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On Leader Following and Classification

Procópio Stein1, Anne Spalanzani1,2, Vı́tor Santos 3 and Christian Laugier1

Abstract— Service and assistance robots that must move
in human environment must address the difficult issue of
navigating in dynamic environments. As it has been shown in
previous works, in such situations the robots can take advantage
of the motion of persons by following them, managing to
move together with humans in difficult situations. In those
circumstances, the problem to be solved is how to choose a
human leader to be followed.

This work proposes an innovative method for leader selec-
tion, based on human experience. A learning framework is
developed, where data is acquired, labeled and then used to
train an AdaBoost classification algorithm, to determine if a
candidate is a bad or a good leader, and also to study the
contribution of features to the classification process.

I. INTRODUCTION

Mobile robots that provide assistance or services to hu-
mans must face a series of requirements that set them apart
from other types of robots. They are expected to be able
to interact with humans, adapt to unpredicted situations,
respect social conventions and be able to move in dynamic
environments. These requirements are directly related to the
success of interactions and human acceptance of service and
assistance robots.

To address the issue of robot motion planning in populated
environments, modern techniques implement methods based
on probabilistic and predictive approaches [1], [2] and on
models of social interactions [3]. These techniques create
motion plans that allow the robot to avoid trajectories that
have a risk of future collision with persons, while at the
same time avoiding entering personal and social spaces and
causing discomfort to the persons involved.

A drawback of those approaches is that they usually
do not take into account changes that people perform in
their typical paths to avoid and adapt to other moving
persons. This omission, allied to excessive future uncertainty,
or densely populated environments, may lead to situations
where every generated path leads to collisions, resulting in
frozen situations, as shown by [4].

However, humans are able to seamlessly move in popu-
lated environments and also to address complex situations
and interactions with other humans. The way humans move
is the result of information gathering and very complex
decision making processes, which is not yet completely
understood, although some models have been developed [5]
and incorporated in planning algorithms [6], [7].
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Fig. 1. Initial configuration of the experiment using a pedestrian simulator.
Pedestrians are represented by circles and must reach opposing ends in the
corridor. The robot is represented by the dark rectangle and its goal lies on
the right region of the corridor.

Based on these observations, it has been proposed that the
robot can enhance its navigation capabilities by following
humans in such environments, taking advantage of their
navigation skills [8], [9], [10]. In these works, a probabilistic
framework was used to predict the goal of leader candidates,
and then the robot would select as a leader the person moving
to the same destination as itself.

Following this line of research, the current work extends
the previous studies, creating a learning framework for leader
classification, according to their behavior and based on
human experience.

The next section shows the advantages of leader following
behavior over classic and state-of-the-art motion planning
algorithms in a populated corridor. Section III follows with
a description on the AdaBoost algorithm and how it can be
used to study the contribution of features to the classification
problem. After that, Section IV describes the data acquisition
and labeling, followed by the training of the classifier and
experiments. The analysis and conclusions of this work are
presented in section V.

II. ADVANTAGES OF LEADER FOLLOWING

This experiment uses a simple pedestrian simulator, which
was developed based on the social-forces model [11]. The
test environment consists on a narrow corridor with two
groups of nine agents that have to reach opposing goals in
such corridor. A robot that must reach a goal in the right-
most region of the test scenario starts behind the group in
the left region. Figure 1 depicts the initial configuration of
the experiment. On the following images, the complete path
traveled by the robot is represented as a dark red line.

In the first test, the A∗ algorithm is used. As it has been
developed to work in a static mode, its planning phase takes
place at snapshots of the current environment state. However,
due to the motion of the agents, the motion plan is frequently
invalidated, prompting the algorithm to constantly replan.
This results in a path where the robot changes direction
several times, as shown by the dark red line in Figure 2.
The constant need of replanning virtually brings the robot
to a halt during some instants. Only when the density of
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Fig. 2. Navigation using A* motion planning. Due to the motion of agents,
the algorithm is constantly replanning, hindering the robot motion.

Fig. 3. Navigation using RiskRRT motion planning. The motion prediction
uncertainty allied with the high density of agents produces the Freezing
Robot Problem, where the algorithm predicts a collision for any possible
motion, bringing the robot to a halt.

agents reduces, the algorithm manages to create a plan that
the robot is able to follow, until its goal.

The second experiments uses a state-of-the-art algorithm,
specially developed for motion planning in dynamic envi-
ronments called RiskRRT [1], that uses motion prediction to
avoid collision with agents. Even though the RiskRRT has a
promising performance in sparsely populated environments,
as the density of agents grows, this techniques falls into the
Freezing Robot Problem (FRP). At some point, the predicted
future states of the agents cover all the region in front of the
robot, which causes the algorithm to fail to find a solution,
delaying its motion, as shown in Figure 3. This is a recurrent
problem in prediction-based motion planning algorithms.

Finally, the last experiment avoids using motion planning
algorithms and instead uses a set of simple rules to select an
agent that will lead the robot in difficult situations (for more
details on this approach the reader is referred to [10]). In
this way, the robot takes advantage of complex interactions
among the surrounding agents (Figure 4), resulting in a
smoother and faster path, reducing the time spent to cross
the corridor.

Comparing the three techniques, simulations using both
the leader following and Dijkstra’s algorithm spend a similar
amount of time to reach the goal (28 s), but the leader fol-
lowing algorithm provides a smoother path and also respect
the social spaces of the agents. The Dijkstra’s approach, in
the other hand, completely disregards the presence of moving
agents, and the only reason it has a similar performance in
terms of time spent is that agents reacted to the presence
of the robot and gave room for it to pass. Although the
RiskRRT approach also respects the social spaces, it is slower
to reach the goal and also results in a path with a larger
number of detours and oscillations. These tests show how a
simple technique is able to have better results in this scenario,
resulting in a robot motion that is fast, smooth and respectful
toward moving agents.

III. CLASSIFICATION ALGORITHM

Once shown the benefits of leader following, it is interest-
ing to study what are the underlying criteria used by persons
to engage and disengage in leader following behavior, so this
can also be applied in other research areas.

Here a technique is proposed in order to capture the
individual cues that can be associated with a good or a

Fig. 4. Navigation using leader following technique. The robot selects a
leader according to a set of rules and engage in a group formation, benefiting
from the complex interactions of leading agents.

bad leader. The objective is to have a system that can
receive different types of measurements (features) of leader
candidates and classify them as good or bad leaders, based
on examples

It is expected that this approach bring benefits to the leader
selection problem, as:

• it is possible to provide individual scores for leader
candidates, allowing a better basis for the decision of
who to follow;

• a bad leader can be associated with situations of dis-
comfort experienced by the subjects being followed, so
the algorithm can stop following a leader, improving its
acceptance.

Besides the objective of classifying a good or bad leader
candidate, it is also important to understand what are the
measurements, or features, that are relevant to that classifi-
cation (distance, velocity, etc.). Because of this, the machine
learning algorithm chosen is the AdaBoost, as this algorithm
inherently selects the features that contribute the most to the
classification process. This choice addresses two issues: the
leader classification problem and the study of what are the
features that are most important to that process.

A. AdaBoost Classifier

Boosting is the name of a category of supervised machine
learning ensemble algorithm, where several weak classifiers,
or rule-of-thumbs, are combined in order to create a more
accurate predictor, or strong classifier. The adaptive Boost-
ing, or AdaBoost [12], is a variation of the basic Boosting
algorithm where more emphasis is given in the correct
classification of previously misclassified samples, adapting
the weights of samples in the training set.

In the algorithm workflow, the confidence parameter α, is
responsible for the adaptive capability of the algorithm. This
parameter is used in the update of the weights of the training
set, and its value is based on the classification error ε:

αt =
1

2
ln

1− εt
εt

If a training sample is correctly classified, its weight is
reduced, whereas if the classification fails, the weight of this
sample is increased. The new weight distribution will now
affect the choice of the weak classifier on the next iteration,
favoring one that manages to correctly classify the difficult
cases.

Among the advantages of the AdaBoost algorithm is the
exponential convergence of the training error to zero and
good generalization properties, besides the capacity of the
algorithm to perform feature selection.
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B. Features Study

According to [13], AdaBoost has a feature selection built
into it when using decision stumps as weak learners. As in
each iteration, a weak classifier is associated with only one
feature, the contribution parameter α and error ε are measure-
ments of the importance of that feature in the classification
problem. This provides a form of quantitative evaluation that
can be used as a criteria for feature selection.

It also let us draw conclusions about why some features are
more important than others, as this can help the understand-
ing of the criteria used by humans in following behaviors.

According to [14] and [15], the contribution of each
feature in the general classification problem can be measured
by summing the number of times each feature is used,
weighted by the αt of the weak classifier that uses the feature
in question. Different from the aforementioned works, here
this sum will also be normalized by the sum of all αt, to
obtain the ratio of the contribution of each feature.

C(fi) =

∑T
t=1 |αt|δ[F (ht)− fi]∑T

t=1 |αt|

where δ[n] =

{
0, n = 0
1, n 6= 0

Where C(fi) is the contribute ratio of feature fi ∈
{1, 2, 3, ..., i}, αt is the confidence parameter and F (ht) is
a function that returns the identification (number) of the
feature chosen by the weak learner ht. Finally, δ is the
Kronecker delta, which outputs 1 in the case the weak learner
ht was created using feature fi and 0 otherwise. As a result,
C(fi) will be the weighted sum of the number of times that
the feature of interest fi has been used by a weak learner.
And this will be the measurement used to evaluate features
contribution.

IV. EXPERIMENTS

This section will present the experiments associated with
the methods described in Section III. Tests will begin with
data acquisition and labeling process. After that, the clas-
sification capabilities of the algorithm will be evaluated,
together with the study of the most relevant features used
in the classification process. All tests were performed using
the modular architecture of Robot Operating System (ROS)
[16].

A. Data Acquisition

Data collection was performed with a small car-like robot
(Fig. 5), measuring approximately 0.4 × 0.75m. A laser
scanning range finder was installed on the robot, providing
distance measurements up to 30m and with a field of view
of 270o. Also a firewire camera fitted with a wide-angle
lens was present, providing a way to acquire images with
a large field of view. In this way, videos could be taken
during tests and then associated with the laser scans, as
shown in Fig. 6. This allowed a better understanding of the
experiment situations, together with precise measurements of
the surrounding area.

Fig. 5. The robot used for data acquisition when following pedestrians.

Fig. 6. (a) Image from a wide-angle camera. (b) Representation of the laser
measurements, showing the three tracked subjects and their orientation as
the green vectors, the robot is represented as the black rectangle.

The robot was teleoperated by a person that was hidden
from the subjects being followed, in order to create the
illusion that the robot was autonomous.

In total 47 tests of the robot following persons or group
of persons were recorded, with the mean duration of about
20 seconds each. Tests were conducted in an open corridor,
about 3m wide, that links several University buildings. The
objective of the robot operator was to position the robot
behind the pedestrians and try to maintain the a constant
speed and distance from the person being followed. In the
case the leader stopped, moved aside or was too fast, the
operator should resume a stand-alone navigation, simulating
the situation where an algorithm would abandon a leader.

In the setup used for data acquisition a module receives
the laser range finder measurements and another the camera
images. Readings from both sensors are stored in a ROS bag
file. Isolated from these modules, there is also a program that
receives commands from a gamepad and passes them to a
module responsible for a low level interface with the robot’s
motors.

B. Extraction of Features

Only the laser range finder measurements were used to
obtain the descriptors of each leader subject. Initially, the
bag containing measurements from the test have its messages
published to another module that clusters and tracks moving
objects, using the motion tracker developed by [17].

As the laser measurements are obtained from the robot’s
point of view (robot’s frame), static objects will appear as
moving ones, as the robot moves. To account for that, the
transformation of the robot frame w.r.t. the global frame
(or map) must be computed, as this will allow the laser
measurements to be transformed to the global frame. The
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Fig. 7. Diagram of the data labeling process.

task of finding the transformation global frame → robot, is
accomplished using the Hector SLAM tool [18], which is
able to localize the robot in an environment based only on
laser measurements.

With the laser measurements transformed to the global
frame, a motion tracker [17] is used to manage the identi-
fication and tracking of moving targets. This algorithm also
implements a Kalman Filter (KF), to cope with temporary
obstructions of tracked humans.

After this, another module proceeds to the feature extrac-
tion of moving targets, which are then stored in a .txt file
that will be further used during the training process.

• candidate’s absolute velocity vci ;
• relative heading b/t. the robot and the candidate αrci ;
• candidate’s relative velocity w.r.t. the robot reference

frame vxrci and vyrci ;
• angle between the robot heading and the candidate’s

position βci ;
• distance between the candidate and the robot dci ;
• lateral and sagittal displacement of the candidate ldci

and sdci ;
As the tracker implements a KF, all the measurements

incorporate a temporal dimension, as the filter uses previ-
ous states to compute the current one. Besides the filtered
features, their derivatives and standard deviations were also
computed. The total number of features extracted is 24.

C. Data Labeling

In many data labeling situations, the decision to create a
label on the dataset is clear and objective. Examples are faces
in images, or pedestrians in laser scans. However, this is not
the case in this work. Here the intention is to capture how
humans decide when to start or stop following someone, or
in other words, when someone is a good or bad leader. In
order to do so, participants must create labels based on their
feeling about someone being a good leader or not.

The labeling process also needs to be simple, as the
input of persons that were unfamiliar with the process was
required. This lead to a decision of creating a binary labeling
system, with candidates identified either as good or bad
leader. Besides that, for the sake of simplicity, the data
presented to the volunteers should always have a single
good/bad leader transition.

In the labeling process, depicted in Fig. 7, the volunteers
should press a button whenever they felt a transition from
good to bad leader occurred, while watching a video of
persons being followed by the robot. A ROS module captured
the keyboard input that gets recorded, together with all the
information from the original bag file, to a new one.

Before the labeling began, examples of different classes of
good and bad leader situations were shown to the volunteers.
Later they were asked to tell which of these situations
occurred in each experiment. Although each test has its
own peculiarities, the experiments can roughly fit one of the
following classes:

• good leader (gd) - leader(s) maintained their speed
and orientation, withouth changing their behavior while
being followed;

• bad leader, moved aside (as) - identifies situations where
leaders gave room for the robot to pass, generally mov-
ing aside, while keeping their original motion direction;

• bad leader, far or fast (fr) - this occurred whenever the
distance between the leader and the robot grew to a
point where it was not advantageous to keep following
them;

• bad leader, stopped (st) - when the person being fol-
lowed stops moving;

Three persons participated in this process, and the final
label was computed as the mean time of the three labels
instants. In the case that labels were not close to each other
(timewise), only the two closest were used. This analysis
was aided by the typical situation identified by the labelers.
For example, if one had found that the transition occurred
because the leader was too far, but the other two thought
that the transition was due to the leader moving aside, only
the label of the latter two was used, as they agreed in the
situation.

Besides the four typical situations mentioned before, two
other situations were recorded, which did not required man-
ual labeling. These situations refer to cases when candidates
were not moving, but rather standing close to the robot’s
path (nm), and when persons were moving to the opposite
direction compared to the robot’s (od).

In total, 12911 samples were obtained, with the proportion
of 37% of bad leader labels and 63% of good leader labels.
This is equivalent to 451 seconds of tests, divided in 47
experiments and distributed in the following classes: 9 good
leaders; 7 leader moved aside; 5 leader too far or fast; 9
leader stopped; 7 candidate not moving; 10 candidate coming
from opposite direction.

D. Training

To evaluate the classification, two measurements were
made. The false good leader, where the classifier labeled a
sample as good leader but the ground truth has a bad leader
label. This is the most critical error, because by following
someone that should not be followed, the robot may be
disturbing the leader or find itself in unwanted situations. The
second measurement is the false bad leader, that occurred
when the classifier output a bad leader and the ground truth
is labeled as good leader. Although this is also a mismatch
in the classification, it is much less critical then the previous
measurement, because if a robot does not follow a potential
leader, it is only loosing an opportunity.

To create a dataset to evaluate the performance of the
classifiers, two datasets (except only one far/fast) of each
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Fig. 8. Feature contribution ratio using 24 features, number of weak
learners: 548.

situation were randomly chosen, making a total of 2715
samples with 39% cases of bad leader. The remaining sets
were grouped into the training dataset, totaling 8504 samples
with 34% cases of bad leader.

During the Adaboost training, there was no limitation in
the number of the weak learners used (iterations), and the
stop criteria was the error. In all cases, it reached 0 after
different numbers of iterations.

E. Results in Classification Error and Feature Selection

The objectives of these tests were to evaluate the how
different sets of features affected the train and performance
of the resulting classifiers. After each test, the features that
provided the less contribution were removed, and a new test
was conducted. In this way it was possible to determine if the
contribution of the most important features were maintained,
and how that affected the classification error. This error was
computed comparing the output of the classifier with the
labeled ground truth. In the first test, all the 24 features were
used, and their contribution result is shown in Fig. 8.

In this image it is possible to distinguish the three groups
of features used in the experiments: the directly measured
features, their derivatives and their standard deviation. It is
clear that the derivatives group have almost no role at all in
the classification, with individual contribution ratios usually
smaller than 1%. A possible explanation for this is that this
operation added noise into the data, reducing its usefulness.
Looking at the first group (directly measured features), the
most important features are clearly the lateral displacement
and the distance between the robot and the leader, while the
less important ones being the relative velocities, specially
along the y axis. Finally focusing on the last group, the
most important features were the standard deviation of the
distance, of the relative heading and of the target velocity.

Following the investigation of the most important features
for this classification problem other tests were conducted,
using the same training sets, but with a smaller number
of features. In each test, the less important features were
removed and then the AdaBoost algorithm was retrained
and evaluated again. This resulted in three other tests, using
16, 12 and 8 features. Table I shows the final 8 most

TABLE I
CONTRIBUTION RATIO OF FEATURES

size of feature set

features 24 16 12 8

σ distance 0.077 0.085 0.104 0.181
lateral displacement 0.120 0.130 0.118 0.169

distance 0.120 0.131 0.125 0.122
angle to robot 0.087 0.080 0.090 0.119

sagittal displacement 0.052 0.053 0.078 0.118
relative heading 0.078 0.083 0.081 0.113

target velocity 0.068 0.068 0.082 0.093
σ relative velocity in y 0.057 0.062 0.075 0.085

important features, and how their contribution ratio evolved
from previous tests.

According to these results, the standard deviation of
the distance between the robot and the leader and
the lateral displacement of the leader are the two most
important features in the leader classification. Together they
contribution ratio is approximately 35% when using only the
eight most important features. Parallel to the investigation
of the most relevant features for the leader classification,
after each training of the AdaBoost classifier, its performance
was evaluated regarding its classification error, which was
divided according to the distinct leader situations, for a better
analysis.

The results of these tests are shown in Table II, according
to the size of the feature set used. Regarding the performance
of the classifier in each situation, the false good leader
relative error is particularly large at the move aside situations
(as I and as II). However, the error was much smaller in
the remaining situations, and the overall performance of
the classifier was remarkable, with the total relative error
across all the situations in the order of 3%. Regarding the
results in the light of the size of the features set, it can be
seen that although the results are very similar, the smaller
feature set of size 8 had the best performance in the critical
classification of a good leader. Even though its performance
on the misclassification of bad leaders was worst than when
using larger features sets, that was not a critical error. In
conclusion, the classifier trained with the smaller feature set
had the most promising results.

V. CONCLUSIONS

In this work, a leader classification system based on
a learning framework was presented. A machine learning
algorithm was trained using real data, that was labeled by
humans. The use of the AdaBoost algorithm allowed the
study of the contribution of the features used to train the
classifier, giving an insight about how humans decide who
is a good or bad leader.

The tests provided very interesting results about the im-
portance of the lateral displacement and of the distance
to the leader (and its standard deviation), which were the
features that contributed most to the classification task, across
different numbers of features used.
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TABLE II
RELATIVE ERROR IN LEADER CLASSIFICATION

leader situations

features st I st II gd I gd II as I as II fr I nm I nm II od I od II total

false good

24 0.062 0.000 0.000 0.000 0.098 0.145 0.012 0.066 0.000 0.000 0.000 0.036
16 0.062 0.000 0.000 0.000 0.098 0.145 0.005 0.044 0.000 0.000 0.000 0.033
12 0.062 0.000 0.000 0.000 0.071 0.145 0.005 0.017 0.000 0.000 0.000 0.028

8 0.046 0.000 0.000 0.000 0.047 0.145 0.005 0.039 0.000 0.000 0.000 0.026

false bad

24 0.000 0.110 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011
16 0.000 0.120 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011
12 0.000 0.124 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011
8 0.069 0.129 0.014 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015

Both the lateral displacement and the distance are spatial
features, that do not take into account the dynamics of the
leader. This means that the position of someone w.r.t. the
robot plays a very important role when deciding among
leader candidates and deciding when to stop following some-
one.

One interpretation of the importance of the standard de-
viation of the distance is that it represents the stability of
the distance between the leader and the robot during a test,
while the lateral displacement of the leader may be related
to a human giving room for the robot to pass.

Several classifiers were trained, using different numbers
of features. In overall, the trained classifiers produced good
results, with the total relative error smaller than 5%, and the
total error for false good leader classifications, which is the
most critical error, smaller than 4%, according to the training
set and the number of features used.

Looking individually at the different situations, the worst
performance of the classifier was in the move aside situation.
This was a difficult condition, that the classifier could not
properly identify with the given features. This issue requires
further investigation, specially concerning the exploration of
a richer feature set, using different sensors as cameras and
higher level informations, as features extracted based on a
pre-planned robot path, for example.

Finally, there was no significant differences among the
classifiers while using different number of features. Although
promising, these results are obtained from a sum of instant
classifications, and they can only be properly evaluated when
integrated with a navigation strategy and higher level layers
of reasoning, which will be conducted in the future works.
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