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Uniform Stability Analysis for Time-Varying
Systems Applying Homogeneity

Ríos H., Efimov D., Fridman L., Moreno J., Perruquetti W.

Abstract—The uniform stability notion for a class of non-
linear time-varying systems is studied using the homogeneity
framework. It is assumed that the system is weighted homoge-
neous considering the time variable as a constant parameter,
then several conditions of uniform stability for such a class of
systems are formulated. The results are applied to the problem
of adaptive estimation for a linear system.

I. INTRODUCTION

For homogeneous time-invariant dynamical systems, the
global behavior of trajectories can be evaluated based on
their behavior on a suitably defined sphere around the origin
[1]. Thus the local and global behaviors of homogeneous
systems are the same. This property has been found useful
for stability analysis [2], [1], [3], [4], [5], approximation of
system dynamics [6], [7], stabilization [8], [9], [10], [11],
[12] and estimation [2], [7]. It has been shown that for
stability/instability analysis, Lyapunov function of a homo-
geneous system can be chosen homogeneous [13], [5], [14].
Thus the numerical analysis and design of homogeneous
systems may be simpler since, for example, a Lyapunov
function has to be constructed on a sphere only (on the whole
state space it can extended using homogeneity). In addition,
the homogeneous systems have certain intrinsic robustness
properties [15], [16].

In many cases the system dynamics is perturbed by ex-
ogenous disturbances, whose known parts can be modeled by
some time functions, then another class of models arise: time-
varying dynamical systems. Parameters of these disturbances
(the rate of convergence or the main frequency) influence a
lot on the system stability. For example, a nonlinear system
can be stable for one exponentially converging disturbance
and unstable with respect to another one, another example
is the resonance phenomenon in linear systems. Due to
robustness properties of homogeneous systems it would be

Ríos H., Efimov D. and Perruquetti W. are with Non-A team @ Inria,
Parc Scientifique de la Haute Borne, 40 avenue Halley, 59650 Villeneuve
d’Ascq, France.

Fridman L. is with Departamento de Control y Robótica, División de In-
geniería Eléctrica, Facultad de Ingeniería, Universidad Nacional Autónoma
de México (UNAM), C.P. 04510, México, D.F., Mexico.

Moreno J. is with Eléctrica y Computación, Instituto de Ingeniería,
Universidad Nacional Autónoma de México (UNAM), C.P. 04510, México,
D.F., Mexico.

Efimov D. is also with Department of Control Systems and Informatics,
Saint Petersburg State University of Information Technologies Mechanics
and Optics (ITMO), 49 Kronverkskiy av., 197101 Saint Petersburg, Russia.

Perruquetti W. is also with LAGIS (UMR-CNRS 8146), Ecole Centrale
de Lille, BP 48, Cité Scientifique, 59651 Villeneuve-d’Ascq, France.

interesting to apply this concept for time-varying systems.
An extension of the homogeneity concept to time-varying
systems has been given in [17], [18], where in the latter a re-
parametrization of time has also been required together with
the state dilation. In this work we will apply the weighted
homogeneity theory for the system dynamics considering the
time variable as a constant parameter (it slightly differs from
[18] and is similar to [17]).

Establishing stability properties, it is also important to
quantify the rate of convergence in the system: exponential,
asymptotic, finite-time or fixed-time [19], [20], [11], [21],
[22]. Frequently, the homogeneity theory is used to establish
finite-time or fixed-time stability [8], [2], [23], [22]: for
example, if a system is globally asymptotically stable and
homogeneous of negative degree, then it is finite-time stable.

The outline of this work is as follows. The preliminary
definitions and the homogeneity framework are given in
Section 2. The property of scaling of solutions for some class
of homogeneous time-varying systems is presented in Section
3. Application of the developed theory to the problem of
stability and convergence analysis for an adaptive estimator
is considered in Section 4.

II. PRELIMINARIES

Consider a time-varying differential equation [24]:

dx(t)/dt = f(t, x(t)), t ≥ t0, t0 ∈ R, (1)

where x(t) ∈ Rn is the state vector; f : Rn+1 → Rn
is a continuous function with respect to x and piecewise
continuous with respect to t, f(t, 0) = 0. We assume that
solution of the system (1) for an initial condition x0 ∈ Rn
at time instant t0 ∈ R is denoted as x(t, t0, x0) and it is
defined on some finite time interval [t0, t0 +T ) (we will use
the notation x(t) to reference x(t, t0, x0) if the origin of x0
and t0 is clear from the context).

A continuous function σ : R+ → R+ belongs to class K
if it is strictly increasing and σ (0) = 0; it belongs to class
K∞ if it is also radially unbounded. A continuous function
β : R+ ×R+ → R+ belongs to class KL if β(·, r) ∈ K and
β(r, ·) is a strictly decreasing to zero for any fixed r ∈ R+.
Denote a sequence of integers 1, ...,m as 1,m.

A. Stability definitions

Let Ω be an open subset of Rn, 0 ∈ Ω.
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Definition 1. [24] At the steady state x = 0 the system (1)
is said to be

(a) uniformly stable if for any ε > 0 there is δ(ε) such
that for any x0 ∈ Ω, if |x0| ≤ δ(ε) then |x(t, t0, x0)| ≤ ε for
all t ≥ t0 for any t0 ∈ R;

(b) uniformly asymptotically stable if it is uniformly
stable and for any κ > 0 and ε > 0 there exists T (κ, ε) ≥ 0
such that for any x0 ∈ Ω, if |x0| ≤ κ then |x(t, t0, x0)| ≤ ε
for all t ≥ t0 + T (κ, ε) for any t0 ∈ R;

If Ω = Rn, then the corresponding properties are called
global uniform stability/asymptotic stability of x = 0.

Proposition 1. [24] The steady state x = 0 of the system
(1) is
• uniformly stable iff there is a function σ ∈ K∞ such that
|x(t, t0, x0)| ≤ σ(|x0|) for all t ≥ t0, any t0 ∈ R and all
x0 ∈ Ω;
• uniformly asymptotically stable iff there is a function β ∈
KL such that |x(t, t0, x0)| ≤ β(|x0|, t − t0) for all t ≥ t0,
any t0 ∈ R and all x0 ∈ Ω.

B. Homogeneity

For any ri > 0, i = 1, n and λ > 0, define the dilation
matrix Λr(λ) = diag{λri}ni=1 and the vector of weights r =
[r1, ..., rn]T .

For any ri > 0, i = 1, n and x ∈ Rn the homogeneous
norm can be defined as follows

|x|r =

(
n∑
i=1

|xi|ρ/ri
)1/ρ

, ρ =

n∏
i=1

ri.

For all x ∈ Rn, its Euclidean norm |x| is related with the
homogeneous one:

σr(|x|r) ≤ |x| ≤ σ̄r(|x|r)

for some σr, σ̄r ∈ K∞. In the following, due to this “equiva-
lence”, stability analysis with respect to the norm |x| will be
substituted with analysis for the norm |x|r. The homogeneous
norm has an important property that is |Λr(λ)x|r = λ|x|r
for all x ∈ Rn. Define Sr = {x ∈ Rn : |x|r = 1}.

Definition 2. [1] The function g : Rn → R is called r-
homogeneous (ri > 0, i = 1, n), if for any x ∈ Rn the
relation

g(Λr(λ)x) = λdg(x)

holds for some d ∈ R and all λ > 0.
The function f : Rn → Rn is called r-homogeneous (ri >

0, i = 1, n), if for any x ∈ Rn the relation

f(Λr(λ)x) = λdΛr(λ)f(x)

holds for some d ≥ −min1≤i≤n ri and all λ > 0.
In both cases, the constant d is called the degree of

homogeneity.

A dynamical system

ẋ(t) = f(x(t)), t ≥ 0 (2)

is called r-homogeneous of degree d if this property is
satisfied for the vector function f in the sense of Definition
2. An advantage of homogeneous systems described by
nonlinear ordinary differential equations is that any of its
solution can be obtained from another solution under the
dilation rescaling and a suitable time re-parametrization:

Proposition 2. Let x : R+ → Rn be a solution of the r-
homogeneous system (2) with the degree d for an initial con-
dition x0 ∈ Rn. For any λ > 0 define y(t) = Λr(λ)x(λdt)
for all t ≥ 0, then y(t) is also a solution of (2) with the
initial condition y0 = Λr(λ)x0.

In order to apply the weighted homogeneity property,
introduced for time-invariant systems in Definition 2, to the
time-varying systems (1) we need an extended concept.

Definition 3. [17] The function g : Rn+1 → R is called
r-homogeneous (ri > 0, i = 1, n), if for any x ∈ Rn and
t ∈ R the relation

g(t,Λr(λ)x) = λdg(t, x)

holds for some d ∈ R and all λ > 0.
The function f : Rn+1 → Rn is called r-homogeneous

(ri > 0, i = 1, n), if for any x ∈ Rn and t ∈ R the relation

f(t,Λr(λ)x) = λdΛr(λ)f(t, x)

holds for some d ≥ −min1≤i≤n ri and all λ > 0.

Thus in the time-varying case (1) the homogeneity will be
verified considering t as a constant parameter.

III. MAIN RESULTS

This section has three parts. First, an extension of Propo-
sition 2 is presented for time-varying system (1), and some
useful tools for uniform stability analysis of nonlinear time-
varying systems are introduced. Second, relation with time
scaling is analyzed.

A. Scaling solutions of homogeneous time-varying systems

We will consider the following modification of the system
(1):

dx(t)/dt = f(ωt, x(t)), t ≥ t0, t0 ∈ R, (3)

for some ω > 0. The parameter ω represents dependence
on the convergence rate of time processes in the system or
the frequency of time-varying part. For an initial condition
x0 ∈ Rn at initial time t0 denote the corresponding solution
of (3) as xω(t, t0, x0), thus x(t, t0, x0) = x1(t, t0, x0). We
have in this case the following extension of Proposition 2
(a variant of this result has been formulated in the proof of
Theorem 2 in [17]).

Proposition 3. Let x(t, t0, x0) be a solution of the r-
homogeneous system (1) with the degree d for an initial
condition x0 ∈ Rn and t0 ∈ R. For any λ > 0 the
system (3) with ω = λd has a solution y(t, t0, y0) =



Λr(λ)x(λdt, λdt0, x0) for all t ≥ t0 with the initial condition
y0 = Λr(λ)x0.

All the proofs are omitted due to space limitations. For the
case d = 0 we recover that all solutions of (1) are interrelated
as in Proposition 2 (as in time-invariant case). It is well
known fact that for the ordinary differential equation (2) local
attractiveness implies global asymptotic stability [1]. In the
present setting that result has the following correspondence (a
similar conclusion also can be found in the proof of Theorem
2 in [17]).

Lemma 1. Let the system (1) be r-homogeneous with degree
d 6= 0 and globally uniformly asymptotically stable, i.e. there
is β ∈ KL such that

|x(t, t0, x0)|r ≤ β(|x0|r, t− t0) ∀t ≥ t0
for any x0 ∈ Rn and any t0 ∈ R. Then (3) is globally
uniformly asymptotically stable for any ω > 0 and

|xω(t, t0, x0)|r ≤ βω(|x0|r, t− t0) ∀t ≥ t0
for any x0 ∈ Rn and any t0 ∈ R, where βω(s, t) =
ω1/dβ(ω−1/ds, ωt).

It is a well known fact for linear time-varying systems
(homogeneous systems of degree d = 0) that its stability for
some ω does not imply stability for all ω ∈ (0,+∞). For
nonlinear homogeneous time-varying systems with degree
d 6= 0 this is not the case, according to the result of Lemma
1 if they are globally uniformly stable for some ω, then
they preserve the uniform stability for an arbitrary ω > 0.
This is an intriguing advantage of “nonlinear” time-varying
systems. In addition, it is shown in Lemma 1 that the rate of
convergence will be scaled by ω, thus the time of transients in
these systems is predefined by the time-varying part, which
is not the case for the degree d = 0, where the rate of
convergence cannot be modified by ω (see Proposition 3)!

Further let us consider several useful consequences of
Proposition 3 and Lemma 1.

Corollary 1. Let the system (1) be r-homogeneous with
degree d = 0 and uniformly asymptotically stable into the
set Ω = Bρ = {x ∈ Rn : |x|r ≤ ρ} for some 0 < ρ < +∞,
then (1) is globally uniformly asymptotically stable.

Corollary 2. Let the system (3) be r-homogeneous with
degree d 6= 0 and uniformly asymptotically stable into the
set Ω = Bρ = {x ∈ Rn : |x|r ≤ ρ} for a fixed 0 < ρ < +∞
for any ω > 0, then (3) is globally uniformly asymptotically
stable for any ω > 0.

Corollary 3. Let the system (3) be r-homogeneous with
degree d > 0 and uniformly asymptotically stable into the
set Bρ for some 0 < ρ < +∞ for any 0 ≤ ω ≤ ω0 with
0 < ω0 < +∞, then (3) is globally uniformly asymptotically
stable for any ω > 0.

Corollary 4. Let the system (3) be r-homogeneous with
degree d < 0 and uniformly asymptotically stable with

respect to the set Bρ for some 0 < ρ < +∞ for any
0 ≤ ω ≤ ω0 with 0 < ω0 < +∞1, then (3) is globally
uniformly asymptotically stable for any ω > 0.

The results presented in this section open a possibility
for stability analysis of nonlinear time-varying systems. In
particular, they can be interpreted as robustness of the time-
invariant homogeneous systems with respect to time-varying
perturbations of parameters, i.e. if for one value of parameter
ω for this time-varying perturbation the system is stable, then
it can be stable for any other value of ω.

B. Robustness with respect to time scaling
Consider for some a > 0 the following modification of

(1) or (3)

dz(t)/dt = af(at, z(t)), t ≥ t0, t0 ∈ R, (4)

where z ∈ Rn is the state function. Then z(t, t0, x0) =
x(at, at0, x0) for t ≥ t0 is a solution of (4) for the initial
condition x0 ∈ Rn. Indeed,

dz(t, t0, x0)/dt = dx(at, at0, x0)/dt = a dx(at, at0, x0)/d at

= af [at, x(at, at0, x0)] = af(at, z(t, t0, x0)).

Thus time scaling (multiplication on a) acts similarly on
solutions as the dilation transformation in homogeneous
systems, and the following conclusion on the system stability
can be obtained.

Lemma 2. Let the system (1) be globally uniformly asymp-
totically stable, then (4) is globally uniformly asymptotically
stable for any a > 0, and the rate of convergence in (4) is
scaled by a with respect to (1).

Consequently, for a homogeneous system (1) we may
obtain an extension of Proposition 3.

Proposition 4. Let x(t, t0, x0) be a solution of the r-
homogeneous system (1) with the degree d for an initial
condition x0 ∈ Rn and t0 ∈ R. For any λ > 0 and a > 0
the system

dw(t)/dt = a f(aωt, w(t)), t ≥ t0, t0 ∈ R, (5)

with ω = λd has a solution w(t, t0, w0) =
Λr(λ)x(aλdt, aλdt0, x0) for all t ≥ t0 with the initial
condition w0 = Λr(λ)x0.

Therefore, for a = λ−d the systems (1) and (5) have the
same rates of convergence, and their corresponding solutions
differ in amplitudes only.

IV. APPLICATION TO ADAPTIVE ESTIMATION

In this section the previously proposed results will be
applied to analyze the convergence of the error dynamics
given by a nonlinear estimation algorithm.

1In this case for each 0 ≤ ω ≤ ω0, any ε > 0 and κ ≥ 0 there is
0 ≤ Tωκ,ε < +∞ such that |xω(t, t0, x0)|r ≤ ρ+ ε for all t ≥ t0 + Tωκ,ε
for any x0 ∈ Bκ, and |x(t, t0, x0)|r ≤ σω(|x0|r) for all t ≥ t0 for some
function σω ∈ K for all t0 ∈ R.



A. Problem statement

Consider the following time-varying system

dx(t)

dt
= ΓT (t)θ,

where Γ : R→ Rq is a continuous function of time, and θ ∈
Rq . The term Γ(t) is known as the regressor vector, satisfying
the well-known persistence of excitation condition [25], and
θ is the unknown parameter vector. It is assumed that x(t)
is available for measurements, and in order to estimate the
vector θ the following nonlinear algorithm can be introduced

˙̂x(t) = −k1 dx̂(t)− x(t)cγ + ΓT (t)θ̂(t), x̂(0) = 0,

˙̂
θ(t) = −k2 dx̂(t)− x(t)c2γ−1 Γ(t), θ̂(0) = [0 . . . 0]

T
,

where d·cγ .
= |·|γ sign(·), k1, k2 > 0 are positive gains, and

the parameter γ ∈ (0.5, 1) (for the case γ = 1 the estimator
reduces to the well known linear adaptive observer [25]). Let
us define the errors x̃(t) = x̂(t)− x(t) and θ̃(t) = θ̂(t)− θ.
Hence, the error dynamics is given by

˙̃x(t) = −k1 dx̃(t)cγ + ΓT (t)θ̃(t), (6)
˙̃
θ(t) = −k2 dx̃(t)c2γ−1 Γ(t). (7)

It is clear that the system (6)–(7) has the form (1), and also
it is possible to find a modification to express it in the form
(3):

˙̃x(t) = −k1 dx̃(t)cγ + ΓT (ωt)θ̃(t), (8)
˙̃
θ(t) = −k2 dx̃(t)c2γ−1 Γ(ωt). (9)

System (6)–(7) is r-homogeneous with degree d = γ − 1
for (r1, r2, . . . , rq+1) = (1, γ, . . . , γ). Note that d < 0 for
all γ ∈ (0.5, 1). It is possible to demonstrate that system
(6)–(7) is asymptotically stable. We omit the proof of this
fact because it is beyond the scope of this paper. How-
ever, the proof is based on the utilization of the Lyapunov
function V (x̃, θ̃) = 1

2γ x̃
2γ + 1

2k2
θ̃T θ̃ and the invariance

principle for time-varying systems from [26]. Since (6)–(7)
is homogeneous, the rate of convergence for its modified
version (8)–(9) can be evaluated using Lemma 1 from the
convergence of the original system (6)–(7). The modification
(8)–(9) corresponds to a frequency change in the regressor
vector, that is a usual instrument in the adaptive estimation.
According to the results of Proposition 3 and Lemma 1,
for the linear estimator with γ = 1 the speed of error
convergence should not be modified, while for the nonlinear
observer (8)–(9) with γ ∈ (0.5, 1) the frequency ω may
impact the convergence (note that we do not know the
form of the function β ∈ KL from Lemma 1, in general
rescaling by ω−1/d of the initial conditions may cancel the
rate improvement by ωt).
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Figure 1. Estimation Error Convergence for Nonlinear Adaptive Observer
(γ = 0.75), y(t) =

[
x̃(t) θ̃T (t)

]T .

B. Example

Let us illustrate such a convergence improvement for the
example:

dx(t)

dt
= sinωt− 1 = ΓT (t)θ, x(0) = 1,

where Γ(t) =
[

sinωt 1
]T

and θ =
[

1 −1
]T

. Let
us consider the case γ = 0.75 with k1 = 10, k2 = 0.1.
Some simulations, for different values of ω, have been done
in MATLAB Simulink environment, with Euler discretization
method and sampling time equal to 0.01[sec]. The simulation
results, confirming Lemma 1 statements, are presented in
Figs. 1–2 in comparison with the linear estimation algorithm
for γ = 1. The square norm of estimation error convergence
for nonlinear and linear adaptive observers are shown in
logarithmic scale in Fig. 1 and Fig. 2, respectively. As we
can conclude, increasing the frequency we can improve the
rate of convergence for the nonlinear algorithm in certain
limits, while for the linear algorithm there is no significant
improvement.

Therefore, application of the nonlinear homogeneous algo-
rithms may serve for improvement of the rate of estimation
depending on the available excitation frequency of the time-
varying regressor.

V. CONCLUSIONS

The homogeneity theory extensions are obtained for time-
varying systems. It is shown that for any degree of homo-
geneity the solutions of a homogeneous system are interre-
lated subject to the time rescaling. Next, this fact is utilized
in order to show that local uniform asymptotic stability
of homogeneous systems implies global one, and that for
nonlinear homogeneous systems with non-zero degree global
asymptotic stability for a parameter endorses this property
for an arbitrary value of this parameter. The possibility of
finite-time stability in time-varying systems is a future work.
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Figure 2. Estimation Error Convergence for Linear Adaptive Observer (γ =

1), y(t) =
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x̃(t) θ̃T (t)

]T .

Efficiency of the proposed approach is demonstrated for
an adaptive estimation problem benchmark. Application of
the developed results for analysis and design of control or
estimation algorithms in time-varying systems is a direction
of future research.
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