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Electric Vehicle Scheduling and Optimal Charging Problem:

Complexity, Exact and Heuristic Approaches
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1 LORIA, Campus Scientifique - BP 239 - 54506 Vandoeuvre-lès-Nancy Cedex, France

2 University of Lorraine, Ile du Saulcy, CS 10628, 57045, Metz, France

Abstract: This paper deals with the Electric Vehicle Scheduling and Optimal Charging Problem.

More precisely, given a fleet of Electric Vehicles - EVs and Combustion Engine Vehicles - CVs, a

set of tours to be processed by vehicles and a charging infrastructure, the problem aims to optimize

the assignment of vehicles to tours and minimize the charging cost of EVs, while considering several

operational constraints mainly related to chargers, electricity grid, and EVs driving range. We prove

that the Electric Vehicle Scheduling and Charging Problem (EVSCP) is NP-hard in the ordinary sense.

We provide a mixed-integer linear programming formulation to model the EVSCP and use CPLEX to

solve small and medium instances. To solve large instances, we propose two heuristics: a Sequential

Heuristic - SH and a Global Heuristic - GH. The SH considers the EVs sequentially. To each EV, it

assigns a set of tours and guarantees the feasibility of a charging schedule using the Maximum Weight

Clique Problem. Then, it generates an optimal charging schedule for this EV using a Minimum Cost

Flow formulation. However, the GH computes, in the first step, a feasible assignment of tours to all

EVs. In the second step, it applies a global Min-Cost-Flow-based charging algorithm to minimize the

charging cost of the EVs fleet. To evaluate the efficiency of our solving approaches, computational

results on a large set of real and randomly generated test instances are reported and compared. Tested

instances include large random instances with up to 200 EVs and 320 tours.

Keywords: Electric Vehicle, Optimal Charging, Complexity, Scheduling, Mixed Integer program-

ming, Greedy Algorithms, Maximum Weight Clique, Minimum Cost Flow, Experiments.
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1 Introduction

The transport sector is responsible, to a large extent, for energy consumption and greenhouse gas

emissions. To tackle environmental and energy challenges in this sector, Electric Vehicles (EVs) seem

to be a potential alternative that offers a reduction of both petroleum consumption and greenhouse

gas emissions.

However, electric car industry is still facing many weaknesses related to battery management. The

first is the limited EV driving range. The second weakness is related to the long charging time of EVs

(fully charging the battery pack can take up to 8 hours with Level 1 chargers), and the availability of

a charging infrastructure. The third weakness concerns the electricity grid on which EV charging may

put a significant stress. A large scale adoption of EVs may then strongly affect the electricity grid

which is already facing numerous challenges. Thus, the new ecosystem of EVs (vehicles - chargers -

electricity grid) leads to new optimization challenges aiming to develop efficient models and decision

tools to manage EV fleets and take into account all constraints related to the ecosystem.

This study is a part of the French National Project InfiniDrive, led by La Poste Group (Postal

services company, France), ERDF (French enterprise that manages the public electricity distribution

network) and six other companies and research laboratories. This R&D project has been selected by

ADEME (French Environment and Energy Management Agency) as part of the Vehicle of the Future

program. It aims at designing, with a progressive approach, an intelligent system that manages the

charging infrastructures, and allows for an economical and ecological sustainable deployment of EVs

fleet in the business context.

Optimization problems related to EVs can be classified into four classes: (i) problems related to

EV used in the context of Smart Grid or Vehicle to Grid (V2G), (ii) controlled EV charging problems,

(iii) charging infrastructure network design problems and (iv) EV routing problems.

In the V2G context, EVs batteries are used to store energy. Those batteries can serve as energy

source by sending electricity back into the grid in order to either prevent or postpone load shedding.

Research based on the V2G problems has mainly focused on how to connect the batteries of EVs to

the power grid and characterize its feasible services [1], on proving the validity of the V2G concept [2],

identifying new markets [3, 4], and controlling V2G systems [5, 6]. The goal of the V2G control is to

decide whether the EV should be charged, discharged, or provide frequency regulation at each hour.

Hutson et al. [5] consider the problem of maximizing the EVs owners’ profit by selling excessive energy

to grid. A V2G control algorithm, based on the application of a binary particle swarm optimization
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technique, is proposed. Shi and Wong [6] consider the real-time control problem of V2G, and present

a greedy algorithm that takes into account price uncertainty. Lopez et al. [7] address the problem of

EV charging and V2G capabilities for congestion management. They propose a novel algorithm, based

on power distribution factors, for optimal EV congestion management, in which EVs can decrease or

increase their battery energy level, stop their charging, or even inject energy in the grid. Other studies

related to the V2G include the works [8, 9].

The problem of the network design of the charging infrastructure is considered in a number of

studies including the works [10, 11, 12, 13]. The problem of the design of charging infrastructures is

addressed by Wang [10]. The author develops a model using an integer program in order to determine

the locations of charging stations. Furthermore, Wang [11] presents an integer programming model

to optimize the locations and the number of battery exchange stations. Wang and Lin [12] use the

concepts of set covering problems to model the allocation of multiple types of charging stations. A

mathematical program with complementarity constraints is developed by He et al. [13] to determine

an optimal allocation of a given number of public charging stations.

The controlled EV charging problems consist of a better management of the charging load and

include delayed, timed and more advanced types of smart charging, [14, 15, 16]. The objective of those

problems is to integrate the charging load with the traditional load in the electricity grid and minimize

the charging cost. Sundstrom [17] describe an approach based on a mixed integer programming

formulation to optimize EV battery charging behavior with the goal of minimizing charging costs.

The design of a simulation environment, which produces charging schedules using a multi-objective

evolutionary optimization algorithm is presented by Ramezani et al. [18]. Lee et al. [19] expose an

energy consumption scheduler that is able to reduce peak power load in smart places based on genetic

algorithms. A concept of real-time scheduling techniques for EV charging that minimizes the impact

on the power grid and guarantees the satisfaction of consumer’s charging requirements is suggested

by Kang et al. [20].

The EV routing problem is less considered in the literature. The energy-optimal routing problem

is addressed by Artmeier et al. [21] and it is modeled as the shortest path problem with additional

constraints related to the energy consumption. The authors propose a family of search algorithms that

satisfy the energy constraints. Erdogan and Miller-Hooks [22] formulate the Green Vehicle Routing

Problem (GVRP) as a Mixed Integer Linear Program (MIP). Two constructive heuristics are developed

to solve this problem. An overview of the GVRP is given by Lin et al. [23].
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In this paper, we address the Electric Vehicle Scheduling and Charging Problem (EVSCP). The

EVSCP is defined as follows: Given a set of tours, a fleet of electric and combustion engine vehicles

and a charging infrastructure, the objective is to seek an optimal way to assign tours to vehicles and

to minimize the EVs charging cost while satisfying several constraints mainly related to the electricity

grid, chargers and EVs batteries capacities. To the best of our knowledge, no previous study was

devoted to tackle this problem in the literature.

The remainder of the paper is organized as follows: Section 2 presents the problem and describes

the notation used in the remaining sections. In Section 3, we prove the NP-Hardness of the problem.

Section 4 provides a detailed description of the mathematical formulation of the problem. In Section 5,

our exact and heuristic approaches are presented. Section 6 summarizes the computational results.

Concluding remarks are given in Section 7.

2 Problem Description and Notation

We consider a set M1 = {1, . . . ,m1} of Electric Vehicles - EVs and a set M2 = {1, . . . ,m2} of

Combustion Engine Vehicles - CVs that are needed to process a set of n tours during the time horizon

[0, T ]. Each vehicle can process, at most, one tour at a time. Each electric vehicle j operates with a

battery characterized by its nominal capacity of embedded energy Bj (kWh) and its State of Charge

(SoCj) defined as the available capacity, and expressed as a percentage of its nominal capacity Bj (0%

= empty; 100% = full). Let SoC0
j be the initial state of charge of EV j at time t = 0. At low and high

SoC’s values, the battery tends to degrade faster ([24]). In order to improve its lifetime after repeated

use and to respect the security issues, at each time, SoCj should be in the interval [SoCmin
j , SoCmax

j ],

where SoCmin
j and SoCmax

j are the minimal and the maximal allowable values of SoC, respectively. We

assume that there are m1 chargers available to charge EVs during the time horizon [0, T ]. This time

horizon is divided into T equidistant time periods, t = 1, . . . , T , each of length d, where t represents

the time interval [t − 1, t] (in our case, d = 15 minutes). At each time period t, each charger can

provide, to EV j, a charging power pjt ∈ [pmin, pmax], where pmin and pmax are respectively the minimal

and maximal powers that can be delivered by the charger. Thus, an EV charged with a power pjt

during the time period t retrieves a total amount of energy equal to d×pjt(kWh). We denote by gt the

electricity grid capacity available for EV charging at time t; i.e., at each time t, the total electricity

grid power available to charge all EVs is limited to gt. Let ct be the energy cost during time period

t. There is a set of n tours to be processed by the vehicles. Each tour i is characterized by a start
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time si, a finish time fi, a weight wi (length expressed in km), and energy Ei (expressed in kWh)

required to perform the tour with an EV. Two tours i and j overlap if their intersection is nonempty,

i.e., [si, fi] ∩ [sj , fj ] 6= ∅, otherwise they are disjoint. Given a tour i, let V (i) be the set of tours such

that ∀ j ∈ V (i), i and j overlap. Note that all tours are already constructed. Thus the start and finish

times of each tour are known in advance and, to satisfy operational constraints, preemption of tours

is not allowed and the vehicles cannot charge while in tour. The objective consists in maximizing the

use of EVs, i.e., the total weight of tours processed with EVs, and minimizing the overall charging

costs.

This problem can be seen as a fixed interval scheduling problem ([25, 26]) with additional con-

straints of energy. The fixed interval scheduling problem without additional constraints is characterized

as the problem of scheduling a number of jobs, each with fixed starting and finishing times, and it

is stated as follows: Given are n intervals of the form [sj , fj) with sj < fj , for j = 1, . . . , n and m

machines. Each machine can process at most one job at a time and is always available. The objective

is to process a maximum number of jobs on the machines. The fixed interval scheduling problem has

been largely considered in the literature, particularly the variant where the objective is to maximize

the number of (weighted) jobs that can be feasibly scheduled [27, 28, 29, 30]. This variant can be solved

using a min-cost flow formulation (see for e.g. [27] and [28]). When jobs have unit weights, a greedy

algorithm that finds the maximum number of jobs to process on machines may be used as proposed

by [29, 30]. If each job can only be carried out by an arbitrary given subset of machines, the problem

becomes NP-hard [27]. However, the fixed interval scheduling problem with energy constraints has,

so far, never been considered in the literature.

3 NP-Hardness Result

In this section, we prove the weak NP-hardness of the EVSCP. We use the reduction to the Partition

problem, which is known to be NP-complete in the ordinary sense [31]. This problem can be stated

as follows: Given a set P = {a1, a2 . . . ap} of p integers such that
∑p

i=1 ai = 2A, is there a partition of

P into two subsets P1 and P2 such that
∑

i∈P1
ai =

∑
i∈P2

ai = A?

Theorem. 1 The problem EVRCP is NP-hard in the weak sense.

Proof. Given an arbitrary instance of the Partition problem, we build an instance (I) of the EVSCP

with a set of 2p + 2 tours. The start times, the finish times and the energy consumptions of those
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tours are given in Table 1. We assume that a0 = 0.

Table 1: Characteristics of the instance (I)
Tour Start time Finish time Energy consumption

Ti; i = 1, . . . , 2p A+
∑i−1

i=0 ak A+
∑i

k=0 ak ai

T2p+1 3A 3A+ 1 A

T2p+2 3A 3A+ 1 A

Without loss of generality, we restrict our analysis to the case of two available EVs with a battery

capacity of 2A (kWh). We assume that there exist two chargers. Each charger can provide one discrete

power of 1 (kW). The grid capacity available for EV charging is equal to 2 (kW) at each time interval.

At t = 0, we assume that the batteries of both EVs are completely depleted. A feasible assignment of

tours to EVs should satisfy the following constraints:

• The EVs should have a sufficient energy before processing tours.

• The maximum battery capacity of each EV should never be exceeded during the charging process.

• At each time, the total power used to charge EVs cannot exceed the electricity grid’s maximum

capacity.

In what follows, we show that there exist a schedule of tours and a feasible charging planning of EVs

if, and only if, the Partition problem admits a solution.

First, assume that the Partition problem has a solution and let P1 and P2 be the required subsets of P .

The desired schedule of tours is constructed by building two sets L1 and L2 of tours T1, . . . , T2p, where

tours of L1 and L2 correspond to the sets P1 and P2, respectively; i.e., Ti ∈ Lj , if ai ∈ Pj , i = 1, . . . , 2p,

j = 1, 2. Assign tours of L1 to EV 1 and tours of L2 to EV 2. The tours T2p+1 and T2p+2 are assigned

to EV 1 and EV 2, respectively. In order to execute the assigned tours, the EVs are charged as

follows: During the time interval [0, A], each EV is charged with a power of 1 (kW); at t = A each

EV recovers then A (kWh). During the time interval [A, 3A + 1], EV 1 processes all tours of L1, for

A units of time, and is charged when it is not processing any tour (i.e., EV 1 is charged during the

intervals [A, 3A]
⋂
ai∈P2

[A+
∑i−1

k=0 ak, A+
∑i

i=0 ak]), and, finally, it processes the tour T2p+1, whereas

EV 2 processes all tours of L2 and gets charged during [A, 3A]
⋂
ai∈P1

[A +
∑i−1

k=0 ak, A +
∑i

k=0 ak]

before performing the tour T2p+2. It is easy to see that, during the different charging phases, each EV

recovers enough amount of energy to process all tours. Therefore, the obtained schedule is feasible.
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Figure 1: Solution to the scheduling problem on two EVs EV 1 and EV 2.

Conversely, assume now that there exist a feasible schedule of tasks and a charging planning of

EVs. Since T2p+1 and T2p+2 have the same start and finish times, we assume, without loss of generality,

that T2p+1 and T2p+2 are executed by EV 1 and EV 2, respectively. Let R1 and R2 be the two sets

of tours assigned to EV 1 and EV 2, respectively. Let
∑

ai∈R1
ai = A1 and

∑
ai∈R2

ai = A2 be

the amounts of energy required by the EVs to execute the sets of tasks A1 and A2. Then, EV 1

and EV 2 need a total amount of energy equal to A + A1 and A + A2, respectively. Assume that

A1 > A. Then, EV 1 needs an amount of energy greater than 2A. EV 1 can be charged only during

[0, 3A]
⋂
ai∈R2

[A +
∑i−1

k=0 ak, A +
∑i

k=0 ak] and it may recover at most a total amount of energy E

equal to 3A− A1 < 2A (kWh). Since E < 2A, there is not enough energy to process the set of tasks

R1 and T2p+1. Then A1 ≤ A. Following the same reasoning, we have A2 ≤ A. Since A1 + A2 = 2A,

we conclude that A1 = A and A2 = A. Therefore, R1 and R2 represent a solution to the Partition

problem. �

4 Problem Formulation

In this section, we propose a MIP for the EVSCP. We introduce the following decision variables:

xij : 0-1 variable equals 1 if the vehicle j, j = 1, . . . ,m1 +m2, is allocated to the tour i, i = 1, . . . , n,

and 0 otherwise.

yjt : 0-1 variable equals 1 if the EV j, j = 1, . . . ,m1, is charged during the time interval t = 1, . . . , T

and 0 otherwise.
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pjt : real variable denotes the charging power level applied to EV j, j = 1, . . . ,m1 at time interval

t = 1, . . . , T .

In order to reduce the complexity of the proposed MIP and, without loss of generality, we assume

that the energy Ei required to perform the tour i is consumed during the last period fi of tour i; i.e,

during the time interval [fi − 1, fi] (Ei,fi = Ei and Ei,l = 0, l = si, si + 1, . . . , fi − 1). The EVSCP is

formulated as a MIP. Its mathematical formulation (P) is the following:

Lex (max
n∑
i=1

m1∑
j=1

wi × xij ; min

m1∑
j=1

T∑
t=1

ct × pjt) (1)

m1+m2∑
j=1

xij = 1, ∀i (2)

xij +
∑

i′∈V (i)

xi′j ≤ 1, ∀i,∀j (3)

fi∑
t=si

yjt + (fi − si + 1)× xij ≤ (fi − si + 1), ∀i,∀j ∈M1 (4)

m1∑
j=1

pjt ≤ gt, ∀t (5)

pmin × yjt ≤ pjt, ∀t,∀j ∈M1 (6)

pjt ≤ pmax × yjt, ∀t,∀j ∈M1 (7)

SoC0
j

100
+

∑
t≤si−1 d× pjt −

∑n
l=1/fl≤si−1 El,fl × xlj

Bj
≤

SoCmax
j

100
, ∀i,∀j ∈M1 (8)

SoC0
j

100
+

∑
t≤fi d× pjt −

∑
l=1/fl≤fi

El,fl × xlj

Bj
≥

SoCmin
j

100
, ∀i,∀j ∈M1 (9)

Constraints (2) ensure that each tour is assigned to exactly one vehicle. Constraints (3) guarantee

that no vehicle can be assigned to overlapping tours. Constraints (4) prohibit charging the EV when

it is in tour. Constraints (5) ensure that, at each time period t, the total power used to charge the EVs

does not exceed the electricity grid’s maximum capacity. Constraints (6) and (7) guarantee the respect

of the minimum and the maximum powers of chargers when charging the EVs. Constraints (8) and (9)

ensure that the SoC of each EV is in the interval [SoCmin, SoCmax] during the whole time horizon [0, T ].

Our goal is to optimize two lexicographical objective functions ([32], [33]); i.e., the objective

functions are arranged in order of their importance and the optimization problems are solved one at a
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time. More precisely, if z∗ is the optimal value of the primary objective function then the optimization

of the secondary objective function is subject to that the primary objective function is bounded by

z∗.

In our problem the first objective consists in maximizing the EVs kilometers travelled

(
∑n

i=1

∑m1
j=1wi×xij). The second objective is to minimize the EVs charging costs (

∑m1
j=1

∑T
t=1 ct×pjt).

The lexicographical optimization of our two objective functions is motivated by the real application

in which the most important gain is obtained thanks to the EVs scheduling optimization. Indeed, this

gain is about one thousand Euros per day for a fleet of 10 EVs, however, the gain generated thanks

to the EVs charging optimization is about thirty euros compared to a non-optimized solution.

5 Solving Approaches

5.1 Exact Method

The proposed MIP is solved in two steps using CPLEX. In the first step, the objective is to maximize

the EVs kilometers travelled (
∑n

i=1

∑m1
j=1wi × xij). The optimal solution generated in the first step

serves as the starting solution of the second step. A new constraint which ensures that the number

of EVs kilometers travelled is greater than the objective function found in the first step is added

to the MIP in the second step. Then, the new MIP is solved with the second objective function

(
∑m1

j=1

∑T
t=1 ct × pjt). These two steps are described in Algorithm 1.

Algorithm 1 Exact Method

1: Input: Data of EVSCP
2: Output: A solution to the EVSCP
3: Step 1: Solve the MIP with the objective function K =

∑n
i=1

∑m1
j=1wi × xij

4: Let K∗ be the value of the objective function of the optimal solution S∗

5: Step 2: Add the constraint
∑n

i=1

∑m1
j=1wi × xij ≥ K∗ to the MIP formulation

6: Solve the new MIP with the objective function
∑m1

j=1

∑T
t=1 ct × pjt starting from the solution S∗

5.2 Sequential Heuristic Method

In this section, we describe a Sequential Heuristic - SH to solve the EVSCP. This heuristic is mainly

based on the following idea: For each EV, a set of tours is selected and assigned to that EV. Then, a

charging schedule for this EV is proposed while satisfying all the constraints described in Section 4.

This heuristic interleaves two steps: the tours selection step and the charging schedule step. The

overall Sequential Heuristic is given in Algorithm 2.
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Algorithm 2 Overall Heuristic’s Algorithm

1: Input: Data of the EVSCP
2: Output: A solution to the EVSCP
3: for Each EV do
4: Apply the Tours Selection Algorithm to get a set of tours achievable by that EV
5: Given the set of selected tours, apply the Charging Schedule Algorithm to optimize the charging

cost of that EV
6: end for
7: for Each CV do
8: Apply the Tours Selection Algorithm
9: end for

5.2.1 Tours Selection Algorithm

To assign a set of tours to an EV and maximize the kilometers travelled (i.e., maximize the weight

of tours assigned to that EV), the Maximum Weight Clique Problem (MWCP) ([35, 36]) is deployed.

Recall that the MWCP is defined as follows: Let G = (V; E) be an arbitrary undirected and weighted

graph, where V is the set of nodes and E is the set of edges. To each node i is associated a weight

wi. Two distinct nodes are said to be adjacent if they are connected by an edge. Given a subset S

of nodes, the weight of S will be denoted by W (S) =
∑

i∈S wi. A clique of graph G is a subset of V

in which all nodes are pairwise adjacent. A clique S is called maximal if no strict superset of S is a

clique. A maximal weight clique S is a clique that is not contained in any other clique having a weight

larger than W (S).

The problem of tours selection is represented through an undirected weighted graph G = (V, E),

where each node i ∈ V represents a tour which is characterized by a weight (the length of tour in

kilometers). We assume that the nodes are indexed in a nondecreasing order of their starting times

si. Two nodes i and j are connected by an edge if the tours i and j are disjoint. The tours selection

problem is then equivalent to the MWCP in graph G with additional constraints. The MWCP is a

NP-hard problem [31]. Balas and Yu [38] provide some polynomial solvable cases of MWCP in specific

graphs. The interval graph is one of the specific graphs for which the MWCP is a polynomial problem.

However, even if graph G is an interval graph, the MWCP in graph G should ensure that a feasible

charging schedule for EVs exists.

To solve the tours selection problem, we propose a heuristic that finds the maximum weight clique

in graph G and makes sure that the charging schedule exists.
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Overview of the algorithm. Our algorithm consists of two steps. In the first step, a maximal

weight clique C is constructed using a greedy heuristic and in the second step, the weight of C is

improved by removing and/or adding one or several nodes. The two steps are repeated till stop

conditions are fulfilled. The best weighted clique is updated at each iteration. The details of both

steps are as follows:

• Initial step. Initially, the clique C is empty. The algorithm randomly selects

a vertex i and adds it to C. To expand this clique, a list of candidate nodes

L = {v ∈ V|v is connected to all nodes of C and v /∈ C} is created. The algorithm, then,

selects a node v∗ from L and adds it to C. v∗ is the node with the largest total sum of weights of

its adjacent vertices (W (v∗) = maxv∈L
∑

k∈V (v)wk, where V (v) is the set of nodes adjacent to

v) that respects the admission condition (described later) related to the feasibility of a charging

schedule. This process is repeated until L is empty or all the nodes of L do not satisfy the

admission condition.

• Improvement Step. When there are no more nodes that could increase the

weight of clique C, for each i ∈ C, the algorithm computes the list of nodes

Ni = {v /∈ C| v is connected to all nodes of C \ {i}}, and removes from C the node i with

W (Ni) ≥ W (Nj), ∀j ∈ C, where W (Ni) =
∑

k∈Ni wk. A new list L of candidate nodes is then

selected, and the best node of L is added to C as described in Initial step. The process of adding

and/or removing nodes is repeated until a specific timeout is reached. When the improvement

step is stopped, the best clique is updated, the current clique is cleared and the algorithm

restarts with the initial step until the stop condition is reached. Finally, the algorithm generates

the best clique found among all constructed cliques and removes the best clique’s nodes from G.

• Stop Condition. The algorithm continues until either a fixed limited processing time is

reached or the best clique weight reaches the target clique weight; i.e., when a clique that has

the same weight as the total weight of the graph, is found.

Admission Condition. The admission condition ensures that the tours corresponding to the cur-

rent clique’s nodes can be processed by an EV; i.e., there is a feasible charging schedule that allows
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the EV to perform all tours of the current clique. The existence of a feasible schedule is guaranteed by

the metric R. R is the minimal amount of energy that the EV should recover before starting the first

tour of the clique, i.e., R =
∑|C|

k=1(Ek − Yk), where Yk is the amount of energy that may be charged

between successive tours k − 1 and k. In other words, Yk = d×
∑sk−1

t=fk−1+1 min{pmax, p′t}, where p′t is

the residual electricity grid power during time period t. We assume that Y1 = 0. A node v is added to

the current clique C, if, following the chronological order, for each node j ∈ C, Rj =
∑j

k=1(Ek − Yk)

is lower than the EV’s battery capacity and Rj ≤ d×
∑s1−1

t=0 min{pMax, p′t}.

5.2.2 Charging Schedule Algorithm

Given the best clique C found by the Tours Selection Algorithm, the objective here is to provide an

optimal charging schedule that minimizes the total charging cost and satisfies the constraints described

in Section 4. Below, two optimal charging schedule algorithms are proposed. The first is based on a

Minimum Cost Flow Formulation and runs in O(((T + |C|)log(T + |C|))2) time and the second runs in

O((T + |C|)2) time.

Min-Cost-Flow-Based Charging Algorithm. In this section, we show that the charging problem

can be reduced to the Minimum Cost Flow Problem (MCFP) ([34]) in a given network. For a given

set V of vertices of the clique C, a network G = (W,A) is defined as follows:

• The set of nodes W consists of (i) a source s, (ii) the nodes tl representing the time periods

[l− 1, l], except the time periods when the EV is not available for charging, i.e., l ∈ {1, . . . , T} \

∪v∈{1,...,|V |}{sv + 1, . . . , fv}, (iii) the nodes vk, k = 1, . . . , |V |, representing the tours indexed in

increasing order of their start times sk, (iv) a sink p.

• The set A of directed arcs with restricted capacities consists of (i) arcs (s, tl) with a maximum

capacity al = min{pmax, p′l}×d, where p′l is the residual electricity grid power during time period

l, and a cost cl corresponding to the energy cost during the time period l, (ii) arcs (tl, vk) if

l < sk + 1 and l > fk−1 with a capacity +∞ and a cost equal to zero, (iii) arcs (vk−1, vk),

k = 2, . . . |V | with a capacity equal to Bj − Ek−1 and a cost equal to zero, (iv) arcs (vk, p),

k = 1, . . . , v|V | with a lower bound and an upper bound of the capacity equal to Ek, and a cost

equal to zero.

Let f(i, j) be the flow on the arc (i, j) ∈ A in an optimal solution to the MCFP with a total cost∑
l∈{1,...,T}\∪v∈V {sv+1,...,fv}cl × f(s, tl). We define a feasible schedule to the corresponding charging

12



problem as follows: at each time period l, where l ∈ {1, . . . , T}\∪v∈V {sv+1, . . . , fv}, apply on EV j a

charging power pj,l = f(s,tl)
d . Using this procedure, any feasible solution to the MCFP can be converted

to a feasible solution S to the charging problem with a cost C(S) =
∑

l∈{1,...,T}\∪v∈V{sv+1,...,fv}cl ×

f(s, tl). Thus, when the flow cost is minimized, the total charging cost is also minimized.

Lemma. 1 An optimal solution to the charging schedule problem can be found in O(((T + |V |)log(T +

|V |))2) polynomial time.

Proof. The MCFP can be solved in O(((T + |V |)log(T + |V |))2) time (see for e.g. [37]). Obviously,

the optimal solution to the resulting minimum cost flow problem converts into an optimal solution to

the charging schedule problem in O(T ) time. �

In the following paragraph, a greedy charging schedule algorithm, running in O(T × |V |) time, is

proposed.

Greedy Charging Schedule Algorithm. Let C = (c1, . . . , cT ) and G = (g1, . . . , gT ) be two

vectors of T elements, where ct and gt are the electricity cost and the electricity grid capacity during

time period [t − 1, t], respectively. Let E = (e1, . . . , eT ) be the energy vector, where et, t = 1, . . . , T ,

represents either the quantity of energy charged during the time interval [t − 1, t] or the energy

consumed if the EV is in tour during the time interval [t−1, t]. et is initialized to −Ek
fk−sk+1 if t ∈ [sk, fk],

∀k ∈ V , and to zero otherwise.

The goal of the algorithm is to provide each EV with the maximum possible amount of energy

during the cheapest time intervals. At each time interval [t−1, t], et is equal to the maximum amount of

energy that could be charged during the time interval [t−1, t] if the EV is not in tour. To compute the

value of et, the residual capacity of EV’s battery and the residual available capacity of the electricity

grid during the time interval [t − 1, t] are taken under consideration. More precisely, the algorithm

starts by sorting the vector C in a nondecreasing order of ct. For each value ct such that et = 0;

i.e., the time interval [t − 1, t] is not already scanned and the EVj is available for charging, let Vt

be the set of tours such that Vt ⊆ V and vk ∈ Vt if, and only if, sk > t. For each vk ∈ Vt sorted

in order of their indices, (i) compute the energy Et,Bk that could be charged without exceeding the

capacity of the battery, i.e., Et,Bk =
SoCmax×Bj

100 −
∑sk

l=1 el, (ii) calculate the energy Et,Vk that should be

charged in order to process the tour vk, i.e., Et,Vk =
Socminj ×Bj

100 −
∑fk

l=1 el. Let Etk = min{Et,Bk , Et,Vk }.

After scanning all tours of Vt, the energy Et that will be charged during the time interval [t − 1, t]
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is Et = min{pmax × d, gt × d,mink∈Vt{Etk}}. Note that we assume that pmin = 0. Finally, vectors E

and G are updated, i.e., et := Et and gt := gt − Et

d . The overall greedy approach is as described by

Algorithm 3.

Theorem. 2 Algorithm 3 provides an optimal solution to the charging schedule problem and runs in

O(T × |V |) polynomial time.

Proof. Let S be the charging solution generated by the Greedy Charging Schedule Algorithm, and

let S∗ be the optimal solution provided by the Min-Cost-Flow-Based Charging Algorithm. Let C(S)

and C(S∗) be the costs of solutions S and S∗, respectively. Let t1 be the first time period such

that pj,t1(S) 6= pj,t1(S∗) where ct1 is the smallest electricity cost among all electricity costs. By

construction, the Greedy Charging Schedule Algorithm applies, at each time period, the maximal

available power to charge EV j. We have then pj,t1(S) > pj,t1(S∗). Let t2 be another time period such

that pj,t2(S) < pj,t2(S∗). Let S′ be a new solution derived from S∗ where pj,ti(S
∗) = pj,ti(S

′) ∀i 6= 1, 2,

pj,t1(S′) = pj,t1(S′) + ε and pj,t2(S′) = pj,t2(S′)− ε, where 0 < ε ≤ pj,t1(S)− pj,t1(S∗). It is easy to see

that S
′

is a feasible solution to the charging problem, furthermore, C(S′) = C(S∗)− ct2 + ct1 < C(S∗)

since ct2 > ct1 . This contradicts the fact that S∗ is an optimal solution. It then follows that, ∀i,

pj,ti(S) = pj,ti(S
∗). Therefore, S is an optimal solution to the charging problem. The complexity of

the greedy charging algorithm is dominated by the two loops 5 and 7 of Algorithm 3. The greedy

algorithm produces an optimal solution in O(T × |V |)-time. �
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Algorithm 3 Greedy Charging Schedule Algorithm

1: Input: A set of tours assigned to EV j
2: Output: A charging schedule of EV j
3: Let C = (c1, . . . , cT ), G = (g1, . . . , gT ) and E = (e1, . . . , eT ) be three vectors of T elements, where
ct, t = 1, . . . , T , is the electricity cost during the time interval [t − 1, t], gt, t = 1, . . . , T , is the
residual capacity of the electricity grid during the time interval [t − 1, t] and et, t = 1, . . . , T , is
either the quantity of energy charged during the time interval [t − 1, t] or the energy consumed
during the time interval [t− 1, t] if the EV is in routing. Parameter et is initialized to −Ek

fk−sk+1 if
t ∈ [sk, fk], ∀k ∈ V and to zero otherwise.

4: Sort the vector C in the nondecreasing order of ct and let C = (cπ(1), . . . , cπ(T )) be the sorted
vector

5: for each time interval [π(t)− 1, π(t)] such that eπ(t) = 0 do
6: Let Vπ(t) be a set of tours such that Vπ(t) = {vk ∈ V |sk > π(t)} sorted in the increasing order

of the indices of tours.
7: for each vk in Vπ(t) do

8: calculate E
π(t)
k = min{SoC

max×Bj
100 −

∑sk
l=1 el ;

SoCminj ×Bj
100 −

∑fk
l=1 el}

9: end for
10: Calculate Eπ(t) = min{pmax × d, gπ(t) × d ; mink∈Vπ(t){E

π(t)
k }}

11: Update eπ(t) = Eπ(t) and gπ(t) = gπ(t) − Eπ(t)

d
12: end for
13: The charging schedule is given by the power vector that should be applied to EV j P =

(max{0,e1}
d , . . . , max{0,eT }

d ).

5.3 Global Heuristic Approach

In this section, we propose a new Global Heuristic - GH to solve the EVSCP problem. The GH

algorithm consists of two steps. The first step aims at assigning tours to vehicles and guaranteeing the

feasibility of a charging schedule. Then, given a feasible assignment of tours to vehicles, the second

step determines the optimal charging schedule for all EVs using the MCFP. Both steps are detailed

in the next paragraph.

In the first step, the Tours Selection Algorithm presented in Section 5.2.1 is used to assign tours

to vehicles, and a new Estimation Procedure is introduced. In fact, in Sequential Algorithm, for

each vehicle, the charging schedule is calculated after the tours selection. This allows to update the

electricity grid power available at each time. However, in GH algorithm, the charging schedule of all

vehicles is calculated in the second step. In order to ensure the existence, in the second step, of a

charging schedule of all vehicles, we need to estimate the remaining capacity of the electricity grid

after the assignment of a set of tours to each vehicle. Thus, for each vehicle, after the tours selection

algorithm, a new Estimation Procedure of the available electricity grid power is introduced. Indeed,
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the electricity grid power is updated by considering the fact that the current vehicle is charged at the

last possible time. More precisely, the Greedy Charging Schedule Algorithm presented in Section 5.2.1

is applied to simulate the charging schedule of the EV, and update the electricity grid power available

at each time. To ensure that the vehicle is charged at the last possible time, in Algorithm 3, instead

of sorting the cost vector C (step 3 of Algorithm 3) in nondecreasing order of ci, vector C is sorted in

the decreasing order of time indices t.

Given the sets of tours assigned to vehicles, the second step of GH Algorithm determines an

optimal charging schedule of all vehicles. More precisely, given the sets L1, . . . , Lm1, of tours assigned

to EV1,. . ., EVm1, respectively, the optimal charging schedule problem is modeled as a Minimum Cost

Flow Problem in a network G = (W,A) that is defined as follows:

• The set of nodes W consists of (i) a source s, (ii) the nodes tl representing the time periods

[l − 1, li], (iii) the nodes vjk ∈ Lj , j = 1, . . . ,m1 representing the tours indexed in the increasing

order of their start times, and (iv) a sink p.

• The set A of directed arcs with restricted capacities, consists of (i) arcs (s, tl) with bounded

capacity al = min{pmax, gl} × d and a cost cl corresponding to the energy cost during the time

period l, (ii) arcs (tl, v
j
k) if tl < sjk + 1 and tl > f jk−1 with a capacity +∞, and a cost equal to

zero, (iii) arcs (vjk−1, v
j
k), k = 2, . . . |Lj | with a maximum capacity equal to Bj −Ek−1 and a cost

equal to zero, (iv) the arcs (vjk, p), k = 1, . . . , |Lj |, j = 1, . . . ,m1, with a lower bound and an

upper bound equal to Elk, and a cost equal to zero.

Let f(i, j) be the flow on the arc (i, j) ∈ A in an optimal solution to the MCFP with a total cost∑T
l=1 cl × f(s, tl). We define an optimal charging schedule as follows: at each time interval l, where

l ∈ {1, . . . , T}, apply to EV j a charging power pj,l =
f(tl,v

j
k)

d , where (tl, v
j
k) ∈ A. It is easy to show

that the obtained charging schedule is optimal. The proof is similar to that for Theorem 2. Using

this procedure, an optimal solution to the MCFP can be converted into an optimal solution S to the

charging problem. Thus, when the flow cost is minimized, the total charging cost is also minimized.

An optimal solution to the charging schedule problem can be found in O(((T+|L|)log(T+|L|))2)-time,

where L = ∪m1
j=1Lj .
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Algorithm 4 GH Algorithm

1: Input: Data of the EVSCP
2: Output: A solution to the EVSCP
3: for each EV do
4: Apply the Tours Selection Algorithm described in Section 5.2
5: Update the electricity power grid capacity by applying the Estimation Procedure; i.e., sort the

cost vector C in the decreasing order of time indices t and apply Algorithm 3 as described above
6: end for
7: Apply the global Min-Cost-Flow-Based Charging Algorithm to determine an optimal charging

schedule to all EVs
8: for each CV do
9: Apply the Tours Selection Algorithm

10: end for

6 Computational Experiments and Discussion

To evaluate the quality of solutions obtained through the exact method and the two heuristics, ex-

tensive numerical experiments are conducted on real instances and randomly generated instances. To

be able to asses the solution quality, we use real instances provided by the Group La Poste and other

randomly generated instances. All the experiments are carried out on an Intel Xeon E5620 2.4GHz

processor, with 8GB RAM memory. The tested algorithms are coded in the C++ language. The com-

mercial solver ILOG CPLEX 12.5 is used to solve the MIP. The results produced by the algorithms are

compared in terms of quality of the generated solutions and run times. The optimization procedure

is based on a 24h time horizon. Prices of electricity are based on those proposed by EDF (French

electric utility Company). Note that at most m1 Level 1 chargers, with a range of 0.0(kW)−3.7(kW),

could be used.

The first real data instance is composed of 18 CVs and 8 EVs. All EVs considered have 22(kWh)

battery packs. Forty-five tours have to be assigned to those vehicles. The second data instance is

composed of 14 CVs, 8 EVs with a battery capacity of 22(kWh) and 4 other EVs with a battery

capacity of 23.5(kWh). Forty-six tours have to be assigned to those vehicles. For these two instances,

CPLEX and the heuristics succeeded to generate optimal solutions within short time periods (less

than three seconds). For confidentiality reasons, we are not allowed to present the details of the

computational results related to those instances.

Random instances are generated as follows. The total number of vehicles nv = m1 + m2 takes its

values from the set {40, 80, 120, 160, 200}. The number of EVs m1 is a ratio of nv; i.e., m1 = ev× nv.

ev takes its values from the set {0.25, 0.5, 0.75, 1.0}. A parameter a is used to distinguish the capacity
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of EVs batteries, namely, a = 1 means that all EVs have a capacity of 22(kWh) and a = 2 means that

50% of EVs have a capacity equal to 22(kWh) and the rest of EVs have a capacity of 16(kWh). At

most, m1 chargers, providing a power ranging between 0(kW) and 3.7(kW), could be used to charge

EVs. The parameter tt is related to the number of tours. If tt = 1, then n = nv×c, where c ∈ [1.2, 1.3].

If tt = 2, then n = nv × c, where c ∈ [1.5, 1.6]. All tours start no earlier than 6am and finish no later

than 8pm, and their energy need is between 0.15(kWh) and 0.35(kWh) per kilometer. 50% of those

tours are long; i.e., they last between 5 and 7 hours, start between 6am and 1pm, and their lengths

lie within [50(km), 80(km)]. The rest of tours are considered medium; i.e., they last between 2 and

4 hours, and their lengths are in [20(km), 45(km)]. A fraction of 1
6 of medium tours start between

6am and 8am, 1
3 start between 8am and 10am, 1

6 finish between 6pm and 8pm, and 1
3 finish between

4pm and 6pm. Regarding the electricity grid capacity available for EVs charging, we assumed that,

if t ∈[00am, 6am], gt = 2
3 × ev × nv × p

Max, if t ∈[6am, 6pm], gt = 1
5 × ev × nv × p

Max and if t ∈[6pm,

00am], gt = 1
2 × ev × nv × p

Max, where pMax = 3.7(kW).

For each value of nv, sixteen classes of instances are then constructed; and for each class, ten instances

are randomly generated. Each class is denoted by nv w ev x a y tt z, where w = nv, x takes the values

1, 2, 3, 4 if ev is equal to : 0.25, 0.50, 0.75, 1, respectively, y = a = {1, 2} and z = tt = {1, 2}. The

computational results produced by CPLEX, SH and GH Algorithms are summarized in Table 2,

and a time limit of 3600 seconds is set for each instance. Note that, here, we only compare the first

objective function values, i.e.
∑n

i=1

∑m1
j=1wi× xij , since the charging costs is correlated with the EVs

traveled kilometers.

In Table 2 the following indicators are reported: (i) the Success; i.e., the percentage of solved

instances among the tested instances within the same class. Solved instances refer to instances for

which at least one solution is generated, within the time limit, even if it is not optimal, (ii) the GapUB

of the best solution, denoted by S, produced by either CPLEX or heuristics SH and GH in relation to

the Upper Bound (UB) generated by CPLEX, i.e., GapUB(S) = UB−S
S , (iii) the Gapmax computed as

Gapmax(s) = max(SEM,SSH,SGH)−S
S , where SEM, SSH, and SGH are the values of the objective function

of the solutions generated by CPLEX, SH Algorithm and GH algorithm, respectively, and, (iv) the

average run time (s) needed to generate an assignment and a charging solution to the EVSCP.
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From table 2, we can make the following observations:

• The exact algorithm solves small and medium instances (fleets with 40 and 80 vehicles), but

fails to solve large instances (fleets with 120, 160 and 200 vehicles). For large instances with

a small number of EVs, i.e. ce = 0.25, the exact algorithm succeeds to find feasible solutions.

Furthermore, when the EVs fleet is heterogeneous, i.e. a = 2, the exact algorithm performs

poorly in finding feasible solutions compared to the same classes of instances with homogenous

fleets of EVs.

• GH heuristic succeeds in solving all instances, whereas SH heuristic fails to solve 44 in-

stances out of 800. This particularly concerns large instances (for example, instances of classes

nv 200 ce 3 a 2 tt 1 and nv 200 ce 4 a 1 tt 2). This is due to the fact that SH algorithm com-

putes a charging schedule for each EV sequentially without anticipating the existence of a feasible

charging schedule for the last EVs.

• Concerning the performance of the proposed heuristics, Table 2 shows that both heuristics

exhibit an excellent performance. GH algorithm solves to optimality 180 instances out of 800

instances, and provides the best performances with GAPmax less than 1% comparing to the best

solutions found by the exact and the SH heuristic and a gap GAPUB of at most 20% compared

to the upper bound found by CPLEX. SH heuristic succeeds in finding optimal solutions for 89

instances and provides good solutions with a GAPmax of at most 7% and a GAPUB of at most

30% compared to the upper bound found by CPLEX for large instances.

• The running times of the SH and GH heuristics are relatively short. About 190 seconds are

needed to solve large instances with up to 200 vehicles using the GH heuristic. A shorter

running time, with at most 13 seconds, is needed to find good solutions for large instances using

SH heuristic.

7 Conclusion

In this paper, we considered the problem of simultaneously optimizing the allocation of tours to EVs

and minimizing the charging costs. This new problem was shown to be NP-hard in the ordinary sense.

To solve the EVSCP, a mixed integer linear programming formulation was proposed. An exact method

based on two phases was developed to solve the MIP with CPLEX. We also proposed two heuristics.

The first heuristic is a sequential one and interleaves two sub-algorithms to assign a set of tours to
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each EV using the Maximum Weight Clique Problem, and plan its charging process using a Minimum

Cost Flow formulation. The second is a global heuristic. It generates a solution to the assignment

problem of tours to all EVs while guaranteeing the feasibility of a charging schedule. After that, it

applies a global charging schedule algorithm to minimize charging costs. The computational results

showed the efficiency and the effectiveness of the proposed heuristics.
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