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Abstract—We propose a simple decoding algorithm for CSS
codes taking into account the correlations between the X part
and the Z part of the error. Applying this idea to surface codes,
we derive an improved version of the perfect matching decoding
algorithm which uses these X/Z correlations.

I. INTRODUCTION

Low Density Parity–Check (LDPC) codes are linear codes

defined by low weight parity-check equations. It is one of the

most satisfying construction of error-correcting codes since

they are both capacity approaching and endowed with an effi-

cient decoding algorithm. It is therefore natural to investigate

their quantum generalization.

Besides their use for quantum communication, quantum

LDPC codes could play a central role in quantum computing.

A striking difference between classical and quantum informa-

tion is the fact that every manipulation of quantum bits (qubits)

is very noisy. Quantum gates must therefore be implemented

in a fault-tolerant way. This is realized by applying operations

on qubits encoded by a quantum error-correcting code. These

qubits can then be regularly corrected. Some recent work

of Gottesman [18] has shown that quantum LDPC codes

are well-suited for fault-tolerance. These codes, which are

defined by low weight constraints on qubits, naturally limit

the propagation of errors.

The first difficulty in the generalization of LDPC codes is

that most of the constructions have bounded distance (see [26]

and references therein). The rare families of quantum LDPC

codes equipped with a growing distance are derived from

Kitaev’s construction. Kitaev’s toric code is defined by local

interactions between qubits placed on a square tiling of the

torus. Similar constructions were proposed, based on tilings

of surfaces [5], [28], 3-colored tilings [4], [9], Cayley graphs

[8] or other geometrical objects [26], [22], [15], [2].

The belief propagation decoding algorithm is an essential

ingredient of the success of LDPC codes. Unfortunately, it is

much less effective in the quantum setting due to two facts (i)

the unavoidable presence of 4-cyles in the Tanner graph [7]

and (ii) the low weight generators can be considered as low-

weight errors which are not detected by the belief propagation

decoder but which are harmful for its convergence [23]. To

circumvent this obstacle, some techniques originating from

classical coding theory were imported in quantum information

recently [19], [1]. Another direction to avoid the 4-cycles, is

to consider the error, which is a quaternary vector, as a pair of

binary vectors. These two binary vectors can then be decoded

separately. The main problem of this point of view is that

it does not consider the correlations between the two binary

components of the error. In this work, we present a simple and

general strategy to take into account these correlations. To il-

lustrate this idea, we focus on surface codes equipped with the

perfect matching decoding algorithm. This algorithm is usually

unable to consider the correlations. Applying our method to a

family of surface codes constructed from triangular tilings of

a torus, we observe a clear improvement of the performance

of the decoding algorithm. The depolarizing error threshold

of these triangular codes is approximately 13.3% while it is

close to 9.9% without considering the correlations.

This article is organised as follows. The definition of surface

codes and the geometrical description of errors and syndrome

over these codes are recalled in Section II. Section III explains

how decoding can be performed by using the aforementioned

correlations. Section IV is devoted to the description of the

perfect matching decoding algorithm and its improvement to

take into account the correlations.

II. DEFINITIONS AND BASIC PROPERTIES

Error model. We deal here with the depolarizing channel

model which is one of the most natural quantum error model

and the quantum analog of the binary symmetric channel.

Over the depolarizing channel of probability p, each qubit

is subjected, independently, to an error X,Y or Z with

probability p/3 or is left unchanged with probability 1 − p
where X,Y and Z denote the usual Pauli matrices. An error

E over n qubits is therefore a tensor product ⊗n
i=1Ei where

Ei ∈ {I,X, Y, Z}. Errors are considered up to the phase

{±1,±i}, since quantum states are defined up to a phase.

Stabilizer and CSS codes. A quantum code is a subspace

of dimension 2k of (C2)⊗n. This code encodes k qubits into

n qubits. A very useful way of constructing such codes is

through the stabilizer code construction [17] where the code

is described by the set of fixed states of a family of commuting

Pauli operators {S1, . . . , Sr}. In other words, the Si’s are

generators of the stabilizer group of the quantum code. A

particular case of this construction is the CSS construction

due to Calderbank, Shor [6] and Steane [25]. It consists in

choosing some of these Pauli operators in {I,X}⊗n and the



rest of them in {I, Z}⊗n. This brings several benefits, first it

simplifies the commutation relations and helps in constructing

such codes and second decoding of such codes can be achieved

by decoding two binary codes as will be explained in the next

paragraph.

Syndrome measurement and decoding of CSS codes. For

a stabilizer code with stabilizer generators {S1, . . . , Sr} sub-

jected to a Pauli error E, it is possible to perform a mea-

surement which reveals the vector s(E)
def
= (E ⋆ Si)1≤i≤r

where E ⋆ Si is equal to 0 if E commutes with Si and

is equal to 1 otherwise. In the case of a CSS code, the

syndrome splits into two parts, one corresponding to the

commutation with the generators belonging to {I,X}⊗n and

the other one corresponding to the commutation relations

with the generators in {I, Z}⊗n. Moreover, if we decompose

the error E as E = EXEZ where EX ∈ {I,X}⊗n and

EZ ∈ {I, Z}⊗n and if we let S1, . . . , SrX be the generators

which are in {I,X}⊗n and SrX+1, . . . , Sr be the generators

which are in {I, Z}⊗n, then the syndrome part sX which

corresponds to the generators in {I,X}⊗n verifies sX
def
=

(E⋆Si)1≤i≤rX = (EZ ⋆Si)1≤i≤rX whereas the syndrome part

sZ which corresponds to the generators in {I, Z}⊗n verifies

sZ
def
= (E ⋆ Si)rX+1≤i≤r = (EX ⋆ Si)rX+1≤i≤r.

Notice that if we bring in the binary matrices HX and

HZ whose rows are formed for HX , respectively HZ , by

the generating elements belonging to {I,X}⊗n, respectively

{I, Z}⊗n (and replacing I by 0 and X by 1, respectively

replacing I with 0 and Z with 1), then sX is nothing but the

syndrome HXeTZ of the binary error eZ (obtained from EZ by

replacing I by 0 and Z by 1), whereas sZ is nothing but the

syndrome HXeTZ of the binary error eZ (obtained from EZ

by replacing I by 0 and Z by 1). In other words decoding

a CSS code amounts to decode two binary codes. This is

how decoding a CSS code is usually performed. We call this

decoding technique the standard CSS decoder.

Tiling of a surface. A surface code is a CSS code associated

with a tiling of surface. Let us recall the definition of a tiling

of surface. A tiling of surface is defined to be a cellular

embedding of a graph G = (V, E) in a 2-manifold, that is,

a surface. Without loss of generality, we can assume that the

surface is smooth. We assume that the graph G contains neither

loops nor multiple edges. This embedding defines a set of faces

F . Each face is described by the set of edges on its boundary.

This tiling of surface is denoted G = (V, E ,F). The dual

graph of G is the graph G∗ = (V∗, E∗) of vertex set V∗ = F
such that two vertices are linked by an edge if and only if

the two corresponding faces of G share an edge. There is a

clear bijection between the edges of G and the edges of G∗.

This graph G∗ is endowed with a structure of tiling of surface

and its faces correspond to the vertices of G: these faces are

induced by the set of edges of G incident to a vertex v ∈ V .

Surface Codes. Surface codes are a special case of CSS

codes. They have been introduced by Kitaev [20]. Assume

that qubits are placed on the edges of a tiling of surface

G = (V, E ,F). The space of the system is
⊗

e∈E He, with
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Figure 1. A plaquette operator and a site operator acting on a square tiling
of the torus in Fig. (a) and on a triangular tiling of the torus in Fig. (b). The
opposite boundaries are identified.

He = C
2 for every edge e ∈ E . The Pauli operators

acting on this space are the tensor products ⊗e∈EPe such

that Pe ∈ {I,X, Y, Z}. For every edge i ∈ E , denote by

Xi = ⊗ePe the Pauli operator which is the identity on every

edge except on edge i, where Pi = X . The operators Zi are

defined similarly for all i ∈ E . The site operators Xv and the

plaquette operators Zf are the Pauli operators defined by

Xv =
∏

v∈e

Xe and Zf =
∏

e∈f

Ze,

for every vertex v ∈ V and for every face f ∈ F . Then,

the surface code associated with the tiling of surface G is

the CSS code fixed by the site operators and the plaquette

operators. The commutation between these operators follows

from the structure of the tiling. Note that HX is in this case the

incidence matrix of the graph G and HZ the incidence matrix

of its dual G∗. The site operators and the plaquette operators

of Kitaev’s toric codes are represented in Figure 1 (a).
Syndrome of a surface code. In the case of a surface code,

the syndrome has a graphical interpretation that we recall now.

Consider the surface code associated with a tiling of surface

G = (V, E ,F). Assume that an error EZ acts on a path γ ⊂ E
of G. In other words, we have EZ =

∏
e∈γ Ze. Then, the

syndrome sX = (EZ ⋆ Xv)v∈V of this error is indexed by

the vertices of the graph and is non-trivial if and only if the

vertex v is an end-point of the path γ. This follows from the

fact that EZ commutes with all the operators Xv , except the

two operators centered on the end-points of γ. More generally,

the support of the error EZ can be decomposed as a union of

disjoint paths and its syndrome indicates the end-points of the

support of EZ . In what follows, we denote ∂(U) ⊂ V the set

of end-points of a set U ⊂ E .

To obtain an analogous description of the error EX and its

syndrome, replace the graph by its dual. Indeed, this transfor-

mation exchanges the roles of X and Z in the definition of

the code.

The following well known lemma summarizes the graphical

description of the error.

Lemma 1. Let G = (V, E ,F) be a tiling of surface and let

G∗ = (V∗, E∗,F∗) be its dual. An error acting on the surface

code associated with G corresponds to a pair (EX , EZ) such

that EX ⊂ E∗ and EZ ⊂ E , and its syndrome is the pair



(sX , sZ) such that sX ⊂ V is the set ∂(EZ) of end-points of

EZ and sZ ⊂ V∗ is the set ∂(EX) of end-points of EX .

III. DECODING BY USING CORRELATIONS BETWEEN

ERRORS IN X AND Z

Virtually all decoders of CSS codes try to recover the EX

and EZ part of the error independently by decoding two binary

codes as explained in Section II. There is however some

correlation between the X part of the error and the Z part

as shown by the following conditional probabilities computed

for a single error E = EXEZ generated by the depolarizing

channel of depolarizing probability p:

P(EZ = I|EX = X) = 1/2 (1)

P(EZ = Z|EX = X) = 1/2 (2)

whereas

P(EZ = I|EX = I) =
1− p

1− 2p/3
(3)

P(EZ = Z|EX = I) =
p/3

1− 2p/3
· (4)

When EX = X , we recognize an erasure channel and in the

second case this corresponds to a binary symmetric channel

of probability p′′
def
= p/3

1−2p/3 . This can be exploited by the fol-

lowing strategy for decoding. First, decode the X component

of the error. Then, erase the coefficients of EZ corresponding

to the X errors. Finally, decode the Z component of the error,

which is subjected to a combination of errors and erasures. We

call such a decoder a CSS decoder using X/Z correlations.

It is insightful to calculate the capacity of the two classical

channels that both decoders face. The X decoder has to work

for a binary symmetric channel of crossover probability p′
def
=

2p/3 whereas the Z decoder has to work for a binary error

and erasure channel, where a bit gets erased with erased with

probability p′ and corrupted with probability (1− p′)p′′. The

capacity of the first channel is equal to 1− h(p′) whereas the

capacity of the second channel is equal to (1−p′)(1−h(p′′)).
It can be readily observed that the second capacity is always

larger than the first one.

This suggests two things

(i) if the two binary codes have the same rate (that is if

the number of X generators is the same as the number

of Z generators), then we may expect that the second

decoder behaves much better than the first decoder and

that the probability of the whole decoding is essentially

the probability that the first decoder fails instead of being

essentially twice this probability as is usually the case

for the standard CSS decoder described in the previous

section.

(ii) In order to fully use this decoder, the best strategy

for choosing the CSS code (without using the possible

degeneracy of the code) is to choose an asymmetric CSS

code where the number of Z generators of the CSS code

is chosen such that the binary code associated to HZ has

rate slightly below 1 − h(p′) whereas the X generators

are chosen such that the rate of the binary code associated

to HX has rate slightly below (1− p′)(1− h(p′′)). This

strategy of decoding is able to reach the hashing bound,

which is equal to 1 + p log p
3
+ (1 − p) log(1 − p) for

a depolarizing channel as explained by the following

theorem.

Theorem 2. For any ǫ > 0, there exists a family of CSS

codes of quantum rate ≤ 1 + p log p
3
+ (1− p) log(1− p)− ǫ

for which the error probability after decoding with the CSS

decoder using X/Z correlations goes to 0 as the length goes

to infinity.

This theorem is proved by random coding techniques and

will be given in the full version of this paper. Notice that the

hashing bound is significantly bigger than 1−2h(p′) which is

the biggest quantum rate that random CSS codes may have in

order to be decoded succesfully by the standard CSS decoder.

IV. IMPROVEMENT OF THE PERFECT MATCHING

DECODING

In this section, we recall the perfect matching decoding

algorithm [11] for surface codes, we discuss about its two main

weakness and improve its performance by using the strategy

outlined in Section III.

A. The Perfect Matching Decoding Algorithm

We consider that a surface code is subjected to a ran-

dom error (EX , EZ) generated by a depolarizing channel of

probability p. The goal of this algorithm is to determine a

most likely error EZ which corresponds here to an error of

minimum weight (since in general we are in a situation where

p′ ≤ 1/2) which has syndrome sX . The component EX is

decoded similarly in the dual graph.

To determine an error EZ ⊂ E of minimum weight, given

its end-points sX = ∂(EZ) ⊂ V , we are looking for a set

of paths whose end-points are exactly sX and whose size is

minimum. Algorithm 1 computes such a set using Edmonds’

minimum weight perfect matching algorithm [13], [14], [21].

This decoding algorithm first computes the distance graph

associated with a syndrome s ⊂ V . It is the weighted complete

graph K(s), with vertex set s = {s1, s2, . . . , sm}, such that

the weight of the edge {si, sj} is the distance d(si, sj) in

G. The second step of the algorithm is the determination

of a minimum weight perfect matching M in K(s). Recall

that a perfect matching in a graph H is a set of edges of

H meeting all the vertices of H exactly once. With each

edge {vi, vj} ∈ M , we associate a geodesic of G joining

the vertices vi and vj . Denote by G(vi, vj) this geodesic. The

algorithm returns the symmetric difference of all the geodesics

corresponding to the edges of M . It is the support of a most

likely error of syndrome s.

B. Degeneracy and Correlations

We now discuss of two cases of failure of the perfect match-

ing decoding algorithm and their effect on the performance.

First, by definition, surface codes are fixed by the plaquette

operators of the tiling. Thus two errors which differ in a sum



Algorithm 1 Perfect Matching Decoding

Require: A graph G = (V, E), a subset s ⊂ V of odd size.

Ensure: A subset x ⊂ E of minimum size with end-points

∂(x) = s.

1: Construct the distance graph K(s) associated with s.

2: Determine a minimum weight perfect matching M
3: return the symmetric difference of all the geodesics

G(vi, vj) for {vi, vj} ∈ M .

of plaquettes (or faces) have exactly the same effect on the

quantum code. We should thus look for the most likely error

coset up the sums of faces instead of the most likely error. This

phenomenon is called degeneracy. The threshold of the toric

code obtained by taking account optimally of the degeneracy

has been estimated using an Ising model interpretation of the

decoding problem [11]. This threshold is close to p = 0.163
whereas the perfect matching algorithm reaches its threshold

at approximately p = 0.155. Note that the renormalization

group approach of [12] is one of the rare decoding algorithm

of the toric code which is able to make use of the degeneracy

of the code.

The second possibility of improvement of the decoding

algorithm is the most important potential gain in the perfor-

mance. It is the correlation between the 2 components, EX and

EZ , of the error and consists in using the decoding strategy

explained in Section III. The threshold of the toric code using

the X/Z correlations has been estimated close to 0.189 with

the Ising model correspondence [3] and is approximately 0.185
with the non-efficient Metropolis decoding algorithm [27].

These two remarks are generally true for all surface codes.

C. A Correlated Perfect Matching Algorithm

To implement the decoding strategy of Section III we need

to be able to correct errors and erasures when decoding the

EZ part. The correction of combinations of errors and erasures

for topological codes has been considered by Stace, Barrett,

and Doherty [24]. We choose here to adapt Algorithm 1 to

find a most likely error for this error model.

Denote by Ee
Z the restriction of EZ to the erased positions,

that is the positions (or edges) such that EX = X , and denote

by E ē
Z its restriction to the non-erased positions. To find the

error EZ of syndrome sX such that the weight of EXEZ

is minimum, we just have to modify the distance function

in Algorithm 1. We introduce the e-distance de, associated

with an erasure e. The usual distance between two vertices of

a graph G is the length of a shortest path joining these two

vertices. The distance de is defined similarly but the length of a

path is its number of non-erased edges. An e-geodesic between

two vertices u and v of G is a path of G of length de(u, v)
joining these two vertices. This provides us a version of the

perfect matching algorithm to correct combinations of errors

and erasures. It is presented in Algorithm 2. The distance graph

based on the e-distance de is denoted Ke(s). The notation

Ge(u, v) represents a e-geodesic between u and v.
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Figure 2. An example of error correction using Algorithm 3. (a) An error
for Kitaev’s toric code. (b) The component EX computed at Step 1. of
Algorithm 3. (c) The syndrome sX of EZ is given by the vertices marked
with ’1’. The dashed edges form the erasure defined from EX . (d) The Z

component estimated in Step 2. of Algorithm 3. It is the an error of syndrome
sX which has minimum weight on the non-erased qubits.

Algorithm 2 Perfect Matching Decoding for errors and era-

sures

Require: A graph G = (V, E), a subset s ⊂ V of odd size, a

set of erased edges e ⊂ E .

Ensure: A subset x ⊂ E with end-points ∂(x) = s such that

the cardinality of x\e is minimum.

1: Construct the e-distance graph Ke(s) associated with s.

2: Determine a minimum weight perfect matching M ⊂
E(Ke(s)).

3: return the symmetric difference of all the e-geodesics

Ge(vi, vj) for {vi, vj} ∈ M .

Combining Algorithm 1 and Algorithm 2, we obtain Al-

gorithm 3, which is an improved version of the Perfect

Matching Decoding algorithm taking partially account of the

X/Z correlations.

Algorithm 3 Correlated Perfect Matching Decoding

Require: A tiling G = (V, E ,F), a syndrome (sX , sZ) ⊂
V × V ∗.

Ensure: An error (EX , EZ) ⊂ E∗×E of syndrome (sZ , sX),
such that |EX | is minimum and |EXEZ | is minimum

given EX .

1: Compute EX by applying Algorithm 1 to sZ in the dual

graph G∗.

2: Compute EZ by applying Algorithm 2 to sX and e = EX

in the graph G.

3: return (EX , EZ).

An example of error over the toric code that can not be

corrected with the usual perfect matching decoding but that is

corrected with Algorithm 3 is represented in Figure 2.

For Kitaev’s toric codes, we obtain a slight improvement
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Figure 3. Phase decoding performance of Algorithm 1 and depolarizing de-
coding performance of Algorithm 3 for triangular toric codes of length 3.22m

of the decoding performance using Algorithm 3, but we

cannot overcome the usual threshold since the EX part of

the error is decoded using a standard perfect matching al-

gorithm. Nevertheless, as explained in Section III, the use

of the X/Z correlations is well appropriate to asymmetric

CSS codes. To define asymmetric surface codes, it suffices

to consider non-self dual tilings.

A natural construction of asymmetric surface codes is

the family derived from triangular lattices of the torus. For

example, the Cayley graph of the group Z/mZ× Z/mZ and

the generating set {±(1, 0),±(0, 1),±(1,−1)}, described in

Figure 1 (b), clearly defines a triangular tiling of the torus.

Using Algorithm 1, we remark a threshold for the correction

of phase errors at p′ = 0.066 in Figure 3, whereas the bit-

flip error threshold, observed in the dual graph (which is a

hexagonal lattice), is very high (more than p′ = 0.14 for this

family of tiling). This implies a depolarizing error threshold

at p = 3p′/2 = 0.099 for the standard perfect matching

algorithm, while Algorithm 3 leads to a depolarizing error

threshold at approximately p = 0.133. This good performance

is explained by the fact that, while the phase error threshold

is low, the error correction in the dual graph exhibits a very

good performance and the bit-flip error threshold is high. This

allows Algorithm 3 to take into account the X/Z correlations.

V. CONCLUDING REMARKS

We proposed a decoding algorithm for CSS codes partially

taking into account the correlations between the X component

and the Z component of the error for a depolarizing channel.

Applied to triangular toric codes, this algorithm exhibits a

good performance and clearly improves the threshold. It could

be applied to other classes of codes, for instance for color

codes, where the decoding algorithm by projection onto 3 sur-

face codes can be adapted to take into account the correlations

between the 3 surface codes [10].
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