

-20%

0%

20%

40%

60%

an
tl

r

b
lo

at

ch
ar

t

ec
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

x
al

an

A
v

er
ag

e 
re

la
ti

v
e 

o
v

er
h

ea
d

 (
lo

w
er

 i
s 

b
et

te
r) Object tag added

No memory access around invoke
Complete implementation

Figure 10: Execution overhead of DaCapo 2006 benchmark
applications when run on partial implementations of the mon-
itoring subsystem, compared to the original JVM. Overhead
is an average of 10 runs.

relatively small. We are only interested in the overhead of
creating an object, with and without the monitoring system.

Figure 9 illustrates the results of this benchmark. A com-
parison of the results of running this micro-benchmark on the
“Zero implementation” version and the “Object tag added”
version reveals that object creation performance decreases
by 44%. We did not observe a significant additional loss in
performance with other versions, i.e., less than 7%. There-
fore, object creation performance is mostly affected by the
addition of 4 bytes to every Java object.

4.3 DaCapo benchmarks
In order to measure the overhead of the monitoring subsys-

tem on real life Java applications, we performed the DaCapo
2006 benchmarks2. Benchmark results in Figure 10 show
that the monitoring subsystem overhead is always below 46%
for real life DaCapo applications.
It is worth noticing that the monitoring overhead in Fig-

ure 10 stays below 6% for all DaCapo applications (except
hsqldb) when we run DaCapo benchmarks using the “No
memory access around invoke” version. This suggests that

2www.dacapobench.org



accessing memory (load, store) in every invoke bytecode
instruction is an expensive operation.
We also notice that the performance of the application

hsqldb drops by 33% when we run it using the “Object tag
added” version. This suggests that this application creates
many objects and would suffer from changes to the object
structure. The performance of this application drops by
another 13% between the “Object tag added” version and
the “Complete implementation”. This further indicates that
hsqldb performs much more objects creations than method
invocations.

5. RELATED WORK
Thanks to the popularity of Java-based systems, many

monitoring tools were developed for them, such as A-OSGi [3],
JMX [12], JVM-TI [13], and the method described in [11].
All these solutions are designed to monitor low granular-
ity Java elements, e.g., threads, classes, objects, methods.
Taken as is, the information produced by these solutions is
of limited interest in OSGi platforms. Thus, we need to raise
the abstraction to, at least, the OSGi component, i.e., the
OSGi bundle. On a higher level, information about OSGi
applications (set of components) and application tenants is
also useful in industrial OSGi platform. Furthermore, most
of existing tools requires heavy instrumentation, such as the
method presented in [7], and often cannot be dynamically ac-
tivated. However, these tools and methods form a foundation
for the techniques described in this paper.
The method presented in [11], and refined in A-OSGi [3]

and also in our previous work on adaptive monitoring [10]
address CPU usage monitoring of components. These so-
lutions show that observing resource consumption at the
component granularity can be performed without modifying
components. The goal of our previous work was to provide
support for runtime activation/deactivation of monitoring of
component service bindings, without stopping components
and losing states. However, in all the previous work, the
authors admitted that, during a service method call between
two components, correct resource accounting needed informa-
tion related to business logic regarding the caller component
and the service being called, which is not provided by OSGi
and Java. Our current work addresses the remaining chal-
lenge.
A rather disruptive approach was presented in the previ-

ous work I-JVM [4], where component isolation was achieved
while preserving the OSGi component interaction model, re-
lying on direct method calls. Each component runs in a ded-
icated isolate concept3, composed of a separate class loader
and a private copy of some JVM entities, i.e., static variables,
strings and Java.lang.Class objects. Isolates run in the
same address space, and objects are passed by reference be-
tween isolates. Threads migrate between isolates when meth-
ods are called/returned and exceptions are thrown/caught.
The migration is a context switch to execute in the scope
of the target isolate, enabling memory isolation of isolates
and direct memory and CPU accounting. This approach en-
ables isolating components and monitoring them. However,
it also avoided addressing the challenge of identifying which
component should be accounted for the consumed resources.
The standardization work performed at the OSGi Al-

liance [2], backed by existing OSGi solutions created by

3Not to be confused with Java Isolates (JSR 121)

Makewave4 [8] and ProSyst5, raises the abstraction to the
OSGi component. Existing solutions enable the OSGi plat-
form operator to monitor, on a component basis: CPU usage,
memory usage, number of threads, number of sockets, and
disk usage. However, the ProSyst solution requires the frame-
work developer and every component developer to call an
API to indicate which entity is responsible for the resource
consumption before any method call. Therefore, access to
this API must be granted only to trusted entities, e.g., the
OSGi framework and the components provided by the OSGi
platform operator. Third party service providers sharing
the platform will have no access to the API. This approach
is too intrusive and cannot work in an environment where
untrusted tenants share the platform. Our paper brings here
a first improvement, as it is far less intrusive and does not
assume trusted tenants.

The platform operator uses the standard API to control
resource accounting behavior. Five situations can happen:

1. A call between two components in the platform operator
is accounted to the platform operator.

2. A call between two components belonging to a given
tenant is accounted to the tenant.

3. A call from a component belonging to a given tenant to
a service method implemented by the operator platform
is accounted to the tenant.

4. A call from a component belonging to the platform
operator to a service method implemented by a given
tenant is accounted to the tenant.

5. A call from a component belonging to a given tenant to
a service method implemented by a different tenant can-
not be correctly accounted unless specific information
related to business logic is provided.

Often in Smart Home use cases, cases (1) through (4) are
adopted, and the last case is completely avoided by disal-
lowing communication between distinct tenants. That is
where our paper brings a second improvement by accounting
resources between distinct tenants without requiring any form
of isolation more than the standard OSGi deployment unit.

6. CONCLUSION
OSGi gets increasingly adopted in the smart home as a

framework to host service-oriented applications delivered by
multiple untrusted tenants. This raises the need for moni-
toring systems that can provide useful accurate information
about OSGi components and applications.

In this paper, we present a monitoring system that moni-
tors memory usage at the component granularity, without
requiring isolation of distinct tenants. Our system is far less
intrusive than existing systems and methods, and it does not
assume trusted tenants. It is based on a list of accounting
rules that enable correct resource accounting in all cases. The
monitoring system is modular and mostly independent of the
implementations of the OSGi framework and the garbage
collector.
Based on DaCapo benchmarks, we showed that the over-

head of our system was below 46% for real life Java appli-
cations. This overhead is acceptable in development and

4www.makewave.com
5www.prosyst.com



testing time, and it is tolerable in slow pace applications
which are frequent in the Smart Home. Our thorough inves-
tigation of performance overhead showed the specific aspects
of monitoring that caused the most overhead, and the types
of applications that would suffer the most from memory
monitoring.

We are still searching for ways to make the list of account-
ing rules dynamic while keeping the overhead acceptable.
Making the explicit rules further more generic, such as using
regular expressions, would allow factoring of many explicit
rules, but can reduce performance of matching against rules,
so we are still unsure if more expressiveness would be worth
the performance loss. We also long for monitoring other
relevant resources, e.g., CPU usage, disk usage, and network
usage. The relevant information reported by the monitoring
system can become an accurate input to an autonomous
resource manager, enabling the latter to automatically detect
resource-related threats, such as resource abuse.

References

[1] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil
and water? high performance garbage collection in
Java with MMTk. In Proceedings of the 26th
International Conference on Software Engineering,
ICSE ’04, pages 137–146, Washington, DC, USA, 2004.
IEEE Computer Society.

[2] G. Bonnardel, A. Bottaro, S. Dimov, E. Grigorov, and
A. Rinquin. OSGi RFC 200 Resource Management.
Request For Comments, OSGi Alliance, December
2013.

[3] J. Ferreira, J. Leitão, and L. Rodrigues. A-OSGi: a
framework to support the construction of autonomic
OSGi-based applications. Int. J. Autonomous and
Adaptive Communications Systems, 5(3):292–310, 2012.

[4] N. Geoffray, G. Thomas, G. Muller, P. Parrend,
S. Frénot, and B. Folliot. I-JVM: a Java virtual
machine for component isolation in OSGi. In
Proceedings of the 2009 IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN,
pages 544–553, 2009.

[5] N. Geoffray, G. Thomas, J.Lawall, G. Muller, and
B. Folliot. VMKit: a substrate for managed runtime
environments. In Virtual Execution Environment
Conference, VEE 2010, Pittsburgh, USA, March 2010.
ACM Press.

[6] Home Gateway initiative. Requirements for Software
Modularity on the Home Gateway, version 1.0.
Technical Report HGI-RD008-R3, Home Gateway
initiative, June 2011.

[7] J. Hulaas and W. Binder. Program transformations for
light-weight CPU accounting and control in the Java
virtual machine. Higher Order Symbol. Comput., 21:
119–146, June 2008. ISSN 1388-3690.

[8] C. Larsson and C. Gray. Challenges of resource
management in an OSGi environment. In OSGi
Community Event 2011, Darmstadt, Germany,
September 2011.

[9] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, March
2004.

[10] Y. Maurel, A. Bottaro, R. Kopetz, and K. Attouchi.
Adaptive monitoring of end-user OSGi-based home
boxes. In Proceedings of the 15th ACM SIGSOFT
Symposium on Component Based Software Engineering,
CBSE 2012, pages 157–166, 2012.

[11] T. Miettinen, D. Pakkala, and M. Hongisto. A method
for the resource monitoring of osgi-based software
components. In Proceedings of the 2008 34th Euromicro
Conference Software Engineering and Advanced
Applications, SEAA ’08, pages 100–107, Washington,
DC, USA, 2008. IEEE Computer Society.

[12] Oracle. Java management extensions (JMX)
technology, January 2012. URL
http://www.oracle.com/technetwork/java/
javase/tech/javamanagement-140525.html.

[13] Oracle. Java virtual machine tool interface (JVM TI),
January 2012. URL http://docs.oracle.com/
javase/6/docs/technotes/guides/jvmti/.

[14] OSGi Alliance. OSGi service platform core
specification release 4 version 4.3. Technical report,
OSGi Alliance, April 2011.

[15] M. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-oriented computing: State of the
art and research challenges. Computer, 40(11):38–45,
Nov. 2007. doi: 10.1109/MC.2007.400.

[16] P. Parrend and S. Frénot. Classification of component
vulnerabilities in Java service oriented programming
(SOP) platforms. In Proceedings of the 11th
International Symposium on Component-Based
Software Engineering, CBSE ’08, pages 80–96, Berlin,
Heidelberg, October 2008. Springer-Verlag.

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti/
http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti/

	Introduction
	Design
	Assumptions
	Goals
	Domain-specific language for resource accounting rules
	Resource accounting algorithm

	Implementation
	OSGi state tracker
	Accounting configuration manager
	Monitoring manager

	Evaluation
	Functional tests
	Operator platform internal accounting
	Implicit and explicit accounting

	Performance micro-benchmarks
	Method call micro-benchmark
	Object creation micro-benchmark

	DaCapo benchmarks

	Related Work
	Conclusion

