
HAL Id: hal-01084550
https://hal.inria.fr/hal-01084550

Submitted on 13 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Outsourcing Pairing Computation
Aurore Guillevic, Damien Vergnaud

To cite this version:
Aurore Guillevic, Damien Vergnaud. Algorithms for Outsourcing Pairing Computation. CARDIS
2014 - 13th Smart Card Research and Advanced Application Conference, Conservatoire National des
Arts et Métiers (CNAM), Nov 2014, Paris, France. �10.1007/978-3-319-16763-3_12�. �hal-01084550�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49580063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01084550
https://hal.archives-ouvertes.fr


Algorithms for Outsourcing Pairing Computation

Aurore Guillevic2,3 and Damien Vergnaud1
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Abstract. We address the question of how a computationally limited device may
outsource pairing computation in cryptography to another, potentially malicious,
but much more computationally powerful device. We introduce two new effi-
cient protocols for securely outsourcing pairing computations to an untrusted
helper. The first generic scheme is proven computationally secure (and can be
proven statistically secure at the expense of worse performance). It allows various
communication-efficiency trade-offs. The second specific scheme – for optimal
Ate pairing on a Barreto-Naehrig curve – is unconditionally secure, and do not
rely on any hardness assumptions. Both protocols are more efficient than the ac-
tual computation of the pairing by the restricted device and in particular they are
more efficient than all previous proposals.

1 Introduction

Pairings (or bilinear maps) were introduced in cryptography in 2000 by Joux [14]
and Boneh-Franklin [4]. A pairing is a bilinear, non-degenerate and computable map
e : G1 ×G2 → GT . In practice, the first two groups G1 and G2 are prime-order r sub-
groups of the group of points E(Fq) of an elliptic curve E defined over a finite field Fq .
The so-called target group GT is the order r subgroup of a finite field extension Fqk . Bi-
linear pairings proved to be an amazingly flexible and useful tool for the construction of
cryptosystems with unique features (e.g. efficient identity based cryptography or short
signatures). However, the pairing computation is more resource consuming compared
to a scalar multiplication on the elliptic curve E(Fq).

In the last decade, several papers [12,9,7] studied the question of how a computa-
tionally limited device may outsource pairing computation to another, potentially ma-
licious, but much more computationally powerful device. In this setting, one wants to
efficiently delegate the computation of a pairing e(SK1,SK2) of two secret keys, or a
pairing e(SK,PP) of a secret key and some public parameter. Obviously, one needs to
ensure that this malicious device does not learn anything about what it is actually com-
puting (secrecy) and sometimes one also needs to, when possible, detect any failures
(verifiability, also called correctness).

As mentioned in [9,7], a delegation protocol that does not ensure verifiability may
cause severe security problems (in particular if the pairing computation occurs in the
verification algorithm of some authentication protocol). Unfortunately, the different
proposals for verifiable pairing delegation are very inefficient and it is actually bet-
ter in practice to directly embed the pairing computation inside the restricted device



than using these solutions. The main interest is then to save of area that is required to
implement a pairing in the restricted device such as smart card.

However, if verifiability is mandatory in authentication protocols, this is not neces-
sarily the case in scenarios where the delegated pairing value is used in an encryption
scheme as a session key. In this case, one can indeed use additional cryptographic tech-
niques to ensure that the values returned by the powerful device are correct (e.g. by
adding a MAC or other redundancy to the ciphertext). One can even consider settings
where the powerful device actually learns the pairing value. For instance, in a pay-TV
scenario, the set-up box (provided by the pay-TV company) needs to know the (one-
time) session keyK used to decipher the content (e.g. movie, football match) but it does
not know the secret key SK securely stored in the smartcard. If the smartcard delegates
the pairing computation to the set-up box there is no harm to let it know the session key
K since it will learn it anyway.

In 2005, Girault and Lefranc [12] introduced the first secure pairing delegation pro-
tocol through the Server-Aided Verification notion which consists in speeding up the
verification step of an authentication/ signature scheme. Their pairing delegation proto-
col only achieves secrecy with unconditional security (and the verifiability is achieved
via a different mean). Chevallier-Mames, Coron, McCullagh, Naccache and Scott in-
troduced in 2005 the security notions for pairing delegation [8,9] and they provided a
verifiable delegation protocol for pairing computation. Their protocols are much more
resource consuming for the restricted device than directly computing the pairing.

Recently, Canard, Devigne and Sanders proposed a more efficient protocol for ver-
ifiable pairing delegation. The authors showed that their proposal is more efficient than
the computation of the pairing for optimal ate pairing on a so-called KSS-18 curve [15].
Unfortunately, we will show in this paper that this is not the case for state-of-the-art op-
timal Ate pairing on a Barreto-Naehrig curve [3].

Contributions of the paper. We propose two new efficient protocols for secret pairing
delegation. Our protocols are not verifiable but as explained above, this is not really
an issue for encryption primitives where verifiability can be achieved by other means.
In particular, our typical usecases are Pay-TV where a smartcard delegates a pairing
computation to the set-up box and encrypted GSM communication where the sim-card
delegates a pairing computation to the smartphone processor (e.g. an ARM or Intel
processor with high competitive performances). In these scenarios, one can even assume
that the set-up box or the smartphone actually learns the pairing value (but of course not
the secret information stored by the smartcard or the sim-card). Both methods enable to
delegate the computation of a pairing e(SK,PP) of a secret key SK and some public
parameter PP . They achieve better efficiency than actual computation of the pairing by
the restricted device and in particular they are more efficient than all previous proposals.

We first present a (generalized) knapsack-based approach which uses different en-
domorphisms on the groups G1,G2,GT to speed-up the method. Instead of masking
the secret point SK by a scalar multiplication with a random secret exponent, it is
masked by adding to it a sum of (small) multiple of random points that are also send
to the powerful device. It computes several pairings of these points with the public
parameter PP and the restricted device combines them to get the actual value. The



method is generic and can be applied to any pairing instantiation. The method increases
the communication complexity between the two devices but one can propose different
communication-efficiency trade-off.

In our second approach, we present a way to delegate only the non-critical steps
in the pairing algorithm, looking carefully at each instruction in Miller algorithm. The
powerful device does not learn any information on the secret point SK except the ac-
tual value of the pairing e(SK,PP) (which is perfectly suitable in our usecases). The
technique can be applied to any instantiation of pairings but we concentrate on the
state-of-the-art optimal Ate pairing on a Barreto-Naehrig curve [3]. We obtain a 65%
improvement (for a 128-bit security level) for the restricted device compared to the
computation of the pairing.

2 Preliminaries

Timing Estimates using the Relic Library. To illustrate the algorithms presented in
this paper, we estimate the various costs of scalar multiplication, exponentiations and
pairings. We choose as a practical example a Barreto–Naehrig (BN) curve [3] at the
128-bit security level with the implementation provided in Relic library of Aranha [1].

This library is at the state of the art for pairing computation [2] and is freely available
for research purpose. We assume that scalar multiplications [a]P and exponentiations
za are performed with a binary signed representation of a. So it requires roughly log a
doublings (resp. squarings) and log a/3 additions (resp. multiplications). A doubling
on a BN curve (with a4 = 0) costs 2Mp + 5Sp (multiplications and squarings in a
finite field Fp) and a mixed addition costs 7Mp + 4Sp [1]. We assume that Mp = Sp
first because it is the case for Relic library and secondly to simplify (but the estimation
Sp = 0.9Mp would also be accurate for another implementation). We obtain a total cost
of ≈ 256 DblE(Fp) + 86 AddE(Fp) ≈ 2738Mp for a scalar multiplication on G1, 2.4
times this cost:≈ 6590Mp for a scalar multiplication in G2 and≈ 256Sp12+86Mp12 ≈
9252Mp for an exponentiation in GT . We note that checking that an element is in GT is
much more expensive than performing an exponentiation in GT . Indeed GT is an order-
r subgroup in a large finite field Fpk . GT has particular properties permitting very fast
squaring that Fpk does not. We summarize these estimates in Tab. 1 (which may be of
independent interest).

Optimal Ate pairing on a Barreto–Naehrig Curve A pairing is computed in two
steps (see Alg. 1): a Miller function f ← fr,Q(P ) (Alg. 1, lines 1– 15) followed by a

final powering f
pk−1

r (Alg. 1, lines 16– 27) to obtain a unique value in GT , the subgroup
of order r of F∗pk .

There are several papers on pairing computation on BN curves. We present in Alg. 1
all the steps for an optimal ate pairing computation on a BN curve. Our global estimate
is 16 336 Mp (multiplications in Fp) for one pairing. The Miller loop takes 8425 Mp

(52 %) and the exponentation 7911 Mp (48 %). From Relic benchmarks on an Intel
Xeon CPU E5-1603 0 at 2.8 GHz, we obtain one pairing in 3.241 ms, the Miller loop
in 1.776 ms (55 %) and the exponentiation in 1.465 ms (45 %).



Table 1. Estimations for common operations in algorithms, for a BN curve with log p =
256 bits and Relic [1] implementation (Running Relic toolkit on a Intel Xeon E5-1603
at 2.80 GHz).

Operation cost total over Fp Relic

Fpk arithmetic

Mp 0.149 µs
Mp2 3Mp 3Mp 0.427 µs
Sp2 2Mp 2Mp 0.360 µs
Mp6 6Mp2 18Mp 3.362 µs
Sp6 2Mp2 + 3Sp2 12Mp 2.523 µs
Mp12 3Mp6 54Mp 10.856 µs
Sp12 2Mp6 36Mp 7.598 µs
Sφ12(p) z2, z ∈ Fp12 , Norm(z) = 1 18Mp 4.731 µs

za, for any z, a log a Sp12 + log a /3Mp12 54 log a Mp 3.864 ms
za, NormF

p12
/Fp(z) = 1 log a Sφ12(p) + log a /3Mp12 36 log a Mp 2.818 ms

NormF
p12

/Fp(z), for any z NormF
p12

/F
p6
/F

p2
/Fp(z) 59 Mp –

zr , NormF
p12

/Fp(z) = 1 zpz1−t = zp(zp
6

)t−1 4616 Mp –
check order(z) = r in Fpk NormF

p12
/Fp(z) = 1; zr = 1 4675 Mp –

E(Fp) arithmetic

Doubling (Dblp) 2Mp + 5Sp 7Mp 1.043 µs
Addition (Addp) 7Mp + 4Sp 11Mp 1.639 µs

Scalar mult. [a]P log a Dbl+ log a /3Add 10.7 log a Mp –

[a1]P1 + [a2]P2
max(log a1, log a2)

(Dbl+2/3Add)
max(log a1, log a2)

14.33Mp
–

E(Fp2) arithmetic

Doubling (Dblp2 ) 2Mp2 + 5Sp2 16Mp 3.137 µs
Addition (Addp2 ) 7Mp2 + 4Sp2 29Mp 4.866 µs

Scalar mult. [b]Q log b Dblp2 + log b /3Addp2 25.7 log b Mp 2.017 ms

[b1]Q1 + [b2]Q2
max(log b1, log b2)

(Dblp2 +2/3Addp2)
max(log b1, log b2)

35.33Mp
–

Pairing on a BN curve with log2 p = 256

Dbl step + `T,T (P ) 3Mp2 + 7Sp2 + 4Mp 27 Mp 6.036 µs
Add step + `T,Q(P ) 11Mp2 + 2Sp2 + 4Mp 41 Mp 7.593 µs
Miller loop see Alg. 1 8425Mp 1.776 ms
Final powering see Alg. 1 7911Mp 1.465 ms
Pairing see Alg. 1 16336Mp 3.241 ms

Security Model for Pairing Delegation In this subsection, we provide an informal
description of the security model for pairing delegation protocol and refer the reader to
the papers [9,7] for more details. We consider only protocols for delegation of a pairing
e(SK,PP) of a secret key SK and some public parameter PP . The security notions
defined in [9,7] are the following:

Secrecy requires that the powerful device cannot learn any information on SK.



Algorithm 1: Optimal Ate Pairing eOptAte(P,Q) on a BN curve

Input: E(Fp) : y2 = x3 + b, P (xP , yP ) ∈ E(Fp)[r], Q(xQ, yQ) ∈ E
′
(Fp2)[r], t trace,

x curve parameter
Output: eOptAte(P,Q) ∈ GT ⊂ F∗p12

1 R(XR : YR : ZR)← (xQ : yQ : 1)
2 f ← 1
3 s← 6x+ 2
4 for m← blog2(s)c − 1, . . . , 0 do
5 R← [2]R; `← `R,R(P ) 3Mp2 + 7Sp2 + 4Mp = 27Mp

6 f ← f2 · ` Sp12 + 13Mp2 = 36 + 39 = 75Mp

7 if sm = 1 or sm = −1 then
8 R← R±Q; `← `R,±Q(P ) 11Mp2 + 2Sp2 + 4Mp = 41Mp

9 f ← f · ` 13Mp2 = 39Mp

total Miller function:log s · 102Mp + log s/3 · 80Mp

Miller function (e.g. log2 s = 64): 6528 + 1760 = 8288Mp

10 Q1 ← πp(Q) Mp2 = 3Mp

11 R← R+Q1; `← `R,Q1(P ) 3Mp2 + 7Sp2 + 4Mp = 27Mp

12 f ← f · ` 13Mp2 = 39Mp

13 Q2 ← πp2(Q) 2Mp

14 R← R−Q2; `← `R,−Q2(P ) 3Mp2 + 7Sp2 + 4Mp = 27Mp

15 f ← f · ` 13Mp2 = 39Mp

total: 137Mp

total Miller Loop: 137 + 8288 = 8425Mp

16 f ← fp
6−1 3Mp6 + 2Sp6 + 10Mp2 + 3Sp2 + 2Mp + 2Sp + Ip = 118Mp + Ip

17 f ← fp
2+1 10Mp +Mp12 = 64Mp

18 if x < 0 then
19 a← f6|x|−5

20 else (fp
6

= f−1)

21 a← (fp
6

)6x+5

log p
4
SΦ6(p2)

+ log p
12

Mp12 = 64 · 18 + 22 · 54Mp = (1152 + 1188)Mp = 2340Mp

22 b← ap 5Mp2 = 15Mp

23 b← ab Mp12 = 54Mp

24 Compute fp, fp
2

and fp
3

5Mp2 + 10Mp + 5Mp2 = 40Mp

25 c← b · (fp)2 · fp
2

SΦ6(p2)
+ 2Mp12 = 126Mp

26 c← c6x
2+1

log p
2
SΦ6(p2) +

log p
6
Mp12 = 128 · 18 + 43 · 54Mp = 2304 + 2322 = 4626Mp

27 f ← fp
3

· c · b · (fp · f)9 · a · f4 7Mp12 + 5SΦ6(p2)
= 468Mp

Exponentiation f ← f (p6−1)(p2+1)(p4−p2+1)/r: 7851Mp + Ip ≈ 7911Mp

28 return f Pairing: 16336Mp

Verifiability requires that the restricted device, even interacting with a dishonest pow-
erful device, will not output a wrong value for e(SK,PP).



The formal security game for secrecy is similar to the indistinguishability security no-
tion for encryption schemes. The adversary chooses two secret points SK0 and SK1

and runs the delegation protocol with the restricted device for the secret point SKb for
some bit b. The scheme achieves secrecy if the probability that a (polynomial-time)
adversary guesses the bit b is negligibly close to 1/2. The formal security game for ver-
ifiability ensures that at the end of the delegation protocol, the restricted device obtains
the actual value e(SK,PP) or knows that the powerful device cheated in the protocol.

As mentioned above, in some cases, the secrecy property is too strong if the pow-
erful device is allowed to learn the value e(SK,PP) afterwards. Indeed this value re-
veals some information on SK and the complete protocol does not achieve the secrecy
property. Therefore, we propose the following notion which is weaker than the secrecy
notion but well-suited for our usecases of Pay-TV and encrypted GSM communication:

Weak Secrecy requires that the powerful device cannot learn any information about
SK except what can be deduced from the value e(SK,PP)

Let us assume that we use a pairing delegation protocol for the decryption in a pairing-
based scheme (such as the well-known Boneh-Franklin identity-based encryption [4]).
If the delegation protocol achieves only Weak Secrecy, a malicious powerful device
can mount a lunch-time attack (or CCA1) against the encryption scheme (using the
restricted device in the delegation protocol as a decryption oracle). However, since
it does not learn any information about SK (except from the one-time session keys
e(SK,PPi) for several public parameters PPi’s), it is not able to decrypt any cipher-
text if the restricted device is no longer active (e.g. after revocation of the decryption
rights in the Pay-TV scenario).

3 Review of Previous Proposals

3.1 Girault-Lefranc Pairing Delegation Protocol

In this subsection, we present Girault-Lefranc protocol for server-aided signature veri-
fication [12, §4.1] in Alg. 2 with a performance estimation on a BN curve at a 128-bit
security level (log r = log p = 256) using the Relic library described above.

Our cost estimation concludes that the delegation of e(SK,SP) with secret SK,SP
costs ≈ 18640Mp which is more than a pairing computation at the state of the art (we
estimate this for 16336Mp in Relic library).

Note that if pre-computation is possible, then the computation of [a]SK in the first
step of Alg. 2 can actually be done off-line. If moreover, the point SP is public, then
the complexity of the delegation protocol falls down to 9252 Mp (i.e. 0.6 pairing). This
basic scheme (with pre-computation) is the most efficient pairing delegation protocol
(without verifiability) of a pairing e(SK,PP) of a secret key SK and some public
parameter PP .

In Girault-Lefranc delegation, as f is a pairing output, we can use the optimized
squaring formula of Granger and Scott [13] when computing f (ab)

−1

, hence Sp12 =
18Mp instead of 36Mp. The computations over the group G1 might be available on the
restricted device such as a smartcard. More precisely, we need multiplication (Mp), ad-
dition - subtraction (Ap) and inversion Ip in Fp. Finite field operations are implemented



Algorithm 2: Girault-Lefranc Secure pairing delegation [12].
Input: secret points SK ∈ G1 and SP ∈ G2 of prime order r, elliptic curve parameters
Output: corresponding session key K = e(SK,SP)

1 Sample random a, b ∈ Zr and compute I = [a]SK, J = [b]SP .
[a]SK on E(Fp):
≈ 256 DblE(Fp) + 86 AddE(Fp) ≈ 256 · (2Mp + 5Sp) + 86 · (7Mp + 4Sp)

≈ 2738Mp

[b]SP on E
′
(Fp2): ≈ 256DblE′ (F

p2
) + 86 AddE′ (F

p2
) ≈ 6590Mp

If SP is public we can set b = 1
2 Send I, J to the server.
3 Compute (ab)−1 mod r. ≈ 60Mp

4 Receive f = e(I, J). delegated: ≈ 16336Mp

5 Compute f (ab)−1

to retrieve K = e(SK,SP). ≈ 9252Mp

6 return K. Total cost (b = 1): ≈ 9252 + 60 + 2738 ≈ 12050Mp = 0.74
pairing

Total cost a, b 6= 1: ≈ 12050 + 6590 ≈ 18640Mp = 1.14 pairing

on a smartcard e.g. for ECDSA but the arithmetic operations are not available for the
user. We can use the RSA primitives to simulate Fp arithmetic. We set no padding, the
exponent to 2 and the “RSA modulus” to p to get squares mod p, then simulate mul-
tiplications through 2xy = (x + y)2 − x2 − y2. Computations in the group GT are
not available and must be implemented. If a BN curve [3] is used, GT ⊂ F∗p12 hence a
complicated arithmetic must be implemented.

Remark 1 (Lightening the Girault-Lefranc scheme). If the session key K can be known
by the untrusted helper (i.e. if one only needs weak secrecy), we note that a variant of
the protocol may be used in some cases. We propose to ask the external resource to
compute e([α]SK, [α−1]SP) = e(SK,SP) = K with α taken at random. The output
will be exactlyK. This solution is not very efficient as it costs 9388/16336 = 0.6 pairing.
To improve it slightly in practice, we can swap SK and PP , i.e. put SK in E

′
(Fp2) and

PP ∈ E(Fp). In this way, [α]SK is the costly part and can be computed offline. Note
that this delegation procedure reveals some information on the secret key SK and it is
necessary to reprove the security of the underlying scheme if it is used to improve its
efficiency.

3.2 Chevallier-Mames et al. Pairing Delegation Protocol

Another pairing delegation protocol was introduced by Chevallier-Mames, Coron, Mc-
Cullagh, Naccache and Scott in 2005 [8,9]. Contrary to Girault-Lefranc’s protocol, the
protocol proposed by Chevallier-Mames et al. achieves secrecy (unconditionnally) and
verifiability. Unfortunately, the protocol is very inefficient since the overall cost for the
restricted device is 3.5 times the cost for computing the pairing (3.3 if pre-computation
is possible). The main advantage of the scheme is to save of area that is required to
implement a pairing in the restricted device such a smart card. However, as mentioned



above, even if we can use tricks, computations in the group GT are usually not available
and must be implemented (i.e. complex arithmetic in GT ⊂ F∗p12 for a BN curve).

3.3 Canard-Devigne-Sanders Pairing Delegation Protocol

We present in Alg. 3 the pairing delegation protocol proposed recently by Canard, De-
vigne and Sanders [7]. The protocol is more efficient than the previous one. It also
achieves secrecy (unconditionnally) and verifiability. Canard et al. actually showed that
their proposal is in fact more efficient than the computation of the pairing for optimal
ate pairing on a so-called KSS-18 curve [15]. Unfortunately, as shown by the precise
complexity of Alg. 3, this is not the case for state-of-the-art optimal Ate pairing on a
BN curve [3]. More precisely, we show that the overall cost for the restricted device is
2.8 times the cost for computing the pairing (1.6 if pre-computation is possible).

Algorithm 3: Pairing delegation with public right-side point [7, §4.1].
Input: secret point SK ∈ G1 and public point PP ∈ G2 of prime order r, G1 generator

of G1, G2 of G2, elliptic curve parameters
Output: Pairing value e(SK,PP)

1 Sample a random a ∈ Zr and compute I1 = [a]G1. [a]G1 on E(Fp): ≈ 2738Mp

2 Sample a random b ∈ Zr and compute I2 = [b]G2. [b]G1 on E(Fp): ≈ 2738Mp

3 Compute χ = e(G1, G2)
ab 1 exp. in GT ≈ 9216Mp

4 Compute (a)−1 mod r and (b)−1 mod r Ip + 3Mp ≈ 63Mp

5 Sample c random c ∈ Zr and compute J0 = [c]SK. [c]SK on E(Fp): ≈ 2738Mp

6 Compute J1 = [b−1]J0 + I1. [b−1]J0 on E(Fp): ≈ 2738Mp

7 Compute J2 = [a−1]PP + I2. [a−1]PP on E(Fp): ≈ 2738Mp

8 Send J1, J2,PP to the server.
9 Ask for α1 = e(J1, J2)(e(G1,PP)e(J0, G2))

−1, α2 = e(J0,PP) delegated:
≈ 4 · 16336Mp = 65344Mp

10 Receive α1, α2

11 Check that α2 ∈ GT : compute αr2 4675Mp

12 if αr2 6= 1 then
13 outputs ⊥ and halt.

14 Compute χ′ = χ · α(ab)−1

2 1 exp. in GT ≈ 9216Mp

15 if χ′ = α1 then
16 compute (c)−1 mod r Ip ≈ 60Mp

17 outputs α(c)−1

2 and halt. 1 exp. in GT ≈ 9216Mp

18 else
19 outputs ⊥ and halt.

Total cost: 46136Mp = 2.8 pairings
Cost w/o pre-computation: 25905Mp = 1.6 pairings



4 Pairing Delegation with Knapsack

We present in this section a new approach to perform pairing delegation (without veri-
fiability) of a pairing e(SK,PP) of a secret key SK and some public parameter PP .
The restricted device (e.g. a smartcard) generates random points and sends them to the
powerful device to compute several pairings. The smartcard receives the pairings and
combines some of them to get the actual value e(SK,PP). The basic idea is to mask
the secret value SK by a linear combination of those random points with “small” co-
efficients to improve efficiency. A similar approach has been used successfully in the
setting of server-aided exponentiation [6,16].

4.1 Security Analysis

Let G be a cyclic group of order p denoted additively. We consider the two following
distributions:

Un = {(P1, P2, . . . , Pn, Q)
R←− Gn+1}

and

Kn,A =

(P1, P2, . . . , Pn, Q), s.t.
(P1, P2, . . . , Pn)

R←− Gn
Q← [a1]P1 + · · ·+ [an]Pn

where (a1, . . . , an)
R←− [[0, A− 1]]n

 .

Un is the uniform distribution on Gn+1 and Kn,A outputs (n+1)-tuples where the first
n components are picked uniformly at random in G while the last component is a linear
combination of those elements with exponents picked uniformly at random in the inter-
val [[0, A− 1]]. In a basic version of our delegation protocol, the restricted device sends
the elements (P1, . . . , Pn) and Pn+1 = (SK − Q) to the powerful device. It replies
by sending back the pairings e(Pi,PP) for i ∈ {1, . . . , n + 1}. The restricted device
finally gets e(SK,PP) as e(Pn+1,PP) ·

∏n
i=1 e(gi,PP)ai . If the two distributions Un

and Kn,A are indistinguishable, the protocol will readily achieve the secrecy property.

– Perfect indistinguishability. It is straightforward to see that if A = p, then the two
distributions are identical (even if n = 1) and the delegation scheme as outlined
above achieves unconditional secrecy. Unfortunately, as we will see in the next
paragraph, the efficiency of our schemes depends crucially on the size of A and
one wants to use smaller A in practice.

– Statistical indistinguishability. By using classical results on the distribution of mod-
ular sums [16], one can prove that if An = Ω(p2), then the two distributions Un
and Kn,A are statistically indistinguishable (see [16,10] for details). For these pa-
rameters, the delegation protocol achieves statistical (and therefore computational)
secrecy. For cryptographic purposes, the order p of G needs to be of 2k-bit size to
achieve a k-bit security level. Therefore, to achieve statistical indistinguishability,
we need to have An = Ω(24k) and the resulting delegation protocol is not really
efficient.



– Computational indistinguishability. For smaller parameters (i.e. An = o(p2)), we
cannot prove that the Un and Kn,A are statistically indistinguishable. However, it
may be possible to prove that they are computationally indistinguishable. Using
a variant of Shanks “baby-step giant-step” algorithm, one can see easily that it is
possible to find the scalars (a1, . . . , an) (if they exist) such thatQ = [a1]P1+ · · ·+
[an]Pn in O(An/2) group operations in G (i.e. to solve the generalized knapsack
problem in G). Therefore, to achieve computational indistinguishability for a k-bit
security parameter, one needs to have at least An = Ω(22k) = Ω(p).

To conclude this paragraph, we will prove that the two distributions Un andKn,A are
computationally indistinguishable in the generic group model when An = Ω(22k) =
Ω(p). Our delegation protocol therefore achieves secrecy in the generic group model
when An = Ω(22k) = Ω(p). This model was introduced by Shoup [17] for measur-
ing the exact difficulty of solving discrete logarithm problems. Algorithms in generic
groups do not exploit any properties of the encodings of group elements. They can ac-
cess group elements only via a random encoding algorithm that encodes group elements
as random bit-strings.

Let A be a generic group adversary. As usual, the generic group model is imple-
mented by choosing a random encoding σ : G −→ {0, 1}m. Instead of working di-
rectly with group elements, A takes as input their image under σ. This way, all A can
test is string equality. A is also given access to an oracle computing group addition and
subtraction: taking σ(R1) and σ(R2) and returning σ(R1 +R2), similarly for subtrac-
tion. Finally, we can assume that A submits to the oracle only encodings of elements
it had previously received. This is because we can choose m large enough so that the
probability of choosing a string that is also in the image of σ is negligible.

Theorem 1. Let A be a generic algorithm that distinguishes the two distributions Un
and Kn,A that makes at most τ group oracle queries, then A’s advantage in distin-
guishing the two distributions is upper-bounded by O(τ2/An).

To prove this theorem, we consider the following distributions in a product group
G1 × · · · ×Gn where each Gi is cyclic group of prime order p (for i ∈ {1, . . . , n}).

U ′n = {(P1, P2, . . . , Pn, Q)
R←− G1 ×G2 × · · · ×Gn × (G1 ×G2 × · · · ×Gn)}

and

K′n,A =

(P1, P2, . . . , Pn, Q), s.t.
(P1, P2, . . . , Pn)

R←− G1 ×G2 × · · · ×Gn
Q← [a1]P1 + · · ·+ [an]Pn

where (a1, . . . , an)
R←− [[0, A− 1]]n


It is worth mentioning that the use of these product groups in cryptography is not inter-
esting since even if their order is pn, the complexity of discrete logarithm computation
in them is not much harder than in cyclic groups of order p. We will only use them as a
tool in order to prove our Theorem 1.

Following Shoup’s technique [17], it is easy to prove that a generic algorithm in
the product group G1 × · · · ×Gn (or equivalently in Znp ) has a negligible advantage in
distinguishing the two distributions U ′n and K′n,A if it makes a polynomial number of
group oracle queries. More precisely, we can prove the following proposition:



Proposition 1. Let A be a generic algorithm that distinguishes the two distributions
U ′n and K′n,A and makes at most τ group oracle queries, then A’s advantage in dis-
tinguishing the two distributions is upper-bounded by O(τ2/An).

Proof. We consider an algorithm B playing the following game with A. Algorithm B
chooses n + 1 bit strings σ1, . . . , σn, σn+1 uniformly in {0, 1}m. Internally, B keeps
track of the encoded elements using elements in the ring Zp[X1] × · · · × Zp[Xn]. To
maintain consistency with the bit strings given to A, B creates a lists L of pairs (F, σ)
where F is a polynomial vector in the ring Zp[X1]× · · · × Zp[Xn] and σ ∈ {0, 1}m is
the encoding of a group element. The polynomial vector F represents the exponent of
the encoded element in the group G1 × · · · ×Gn. Initially, L is set to

{((1, 0, . . . , 0), σ1), ((0, 1, . . . , 0), σ2), . . . , ((0, 0, . . . , 1), σn), ((X1, . . . , Xn), σn+1)}

Algorithm B starts the game providing A with σ1, . . . , σn, σn+1. The simulation of the
group operations oracle goes as follows:

Group operation: Given two encodings σi and σj in L, B recovers the corresponding
vectors Fi and Fj and computes Fi + Fj (or Fi − Fj) termwise. If Fi + Fj (or
Fi − Fj) is already in L, B returns to A the corresponding bit string; otherwise it

returns a uniform element σ R←− {0, 1}m and stores (Fi + Fj , σ) (or (Fi − Fj , σ))
in L.

After A queried the oracles, it outputs a bit b. At this point, B chooses a random
bit b∗ ∈ {0, 1} and uniform values x1, . . . , xn ∈ Zp if b∗ = 0 or uniform values
x1, . . . , xn ∈ [[0, A− 1]] if b∗ = 1. The algorithm B sets Xi = xi for i ∈ {1, . . . , n}.

If the simulation provided by B is consistent, it reveals nothing about b. This means
that the probability ofA guessing the correct value for b∗ is 1/2. The only way in which
the simulation could be inconsistent is if, after we choose value for x1, . . . , xn, two
different polynomial vectors in L happen to produce the same value. First, note that A
is unable to cause such a collision on its own. Indeed, notice that L is initially populated
with polynomials of degree at most one in each coordinate and that both the group
addition and subtraction oracle do not increase the degree of the polynomial. Thus, all
polynomials contained in L have degree at most one. This is enough to conclude thatA
cannot purposely produce a collision.

It remains to prove that the probability of a collision happening due to a unlucky
choice of values is negligible. In other words, we have to bound the probability that two
distinctFi, Fj inL evaluate to the same value after the substitution, namelyFi(x1, . . . , xn)−
Fj(x1, . . . , xn) = 0. This reduces to bound the probability of hitting a zero of Fi−Fj .
By the simulation, this happens only if Fi−Fj is a non-constant polynomial vector and
in this case, each coordinate is a degree one polynomial in one Xi’s.

Recall that the Schwartz-Zippel lemma says that, if F is a degree d polynomial in
Zp[X1, . . . , Xn] and S ⊆ Zp then

Pr[F (x1, . . . , xn) = 0] ≤ d

|S|



where x1, . . . , xn are chosen uniformly from S. Going back to our case, we obtain by
applying the Schwartz-Zippel lemma to each coordinate:

Pr[(Fi − Fj)(x1, . . . , xn) = 0 ∈ Znp ] ≤
{

1/pn if b∗ = 0
1/An if b∗ = 1

Therefore, the probability that the simulation provided by B is inconsistent is upper-
bounded by τ(τ − 1)/An. ut

We will now prove that, provided m is large enough, a generic algorithm is not able
to decide whether it is given as inputs n generators (P1, . . . , Pn) in a cyclic group G of
prime order p or n order-p elements

(P1, 1G2
, . . . , 1Gn

), (1G1
, P2, . . . , 1Gn

), . . . , (1G1
, 1G2

, . . . , Pn)

in a product group G1×· · ·×Gn where each Gi is cyclic group of prime order p. Note
that the groups G and G1 × · · · × Gn are not of the same order and in practice, it will
probably be easy to distinguish them. We only claim that this is difficult for a generic
algorithm.

Proposition 2. Let A be a generic algorithm that distinguishes these two settings and
makes at most τ group oracle queries, then A’s advantage in distinguishing the two
distributions is upper-bounded by O(τ2/p).

Proof. We consider an algorithm B playing the following game with A. Algorithm B
chooses a random bit b∗ and runs one of the following simulation depending on the bit
b∗

– If b∗ = 0, B chooses n bit strings σ1, . . . , σn uniformly in {0, 1}m. Internally, B
keeps track of the encoded elements using elements in the ring Zp[X1, . . . , Xn].
To maintain consistency with the bit strings given to A, B creates a lists L of pairs
(F, σ) where F is a polynomial in the ring Zp[X1, . . . , Xn] and σ ∈ {0, 1}m is
the encoding of a group element. The polynomial F represents the exponent of the
encoded element in the group G. Initially, L is set to

{(X1, σ1), (X2, σ2), . . . , (Xn, σn)}

– If b∗ = 1, B chooses also n bit strings σ1, . . . , σn uniformly in {0, 1}m. Internally,
B keeps track of the encoded elements using elements in the ring Zp[X1] × · · · ×
Zp[Xn]. To maintain consistency with the bit strings given toA, B creates a lists L
of pairs (F, σ) where F is a polynomial vector in the ring Zp[X1]× · · · × Zp[Xn]
and σ ∈ {0, 1}m is the encoding of a group element. The polynomial vector F
represents the exponent of the encoded element in the group G1×· · ·×Gn. Initially,
L is set to

{((X1, 0, 0, . . . , 0), σ1), ((0, X2, 0, . . . , 0), σ2), . . . , ((0, 0, . . . , 0, Xn), σn)}

In each cases, algorithm B starts the game providingAwith σ1, . . . , σn. The simulation
of the group operations oracle goes as follows:



Group operation: Given two encodings σi and σj in L, B recovers the corresponding
polynomials (or polynomial vectors, depending on b∗) Fi and Fj and computes
Fi+Fj (or Fi−Fj) termwise. If Fi+Fj (or Fi−Fj) is already in L, B returns toA
the corresponding bit string; otherwise it returns a uniform element σ R←− {0, 1}m
and stores (Fi + Fj , σ) (or (Fi − Fj , σ)) in L.

After A queried the oracles, it outputs a bit b. At this point, B chooses uniform
values x1, . . . , xn ∈ Zp. The algorithm B sets Xi = xi for i ∈ {1, . . . , n}.

If the simulation provided by B is consistent, it reveals nothing about b. This means
that the probability ofA guessing the correct value for b∗ is 1/2. The only way in which
the simulation could be inconsistent is if, after we choose value for x1, . . . , xn, two
different polynomial vectors in L happen to produce the same value. First, note that A
is unable to cause such a collision on its own. Indeed, notice that L is initially populated
with polynomials of degree at most one in each coordinate and that both the group
addition and subtraction oracle do not increase the degree of the polynomial. Thus, all
polynomials contained in L have degree at most one. This is enough to conclude thatA
cannot purposely produce a collision.

It remains to prove that the probability of a collision happening due to a unlucky
choice of values is negligible. If b∗ = 1, the probability of a collision happening is equal
to 0. If b∗ = 0, we have to bound the probability that two distinct Fi, Fj in L evaluate
to the same value after the substitution, namely Fi(x1, . . . , xn)− Fj(x1, . . . , xn) = 0.
This reduces to bound the probability of hitting a zero of Fi − Fj .

Applying the Schwartz-Zippel lemma, we obtain

Pr[(Fi − Fj)(x1, . . . , xn) = 0 ∈ Zp] ≤ 1/p

Therefore, the probability that the simulation provided by B is inconsistent is upper-
bounded by τ(τ − 1)/p. ut

To prove Theorem 1, it is then enough to prove that if there exists a generic algo-
rithm that distinguishes the two distributions Un and Kn,A that makes at most τ group
oracle queries with an advantage larger than Ω(τ2/An), it gives an adversary able to
distinguish the cyclic group setting from the product group setting making at most τ
group oracle queries and with advantage Ω(τ2/An) (due to Proposition 1) and this
result contradicts Proposition 2.

4.2 Description of Our Protocol

In the previous subsection, we provided a description of a basic version of our protocol.
In this subsection, we consider an improved version of it on elliptic curves equipped
with efficient endomorphisms. In this improved scheme, instead of masking SK with
[a1]P1 + · · · + [an−1]Pn−1 with (a1, . . . , an−1)

R←− [[0, A − 1]]n−1, we will masked
it with [a1]Q1 + · · · + [an−1]Qn−1 with (a1, . . . , an−1)

R←− [[0, A − 1]]n−1 where the
Qi’s are images of the Pi under one of the efficient endomorphisms defined on the
curve. If we denote S the set of efficient endomorphisms on the curve (that can also
be efficiently evaluated in the group GT ), we obtained a scheme with generic security
Ω(#Sn−1 ·An−1/2).



Setup (could be offline). In the following, the smartcard has to generate several ran-
dom points on an elliptic curve E(Fp). Fouque and Tibouchi [11] proposed an efficient
method to do it on a BN curve.

1. Let I a set of small integers, I = {0, 1, 2, 3, 4, 5, . . . , 2` − 1} with #I = 2` = A.
2. The smartcard generates n−1 random points P1, P2, . . . , Pn−1 on the elliptic curve
E(Fp).

3. The smartcard chooses an endomorphism σi ∈ S to apply to Pi and sets Qi =
σi(Pi).

4. For each point Qi, the smartcard takes at random αi ∈ I and sets

Pn = SK − ([α1]Q1 + [α2]Q2 + . . .+ [αn−1]Qn−1 = SK −
n−1∑
i=1

[αi]Qi .

Delegation

5. The smartcard sends P1, P2, . . . , Pn to the server.
6. The server computes the n pairings fi = e(Qi,PP) and sends them back to the

smartcard.

Session key computation

7. The smartcard computes (fσ1
1 )α1 · (fσ2

2 )α2 · · · (fσn−1

n−1 )αn−1 · fn = K. The σi are
also almost free. Thanks to the bilinearity property,

e(SK,PP) = e(α1Q1 + α2Q2 . . .+ αn−1Qn−1 + Pn,PP)
= e(α1Q1,PP)e(α2Q2,PP) · · · e(αn−1Qn−1,PP)e(Pn,PP)
= (e(P1,PP)σ1)α1 · · · (e(Pn−1,PP)σn−1)αn−1(e(Pn,PP))

with σi a cheap endomorphism in F∗pk such that e(σi(Pi),PP) = e(Pi,PP)σi .

Example on on a Barreto–Naehrig curve. For optimal Ate pairing on a BN curve
with 128-bit security level (i.e. 256-bit prime number p), the endomorphism set S can
be defined as {Id,−Id, φ, φ2,−φ,−φ2} where φ is computed from the complex multi-
plication endomorphism available on the curve. These endomorphisms are almost free
on E(Fp) if D = 1 or D = 3. They cost at most one multiplication and one subtraction
in Fp and the resulting point Qi is still in affine coordinates [5].

In the Setup procedure, the smartcard has to obtain Pn in affine coordinates, this
costs one inversion in Fp plus four multiplications, resulting in an additional cost of
(say) 64Mp. The cost of computing Pn is (n − 1) · (` · 7 + `/2 · 11 + 16) + 64Mp.
Indeed, in Jacobian coordinates, one addition on E(Fp) with one of the two points
in affine coordinates costs 11Mp, if none of the points are in affine coordinates, this
costs 16Mp, and one doubling costs 8Mp. If moreover we use a BN curve (a4 = 0), a
doubling costs 7Mp.

The computation cost for the powerful device is 16336(0.84(n − 1) + 1) Mp. In-
deed, the first pairing costs ≈ 16336Mp and the (n − 1) other ones cost 0.84 of one



Algorithm 4: Pairing delegation with knapsack.
Input: secret key SK, public value PP , set I of small integers with #I = 2`

Output: Session key K = e(SK,PP)
1 Offline:
2 Generate n− 1 random points P1, P2, . . . , Pn ∈ E(Fp).
3 foreach Pi do
4 Choose at random an endomorphism σi ∈ {Id,−Id, φ,−φ, φ2,−φ2} σi on

E(Fp): at most 1Mp

5 Choose at random an integer αi ∈ I
6 Compute Qi = [αi]σ(Pi) [αi]: log2 αi(DblE(Fp) +

1
3
AddE(Fp)) 6 10.7`Mp

7 Online:
8 Compute Pn = SK − ([α1]σi(P1) + [α2]σ2(P2) + . . .+ [αn−1]σn−1(Pn−1) =

SK −
∑n−1
i=1 [αi]σi(Pi)

n− 1 AddE(Fp) = (n− 1)11Mp

9 Send PP and all the P1, . . . , Pn to the server. communication: log(p) · (n+ 1)
bits

10 Ask for all the fi = e(Pi,PP), 1 6 i 6 n Delegated: ≈ 16336n Mp

11 Compute K = (fσ11 )α1 · (fσ22 )α2 · · · (fσn−1
n−1 )αn−1 · fn (n− 1)(σi + αi + Mult.) =

(n− 1)(8Mp + `(SΦ12(p) +
1
3
Mp12) +Mp12) = (n− 1)(62Mp + 36`Mp)

12 return K. Total cost: (n− 1)(73Mp + 46, 7`Mp)
Cost w/o pre-computation: (n− 1)(73Mp + 36`Mp)

for n = 20 and ` = 8: 6859Mp = 0.4 pairing

pairing (since the second argument is the fixed point PP , the tangents and lines can be
computed from PP one single time for all the pairings).

Finally, the smartcard computes1 n − 1 exponentiations and multiplies n elements
in GT to obtain the session key K = e(SK,PP). An exponentiation costs in average `
squaring plus `/2 multiplications in Fp12 . The n−1 exponentiations cost (n−1)(18`+
54`/3)Mp. It remains to compute n− 1 multiplications.

Overall, we obtain the global cost for the restricted device is: (n − 1)(73Mp +
46, 7`Mp) (and (n−1)(73Mp+36`Mp) is pre-computation is possible). We summarize
our proposition in Alg. 4. By choosing appropriate values for n and `, one can achieve
various communication-efficiency trade-off as shown in Tab. 2. To achieve statistical
security (instead of generic computational security), one basically needs to double the
value of `. One can find parameters for which the delegation procedure is more efficient
than the pairing computation (0.5 pairing for practical parameters).

5 Partial Pairing Computation Delegation

In this final section, we propose a completely different approach based on the arithmetic
of the pairing computation (without verifiability) of a pairing e(SK,PP) of a secret key
SK and some public parameter PP . More precisely, we delegate only the non-critical

1 It is worth mentioning that this computational cost can be further decreased by using classical
multi-exponentiation techniques (in particular for small values of n (e.g. n = 5).



Table 2. Communication/Efficiency Trade-off of our knapsack delegation protocol

` n Generic Security Computational Cost Communication
59 5 128 8788Mp = 0.53 pairing 15360 bits
23 10 126 8109Mp = 0.49 pairing 30720 bits
13 15 127 7574Mp = 0.46 pairing 46080 bits
8 20 125 6859Mp = 0.41 pairing 61440 bits
8 20 125 6859Mp = 0.41 pairing 61440 bits
5 25 122 6072Mp = 0.37 pairing 76800 bits
3 30 118 5249Mp = 0.32 pairing 92160 bits
0 51 128 3650Mp = 0.22 pairing 156672 bits

steps in the pairing algorithm, looking carefully at each instruction in Miller algorithm.
The protocol only achieves weak secrecy: the helper will learn the session key K (but
still not the secret key SK).

Final Powering Delegation We can blind the output f ′ ← u·f of the Miller function by
an element u ∈ F∗pk which is an r-th power (there exists a u

′ ∈ F∗pk such that u
′r = u),

see Alg. 5. Hence u will disappear after the final powering f
pk−1

r (Alg. 1, lines 16–27)

since u
pk−1

r = u′p
k−1 = 1. So we can delegate the final powering thanks to the equality

f ′(p
k−1)/r = (uf)(p

k−1)/r = K the session key. The helper learns the session key K
but as no additional information on f (in particular pairing inversion is not possible).

Algorithm 5: Partial reduced Tate pairing delegation
Input: Elliptic curve E(Fp) of embedding degree k and prime order r subgroup, with

degree d twist available, points P ∈ E(Fp), Q ∈ E(Fpk ) ∩ Ker(πpk/d − [pk/d])

Output: Reduced Tate pairing er(P,Q)
pk−1

r

1 f = fr,P (Q) Miller function
2 Compute a random r-th power u ∈ F∗pk i.e. such that ∃v ∈ F∗pk , u = vr

3 f
′
= f · u

4 Send f
′

to the external resource

5 Receive h = (f
′
)
pk−1

r = up
k−1f

pk−1
r = f

pk−1
r = K

6 Return K

Tangent and line Delegation The two points P,Q play two different roles in a Tate-like
pairing computation. In an ate pairing, the point P is used to evaluate the intermediate
line functions `(P ). The line functions ` are computed through a scalar multiplication
[s]Q (with s a public parameter of the curve). The coefficients arising in the lines and
tangent computation are re-used to update the Miller function fs,PP(SK). If Q is ac-
tually a public parameter PP , then the line computation `PP can be delegated. The



restricted device (such as a smartcard) will ask for the successive intermediate values `
then evaluate them at the secret point P = SK.

For an ate pairing on a BN curve, the line is of the form ` = `0 + `1ω + `3ω
3, with

Fp12 = Fp2 [ω] = Fp2 [ω]/(ω6 − ξ). The smartcard can delegate the computation of the
three coefficients then compute the line equation evaluated at SK.

Tangent and line computation One can found Relic [1] formulas for tangent and line
computation in src/pp/relic pp dbl.c (function pp dbl k12 projc basic)
and src/pp/relic pp add.c (function pp add k12 projc basic).

We recall the formula from [2, eq. (10)]:

`2T (P ) = −2Y Z yP + 3X2 xP ω + (3b
′
Z2 − Y 2)ω3 (1)

with ω such that Fp12 = Fp2 [ω]/(ω6 − ξ), X,Y, Z ∈ Fp2 and xP , yP ∈ Fp.
The second formula is the following [2, eq. (13)], with L = X − xQZ and M =

Y − yQZ:
`T+Q(P ) = −LyP −MxPω + (MX − LY )ω3 (2)

In both cases the coefficients of ` are computed from a public parameter Q = PP
hence can be delegated. The smart card saves 2Sp2 + 7Mp2 = It remains for the smart
card to evaluate the line ` at SK = P = (xP , yP ). This costs 4Mp in both cases.

Efficiency improvement. To sum up, the smartcard sends the point PP to the exter-
nal computer and computes the intermediate values of the Miller function on the fly,
when receiving the coefficients of the intermediate values. No information on SK is
provided to the external helper (except f ′ which does not reveal more information than
the session key K). For an optimal Ate pairing on a Barreto-Naehrig curve, this saves
31% of the Miller loop, then we delegate 100% of the final powering, saving at the
end 65% of the pairing cost. Note that the idea can be adapted to achieve (strong) se-
crecy by further masking the final powering but the efficiency improvement is smaller
if pre-computation is not possible. Note also that the same idea can be applied to any
instantiation of pairings (but requires a specific analysis).
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