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Abstract

This paper addresses a problem of recognizing human

actions in video sequences. Recent studies have shown that

methods which use bag-of-features and space-time features

achieve high recognition accuracy. Such methods extract

both appearance-based and motion-based features. This

paper focuses only on appearance features. We propose

to model relationships between different pixel-level appear-

ance features such as intensity and gradient using Brownian

covariance, which is a natural extension of classical covari-

ance measure. While classical covariance can model only

linear relationships, Brownian covariance models all kinds

of possible relationships. We propose a method to compute

Brownian covariance on space-time volume of a video se-

quence. We show that proposed Video Brownian Covari-

ance (VBC) descriptor carries complementary information

to the Histogram of Oriented Gradients (HOG) descrip-

tor. The fusion of these two descriptors gives a significant

improvement in performance on three challenging action

recognition datasets.

1. Introduction

The automatic recognition of human actions in videos

has become one of the most active research topic in com-

puter vision. It plays a key role in many important applica-

tions, such as smart surveillance systems, intelligent houses,

robots, human-computer interfaces, video data indexing and

retrieval, sport event analysis, and virtual reality. Action

recognition is a very challenging research problem, mainly

due to: intra-class variations, occlusions, background clut-

ter, and viewpoint changes.

Over the last decade, many different action recognition

methods have been proposed [4, 7, 8, 17], most of which are

based on local spatio-temporal features and bag-of-features

approach. The local spatio-temporal features have shown

to achieve good accuracy in action recognition over various

datasets [2, 18]. They are able to capture appearance and

motion. They are robust to viewpoint and scale changes.

Moreover, they are easy to implement and quick to calcu-

late.

The most popular local spatio-temporal descriptors for

action recognition are: HOG, HOF, and MBH descriptor.

The Histogram of Oriented Gradients (HOG) descriptor [8]

encodes visual appearance and shape information, whereas

the Histogram of Optical Flow (HOF) descriptor [8] and

the Motion Boundary Histograms (MBH) descriptor [17]

encode motion information.

Wang et al. [17] have shown that motion information

from HOF descriptor is enough to achieve satisfactory clas-

sification performance, but it is not enough to fully describe

an action. For example, motion information might distin-

guish eating a banana from peeling a banana, but motion in-

formation might have difficulty distinguishing eating snack

chips from eating a banana; conversely, appearance infor-

mation might be more useful in the second than the first

task [10]. Therefore, it is very important to encode also

appearance, which can describe an object involved in a par-

ticular action. Recent research [18] also have shown that

action recognition model can benefit from complementary

appearance information, i.e. from the HOG descriptor.

All the above descriptors, i.e. HOG, HOF, and MBH de-

scriptors, are based on a 1-dimensional histogram represen-

tation of individual features, and they directly model val-

ues of given features. The joint statistics between individ-

ual features are ignored, whereas such information may be

informative. Therefore, such descriptors might not be dis-

criminative enough.

In image processing, a novel trend has emerged that ig-

nores explicit values of given features, focusing instead on

their pairwise relations. The most known example of such

an approach is covariance descriptor [16].

In this paper we focus on pixel level features such as

an intensity, image gradient and image second derivative.

We propose to find relationships between mentioned fea-

tures using Brownian covariance, which is an extension of



covariance measure. As covariance measures only linear

relationship, it might capture insufficient information in a

complex environment such as an action recognition.

The described Brownian covariance can catch all kind

of relations between two image patches. We propose a

new descriptor called Video Brownian Covariance (VBC),

which is an extension of Brownian covariance for space-

time video volumes. Using the proposed descriptor we

represent relations between appearance features extracted

from a video sequence.

The main contributions of this paper are:

• We propose a new descriptor (called Video Brownian

Covariance), which captures appearance information

by employing Brownian covariance. This descriptor

captures all kinds of possible relationships between

pixel level features.

• To apply Brownian Covariance to videos, we propose

to extract local spatio-temporal video volumes using

dense trajectories; however, the VBC descriptor is flex-

ible and can by used together with any local spatio-

temporal video volume detector. Then, we represent

videos using Fisher vectors and we apply Support Vec-

tor Machines to classify videos into action categories.

• We confirm our method by experiments on

URADL [10], MSRDailyActivity3D [21], and

challenging HMDB51 [6] datasets.

• We show that the information provided by the VBC

descriptor is complementary to the HOG descriptor.

Their combination gives a significant improvement in

action recognition accuracy.

2. Related Work

Over the last decade, methods based on local spatio-

temporal features and bag-of-features approach have be-

come very popular.

There are several popular techniques proposed for ex-

traction of local spatio-temporal video volumes. Laptev

and Lindeberg [7] have proposed Harris3D point detector.

Dollar et al. [4] have proposed Cuboid detector. Willems

et al. [20] have proposed Hessian detector. Messing et al.

[10] have proposed to track Harris feature points using KLT

tracker. Wang et al. [17] have proposed to use dense sam-

pling and to track such detected points using optical flow

and median filtering.

The most popular local spatio-temporal descriptors are:

HOG [3, 8], HOF [8], and MBH [17] descriptor.

Covariance based features have been introduced by

Tuzel et al. for object detection and texture classification

[16]. They have been successfully applied for object track-

ing [14], shape modeling [19], and face recognition [11].

Moreover, covariance based features have been also applied

for action recognition [5, 22]. However, covariance mea-

sures only linear relationship between features. Second dis-

advantage is that covariance matrices do not lie on the Eu-

clidean space, and therefore, we cannot directly use them

with state-of-the-art machine learning algorithms. Bak et

al. [1] have proposed Brownian descriptor for person re-

identification. The authors look for relationships between

pixel locations and intensity gradients. However, their ap-

proach is not suitable for action recognition, as it focuses on

exact appearance matching.

In contrast, our novel Video Brownian Covariance

(VBC) descriptor is able to capture appearance information

based on pixel color, 1st and 2nd intensity derivatives. In

addition, it handles a dynamic nature of a video as Brow-

nian covariance is calculated on each patch in space-time

video volume.

3. Brownian Covariance

The classical covariance descriptor measures only infor-

mation on linear dependence between features. This might

not be enough to capture the complex structure of many ob-

jects. Covariance descriptor may produce a diagonal ma-

trix, which is not a sufficient condition for statistical inde-

pendence; actually, non-monotone dependence may exists.

This indicates information loss when using the covariance

descriptor.

To solve the above issues we propose a novel descriptor

for video description based on Brownian covariance [1, 15].

The classical covariance measures only the degree of lin-

ear relationship between features, whereas Brownian co-

variance measures the degree of all kinds of possible rela-

tionships between features.

3.1. Brownian Covariance

Brownian descriptor is based the theory in mathematical

statistics related to the Brownian motion [15]. The descrip-

tor is based on the distance covariance statistics that mea-

sures the dependence between random vectors in the arbi-

trary dimension. The mathematical notations and formulas

provided in this section are in accordance with [15].

3.1.1 Distance Covariance V2

Let X ∈ R
p and Y ∈ R

q be random vectors, where p and

q are natural numbers. fX and fY denote the characteristic

functions of X and Y , respectively, and their joint charac-

teristic function is denoted as fX,Y . In terms of charac-

teristic functions, X and Y are independent if and only if

fX,Y = fXfY . Thus, a natural way of measuring the de-

pendence between X and Y is to find a suitable norm to

measure the distance between fX,Y and fXfY .
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Figure 1. Low-level appearance features extracted in a video frame. Yellow rectangle indicates a sample patch.

Distance covariance V2 [15] is a new measure of depen-

dence between random vectors and can be defined as:

V2(X,Y ) = ||fX,Y (t, s)− fX(t)fY (s)||2 (1)

= 1
cpcq

∫

Rp+q

|fX,Y (t,s)−fX(t)fY (s)|2

|t|1+p
p |s|1+q

q

dtds, (2)

where cp and cq are constants determining norm function in

R
p × R

q , t ∈ X , s ∈ Y .

This measure is analogous to classical covariance, but

with the important property that V2(X,Y ) = 0 if and only

if X and Y are independent.

The paper [15] provides us the following definition of

a sample distance covariance V2
n. For a random sample

(X,Y) = {(Xk, Yk) : k = 1 . . . n} of n i.i.d random

vectors (X,Y ) from their joint distribution, compute the

Euclidean distance matrices (akl) = (|Xk − Xl|p) and

(bkl) = (|Yk − Yl|q). Define:

Akl = akl − āk· − ā·l + ā··, k, l = 1, . . . , n, (3)

where:

āk· =
1

n

n
∑

l=1

akl, ā·l =
1

n

n
∑

k=1

akl, ā·· =
1

n2

n
∑

k,l=1

akl.

(4)

Similarly, we define Bkl = bkl − b̄k· − b̄·l + b̄··. Having

these simple linear functions of the pairwise distances be-

tween sample elements of X and Y distributions, we define

distance covariance as:

V2
n(X,Y ) =

1

n2

n
∑

k,l=1

AklBkl. (5)

Although, the relation of equations (1) and (5) is not

straightforward, THEOREM 2 from [15] justifies it:

If E|X|p < ∞ and E|Y |q < ∞, then almost surely

lim
n→∞

Vn(X,Y ) = V(X,Y ). (6)

Standardization. Similarly to covariance, which has its

standardized counterpart ρ, V2
n has its standardized version

referred to as distance correlation R2
n, defined as:

R2
n(X,Y ) =







V2
n(X,Y )√

V2
n(X)V2

n(Y )
, V2

n(X)V2
n(Y ) > 0;

0, V2
n(X)V2

n(Y ) = 0,
(7)

where:

V2
n(X) = V2

n(X,X) =
1

n2

n
∑

k,l=1

A2
kl. (8)

4. Video Brownian Covariance Descriptor

In this section, we present our Video Brownian Covari-

ance (VBC) descriptor. Our descriptor encodes a space-

time video volume of size S × S pixels and t frames.

4.1. Image LowLevel Appearance Features

For each frame of a video volume, we compute seven

low-level appearance features. For every pixel we extract

intensities in red, green, and blue channels, first and second

order derivatives of grey scale intensity image along x and

y axis. Thus, every pixel at time t can be expressed in the

following vector form:

ft =

[

R,G,B,
∂I

∂x
,
∂I

∂y
,
∂2I

∂x2
,
∂2I

∂y2

]

, (9)

where I is a gray scale intensity image. The examples of

the extracted low-level appearance features are presented in

Figure 1.

4.2. Video Brownian Covariance Descriptor

For each frame of the video volume we compute Brown-

ian covariance between all mentioned appearance features.

We use 7 low level appearance features, thus each frame is

represented by a vector of m = 28 unique pairwise relations



between features. We define the Video Brownian Covari-

ance (VBC) descriptor D as an average descriptor among

all the Brownian covariance descriptors extracted from all

video frames:

D = [d1, d2, ..., dm], di =
1

t

t
∑

j=1

bi,j , (10)

where bi,j is the i-th value of the Brownian covariance de-

scriptor in the j-th video volume frame.

4.3. Normalization

Each value of our descriptor encodes a different relation-

ship between two appearance features and it has a different

meaning. Therefore, to make the descriptor values more

uniform, we apply the min-max normalization to each de-

scriptor value separately, i.e.:

Normalized(Di) =
Di −Θmin

i

Θmax
i −Θmin

i

, (11)

where Di is the i-th value of the descriptor D, Θmin
i is the

minimum value among all the i-th values of the training

descriptors, and Θmax
i is the maximum value among all the

i-th values of the training descriptors.

5. Approach Overview

In the first step of our approach, we extract local spatio-

temporal patches from a video sequence, and we repre-

sent each patch by our Video Brownian Covariance (VBC)

and the Histogram of Oriented Gradients (HOG) descrip-

tors (Section 5.1). Then, we apply Fisher vectors on the

extracted descriptors to represent videos (Section 5.2). Fi-

nally, we apply Support Vector Machines for action classi-

fication (Section 5.3).

5.1. VBC and HOG Features Extraction

We use dense trajectories [17] to extract local spatio-

temporal patches 1. By extracting dense trajectories, we

provide a good coverage of a video and we ensure extraction

of meaningful features. We limit the length of trajectories to

t = 15 frames. Short trajectories are more robust than long

trajectories, in particular in the presence of fast irregular

motions and when the trajectories are drifting. Moreover,

short trajectories are necessary for the recognition of short

actions like smiling or doing a hive five.

Similarly to [17], we extract a space-time volume (i.e. a

patch) of size S × S pixels and t frames around each tra-

jectory. The volume is subdivided into 3 temporal cells of

l = 5 frames. For each cell we compute a descriptor, and

we concatenate the descriptor of each cell to create a fi-

nal trajectory descriptor. As a descriptor we use our Video

1The dense trajectories were selected based on their use in the recent

literature. However, our approach can be used together with any other

algorithm extracting local spatio-temporal patches.

Brownian Covariance (VBC) descriptor and the HOG de-

scriptor. Therefore, each trajectory is represented by two

appearance descriptors.

5.2. Action Representation

Once the descriptors are extracted, we use them to create

video representations. We encode a video sequence using

first and second order statistics of a distribution of a feature

set X, based on Fisher vectors [12, 13]. We model features

with a generative model and compute the gradient of their

likelihood with respect to the parameters of the model, i.e.

∆λ log p(X|λ). We describe how the set of features devi-

ates from an average distribution of features, modeled by

a parametric generative model. Firstly, during the prelimi-

nary learning stage, we fit a M -centroid Gaussian Mixture

Model (GMM) to our training features, which can be re-

garded as a soft visual vocabulary:

p(xi|λ) =
M
∑

j=1

wjg(xi|µj ,Σj), (12)

s.t. ∀j : wj ≥ 0,

M
∑

j=1

wj = 1, (13)

g(xi|µj ,Σj) =
1

(2π)D/2|Σj |1/2
e−

1
2
(xi−µj)

TΣ−1

j
(xi−µj),

(14)

where xi ∈ X is a D-dimensional feature vector,

{g(xi|µj ,Σj)}Mj=1 are the component Gaussian densities

and λ = {wj , µj ,Σj}Mj=1 are the parameters of the model,

respectively the mixture weights wj ∈ R+, the mean vec-

tor µj ∈ R
D and the positive definite covariance matrices

Σj ∈ R
D×D of each Gaussian component. We learn the

parameters λ using the Expectation Maximization restrict-

ing the covariance of the distribution to be diagonal. To

estimate the GMM parameters, we randomly sample a sub-

set of 100, 000 features from the training set and we set the

number of Gaussians to M = 128. To increase the preci-

sion, we initialize GMM ten times and we keep the code-

book with the lowest error. We define the soft assignment

of descriptor xi to the Gaussian j as a posteriori probability

γ(j|xi, λ) for component j:

γ(j|xi, λ) =
wjg(xi|µj ,Σj)

∑M
l=1 wlg(xi|µl,Σl)

, (15)

Then, we compute the gradients of the j-th component with

respect to µ and σ, using the following derivations:

GX

µ,j =
1

Nx
√
wj

Nx
∑

l=1

γ(j|xl, λ)

(

xl − µj

σj

)

,

GX

σ,j =
1

Nx

√

2wj

Nx
∑

l=1

γ(j|xl, λ)

(

(xl − µj)
2

σ2
j

− 1

)

,

(16)



where Nx is the cardinality of the set X. Finally, we en-

code a set of local descriptors X as a concatenation of par-

tial derivatives with respect to the mean GX

µ,j and standard

deviation GX

σ,j parameters for all M components:

V = [GX

µ,1, G
X

σ,1, ..., G
X

µ,M , GX

σ,M ]T . (17)

The dimension of the Fisher vector representation is 2DM .

5.3. Action Recognition

Linear classifier has shown to be efficient and has shown

to provide good results with high dimensional video rep-

resentations like Fisher vectors. Therefore, we use linear

Support Vector Machines for action classification. Given a

set of n instance-label pairs (xi, yi)i=1..n, xi ∈ R
k, yi ∈

{−1,+1}, we solve the following unconstrained optimiza-

tion problem:

min
w

1

2
w

T
w + C

n
∑

i=1

ξ(w;xi, yi), (18)

where C is a penalty parameter (C > 0) and ξ(w;xi, yi) is

a loss function max(1−yiw
T
xi, 0), referred to as L1-SVM.

We set the parameter C to C = 200, which has shown

good results on a subset of training samples across various

datasets. For multi-class classification, we implement the

one-vs-all strategy.

6. Experiments

In this section, we present the evaluation of our approach

using three state-of-the-art challenging datasets: URADL,

MSRDailyActivity3D, and HMDB51.

We study the performance of appearance descriptors, i.e.

VBC and HOG, separately and together using late fusion

technique. Moreover, we study the performance of these de-

scriptors using Principal Component Analysis (PCA). The

HOG descriptor is the most popular appearance descrip-

tor for action recognition, and therefore, it provides a good

baseline for comparison.

Many authors [8, 9, 17] combine appearance descriptors

with motion-based descriptors (e.g. HOF, MBH). However,

in this paper we focus only on the appearance features and

not motion features.

6.1. URADL Dataset

The URADL (University of Rochester Activities of

Daily Living) dataset [10] 2 contains 10 types of human ac-

tivities of daily living, selected to be useful for an assisted

cognition task. The full list of activities is: answering a

phone, dialing a phone, looking up a phone number in a

2http://www.cs.rochester.edu/˜rmessing/uradl/

telephone directory, writing a phone number on a white-

board, drinking a glass of water, eating snack chips, peel-

ing a banana, eating a banana, chopping a banana, and eat-

ing food with silverware. Each action is performed three

times by five different people. In total, the dataset contains

150 video sequences recorded with 30 fps frame rate and

1280×720 pixels spatial resolution. The videos were down-

sampled to the 640 × 360 pixels spatial resolution. The

dataset contains a set of challenges like: different shapes,

sizes, genders and ethnicities of people, and difficulty to

separate activities on the basis of a single source of infor-

mation (e.g. eating a banana vs. eating snack chips, and

answering a phone vs. dialing a phone). We use leave-one-

person-out cross-validation evaluation scheme to report the

performance of our approach on this dataset.

6.2. MSRDailyActivity3D Dataset

The MSRDailyActivity3D dataset [21] 3 consists of 16
actions such as: drink, eat, read book, call cellphone, write

on a paper, use laptop, use vacuum cleaner, cheer up, sit

still, toss paper, play game, lie down on sofa, walk, play

guitar, stand up, sit down. Each action is performed by 10
subjects, and each subject performs each action in standing

and sitting position, what adds an additional intra-class vari-

ation. In total, the dataset contains 320 videos recorded with

640× 360 pixels spatial resolution. The videos were down-

sampled to the 320 × 180 pixels spatial resolution. We use

leave-one-person-out cross-validation evaluation scheme to

report the performance of our approach on this dataset.

6.3. HMDB51 Dataset

The HMDB51 dataset [6] 4 contains 6766 video se-

quences divided into 51 action categories, each containing

a minimum of 101 video clips. All action categories can be

divided into 5 groups: (1) general facial actions like smile,

laugh, chew, talk, (2) facial actions with object manipula-

tion like eat and drink, (3) general body movements like

clap hands and dive, (4) body movements with object inter-

action like brush hair and ride bike, (5) body movements for

human interaction like hug and shake hands. This dataset

contains multi person actions and is collected from movies

and public datasets such as Prelinger archive and YouTube.

It is very challenging due to significant camera/background

motion, huge appearance variations of people and actions,

not stabilized videos, occlusions, amount of video data and

changes in scale, rotation and viewpoint. We use three splits

provided by the authors, to report the performance of our

approach on this dataset.

3http://research.microsoft.com/en-us/um/people/

zliu/ActionRecoRsrc/
4http://serre-lab.clps.brown.edu/resource/

hmdb-a-large-human-motion-database/

http://www.cs.rochester.edu/~rmessing/uradl/
http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/


Table 1. Results from our experiments presenting the performance of HOG and VBC descriptors individually and together. The VBC

descriptor is complementary to the HOG descriptor and improves the action recognition performance.

Table 2. Results without PCA.

HOG VBC Fusion

URADL 69.33% 70% 80.00%

MSR 42.19% 31.56% 45.31%

HMDB51 16.71% 11.31% 18.95%

Table 3. Results with PCA.

HOG VBC Fusion

URADL 80.67% 74% 80.67%

MSR 47.81% 47.81% 54.38%

HMDB51 26.21% 20.02% 31.07%

6.4. Results

The results are available in Table 2 and Table 3. We ob-

serve that the VBC descriptor carries complementary infor-

mation to the HOG descriptor, as fusion of both descriptors

consistently outperforms each of them. The HOG descrip-

tor directly models values of given features, whereas the

VBC descriptor focuses on their pairwise relations.

The results also show that both descriptors can benefit

from PCA. The descriptors with PCA always achieve better

results than without it.

7. Conclusions

We presented a novel, appearance-based descriptor for

action recognition, which carries complementary informa-

tion to the HOG descriptor. In contrast to the HOG (which

directly models values of given features), the VBC descrip-

tor focuses on features pairwise relations. The fusion of

both descriptors gives a significant advantage in perfor-

mance. In addition, we showed that further improvement

can be made by applying PCA. Our novel descriptor can

be applied in complex action recognition methods, which

combine appearance-based and motion-based descriptors.

In further work we intend to examine the VBC descriptor

using motion features.
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