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ABSTRACT

We investigate the use of two visual descriptors: Local Bi-
nary Patterns-Three Orthogonal Planes(LBP-TOP) and Dense
Trajectories for depression assessment on the AVEC 2014
challenge dataset. We encode the visual information gen-
erated by the two descriptors using Fisher Vector encod-
ing which has been shown to be one of the best performing
methods to encode visual data for image classification. We
also incorporate audio features in the final system to intro-
duce multiple input modalities. The results produced using
Linear Support Vector regression outperform the baseline
method[16].

Categories and Subject Descriptors

I.4.9 [Image Processing and Computer Vision]: Ap-
plications; I.5.4 [Pattern Recognition]: Applications—
Computer Vision

Keywords

Local Binary Patterns; Dense Trajectories; Multimodal Af-
fect Sensing

1. INTRODUCTION
Depression is a serious mental disorder involving persis-

tent bad mood, low self-satisfaction and lack of interest in
normal pleasurable activities. Currently depression is diag-
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nosed by a patient’s self report or through a mental sta-
tus examination (MSE). A MSE entails the observation of
a patient’s state of mind by a psychologist to assess aspects
such as attitude, mood, affect and speech. An automated
system to detect depression can help both the doctors and
patients with diagnosis and treatment monitoring. Such a
system will also help to overcome the problem of subjective
bias associated with self-reports and MSE.

Facial expressions, eye gaze and head motion are impor-
tant visual features used by psychologists to gauge depres-
sion in patients. Advances in the field of computer vision al-
low us to automatically observe these visual features. How-
ever most research has focused on static images and posed
facial expressions. Techniques that work well for posed emo-
tions may not work well for spontaneous expressions [15]. In
[2], the authors underline the importance of spatio-temporal
information for affect sensing. In the work presented here,
we extract spatio-temporal information using two different
visual descriptors from videos of people with depression and
use linear support vector machines to quantify the level of
depression.

Section 2 provides a brief description of the Local Binary
Patterns using Three Orthogonal Planes (LBP-TOP) [19].
LBP-TOP is a spatio-temporal extension to the popular Lo-
cal Binary Patterns (LBP). As with LBP, LBP-TOP is com-
putationally simple to compute, yet efficient at describing
texture. In addition, LBP-TOP provides relative invariance
to illumination changes. In this work, we have used LBP-
TOP features to describe the dynamic texture of the facial
region.

Section 3 describes dense trajectories. Computing dense
trajectories involves 3 steps: (1) sampling feature points
in a dense grid in each video frame. (2) tracking feature
points using optical flow. (3) extracting features aligned
with the trajectories to characterize shape, appearance and
motion. It has been shown in [18] that dense trajecto-
ries outperform the state-of-the-art spatio-temporal interest
points (STIP) [9] at action recognition. We use dense tra-
jectories to capture the visual information associated with



macro-movements such as those of the head, shoulders and
other parts of the upper-body visible in the videos.

In section 4 we discuss Fisher Vector encoding (FV) [13].
FV encapsulates first and second order differences between
the pooled local features and the dictionary which is built
using Gaussian Mixture Models (GMM). The reason why
we need to encode the features and construct a signature
to characterize the videos is that the video clips are of dif-
ferent duration. It also makes it easier for us to combine
the information extracted from the two different descriptors,
LBP-TOP and dense trajectories, since there are instances
in the video when the face is not detected and therefore no
LBP-TOP features are calculated but dense trajectories are
still computed.

Our results are presented in section 5. This section dis-
cusses how the videos are pre-processed and faces are aligned.
It describes the experimental protocol adopted and how the
parameters are optimized. This section presents a predic-
tion error that is lower than that of the baseline method
and concludes with discussion of some of the insights gained
during the experimentation.

2. RELATED WORK
In [6], the authors looked at the change over time in sever-

ity of depression and facial expressions. Facial expressions
were analyzed using FACS and it was found that when the
patient was suffering from severe depression, the facial ex-
pressions were consistent with the ”social risk hypothesis”
which states that patients with depression tend to withdraw
from society. This work validated the use of automated fa-
cial expression analysis for behavioral science.

Scherer et al. [14] recognize vertical head gaze, vertical
eye gaze, smile intensity and smile duration as important
features for sensing psychological disorders such as anxiety
and depression. They employ a multimodal sensor frame-
work called Multisense which included a face tracker, a head
tracker, a system for observing eye gaze and a Microsoft
kinect sensor for skeleton tracking and audio capture. They
discovered that people with depression generally have a down-
ward angle of gaze as compared to non-depressed people. It
was also found that depressed people have lower intensity
smiles and have shorter duration smiles, on average. These
findings suggest that head pose and facial expressions are
important visual cues for depression.

Without using subject specific Active Appearance Models
(AAM) as in [4] and [11], Joshi et al. in [8] use LBP-TOP
and STIP features in conjunction with Bag of words (BoW)
encoding to detect depression. They experiment with a vari-
ety of feature fusion techniques and combine audio features
such as loudness, pitch, intensity and Mel-frequency cep-
stral coefficients (MFCC) to develop a multimodal depres-
sion sensing system.

3. LBP-TOP FEATURES
In [19] Zhao and Pietikäinen present a spatio-temporal

extension to LBP. They propose concatenating local binary
patterns on three orthogonal planes: XY, XT and YT where
XT and YT contain the space-time transition information.
Using uniform patterns the length of the feature vector for
each plane is limited to just 59 values, leaving us with a
3 X 59 histogram for a video sequence. Unlike the circu-
lar sampling in conventional LBP, LBP-TOP uses elliptical

sampling to fit to space-time statistics. Fig.1 illustrates how
LBP-TOP features are calculated.

Figure 1: LBP-TOP computation

LBP-TOP features are a computationally efficient yet sim-
ple approach to describe dynamic facial texture. We use
these features to capture intra-face movements.

4. DENSE TRAJECTORIES
Space Time Interest Points (STIP) introduced by Laptev

[9] by extending the Harris detector to the space-time do-
main is a very successful approach for activity recognition.
Recently Wang et al. in [18] demonstrated that activity
recognition performance can be increased by treating the
space and time domains separately, rather than detecting
interest points in a joint 3D space. In contrast to STIP,
dense trajectory computation involves tracking densely sam-
pled points from each frame using an optical flow algorithm
and thereby capturing motion information of trajectories.

Dense sampling of feature points carried out on multi-
ple spatial scales provides coverage of all spatial positions.
Feature points are tracked on each spatial scale separately
using optical flow fields. Apart from the trajectory shape
information, Histogram of Oriented Gradients (HOG), His-
togram of Optical Flow (HOF) and Motion Boundary His-
togram (MBH) descriptors are computed over 3D space-time
volumes aligned with the trajectory to provide motion infor-
mation. Fig.2 shows how dense trajectories are computed.

Figure 2: Dense Trajectory computation

Dense Trajectories are a state-of-the-art technique for video
description based on optical flow fields. We make use of
dense trajectories to extract visual information related to
macro level movements.

5. FISHER VECTOR ENCODING
The Bag of Visual Words (BoV) is a vector of occurrence

counts of a vocabulary of local image features constructed
using off-line k-means clustering on a large set of local de-
scriptors. Bag of word representation counts the number of
descriptors assigned to a particular cluster, Fisher vector en-
coding not only provides that information but also encodes
the deviation of a sample from the distribution in the form
of first and second order statistics. Although the encoding



generated using Fisher Vectors is not sparse, the number
of clusters required in Fisher Vectors for attaining an accu-
racy similar or better than sparse coding and bag of words is
about 1/10th the number of clusters needed in sparse coding
and bag of words.

Fisher Vector encoding (FV) is a major improvement over
the Bag of Words (BoW) technique and sparse coding[10].
Chatfield et al. in [3] report that Fisher Vector encoding
works better than a variety of encoding techniques at image
classification on the PASCAL VOC challenge[5].

Unlike BoW where k-means clustering is used to build the
dictionary, FV uses GMM for building the dictionary. This
dictionary built using GMM can be visualized as a proba-
bilistic visual dictionary. Using this GMM-based dictionary,
weighted measures of the descriptor are assigned to multi-
ple clusters in contrast to BoW encoding where descriptors
are assigned to a single cluster. In this paper we use the
VLfeat implementation [17] of Fisher Vector encoding which
is available for free download from www.vlfeat.org.

6. EXPERIMENTS AND RESULTS
The AVEC 2014 challenge dataset is divided into 3 par-

titions: training, development and test. The labels for the
training and development set are available to participants.
Results are mailed to the organisers in order to obtain the
errors over the test set. Participants get 5 attempts to test
their results on the test set. Each partition contains 50 Beck
Depression Index-II labels. Each label corresponds to a pair
of videos, Freeform and Northwind.

To extract the visual information from the videos we com-
pute LBP-TOP features to capture the intra-face movement
and dense trajectories to capture macro movements such as
those of the head and the shoulders.

We split the videos into individual frames and perform
face detection and alignment using Openimaj[7]. Openimaj
normalizes the detected face into an imagette of 80 X 80 pix-
els. Zhao and Pietikäinen [19] demonstrate that it is best
to divide the imagette into overlapping spatial regions and
calculate the LBP-TOP features separately for each spatial
region over a time slice and finally concatenate the results
from the different regions and time slices. This technique
helps encode the occurrence of micro-patterns and their rel-
ative locations in the image.

Using cross-validation, it is seen that for an imagette of
our size, spatial regions of 10 X 10 pixels work best with a
50% overlap. We compute LBP-TOP features for 2 different
sizes of the temporal slices, t=3s and t=1s.

Principal Component Analysis (PCA) is performed to re-
duce the dimensionality of the LBP-TOP feature vector and
decorrelate the features. This reduces the computation time
and also reduces the size of the Fisher Vectors as this is lin-
early dependent on the feature vector size [12]. We choose
a dimensionality of D=64, assuring that the variance in
the projected data is at least 95% of the original data. A
Gaussian mixture model is fit over a subset of reduced-
dimensionality training features which is used to create one
Fisher vector per video. The optimum number of clusters is
chosen using cross-validation over the development set.

For dense trajectories we use the following settings: length
of the trajectory is set to 15 frames, the stride for dense sam-
pling feature points is set to 5 pixels and the neighborhood
size for computing the descriptor is set to 32 pixels. A set of
features (HOG, HOF and MBH) over the dense trajectories

is generated for each video. Just as with the LBP-TOP fea-
tures, PCA is performed followed by fitting of a GMM over
a subset of projected trajectory features from the training
set. Millions of trajectories are generated for the training set
alone, a subset of 3.6X105 is used to fit the GMM. The fitted
model is used to generate a Fisher vector for each video.

The low level descriptors (LLD) audio features provided
with the AVEC 2014 database are reduced in dimensionality
using PCA (D=64) and a GMM is fit over the projected
features followed by Fisher vector generation.

Figure 3: System Architecture

The LBP-TOP, dense trajectory and audio features hav-
ing been transformed into Fisher vectors are concatenated
for each pair of videos, Freeform and Northwind, and fed
as input to a linear support vector machine (SVM). Linear
SVM is chosen because in the feature matrix, the number of
columns, are much more than the number of rows. A fea-
ture vector of D=64 produces a FV of 4096 columns, for each
pair of videos there will therefore be 2*4096=8192 columns
whereas the number of samples in the training set is just 50.
Fig.4 shows how the optimum number of clusters is chosen
for fitting the GMM on LBP-TOP features. The minimum
development error is achieved at 35 clusters; a similar anal-
ysis gave us a minima at 40 for dense trajectories and at 50
for LLD audio features.

Figure 4: Root Mean Square Error (RMSE) vs.
number of clusters

We compare our results obtained using Fisher vector en-
coding with results produced using sparse coding in Table 2
for LBP-TOP features on the development set.



LBP-TOP LLD Dense LBP-TOP+Dense LBP-TOP+LLD LLD+Dense LBP-TOP+LLD+Dense
Trajectories Trajectories Trajectories Trajectories

MAE 6.9697 9.7457 9.8668 6.9679 6.9662 9.5229 6.9643
RMSE 8.1674 11.514 11.7985 8.1647 8.1645 11.2538 8.1618

Table 1: Errors for different combinations of descriptors on the development set

Encoding Technique Fisher Vector Encoding Sparse Coding
MAE 6.9697 10.1785
RMSE 8.1674 11.9858

Table 2: Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) for different encoding
techniques

For sparse coding, we vary the dictionary size from 250-
750 and the minima is attained at 550. We use max pooling
in the final encoding step which has been shown to perform
better than average pooling.

Window Size 1 second 3 seconds
MAE 7.5520 6.9697
RMSE 8.9025 8.1674

Table 3: Errors for different sizes of time slice

It can be seen in Table 3 that a time slice of 3 seconds
works better than a slice of 1 second on the development
set.

In Table 1 we see that the minimum errors are obtained by
combining all the three descriptors: LBP-TOP, dense tra-
jectories and LLD audio features. However using LBP-TOP
features alone and encoding them using Fisher Vectors, we
achieve error values very close to the error values attained
by the combination of all three features. Given the compu-
tational effort required to generate and encode dense trajec-
tories and LLD features, we opt to use LBP-TOP features
alone for our results on the test set.

We only test the early fusion technique because we only
have 50 samples for training and another 50 for development.
In case late fusion is performed, we will need two layers of
regressors with the output of one layer forming the input for
the second and the training data of just fifty samples getting
split between the two layers.

Finally we compare our errors on the development and
testing set with the baseline in Table 4.

Development Test Set
Set

Our Method Baseline Our Method Baseline
MAE 6.9697 - 8.3988 8.857
RMSE 8.1674 9.26 10.2491 10.859

Table 4: Comparison of errors with baseline

Our method performs better than the baseline method. It
is worth noting that these results are produced using LBP-
TOP features alone combined with Fisher Vector encoding.
The baseline [16] uses LGBP-TOP features [1] which are
LBP-TOP features calculated over several orders of Gabor
images; LBP-TOP features are therefore computationally
simpler to compute. In the baseline draft paper it is not

mentioned how they encode the visual information to obtain
a unique feature vector corresponding to each label hence we
cannot compare the computational efficiency of our system
with the baseline.

7. CONCLUSION
This paper presents a multimodal system for automated

depression evaluation. It presents a method to quantita-
tively estimate the likelihood of depression using visual fea-
tures.

Our experiments show that dense trajectories and LLD
features do not significantly reduce the mean absolute and
root mean square errors when the features are combined
with LBP-TOP features. It is seen that LBP-TOP features
alone combined with Fisher Vector encoding are enough to
beat the baseline.

We believe that this novel framework for depression as-
sessment can be easily extended for predicting other slowly
changing labels such as mood.
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[11] G. McIntyre, R. Göcke, M. Hyett, M. Green, and
M. Breakspear. An approach for automatically
measuring facial activity in depressed subjects. In
ACII, pages 1–8, 2009.

[12] D. Oneata, J. J. Verbeek, and C. Schmid. Action and
event recognition with fisher vectors on a compact
feature set. In ICCV, pages 1817–1824, 2013.

[13] J. Sánchez, F. Perronnin, T. Mensink, and J. J.
Verbeek. Image classification with the fisher vector:
Theory and practice. International Journal of
Computer Vision, 105(3):222–245, 2013.

[14] S. Scherer, G. Stratou, M. Mahmoud, J. Boberg,
J. Gratch, A. A. Rizzo, and L.-P. Morency. Automatic
behavior descriptors for psychological disorder
analysis. In FG, pages 1–8, 2013.

[15] N. Sebe, M. S. Lew, Y. Sun, I. Cohen, T. Gevers, and
T. S. Huang. Authentic facial expression analysis.
Image Vision Comput., pages 1856–1863, 2007.

[16] M. Valstar, B. Schuller, K. Smith, T. Almaev,
F. Eyben, J. Krajewski, R. Cowie, and M. Pantic.
AVEC 2014 - 3D dimensional affect and depression
recognition challenge. In 4th ACM international
workshop on Audio/visual emotion challenge, 2014.

[17] A. Vedaldi and B. Fulkerson. Vlfeat: An open and
portable library of computer vision algorithms. In
Proceedings of the International Conference on
Multimedia, MM ’10, pages 1469–1472, New York,
NY, USA, 2010. ACM.
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