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ABSTRACT 

 

Multisensory interactions are ubiquitous in cortex and it has been suggested that sensory 

cortices may be supramodal i.e. capable of functional selectivity irrespective of the sensory 

modality of inputs (Pascual-Leone and Hamilton, 2001; Ricciardi and Pietrini, 2011; Voss 

and Zatorre, 2012; Renier et al., 2013). Here, we asked whether learning to discriminate 

visual coherence could benefit from supramodal processing. To this end, three groups of 

participants were briefly trained to discriminate which of a red or green intermixed population 

of random-dot-kinematograms (RDKs) was most coherent in a visual display while being 

recorded with magnetoencephalography (MEG). During training, participants heard no sound 

(V), congruent acoustic textures (AV) or auditory noise (AVn); importantly, congruent 

acoustic textures shared the temporal statistics – i.e. coherence – of visual RDKs. After 

training, the AV group significantly outperformed participants trained in V and AVn although 

they were not aware of their progress. In pre- and post-training blocks, all participants were 

tested without sound and with the same set of RDKs. When contrasting MEG data collected 

in these experimental blocks, selective differences were observed in the dynamic pattern and 

the cortical loci responsive to visual RDKs. First and common to all three groups, vlPFC 

showed selectivity to the learned coherence levels whereas selectivity in visual motion area 

hMT+ was only seen for the AV group. Second and solely for the AV group, activity in 

multisensory cortices (mSTS, pSTS) correlated with post-training performances; additionally, 

the latencies of these effects suggested feedback from vlPFC to hMT+ possibly mediated by 

temporal cortices in AV and AVn groups. Altogether, we interpret our results in the context of 

the Reverse Hierarchy Theory of learning (Ahissar and Hochstein, 2004) in which supramodal 

processing optimizes visual perceptual learning by capitalizing on sensory-invariant 

representations - here, global coherence levels across sensory modalities.  
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1 INTRODUCTION 

 

Increasing evidence for multisensory integration throughout cortex has challenged the view 

that sensory systems are strictly independent (Driver and Spence, 2000; Ghazanfar and 

Schroeder, 2006), questioning in turn the innate specialization of sensory cortices. For 

instance early in development, auditory neurons can respond to light patches when rewired to 

receive visual information (Roe et al., 1990; Mao et al., 2011) and cooling specific parts of 

auditory cortex in deafened cats selectively perturbs the detection of visual motion and 

localization (Lomber et al., 2010). In congenitally blind humans, the cortical area hMT+ 

responsive to visual motion (human homolog of MT/V5 in monkeys) is recycled for auditory 

or tactile processing (Poirier et al., 2005; Ricciardi et al., 2007; Bedny et al., 2010; Watkins et 

al., 2013) and the ventral and dorsal visual processing streams develop their functional 

specificity even when deprived of direct visual experience (Striem-Amit et al., 2012). 

Consistent with these observations, the “metamodal theory” (Pascual-Leone and Hamilton, 

2001) and the “supramodal hypothesis” (Ricciardi and Pietrini, 2011; Voss and Zatorre, 2012) 

have suggested that some cortical areas may be naturally capable of functional selectivity 

irrespective of the sensory modality of inputs, hence of functional recycling. However, several 

questions have been raised (Bavelier and Hirshorn, 2010) among which: is functional 

recycling a consequence of sensory deprivation during a sensitive period or does it rely on 

pre-existing supramodal computational capabilities (Bedny et al., 2010; Morrone, 2010; 

Dormal and Collignon, 2011; Renier et al., 2013)?  
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In order to specifically address this issue, we trained non-sensory impaired individuals on a 

difficult and novel visual task and asked whether visual learning and plasticity would benefit 

from matched audiovisual stimulation. For this, three different groups of twelve individuals 

were recorded with magnetoencephalography (MEG) while they performed a visual 

discrimination task. MEG blocks consisted of a pre-training, a 20 minutes individualized 

training and a post-training (Figure 1A). It should be stressed that a short-training (20 minutes 

total) was used in all three training conditions; hence, we were interested in the possible 

effects of multisensory learning within a very short time period which may not match those 

obtained over days of training (e.g. (Shams and Seitz, 2008)). The main task consisted in 

determining which of a red or green intermixed population of random-dot-kinematograms 

(RDKs) was most coherent in the visual display (Figure 1B); hence, this task implicated 

motion-color binding (what/where integration) and visual motion coherence discrimination. 

The pre- and post-training sessions were exclusively visual and tested the same RDK 

coherence levels for all three groups of participants; on the other hand, training sessions were 

individualized with regards to the RDK coherence levels and the training context. 

Specifically, participants could be trained in silence (V), with correlated acoustic textures 

(AV), or with auditory noise (AVn, control group). In the AV group, AV stimuli sharing 

redundant temporal regularities were designed using auditory analogs of visual RDKs i.e. 

acoustic textures (Overath et al., 2010) (Figure 1C). In the control AVn group, the auditory 

stimulus was filtered noise. Both AV and AVn groups were told to neglect the sounds played 

in the background; in the AV group and unbeknownst to participants, the coherence of 

acoustic textures matched that of the target RDK (see Materials and Methods, Figure 1C). 

 

Crucially, and for all participants, the RDK coherence levels were the sole criterion enabling 

to properly perform the task: first, the direction taken by the coherent dots was randomized 
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across trials and orthogonal to the coherence level; second, acoustic textures could not inform 

on the color of the most coherent RDK albeit shared their dynamics; third, acoustic textures 

were kept minimally accessible to participants’ awareness. Additionally, all reported results 

exclusively focus on the comparison of pre- and post-training data in which no acoustic 

information was delivered to any of the participants (Figure 1A): hence, we do not address the 

issue of multisensory integration per se (which takes place a priori during the training blocks) 

and instead focus on the effect of participants’ training history on perceptual learning and 

cortical plasticity. 

 

Figure 1. Experimental design and stimuli. Panel A: An MEG session for one individual was composed of 

several blocks: first, the luminance of the red and green Random Dot Kinematograms (RDKs) was calibrated 

using Heterochromatic Flicker Photometry (HFP). Luminance calibration was followed by a few familiarization 

trials to the task during which participants received feedback. In the pre-training block, all participants were 

presented with stimuli that were solely visual. The pre-training data established the set of coherence levels for 

the training session based on an individual’s coherence discrimination threshold. In the following four training 

blocks, participants were trained with four levels of RDK coherence. The four training blocks lasted 20 minutes 

and were without feedback. The training could be visual only (V), audiovisual using acoustic textures (AV) or 

audiovisual using acoustic noise (AVn). In the post-training block, each individual’s coherence discrimination 

threshold was established with visual stimulation only. In the last block, a localizer provided an independent 
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means to source localize the Human motion area hMT+ using combined functional MEG localizer data and 

anatomical MRI (see Methods). Panel B: An experimental trial consisted in the presentation of a fixation cross 

followed by the appearance of two intermixed and incoherent RDKs (red and green populations). After 0.3 to 0.6 

s, one of the two RDKs became more coherent than the other: the red RDK is here illustrated as the most 

coherent. Participants were asked to indicate which of the red or green population was most coherent irrespective 

of the direction of motion. Panel C: Sample spectrogram in log(frequency) as a function of time depicting an 

acoustic texture. By analogy to a visual RDK, the level of coherence in an acoustic texture was defined as the 

number of frequency ramps sharing the same slope in a given frequency range. Here, the spectrogram illustrates 

an incoherent acoustic texture lasting 500 ms followed by a 75% coherent acoustic texture lasting 1 s. Three 

groups of participants underwent three types of training. During V training, participants were solely provided 

with visual stimuli; during AV training, an acoustic texture was paired with the most coherent RDK population 

and the acoustic transition from incoherent to coherent was synchronized with the visual transition in the RDKs; 

during the AVn control training, the sound was a white noise unrelated to the visual RDKS. Inter-stimulus 

intervals were randomly drawn from 0.6 to 0.8 s. min = minutes; s = seconds; ms = milliseconds. 

 

2 MATERIALS AND METHODS 
 
 

2.1 Participants 
 

All participants were right-handed, had normal hearing and normal or corrected-to-normal 

vision. Participants’ ages ranged between 18 and 28 years old (mean age: 22.1 ±2.2 s.d.). 

Prior to the study, participants were randomly split into three training groups, namely: an only 

visual training group (V, n=12, 4 females), an audiovisual training group using acoustic 

textures (AV group, n=12, 6 females) or using acoustic noise (AVn which is also a control 

group, n=12, 6 females). Before the experiment, all participants provided a written informed 

consent in accordance with the Declaration of Helsinki (2008) and the local Ethics Committee 

on Human Research at NeuroSpin (Gif-sur-Yvette, France). 

 

2.2 Experimental design  
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The magnetoencephalography (MEG) experiment was conducted in a darkened soundproof 

magnetic-shielded room (MSR). Participants were seated in upright position under the MEG 

dewar and faced a projection screen placed 90 cm away. We used a Panasonic DLP projector 

(model PT-D7700E-K, Panasonic Inc, Kadoma, Japan) with a refresh rate of 60 Hz. The 

sound pressure level was set at a comfortable hearing level (~65 dB) for all participants. 

Participants were explained the task and stayed in contact at all times with the experimenter 

via a microphone and a video camera. Stimuli (see videos S1 and S2 for AV and AVn, 

respectively) were designed using Matlab (R2010a, Mathworks Inc.) with Psychtoolbox-3 

(Pelli, 1997) on a PC (Windows XP).  

The experiment consisted of eight consecutive blocks (Figure1a). First, Heterochromatic 

Flicker Photometry (HFP) was used for luminance calibration of the red and green Random 

Dots Kinematograms (RDKs) on a per individual basis. Second, participants were 

familiarized with the task and the stimuli: they were presented with 16 easy trials displaying 

two intermixed Random Dot Kinematograms (RDKs). One of the two RDKs was 100% 

coherent – i.e. all dots took the same direction of motion. Participants were asked to report the 

color of the most coherent RDK by pressing a “green” (green RDK) or a “red” (red RDK) 

button. During this short familiarization block, participants were provided with feedback on 

their performance. No other feedback was provided in the remainder of the experimental 

session.  

After this familiarization block, participants underwent a 12 minutes pre-training session, 

hereafter referred to as PRE training. As in the familiarization block, participants were asked 

to report as accurately as possible which of the two RDKs was most coherent by selecting the 

“green” (green RDK) or “red” button (red RDK). This task was subsequently used in all 

experimental blocks (i.e. PRE, POST and training blocks). Additionally in PRE and POST 

training (see below), participants were asked to evaluate their confidence on a scale of 1 to 5 
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after they provided their main response. No feedback was provided. Inter-trials intervals (ITI) 

ranged from 0.6 to 0.8 s. Crucially, during PRE and POST training, all participants (V, AV 

and AVn) were tested with visual stimuli i.e. without any sound. In the PRE training block, 

the initial coherence discrimination threshold of participants was assessed by testing seven 

levels of visual RDK coherence, namely: 15%, 25%, 35%, 45%, 55%, 75% and 95%.  

PRE training was followed by four training blocks of 5 min each for a total of 20 minutes of 

training. The training consisted of the same task as in the PRE and POST training. Stimuli 

were presented without any sound (V group), with correlated acoustic textures (AV group) or 

with uncorrelated acoustic noise (AVn group). During training, four visual RDK coherence 

levels were tested and corresponded to ±10% and ±20% of the individual’s PRE training 

coherence discrimination threshold. Hence, participants underwent individualized training. 28 

trials of each coherence level were presented for a total of 112 trials in a given training block. 

The training was followed by a 12 minutes post-training session (POST training). POST 

training evaluated participants’ threshold after training. As in the PRE training block, POST 

training was solely visual for all groups (V, AV, and AVn) and participants were asked to rate 

their confidence after providing their response. In PRE and POST training, a total of 196 trials 

were tested (28 trials / coherence level).  

Participants never received any feedback after the familiarization trials. Rest periods were 

provided to participants after each experimental block. Crucially, the color of the most 

coherent RDK was counterbalanced and the directions of coherent motion were pseudo-

randomized across all trials – hence, the direction of motion was orthogonal to the main task 

(“coherence”).  

After the POST training block, a localizer was used to provide an accurate source localization 

of the hMT+ area with MEG. For this, participants passively viewed a sequence in which a 

RDK was either fully incoherent for 1.5 s or fully incoherent for 0.5s followed by 95% 
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coherence for 1s. Each sequence was presented 60 times for a total of 120 presentations 

during the localizer block.  

 

2.3 Visual stimuli 
 

The red and green RDKs were individually calibrated to isoluminance using HFP. To prevent 

local tracking of dots, a white fixation cross was located at the center of a 4° gray disk acting 

as a mask (Figure 1B). RDKs were presented within an annulus of 4°-15° of visual angle. 

Dots had a radius of 0.2°. The flow of RDKs was 16.7 dots per deg2 × sec with a speed of 

10°/s. During the first 0.3 to 0.6 s of a given trial, both RDKs were incoherent (0% of 

coherent motion). The duration of the incoherent phase was pseudo-randomized across each 

trial in order to increase the difficulty of the task specifically by preventing participants from 

expecting the onset of the transition from incoherent to coherent motion. After the incoherent 

phase, one RDK became more coherent than the other during one second. The direction of 

coherent dots was comprised within an angle of 45°-90° around the azimuth. 50% of the trials 

were upward coherent motion and the remaining 50% of the trials were downward coherent 

motion. At each frame, 5% of all dots were randomly reassigned to new positions and 

incoherent dots to a new direction of motion. Dots going into collision in the next frame were 

also reassigned a new direction of motion. On average, the life-time of the dots was set to 180 

ms (±165 s.d.) and could be approximated by a Weibull distribution of parameters α= 172 ms 

and β=1.04.  

 

2.4 Auditory stimuli 
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A sample spectrogram of an auditory stimulus is provided in Figure 1C. All auditory stimuli 

were created with a sampling frequency of 44.1 kHz. Acoustic textures (Overath et al., 2010) 

were developed to be analogous and congruent to visual RDKs. Specifically, each visual dot 

was designed as if to emit a sound s(t) corresponding to a linear frequency-modulated ramp 

whose slope depended on the direction taken by the visual dot: ���� � 	
��2. e�����.����� ����. �� 

where ��
�� � 2�� �!�. The angle between the direction of the dot and the azimuth is denoted 

by φ and the initial sound frequency is denoted by f0. For instance, a visual motion direction 

of 45° would correspond to a slope of 2 octaves per second in the acoustic space. The 

maximal slope authorized in acoustic space was set to 16 octaves/s corresponding visual 

motion directions of 82.9°-90°. Each ramp f0 was attributed according to the initial vertical 

position of the corresponding visual dot: the lower the position of the dot on the screen, the 

lower the f0 in acoustic space. Hence, a visual dot moving upwards was associated with an 

ascending acoustic ramp, whereas a visual dot moving downwards was associated with a 

descending acoustic ramp. Note that sensory substitution devices (e.g., the vOICe (Meijer, 

1992) and the EyeMusic (Levy-Tzedek et al., 2012a)) have also started capitalizing on such 

intuitive perceptual associations (Melara and O’Brien, 1987; Maeda et al., 2004)). The 

auditory frequencies that were used ranged between 200 and 5000 Hz. Should a ramp cross 

one of these limits, it "continued" at the other extreme of this frequency band. The duration of 

a ramp was identical to the life-time of a visual dot. Importantly, when visual dots moved 

coherently, they did not necessarily emit the same sounds because the initial auditory 

frequencies were likely different. However, the variations of the acoustic elements (i.e. the 

slopes of the ramps) were identical. Hence, the quantification of visual coherence in RDK 

matched the proportion of ramps having the same slope in acoustic space.  

In the AVn training, acoustic noises with the same duration and amplitude of acoustic textures 

were used to test whether the simple presentation of a sound could account for the results. We 
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specifically designed this control to test the hypothesis that the introduced correspondences 

(matching the spectral characteristics of the acoustic textures with the spatial characteristics of 

the visual stimuli) were relevant for learning in this task. Hence, the noise y(t) was 

conservatively designed within the same frequency range (200-5000 Hz) as the acoustic 

textures used in the AV group: y��� � 	
��2. e"#$%&������'()�*�����'+,������ ��'+,�. ��, where 

rand denotes the uniformly distributed pseudorandom function whose values are contained in 

the interval -0, 11, fmin = 200 Hz and fmax= 5000 HZ. 

2.5 Psychophysical analysis 
 

The coherence discrimination threshold was set to 75% of correct performance and quantified 

by fitting a Weibull function (Wichmann and Hill, 2001) to each individual’s data using: 

2�	
3, 4, 5� � 1 6 0.5�*89:;
< =

>
. With coh as motion coherence level, ψ as the fitted 

psychometric function, and α and β the parameters determined by the damped Gauss-Newton 

method. A mixed-design ANOVA containing the within-subject factor test (pre-and post-

training) and the between-subjects factor training group (V, AV and AVn) was carried out 

separately on the perceptual thresholds, the confidence ratings and the RTs using the software 

R (R Core Team 2013). If a main effect of the factor test was found, a post-hoc analysis using 

Bonferroni-corrected paired t-tests on each group was conducted. Likewise, a main interaction 

between the two factors test and training was analyzed with a Bonferroni-corrected two-

sampled t-test between each pair of groups. 

2.6 MEG data acquisition 
 

Brain magnetic fields were recorded in a MSR using a 306 MEG system (Neuromag Elekta 

LTD, Helsinki). MEG recordings were sampled at 2 kHz and band-pass filtered between 0.03-

600 Hz. Four head position coils (HPI) measured the head position of participants before each 

block; three fiducial markers (nasion and pre-auricular points) were used for digitization and 
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anatomical MRI (aMRI) immediately following MEG acquisition. Electrooculograms (EOG, 

horizontal and vertical eye movements) and electrocardiogram (ECG) were simultaneously 

recorded. Prior to the session, 5 minutes of empty room recordings were acquired for the 

computation of the noise covariance matrix. 

 

2.7 Anatomical MRI acquisition and segmentation 
 

The T1 weighted aMRI was recorded using a 3-T Siemens Trio MRI scanner. Parameters of 

the sequence were: voxel size: 1.0 x 1.0 x 1.1 mm; acquisition time: 466s; repetition time TR 

= 2300ms; and echo time TE= 2.98 ms. Cortical reconstruction and volumetric segmentation 

of participants’ T1 weighted aMRI was performed with FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/). This includes: motion correction, average of multiple 

volumetric T1 weighted images, removal of non-brain tissue, automated Talairach 

transformation, intensity normalization, tessellation of the gray matter white matter boundary, 

automated topology correction, and surface deformation following intensity gradients (Dale et 

al., 1999; Fischl and Dale, 2000). Once cortical models were complete, deformable 

procedures could be performed including surface inflation (Fischl et al., 1999a) and 

registration to a spherical atlas (Fischl et al., 1999b). These procedures were used with MNE 

(Gramfort et al., 2013a, 2013b) to morph current source estimates of each individual onto the 

FreeSurfer average brain for group analysis. 

 

2.8 MEG data preprocessing and Event Related Fields (ERFs) analysis 
 

Data analysis was done in accordance with accepted guidelines for MEG research (Gross et 

al., 2012). Signal Space Separation (SSS) was carried out using MaxFilter to remove external 

interferences and noisy sensors (Taulu and Simola, 2006). Ocular and cardiac artifacts were 



13 
 

removed by creating signal space projections (SSP) based on average-locked responses to the 

QRS heart complex recorded with ECG and to the blinks recorded with EOG. About 2 to 3 

components were projected out of the raw data. Next, raw data were band-pass filtered 

between 1-40 Hz and down-sampled to 250 Hz.  

For the main analysis, data were epoched from -200 ms (baseline) to +1000 ms around the 

onset of coherent RDK. Epochs were averaged for each individual according to the conditions 

of interest, namely: across all coherence levels (196 trials) or for each coherence level (28 

trials). Trials corrupted by muscle or movement artifacts (less than 10% of all trials) were 

rejected by visual inspection using Fieldtrip (Oostenveld et al., 2011). Additionally, epochs 

were averaged according to each individual’s pre- and post-training thresholds into three 

categories: ‘hard’ (coherence levels below the POST-training threshold), ‘learned’ (coherence 

levels between the PRE- and the POST-training thresholds) and ‘easy’ (coherence levels 

above the PRE-training threshold). Evoked responses were smoothed with a Savitzky-Golay 

filter (Savitzky and Golay, 1964) consisting of fitting a 2nd order polynomial to each sliding 

window of 35 samples. This procedure is approximately equivalent to the application of a 

low-pass filter of 3 dB cutoff frequency set to 37.5 Hz (Schafer, 2011) without reduction of 

peak amplitudes. 

 

2.9 MRI-MEG coregistration and source reconstruction  
 

The co-registration of MEG data with an individual’s aMRI was carried out by realigning the 

digitized fiducial points with the multimodal markers visible in MRI slices. We used a two-

steps procedure to insure reliable coregistration between MRI and MEG coordinates: using 

MRILAB (Neuromag-Elekta LTD, Helsinki), fiducials were aligned manually with the 

multimodal markers visible on the MRI slice; an iterative procedure was then used to realign 



14 
 

all digitized points (about 30 more supplementary points distributed on the scalp of the 

subject were digitized) with the scalp tessellation using the mne_analyze tools within MNE 

(Gramfort et al., 2013b). Individual forward solutions for all source reconstructions located on 

the cortical sheet were next computed using a 3-layers boundary element model (Hämäläinen 

and Sarvas, 1989; Mosher et al., 1999) constrained by the individual aMRI. Cortical surfaces 

were extracted with FreeSurfer and decimated to about 5,120 vertices per hemisphere with 4.9 

mm spacing. The forward solution, noise and source covariance matrices were used to 

calculate the depth-weighted (parameter γ = 0.8) and noise-normalized dynamic statistical 

parametric mapping (dSPM) (Dale et al., 2000) inverse operator. This unitless inverse 

operator was applied using a loose orientation constraint on individuals’ brain data (Lin et al., 

2006) by setting the transverse component of the source covariance matrix to 0.4. The 

reconstructed current orientations were pooled by taking the norm, resulting in manipulating 

only positive values. The reconstructed dSPM estimates time series were interpolated onto the 

FreeSurfer average brain for group analysis (Fischl et al., 1999b) and common referencing.  
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Figure 2. MNE (dSPM) source reconstruction and regions of interest (ROIS). Panel A: Evoked Response 

Fields (ERF) in sensor space (gradiometers) obtained in response to the presentation of the hMT+ localizer. 

Specifically, we report the evoked component obtained by subtracting the ERF in response to fully incoherent 

motion (0%) from the ERF in response to a 95% coherent motion. These data were collected during the localizer 

block and pooled across all individuals (i.e. all three training groups: V, AV, and Avn; n=36 participants).The 

time course of all gradiometers is provided in the top graph. The topography of the differential evoked 

component averaged over 100 to 300 ms post-stimulus onset is provided for the norm of the gradiometers in the 

middle graph. The corresponding current source estimates (MNE, dSPM) is provided in the bottom graph. Panel 

B: ERF in sensor space (gradiometers) obtained in response to the presentation of incoherent visual RDKs. PRE 

and POST training data were pooled together across all three training groups (n=36) in order to define the 

regions of interest (ROIs). The time course of the evoked response obtained at the onset of all visual stimuli is 

depicted in the top graph for all gradiometers. Distinct evoked components can be seen starting at 100 ms. The 

topography of the ERF is provided in the middle graph for the norm of gradiometers averaged over 100 to 300 

ms post-incoherence onset. The corresponding current source estimates (MNE, dSPM) are provided in the 

bottom graph. The extent of a given label or region of interest (ROI) in source space was defined by thresholding 

the dSPM estimates at the 90th percentile of all dSPM values. FEF: Frontal Eye Field. IPS: Inferior Parietal 

Sulcus. pSTS: posterior Superior Temporal Sulcus. AC: Auditory Cortex. mSTS: middle Superior Temporal 

Sulcus. ITC: Inferior Temporal Cortex. 
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2.10 Functional localizer for hMT+ and selection criteria for the regions of 

interest (ROIs) 
 

One major prediction in this study was the that perceptual improvements in coherence 

discrimination thresholds would be commensurate with post-training activity in hMT+ which 

is known to be responsive to global (Watson et al., 1993; Zeki et al., 1993; Tootell et al., 

1995) and translational (Morrone et al., 2000) motion processing. Hence, after source 

reconstruction, hMT+ was localized on a per individual basis by contrasting the current 

source estimate obtained to the presentation of 95% coherent motion against the incoherent 

(0%) portion of the hMT+ localizer. Specifically, the evoked response fields (ERFs) elicited 

by the transition to full coherence in the visual display (i.e. going from 0% to 95% coherence) 

were contrasted with the ERFs elicited at the same latency but in the absence of transition (i.e. 

0% of coherence). A first inspection of the ERF contrast averaged over all individuals in 

sensor space (Fig. 2A, upper and middle panel) showed a main evoked response spanning 

~100 to ~300 ms post-transition onset. The evoked response was source reconstructed using 

MNE-dSPM; the extent of the area hMT+ in source space was determined by thresholding the 

average source estimate amplitudes over 100-300 ms above the 90th percentile of all dSPM 

values covering the entire cortex (Fig. 2A, lower panel). 

Figure 2B reports additional regions of interest (ROI) or labels which were identified at the 

group-level by source reconstructing the grand average evoked field response to the 

presentation of incoherent visual RDKs which combined data from all three training groups 

(V, AV and AVn) in the pre- and in the post-training sessions. The most responsive areas 

(selected by thresholding to the 90th percentile of all dSPM values) were manually labeled 

using the Freesurfer neuroanatomical parcellation. The obtained ROIs comprised: bilateral 

primary and secondary visual cortices (V1 and V2, respectively), precuneus, visual area V4, 
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hMT+, Inferior Temporal Cortex (ITC), Auditory Cortex (AC), posterior Superior Temporal 

Sulcus (pSTS), Inferior Parietal Sulcus (IPS), frontal eye-field (FEF) and the right middle 

Superior Temporal Sulcus (mSTS). The time courses reported in a label were computed by 

averaging dSPM estimate time courses over all vertices within the label. It is worth noting 

that dSPM values are here only positive and hence do not cancel out after averaging.  

 

2.11 Neurometric functions 
 

For each individual, neurometric curves (Britten et al., 1992; Gold et al., 2010) were 

computed using pre- and post-training current source estimates in hMT+ averaged between 

200 and 500 ms after coherence onset. The amplitudes of the cortical responses to the 

presentation of each of the 7 levels of coherence were fitted by a Weibull function: 

?�	
3, @, A, 4, 5� � @ 6 �@ 6 A��*89:;
< =

>
. With coh as motion coherence level, Y as the 

fitted neurometric function, and M, m, α and β the parameters determined by the damped 

Gauss-Newton method. Individual neurometric thresholds were defined as the level of 

coherence corresponding to the half-amplitude of the sigmoid. 

 

2.12 Statistics  
 

The effect of training was tested using the POST minus PRE contrasts across all coherence 

levels separately for each ROI using F-tests combined with non-parametric permutation tests 

(Maris and Oostenveld, 2007) that provide corrected p-values for multiple comparisons. For 

each signed permutation (N= 20000), time clusters were defined on the basis of temporal 

adjacency by regrouping samples whose F-statistic was larger than 3.3 (i.e. p-value inferior to 

0.05 for an F-test with 2 x 33 degrees of freedom). Cluster-level statistics were then calculated 
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by taking the sum of the F-values within the cluster. Only temporal clusters with corrected p-

values ≤0.05 are reported. The significance of the contrasts were also tested in each group 

using non-parametric pairwise two-tailed permutation tests with the cluster threshold set to 

2.2 (i.e. p-value inferior to 0.05 for a two-sided t-test with 11 degrees of freedom).  

All correlation tests were assessed with Pearson correlation coefficients ρ under the null 

hypothesis Ho: ρ=0 and with the alternative H1: ρ≠0 using a Student t-test on the statistic 

� �  B√ 6 2 D1 6 BEF , where n is the number of samples. Outliers were automatically 

detected and rejected by using a leave-one-out approach (Weisberg, 2005) consisting of 

estimating the distribution N(m,σ) of residuals based on (n-1) observations (each observation 

is left out one after another). Extreme residuals (i.e. above and below m± k.σ, where k= 2.5 is 

considered to be a reasonable choice (Rousseeuw and Leroy, 1987)) are identified and the 

corresponding observations set as outliers. 
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Figure 3. Behavioral results as a function of training type (V, AV, or AVn). Panel A: Mean psychometric 

curves (± 1 s.e.m.) before (PRE, light grey) and after (POST, dark grey) training. Mean performance as a 

function of visual coherence levels in V (top), AV (middle) and AVn (bottom) training. Each group included 12 

individuals. The mean perceptual threshold corresponds to the mean coherence value of one RDK population 

with a correct response rate of 75% (black dashed line). Perceptual threshold improvements were significant in 

all groups (black arrows). Panel B: Each individual psychometric curve was fitted with a Weibull function in 

order to extract an individual’s discrimination threshold. Here, we report the mean threshold obtained in PRE 

(light grey) and POST (dark gray) training data. In PRE training, no significant differences in perceptual 

thresholds were found among the three groups (F2,33= 1.12 , p = 0.34, mixed-design ANOVA); in POST training, 

all three groups showed a significant difference in their mean perceptual threshold as compared to the PRE 

training data (F1,33= 132, p= 4.5e-13, mixed-design ANOVA). A significant interaction between training groups 

was found (F2,33= 8.3, p= 1.2e-3, mixed-design ANOVA): as can readily be seen, the post-training threshold in 

the AV group was significantly lower than the one obtained in the V and in the AVn groups (post-hoc analysis, 

with Bonferroni correction). Panel C: Mean confidence ratings across all coherence levels in the V, AV and 

AVn groups in PRE and POST training. In PRE, no significant differences of confidence ratings were observed 

across the three groups (F2,33= 0.61 , p = 0.55, mixed-design ANOVA). In POST, a significant improvement of 

confidence rating was observed (F1,33= 7.2, p= 0.011) but solely in the V group after post-hoc analysis 

(Bonferroni). No significant interaction was found between training groups (F2,33= 1.35, p= 0.27) . Panel D: 

Mean reaction times (RTs) across all coherence levels in the V, AV and AVn groups in PRE and POST training. 

In PRE, no significant differences of RTs was observed across training groups (F2,33= 0.007 , p = 0.99, mixed-

design ANOVA). In POST training, all three training groups showed a significant decrease of their RT (F1,33= 

95, p= 3e-11) but no significant interaction was found between the training groups (F2,33= 1.5, p= 0.23). ‘*’: 
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corrected p value inferior to 0.05; ‘**’: corrected p value inferior to 0.01; ‘***’: corrected p value inferior to 

0.001. 

 

3 RESULTS 
 
 

3.1 AV training improves performance best 
 

First, we tested whether participants improved on the task by comparing each individual’s 

coherence discrimination threshold before and after training (Fig. 3A) using a mixed-design 

ANOVA (see Materials and Methods). The post-training thresholds of individuals are also 

given as a function of pre-training thresholds in all three groups in Supp. Fig. 1A. In pre-

training, all participants performed similarly well on the coherence discrimination task and the 

observed perceptual thresholds did not significantly differ between the three groups of 

individuals (F(2,33= 1.12) , p = 0.34). In all three groups, training successfully improved the 

performance of participants when comparing pre- and post-training coherence discrimination 

threshold (F(1,33)= 132, p= 4.5e-13). Crucially, a significant interaction between training 

type and pre/post-training (F(2,33)= 8.3, p= 1.2e-3) showed that perceptual improvements in 

the AV group significantly outperformed those observed in the V and AVn groups only in 

post-training (Fig. 3B, post-hoc analysis with Bonferroni correction). It is important to note 

that since the pre- and post-training coherence discrimination thresholds were solely 

established on the basis of visual RDK presentation, any differences in post-training 

performance can be solely accounted for by training history and not by the mere presence of 

AV stimuli. Additionally, no significant changes in the slope of the psychometric function 

(i.e. the beta parameter) were observed after training (F1,33= 0.36, p=0.55, mixed-design 

ANOVA), no interactions between the slope of the psychometric function and the training 

type was observed (F2,33= 1,63, p= 0.21) (cf. Supp. Fig. 1B) and no significant correlation 

between the differences in slope and perceptual threshold was observed in either group (as 
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reported in Supp Fig 1C). Altogether, these results strongly support a genuine change in 

participants’ sensitivity to motion coherence. 

A similar mixed-design ANOVA was carried out using the reaction times (RTs) of 

individuals as dependent variable. All participants showed shorter post-training RTs (Fig. 3B, 

F(1,33)= 132, p= 4.5e-13) but no significant interactions between RT and training type was 

found (F(2,33)= 1.5, p= 0.23). The mean RT for each group was otherwise comparable before 

and after training (F(2,33)= 0.007 , p = 0.99, mixed-design ANOVA).  

During pre- and post-training, participants were asked to rate their confidence level following 

their coherence discrimination response. Contrasting the mean confidence ratings before and 

after training across all coherence levels (Fig. 3D), a mixed-design ANOVA revealed a main 

effect of session (2: pre- and post-training) on confidence rating (F(1,33) = 7.2, p = 0.011); no 

significant interaction between session and training type was observed (F(2,33) = 1.35, p = 

0.27). However, post-hoc analysis revealed that the main effect of session could be solely 

attributed to the V group although the groups were not statistically distinguishable (F(2, 33) = 

0.61, p = 0.55). Thus, and surprisingly, while AV learners showed the largest improvement in 

performance after training, they were not aware of their own improvements contrarily to 

participants in the V group (Figure 3D). 
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Figure 4. Pre- and post-training hMT+ response as a function of visual RDK coherence levels and 

neurometric functions. Panel A: Time course of current source estimates (dSPM amplitudes) in bilateral hMT+ 

for the different training groups (V: top, AV: middle and AVn: bottom panels) as a function of RDK coherence 

levels (cf. color scheme legend). Data obtained in the pre- and post-training blocks are reported in the left and 

right panels, respectively. A prominent evoked response peaking at ~200 ms post-coherence onset can readily be 

seen in all groups and for all coherence levels. Additionally, the higher the visual coherence, the higher the 

amplitude of the cortical response. While the profile of responses was similar across the three groups before 

training, a distinct response pattern was found after training. Specifically, the V and AVn showed an increased 

spread of the response amplitudes as a function of visual coherence levels whereas the AV group did not. In 

order to characterize this response pattern, a 200 to 500 ms time period was selected, averaged and used to 

construct the individual neurometric curves consisting of the amplitude of the current source estimate as a 

function of stimulus coherence level. Panel B: The current source estimates (dSPM) in hMT+ were averaged 

from 200 to 500 ms post-coherence onset as a function of the seven coherence levels in V (top), AV (middle) 

and AVn (bottom). This quantification was performed separately for the pre- and post-training data (grey and 

black, respectively). The brain response in hMT+ of each individual was quantified for each coherence levels. To 

obtain the neurometric function of an individual, the amplitudes of the current source estimates in hMT+ were 

plotted as a function of visual RDK coherence level. Each neurometric function allowed deriving a neurometric 

threshold via Weibull fits (i.e. the level of coherence corresponding to half the amplitude of the sigmoid curve). 

For illustration purposes, we report the averaged fits together with the grand average data. The neurometric 

thresholds obtained in pre- and post-training were compared by carrying out a two-tailed paired t-test. Using this 

method, we show that neither V or AVn showed a significant change in neurometric threshold (V: t11= -0.2, p= 
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0.84; AVn: t11= -0.36, p= 0.72) whereas AV showed a significant decrease of neurometric threshold (t11 = -2.34, 

p= 0.039). This suggests that the neural response to a given coherence level, hence the neural selectivity in 

hMT+, has significantly changed according to the type of training provided to the participants. Specifically, the 

sensitivity to coherence discrimination in hMT+ significantly improved solely in the AV group. 

 

3.2 hMT+ plasticity and sensitivity profiles 
 

According to previous reports (Ahlfors et al., 1999; Lam et al., 2000; Maruyama et al., 2002; 

Nakamura, 2003; Aspell et al., 2005; Amano et al., 2006; Händel et al., 2007; Mercier et al., 

2009), the amplitude of the evoked responses in hMT+ increases with RDK coherence levels 

irrespective of participants’ performance. As a first approach, we thus separately classified 

trials as a function of the physical coherence of the visual stimuli (i.e. 7 RDK coherence 

levels ranging from 15% to 95%) per training type and as a function of pre- and post-training. 

After source reconstruction, a similar pattern of response in hMT+ could be seen in all three 

groups with a clear evoked response in hMT+ from ~200ms to ~500ms post-stimulus onset 

(Fig. 4A).  

One hypothesis on the origin of perceptual improvements was that the sensitivity of hMT+ 

response to RDK coherence would improve after training. When contrasting the average 

hMT+ response profiles in pre- and post-training (Fig. 4A), the spread of the hMT+ response 

amplitudes as a function of RDK coherence after training appeared much larger in the V and 

AVn groups; surprisingly however, the AV group did not show such changes. A linear 

regression of the hMT+ amplitude estimates as a function of RDK coherence levels clearly 

indicated that the AV group showed no significant differences in pre- vs. post-training (Supp. 

Fig S2A, beta values). At first glance then, these results suggested that the perceptual 

improvements in the AV group could not be accounted for by hMT+ plasticity. 

Using a similar approach to psychometric characterization, it is well known that hMT+ 

sensitivity to coherent motion can be characterized by a neurometric function (Britten et al., 
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1992); one advantage of neurometric thresholds is that they are comparable to psychometric 

functions depending on the experimental conditions (Britten et al., 1992). Hence, to better 

understand the evolution of the response profiles observed in hMT+, we selected the 200-500 

ms time period post-coherence onset and fitted a Weibull function to the averaged source 

estimate amplitudes as a function of RDK coherence levels on a per individual basis, and 

separately for pre- and post-training data (see Materials and Methods). From each fit, the 

neurometric threshold of an individual could thus be defined as the stimulus coherence level 

corresponding to half the amplitude of the sigmoid curve (see Supp. Fig S2B for examples of 

individual fits and Fig. 4B for the group data). Using this procedure, a significant decrease in 

neurometric threshold was observed solely in the AV group (t11 = -2.34, p= 0.039; Fig. 4B).  

 

Altogether, these results suggest a particular neural strategy in hMT+ that depends on the 

training history of participants, namely: in V and AVn, sensitivity affected the extreme levels 

of RDK coherence whereas in AV a better selectivity was seen for RDK coherence close to 

perceptual threshold. Although no direct correlation could be found between neurometric and 

psychometric thresholds when separately considering the pre- and post-training data, 

significant correlations between perceptual and neurometric threshold changes were observed 

in each group and across all individuals irrespective of their training history (Fig. 5).  
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Figure 5. Changes in visual coherence discrimination thresholds as a function of changes in neurometric 

thresholds pre- and post-training. Differences in the perceptual thresholds of individuals before and after 

training are reported as a function of the changes in neurometric thresholds on a per training group basis (V: top 

left; AV: top right; AVn: bottom left; all groups combined: bottom right). In all three training groups, the 

individual improvements in coherence discrimination thresholds were significantly correlated with the observed 

changes in neurometric thresholds derived from source estimate activity in bilateral hMT+. Specifically, 

correlations were the highest in the V and AV groups (V:r= 0.71, p= 0.014 and AV: r= 0.75, p= 8.3e-3) but also 

in the AVn group (r= 0.56, p= 0.05). When grouping all individuals, a significant correlation was preserved 

(bottom right, r= 0.61, p= 1.1e-4) . ‘x’ denotes statistical outliers. 

 

 

Altogether, these results strongly suggest that the hMT+ response profile to a given RDK 

coherence level significantly changed as a function of the training history of the individual. 

Crucially, the sensitivity of hMT+ response to RDK selectively improved in the AV group but 

not in the V and control AVn groups.  

 

3.3 Enhanced hMT+ selectivity for learned coherence levels only after AV 

training 
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In order to narrow down the specific effects of training on the hMT+ response profile, we 

classified data according to the perceptual improvement of each individual. Specifically, 

participants underwent individualized training so that each individual was trained on a 

selected set of four RDK coherence levels based on the initial discrimination threshold 

measured in pre-training. Hence, participants were not trained on the same set of coherence 

levels although all were tested on the same 7 coherence levels in pre- and post-training 

blocks. On this basis, we classified the 7 RDK coherence levels into three sets solely based on 

their learned discriminability – i.e. irrespective of the physical RDK coherence levels – in 

order to sort data in the pre- and post-training blocks. The three categories were ‘hard’, ‘easy’ 

and ‘learned’: the ‘hard’ category consisted of all stimuli that remained below an individual’s 

perceptual threshold after training - i.e. RDK coherence levels that never benefitted from 

training and did not become perceptually discriminable for a given participant. Conversely, 

the ‘easy’ category corresponded to those stimuli that were already above the discrimination 

threshold before training. Most importantly, the ‘learned’ category consisted of all RDK 

coherence levels that became discriminable – i.e. above the discrimination threshold of the 

individual after training. We then hypothesized that plasticity should be precisely reflected by 

a change of neural activity elicited by the ‘learned’ category and not others.  

Examining the changes of hMT+ responses over 200 to 500 ms revealed significant 

differences between the three groups in the 'learned' (F2,33 = 5.4, p= 0.0091) and in the 'hard' 

(F2,33 = 4.8, p= 0.015) categories. Specifically, the V and AVn groups shared a similar pattern 

of responses across all three categories: opposite variations in 'hard' and 'easy' categories were 

observed in the V and AVn groups consistent with the increased spread of hMT+ response as 

a function of RDK coherence levels (Fig. 4A). In contrast, and consistent with the reported 

shifts in neurometric thresholds (Fig. 4B), the AV group presented a significant change in 

response profile to the 'learned' category (t11 = 3.23, pcor = 2.4e-2, bilateral paired t-test with 
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Bonferroni correction). In addition, these results were confirmed by a finer analysis of the 

entire time course differences in hMT+ (Fig. 6, first column) when carrying out a pairwise 

cluster permutation algorithm (cf. Table 1): AV was indeed the only group to show a 

significant response increase for the 'learned' coherence levels from 160 to 390 ms post-

coherence onset.  

With this analysis, we thus consistently observe that only AV trained individuals showed a 

significant change in hMT+ activity that directly related to the observed perceptual 

improvements and to those stimuli that underwent a significant change in perceptual 

discriminability. 

 

Figure 6. Functional selectivity in hMT+ and other regions of interest (ROIs) after V, AV and AVn 

training. Visual coherence levels were classified into three groups according to participants’ changes in 

perceptual thresholds, namely: “hard” coherence were those coherence levels that remain below the individual’s 

post-training threshold (blue); “easy” coherence levels were those that remain above the pre-training threshold 

(red); “learned” coherence were those that went from below the perceptual threshold in pre-training to above the 

threshold of the participant after training (purple). Post- minus pre-training mean dSPM contrasts (± 1 s.e.m.) are 



28 
 

reported for all three groups (V: top; AVn: middle; AV: bottom). In hMT+, all categories are reported while in 

other ROIs only categories with significant differences are shown for clarity. Strikingly, only AV presented a 

significant difference in hMT+ observed as an increase of amplitude of the response to the 'learned' coherence 

levels. When considering all other ROIs defined in Fig. 2B, only AV presented significant time clusters for the 

'learned' category in right mSTS while all groups presented significant increases in response to the 'easy' 

category in ITC. The analysis was extended to bilateral ventro-lateral PreFrontal Cortex (vlPFC) which 

strikingly revealed significant time clusters for all three groups but solely for the learned coherence levels. 

Significant clusters were determined using a pairwise cluster permutation algorithm and are indicated below the 

curves with bars (cf. Table 1). ‘*’: corrected p values inferior to 0.05, ‘**’: corrected p values inferior to 0.01. 

 
ROI  V AV  AVn  

 LEARNED category 

hMT+  n.s. 
160:390 ms, 
p = 0.0059 

n.s. 

mSTS n.s. 

180:360 ms, 
p = 0.0088 

770:880 ms, 
p= 0.019 

n.s. 

vlPFC 

260:390 ms, 
p= 0.0019 

550:680 ms, 
p= 0.0054 

190:390 ms, 
p = 0.0044 

350:510 ms, 
p= 0.0098 

 EASY category 

ITC  
250:410 ms, 
p= 0.0064 

330:480 ms, 
p= 0.0054 

380:610 ms, 
p= 0.0029 

mSTS n.s. 
770:930 ms, 
p= 0.0068 

n.s. 

 

Table 1. Summary of significant clusters observed in Figure 6. Latencies and corrected p values are provided 

for each ROIs (rows) and for each training group (columns). 

 

Considering that hMT+ did not present selective changes to the ‘learned’ coherence levels 

notably in the V and AVn groups, we asked whether other cortical regions could significantly 

contribute to the obtained perceptual improvements. To this aim, neural responses in the 

observed regions of interest (ROIs, Figure 2B) were quantified and contrasted in pre- and 

post-training as a function of the defined perceptual categories (Fig. 6). 

 

3.4 Extended selectivity to other ROIs 
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As previously done for hMT+, contrasts of post- minus pre-training were separately tested for 

each training group and for each perceptual category by using a pairwise cluster permutation 

algorithm. For clarity, only those ROIs and time courses presenting significant differences are 

reported in Fig. 6 and a summary of significant cluster values and latencies is also provided in 

Table 1.  

First, and common to all three groups, a significant response increase in post-training was 

observed in ITC but solely for the ‘easy’ category. Interestingly, different latencies were 

noticeable in each group (Fig.6, second column): ~250 to 410 ms in the V group, ~330 to 480 

ms in the AV group and ~380 to 610 ms in the AVn group. This pattern suggests that in this 

task, color-motion binding may have equally improved in all participants irrespective of their 

training but solely when coherence discrimination was easiest. No significant differences 

were otherwise seen for any other perceptual categories in these ROIs. 

 

As no other significant changes for the ‘learned’ category were seen in all ROIs to account for 

V and AVn perceptual improvements, we added a selection criterion for our analysis. 

Specifically, several lines of research have shown that the lateral prefrontal cortex is a major 

site of convergence for the dorsal and ventral visual (Ungerleider and Mishkin, 1982) and 

auditory (Rauschecker and Tian, 2000) streams but also an important site of multisensory 

convergence (Romanski, 2004, 2007; Romanski and Hwang, 2012). We thus extended our 

analysis to bilateral vlPFC using Freesurfer neuroanatomical parcellations to define the ROI. 

Strikingly, significant time clusters were found in this region specifically for the ‘learned’ 

category and for all three groups (Fig. 6, third column). Two significant clusters were seen in 

V spanning ~260 to 390 ms and 550 to 680 ms; one surprisingly early significant cluster was 

seen in AV spanning ~190 to 390 ms and one significant cluster in AVn spanning ~350 to 510 

ms. In addition, the AV group (Figure 6, fourth column) was the only group which presented 
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a significant response increase in both the learned and the easy category in right mSTS at late 

latencies (770 to 930 ms) but also, and crucially, significant changes for the ‘learned’ 

category at the same latencies as in hMT+ (i.e. ~200 to ~400 ms).  

Altogether, these results strongly suggest that the boost in sensitivity observed in hMT+ may 

not result from local plasticity but from the engagement of a larger network in the 

computations of color-motion binding and coherence discrimination including prefrontal 

regions.  

 

Figure 7. Main effects of training in all three groups across all coherence levels. Post- minus pre-training 

contrasts of mean current source estimates (dSPM, ± 1 s.e.m.) across all RDK coherence levels and for each 

region of interests (see Fig. 2). Differential time series are reported in light grey for V, in black for AV and in 

dark grey for AVn. The effect of training in a given group was tested with a two-tailed paired t-test combined 

with a cluster permutation algorithm: significant differences are indicated with light grey bars (V), black bars 

(AV) and dark grey bars (AVn). In V, main effects of training irrespective of coherence levels can be seen in 

ITC from ~200 to 400 ms post-coherence onset. In AV, main effects are seen in several regions including hMT+, 

ITC, mSTS, V4, pSTS and AC. In AVn, main effects are seen in ITC, pSTS, and AC. In order to test the main 

effects of training type (V, AV or AVn) irrespective of coherence levels, a F-test was performed in combination 

with a cluster permutation algorithm for all ROIs. The shaded areas highlight the latencies of significant 
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differences between the training groups; red stars indicate the corresponding degree of significance. As can be 

seen, four main regions capture the main differences across the three training groups, namely: middle and 

posterior STS, V4 and AC. * corrected p values inferior to 0.05; ** corrected p values inferior to 0.01 ; *** 

corrected p value inferior to 0.001.  

 

pre- vs. post-training – all coherence levels 

 t-tests F-tests 
ROI  V AV  AVn  V, AV, AVn  

hMT+  n.s. 
130:290 ms, 
p= 0.0044 

n.s. n.s. 

mSTS n.s. 

250:440 ms, 
p = 0.0083 

600:900 ms, 
p= 0.0015 

n.s. 
680:880 ms, 
p= 0.0055 

pSTS n.s. 
320:560 ms, 

p = 0.016 
120:320 ms, 
p= 0.0078 

120:520 ms, 
p= 0.0007 

V4 n.s. 
160:400 ms, 
p= 0.0068 

n.s. 
150:420 ms, 
p= 0.00095 

ITC  
260:500 ms, 

p= 0.007 
300:540 ms, 
p= 0.0049 

500:630 ms, 
p= 0.029 

n.s. 

AC n.s. 
210:340 ms, 
p= 0.0088 

60:280 ms, 
p= 0.0049 

80:340 ms, 
p= 0.00075 

 

Table 2. Summary of significant clusters observed in Figure 7. Latencies and corrected p values are provided 

for each ROIs (rows) and for each training group (columns). 

 

3.5 A larger network distinctively dissociate the three training groups 
 

We now ask whether a non-selective training effect can be observed irrespective of the RDK 

coherence levels across all three groups, thereby reflecting an overall effect of task 

improvement. Similar to previous analyses, the evoked responses elicited by the presentation 

of all RDK coherence levels were grand-averaged, source reconstructed and averaged within 

each ROI as defined in Fig. 2.  

The time courses in pre- and post-training are illustrated in Supplementary Figures S3 and S4, 

respectively. With the exception of visual area V4, no significant differences were observed 

between the three groups before training (Supp. Fig. S3); in post-training, the time courses 

across the three groups significantly differed only in right mSTS (Supp. Fig. S4). The source 

amplitudes in the different ROIs were then contrasted between the pre- and post-training 

blocks and tested with a cluster permutation algorithm in each group (Fig. 7 and Table 2).  
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First, all three groups presented a main effect of training in ITC corresponding to positive 

clusters at increasing latencies, namely in V: 260 to 500 ms; in AV: 300 to 540 ms and in 

AVn: 500 to 630 ms. Second, no additional effects were found for the V group. Third in the 

AV group, a large network was observed revealing significant post-training responses 

increase in hMT+ (130 to 290 ms post-coherence onset), in right mSTS with two temporal 

clusters (250 to 440 ms and 600 to 900 ms) post-coherence onset, in V4 (160 to 400 ms), in 

pSTS (320 to 560 ms) and in AC (210 to 340 ms). Fourth and interestingly, pSTS and AC 

presented opposite effects for AVn, with a significant decrease of activity in post-training for 

latencies of 120 to 320 ms in pSTS and of 60 to 280 ms in AC. 

In order to directly contrast the three training groups, an F-test was combined with a cluster 

permutation algorithm: the earliest effect was observed in AC starting at 80 ms post-

coherence onset (and lasting 260 ms), rapidly followed by a long sustained differentiation in 

pSTS from 120 to 520 ms and in V4 from 160 and 400 ms; a late main effect was observed in 

the right mSTS from 680 to 880 ms.  
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Figure 8. Main effects of training in bilateral pSTS and right mSTS are uniquely observed in the AV 

group. Mean dSPM contrasts in bilateral pSTS (left column) and right mSTS (right column) as a function of 

individuals’ mean performance increases over all coherence levels in V (top), AV (middle) and AVn (bottom). 

dSPM contrasts were computed by collapsing all RDK coherence levels and averaged over the time windows 

corresponding to significant differences in AV (i.e. over 320-560 ms in pSTS and 250-440 ms in mSTS) as 

reported in Figure 7. Significant positive correlations between overall performance and source estimate 

amplitude were observed solely in the AV group specifically in pSTS (r = 0.63, p= 0.036) and in mSTS (r = 

0.75, p= 0.0077). ‘x’: automatically detected outliers. 

 

To better comprehend the role of mSTS and pSTS, the post- minus pre- contrasts of source 

estimate amplitudes were plotted as a function of post- minus pre- performance separately for 

each group (Figure 8). A significant correlation was observed in both ROIs but again, solely 

for the AV group. This result suggests that while mSTS and pSTS are not selective to the 

RDK coherence levels, these regions play a significant role in the task improvements 

observed in the AV group but not in the other groups. Altogether, our results highlight the 

distinct contribution of different cortical areas either selective to the RDK coherence levels or 

to the training history of the participant. A summary and working hypothesis is provided in 
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Figure 9 on the functional role of the ROIs contribution to perceptual improvements observed 

in the three groups of participants. 

 

Figure 9. A working hypothesis for supramodal processing and reverse hierarchy plasticity. Panel A: 

Synthetic illustration of ROIs showing significant post-training changes in neural responses after training in the 

V, AVn and AV groups. Significant changes in hMT+, V4, ITC and vlPFC were common to all three groups 

whereas pSTS, mSTS, and AC were specific to the multisensory AV and AVn groups. The network observed in 

post-multisensory training was thus more extensive than in visual training. Strikingly, the pattern of activation in 

the control AVn group and in the AV group was notably reversed in several regions including pSTS, AC, mSTS 

and V4: this suggests selective modulations of these cortical regions based on the stimuli presented during 

training. Panel B: Synthetic summary of latency of main significant effects obtained when contrasting post- vs. 

pre-training data irrespective of coherence levels. The temporal overlaps of significant effects over the extensive 

network observed in the AV trained groups suggest a complex pattern of communication between these brain 

regions. Importantly, a major latency difference can be observed between the AV and AVn groups in AC and 

pSTS with an early decreased activity in these regions in the AVn group and a later increase activity in the AV 

group. We contend that this difference is consistent with pSTS acting as a « switch » allowing the implication of 

mSTS in the computation of coherence motion. Panel C: A basic hypothesis for the functional network 

implicated in visual learning in the V, AV and AVn groups. The distinctive pattern of cortical activity that 

significantly dissociated the three training groups was a significant increase and decrease of activity in AV and 

AVn, respectively for the pSTS, mSTS, AC and V4, suggesting direct functional connectivity between these 

regions (blue/red boxes). No significant changes of activity were observed in these regions for the V group. 
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Common to all three training groups, hMT+ and vlPFC showed discriminable cortical responses as a function of 

the learned coherence levels. Additionally, all three groups showed an increased activity in ITC only for the easy 

coherence levels suggesting an improvement in color-motion binding. In hMT+, the increase spread of neural 

response was shared by V and the control AVn, whereas selective activity was seen solely for the AV group. 

Altogether, our results suggest a regulation of hMT+ activity by upstream computations notably in the AV and 

AVn groups. The specific implications of V1/V2, IPS and FEF (ROIs obtained in Fig. 2) remain to be 

determined. 

 

4 DISCUSSION 
 
 

In this study, we asked whether learning to discriminate visual coherent motion would rapidly 

benefit from hearing matched acoustic features. To this end, three groups of participants 

underwent training with visual (V), correlated (AV) or arbitrary (AVn) audiovisual pairings 

while being recorded with MEG. First, all three groups showed a significant decrease of their 

visual coherence discrimination thresholds after a very short training. However, AV 

participants significantly outperformed participants in the V and AVn groups although V 

participants were the only ones showing a significant increase in confidence rating. Second, 

all three groups showed a common activation pattern in two distinct cortical regions (ITC and 

vlPFC): a comparable post-training increase of neural activity in the ventral visual stream 

(ITC) suggests that color-motion binding consistently improved when coherence 

discrimination was easily achieved. One interpretation is that easy detection of coherent 

motion allowed for more efficient motion-color binding. All three groups showed increased 

post-training activity in vlPFC specifically for the learned coherence levels, suggesting a 

strong and selective implication of prefrontal cortex in learning. Conversely, distinct patterns 

of activity distinguished the three groups of participants with the multisensory trained groups 

(AV and AVn) showing an opposite pattern of post-training activity in a network comprising 

pSTS, mSTS, and AC (cf. Figure 9). This suggests that multisensory training fundamentally 

altered the network implicated in the analysis of visual coherent motion stimuli and that a uni- 
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vs. a multi-sensory training can selectively shape the activity of the implicated network. 

Third, and crucially, AV participants were the only group showing a post-training gain of 

selectivity in hMT+ as captured by a significant shift in their neurometric thresholds. 

Altogether, we thus interpret our results as evidence for supramodal processing elicited by the 

presentation of coherent audiovisual features during training. Our results suggest that 

supramodal processing allowed the fine-tuning of downstream selectivity in visual cortices in 

agreement with the reverse hierarchy hypothesis (Ahissar and Hochstein, 2004; Proulx et al., 

2012); if this hypothesis is correct, multisensory training can open new empirical venues for 

the understanding of top-down plasticity in implicit perceptual learning and greatly speed up 

the use of sensory-substitution devices in sensory-impaired population. 

 

4.1 Supramodal objects and cross-sensory feature matching  

 

Statistical contingencies across sensory modalities can be learned (Seitz et al., 2007; Mitchel 

and Weiss, 2011) and multisensory information has been shown to benefit perceptual learning 

(e.g. Shams and Seitz, 2008; for an extensive review, see Proulx et al., 2012). However, the 

observed perceptual improvements are generally small and can require a long training time: 

with ten days of training, presenting auditory motion cues has been shown to improve visual 

direction discrimination (Seitz et al., 2006) and acoustic cues can alter the direction of visual 

motion (Freeman and Driver, 2008; Hidaka et al., 2011). Here, consistent with the hypothesis 

that using redundant multisensory information should yield greater benefits (Alais and Burr, 

2004), we capitalized on cross-sensory feature matching, namely the temporal coherence 

between auditory spectral changes and visual spatial patterning over time. The temporal 

coherence of audiovisual information is inherent to natural stimuli: in particular, the envelope 

of auditory speech is known to correlate with the speaker’s facial gestures (Grant and Seitz, 
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2000; Grant and Greenberg, 2001; Schwartz et al., 2004; Chandrasekaran et al., 2009) and 

more generally, auditory pitch and visual spatial frequency undergo automatic cross-sensory 

matching (Maeda et al., 2004; Evans and Treisman, 2010). The comodulation of audiovisual 

signals is thus a fundamental attribute of natural scenes that enables the brain to appropriately 

bind sensory features belonging to the same physical object, albeit processed through different 

sensory processing streams. Hence, by using matched audiovisual correspondences, we 

expected rapid cross-sensory mapping allowing for efficient learning in the AV group as 

compared to the control AVn and the V groups. In agreement with this hypothesis, the AV 

group significantly outperformed the V and the control AVn groups, suggesting that the mere 

presence of sound is not sufficient to improve visual coherence discrimination and rather, that 

the correlated temporal structure imposed on the audiovisual stimuli during training largely 

benefitted visual discrimination and did so in a very short exposure time. 

 

4.2 Implicit learning 
 

 

An additional intriguing feature was that unlike V learners, the confidence rating of the AV 

and AVn groups did not change after learning. Confidence ratings are a well-established 

means to assess conscious knowledge in decision making (e.g. Dienes, 2008) and have 

recently been argued to be most reliable in assessing the lowest level of subjective awareness 

(Wierzchoń et al., 2012). The lack of increased confidence rating in participants undergoing 

multisensory training strongly suggests that cross-sensory mapping occurred at an implicit 

level during training, which is consistent with the notion of automatic binding in multisensory 

integration (Talsma et al., 2010; Kösem and van Wassenhove, 2012) and with prior report of 

unconscious transfer between auditory and visual sensory modalities (Levy-Tzedek et al., 
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2012b). These results indicate that no cognitive strategy was used by participants trained in 

multisensory conditions to accomplish the task. One possibility is that differences in 

confidence ratings may be accounted for by inter-individual differences irrespective of 

learning (Song et al., 2011). The dissociation of subjective awareness observed here – i.e. 

improved performance without improved confidence rating - could be tentatively explained 

by the nature of what has been learned: the response pattern observed in ITC suggests that 

color-motion binding has improved in all participants irrespective of their training whereas 

visual coherence discrimination was solely observed in the AV group. Additionally, the pre- 

and post-training perceptual thresholds specifically focused on data collected in visual alone 

conditions in all three groups, thereby alleviating the possibility of divided attentional effects 

in task performance. 

 

4.3 Supramodal object representation in vlPFC? 
 

 

As previously mentioned, the audiovisual stimuli used during training were specifically 

designed to mimic the correspondences of auditory and visual attributes predicted from 

natural communication stimuli such as speech and monkey vocalizations although we 

arguably avoided possible overt semantic categorizations (face, speech). These audiovisual 

features rely on the correlated temporal structuring of acoustic and visual information and 

focused on the spectrotemporal attributes of the signals requiring color-motion binding for 

overt response (“red (green) RDK is most coherent”). Hence, during training (data not 

reported), the matching between visual and acoustic features would likely be comparable to 

the one taking place in the context of natural stimuli.  
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In her recent review, Chan (Chan, 2013) contrasts the evidence in favor of a domain general 

vs. a domain specific contribution of vlPFC and suggests that vlPFC primarily represents 

object-feature information. In our study, a possible interpretation for the selective activation 

to the learned coherence levels observed in vlPFC (Fig. 6) irrespective of training groups may 

be the increased representational salience of supramodal coherence, namely, the combined 

(auditory and/or visual) features enabling the neural representation of a “coherent object” 

irrespective of its color or direction of motion – hence, supramodal coherence. In the context 

of learning, the enhanced activation may be relevant by virtue of binding across visual and/or 

auditory streams specifically for those levels of coherences newly recognized. vlPFC is a 

known site of convergence for the dorsal and visual streams of both auditory and visual 

systems and a major site of convergence for the representation of multisensory information 

(Romanski et al., 1999; Romanski, 2007; Romanski and Hwang, 2012). Interestingly, vlPFC 

has also been implicated in the representation of communication signals in monkey recordings 

(Sugihara et al., 2006) suggesting that this region is particularly well-suited for the 

computations of natural and matched cross-sensory stimuli such as the ones utilized here. 

These results are further consistent with several neuroimaging studies showing the 

implication of vlPFC for semantic retrieval and response selection in the context of 

multisensory processing (e.g. Werner and Noppeney, 2010). 

 

4.4 Functional selectivity of hMT+ : psycho- and neuro-metric thresholds 
 

 

Although previous studies have reported activation of hMT+ to the presentation of auditory 

stimuli (Poirier et al., 2005, 2006) and matched audiovisual motion (Alink et al., 2008; Scheef 

et al., 2009; von Saldern and Noppeney, 2013), the evidence for auditory motion processing 
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in this region is scarce: from a neurophysiological standpoint, Ilg and Churan (Ilg and Churan, 

2004) have shown that the presentation of visual and audiovisual motion elicits the same 

neural response in motion area MT but no significant response to the presentation of auditory 

motion alone was observed in this region. Hence, the most convincing evidence for the 

capabilities of hMT+ to compute motion processing supramodally - i.e. irrespective of the 

sensory modality of inputs - comes from studies of sensory-impaired and blind populations 

(Morrone, 2010; Voss and Zatorre, 2012; Ricciardi et al., 2013) in which functional recycling 

can readily be observed for the benefit of other sensory modalities.  

One study (Bedny et al., 2010) has notably suggested the existence of a sensitive period 

around 2 years of age for the acquisition of visual functional selectivity in this region; 

additionally, the lack of exposure to visual information was shown to prevent visual 

selectivity in this region although hMT+ in late blind populations can be functionally recycled 

to the benefit of auditory motion processing. In this context, we asked whether a short-

training capitalizing on cross-sensory matching could benefit plasticity in this region. In 

particular, comprehensive reviews have recently suggested that hMT+ could benefit from top-

down processing as a major means to achieve supramodal selectivity (Morrone, 2010; Proulx 

et al., 2012).  

One crucial result of our study is that in healthy individuals, selectivity in hMT+ can 

significantly benefit from correlated audiovisual sensory inputs during training. By means of 

neurometric characterization of MEG signals in hMT+, we showed that after a short training, 

neural plasticity in this cortical region was solely achieved in the AV group not in the V or the 

AVn group. Hence, the direct comparison of perceptual discrimination and neurometric 

thresholds suggest that although all three groups performed better after training, only the AV 

group showed a significant change in neurometric threshold and thus conservatively displayed 

perceptual learning and plasticity (Goldstone, 1998; Gilbert et al., 2001; Fahle, 2005; Seitz 
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and Watanabe, 2005). This observation is particularly relevant in complementing a recent 

discussion on the interpretation of psychometric thresholds in perceptual learning studies 

(Gold and Ding, 2013). 

Additional analyses conducted on the datasets obtained during training will shed light on the 

specific contribution of auditory information during audiovisual processing and the 

integrative mechanisms leading to the differentiation of the network in the multisensory 

trained groups. The changes in neurometric thresholds observed in hMT+ are particularly 

puzzling in light of the recent lack of evidence for neurometric threshold or slope changes 

after training in this region (Gold et al., 2010). Below, we extend our discussion on the 

selective network dynamics that was shown to dissociate the three training groups and 

elaborate a working hypothesis on the implication of supramodal processing for the top-down 

fine tuning of motion coherence processing in hMT+. 

 

4.5 Reverse hierarchy and supramodal processing 

 

An extended network was seen in multisensory trained participants notably implicating pSTS, 

mSTS, and AC. Crucially, while activation increased in these regions in the AV group, 

activation decreased in these regions in the control AVn group. These areas showed no 

changes in the V group. This pattern of results shows that after training, identical visual 

stimuli are processed differently depending on the training history of participants even if the 

implication of vlPFC, ITC and V4 is preserved in all cases. 

First, mSTS is characterized by a patchy organization of multisensory, auditory and visual 

selective neurons (Beauchamp et al., 2004a) and has systematically been implicated in the 

analysis of multisensory timing with possible feedback to sensory cortices (Noesselt et al., 
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2007). In post-training data, pSTS and mSTS correlated with the individual improvements in 

the AV group: one possible interpretation is that during training, mSTS processed coherent 

AV motion and transferred selectivity to hMT+ post-training. The modulation of hMT+ by 

mSTS could either enhance the salience of visual coherent motion during training (e.g. Lewis 

and Noppeney, 2010) or facilitate the extraction of task-relevant features for visual processing 

(Sasaki et al., 2010). Consistent with this interpretation, no mSTS activity was seen in the V 

group and decreased activity was seen in the AVn group. 

Crucially then, the functional role of mSTS in post-training tests was preserved even in the 

absence of multisensory inputs: this suggests that plasticity implicating both uni- and multi-

sensory neural populations found in mSTS occurred during AV and AVn training. However, 

the limited spatial resolution of MEG cannot disentangle the possible contribution of different 

neural populations in this region during or after training.  

Second, pSTS has also been classically implicated in multisensory integration (Benevento et 

al., 1977; Bruce et al., 1981; Beauchamp et al., 2004a, 2004b; Lewis and Noppeney, 2010) 

and has recently been shown to mediate the temporal narrowing of audiovisual integration 

(Powers et al., 2012). Specifically, changes of effective connectivity between pSTS and 

downstream sensory regions have been reported after repeated presentations of temporally 

coincident audiovisual stimuli (Powers et al., 2012). pSTS is thus largely implicated in the 

temporal association of multisensory information but is also associated with the analysis of 

second-order visual motion (Noguchi et al., 2005) and biological motion (Saygin, 2007). 

Considering that post-training response patterns in pSTS were opposite in AV and AVn, this 

region may play the role of a “switch” by selectively enabling the communication of mSTS 

with the ventral visual stream. It is here crucial to note that the differences solely illustrate the 

training history of participants and not the mere presence or absence of AV stimulation.  
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Overall, the latencies of the main effects were consistent with a feedback of information from 

temporal cortex to hMT+ (Figure 9). Specifically, the main effects of training irrespective of 

visual coherence levels (Fig. 9C) showed a clear sequencing and overlapping of differential 

activation in the multisensory trained group. The temporal overlapping of increased activation 

in pSTS, mSTS and auditory cortex with hMT+ in the AV group showed a strikingly different 

pattern compared to the sequencing observed in the AVn group (decreased activation of pSTS 

and AC). These results are consistent with the selective implication of pSTS and mSTS that 

were reported and the functional implication of pSTS as a switch enabling the flow of 

information from mSTS to hMT+ - thereby enabling or not the implication of multisensory 

regions in the computations of coherent motion. 

 

In sum, we suggest that AV training favored supramodal computations of coherence in 

multisensory regions during training (mSTS) which remained engaged even in the absence of 

multisensory stimulation for the benefit of visual processing (hMT+) via pSTS (Fig. 9C). 

Previous studies have reported activation of hMT+ to the presentation of auditory (Poirier et 

al., 2005) and matched audiovisual motion (Alink et al., 2008; Scheef et al., 2009); we thus 

extend these findings by showing a selective tuning of hMT+ response to the presentation of 

coherent visual motion after AV training. In light of recent connectivity measures implicating 

pSTS (Powers et al., 2012), our results provide the first evidence for supramodal processing 

enabling reverse hierarchy of learning onto visual-specific areas (Ahissar and Hochstein, 

2004; Morrone, 2010; Proulx et al., 2012). This scheme is consistent with the view that higher 

cortices may generalize learning and fine-tune downstream selectivity notably when 

considering the selectivity of vlPFC in all three groups (Ahissar and Hochstein, 1997, 2004).  
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5 CONCLUSIONS 
 
 
 

Our results suggest that the temporal structure of multisensory features can profoundly affect 

the analysis of sensory information and de facto implicate multisensory regions. This is 

consistent with several studies that have pointed out to early audiovisual interactions in 

sensory processing streams notably through the magnocellular system (Frassinetti et al., 2005; 

Schroeder and Foxe, 2005; Jaekl and Soto-Faraco, 2010) in line with neuroanatomical 

connectivity (Hackett et al., 2007). Importantly, our results suggest that the seminal 

spatiotemporal coincidence principle (Stein and Meredith, 1993; Meredith, 2002) is not only 

fundamental for supramodal processing but also critical in shaping up downstream neural 

selectivity of classically defined sensory specific areas. As such, the use of sensory features 

that naturally map across sensory modalities by virtue of temporal Gestalts principles provide 

a first step towards understanding the representation of multisensory invariance or supramodal 

objects in the brain. Practical implications of this research are foreseeable for the optimization 

of sensory substitution devices making use of natural cross-sensory mapping in audition, 

somatosensation and vision (Bach-y-Rita and Kercel, 2003; Amedi et al., 2007).  
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