
HAL Id: hal-01082950
https://hal.inria.fr/hal-01082950

Preprint submitted on 14 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Modeling and Verification of GALS Systems
Using GRL and CADP

Fatma Jebali, Frédéric Lang, Eric Léo, Radu Mateescu

To cite this version:
Fatma Jebali, Frédéric Lang, Eric Léo, Radu Mateescu. Formal Modeling and Verification of GALS
Systems Using GRL and CADP. 2014. �hal-01082950�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49581334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01082950
https://hal.archives-ouvertes.fr

Formal Modeling and Verification of GALS
Systems Using GRL and CADP

Fatma Jebali, Frédéric Lang, Éric Léo, and Radu Mateescu

Inria / Univ. Grenoble Alpes / CNRS / LIG, F-38000 Grenoble, France

Abstract. The GALS (Globally Asynchronous, Locally Synchronous)
paradigm is a prevalent approach to design distributed synchronous sub-
systems that communicate with each other asynchronously. The design
of GALS systems is tedious and error-prone due to the complexity of
architectures and high synchronous and asynchronous concurrency in-
volved. This paper proposes a model-based approach to formally verify
such systems. Specifications are written in GRL (GALS Representation
Language), dedicated to model GALS systems with homogeneous syn-
tax and formal semantics. We present a translation from GRL to LNT,
a value-passing process algebra with imperative flavour. The translation
is automated by means of the GRL2LNT tool, making possible the anal-
ysis of GRL specifications using the CADP toolbox. We illustrate our
approach with an access management system for smart parking based
on distributed software systems embedded in programmable logic con-
trollers.

1 Introduction

Synchronous specification languages have for long been a valuable approach in
the design of large scale hardware and software systems. Their easy-to-learn syn-
tax, their sound semantics suitable for efficient verification, and their underlying
assumptions such as determinism and atomicity, are among the key features mak-
ing synchronous languages and frameworks well-supported by industrial design
flows. However, an increasing number of applications such as sensor networks and
multiprocessor architectures are distributed by nature. It follows that the ideal
assumptions of zero-time computations and instantaneous broadcasting commu-
nications may be unrealistic [1, 3], since distribution introduces asynchrony and
nondeterminism in the global behaviour of these systems.

This observation gave birth to the GALS (Globally Asynchronous, Locally
Synchronous) paradigm [5], which makes a good compromise between syn-
chronous systems having each its own clock structure and asynchronous commu-
nication schemes. Interestingly enough, the GALS concept has been implemented
in a wide spectrum of applications: System-on-Chip [21] and Network-on-Chip
[21] are instances of hardware-based systems distributed on one single archi-
tecture; flight control systems [22] and automotive central lock systems [6] are

2 Fatma Jebali, Frédéric Lang, Éric Léo, Radu Mateescu

instances of hardware-based systems distributed on several architectures; dis-
tributed coordination of web services [19] and security surveillance systems [15]
are instances of distributed software systems.

The design and verification of such systems can be extremely cumbersome
due to the heterogeneous nature of computations and the complexity of archi-
tectures, in particular if used in safety-critical applications. Model-based design
flows and formal analysis are then required to help designers master that com-
plexity and build confidence on the correctness of systems. The traditional ap-
proaches consist either in using synchronous languages and frameworks as they
are (e.g., [18]) or in extending them to encompass some asynchronous features
and nondeterministic behaviour (e.g., [12] and [20]). Those approaches are well
suited to specify latency-insensitive designs when synchronous components are
distributed in hardware architectures and run correctly in the presence of inter-
connection delays (messages are delivered in order and cannot be lost). However,
asynchrony and nondeterminism still are not encompassed as main concepts and
powerful verification techniques dealing with asynchronous concurrency such as
compositional reduction are missing [10].

This makes the aforementioned approaches insufficient when addressing com-
pletely desynchronized software embedded in several distributed sites and/or
architectures in which there is no restriction on communication delays and mes-
sages can be lost or delivered in an arbitrary order. In addition, most machines
and embedded devices are interconnected due to the massive use of connectiv-
ity technologies such as Internet and ubiquitous computing. This enforces the
degree of asynchrony and nondeterminism, thus making network topologies and
communication mechanisms more and more complex.

We believe that new modeling and verification approaches that inherently
combine synchronous and asynchronous features are likely to become central in
the integration of formal analysis in the design process of GALS systems. To-
wards this objective, GRL has been proposed [13] as an attempt to combine the
main features of synchronous programming and process algebra in one unified
language, while keeping the syntax homogeneous for better acceptance by indus-
trial users. GRL allows synchronous systems (blocks), environmental constraints
(environments), and asynchronous communication mechanisms (mediums) to be
described in a modular way and at the appropriate level of abstraction. To anal-
yse GRL specifications, our aim is to benefit of the widely-used CADP toolbox
[9] offering a wide range of the state-of-the-art verification approaches.

In this paper, we propose a verification approach to bridge the gap between
design frameworks of GALS systems and formal verification tools using GRL and
CADP. Our approach can be summarized as follows. We first propose a trans-
lation of GRL descriptions to LNT [4], one of the input languages of CADP.
LNT is a specification language for asynchronous concurrent processes, which
aims at combining the best of process algebraic languages and imperative func-
tional programming languages. GRL blocks are represented by LNT functions
encapsulated into wrapper processes as proposed in [10]. GRL environments
and mediums are represented by LNT processes. The asynchronous execution of

Formal Modeling and Verification of GALS Systems 3

blocks, mediums, and environments is modeled using the LNT parallel compo-
sition operator. This translation is fully automated by the GRL2LNT tool we
have developed. We illustrate our approach with an example we designed with
Crouzet Automatismes (a branch of Schneider Electric group) in the context of
Bluesky1. The application is an AMS (Access Management System) to be used
in a smart parking, which consists of a network of distributed software systems
embedded in PLCs (Programmable Logic Controllers).

The paper is organized as follows. Section 2 describes the AMS. Section
3 presents GRL. Section 4 presents LNT and CADP. Section 5 outlines the
translation from GRL to LNT and the corresponding tools. Section 6 shows the
model checking of some properties of the AMS. Section 7 concludes the paper.

2 AMS (Access Management System) for Smart Parking

Throughout this article, we consider an example based on distributed software
embedded in em4 controllers provided by Crouzet. These are a new generation
of PLCs embedding synchronous software supported by em4soft tools, which are
based on graphical block diagrams and enable to create and implement smart
automation applications. The system we consider is part of a smart parking
platform to make parking easier and more efficient. It consists of a network
of communicating em4 applications that control and manage the vehicle access
through automatic vehicle detection. A user can interact with the system ei-
ther in a local mode using physical sensors or in a remote mode using mobile
applications. Mobile applications enable also to pay and get the exit clearance.

For the sake of simplicity, we consider two em4 controllers. The first one
manages an entry gate giving the access to the parking over the reception of an
order. The controller checks cyclically whether there still are unoccupied parking
spots, in which case a green light is maintained on, otherwise a red light is turned
on. Once an order is detected, depending on whether the red or the green light
is on, a request to open the gate may be denied or granted, respectively. In the
latter case, the entry gate remains open for a fixed amount of time and a yellow
light is maintained on until the closure of the gate. One light at the same time
should be on. The second controller manages an exit gate allowing to leave the
parking over the reception of an order. Each time an order is detected, the exit
gate remains open for a fixed amount of time. The two controllers communicate
through a network to keep informed about the entrance and exit flow.

3 GRL (GALS Representation Language)

An excerpt of the syntax of GRL is given in Figure 1. Symbols K, T, X, E, S, B, M
denote respectively literal constants, type identifiers, variables, expressions (built
upon constants, variables, and function applications), system identifiers, block
identifiers, and medium identifiers. GRL consists of a synchronous part made of

1 project of the Minalogic “pole de compétitivité” http://www.minalogic.com

4 Fatma Jebali, Frédéric Lang, Éric Léo, Radu Mateescu

blocks, connected asynchronously through mediums. Environmental constraints
on blocks are described in environments. For the sake of conciseness and for
lack of space, we do not present environments, which have a lot in common
with mediums. Blocks, mediums, and environments are assembled together in
systems. In the sequel, blocks, mediums, and environments are called actors.

system ::= system S
[(X0 :T0 , . . . ,Xm:Tm)] is

allocate actor0 , . . . ,actorn

[temp X ′
0 :T ′

0 , . . . ,X ′
l :T ′

l]
network
block call0 , . . . ,block callp
[connectedby
med call0 , . . . ,med callr]

end system

block ::= block B
[[const param]]
[(inout param0 ; . . . ;inout paramm)]
[{com param0 ; . . . ; com paramn}] is

[allocate sub block0 , . . . ,sub blockp]
[local var0 , . . . ,local varl]

I
end block

med ::= medium M [[const param]][{com param0 | . . . |com paramm}] is
[allocate sub block0 , . . . ,sub blockn]
[local var0 , . . . ,local varl]

I
end medium

const param ::= const X0 :T0 [:= E0], . . . ,Xn:Tn [:= En]
inout param ::= (in | out) X0 :T0 [:= E0], . . . ,Xn:Tn [:= En]

com param ::= (send | receive) X0 :T0 , . . . ,Xn:Tn

local var ::= (perm | temp) X0 :T0 [:= E0], . . . ,Xn:Tn [:= En]
sub block ::= B [[arg0 , . . . ,argn]] as Bi

actor ::= B [[arg0 , . . . ,argn]] as Bi | M [[arg0 , . . . ,argn]] as Mi
block call ::= Bi [(ch0 ; . . . ;chm)][{ch′

0 ; . . . ;ch′
n}]

med call ::= Mi {ch0 | . . . |chm}
signal ::= on [?]X0 , . . . ,[?]Xn -> I

I ::= null | X:=E | X[E0]:=E1 | X.f :=E | I0 ;I1 | Bi(arg0 , . . . ,argn) | X := any T [where E]
| case E is K0 -> I0 | . . . | Kn -> In | [any -> In+1] end case
| while E loop I0 end loop | for I0 while E by I1 loop I2 end loop
| if E0 then I0 elsif E1 then I1 . . . elsif En then In else In+1 end if
| select I0 [] . . . []In end select | signal

Fig. 1: Excerpts of the GRL syntax

Blocks. A block is defined as the synchronous composition of one or several
other blocks (called subblocks), together with the deterministic statements avail-
able in standard programming languages (assignments, if-then-else, while and
for loops, etc.)2. The current state of a block is defined by the values of per-
manent variables declared using the keyword perm. During each synchronous
cycle, a block operates as follows: (1) it consumes its inputs; (2) it evaluates its
function, which depends on both the block inputs and the current state; (3) it
produces its outputs and computes the state of the system in the next cycle.
These computations are assumed to be done in zero-delay, following the stan-
dard abstraction of synchronous programming. In addition to input and output
parameters, a block can be parameterized with constant parameters.

Instances can be created from block definitions using the keyword allocate.
Each block instance has its own memory consisting of a copy of its permanent

2 The nondeterministic statements “X := any T [where E]” and
“select I0[] . . . []In end select” are not allowed in block definitions, but
only in mediums and environments.

Formal Modeling and Verification of GALS Systems 5

variables and those of its subblocks transitively. Block instances can be invoked
and composed to interact with each other by instantaneous broadcasting, i.e.,
outputs produced by a block in a cycle can be consumed by other blocks in the
same cycle. In this way, data is processed along causal dependencies between
subblocks, making the behaviour of blocks deterministic.

Excerpts of the GRL code of the AMS introduced in Section 2 are given
in Figure 2. Block Block Timer BW (lines 1-7, Fig. 2) ensures that the out-
put is set to true if the input is true during several consecutive cycles of the
block. Permanent variable Pre Input stores the value of Input from one execu-
tion to the next (lines 3 and 6, Fig. 2). A parameterized instance B02 of block
Block Timer BW is allocated (line 11, Fig. 2) then invoked (line 15, Fig. 2) in-
side block Out controller . Block Out controller is defined by a synchronous com-
position of subblock instances B01 , B02 , and B05 (lines 14-16, Fig. 2). Data flow
from B01 to B02 is ensured through variable c1 whose value is produced by B01
(actual parameter ?c1) and consumed by B02 (actual parameter c1). In B05
invocation (line 16, Fig. 2), symbols “ ” and “? ” denote unconnected inputs and
outputs respectively. For unconnected inputs, the corresponding formal parame-
ters must be assigned default values in the definition of block Block Timer AC ,
similarly to parameter Open Cmd in block Out controller (line 9, Fig. 2).

Asynchronous composition of blocks. A block can communicate asyn-
chronously with other blocks in a network through communication mediums.
Each communicating block has send and receive parameters (line 10, Fig. 2),
which are connected to receive and send parameters of mediums, respectively.
Unlike blocks, mediums support nondeterminism, which makes the description
of communication protocols at a high level of abstraction possible. Instances of
mediums can be created and invoked in systems, similarly to blocks.

Interactions between a block and several mediums are carried out as follows.
When it starts its execution cycle, the block triggers the execution of all medi-
ums connected to its receive parameters, so that mediums produce the data
required by the block. When it finishes its execution cycle, the block triggers
the execution of all mediums connected to its send parameters, so that mediums
can consume data produced by the block. Following this execution model, at
most two interactions are possible between a given pair of block and medium.
Exchanged data is therefore grouped in channels (tuples of data) so that to
each block-medium interaction is associated one single channel. Such a channel
is called activated during the interaction. Depending on the activated channel,
different fragments of a medium code have to be executed, possibly separated
using a nondeterministic “select” statement. To each channel is thus associated
a signal statement, which guards the fragment of the medium code that should
be executed over the channel activation.

For example, consider medium Medium Buffer Bit (lines 19-29, Fig. 2). It
represents a non-blocking single-place buffer that allows communication between
a sender block (through channel Input) and a receiver block (through channel
Output). The code executed upon activation of the channels Input and Output
is on lines 22-23 and lines 25-27 of Figure 2, respectively.

6 Fatma Jebali, Frédéric Lang, Éric Léo, Radu Mateescu

1: block Block Timer BW [const Rising Edge : bool := true, Falling Edge : bool := false]
2: (in Input : bool; out Output : bool) is
3: perm Pre Input : bool := false
4: Output := (((Input and not (Pre Input)) and Rising Edge)
5: or ((not (Input) and Pre Input) and Falling Edge));
6: Pre Input := Input
7: end block
8:
9: block Out Controller (in Open Cmd : bool := false; out Door Open : bool)
10: {receive Open Distant Cmd : bool; send Decrease Counter : bool} is
11: allocate Block Or as B01, Block Timer BW [true, false] as B02,
12: Block Timer AC [0, 5, Cycle] as B05
13: temp c1 : bool
14: B01 (Open Cmd, Open Distant Cmd, ?c1);
15: B02 (c1, ?Decrease Counter);
16: B05 (Decrease Counter, , ?Door Open, ? ,? , ? , ?)
17: end block
18:
19: medium Medium Buffer Bit {receive Input : bool | send Output : bool} is
20: perm Buffer : bool := Cst Bool Empty Buffer
21: select
22: on Input → if (Buffer == Cst Bool Empty Buffer) then Buffer := Input
23: else null end if
24: []
25: on ?Output → if (Buffer == Cst Bool Empty Buffer) then
26: Output := Cst Bool Default Value
27: else Output := Buffer; Buffer := Cst Bool Empty Buffer end if
28: end select
29: end medium
30:
31: system Main (Out Open Cmd : bool, Out Door Open : bool, ...) is
32: allocate Out Controller as Out Controller, In Controller as In Controller,
33: Medium Buffer Bit as Med, ...
34: temp Decrease Counter 1 : bool, Decrease Counter 2 : bool
35: network
36: Out Controller (Out Open Cmd; ...){...; ?Decrease Counter 1},
37: In Controller (In Open Cmd; ...){...; Decrease Counter 2} ...
38: connectedby
39: Med {Decrease Counter 1 | ?Decrease Counter 2}, ...
40: end system

Fig. 2: GRL code of the AMS

Actors are composed inside systems to build networks of blocks that execute
independently and communicate asynchronously with each other across medi-
ums. Connections between blocks and mediums are carried out through param-
eters that are either observable or not from the outside world. In our example,
the network consists of two blocks In Controller and Out Controller communi-
cating across medium Med to keep informed of the actual number of available
spots in the parking (lines 35-39, Fig. 2). Using channel Decrease Counter 1 ,
Out Controller informs through medium Med whether a vehicle has left or not
the parking in its current execution cycle. In turn, In Controller receives the in-
formation using channel Decrease Counter 2 . Parameters Out Open Cmd and
Out Door Open (line 31, Fig. 2) are observable from the outside world, whereas
variables Decrease Counter 1 and Decrease Counter 2 (line 34, Fig. 2) are not.

Semantics. The formal dynamic semantics of GRL systems are defined using
structural operational semantic rules in terms of LTS (Labelled Transition Sys-
tem), the complete definition being available in [14]. States consist of the union

Formal Modeling and Verification of GALS Systems 7

of actor memories, the initial state being the initial memory. Labels represent the
block invocations, each label corresponding to a block instance identifier B and
its corresponding channels ch (input/output channels) and ch′ (send/receive

channels). A transition µ
B(ch){ch′}−−−−−−−→ µ′ means that the combined execution

of block instance B together with its connected mediums (and environments)
instances in the memory µ produces the new memory µ′. The resulting LTS
represents the interleaving of all block instance executions.

4 The LNT language and the CADP toolbox

An excerpt of the syntax of LNT is given in Figure 3. Symbols T, X, E, P, B, π,
F, G, and Γ denote respectively type identifiers, variables, expressions, patterns,
behaviours, process identifiers, function identifiers, gate identifiers, and channel
identifiers. LNT consists of two parts. The data part is defined by means of
rich data type structures, statements built upon standard algorithmic control
structures, and functions. The control part is defined by means of behaviours
and processes. Behaviours are extensions of statements with process instanti-
ation, parallel composition, gate communication, and nondeterministic state-
ments. Functions are parameterized with data variables and processes can be
parameterized with both data variables and gates. Formal parameters can be of
type in (call by value), out (call by reference, the function being in charge of
producing a value for the parameter), or inout (call by reference, the function be-
ing allowed to read and update the parameter value) and their respective actual
parameters are preceded by symbols “!”, “?”, and “!?”, respectively. Commu-
nication takes place by rendezvous on gates, with bidirectional transmission of
multiple values. Gates are typed with channels (not to be confused with the
GRL notion of channels).

process ::= process Π [G0 :Γ0, . . . ,Gm:Γm] is B end process
function ::= function F (param0 , . . . ,paramm):T is B end function

param ::= (in | out | inout) X0 :T0 , . . . ,Xn:Tn

channel ::= channel Γ is gate0 , . . . ,gatem end channel
gate ::= (T0 , . . . ,Tm)

B ::= null | X:=E | X[E0]:=E1 | X.f :=E | B0 ;B1 | eval F(arg0 , . . . ,argn)
| if E0 then B0 [[elsif E1 then B1 . . . elsif En then Bn] else Bn+1]end if
| while E loop B0 end loop | for B0 while E by B1 loop B2 end loop
| case E is P0 -> B0 | . . . | Pn -> Bn | [any -> Bn+1] end case
| var X0 :T0 , . . . ,Xn:Tn in B end var

/* the following constructs are reserved for the control part */
| hide G0 :Γ0, . . . ,Gn:Γn in B end hide | X := any T [where E]
| par G0 , . . . ,Gn in B0 || . . . ||Bm end par | select B0 [] . . . []Bn end select
| Π[G0 , . . . ,Gn](arg0 , . . . ,argn) | G(O0 , . . . ,On)

arg ::= !E | ?X | !?X O ::= [!]E | ?X P ::= X | C(P1 , . . . ,Pn)

Fig. 3: Excerpts of the LNT syntax

8 Fatma Jebali, Frédéric Lang, Éric Léo, Radu Mateescu

LNT programs can be verified using the toolbox CADP (Construction and
Analysis of Concurrent Processes3) [9]. The LNT.OPEN tool translates LNT
specifications into LTS suitable for on-the-fly exploration. CADP provides more
than 42 tools for various kinds of analysis such as simulation, model checking,
equivalence checking, compositional verification, test case generation, and per-
formance evaluation. In particular, the EVALUATOR 4.0 model checker [16]
allows one to verify temporal properties written in MCL (Model Checking Lan-
guage), which extends the alternation-free µ-calculus with generalized regular
expressions, data-based constructs, and fairness operators.

5 Model Transformation from GRL to LNT

This section is devoted to the translation from GRL to LNT. Due to space limi-
tations, we do not give the complete formal translation 4, but we outline its main
principles. The correspondence between the main GRL constructs and how they
are translated in LNT is summarized in Table 1. Data types, expressions, and al-
gorithmic control structures (including nondeterministic choice and assignment)
of GRL have a direct, one-to-one correspondence with their LNT counterparts.

GRL constructs Translation into LNT

statements

block invocation function invocation
signal statement guarded by a gate (sequential composition)

parameters and variables

input parameter in parameter

output parameter out parameter

constant parameter in parameter

permanent variable inout parameters and local variables

temporary variable local variable

channel local variables and gate

actors and systems

block definition function definition

block instance function call (if inside an actor)
process definition and instantiation (if inside a system)

medium definition process definition

medium instance process instantiation

system process

Table 1: Correspondence between GRL and LNT

3 http://cadp.inria.fr
4 the formal description of the translation from GRL to LNT is available in http:

//convecs.inria.fr/doc/grl2lnt.pdf

Formal Modeling and Verification of GALS Systems 9

Translation of Blocks. Each block in GRL has one definition and several in-
stances, each instance having its own memory. Each block definition is systemat-
ically translated into an LNT function implementing one execution cycle of the
block, i.e., computes outputs from inputs. For instance, LNT functions defined
on lines 1-5 and lines 7-14 of Figure 4 correspond to blocks Block Timer BW
and Out Controller of Figure 2, respectively. A block instance can be allocated
inside another block or inside a system. In the first case, the block instance is
governed by the pace of the enclosing block and interacts synchronously with
other subblocks via input output data flows. In the second case, the block in-
stance is a stand-alone system governed by its own pace and communicating
asynchronously with other blocks through mediums. The block instance is trans-
lated into a process called wrapper process, described hereafter, which invokes
the function corresponding to the block definition inside an infinite loop. For in-
stance, the LNT process defined on lines 16-30 of Figure 4 corresponds to block
instance Out Controller inside system Main (lines 32 and 36) in Figure 2.

The imperative style of LNT makes the translation from GRL blocks to
LNT functions quite straightforward for most GRL constructs. The zero-delay
assumption is granted for free, since LNT functions execute atomically. However,
a main difficulty concerns the memory representation, since LNT has only local
variables which lose their values between subsequent executions. To circumvent
this limitation, we implement permanent variables using local variables declared
and initialized in the wrapper process (parameter Out Controller B02 Pre Input
lines 18 and 20, Fig. 4). Those variables are propagated through inout param-
eters to functions corresponding to subblocks, transitively. Therefore, for each
function corresponding to a block we have to synthesize the set of variables
implementing the memory of the block in a bottom-up manner. For instance,
parameters Pre Input and B02 Pre Input (lines 1 and 7, Fig. 4) correspond to
the permanent variable Pre Input (line 3, Fig. 2).

Synchronous composition of block instances is translated by sequential com-
position of calls to the corresponding LNT functions. A difficulty is the transla-
tion of unconnected parameters of the form “ ” and “? ”. For each input actual
parameter “ ” in the block invocation, the default value of the corresponding
formal parameter is fetched and passed to the LNT function call. For each out-
put actual parameter “? ” in the block invocation, an unused variable with the
same type as the corresponding formal parameter is declared and passed to the
LNT function call.

The translation of asynchronous composition is more subtle. Unlike GRL,
which supports communication through variables, LNT processes are parame-
terized with typed gates through which data can be exchanged. To each GRL
channel (set of parameters) of the block invocation is associated a set of local
variables and a gate in the LNT definition process. Those variables are passed
to the LNT function encapsulated inside the process. GRL channels of the form
“ , . . . , ” and “? , . . . ,? ” are ignored, since they do not require gate communica-
tion. For instance, to the GRL channel Out Open Cmd (lines 31 and 36, Fig. 2)
is associated the LNT variable Open Cmd (line 19, Fig. 4), which is received

10 Fatma Jebali, Frédéric Lang, Éric Léo, Radu Mateescu

1: function Block Timer BW (in Falling Edge : Bool, in Rising Edge : Bool, in Input : Bool, out
Output : Bool, inout Pre Input : Bool) is

2: Output := (((Input and not (Pre Input)) and Rising Edge)
3: or ((not (Input) and Pre Input) and Falling Edge));
4: Pre Input := Input
5: end function
6:
7: function Out Controller (in B02 Falling Edge : Bool, in B02 Rising Edge : Bool, in Open Cmd

: Bool, ..., inout B02 Pre Input : Bool) is
8: var c1 : Bool in
9: ...
10: eval Block Or (Open Cmd, Open Distant Cmd, ?c1);
11: eval Block Timer BW (B02 Falling Edge,B02 Rising Edge,c1,?Decrease Counter,

!?B02 Pre Input);
12: Door Open := Decrease Counter
13: end var
14: end function
15:
16: process Main Out Controller [Lock, Release : None, GATE Out Open Cmd : CHANNEL bool,

GATE Decrease Counter 1 : CHANNEL bool, ...] is
17: ...
18: var Out Controller B02 Pre Input : Bool in
19: var Open Cmd : Bool, Decrease Counter : Bool, ... in ...
20: Out Controller B02 Pre Input := false;
21: loop
22: Lock;
23: GATE Out Open Cmd (?Open Cmd);
24: GATE Out Open Distant Cmd (?Open Distant Cmd);
25: eval Out Controller (Out Controller B02 Falling Edge,Out Controller B02 Rising Edge,

Open Cmd,?Door Open,Open Distant Cmd,?Decrease Counter,!?Out Controller B02 Pre Input);
26: GATE Out Door Open (Door Open);
27: GATE Decrease Counter 1 (Decrease Counter);
28: Release
29: end loop
30: end var end var end var end process
31:
32: process Medium Buffer Bit [GATE Input : CHANNEL bool, GATE Output : CHANNEL bool]

(inout Buffer : Bool) is
33: var Input : Bool, Output : Bool in select
34: GATE Input (?Input);
35: if (Buffer == Cst Bool Empty Buffer) then Buffer := Input else null end if
36: []
37: if (Buffer == Cst Bool Empty Buffer) then Output := Cst Bool Default Value
38: else Output := Buffer; Buffer := Cst Bool Empty Buffer end if ;
39: GATE Output (!Output)
40: end select end var
41: end process
42:
43: process Main Med [GATE Decrease Counter 1 : CHANNEL bool, GATE Decrease Counter 2

: CHANNEL bool] is
44: var Med Buffer : Bool in
45: Med Buffer := Cst Bool Empty Buffer;
46: loop
47: Medium Buffer Bit[GATE Decrease Counter 1,GATE Decrease Counter 2](!?Med Buffer)
48: end loop
49: end var
50: end process
51: ...
52: channel CHANNEL bool is (Bool) end channel
53: process Mutex [Lock, Release : None] is loop Lock; Release end loop end process

Fig. 4: LNT code of the AMS (part 1)

through gate GATE Out Open Cmd (line 23, Fig. 4), and passed as input pa-
rameter to the encapsulated function call (line 25, Fig. 4). Since LNT gates are

Formal Modeling and Verification of GALS Systems 11

typed by LNT channels, to each LNT gate corresponds an LNT channel defining
its communication profile (i.e., number and types of the exchanged values). For
instance, the type of the LNT gate GATE Out Open Cmd is CHANNEL bool
(line 52, Fig. 4). Our translation ensures that the generated LNT channels are
pairwise distinct.

The execution of the wrapper process can be summarized as follows. First, it
initializes once and for all local variables representing the memory of the block
under translation (lines 18 and 20, Fig. 4). Then, it performs cyclically (inside
the infinite loop) the following steps (lines 21-29, Fig. 4): (1) data reception
on gates corresponding to receive and input channels of the block (lines 23-24,
Fig. 4), (2) call to the function corresponding to the block invocation (line 25,
Fig. 4), (3) data emission on gates corresponding to output and send channels
of the block (lines 26-27, Fig. 4).

Each execution of the synchronous cycle of a block produces a sequence
of synchronizations between the process corresponding to the block and those
corresponding to its connected mediums and environments (if any). According
to the synchronous paradigm, this sequence is atomic. To prevent sequences
of synchronizations corresponding to different blocks to interleave, we ensure
mutual exclusion of the synchronization sequences using additional gates Lock
(line 22, Fig. 4) and Release (line 28, Fig. 4) that start and finish each sequence,
respectively. The process of the block is then synchronized on those gates with
the process Mutex defined on line 53 of Figure 4.

Note that our translation does not preserve exactly the GRL semantics, since
to one transition in the GRL semantics corresponds a sequence of transitions in
the LNT semantics. However, there is a clear correspondence between the LTS
obtained from the formal semantics of GRL and the one obtained by applying
the translation into LNT described above. The label of the GRL transition can
be reconstructed from the labels of the atomic sequence of LNT transitions. As
an illustration, consider an invocation of the block Out Controller with param-
eters Out Open Cmd and Out Open Distant Cmd both set to false. The LTS
corresponding to the formal semantics of GRL associates the following transition
to one execution of the block:�� ��0

Out Controller(false;?false){false;?false}−−−−−−−−−−−−−−−−−−−−−−−−−→
�� ��1

The LTS corresponding to the formal semantics of LNT, obtained after trans-
lation, associates the following sequence of transitions to one execution of the
block:�� ��0

Lock−−−→
�� ��1

GATE Out Open Cmd ! false−−−−−−−−−−−−−−−−−−→
�� ��2

GATE Out Open Distant Cmd ! false−−−−−−−−−−−−−−−−−−−−−−−→
�� ��3

GATE Out Door Open ! false−−−−−−−−−−−−−−−−−−→
�� ��4

GATE Decrease Counter 1 ! false−−−−−−−−−−−−−−−−−−−−−→
�� ��5

Release−−−−→
�� ��6

Translation of Mediums. Unlike a block definition, a medium definition can-
not be translated into an LNT function due to the occurrence of nondeterministic
statements and signal statements enabling asynchronous communication. Thus,
it is directly translated into an LNT process. For instance, the LNT process

12 Fatma Jebali, Frédéric Lang, Éric Léo, Radu Mateescu

54: process Main [GATE Decrease Counter 1, GATE Decrease Counter 2 : CHANNEL bool,...] is
55: hide Lock, Release : None, ... in
56: par GATE Decrease Counter 2, GATE Decrease Counter 1, ... in
57: par Lock, Release in
58: Mutex [Lock, Release]
59: ||
60: par
61: Main In Controller [..., GATE Decrease Counter 2, Lock, Release]
62: || Main Out Controller [..., GATE Decrease Counter 1, Lock, Release]
63: end par
64: end par
65: ||
66: par
67: Main Med [GATE Decrease Counter 1, GATE Decrease Counter 2]
68: || ...
69: end par
70: end par
71: end hide
72: end process

Fig. 5: LNT code of the AMS (part 2)

defined on lines 32-41 of Figure 4 corresponds to medium Medium Buffer Bit
of Figure 2. GRL channels are translated similarly to those in block instances,
except that even unconnected channels are represented. Permanent variables are
translated similarly to those in block definitions. A signal statement of the form
“on X0, . . . ,Xn -> I ” is translated into a sequential composition of: (1) recep-
tion of messages on the gate corresponding to the channel “X0, . . . ,Xn” and
(2) a translation of the statement “I ” (lines 34-35, Fig. 4). A signal statement
of the form “on ?X0, . . . ,?Xn -> I ” is translated into a sequential composi-
tion of: (1) a translation of the statement “I ” and (2) emission of messages on
the gate corresponding to the channel “X0, . . . ,Xn” (lines 37-39, Fig. 4). Sim-
ilarly to block instances at system level, to each medium instance (necessarily
occurring inside a system) is associated an LNT process. For instance, the LNT
process defined on lines 43-50 of Figure 4 corresponds to medium instance Med
inside system Main (lines 33 and 39, Fig. 2). This process encapsulates the LNT
process corresponding to the medium definition inside an infinite loop.

Translation of Systems. A system is translated into a process inside which
are composed in parallel the processes corresponding to the various block and
medium instances of the system. For instance, the LNT process defined on lines
54-72 Figure 5 corresponds to the system Main (lines 31 and 40, Fig. 2). The
process is parameterized with gates declared in two ways. Gates declared in the
process profile (line 54, Fig. 5) are visible in the corresponding LTS and represent
parameters that are declared in the GRL system profile. Gates declared using the
hide construct (line 55, Fig. 5) are not be visible in the corresponding LTS and
represent the GRL parameters declared as temporary variables in the system.

Instance processes corresponding to actors are composed in parallel and en-
capsulated inside the process corresponding to the system (lines 56-70, Fig. 5).
Blocks are composed in parallel in pure interleaving (lines 60-63, Fig. 5). Each
instance process of a block synchronizes with process Mutex on gates Lock and

Formal Modeling and Verification of GALS Systems 13

Release (lines 57-64, Fig. 5). Similarly to instance processes of blocks, instance
processes of mediums are composed in pure interleaving (lines 66-69, Fig. 5).

5.1 Tool support

We developed a tool named GRL2LNT using the Syntax/Traian Lotos NT com-
piler construction technology [8]. It consists of about 30,000 lines of code and
translates GRL specifications into LNT specifications. Additionally, we devel-
oped a tool named GRL.OPEN which encapsulates GRL2LNT and calls the
LNT.OPEN tool, to connect GRL to all the on-the-fly verification tools of CADP.

GRL2LNT and GRL.OPEN have been tested on a benchmark of about 120
GRL specification files (including examples of controller applications provided by
Crouzet) totalizing about 7,000 lines of code. Some specifications also include
external C and LNT code, as supported by GRL. The generated files consist
of about 18,000 lines of LNT code and each LNT file is on average 2.5 times
larger (in lines of code) than the GRL file. This linear expansion is due mainly
to channel declarations and to the fact that each GRL actor is translated into
more than one LNT process or function.

6 Functional Verification

We used GRL.OPEN together with the GENERATOR tool of CADP to build
the LTS corresponding to each controller and to the whole AMS. The translation
from GRL to LNT is instantaneous. The LTS of the entrance controller, the exit
controller, and the global system have respectively 4,260,680 states and 6,554,895
transitions, 129 states and 183 transitions, and 13,797,737 states and 17,238,978
transitions and are generated in 30 seconds, 3 seconds, and 190 seconds on a
Intel Xeon W3550 (3.07GHz, 8GB RAM) running Linux.

Some behavioural abstractions on the global model were necessary to make
it suitable for model checking without loss of accuracy: the body of some blocks
has been simplified, the yellow light is not kept on for several cycles, and some
timers have been removed.

We have written a set of safety and liveness properties which we have ex-
tracted from the example description in natural language. In a first step, we
specified a collection of properties that each controller should satisfy (13 safety
and liveness properties). As an illustration, the following MCL safety property
ensures that the gate controlled by the exit controller should not open less than
five cycles. It has the form “[R] false” where R is a regular expression, and it
evaluates to true if no execution sequence matches R. Here, it states that be-
tween two states where the gate is not open, there cannot be one to four cycles
where the gate is open. The regular expression inside the brackets describes the
entire execution cycle of the controller.

14 Fatma Jebali, Frédéric Lang, Éric Léo, Radu Mateescu

[true*. {GATE OUT DOOR OPEN!false}.{GATE DECREASE COUNTER?any}.
(tau*.{GATE OUT OPEN CMD?any}.{GATE OUT OPEN DISTANT CMD?any}.
{GATE OUT DOOR OPEN!true}.{GATE DECREASE COUNTER?any}){1...4}.
tau*.{GATE OUT OPEN CMD?any}.{GATE OUT OPEN DISTANT CMD?any}.
{GATE OUT DOOR OPEN!false}

]false

This property evaluates to true in 4 seconds, using 4MB of memory.
In a second step, we specified a collection of properties that the network of

controllers should satisfy (8 safety and liveness properties). As an illustration,
the following MCL safety property ensures that the switch from red light to
green light should not be possible if no open order on the exit gate has been
received. It states that there is no execution path from red light to green light
without an opening of the exit gate.

[true*.
{GATE RED LIGHT!true}.(not({GATE OUT DOOR OPEN!true}))*.{GATE GREEN LIGHT!true}
]false

This property evaluates to true in 520 seconds using 4KB of memory.
Note that the medium implemented in this example is very simple and does

not ensure that a message will eventually reach its destination. For example, we
could have expected the following to be correct: when a car leaves the parking,
the green light eventually turns on. This can be checked with the following
MCL liveness property, which has the form “[R] inev(A)” where R is a regular
expression and A is an action, and evaluates to true if every execution sequence
matching R ends in a state from which A is inevitably reachable.

[true*.{GATE OUT DOOR OPEN!true}] inev({GATE GREEN LIGHT!true})

This property evaluates to false in 2 seconds using 4MB of memory. It means
that a requirement is missing in the initial specification.

7 Conclusion

We have presented an approach for the formal modelling and verification of
GALS systems. These systems are complex and have to be analysed in powerful
verification frameworks specifically designed to model asynchrony and nondeter-
minism. Contrary to other approaches that combine two different languages for
the synchronous part and the asynchronous part [6, 10], we use a unified lan-
guage named GRL, specifically designed to model the heterogeneous behaviour
of GALS systems.

We proposed a translation of GRL specifications into LNT, one of the input
languages of the CADP toolbox. This allows the designers of GALS systems
to apply all the state-of-the-art verification tools available in CADP to analyse
GRL specifications. We automated the translation in the tool GRL2LNT, which
has been tested on a large number of examples.

Formal Modeling and Verification of GALS Systems 15

GRL and GRL2LNT represent a step forward to enhance industrial design
flows with asynchronous verification tools. We try to address a lack of approaches
dealing with asynchronous concurrency in the industry of GALS systems. This
lack is at least twofold: (1) asynchronous concurrency is intrinsically more com-
plex than synchronous concurrency and (2) asynchronous verification tools are
expensive to integrate in industrial frameworks [7]. Our approach aims at keep-
ing industrial frameworks as they are and enhance them with both automatic
connections to asynchronous frameworks and user-friendly analysis interfaces.
We believe that it is cost effective compared to approaches based on complex re-
finement algorithms [17] or automatic generation of distributed implementations
[11], since our approach does not require drastic shift in the design flow.

We are currently enriching the GRL framework with reusable libraries mod-
elling basic function blocks as well as communication protocols used in the GALS
community such as LTTA [2] and Modbus. Also, in collaboration with Crouzet
engineers, we seek to automate the generation of GRL specifications from the
em4soft design software. We also study the design of a user-friendly property
language to make model checking easily accessible by industrial designers.

References

1. A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony.
Springer, 1999.

2. A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J.-P. Talpin, and S. Tripakis.
A protocol for loosely time-triggered architectures. In Proc. of Embedded Software.
Springer, 2002.

3. L.P. Carloni and A.L. Sangiovanni-Vincentelli. A framework for modeling the
distributed deployment of synchronous designs. FMSD, 28(2):93–110, 2006.

4. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, V. Powazny, F. Lang, W. Serwe,
and G. Smeding. Reference manual of the LOTOS NT to LOTOS translator, 2011.

5. D.M. Chapiro. Globally-asynchronous locally-synchronous systems, 1984.

6. F. Doucet, M. Menarini, I.H. Krüger, R. Gupta, and J.-P. Talpin. A verification
approach for GALS integration of synchronous components. ENTCS, 146(2):105–
131, 2006.

7. H. Garavel. Reflections on the future of concurrency theory in general and process
calculi in particular. ENTCS, 209, 2008.

8. H. Garavel, F. Lang, and R. Mateescu. Compiler construction using LOTOS NT.
In Proc. of CC. Springer, 2002.

9. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT, 15(2):89–107, 2013.

10. H. Garavel and D. Thivolle. Verification of GALS systems by combining syn-
chronous languages and process calculi. In Proc. of SPIN. Springer, 2009.

11. A. Girault and C. Ménier. Automatic production of globally asynchronous locally
synchronous systems. In Embedded Software. Springer, 2002.

12. N. Halbwachs and S. Baghdadi. Synchronous modelling of asynchronous systems.
In Proc. of Embedded Software. Springer, 2002.

13. F. Jebali, F. Lang, and R. Mateescu. GRL: A Specification Language for Globally
Asynchronous Locally Synchronous Systems. Proc. of ICFEM, 2014.

16 Fatma Jebali, Frédéric Lang, Éric Léo, Radu Mateescu

14. F. Jebali, F. Lang, and R. Mateescu. GRL: A specification language for Glob-
ally Asynchronous Locally Synchronous systems (syntax and formal semantics).
Research report RR-8527, INRIA, 2014.

15. Avinash Malik, Alain Girault, and Zoran Salcic. Formal semantics, compilation
and execution of the GALS programming language DSystemJ. Parallel and Dis-
tributed Systems, 2012.

16. R. Mateescu and D. Thivolle. A model checking language for concurrent value-
passing systems. In Proc. of FM. Springer, 2008.

17. S.P. Miller, M.W. Whalen, D. O’Brien, M.P. Heimdahl, and A. Joshi. A method-
ology for the design and verification of globally asynchronous/locally synchronous
architectures. 2005.

18. M. R. Mousavi, P. Le Guernic, J.P. Talpin, S. K. Shukla, and T. Basten. Modeling
and validating globally asynchronous design in synchronous frameworks. In Proc.
of DATE. IEEE, 2004.

19. J. Proença, D. Clarke, E. De Vink, and F. Arbab. Dreams: a framework for
distributed synchronous coordination. In Proc. of the ACM Symp. on Applied
Computing. ACM, 2012.

20. S. Ramesh, S. Sonalkar, V. Dsilva, N. Chandra, and B. Vijayalakshmi. A toolset
for modelling and verification of gals systems. In Proc. of CAV. Springer, 2004.

21. M. Singh and M. Theobald. Generalized latency-insensitive systems for single-clock
and multi-clock architectures. In Proc. of DATE. IEEE, 2004.

22. H. Yu, Y. Ma, Y. Glouche, J.-P. Talpin, L. Besnard, T. Gautier, P. Le Guernic,
A. Toom, and O. Laurent. System-level co-simulation of integrated avionics using
Polychrony. In Proc. of the ACM Symp. on Applied Computing. ACM, 2011.

